code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCamelCase = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
453
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> float: if digit_amount > 0: return round(number - int(lowercase__ ) , lowercase__ ) return number - int(lowercase__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
453
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class a ( __UpperCAmelCase ): lowercase_ : str = 'distilbert' lowercase_ : Any = { 'hidden_size': 'dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', } def __init__( self : Optional[int] , snake_case__ : int=30_522 , snake_case__ : str=512 , snake_case__ : Tuple=False , snake_case__ : Tuple=6 , snake_case__ : Any=12 , snake_case__ : Dict=768 , snake_case__ : Any=4 * 768 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : str=0.1 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.0_2 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Optional[Any]=0.2 , snake_case__ : str=0 , **snake_case__ : Dict , ): """simple docstring""" __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = sinusoidal_pos_embds __lowerCAmelCase = n_layers __lowerCAmelCase = n_heads __lowerCAmelCase = dim __lowerCAmelCase = hidden_dim __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation __lowerCAmelCase = initializer_range __lowerCAmelCase = qa_dropout __lowerCAmelCase = seq_classif_dropout super().__init__(**snake_case__ , pad_token_id=snake_case__ ) class a ( __UpperCAmelCase ): @property def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" if self.task == "multiple-choice": __lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
376
from abc import ABC, abstractmethod from argparse import ArgumentParser class a ( __UpperCAmelCase ): @staticmethod @abstractmethod def UpperCAmelCase__ ( snake_case__ : ArgumentParser ): """simple docstring""" raise NotImplementedError() @abstractmethod def UpperCAmelCase__ ( self : Any ): """simple docstring""" raise NotImplementedError()
376
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : str =field(default="image-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) lowerCamelCase : ClassVar[Features] =Features({"image": Image()} ) lowerCamelCase : ClassVar[Features] =Features({"labels": ClassLabel} ) lowerCamelCase : str ="image" lowerCamelCase : str ="labels" def SCREAMING_SNAKE_CASE__ ( self : int , a : str ): """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , a ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) __lowerCamelCase = copy.deepcopy(self ) __lowerCamelCase = self.label_schema.copy() __lowerCamelCase = features[self.label_column] __lowerCamelCase = label_schema return task_template @property def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
546
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __UpperCAmelCase =pytest.mark.integration __UpperCAmelCase ={"comet"} __UpperCAmelCase =importlib.util.find_spec("fairseq") is not None __UpperCAmelCase ={"code_eval"} __UpperCAmelCase =os.name == "nt" __UpperCAmelCase ={"bertscore", "frugalscore", "perplexity"} __UpperCAmelCase =importlib.util.find_spec("transformers") is not None def __lowerCAmelCase ( UpperCamelCase__ ) -> Any: @wraps(UpperCamelCase__ ) def wrapper(self , UpperCamelCase__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , UpperCamelCase__ ) return wrapper def __lowerCAmelCase ( UpperCamelCase__ ) -> Any: @wraps(UpperCamelCase__ ) def wrapper(self , UpperCamelCase__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , UpperCamelCase__ ) return wrapper def __lowerCAmelCase ( UpperCamelCase__ ) -> List[Any]: @wraps(UpperCamelCase__ ) def wrapper(self , UpperCamelCase__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , UpperCamelCase__ ) return wrapper def __lowerCAmelCase ( ) -> Any: __lowerCamelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @local class a__ ( parameterized.TestCase ): lowerCamelCase : str ={} lowerCamelCase : Union[str, Any] =None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : List[Any] ): """simple docstring""" __lowerCamelCase = '''[...]''' __lowerCamelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , a ) ).module_path ) __lowerCamelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=a ) # check parameters __lowerCamelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(a , metric_module.__name__ ): with self.use_local_metrics(): try: __lowerCamelCase = doctest.testmod(a , verbose=a , raise_on_error=a ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Optional[int] ): """simple docstring""" __lowerCamelCase = '''[...]''' __lowerCamelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , a ) ).module_path ) # run doctest with self.use_local_metrics(): __lowerCamelCase = doctest.testmod(a , verbose=a , raise_on_error=a ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self : Any , a : Optional[Any] , a : Any ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](a ): yield else: yield @contextmanager def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" def load_local_metric(a : List[str] , *a : Optional[int] , **a : Tuple ): return load_metric(os.path.join('''metrics''' , a ) , *a , **a ) with patch('''datasets.load_metric''' ) as mock_load_metric: __lowerCamelCase = load_local_metric yield @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , a : Tuple ): """simple docstring""" def wrapper(a : List[Any] ): __lowerCamelCase = contextmanager(a ) __lowerCamelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Union[str, Any]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class a__ ( UpperCAmelCase__ ): def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Dict ): """simple docstring""" assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: __lowerCamelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Tuple: import torch def bert_cos_score_idf(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: __lowerCamelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def __lowerCAmelCase ( UpperCamelCase__ ) -> List[str]: def load_from_checkpoint(UpperCamelCase__ ): class a__ : def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : str , *a : int , **a : Tuple ): """simple docstring""" assert len(a ) == 2 __lowerCamelCase = [0.19, 0.92] return scores, sum(a ) / len(a ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: __lowerCamelCase = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: __lowerCamelCase = load_from_checkpoint yield def __lowerCAmelCase ( ) -> List[Any]: __lowerCamelCase = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) __lowerCamelCase = '''ERROR''' __lowerCamelCase = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(UpperCamelCase__ , match=re.escape(UpperCamelCase__ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase__ )
546
1
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' snake_case_ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __lowercase ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _lowercase : int = VideoClassificationPipeline(model=UpperCamelCase_ , image_processor=UpperCamelCase_ , top_k=2 ) _lowercase : List[str] = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def __lowercase ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> int: '''simple docstring''' for example in examples: _lowercase : List[str] = video_classifier(UpperCamelCase_ ) self.assertEqual( UpperCamelCase_ , [ {'''score''': ANY(UpperCamelCase_ ), '''label''': ANY(UpperCamelCase_ )}, {'''score''': ANY(UpperCamelCase_ ), '''label''': ANY(UpperCamelCase_ )}, ] , ) @require_torch def __lowercase ( self : Tuple ) -> List[Any]: '''simple docstring''' _lowercase : str = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' _lowercase : str = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) _lowercase : int = pipeline( '''video-classification''' , model=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , frame_sampling_rate=4 ) _lowercase : Union[str, Any] = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _lowercase : List[str] = video_classifier(UpperCamelCase_ , top_k=2 ) self.assertEqual( nested_simplify(UpperCamelCase_ , decimals=4 ) , [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}] , ) _lowercase : List[str] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(UpperCamelCase_ , decimals=4 ) , [ [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def __lowercase ( self : str ) -> Tuple: '''simple docstring''' pass
717
'''simple docstring''' import math def _SCREAMING_SNAKE_CASE( snake_case_ : int ) ->list[int]: '''simple docstring''' _lowercase : Optional[int] = [] _lowercase : Any = 2 _lowercase : List[str] = int(math.sqrt(snake_case_ ) ) # Size of every segment _lowercase : Tuple = [True] * (end + 1) _lowercase : List[str] = [] while start <= end: if temp[start] is True: in_prime.append(snake_case_ ) for i in range(start * start , end + 1 , snake_case_ ): _lowercase : Tuple = False start += 1 prime += in_prime _lowercase : str = end + 1 _lowercase : Optional[int] = min(2 * end , snake_case_ ) while low <= n: _lowercase : Optional[int] = [True] * (high - low + 1) for each in in_prime: _lowercase : Union[str, Any] = math.floor(low / each ) * each if t < low: t += each for j in range(snake_case_ , high + 1 , snake_case_ ): _lowercase : Optional[int] = False for j in range(len(snake_case_ ) ): if temp[j] is True: prime.append(j + low ) _lowercase : Union[str, Any] = high + 1 _lowercase : Tuple = min(high + end , snake_case_ ) return prime print(sieve(10**6))
411
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Any=99 , UpperCAmelCase_ : Dict=36 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : List[str]=6 , UpperCAmelCase_ : Tuple=6 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=1_000 , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =parent lowerCamelCase__: Any =batch_size lowerCamelCase__: Union[str, Any] =num_channels lowerCamelCase__: str =image_size lowerCamelCase__: Any =patch_size lowerCamelCase__: Optional[Any] =text_seq_length lowerCamelCase__: Optional[Any] =is_training lowerCamelCase__: List[str] =use_input_mask lowerCamelCase__: List[str] =use_token_type_ids lowerCamelCase__: List[Any] =use_labels lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: Optional[Any] =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Tuple =num_attention_heads lowerCamelCase__: List[Any] =intermediate_size lowerCamelCase__: Optional[Any] =hidden_act lowerCamelCase__: List[str] =hidden_dropout_prob lowerCamelCase__: Optional[Any] =attention_probs_dropout_prob lowerCamelCase__: Any =max_position_embeddings lowerCamelCase__: str =type_vocab_size lowerCamelCase__: str =type_sequence_label_size lowerCamelCase__: Optional[int] =initializer_range lowerCamelCase__: Union[str, Any] =coordinate_size lowerCamelCase__: Optional[Any] =shape_size lowerCamelCase__: int =num_labels lowerCamelCase__: str =num_choices lowerCamelCase__: List[Any] =scope lowerCamelCase__: List[str] =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCamelCase__: List[Any] =text_seq_length lowerCamelCase__: Any =(image_size // patch_size) ** 2 + 1 lowerCamelCase__: int =self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size) lowerCamelCase__: Any =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCamelCase__: Optional[int] =bbox[i, j, 3] lowerCamelCase__: int =bbox[i, j, 1] lowerCamelCase__: Tuple =t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCamelCase__: Tuple =bbox[i, j, 2] lowerCamelCase__: List[str] =bbox[i, j, 0] lowerCamelCase__: Any =t lowerCamelCase__: List[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__: Optional[int] =None if self.use_input_mask: lowerCamelCase__: List[str] =random_attention_mask([self.batch_size, self.text_seq_length]) lowerCamelCase__: Any =None if self.use_token_type_ids: lowerCamelCase__: List[Any] =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size) lowerCamelCase__: List[Any] =None lowerCamelCase__: List[str] =None if self.use_labels: lowerCamelCase__: List[str] =ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCamelCase__: Optional[Any] =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels) lowerCamelCase__: List[Any] =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =LayoutLMvaModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # text + image lowerCamelCase__: Optional[int] =model(UpperCAmelCase_ , pixel_values=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # text only lowerCamelCase__: List[str] =model(UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size)) # image only lowerCamelCase__: List[str] =model(pixel_values=UpperCAmelCase_) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.num_labels lowerCamelCase__: Optional[int] =LayoutLMvaForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: List[Any] =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.num_labels lowerCamelCase__: List[str] =LayoutLMvaForTokenClassification(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: int =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Tuple =LayoutLMvaForQuestionAnswering(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() lowerCamelCase__: Tuple =model( UpperCAmelCase_ , bbox=UpperCAmelCase_ , pixel_values=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[Any]: '''simple docstring''' lowerCamelCase__: List[Any] =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ): Tuple =config_and_inputs lowerCamelCase__: List[str] ={ "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' return True def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Dict: '''simple docstring''' lowerCamelCase__: List[Any] =LayoutLMvaModelTester(self) lowerCamelCase__: Any =ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict=False) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =copy.deepcopy(UpperCAmelCase_) if model_class in get_values(UpperCAmelCase_): lowerCamelCase__: Dict ={ k: v.unsqueeze(1).expand(-1 , self.model_tester.num_choices , -1).contiguous() if isinstance(UpperCAmelCase_ , torch.Tensor) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase_): lowerCamelCase__: List[str] =torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in get_values(UpperCAmelCase_): lowerCamelCase__: Tuple =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) lowerCamelCase__: List[str] =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in [ *get_values(UpperCAmelCase_), ]: lowerCamelCase__: int =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) elif model_class in [ *get_values(UpperCAmelCase_), ]: lowerCamelCase__: Optional[int] =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase_ , ) return inputs_dict def SCREAMING_SNAKE_CASE_ (self : Dict) ->Dict: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__: int =type self.model_tester.create_and_check_model(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' lowerCamelCase__: Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: List[str] =LayoutLMvaModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" lowerCamelCase__: str =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase_) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ (self : Dict) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Any =LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base").to(UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.default_image_processor lowerCamelCase__: Union[str, Any] =prepare_img() lowerCamelCase__: str =image_processor(images=UpperCAmelCase_ , return_tensors="pt").pixel_values.to(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =torch.tensor([[1, 2]]) lowerCamelCase__: Optional[Any] =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).unsqueeze(0) # forward pass lowerCamelCase__: List[Any] =model( input_ids=input_ids.to(UpperCAmelCase_) , bbox=bbox.to(UpperCAmelCase_) , pixel_values=pixel_values.to(UpperCAmelCase_) , ) # verify the logits lowerCamelCase__: List[Any] =torch.Size((1, 199, 768)) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase_) lowerCamelCase__: List[str] =torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]]).to(UpperCAmelCase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase_ , atol=1E-4))
59
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: a_ :List[str] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : int, _snake_case : Union[str, Any], _snake_case : List[str]=7, _snake_case : int=3, _snake_case : List[Any]=1_8, _snake_case : List[str]=3_0, _snake_case : str=4_0_0, _snake_case : Optional[Any]=None, _snake_case : Dict=True, _snake_case : str=True, _snake_case : Union[str, Any]=None, ) ->str: snake_case__ : int = size if size is not None else {'height': 2_0, 'width': 2_0} snake_case__ : Optional[Any] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : List[Any] = num_channels snake_case__ : List[str] = image_size snake_case__ : List[str] = min_resolution snake_case__ : int = max_resolution snake_case__ : Union[str, Any] = size snake_case__ : Tuple = do_normalize snake_case__ : List[str] = do_convert_rgb snake_case__ : List[Any] = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] snake_case__ : Tuple = patch_size if patch_size is not None else {'height': 1_6, 'width': 1_6} def lowercase_ ( self : str ) ->int: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowercase_ ( self : Optional[Any] ) ->str: snake_case__ : List[Any] = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' snake_case__ : List[Any] = Image.open(requests.get(_snake_case, stream=_snake_case ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PixaStructImageProcessor if is_vision_available() else None def lowercase_ ( self : str ) ->str: snake_case__ : Optional[int] = PixaStructImageProcessingTester(self ) @property def lowercase_ ( self : Union[str, Any] ) ->Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case, 'do_normalize' ) ) self.assertTrue(hasattr(_snake_case, 'do_convert_rgb' ) ) def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : List[str] = self.image_processor_tester.prepare_dummy_image() snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) snake_case__ : Optional[int] = 2_0_4_8 snake_case__ : Optional[int] = image_processor(_snake_case, return_tensors='pt', max_patches=_snake_case ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean(), torch.tensor(0.0_6_0_6 ), atol=1e-3, rtol=1e-3 ) ) def lowercase_ ( self : Tuple ) ->Dict: # Initialize image_processor snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : Optional[Any] = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : Any = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase_ ( self : List[str] ) ->Optional[Any]: # Initialize image_processor snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 snake_case__ : Union[str, Any] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_snake_case ): snake_case__ : int = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches snake_case__ : Optional[Any] = 'Hello' snake_case__ : Dict = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case, header_text=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : List[Any] = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case, header_text=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase_ ( self : Any ) ->int: # Initialize image_processor snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Any = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case, numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, np.ndarray ) snake_case__ : Union[str, Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : List[str] = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : Dict = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) def lowercase_ ( self : List[Any] ) ->List[Any]: # Initialize image_processor snake_case__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case, torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, torch.Tensor ) # Test not batched input snake_case__ : Any = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : Optional[Any] = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : int = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PixaStructImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ) ->Union[str, Any]: snake_case__ : Union[str, Any] = PixaStructImageProcessingTester(self, num_channels=4 ) snake_case__ : int = 3 @property def lowercase_ ( self : Optional[Any] ) ->List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Optional[int] ) ->Optional[int]: snake_case__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case, 'do_normalize' ) ) self.assertTrue(hasattr(_snake_case, 'do_convert_rgb' ) ) def lowercase_ ( self : Optional[int] ) ->str: # Initialize image_processor snake_case__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Dict = prepare_image_inputs(self.image_processor_tester, equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case, Image.Image ) # Test not batched input snake_case__ : List[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case__ : Any = image_processor( image_inputs[0], return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (1, max_patch, expected_hidden_dim), ) # Test batched snake_case__ : Dict = image_processor( _snake_case, return_tensors='pt', max_patches=_snake_case ).flattened_patches self.assertEqual( encoded_images.shape, (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim), )
478
0
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' _UpperCAmelCase = [[float('''inf''' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _UpperCAmelCase = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Union[str, Any] = int(input("Enter number of vertices: ")) __A : Dict = int(input("Enter number of edges: ")) __A : int = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : str = int(input("Enter source:")) __A : int = int(input("Enter destination:")) __A : List[str] = float(input("Enter weight:")) __A : Optional[Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
95
"""simple docstring""" import functools def lowercase ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(_SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 if min(_SCREAMING_SNAKE_CASE ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(_SCREAMING_SNAKE_CASE ) >= 366: raise ValueError('''All days elements should be less than 366''' ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(_SCREAMING_SNAKE_CASE : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
95
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase =logging.get_logger(__name__) lowerCamelCase ='''▁''' lowerCamelCase ={ '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase ={ '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } lowerCamelCase ={ '''facebook/m2m100_418M''': 1_0_2_4, } # fmt: off lowerCamelCase ={ '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class _lowerCamelCase ( UpperCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="m2m100" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=8 , **__SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs UpperCamelCase__ : Optional[Any] = language_codes UpperCamelCase__ : str = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCamelCase__ : int = {lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} UpperCamelCase__ : Any = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__SCREAMING_SNAKE_CASE ) for lang_code in fairseq_language_code if self.get_lang_token(__SCREAMING_SNAKE_CASE ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , language_codes=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Union[str, Any] = vocab_file UpperCamelCase__ : Union[str, Any] = load_json(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Union[str, Any] = spm_file UpperCamelCase__ : Optional[int] = load_spm(__SCREAMING_SNAKE_CASE , self.sp_model_kwargs ) UpperCamelCase__ : Any = len(self.encoder ) UpperCamelCase__ : Any = { self.get_lang_token(__SCREAMING_SNAKE_CASE ): self.encoder_size + i for i, lang_code in enumerate(__SCREAMING_SNAKE_CASE ) } UpperCamelCase__ : Dict = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__SCREAMING_SNAKE_CASE )} UpperCamelCase__ : List[str] = {v: k for k, v in self.lang_token_to_id.items()} UpperCamelCase__ : List[str] = src_lang if src_lang is not None else '''en''' UpperCamelCase__ : Any = tgt_lang UpperCamelCase__ : Optional[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCamelCase__ : Tuple = num_madeup_words @property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder[self.unk_token] ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Optional[int] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token UpperCamelCase__ : Optional[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ) -> Union[str, Any]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = [1] * len(self.prefix_tokens ) UpperCamelCase__ : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> Any: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Dict = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any = self.__dict__.copy() UpperCamelCase__ : Dict = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase__ : str = {} UpperCamelCase__ : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> Dict: """simple docstring""" UpperCamelCase__ : Union[str, Any] = Path(__SCREAMING_SNAKE_CASE ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) UpperCamelCase__ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCamelCase__ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __SCREAMING_SNAKE_CASE ) if os.path.abspath(self.spm_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.spm_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase__ : Tuple = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (str(__SCREAMING_SNAKE_CASE ), str(__SCREAMING_SNAKE_CASE )) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro" , **__SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any = src_lang UpperCamelCase__ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase__ : Optional[int] = src_lang UpperCamelCase__ : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = self.get_lang_id(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.get_lang_token(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = self.lang_token_to_id[lang_token] UpperCamelCase__ : Tuple = [self.cur_lang_id] UpperCamelCase__ : Optional[int] = [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Tuple = self.get_lang_token(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = self.lang_token_to_id[lang_token] UpperCamelCase__ : Optional[Any] = [self.cur_lang_id] UpperCamelCase__ : Any = [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return self.lang_code_to_token[lang] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ : Optional[int] = self.get_lang_token(__SCREAMING_SNAKE_CASE ) return self.lang_token_to_id[lang_token] def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : Dict = sentencepiece.SentencePieceProcessor(**__lowercase ) spm.Load(str(__lowercase ) ) return spm def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): with open(__lowercase , '''r''' ) as f: return json.load(__lowercase ) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): with open(__lowercase , '''w''' ) as f: json.dump(__lowercase , __lowercase , indent=2 )
285
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : Tuple = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = "resnet" _UpperCAmelCase : Any = ["basic", "bottleneck"] def __init__( self : Union[str, Any] , lowercase : Dict=3 , lowercase : Any=64 , lowercase : Any=[256, 512, 1_024, 2_048] , lowercase : Dict=[3, 4, 6, 3] , lowercase : Any="bottleneck" , lowercase : Optional[Any]="relu" , lowercase : Dict=False , lowercase : str=None , lowercase : Tuple=None , **lowercase : List[Any] , ): '''simple docstring''' super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) _snake_case = num_channels _snake_case = embedding_size _snake_case = hidden_sizes _snake_case = depths _snake_case = layer_type _snake_case = hidden_act _snake_case = downsample_in_first_stage _snake_case = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] _snake_case , _snake_case = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = version.parse("1.11" ) @property def A ( self : int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def A ( self : Optional[Any] ): '''simple docstring''' return 1E-3
686
0
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowerCamelCase : Optional[Any] = True except ImportError: _lowerCamelCase : str = False _lowerCamelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase_ ( _UpperCAmelCase ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowercase ( __UpperCAmelCase): @staticmethod def a_ ( _lowerCamelCase : ArgumentParser ): """simple docstring""" A_ : int = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=_lowerCamelCase , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=_lowerCamelCase , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=_lowerCamelCase ) def __init__( self : Any , _lowerCamelCase : bool , _lowerCamelCase : str , _lowerCamelCase : Tuple=None , *_lowerCamelCase : Tuple ): """simple docstring""" A_ : str = testing A_ : List[Any] = testing_file A_ : str = path def a_ ( self : Tuple ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A_ : str = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(_lowerCamelCase ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) A_ : List[Any] = ( Path(_lowerCamelCase ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A_ : Tuple = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(_lowerCamelCase ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: A_ : Dict = json.load(_lowerCamelCase ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=_lowerCamelCase , extra_context=_lowerCamelCase , ) A_ : Optional[Any] = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: A_ : str = json.load(_lowerCamelCase ) A_ : Any = configuration['''lowercase_modelname'''] A_ : Dict = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(F"""{directory}/configuration.json""" ) A_ : Tuple = '''PyTorch''' in generate_tensorflow_pytorch_and_flax A_ : Dict = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax A_ : int = '''Flax''' in generate_tensorflow_pytorch_and_flax A_ : Optional[Any] = F"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) os.makedirs(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=_lowerCamelCase ) # Tests require submodules as they have parent imports with open(F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( F"""{directory}/__init__.py""" , F"""{model_dir}/__init__.py""" , ) shutil.move( F"""{directory}/configuration_{lowercase_model_name}.py""" , F"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(_lowerCamelCase : Optional[int] ): with open(_lowerCamelCase , '''r''' ) as f: A_ : List[Any] = f.readlines() with open(_lowerCamelCase , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(_lowerCamelCase ) if output_pytorch: if not self._testing: remove_copy_lines(F"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/test_modeling_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(F"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_tf_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(F"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/modeling_flax_{lowercase_model_name}.py""" , F"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , F"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(F"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(F"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( F"""{directory}/{lowercase_model_name}.md""" , F"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( F"""{directory}/tokenization_{lowercase_model_name}.py""" , F"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( F"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , F"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(_lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : List[str] ): # Create temp file A_ : Union[str, Any] = mkstemp() A_ : List[Any] = False with fdopen(_lowerCamelCase , '''w''' ) as new_file: with open(_lowerCamelCase ) as old_file: for line in old_file: new_file.write(_lowerCamelCase ) if line_to_copy_below in line: A_ : Union[str, Any] = True for line_to_copy in lines_to_copy: new_file.write(_lowerCamelCase ) if not line_found: raise ValueError(F"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(_lowerCamelCase , _lowerCamelCase ) # Remove original file remove(_lowerCamelCase ) # Move new file move(_lowerCamelCase , _lowerCamelCase ) def skip_units(_lowerCamelCase : str ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(_lowerCamelCase : Any ): with open(_lowerCamelCase ) as datafile: A_ : Optional[Any] = [] A_ : Optional[int] = False A_ : str = False for line in datafile: if "# To replace in: " in line and "##" not in line: A_ : Dict = line.split('''"''' )[1] A_ : str = skip_units(_lowerCamelCase ) elif "# Below: " in line and "##" not in line: A_ : Optional[int] = line.split('''"''' )[1] A_ : Any = skip_units(_lowerCamelCase ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A_ : int = [] elif "# Replace with" in line and "##" not in line: A_ : Any = [] elif "##" not in line: lines_to_copy.append(_lowerCamelCase ) remove(_lowerCamelCase ) replace_in_files(F"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(_lowerCamelCase )
706
"""simple docstring""" def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : int = len(_UpperCAmelCase ) for i in range(length - 1 ): A_ : str = i for k in range(i + 1 , _UpperCAmelCase ): if collection[k] < collection[least]: A_ : Tuple = k if least != i: A_ , A_ : Optional[int] = (collection[i], collection[least]) return collection if __name__ == "__main__": _lowerCamelCase : Optional[int] = input('Enter numbers separated by a comma:\n').strip() _lowerCamelCase : List[str] = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
361
0
import doctest from collections import deque import numpy as np class a : """simple docstring""" def __init__( self : List[str] ) -> None: __snake_case : List[Any] = [2, 1, 2, -1] __snake_case : Union[str, Any] = [1, 2, 3, 4] def __snake_case ( self : int ) -> list[float]: __snake_case : int = len(self.first_signal ) __snake_case : Union[str, Any] = len(self.second_signal ) __snake_case : Any = max(lowerCamelCase , lowerCamelCase ) # create a zero matrix of max_length x max_length __snake_case : str = [[0] * max_length for i in range(lowerCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCamelCase ): __snake_case : Tuple = deque(self.second_signal ) rotated_signal.rotate(lowerCamelCase ) for j, item in enumerate(lowerCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal __snake_case : Optional[int] = np.matmul(np.transpose(lowerCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
81
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : Tuple = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __snake_case : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
293
0
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def UpperCamelCase__( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict )->Optional[Any]: A__ = multiprocessing.Manager() A__ = manager.list() A__ = multiprocessing.Process(target=a__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def UpperCamelCase__( UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Dict )->Tuple: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil A__ = shutil.rmtree A__ = os.rmdir A__ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: A__ = {} with swallow_io(): with time_limit(a__ ): exec(a__ , a__ ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f"failed: {e}" ) # Needed for cleaning up. A__ = rmtree A__ = rmdir A__ = chdir @contextlib.contextmanager def UpperCamelCase__( UpperCamelCase__ : int )->List[str]: def signal_handler(UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , a__ ) signal.signal(signal.SIGALRM , a__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def UpperCamelCase__( )->Dict: A__ = WriteOnlyStringIO() with contextlib.redirect_stdout(a__ ): with contextlib.redirect_stderr(a__ ): with redirect_stdin(a__ ): yield @contextlib.contextmanager def UpperCamelCase__( )->Dict: with tempfile.TemporaryDirectory() as dirname: with chdir(a__ ): yield dirname class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( io.StringIO ): def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): raise OSError def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): raise OSError def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): raise OSError def UpperCamelCase ( self,*__lowerCamelCase,**__lowerCamelCase ): return False class SCREAMING_SNAKE_CASE__ ( contextlib._RedirectStream ): # type: ignore __SCREAMING_SNAKE_CASE = '''stdin''' @contextlib.contextmanager def UpperCamelCase__( UpperCamelCase__ : Tuple )->Union[str, Any]: if root == ".": yield return A__ = os.getcwd() os.chdir(a__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(a__ ) def UpperCamelCase__( UpperCamelCase__ : List[str]=None )->Dict: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins A__ = None A__ = None import os A__ = '''1''' A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None import shutil A__ = None A__ = None A__ = None import subprocess A__ = None # type: ignore A__ = None import sys A__ = None A__ = None A__ = None A__ = None A__ = None
716
def UpperCamelCase__( UpperCamelCase__ : int = 50 )->int: A__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
212
0
import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=0 ) -> Optional[Any]: '''simple docstring''' if name is None: lowerCamelCase__: Any = None else: lowerCamelCase__: List[str] = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" lowerCamelCase__: Optional[int] = fmt.format(_UpperCamelCase ) # Print and recurse (if needed). if isinstance(_UpperCamelCase , _UpperCamelCase ): if msg is not None: print(_UpperCamelCase ) for k in val.keys(): recursive_print(_UpperCamelCase , val[k] , spaces + 2 ) elif isinstance(_UpperCamelCase , torch.Tensor ): print(_UpperCamelCase , """:""" , val.size() ) else: print(_UpperCamelCase , """:""" , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] lowerCamelCase__: List[Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] lowerCamelCase__: Union[str, Any] = param.view(*_UpperCamelCase ) lowerCamelCase__: List[Any] = param.transpose(0 , 2 ) lowerCamelCase__: Union[str, Any] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] lowerCamelCase__: List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:] lowerCamelCase__: Any = param.view(*_UpperCamelCase ) lowerCamelCase__: List[Any] = param.transpose(0 , 1 ).contiguous() lowerCamelCase__: Dict = param.view(*_UpperCamelCase ) return param def __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: '''simple docstring''' lowerCamelCase__: Union[str, Any] = {} # old versions did not store training args lowerCamelCase__: str = input_state_dict.get("""args""" , _UpperCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) lowerCamelCase__: List[Any] = ds_args.padded_vocab_size lowerCamelCase__: Optional[Any] = ds_args.max_position_embeddings lowerCamelCase__: Any = ds_args.hidden_size lowerCamelCase__: Dict = ds_args.num_layers lowerCamelCase__: List[Any] = ds_args.num_attention_heads lowerCamelCase__: Dict = ds_args.ffn_hidden_size # pprint(config) # The number of heads. lowerCamelCase__: List[str] = config.n_head # The hidden_size per head. lowerCamelCase__: int = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): lowerCamelCase__: Any = input_state_dict["""checkpoint_version"""] else: lowerCamelCase__: Tuple = 0.0 # The model. lowerCamelCase__: Tuple = input_state_dict["""model"""] # The language model. lowerCamelCase__: Dict = model["""language_model"""] # The embeddings. lowerCamelCase__: Optional[int] = lm["""embedding"""] # The word embeddings. lowerCamelCase__: Union[str, Any] = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. lowerCamelCase__: List[str] = word_embeddings[: config.vocab_size, :] lowerCamelCase__: Union[str, Any] = word_embeddings # The position embeddings. lowerCamelCase__: str = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] lowerCamelCase__: List[str] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match""" ) # Store the position embeddings. lowerCamelCase__: int = pos_embeddings # The transformer. lowerCamelCase__: List[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. lowerCamelCase__: List[Any] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. lowerCamelCase__: int = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. lowerCamelCase__: Optional[Any] = layer_re.match(_UpperCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. lowerCamelCase__: List[Any] = int(m.group(1 ) ) # The name of the operation. lowerCamelCase__: Optional[Any] = m.group(2 ) # Is it a weight or a bias? lowerCamelCase__: int = m.group(3 ) # The name of the layer. lowerCamelCase__: List[str] = f"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): lowerCamelCase__: str = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" lowerCamelCase__: Union[str, Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. lowerCamelCase__: List[Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , _UpperCamelCase , _UpperCamelCase ) lowerCamelCase__: Dict = causal_mask # Insert a "dummy" tensor for masked_bias. lowerCamelCase__: List[Any] = torch.tensor(-1E4 , dtype=torch.floataa ) lowerCamelCase__: int = masked_bias lowerCamelCase__: Dict = fix_query_key_value_ordering(_UpperCamelCase , _UpperCamelCase , 3 , _UpperCamelCase , _UpperCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. lowerCamelCase__: Union[str, Any] = out_val.transpose(0 , 1 ).contiguous() # Store. lowerCamelCase__: Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": lowerCamelCase__: Tuple = fix_query_key_value_ordering(_UpperCamelCase , _UpperCamelCase , 3 , _UpperCamelCase , _UpperCamelCase ) # Store. No change of shape. lowerCamelCase__: Optional[Any] = out_val # Transpose the weights. elif weight_or_bias == "weight": lowerCamelCase__: Dict = megatron_to_transformers[op_name] lowerCamelCase__: Optional[int] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": lowerCamelCase__: str = megatron_to_transformers[op_name] lowerCamelCase__: Union[str, Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. lowerCamelCase__: Dict = transformer["""final_layernorm.weight"""] lowerCamelCase__: List[str] = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. lowerCamelCase__: Any = word_embeddings # It should be done! return output_state_dict def __lowerCAmelCase ( ) -> List[str]: '''simple docstring''' lowerCamelCase__: Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=_UpperCamelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=_UpperCamelCase , help="""An optional config json file describing the pre-trained model.""" , ) lowerCamelCase__: str = parser.parse_args() # Extract the basename. lowerCamelCase__: Dict = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: lowerCamelCase__: List[Any] = torch.load(_UpperCamelCase , map_location="""cpu""" ) else: lowerCamelCase__: str = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) lowerCamelCase__: Optional[int] = input_state_dict.get("""args""" , _UpperCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: lowerCamelCase__: List[Any] = """gelu_fast""" elif ds_args.openai_gelu: lowerCamelCase__: List[str] = """gelu_new""" else: lowerCamelCase__: Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" lowerCamelCase__: Dict = """gelu_new""" # Spell out all parameters in case the defaults change. lowerCamelCase__: str = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_UpperCamelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=_UpperCamelCase , summary_activation=_UpperCamelCase , summary_proj_to_labels=_UpperCamelCase , summary_first_dropout=0.1 , scale_attn_weights=_UpperCamelCase , use_cache=_UpperCamelCase , bos_token_id=50256 , eos_token_id=50256 , ) else: lowerCamelCase__: Dict = GPTaConfig.from_json_file(args.config_file ) lowerCamelCase__: Optional[int] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) lowerCamelCase__: Dict = convert_megatron_checkpoint(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_UpperCamelCase , _UpperCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: lowerCamelCase__: Optional[Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": lowerCamelCase__: Tuple = """gpt2""" elif tokenizer_type == "PretrainedFromHF": lowerCamelCase__: Any = ds_args.tokenizer_name_or_path else: raise ValueError(f"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: lowerCamelCase__: Any = """gpt2""" lowerCamelCase__: List[str] = AutoTokenizer.from_pretrained(_UpperCamelCase ) lowerCamelCase__: Any = type(_UpperCamelCase ).__name__ lowerCamelCase__: str = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(_UpperCamelCase ) # Save tokenizer based on args print(f"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(_UpperCamelCase ) # Store the state_dict to file. lowerCamelCase__: List[Any] = os.path.join(_UpperCamelCase , """pytorch_model.bin""" ) print(f"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(_UpperCamelCase , _UpperCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
306
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:Optional[Any] = 'blip_text_model' def __init__( self , _a=3_0524 , _a=768 , _a=768 , _a=3072 , _a=768 , _a=12 , _a=8 , _a=512 , _a="gelu" , _a=1e-12 , _a=0.0 , _a=0.0 , _a=0.02 , _a=3_0522 , _a=2 , _a=0 , _a=102 , _a=True , _a=True , **_a , ): """simple docstring""" super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , sep_token_id=_a , **_a , ) a__ = vocab_size a__ = hidden_size a__ = encoder_hidden_size a__ = intermediate_size a__ = projection_dim a__ = hidden_dropout_prob a__ = num_hidden_layers a__ = num_attention_heads a__ = max_position_embeddings a__ = layer_norm_eps a__ = hidden_act a__ = initializer_range a__ = attention_probs_dropout_prob a__ = is_decoder a__ = use_cache @classmethod def lowercase__ ( cls , _a , **_a ): """simple docstring""" cls._set_token_in_kwargs(_a ) a__ , a__ = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": a__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:str = 'blip_vision_model' def __init__( self , _a=768 , _a=3072 , _a=512 , _a=12 , _a=12 , _a=384 , _a=16 , _a="gelu" , _a=1e-5 , _a=0.0 , _a=1e-10 , **_a , ): """simple docstring""" super().__init__(**_a ) a__ = hidden_size a__ = intermediate_size a__ = projection_dim a__ = num_hidden_layers a__ = num_attention_heads a__ = patch_size a__ = image_size a__ = initializer_range a__ = attention_dropout a__ = layer_norm_eps a__ = hidden_act @classmethod def lowercase__ ( cls , _a , **_a ): """simple docstring""" cls._set_token_in_kwargs(_a ) a__ , a__ = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": a__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:Any = 'blip' SCREAMING_SNAKE_CASE:List[str] = True def __init__( self , _a=None , _a=None , _a=512 , _a=2.6592 , _a=256 , **_a , ): """simple docstring""" super().__init__(**_a ) if text_config is None: a__ = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: a__ = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) a__ = BlipTextConfig(**_a ) a__ = BlipVisionConfig(**_a ) a__ = self.vision_config.hidden_size a__ = projection_dim a__ = logit_scale_init_value a__ = 1.0 a__ = 0.02 a__ = image_text_hidden_size @classmethod def lowercase__ ( cls , _a , _a , **_a ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def lowercase__ ( self ): """simple docstring""" a__ = copy.deepcopy(self.__dict__ ) a__ = self.text_config.to_dict() a__ = self.vision_config.to_dict() a__ = self.__class__.model_type return output
394
0
'''simple docstring''' import math def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float ) -> float: '''simple docstring''' if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_6_0: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(UpperCAmelCase__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
320
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): A_ : Tuple = ['pixel_values'] def __init__( self : Optional[Any] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Dict[str, int]] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 2_55 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , **UpperCamelCase_ : str , ) -> None: super().__init__(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = size if size is not None else {'shortest_edge': 2_56} SCREAMING_SNAKE_CASE__ :Optional[int] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} SCREAMING_SNAKE_CASE__ :Dict = get_size_dict(UpperCamelCase_ , param_name='crop_size' ) SCREAMING_SNAKE_CASE__ :Optional[int] = do_resize SCREAMING_SNAKE_CASE__ :List[Any] = size SCREAMING_SNAKE_CASE__ :str = resample SCREAMING_SNAKE_CASE__ :Dict = do_center_crop SCREAMING_SNAKE_CASE__ :List[Any] = crop_size SCREAMING_SNAKE_CASE__ :List[str] = do_rescale SCREAMING_SNAKE_CASE__ :List[Any] = rescale_factor SCREAMING_SNAKE_CASE__ :int = do_normalize SCREAMING_SNAKE_CASE__ :Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ :Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[Any] , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ :Union[str, Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE__ :str = get_resize_output_image_size(UpperCamelCase_ , size=size['shortest_edge'] , default_to_square=UpperCamelCase_ ) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __lowerCamelCase ( self : Any , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : str , ) -> np.ndarray: SCREAMING_SNAKE_CASE__ :Dict = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(UpperCamelCase_ , size=(size['height'], size['width']) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __lowerCamelCase ( self : Union[str, Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : float , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Any ) -> np.ndarray: return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __lowerCamelCase ( self : Dict , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : int , ) -> np.ndarray: return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[float] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_ : Any , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :List[str] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ :int = size if size is not None else self.size SCREAMING_SNAKE_CASE__ :int = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ :Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE__ :Dict = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE__ :Optional[int] = get_size_dict(UpperCamelCase_ , param_name='crop_size' ) SCREAMING_SNAKE_CASE__ :List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ :List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ :Any = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ :List[str] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ :Optional[int] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ :List[Any] = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ :Optional[Any] = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ :List[Any] = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE__ :Union[str, Any] = [self.center_crop(image=UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ :List[str] = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ :str = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] SCREAMING_SNAKE_CASE__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] SCREAMING_SNAKE_CASE__ :Union[str, Any] = {'pixel_values': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ ) def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Tuple] = None ) -> str: SCREAMING_SNAKE_CASE__ :Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ :List[Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE__ :Any = [] for idx in range(len(UpperCamelCase_ ) ): SCREAMING_SNAKE_CASE__ :Union[str, Any] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase_ ) else: SCREAMING_SNAKE_CASE__ :List[str] = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE__ :Any = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
320
1
'''simple docstring''' from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _a : Dict = """\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n""" _a : Tuple = """\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n""" _a : Optional[int] = """\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n""" def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]: return float((preds == labels).mean() ) def _lowerCAmelCase ( lowercase , lowercase , lowercase="binary" ) -> Dict: __lowerCAmelCase = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) __lowerCAmelCase = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( lowercase , lowercase ) -> Any: __lowerCAmelCase = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): __lowerCAmelCase = f'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' __lowerCAmelCase = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __lowerCAmelCase = [(pred, label)] __lowerCAmelCase , __lowerCAmelCase = [], [] for question, preds_labels in question_map.items(): __lowerCAmelCase , __lowerCAmelCase = zip(*UpperCamelCase_ ) __lowerCAmelCase = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="""macro""" ) fas.append(UpperCamelCase_ ) __lowerCAmelCase = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) __lowerCAmelCase = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) __lowerCAmelCase = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) __lowerCAmelCase = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase__ ( self ): '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" ) return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(self._get_feature_types() ),codebase_urls=[],reference_urls=[],format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None,) def lowerCamelCase__ ( self ): '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "prediction_text": datasets.Value("""string""" ), }, "references": { "idx": { "passage": datasets.Value("""int64""" ), "query": datasets.Value("""int64""" ), }, "answers": datasets.Sequence(datasets.Value("""string""" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64""" ), "paragraph": datasets.Value("""int64""" ), "question": datasets.Value("""int64""" ), }, "prediction": datasets.Value("""int64""" ), }, "references": datasets.Value("""int64""" ), } else: return { "predictions": datasets.Value("""int64""" ), "references": datasets.Value("""int64""" ), } def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(lowerCAmelCase__,lowerCAmelCase__ )} elif self.config_name == "cb": return acc_and_fa(lowerCAmelCase__,lowerCAmelCase__,fa_avg="""macro""" ) elif self.config_name == "record": __lowerCAmelCase = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] __lowerCAmelCase = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(lowerCAmelCase__,lowerCAmelCase__ )[0] elif self.config_name == "multirc": return evaluate_multirc(lowerCAmelCase__,lowerCAmelCase__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(lowerCAmelCase__,lowerCAmelCase__ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""" )
689
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] create_all_state(1 , UpperCamelCase_ , UpperCamelCase_ , [] , UpperCamelCase_ ) return result def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): if level == 0: total_list.append(current_list[:] ) return for i in range(UpperCamelCase_ , total_number - level + 2 ): current_list.append(UpperCamelCase_ ) create_all_state(i + 1 , UpperCamelCase_ , level - 1 , UpperCamelCase_ , UpperCamelCase_ ) current_list.pop() def _lowerCAmelCase ( UpperCamelCase_ ): for i in total_list: print(*UpperCamelCase_ ) if __name__ == "__main__": __magic_name__ = 4 __magic_name__ = 2 __magic_name__ = generate_all_combinations(n, k) print_all_state(total_list)
155
0
import numpy as np lowerCamelCase__ : Optional[Any] = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _snake_case : def __init__( self): '''simple docstring''' lowercase__ : Any = np.array(SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = np.where(letter == self.SQUARE) lowercase__ : Optional[Any] = np.concatenate([indexa + 1, indexa + 1]) return indexes def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Union[str, Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : str = message.lower() lowercase__ : Optional[int] = message.replace(""" """ , """""") lowercase__ : str = message.replace("""j""" , """i""") lowercase__ : str = np.empty((2, len(SCREAMING_SNAKE_CASE_))) for letter_index in range(len(SCREAMING_SNAKE_CASE_)): lowercase__ : List[str] = self.letter_to_numbers(message[letter_index]) lowercase__ : List[Any] = numbers[0] lowercase__ : str = numbers[1] lowercase__ : Dict = first_step.reshape(2 * len(SCREAMING_SNAKE_CASE_)) lowercase__ : List[Any] = """""" for numbers_index in range(len(SCREAMING_SNAKE_CASE_)): lowercase__ : List[Any] = int(second_step[numbers_index * 2]) lowercase__ : Dict = int(second_step[(numbers_index * 2) + 1]) lowercase__ : int = self.numbers_to_letter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = encoded_message + letter return encoded_message def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[int] = message.lower() message.replace(""" """ , """""") lowercase__ : Dict = np.empty(2 * len(SCREAMING_SNAKE_CASE_)) for letter_index in range(len(SCREAMING_SNAKE_CASE_)): lowercase__ : Optional[int] = self.letter_to_numbers(message[letter_index]) lowercase__ : int = numbers[0] lowercase__ : List[str] = numbers[1] lowercase__ : Optional[Any] = first_step.reshape((2, len(SCREAMING_SNAKE_CASE_))) lowercase__ : List[Any] = """""" for numbers_index in range(len(SCREAMING_SNAKE_CASE_)): lowercase__ : Union[str, Any] = int(second_step[0, numbers_index]) lowercase__ : Optional[int] = int(second_step[1, numbers_index]) lowercase__ : str = self.numbers_to_letter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Dict = decoded_message + letter return decoded_message
717
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCamelCase__ : Dict = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ lowerCamelCase__ : Tuple = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ lowerCamelCase__ : Any = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' return float((preds == labels).mean() ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_="binary" ) -> int: '''simple docstring''' lowercase__ : List[str] = simple_accuracy(lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = float(fa_score(y_true=lowercase_ , y_pred=lowercase_ , average=lowercase_ ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' lowercase__ : List[Any] = {} for id_pred, label in zip(lowercase_ , lowercase_ ): lowercase__ : Optional[Any] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' lowercase__ : Optional[Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowercase__ : Optional[int] = [(pred, label)] lowercase__ , lowercase__ : List[str] = [], [] for question, preds_labels in question_map.items(): lowercase__ , lowercase__ : List[str] = zip(*lowercase_ ) lowercase__ : Optional[Any] = fa_score(y_true=lowercase_ , y_pred=lowercase_ , average="""macro""" ) fas.append(lowercase_ ) lowercase__ : List[Any] = int(sum(pred == label for pred, label in preds_labels ) == len(lowercase_ ) ) ems.append(lowercase_ ) lowercase__ : str = float(sum(lowercase_ ) / len(lowercase_ ) ) lowercase__ : str = sum(lowercase_ ) / len(lowercase_ ) lowercase__ : List[str] = float(fa_score(y_true=lowercase_ , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowercase__ ( self): '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types()) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def lowercase__ ( self): '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64"""), "query": datasets.Value("""int64"""), }, "prediction_text": datasets.Value("""string"""), }, "references": { "idx": { "passage": datasets.Value("""int64"""), "query": datasets.Value("""int64"""), }, "answers": datasets.Sequence(datasets.Value("""string""")), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64"""), "paragraph": datasets.Value("""int64"""), "question": datasets.Value("""int64"""), }, "prediction": datasets.Value("""int64"""), }, "references": datasets.Value("""int64"""), } else: return { "predictions": datasets.Value("""int64"""), "references": datasets.Value("""int64"""), } def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)} elif self.config_name == "cb": return acc_and_fa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , fa_avg="""macro""") elif self.config_name == "record": lowercase__ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] lowercase__ : str = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)[0] elif self.config_name == "multirc": return evaluate_multirc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""")
495
0
'''simple docstring''' from statistics import mean import numpy as np def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): lowerCamelCase__ = 0 # Number of processes finished lowerCamelCase__ = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. lowerCamelCase__ = [0] * no_of_process # List to include calculation results lowerCamelCase__ = [0] * no_of_process # Sort by arrival time. lowerCamelCase__ = [burst_time[i] for i in np.argsort(__lowerCAmelCase )] lowerCamelCase__ = [process_name[i] for i in np.argsort(__lowerCAmelCase )] arrival_time.sort() while no_of_process > finished_process_count: lowerCamelCase__ = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: lowerCamelCase__ = arrival_time[i] lowerCamelCase__ = 0 # Index showing the location of the process being performed lowerCamelCase__ = 0 # Saves the current response ratio. lowerCamelCase__ = 0 for i in range(0 , __lowerCAmelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: lowerCamelCase__ = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: lowerCamelCase__ = temp lowerCamelCase__ = i # Calculate the turn around time lowerCamelCase__ = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. lowerCamelCase__ = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def A__ ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ): lowerCamelCase__ = [0] * no_of_process for i in range(0 , __lowerCAmelCase ): lowerCamelCase__ = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": UpperCamelCase : Optional[int] = 5 UpperCamelCase : str = ['A', 'B', 'C', 'D', 'E'] UpperCamelCase : Optional[int] = [1, 2, 3, 4, 5] UpperCamelCase : Tuple = [1, 2, 3, 4, 5] UpperCamelCase : str = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) UpperCamelCase : Dict = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('Process name \tArrival time \tBurst time \tTurn around time \tWaiting time') for i in range(0, no_of_process): print( F'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' F'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(F'average waiting time : {mean(waiting_time):.5f}') print(F'average turn around time : {mean(turn_around_time):.5f}')
50
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase : List[Any] = 'examples/' UpperCamelCase : int = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCamelCase : Any = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } UpperCamelCase : Any = 'README.md' def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern] lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase ) lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : str ): for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = """🤗 Transformers currently provides the following architectures""" lowerCamelCase__ = """1. Want to contribute a new model?""" with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Find the start of the list. lowerCamelCase__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowerCamelCase__ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCAmelCase ) def A__ ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Union[str, Any]=False ): lowerCamelCase__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowerCamelCase__ = default_version.base_version elif patch: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = default_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def A__ ( ): lowerCamelCase__ = get_version() lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowerCamelCase__ = current_version.base_version # Check with the user we got that right. lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCamelCase : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
50
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowercase_ ( __A : str , __A : Union[str, Any] , __A : List[str]=None , __A : Optional[Any]=None , __A : List[str]=None , __A : List[str]=None , __A : Optional[Any]=None , __A : int=None , ) -> Dict: """simple docstring""" if attention_mask is None: lowercase : Union[str, Any] =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase : Optional[int] =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase : List[Any] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase : List[Any] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase : Optional[Any] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any]=13 , UpperCAmelCase : Any=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=False , UpperCAmelCase : Optional[int]=99 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : str=2 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : Tuple="gelu" , UpperCAmelCase : str=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : int=2 , UpperCAmelCase : Optional[int]=1 , UpperCAmelCase : str=0 , UpperCAmelCase : str=0.0_2 , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Any =batch_size lowercase : str =seq_length lowercase : Optional[Any] =is_training lowercase : Tuple =use_labels lowercase : List[str] =vocab_size lowercase : Any =hidden_size lowercase : str =num_hidden_layers lowercase : Any =num_attention_heads lowercase : Tuple =intermediate_size lowercase : List[Any] =hidden_act lowercase : Tuple =hidden_dropout_prob lowercase : Dict =attention_probs_dropout_prob lowercase : List[Any] =max_position_embeddings lowercase : List[str] =eos_token_id lowercase : Tuple =pad_token_id lowercase : Tuple =bos_token_id lowercase : int =initializer_range def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : str =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowercase : Union[str, Any] =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowercase : List[Any] =shift_tokens_right(__snake_case , 1 , 2 ) lowercase : Optional[int] =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__snake_case , ) lowercase : Dict =prepare_blenderbot_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[int] =self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : Tuple =20 lowercase : Union[str, Any] =model_class_name(__snake_case ) lowercase : Optional[Any] =model.encode(inputs_dict['''input_ids'''] ) lowercase : Dict =( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase : Optional[Any] =model.init_cache(decoder_input_ids.shape[0] , __snake_case , __snake_case ) lowercase : Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowercase : int =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase : Optional[Any] =model.decode( decoder_input_ids[:, :-1] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=__snake_case , decoder_position_ids=__snake_case , ) lowercase : Optional[int] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowercase : str =model.decode( decoder_input_ids[:, -1:] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__snake_case , ) lowercase : Optional[int] =model.decode(__snake_case , __snake_case ) lowercase : Tuple =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) def A__ ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: '''simple docstring''' lowercase : List[str] =20 lowercase : Union[str, Any] =model_class_name(__snake_case ) lowercase : Any =model.encode(inputs_dict['''input_ids'''] ) lowercase : Optional[int] =( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowercase : str =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowercase : Optional[int] =model.init_cache(decoder_input_ids.shape[0] , __snake_case , __snake_case ) lowercase : Any =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase : int =model.decode( decoder_input_ids[:, :-1] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=__snake_case , decoder_position_ids=__snake_case , ) lowercase : Union[str, Any] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowercase : int =model.decode( decoder_input_ids[:, -1:] , __snake_case , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__snake_case , decoder_position_ids=__snake_case , ) lowercase : str =model.decode(__snake_case , __snake_case , decoder_attention_mask=__snake_case ) lowercase : Any =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' ) @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 99 def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : Dict =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowercase : Union[str, Any] =input_ids.shape[0] lowercase : Any =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def A__ ( self : List[str] ) -> Any: '''simple docstring''' lowercase : List[Any] =self._get_config_and_data() lowercase : str =FlaxBlenderbotSmallForConditionalGeneration(__snake_case ) lowercase : Any =lm_model(input_ids=__snake_case ) lowercase : Union[str, Any] =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __snake_case ) def A__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : int =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowercase : Optional[int] =FlaxBlenderbotSmallForConditionalGeneration(__snake_case ) lowercase : List[Any] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowercase : List[Any] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowercase : List[str] =lm_model(input_ids=__snake_case , decoder_input_ids=__snake_case ) lowercase : Tuple =(*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __snake_case ) def A__ ( self : Dict ) -> int: '''simple docstring''' lowercase : Optional[Any] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowercase : Union[str, Any] =shift_tokens_right(__snake_case , 1 , 2 ) lowercase : Dict =np.equal(__snake_case , 1 ).astype(np.floataa ).sum() lowercase : str =np.equal(__snake_case , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__snake_case , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) UpperCamelCase_ = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Optional[int] =FlaxBlenderbotSmallModelTester(self ) def A__ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__snake_case , __snake_case , __snake_case ) def A__ ( self : str ) -> Dict: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__snake_case , __snake_case , __snake_case ) def A__ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase : Tuple =self._prepare_for_class(__snake_case , __snake_case ) lowercase : Optional[int] =model_class(__snake_case ) @jax.jit def encode_jitted(UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ): return model.encode(input_ids=__snake_case , attention_mask=__snake_case ) with self.subTest('''JIT Enabled''' ): lowercase : Optional[int] =encode_jitted(**__snake_case ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase : Any =encode_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase : Tuple =model_class(__snake_case ) lowercase : Dict =model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) lowercase : Tuple ={ '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ): return model.decode( decoder_input_ids=__snake_case , decoder_attention_mask=__snake_case , encoder_outputs=__snake_case , ) with self.subTest('''JIT Enabled''' ): lowercase : Tuple =decode_jitted(**__snake_case ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase : Optional[Any] =decode_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: lowercase : Optional[Any] =model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase : Optional[int] =np.ones((1, 1) ) * model.config.eos_token_id lowercase : Union[str, Any] =model(__snake_case ) self.assertIsNotNone(__snake_case )
704
'''simple docstring''' SCREAMING_SNAKE_CASE = 'Alexander Joslin' import operator as op from .stack import Stack def lowercase_ ( __A : str ) -> int: """simple docstring""" lowercase : int ={'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowercase : Stack[int] =Stack() lowercase : Stack[str] =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__A ) ) elif i in operators: # RULE 2 operator_stack.push(__A ) elif i == ")": # RULE 4 lowercase : Optional[Any] =operator_stack.peek() operator_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : Optional[Any] =operand_stack.peek() operand_stack.pop() lowercase : List[str] =operators[opr](__A , __A ) operand_stack.push(__A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
8
0
import json import sys def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: '''simple docstring''' with open(__lowerCamelCase , encoding="""utf-8""" ) as f: UpperCAmelCase__ : Any = json.load(__lowerCamelCase ) UpperCAmelCase__ : Dict = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(__lowerCamelCase ): UpperCAmelCase__ : Optional[int] = results[benchmark_name] UpperCAmelCase__ : List[Any] = benchmark_name.split("""/""" )[-1] output_md.append(F"### Benchmark: {benchmark_file_name}" ) UpperCAmelCase__ : Union[str, Any] = """| metric |""" UpperCAmelCase__ : List[Any] = """|--------|""" UpperCAmelCase__ : str = """| new / old (diff) |""" for metric_name in sorted(__lowerCamelCase ): UpperCAmelCase__ : Optional[int] = benchmark_res[metric_name] UpperCAmelCase__ : Optional[int] = metric_vals["""new"""] UpperCAmelCase__ : Union[str, Any] = metric_vals.get("""old""" , __lowerCamelCase ) UpperCAmelCase__ : Optional[int] = metric_vals.get("""diff""" , __lowerCamelCase ) UpperCAmelCase__ : List[Any] = F" {new_val:f}" if isinstance(__lowerCamelCase , (int, float) ) else """None""" if old_val is not None: val_str += F" / {old_val:f}" if isinstance(__lowerCamelCase , (int, float) ) else "None" if dif_val is not None: val_str += F" ({dif_val:f})" if isinstance(__lowerCamelCase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(__lowerCamelCase ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = sys.argv[1] SCREAMING_SNAKE_CASE__ : str = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
79
import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , ): UpperCAmelCase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Dict = image_size UpperCAmelCase__ : List[Any] = min_resolution UpperCAmelCase__ : str = max_resolution UpperCAmelCase__ : Union[str, Any] = do_resize UpperCAmelCase__ : Tuple = size UpperCAmelCase__ : int = do_normalize def __UpperCAmelCase ( self ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class UpperCAmelCase_ ( __lowerCamelCase , unittest.TestCase ): __lowerCamelCase = ImageGPTImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = ImageGPTImageProcessingTester(self ) @property def __UpperCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self ): UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , """clusters""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCAmelCase , """do_normalize""" ) ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) UpperCAmelCase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : Optional[int] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ : Union[str, Any] = os.path.join(_lowerCAmelCase , """image_processor.json""" ) image_processor_first.to_json_file(_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = self.image_processing_class.from_json_file(_lowerCAmelCase ).to_dict() UpperCAmelCase__ : Dict = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = self.image_processing_class.from_pretrained(_lowerCAmelCase ).to_dict() UpperCAmelCase__ : Tuple = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCAmelCase ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def __UpperCAmelCase ( self ): pass def _lowerCamelCase ( ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : Any = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) UpperCAmelCase__ : Dict = Image.open(dataset[4]["""file"""] ) UpperCAmelCase__ : Optional[Any] = Image.open(dataset[5]["""file"""] ) UpperCAmelCase__ : List[Any] = [imagea, imagea] return images @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) UpperCAmelCase__ : int = prepare_images() # test non-batched UpperCAmelCase__ : List[str] = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) UpperCAmelCase__ : List[Any] = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , _lowerCAmelCase ) # test batched UpperCAmelCase__ : List[str] = image_processing(_lowerCAmelCase , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) UpperCAmelCase__ : Any = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _lowerCAmelCase )
79
1
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __a ( UpperCamelCase__, unittest.TestCase ): __UpperCamelCase : Optional[Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def UpperCAmelCase__ ( self : Any ,lowerCamelCase : str=0 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = np.random.RandomState(_a ) __SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = pipe(**_a ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __SCREAMING_SNAKE_CASE = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) __SCREAMING_SNAKE_CASE = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=_a ) pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = pipe(**_a ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __SCREAMING_SNAKE_CASE = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) __SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = pipe(**_a ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __SCREAMING_SNAKE_CASE = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) __SCREAMING_SNAKE_CASE = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = pipe(**_a ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __SCREAMING_SNAKE_CASE = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) __SCREAMING_SNAKE_CASE = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = pipe(**_a ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __SCREAMING_SNAKE_CASE = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) __SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = pipe(**_a ).images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __SCREAMING_SNAKE_CASE = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = 3 * [inputs["""prompt"""]] # forward __SCREAMING_SNAKE_CASE = pipe(**_a ) __SCREAMING_SNAKE_CASE = output.images[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = 3 * [inputs.pop("""prompt""" )] __SCREAMING_SNAKE_CASE = pipe.tokenizer( _a ,padding="""max_length""" ,max_length=pipe.tokenizer.model_max_length ,truncation=_a ,return_tensors="""np""" ,) __SCREAMING_SNAKE_CASE = text_inputs["""input_ids"""] __SCREAMING_SNAKE_CASE = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __SCREAMING_SNAKE_CASE = prompt_embeds # forward __SCREAMING_SNAKE_CASE = pipe(**_a ) __SCREAMING_SNAKE_CASE = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = 3 * ["""this is a negative prompt"""] __SCREAMING_SNAKE_CASE = negative_prompt __SCREAMING_SNAKE_CASE = 3 * [inputs["""prompt"""]] # forward __SCREAMING_SNAKE_CASE = pipe(**_a ) __SCREAMING_SNAKE_CASE = output.images[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE = 3 * [inputs.pop("""prompt""" )] __SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: __SCREAMING_SNAKE_CASE = pipe.tokenizer( _a ,padding="""max_length""" ,max_length=pipe.tokenizer.model_max_length ,truncation=_a ,return_tensors="""np""" ,) __SCREAMING_SNAKE_CASE = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __SCREAMING_SNAKE_CASE = embeds # forward __SCREAMING_SNAKE_CASE = pipe(**_a ) __SCREAMING_SNAKE_CASE = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class __a ( unittest.TestCase ): @property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ort.SessionOptions() __SCREAMING_SNAKE_CASE = False return options def UpperCAmelCase__ ( self : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" ,revision="""onnx""" ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __SCREAMING_SNAKE_CASE = sd_pipe([prompt] ,guidance_scale=6.0 ,num_inference_steps=10 ,output_type="""np""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,subfolder="""scheduler""" ,revision="""onnx""" ) __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,scheduler=_a ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = """open neural network exchange""" __SCREAMING_SNAKE_CASE = np.random.RandomState(0 ) __SCREAMING_SNAKE_CASE = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=_a ,output_type="""np""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,subfolder="""scheduler""" ,revision="""onnx""" ) __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,scheduler=_a ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) sd_pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = """open neural network exchange""" __SCREAMING_SNAKE_CASE = np.random.RandomState(0 ) __SCREAMING_SNAKE_CASE = sd_pipe([prompt] ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=_a ,output_type="""np""" ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 def test_callback_fn(lowerCamelCase : Dict ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Any ) -> None: __SCREAMING_SNAKE_CASE = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=_a ) __SCREAMING_SNAKE_CASE = """Andromeda galaxy in a bottle""" __SCREAMING_SNAKE_CASE = np.random.RandomState(0 ) pipe( prompt=_a ,num_inference_steps=5 ,guidance_scale=7.5 ,generator=_a ,callback=_a ,callback_steps=1 ,) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,revision="""onnx""" ,safety_checker=_a ,feature_extractor=_a ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) assert isinstance(_a ,_a ) assert pipe.safety_checker is None __SCREAMING_SNAKE_CASE = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_a ) __SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(_a ) # sanity check that the pipeline still works assert pipe.safety_checker is None __SCREAMING_SNAKE_CASE = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class __a ( _snake_case ): def __init__( self : Union[str, Any] ,**lowerCamelCase : str ): '''simple docstring''' super().__init__(**lowerCamelCase ) requires_backends(self ,"""vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Dict ,lowerCamelCase : Union[str, List[str], "Image", List["Image"]] ,**lowerCamelCase : Optional[Any] ): '''simple docstring''' return super().__call__(lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,**lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def UpperCAmelCase__ ( self : List[Any] ,lowerCamelCase : List[Any] ,lowerCamelCase : Union[str, Any]=None ,lowerCamelCase : Union[str, Any]="This is a photo of {}." ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.image_processor(images=[image] ,return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = candidate_labels __SCREAMING_SNAKE_CASE = [hypothesis_template.format(lowerCamelCase ) for x in candidate_labels] __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ,return_tensors=self.framework ,padding=lowerCamelCase ) __SCREAMING_SNAKE_CASE = [text_inputs] return inputs def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = text_inputs[0] else: # Batching case. __SCREAMING_SNAKE_CASE = text_inputs[0][0] __SCREAMING_SNAKE_CASE = self.model(**lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : Tuple ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_outputs.pop("""candidate_labels""" ) __SCREAMING_SNAKE_CASE = model_outputs["""logits"""][0] if self.framework == "pt": __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1 ).squeeze(-1 ) __SCREAMING_SNAKE_CASE = probs.tolist() if not isinstance(lowerCamelCase ,lowerCamelCase ): __SCREAMING_SNAKE_CASE = [scores] elif self.framework == "tf": __SCREAMING_SNAKE_CASE = stable_softmax(lowerCamelCase ,axis=-1 ) __SCREAMING_SNAKE_CASE = probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) __SCREAMING_SNAKE_CASE = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase ,lowerCamelCase ) ,key=lambda lowerCamelCase : -x[0] ) ] return result
13
0
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = {} _lowerCAmelCase = tokenizer(example["content"] , truncation=SCREAMING_SNAKE_CASE_ )["input_ids"] _lowerCAmelCase = len(example["content"] ) / len(output["input_ids"] ) return output _SCREAMING_SNAKE_CASE = HfArgumentParser(PretokenizationArguments) _SCREAMING_SNAKE_CASE = parser.parse_args() if args.num_workers is None: _SCREAMING_SNAKE_CASE = multiprocessing.cpu_count() _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tokenizer_dir) _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = load_dataset(args.dataset_name, split="train") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') _SCREAMING_SNAKE_CASE = time.time() _SCREAMING_SNAKE_CASE = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') _SCREAMING_SNAKE_CASE = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
18
from sklearn.metrics import mean_squared_error import datasets lowerCamelCase__ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' lowerCamelCase__ = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' lowerCamelCase__ = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ (datasets.Metric ): def __a ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def __a ( self ) -> Union[str, Any]: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def __a ( self , _a , _a , _a=None , _a="uniform_average" , _a=True ) -> Dict: lowerCAmelCase_ = mean_squared_error( _a , _a , sample_weight=_a , multioutput=_a , squared=_a ) return {"mse": mse}
122
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Dict: lowerCamelCase__ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , 'tf_padding' ) ) self.parent.assertTrue(hasattr(UpperCAmelCase , 'depth_multiplier' ) ) class lowerCAmelCase : def __init__( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Any=13 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[int]=32 , UpperCAmelCase : List[str]=0.2_5 , UpperCAmelCase : Any=8 , UpperCAmelCase : int=True , UpperCAmelCase : Optional[Any]=1024 , UpperCAmelCase : Tuple=32 , UpperCAmelCase : str="relu6" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : str = depth_multiplier lowerCamelCase__ : Optional[int] = min_depth lowerCamelCase__ : List[str] = tf_padding lowerCamelCase__ : Optional[int] = int(last_hidden_size * depth_multiplier ) lowerCamelCase__ : Dict = output_stride lowerCamelCase__ : Dict = hidden_act lowerCamelCase__ : Optional[int] = classifier_dropout_prob lowerCamelCase__ : int = use_labels lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : Union[str, Any] = num_labels lowerCamelCase__ : Optional[Any] = initializer_range lowerCamelCase__ : Tuple = scope def A_ ( self : Optional[int] ) -> Union[str, Any]: lowerCamelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Any = None lowerCamelCase__ : Any = None if self.use_labels: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase__ : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def A_ ( self : Union[str, Any] ) -> Tuple: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def A_ ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : str ) -> Tuple: lowerCamelCase__ : Union[str, Any] = MobileNetVaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def A_ ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = self.num_labels lowerCamelCase__ : Optional[Any] = MobileNetVaForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Dict = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : str ) -> Any: lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = config_and_inputs lowerCamelCase__ : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () UpperCAmelCase__ = ( {"""feature-extraction""": MobileNetVaModel, """image-classification""": MobileNetVaForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : Optional[int] ) -> Optional[Any]: lowerCamelCase__ : str = MobileNetVaModelTester(self ) lowerCamelCase__ : Any = MobileNetVaConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def A_ ( self : Optional[Any] ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV1 does not use inputs_embeds' ) def A_ ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip(reason='MobileNetV1 does not support input and output embeddings' ) def A_ ( self : Dict ) -> str: pass @unittest.skip(reason='MobileNetV1 does not output attentions' ) def A_ ( self : Tuple ) -> int: pass def A_ ( self : Union[str, Any] ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : str = model_class(UpperCAmelCase ) lowerCamelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Dict = [*signature.parameters.keys()] lowerCamelCase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A_ ( self : int ) -> List[str]: lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A_ ( self : Any ) -> Optional[int]: def check_hidden_states_output(UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] ): lowerCamelCase__ : Union[str, Any] = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCamelCase__ : str = outputs.hidden_states lowerCamelCase__ : Union[str, Any] = 26 self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : List[str] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def A_ ( self : List[Any] ) -> int: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = MobileNetVaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> int: lowerCamelCase__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def A_ ( self : List[str] ) -> Optional[Any]: return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None ) @slow def A_ ( self : List[str] ) -> Dict: lowerCamelCase__ : Union[str, Any] = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = self.default_image_processor lowerCamelCase__ : Optional[int] = prepare_img() lowerCamelCase__ : Any = image_processor(images=UpperCAmelCase , return_tensors='pt' ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase__ : str = model(**UpperCAmelCase ) # verify the logits lowerCamelCase__ : int = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
188
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class lowerCAmelCase ( __UpperCamelCase ): UpperCAmelCase__ = 42 @flax_register_to_config class lowerCAmelCase ( nn.Module, __UpperCamelCase, __UpperCamelCase ): UpperCAmelCase__ = 32 UpperCAmelCase__ = 4 UpperCAmelCase__ = 4 UpperCAmelCase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCAmelCase__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") UpperCAmelCase__ = False UpperCAmelCase__ = (3_20, 6_40, 12_80, 12_80) UpperCAmelCase__ = 2 UpperCAmelCase__ = 8 UpperCAmelCase__ = None UpperCAmelCase__ = 12_80 UpperCAmelCase__ = 0.0 UpperCAmelCase__ = False UpperCAmelCase__ = jnp.floataa UpperCAmelCase__ = True UpperCAmelCase__ = 0 UpperCAmelCase__ = False def A_ ( self : Tuple , UpperCAmelCase : jax.random.KeyArray ) -> FrozenDict: # init input tensors lowerCamelCase__ : int = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase__ : List[str] = jnp.zeros(UpperCAmelCase , dtype=jnp.floataa ) lowerCamelCase__ : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase__ : Dict = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = jax.random.split(UpperCAmelCase ) lowerCamelCase__ : Dict = {'params': params_rng, 'dropout': dropout_rng} return self.init(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )["params"] def A_ ( self : Tuple ) -> Optional[int]: lowerCamelCase__ : Any = self.block_out_channels lowerCamelCase__ : int = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase__ : Tuple = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase__ : Optional[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase__ : Optional[int] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase__ : int = FlaxTimestepEmbedding(UpperCAmelCase , dtype=self.dtype ) lowerCamelCase__ : Optional[int] = self.only_cross_attention if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : List[Any] = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Dict = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase__ : Dict = output_channel lowerCamelCase__ : Optional[int] = block_out_channels[i] lowerCamelCase__ : List[Any] = i == len(UpperCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase__ : Tuple = FlaxCrossAttnDownBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase__ : str = FlaxDownBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCAmelCase ) lowerCamelCase__ : List[Any] = down_blocks # mid lowerCamelCase__ : Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCamelCase__ : Any = [] lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Any = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : int = list(reversed(UpperCAmelCase ) ) lowerCamelCase__ : Tuple = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): lowerCamelCase__ : str = output_channel lowerCamelCase__ : int = reversed_block_out_channels[i] lowerCamelCase__ : int = reversed_block_out_channels[min(i + 1 , len(UpperCAmelCase ) - 1 )] lowerCamelCase__ : Optional[Any] = i == len(UpperCAmelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCamelCase__ : Tuple = FlaxCrossAttnUpBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , prev_output_channel=UpperCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCamelCase__ : Optional[Any] = FlaxUpBlockaD( in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , prev_output_channel=UpperCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(UpperCAmelCase ) lowerCamelCase__ : Tuple = output_channel lowerCamelCase__ : Tuple = up_blocks # out lowerCamelCase__ : Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCamelCase__ : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(UpperCAmelCase , jnp.ndarray ): lowerCamelCase__ : List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase__ : List[Any] = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase__ : Any = jnp.expand_dims(UpperCAmelCase , 0 ) lowerCamelCase__ : List[str] = self.time_proj(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = self.time_embedding(UpperCAmelCase ) # 2. pre-process lowerCamelCase__ : Dict = jnp.transpose(UpperCAmelCase , (0, 2, 3, 1) ) lowerCamelCase__ : Optional[Any] = self.conv_in(UpperCAmelCase ) # 3. down lowerCamelCase__ : Any = (sample,) for down_block in self.down_blocks: if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = down_block(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , deterministic=not train ) else: lowerCamelCase__ , lowerCamelCase__ : Any = down_block(UpperCAmelCase , UpperCAmelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCamelCase__ : Union[str, Any] = () for down_block_res_sample, down_block_additional_residual in zip( UpperCAmelCase , UpperCAmelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCamelCase__ : str = new_down_block_res_samples # 4. mid lowerCamelCase__ : List[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCamelCase__ : str = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCamelCase__ : List[str] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCamelCase__ : List[Any] = up_block( UpperCAmelCase , temb=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , deterministic=not train , ) else: lowerCamelCase__ : int = up_block(UpperCAmelCase , temb=UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , deterministic=not train ) # 6. post-process lowerCamelCase__ : str = self.conv_norm_out(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = nn.silu(UpperCAmelCase ) lowerCamelCase__ : Any = self.conv_out(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = jnp.transpose(UpperCAmelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=UpperCAmelCase )
188
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Optional[Any] = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Tuple = 'unispeech-sat' def __init__( self , __UpperCamelCase=32 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-5 , __UpperCamelCase="group" , __UpperCamelCase="gelu" , __UpperCamelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCamelCase=False , __UpperCamelCase=1_28 , __UpperCamelCase=16 , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=0.05 , __UpperCamelCase=10 , __UpperCamelCase=2 , __UpperCamelCase=0.0 , __UpperCamelCase=10 , __UpperCamelCase=0 , __UpperCamelCase=3_20 , __UpperCamelCase=2 , __UpperCamelCase=0.1 , __UpperCamelCase=1_00 , __UpperCamelCase=2_56 , __UpperCamelCase=2_56 , __UpperCamelCase=0.1 , __UpperCamelCase="mean" , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=2_56 , __UpperCamelCase=(5_12, 5_12, 5_12, 5_12, 15_00) , __UpperCamelCase=(5, 3, 3, 1, 1) , __UpperCamelCase=(1, 2, 3, 1, 1) , __UpperCamelCase=5_12 , __UpperCamelCase=0 , __UpperCamelCase=1 , __UpperCamelCase=2 , __UpperCamelCase=5_04 , **__UpperCamelCase , ) -> Tuple: '''simple docstring''' super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) __UpperCamelCase : Tuple = hidden_size __UpperCamelCase : Union[str, Any] = feat_extract_norm __UpperCamelCase : Dict = feat_extract_activation __UpperCamelCase : Optional[int] = list(__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = list(__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = list(__UpperCamelCase ) __UpperCamelCase : Dict = conv_bias __UpperCamelCase : Optional[int] = num_conv_pos_embeddings __UpperCamelCase : Optional[int] = num_conv_pos_embedding_groups __UpperCamelCase : Optional[Any] = len(self.conv_dim ) __UpperCamelCase : Any = num_hidden_layers __UpperCamelCase : Optional[Any] = intermediate_size __UpperCamelCase : int = hidden_act __UpperCamelCase : Optional[Any] = num_attention_heads __UpperCamelCase : int = hidden_dropout __UpperCamelCase : List[Any] = attention_dropout __UpperCamelCase : Tuple = activation_dropout __UpperCamelCase : Union[str, Any] = feat_proj_dropout __UpperCamelCase : str = final_dropout __UpperCamelCase : Optional[Any] = layerdrop __UpperCamelCase : Tuple = layer_norm_eps __UpperCamelCase : Dict = initializer_range __UpperCamelCase : List[Any] = vocab_size __UpperCamelCase : Tuple = num_clusters __UpperCamelCase : Any = do_stable_layer_norm __UpperCamelCase : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase : Optional[Any] = apply_spec_augment __UpperCamelCase : str = mask_time_prob __UpperCamelCase : Optional[Any] = mask_time_length __UpperCamelCase : Dict = mask_time_min_masks __UpperCamelCase : Any = mask_feature_prob __UpperCamelCase : Any = mask_feature_length __UpperCamelCase : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase : Optional[int] = num_codevectors_per_group __UpperCamelCase : int = num_codevector_groups __UpperCamelCase : int = contrastive_logits_temperature __UpperCamelCase : Optional[Any] = feat_quantizer_dropout __UpperCamelCase : List[str] = num_negatives __UpperCamelCase : Dict = codevector_dim __UpperCamelCase : Optional[int] = proj_codevector_dim __UpperCamelCase : Optional[Any] = diversity_loss_weight # ctc loss __UpperCamelCase : Union[str, Any] = ctc_loss_reduction __UpperCamelCase : List[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase : Any = list(__UpperCamelCase ) __UpperCamelCase : Optional[Any] = list(__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = list(__UpperCamelCase ) __UpperCamelCase : List[Any] = xvector_output_dim @property def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
327
from ... import PretrainedConfig lowercase : Dict = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : List[str] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowercase : Union[str, Any] = 'nezha' def __init__( self , __UpperCamelCase=2_11_28 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=64 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=0.1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , **__UpperCamelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __UpperCamelCase : int = vocab_size __UpperCamelCase : int = hidden_size __UpperCamelCase : Tuple = num_hidden_layers __UpperCamelCase : Tuple = num_attention_heads __UpperCamelCase : Optional[int] = hidden_act __UpperCamelCase : List[str] = intermediate_size __UpperCamelCase : Union[str, Any] = hidden_dropout_prob __UpperCamelCase : Tuple = attention_probs_dropout_prob __UpperCamelCase : Optional[int] = max_position_embeddings __UpperCamelCase : str = max_relative_position __UpperCamelCase : List[str] = type_vocab_size __UpperCamelCase : Dict = initializer_range __UpperCamelCase : Optional[int] = layer_norm_eps __UpperCamelCase : int = classifier_dropout __UpperCamelCase : List[str] = use_cache
327
1
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( _snake_case , unittest.TestCase ): """simple docstring""" A : str = XLMRobertaTokenizer A : int = XLMRobertaTokenizerFast A : List[str] = True A : Optional[Any] = True def _lowerCamelCase (self ) -> int: super().setUp() # We have a SentencePiece fixture for testing lowercase_ : str = XLMRobertaTokenizer(_a , keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase (self ) -> Tuple: lowercase_ : Any = '<pad>' lowercase_ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def _lowerCamelCase (self ) -> List[str]: lowercase_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(_a ) , 1_002 ) def _lowerCamelCase (self ) -> Any: self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def _lowerCamelCase (self ) -> List[str]: lowercase_ : Optional[Any] = XLMRobertaTokenizer(_a , keep_accents=_a ) lowercase_ : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ : Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase_ : List[str] = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def _lowerCamelCase (self ) -> List[str]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowercase_ : Optional[Any] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowercase_ : Union[str, Any] = self.tokenizer_class.from_pretrained(_a , **_a ) lowercase_ : Optional[int] = tempfile.mkdtemp() lowercase_ : List[str] = tokenizer_r.save_pretrained(_a ) lowercase_ : int = tokenizer_p.save_pretrained(_a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowercase_ : List[str] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(_a , _a ) # Checks everything loads correctly in the same way lowercase_ : List[str] = tokenizer_r.from_pretrained(_a ) lowercase_ : Optional[int] = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a , _a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_a ) # Save tokenizer rust, legacy_format=True lowercase_ : List[Any] = tempfile.mkdtemp() lowercase_ : Optional[int] = tokenizer_r.save_pretrained(_a , legacy_format=_a ) lowercase_ : Union[str, Any] = tokenizer_p.save_pretrained(_a ) # Checks it save with the same files self.assertSequenceEqual(_a , _a ) # Checks everything loads correctly in the same way lowercase_ : int = tokenizer_r.from_pretrained(_a ) lowercase_ : Optional[Any] = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a , _a ) ) shutil.rmtree(_a ) # Save tokenizer rust, legacy_format=False lowercase_ : int = tempfile.mkdtemp() lowercase_ : Union[str, Any] = tokenizer_r.save_pretrained(_a , legacy_format=_a ) lowercase_ : List[str] = tokenizer_p.save_pretrained(_a ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase_ : List[str] = tokenizer_r.from_pretrained(_a ) lowercase_ : Dict = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a , _a ) ) shutil.rmtree(_a ) @cached_property def _lowerCamelCase (self ) -> Optional[int]: return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def _lowerCamelCase (self ) -> Dict: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_a , f.name ) lowercase_ : List[str] = XLMRobertaTokenizer(f.name , keep_accents=_a ) lowercase_ : List[Any] = pickle.dumps(_a ) pickle.loads(_a ) def _lowerCamelCase (self ) -> List[str]: if not self.test_rust_tokenizer: return lowercase_ : Any = self.get_tokenizer() lowercase_ : Union[str, Any] = self.get_rust_tokenizer() lowercase_ : Tuple = 'I was born in 92000, and this is falsé.' lowercase_ : Optional[Any] = tokenizer.tokenize(_a ) lowercase_ : List[str] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase_ : List[str] = tokenizer.encode(_a , add_special_tokens=_a ) lowercase_ : Optional[Any] = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase_ : Tuple = self.get_rust_tokenizer() lowercase_ : Union[str, Any] = tokenizer.encode(_a ) lowercase_ : Tuple = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) @slow def _lowerCamelCase (self ) -> List[str]: lowercase_ : Optional[Any] = 'Hello World!' lowercase_ : List[str] = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def _lowerCamelCase (self ) -> Any: lowercase_ : Optional[int] = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) lowercase_ : Any = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_a , self.big_tokenizer.encode(_a ) ) @slow def _lowerCamelCase (self ) -> List[str]: # fmt: off lowercase_ : Tuple = {'input_ids': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
438
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
438
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A ( UpperCamelCase_ ): UpperCamelCase__ : Union[str, Any] ='vit_msn' def __init__( self : Union[str, Any] , lowercase_ : List[str]=768 , lowercase_ : Optional[int]=12 , lowercase_ : List[str]=12 , lowercase_ : List[Any]=3072 , lowercase_ : int="gelu" , lowercase_ : List[Any]=0.0 , lowercase_ : Optional[int]=0.0 , lowercase_ : Dict=0.02 , lowercase_ : Any=1E-06 , lowercase_ : Union[str, Any]=224 , lowercase_ : Optional[int]=16 , lowercase_ : List[Any]=3 , lowercase_ : Any=True , **lowercase_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(**lowercase_ ) _lowerCamelCase : Dict =hidden_size _lowerCamelCase : Any =num_hidden_layers _lowerCamelCase : Union[str, Any] =num_attention_heads _lowerCamelCase : List[Any] =intermediate_size _lowerCamelCase : Tuple =hidden_act _lowerCamelCase : Any =hidden_dropout_prob _lowerCamelCase : Dict =attention_probs_dropout_prob _lowerCamelCase : Any =initializer_range _lowerCamelCase : List[Any] =layer_norm_eps _lowerCamelCase : Optional[int] =image_size _lowerCamelCase : Optional[int] =patch_size _lowerCamelCase : List[Any] =num_channels _lowerCamelCase : Optional[Any] =qkv_bias
464
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A ( UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : List[Any] =XLMRobertaTokenizer UpperCamelCase__ : Union[str, Any] =XLMRobertaTokenizerFast UpperCamelCase__ : int =True UpperCamelCase__ : Optional[Any] =True def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : Dict =XLMRobertaTokenizer(lowercase_ , keep_accents=lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : Dict ) -> Any: """simple docstring""" _lowerCamelCase : Tuple ='<pad>' _lowerCamelCase : Optional[int] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ) , lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ) , lowercase_ ) def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _lowerCamelCase : str =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowercase_ ) , 1002 ) def lowerCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1002 ) def lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Optional[Any] =XLMRobertaTokenizer(lowercase_ , keep_accents=lowercase_ ) _lowerCamelCase : List[Any] =tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCamelCase : int =tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _lowerCamelCase : Optional[Any] =tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def lowerCamelCase ( self : List[Any] ) -> Any: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCamelCase : List[str] =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-xlm-roberta', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : int =self.rust_tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) _lowerCamelCase : List[Any] =self.tokenizer_class.from_pretrained(lowercase_ , **lowercase_ ) _lowerCamelCase : int =tempfile.mkdtemp() _lowerCamelCase : List[str] =tokenizer_r.save_pretrained(lowercase_ ) _lowerCamelCase : int =tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCamelCase : Optional[Any] =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way _lowerCamelCase : int =tokenizer_r.from_pretrained(lowercase_ ) _lowerCamelCase : Any =tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=True _lowerCamelCase : Dict =tempfile.mkdtemp() _lowerCamelCase : int =tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) _lowerCamelCase : Optional[Any] =tokenizer_p.save_pretrained(lowercase_ ) # Checks it save with the same files self.assertSequenceEqual(lowercase_ , lowercase_ ) # Checks everything loads correctly in the same way _lowerCamelCase : int =tokenizer_r.from_pretrained(lowercase_ ) _lowerCamelCase : List[Any] =tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) # Save tokenizer rust, legacy_format=False _lowerCamelCase : str =tempfile.mkdtemp() _lowerCamelCase : Optional[Any] =tokenizer_r.save_pretrained(lowercase_ , legacy_format=lowercase_ ) _lowerCamelCase : Any =tokenizer_p.save_pretrained(lowercase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCamelCase : str =tokenizer_r.from_pretrained(lowercase_ ) _lowerCamelCase : List[str] =tokenizer_p.from_pretrained(lowercase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase_ , lowercase_ ) ) shutil.rmtree(lowercase_ ) @cached_property def lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def lowerCamelCase ( self : Tuple ) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase_ , f.name ) _lowerCamelCase : Union[str, Any] =XLMRobertaTokenizer(f.name , keep_accents=lowercase_ ) _lowerCamelCase : Dict =pickle.dumps(lowercase_ ) pickle.loads(lowercase_ ) def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" if not self.test_rust_tokenizer: return _lowerCamelCase : Any =self.get_tokenizer() _lowerCamelCase : Optional[int] =self.get_rust_tokenizer() _lowerCamelCase : Tuple ='I was born in 92000, and this is falsé.' _lowerCamelCase : Any =tokenizer.tokenize(lowercase_ ) _lowerCamelCase : List[str] =rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : int =tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) _lowerCamelCase : Union[str, Any] =rust_tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) _lowerCamelCase : Dict =self.get_rust_tokenizer() _lowerCamelCase : Optional[int] =tokenizer.encode(lowercase_ ) _lowerCamelCase : Optional[Any] =rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) @slow def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Optional[Any] ='Hello World!' _lowerCamelCase : Union[str, Any] =[0, 3_5378, 6661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def lowerCamelCase ( self : Any ) -> int: """simple docstring""" _lowerCamelCase : Union[str, Any] =( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) _lowerCamelCase : List[str] =[ 0, 3293, 83, 10, 4552, 4989, 7986, 678, 10, 5915, 111, 17_9459, 12_4850, 4, 6044, 237, 12, 6, 5, 6, 4, 6780, 705, 15, 1388, 44, 378, 1_0114, 711, 152, 20, 6, 5, 2_2376, 642, 1221, 1_5190, 3_4153, 450, 5608, 959, 1119, 5_7702, 136, 186, 47, 1098, 2_9367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6044, 237, 6284, 5_0901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowercase_ , self.big_tokenizer.encode(lowercase_ ) ) @slow def lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _lowerCamelCase : List[Any] ={'input_ids': [[0, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [0, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
464
1
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase :str = logging.get_logger(__name__) lowerCamelCase :int = {'''vocab_file''': '''sentencepiece.model'''} lowerCamelCase :Tuple = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, } lowerCamelCase :Optional[int] = { '''google/rembert''': 256, } class UpperCAmelCase ( UpperCamelCase__ ): a: List[Any] = VOCAB_FILES_NAMES a: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self: Tuple , __UpperCamelCase: List[Any] , __UpperCamelCase: Optional[Any]=False , __UpperCamelCase: Dict=True , __UpperCamelCase: List[Any]=True , __UpperCamelCase: Union[str, Any]="[CLS]" , __UpperCamelCase: List[str]="[SEP]" , __UpperCamelCase: Optional[Any]="[UNK]" , __UpperCamelCase: str="[SEP]" , __UpperCamelCase: Union[str, Any]="[PAD]" , __UpperCamelCase: List[Any]="[CLS]" , __UpperCamelCase: Optional[int]="[MASK]" , **__UpperCamelCase: Optional[Any] , ): super().__init__( do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , **__UpperCamelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = spm.SentencePieceProcessor() self.sp_model.Load(__UpperCamelCase ) @property def _A ( self: Optional[int] ): return len(self.sp_model ) def _A ( self: Dict ): _a = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[Any] ): _a = self.__dict__.copy() _a = None return state def __setstate__( self: List[Any] , __UpperCamelCase: List[str] ): _a = d _a = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _A ( self: int , __UpperCamelCase: List[Any] , __UpperCamelCase: Tuple=False ): _a = self.sp_model.EncodeAsPieces(__UpperCamelCase ) return pieces def _A ( self: List[Any] , __UpperCamelCase: Tuple ): return self.sp_model.PieceToId(__UpperCamelCase ) def _A ( self: Union[str, Any] , __UpperCamelCase: Optional[Any] ): return self.sp_model.IdToPiece(__UpperCamelCase ) def _A ( self: str , __UpperCamelCase: Union[str, Any] ): _a = self.sp_model.decode_pieces(__UpperCamelCase ) return out_string def _A ( self: Union[str, Any] , __UpperCamelCase: List[Any] , __UpperCamelCase: str = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _A ( self: List[Any] , __UpperCamelCase: List[Any] , __UpperCamelCase: int = None , __UpperCamelCase: Optional[Any] = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1] def _A ( self: List[Any] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: Any = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A ( self: int , __UpperCamelCase: str , __UpperCamelCase: Optional[Any] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCamelCase ) ) return _a = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
717
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowerCamelCase :int = logging.getLogger(__name__) class UpperCAmelCase ( __snake_case ): a: int = "sequence-classification" def __init__( self: int , __UpperCamelCase: str ): if type(__UpperCamelCase ) == dict: _a = Namespace(**__UpperCamelCase ) _a = glue_output_modes[hparams.task] _a = glue_tasks_num_labels[hparams.task] super().__init__(__UpperCamelCase , __UpperCamelCase , self.mode ) def _A ( self: Dict , **__UpperCamelCase: str ): return self.model(**__UpperCamelCase ) def _A ( self: Optional[int] , __UpperCamelCase: Tuple , __UpperCamelCase: Union[str, Any] ): _a = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _a = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None _a = self(**__UpperCamelCase ) _a = outputs[0] _a = self.trainer.lr_schedulers[0]['''scheduler'''] _a = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _A ( self: Union[str, Any] ): _a = self.hparams _a = processors[args.task]() _a = processor.get_labels() for mode in ["train", "dev"]: _a = self._feature_file(__UpperCamelCase ) if os.path.exists(__UpperCamelCase ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __UpperCamelCase ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) _a = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) _a = convert_examples_to_features( __UpperCamelCase , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , __UpperCamelCase ) torch.save(__UpperCamelCase , __UpperCamelCase ) def _A ( self: str , __UpperCamelCase: str , __UpperCamelCase: int , __UpperCamelCase: bool = False ): _a = '''dev''' if mode == '''test''' else mode _a = self._feature_file(__UpperCamelCase ) logger.info('''Loading features from cached file %s''' , __UpperCamelCase ) _a = torch.load(__UpperCamelCase ) _a = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) _a = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) _a = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _a = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _a = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) , batch_size=__UpperCamelCase , shuffle=__UpperCamelCase , ) def _A ( self: int , __UpperCamelCase: Tuple , __UpperCamelCase: Tuple ): _a = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _a = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None _a = self(**__UpperCamelCase ) _a , _a = outputs[:2] _a = logits.detach().cpu().numpy() _a = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _A ( self: List[str] , __UpperCamelCase: Any ): _a = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() _a = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": _a = np.argmax(__UpperCamelCase , axis=1 ) elif self.hparams.glue_output_mode == "regression": _a = np.squeeze(__UpperCamelCase ) _a = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) _a = [[] for _ in range(out_label_ids.shape[0] )] _a = [[] for _ in range(out_label_ids.shape[0] )] _a = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , __UpperCamelCase , __UpperCamelCase )} _a = dict(results.items() ) _a = results return ret, preds_list, out_label_list def _A ( self: Any , __UpperCamelCase: list ): _a , _a , _a = self._eval_end(__UpperCamelCase ) _a = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _A ( self: List[Any] , __UpperCamelCase: Any ): _a , _a , _a = self._eval_end(__UpperCamelCase ) _a = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _A ( __UpperCamelCase: Optional[Any] , __UpperCamelCase: int ): BaseTransformer.add_model_specific_args(__UpperCamelCase , __UpperCamelCase ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__UpperCamelCase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=__UpperCamelCase , required=__UpperCamelCase , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__UpperCamelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def __snake_case ( ) -> List[Any]: _a = argparse.ArgumentParser() add_generic_args(_UpperCamelCase , os.getcwd() ) _a = GLUETransformer.add_model_specific_args(_UpperCamelCase , os.getcwd() ) _a = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _a = os.path.join( '''./results''' , f"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) _a = GLUETransformer(_UpperCamelCase ) _a = generic_train(_UpperCamelCase , _UpperCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _a = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=_UpperCamelCase ) ) _a = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCamelCase ) if __name__ == "__main__": main()
346
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Optional[Any] = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = ["""LayoutLMv2FeatureExtractor"""] UpperCAmelCase_ : List[Any] = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
512
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
512
1
UpperCAmelCase__ : str = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def A ( snake_case__ : int ) -> int: '''simple docstring''' __snake_case = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution UpperCAmelCase__ : str = [None] * 10_00_00_00 UpperCAmelCase__ : Dict = True UpperCAmelCase__ : Union[str, Any] = False def A ( snake_case__ : int ) -> Optional[Any]: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __snake_case = chain(next_number(__a ) ) __snake_case = number_chain while number < 1000_0000: __snake_case = number_chain number *= 10 return number_chain def A ( snake_case__ : int = 1000_0000 ) -> Optional[int]: '''simple docstring''' for i in range(1 , __a ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__a ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
720
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def A ( snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Any ) -> Optional[int]: '''simple docstring''' __snake_case = hf_hub_url(repo_id=snake_case__ , path=snake_case__ , revision=snake_case__ ) assert url == f"https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(snake_case__ )}"
676
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _snake_case (__SCREAMING_SNAKE_CASE , unittest.TestCase): __A : Union[str, Any] =VideoToVideoSDPipeline __A : Tuple =TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"}) - {"image", "width", "height"} __A : Union[str, Any] =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"}) - {"image"} __A : str =PipelineTesterMixin.required_optional_params - {"latents"} __A : Dict =False # No `output_type`. __A : Optional[int] =frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ]) def UpperCamelCase__ ( self ): torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") ,up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") ,cross_attention_dim=32 ,attention_head_dim=4 ,) UpperCAmelCase_ : int = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule="scaled_linear" ,clip_sample=_snake_case ,set_alpha_to_one=_snake_case ,) torch.manual_seed(0 ) UpperCAmelCase_ : Dict = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,sample_size=1_28 ,) torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act="gelu" ,projection_dim=5_12 ,) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel(_snake_case ) UpperCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ : Optional[int] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def UpperCamelCase__ ( self ,_snake_case ,_snake_case=0 ): # 3 frames UpperCAmelCase_ : Dict = floats_tensor((1, 3, 3, 32, 32) ,rng=random.Random(_snake_case ) ).to(_snake_case ) if str(_snake_case ).startswith("mps" ): UpperCAmelCase_ : Tuple = torch.manual_seed(_snake_case ) else: UpperCAmelCase_ : Tuple = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) UpperCAmelCase_ : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Dict = self.get_dummy_components() UpperCAmelCase_ : str = VideoToVideoSDPipeline(**_snake_case ) UpperCAmelCase_ : int = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(_snake_case ) UpperCAmelCase_ : str = "np" UpperCAmelCase_ : Dict = sd_pipe(**_snake_case ).frames UpperCAmelCase_ : Tuple = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCAmelCase_ : Dict = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() ,reason="XFormers attention is only available with CUDA and `xformers` installed" ,) def UpperCamelCase__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_snake_case ,expected_max_diff=5E-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def UpperCamelCase__ ( self ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): return super().test_progress_bar() @slow @skip_mps class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" ,torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCAmelCase_ : str = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ : int = torch.randn((1, 10, 3, 10_24, 5_76) ,generator=_snake_case ) UpperCAmelCase_ : List[Any] = video.to("cuda" ) UpperCAmelCase_ : List[Any] = "Spiderman is surfing" UpperCAmelCase_ : Optional[Any] = pipe(_snake_case ,video=_snake_case ,generator=_snake_case ,num_inference_steps=3 ,output_type="pt" ).frames UpperCAmelCase_ : Any = np.array([-1.0458984, -1.1279297, -0.9663086, -0.91503906, -0.75097656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
71
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( a_ , unittest.TestCase ): _A : List[str] = XLMRobertaTokenizer _A : List[str] = XLMRobertaTokenizerFast _A : Optional[Any] = True _A : List[str] = True def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XLMRobertaTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase = """<pad>""" UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case__ ) , 10_02 ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase = XLMRobertaTokenizer(snake_case__ , keep_accents=snake_case__ ) UpperCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) UpperCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = tokenizer_r.save_pretrained(snake_case__ ) UpperCAmelCase = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way UpperCAmelCase = tokenizer_r.from_pretrained(snake_case__ ) UpperCAmelCase = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) UpperCAmelCase = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way UpperCAmelCase = tokenizer_r.from_pretrained(snake_case__ ) UpperCAmelCase = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) UpperCAmelCase = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase = tokenizer_r.from_pretrained(snake_case__ ) UpperCAmelCase = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case__ , f.name ) UpperCAmelCase = XLMRobertaTokenizer(f.name , keep_accents=snake_case__ ) UpperCAmelCase = pickle.dumps(snake_case__ ) pickle.loads(snake_case__ ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = """I was born in 92000, and this is falsé.""" UpperCAmelCase = tokenizer.tokenize(snake_case__ ) UpperCAmelCase = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) UpperCAmelCase = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(snake_case__ ) UpperCAmelCase = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = """Hello World!""" UpperCAmelCase = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) UpperCAmelCase = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = {"""input_ids""": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
673
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class snake_case__ ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Tuple = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) UpperCAmelCase : int = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase : Any = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase : int = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase : Tuple = model(lowercase )["last_hidden_state"].detach() self.assertEqual(output.shape , lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase , atol=1E-3 ) ) @slow def __lowerCAmelCase ( self : int ): '''simple docstring''' UpperCAmelCase : Tuple = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) UpperCAmelCase : List[Any] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house UpperCAmelCase : int = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase : Optional[int] = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCAmelCase : List[Any] = model(lowercase )["last_hidden_state"].detach() self.assertEqual(output.shape , lowercase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowercase , atol=1E-3 ) )
292
"""simple docstring""" from __future__ import annotations snake_case_ : str = list[list[int]] # assigning initial values to the grid snake_case_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution snake_case_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowercase_ ( _lowercase : Matrix , _lowercase : int , _lowercase : int , _lowercase : int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowercase_ ( _lowercase : Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowercase_ ( _lowercase : Matrix ): '''simple docstring''' if location := find_empty_location(_lowercase ): UpperCAmelCase , UpperCAmelCase : List[str] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_lowercase , _lowercase , _lowercase , _lowercase ): UpperCAmelCase : int = digit if sudoku(_lowercase ) is not None: return grid UpperCAmelCase : Optional[Any] = 0 return None def lowercase_ ( _lowercase : Matrix ): '''simple docstring''' for row in grid: for cell in row: print(_lowercase , end=" " ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 2_0) print_solution(example_grid) print("""\nExample grid solution:""") snake_case_ : Dict = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
292
1
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _lowerCAmelCase : List[Any] = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : Dict = XLNetConfig.from_json_file(A_ ) _lowerCamelCase : Any = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) _lowerCamelCase : Optional[Any] = finetuning_task _lowerCamelCase : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] _lowerCamelCase : List[str] = XLNetForSequenceClassification(A_ ) elif "squad" in finetuning_task: _lowerCamelCase : Tuple = finetuning_task _lowerCamelCase : Optional[Any] = XLNetForQuestionAnswering(A_ ) else: _lowerCamelCase : List[str] = XLNetLMHeadModel(A_ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(A_ , A_ , A_ ) # Save pytorch-model _lowerCamelCase : List[str] = os.path.join(A_ , A_ ) _lowerCamelCase : Optional[int] = os.path.join(A_ , A_ ) print(F"""Save PyTorch model to {os.path.abspath(A_ )}""" ) torch.save(model.state_dict() , A_ ) print(F"""Save configuration file to {os.path.abspath(A_ )}""" ) with open(A_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) _lowerCAmelCase : Optional[Any] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
46
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _snake_case ( A_ : Optional[Any] ): """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' super().__init__() a_ : Optional[Any] = module a_ : Union[str, Any] = nn.Sequential( nn.Linear(module.in_features , lowerCAmelCase_ , bias=lowerCAmelCase_ ) , nn.Linear(lowerCAmelCase_ , module.out_features , bias=lowerCAmelCase_ ) , ) a_ : int = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _lowerCAmelCase ( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): '''simple docstring''' return self.module(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ) + self.adapter(lowerCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" a_ = "bigscience/bloom-1b7" # Constant values a_ = 2.109659552692574 a_ = "Hello my name is" a_ = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) a_ = 10 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = AutoTokenizer.from_pretrained(self.model_name ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer a_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) a_ : Optional[int] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def _lowerCAmelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = self.model_abit.config self.assertTrue(hasattr(lowerCAmelCase_ , """quantization_config""" ) ) a_ : Any = config.to_dict() a_ : Dict = config.to_diff_dict() a_ : Dict = config.to_json_string() def _lowerCAmelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit a_ : List[str] = self.model_fpaa.get_memory_footprint() a_ : Optional[int] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a_ : Union[str, Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _lowerCAmelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = self.tokenizer(self.input_text , return_tensors="""pt""" ) a_ : str = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = BitsAndBytesConfig() a_ : Union[str, Any] = True a_ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , device_map="""auto""" ) a_ : str = self.tokenizer(self.input_text , return_tensors="""pt""" ) a_ : Tuple = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def _lowerCAmelCase ( self ): '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCAmelCase_ ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = BitsAndBytesConfig() with self.assertRaises(lowerCAmelCase_ ): a_ : List[str] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCAmelCase_ , load_in_abit=lowerCAmelCase_ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def _lowerCAmelCase ( self ): '''simple docstring''' with self.assertRaises(lowerCAmelCase_ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a_ : List[Any] = self.tokenizer(self.input_text , return_tensors="""pt""" ) a_ : Union[str, Any] = self.model_fpaa.to(torch.floataa ) a_ : Union[str, Any] = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a_ : int = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error a_ : Optional[Any] = self.model_fpaa.half() # Check this does not throw an error a_ : Dict = self.model_fpaa.float() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def _lowerCAmelCase ( cls ): '''simple docstring''' a_ : List[str] = """t5-small""" a_ : Any = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense a_ : Optional[Any] = AutoTokenizer.from_pretrained(cls.model_name ) a_ : int = """Translate in German: Hello, my dog is cute""" def _lowerCAmelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration a_ : Dict = TaForConditionalGeneration._keep_in_fpaa_modules a_ : str = None # test with `t5-small` a_ : Tuple = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) a_ : Optional[int] = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : str = model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` a_ : Optional[Any] = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) a_ : str = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Any = model.generate(**lowerCAmelCase_ ) a_ : List[str] = modules def _lowerCAmelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a_ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a_ : Tuple = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Union[str, Any] = model.generate(**lowerCAmelCase_ ) # test with `flan-t5-small` a_ : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) a_ : str = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Tuple = model.generate(**lowerCAmelCase_ ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() # model_name a_ : Dict = """bigscience/bloom-560m""" a_ : Any = """t5-small""" # Different types of model a_ : Tuple = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Sequence classification model a_ : Any = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # CausalLM model a_ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) # Seq2seq model a_ : str = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCAmelCase_ , device_map="""auto""" ) def _lowerCAmelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() def _lowerCAmelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a_ : List[Any] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : int = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCAmelCase_ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a_ : Any = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch a_ : Dict = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' a_ : str = """facebook/opt-350m""" super().setUp() def _lowerCAmelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters a_ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a_ : int = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a_ : Any = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCAmelCase_ ) ): a_ : List[str] = LoRALayer(module.q_proj , rank=16 ) a_ : Union[str, Any] = LoRALayer(module.k_proj , rank=16 ) a_ : Optional[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a_ : Tuple = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a_ : List[str] = model.forward(**lowerCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = "gpt2-xl" a_ = 3.3191854854152187
577
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __A ( a_ : List[str] , a_ : Union[str, Any] , a_ : Optional[int] , a_ : Union[str, Any] , a_ : List[str] )-> Any: '''simple docstring''' with open(a_ ) as metadata_file: SCREAMING_SNAKE_CASE : List[str] = json.load(a_ ) SCREAMING_SNAKE_CASE : Dict = LukeConfig(use_entity_aware_attention=a_ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE : List[str] = torch.load(a_ , map_location='''cpu''' )['''module'''] # Load the entity vocab file SCREAMING_SNAKE_CASE : int = load_original_entity_vocab(a_ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE : Optional[Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE : Tuple = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE : Any = AddedToken('''<ent>''' , lstrip=a_ , rstrip=a_ ) SCREAMING_SNAKE_CASE : Any = AddedToken('''<ent2>''' , lstrip=a_ , rstrip=a_ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"Saving tokenizer to {pytorch_dump_folder_path}" ) tokenizer.save_pretrained(a_ ) with open(os.path.join(a_ , '''tokenizer_config.json''' ) , '''r''' ) as f: SCREAMING_SNAKE_CASE : Any = json.load(a_ ) SCREAMING_SNAKE_CASE : Dict = '''MLukeTokenizer''' with open(os.path.join(a_ , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) with open(os.path.join(a_ , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(a_ , a_ ) SCREAMING_SNAKE_CASE : Optional[int] = MLukeTokenizer.from_pretrained(a_ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_tokens_to_ids(['''@'''] )[0] SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(['''#'''] )[0] SCREAMING_SNAKE_CASE : Optional[Any] = state_dict['''embeddings.word_embeddings.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE : Tuple = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE : Optional[int] = state_dict[bias_name] SCREAMING_SNAKE_CASE : Dict = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE : List[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE : Union[str, Any] = F"encoder.layer.{layer_index}.attention.self." SCREAMING_SNAKE_CASE : str = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE : List[Any] = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE : str = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE : int = state_dict['''entity_embeddings.entity_embeddings.weight'''] SCREAMING_SNAKE_CASE : Optional[Any] = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE : str = state_dict['''entity_predictions.bias'''] SCREAMING_SNAKE_CASE : int = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE : str = LukeForMaskedLM(config=a_ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) SCREAMING_SNAKE_CASE : List[str] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): SCREAMING_SNAKE_CASE : Optional[int] = state_dict[key] else: SCREAMING_SNAKE_CASE : str = state_dict[key] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = model.load_state_dict(a_ , strict=a_ ) if set(a_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"Unexpected unexpected_keys: {unexpected_keys}" ) if set(a_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"Unexpected missing_keys: {missing_keys}" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE : Any = MLukeTokenizer.from_pretrained(a_ , task='''entity_classification''' ) SCREAMING_SNAKE_CASE : List[Any] = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' SCREAMING_SNAKE_CASE : int = (0, 9) SCREAMING_SNAKE_CASE : int = tokenizer(a_ , entity_spans=[span] , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Any = model(**a_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE : Dict = torch.Size((1, 33, 7_68) ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 1, 7_68) ) SCREAMING_SNAKE_CASE : Any = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" F" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE : Any = MLukeTokenizer.from_pretrained(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''Tokyo is the capital of <mask>.''' SCREAMING_SNAKE_CASE : List[Any] = (24, 30) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(a_ , entity_spans=[span] , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : int = model(**a_ ) SCREAMING_SNAKE_CASE : Dict = encoding['''input_ids'''][0].tolist() SCREAMING_SNAKE_CASE : str = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(a_ ) SCREAMING_SNAKE_CASE : Any = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE : int = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(a_ ) ) model.save_pretrained(a_ ) def __A ( a_ : Tuple )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] SCREAMING_SNAKE_CASE : List[Any] = [json.loads(a_ ) for line in open(a_ )] SCREAMING_SNAKE_CASE : str = {} for entry in data: SCREAMING_SNAKE_CASE : Optional[int] = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE : int = entity_id break SCREAMING_SNAKE_CASE : List[str] = F"{language}:{entity_name}" SCREAMING_SNAKE_CASE : Dict = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowerCamelCase__ : List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
18
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Union[str, Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList(lowerCamelCase_ ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :Union[torch.Tensor, float, int] , lowerCamelCase_ :torch.Tensor , lowerCamelCase_ :List[torch.tensor] , lowerCamelCase_ :List[float] , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[Dict[str, Any]] = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :bool = True , ) -> Union[ControlNetOutput, Tuple]: '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ , self.nets ) ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = controlnet( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) # merge samples if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCamelCase_ , lowerCamelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Union[str, os.PathLike] , lowerCamelCase_ :bool = True , lowerCamelCase_ :Callable = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[str] = None , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Any = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCamelCase_ , is_main_process=lowerCamelCase_ , save_function=lowerCamelCase_ , safe_serialization=lowerCamelCase_ , variant=lowerCamelCase_ , ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = model_path_to_save + f"_{idx}" @classmethod def __lowerCAmelCase ( cls :Dict , lowerCamelCase_ :Optional[Union[str, os.PathLike]] , **lowerCamelCase_ :Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Dict = pretrained_model_path while os.path.isdir(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Tuple = ControlNetModel.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) controlnets.append(lowerCamelCase_ ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + f"_{idx}" logger.info(f"{len(lowerCamelCase_ )} controlnets loaded from {pretrained_model_path}." ) if len(lowerCamelCase_ ) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(lowerCamelCase_ )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(lowerCamelCase_ )
18
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def a_ ( __lowerCAmelCase ): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class SCREAMING_SNAKE_CASE__ (nn.Module ): def __init__( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ): """simple docstring""" super().__init__() lowerCAmelCase__ = module lowerCAmelCase__ = nn.Sequential( nn.Linear(module.in_features , __lowerCamelCase , bias=__lowerCamelCase ) , nn.Linear(__lowerCamelCase , module.out_features , bias=__lowerCamelCase ) , ) lowerCAmelCase__ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=__lowerCamelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def A__ ( self : Optional[Any] , __lowerCamelCase : Any , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[str] ): """simple docstring""" return self.module(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) + self.adapter(__lowerCamelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): lowercase_ : Optional[Any] = "bigscience/bloom-1b7" # Constant values lowercase_ : Union[str, Any] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowercase_ : List[str] = "Hello my name is" lowercase_ : str = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowercase_ : Optional[int] = 10 def A__ ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(self.model_name ) class SCREAMING_SNAKE_CASE__ (lowercase__ ): def A__ ( self : Optional[Any] ): """simple docstring""" super().setUp() # Models and tokenizer lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__lowerCamelCase , device_map='''auto''' ) def A__ ( self : str ): """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def A__ ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.model_abit.config self.assertTrue(hasattr(__lowerCamelCase , '''quantization_config''' ) ) lowerCAmelCase__ = config.to_dict() lowerCAmelCase__ = config.to_diff_dict() lowerCAmelCase__ = config.to_json_string() def A__ ( self : Optional[Any] ): """simple docstring""" from bitsandbytes.nn import Paramsabit lowerCAmelCase__ = self.model_fpaa.get_memory_footprint() lowerCAmelCase__ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) lowerCAmelCase__ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def A__ ( self : Union[str, Any] ): """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__lowerCamelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def A__ ( self : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCAmelCase__ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__lowerCamelCase ) , self.EXPECTED_OUTPUTS ) def A__ ( self : Dict ): """simple docstring""" lowerCAmelCase__ = BitsAndBytesConfig() lowerCAmelCase__ = True lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__lowerCamelCase , device_map='''auto''' ) lowerCAmelCase__ = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCAmelCase__ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=__lowerCamelCase ) , self.EXPECTED_OUTPUTS ) def A__ ( self : Tuple ): """simple docstring""" with self.assertRaises(__lowerCamelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__lowerCamelCase ) def A__ ( self : Any ): """simple docstring""" lowerCAmelCase__ = BitsAndBytesConfig() with self.assertRaises(__lowerCamelCase ): lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=__lowerCamelCase , load_in_abit=__lowerCamelCase , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def A__ ( self : str ): """simple docstring""" with self.assertRaises(__lowerCamelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(__lowerCamelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__lowerCamelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(__lowerCamelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__lowerCamelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything lowerCAmelCase__ = self.tokenizer(self.input_text , return_tensors='''pt''' ) lowerCAmelCase__ = self.model_fpaa.to(torch.floataa ) lowerCAmelCase__ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error lowerCAmelCase__ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error lowerCAmelCase__ = self.model_fpaa.half() # Check this does not throw an error lowerCAmelCase__ = self.model_fpaa.float() def A__ ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=__lowerCamelCase , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): @classmethod def A__ ( cls : Optional[int] ): """simple docstring""" lowerCAmelCase__ = "t5-small" lowerCAmelCase__ = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense lowerCAmelCase__ = AutoTokenizer.from_pretrained(cls.model_name ) lowerCAmelCase__ = "Translate in German: Hello, my dog is cute" def A__ ( self : Union[str, Any] ): """simple docstring""" gc.collect() torch.cuda.empty_cache() def A__ ( self : Dict ): """simple docstring""" from transformers import TaForConditionalGeneration lowerCAmelCase__ = TaForConditionalGeneration._keep_in_fpaa_modules lowerCAmelCase__ = None # test with `t5-small` lowerCAmelCase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__lowerCamelCase , device_map='''auto''' ) lowerCAmelCase__ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCAmelCase__ = model.generate(**__lowerCamelCase ) # test with `flan-t5-small` lowerCAmelCase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__lowerCamelCase , device_map='''auto''' ) lowerCAmelCase__ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCAmelCase__ = model.generate(**__lowerCamelCase ) lowerCAmelCase__ = modules def A__ ( self : Tuple ): """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` lowerCAmelCase__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=__lowerCamelCase , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) lowerCAmelCase__ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCAmelCase__ = model.generate(**__lowerCamelCase ) # test with `flan-t5-small` lowerCAmelCase__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=__lowerCamelCase , device_map='''auto''' ) lowerCAmelCase__ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) lowerCAmelCase__ = model.generate(**__lowerCamelCase ) class SCREAMING_SNAKE_CASE__ (lowercase__ ): def A__ ( self : Optional[int] ): """simple docstring""" super().setUp() # model_name lowerCAmelCase__ = "bigscience/bloom-560m" lowerCAmelCase__ = "t5-small" # Different types of model lowerCAmelCase__ = AutoModel.from_pretrained(self.model_name , load_in_abit=__lowerCamelCase , device_map='''auto''' ) # Sequence classification model lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=__lowerCamelCase , device_map='''auto''' ) # CausalLM model lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__lowerCamelCase , device_map='''auto''' ) # Seq2seq model lowerCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=__lowerCamelCase , device_map='''auto''' ) def A__ ( self : int ): """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def A__ ( self : Any ): """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class SCREAMING_SNAKE_CASE__ (lowercase__ ): def A__ ( self : List[Any] ): """simple docstring""" super().setUp() def A__ ( self : str ): """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def A__ ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass lowerCAmelCase__ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class SCREAMING_SNAKE_CASE__ (lowercase__ ): def A__ ( self : Union[str, Any] ): """simple docstring""" super().setUp() def A__ ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=__lowerCamelCase , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model lowerCAmelCase__ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch lowerCAmelCase__ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=__lowerCamelCase ) , self.EXPECTED_OUTPUTS ) class SCREAMING_SNAKE_CASE__ (lowercase__ ): def A__ ( self : Dict ): """simple docstring""" lowerCAmelCase__ = "facebook/opt-350m" super().setUp() def A__ ( self : Any ): """simple docstring""" if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=__lowerCamelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): lowerCAmelCase__ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability lowerCAmelCase__ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__lowerCamelCase ) ): lowerCAmelCase__ = LoRALayer(module.q_proj , rank=16 ) lowerCAmelCase__ = LoRALayer(module.k_proj , rank=16 ) lowerCAmelCase__ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch lowerCAmelCase__ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): lowerCAmelCase__ = model.forward(**__lowerCamelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__lowerCamelCase , __lowerCamelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__lowerCamelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class SCREAMING_SNAKE_CASE__ (lowercase__ ): lowercase_ : List[str] = "gpt2-xl" lowercase_ : Optional[Any] = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
615
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a : List[Any] = logging.get_logger(__name__) a : List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} a : int = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } a : Any = { "allenai/led-base-16384": 1_63_84, } class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Tuple = LEDTokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case="replace" , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=False , snake_case=True , **snake_case , ): '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) UpperCAmelCase : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case ) != add_prefix_space: UpperCAmelCase : Tuple = getattr(snake_case , pre_tok_state.pop("type" ) ) UpperCAmelCase : Any = add_prefix_space UpperCAmelCase : str = pre_tok_class(**snake_case ) UpperCAmelCase : int = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase : Dict = "post_processor" UpperCAmelCase : Dict = getattr(self.backend_tokenizer , snake_case , snake_case ) if tokenizer_component_instance: UpperCAmelCase : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase : int = tuple(state["sep"] ) if "cls" in state: UpperCAmelCase : Union[str, Any] = tuple(state["cls"] ) UpperCAmelCase : Tuple = False if state.get("add_prefix_space" , snake_case ) != add_prefix_space: UpperCAmelCase : Optional[Any] = add_prefix_space UpperCAmelCase : Optional[int] = True if state.get("trim_offsets" , snake_case ) != trim_offsets: UpperCAmelCase : Tuple = trim_offsets UpperCAmelCase : List[str] = True if changes_to_apply: UpperCAmelCase : Optional[Any] = getattr(snake_case , state.pop("type" ) ) UpperCAmelCase : Tuple = component_class(**snake_case ) setattr(self.backend_tokenizer , snake_case , snake_case ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def A_ ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Tuple = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value UpperCAmelCase : Optional[Any] = value def A_ ( self , *snake_case , **snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = kwargs.get("is_split_into_words" , snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case , **snake_case ) def A_ ( self , *snake_case , **snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = kwargs.get("is_split_into_words" , snake_case ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case , **snake_case ) def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : str = self._tokenizer.model.save(snake_case , name=snake_case ) return tuple(snake_case ) def A_ ( self , snake_case , snake_case=None ): '''simple docstring''' UpperCAmelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A_ ( self , snake_case , snake_case = None , snake_case = PaddingStrategy.DO_NOT_PAD , snake_case = None , snake_case = None , ): '''simple docstring''' UpperCAmelCase : int = super()._pad( encoded_inputs=snake_case , max_length=snake_case , padding_strategy=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , ) # Load from model defaults if return_attention_mask is None: UpperCAmelCase : int = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase : Optional[int] = len(encoded_inputs["global_attention_mask"] ) != len(snake_case ) if needs_to_be_padded: UpperCAmelCase : Tuple = len(snake_case ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase : List[str] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase : Any = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
679
0
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow a = False class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Union[str, Any]=32 ): set_seed(0 ) _A = UNetaDModel(sample_size=_UpperCAmelCase , in_channels=3 , out_channels=3 ) _A = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def lowerCAmelCase_ ( self : Tuple ): _A = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _A = DDPMScheduler( num_train_timesteps=1_000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=_UpperCAmelCase , ) _A = DDIMScheduler( num_train_timesteps=1_000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=_UpperCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) _A = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(_UpperCAmelCase ) for _ in range(4 )] _A = [torch.randn((4, 3, 32, 32) ).to(_UpperCAmelCase ) for _ in range(4 )] _A = [torch.randint(0 , 1_000 , (4,) ).long().to(_UpperCAmelCase ) for _ in range(4 )] # train with a DDPM scheduler _A , _A = self.get_model_optimizer(resolution=32 ) model.train().to(_UpperCAmelCase ) for i in range(4 ): optimizer.zero_grad() _A = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _A = model(_UpperCAmelCase , timesteps[i] ).sample _A = torch.nn.functional.mse_loss(_UpperCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _A , _A = self.get_model_optimizer(resolution=32 ) model.train().to(_UpperCAmelCase ) for i in range(4 ): optimizer.zero_grad() _A = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _A = model(_UpperCAmelCase , timesteps[i] ).sample _A = torch.nn.functional.mse_loss(_UpperCAmelCase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) )
505
"""simple docstring""" def _snake_case ( _snake_case : bytes ) -> str: '''simple docstring''' return "".join([hex(_snake_case )[2:].zfill(2 ).upper() for byte in list(_snake_case )] ) def _snake_case ( _snake_case : str ) -> bytes: '''simple docstring''' if (len(_snake_case ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(_snake_case ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(_snake_case ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
505
1
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE ( a , a , unittest.TestCase ): """simple docstring""" a_ : str =IFInpaintingPipeline a_ : Dict =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} a_ : Dict =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a_ : str =PipelineTesterMixin.required_optional_params - {"latents"} def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' return self._get_dummy_components() def _lowerCAmelCase ( self : List[str] , _snake_case : Any , _snake_case : Optional[Any]=0 ) -> Optional[int]: '''simple docstring''' if str(_snake_case ).startswith('mps' ): a__ = torch.manual_seed(_snake_case ) else: a__ = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) a__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) a__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) a__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _lowerCAmelCase ( self : Any ) -> Dict: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _lowerCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def _lowerCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _lowerCAmelCase ( self : Any ) -> Any: '''simple docstring''' self._test_save_load_local() def _lowerCAmelCase ( self : Dict ) -> Optional[int]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
232
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase__ ) -> bool: '''simple docstring''' a__ = 0 for ch in input_str: a__ = ord(UpperCAmelCase__ ) a__ = pow(2,UpperCAmelCase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
232
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _lowercase : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCamelCase__: int , UpperCamelCase__: Any , UpperCamelCase__: Dict ) -> Dict: """simple docstring""" A = UniSpeechSatForSequenceClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) A = downstream_dict["""projector.weight"""] A = downstream_dict["""projector.bias"""] A = downstream_dict["""model.post_net.linear.weight"""] A = downstream_dict["""model.post_net.linear.bias"""] return model def _lowerCAmelCase ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] ) -> List[Any]: """simple docstring""" A = UniSpeechSatForAudioFrameClassification.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) A = downstream_dict["""model.linear.weight"""] A = downstream_dict["""model.linear.bias"""] return model def _lowerCAmelCase ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any] , UpperCamelCase__: Any ) -> str: """simple docstring""" A = UniSpeechSatForXVector.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) A = downstream_dict["""connector.weight"""] A = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): A = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] A = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] A = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] A = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] A = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] A = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] A = downstream_dict["""objective.W"""] return model @torch.no_grad() def _lowerCAmelCase ( UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: List[Any] , UpperCamelCase__: List[str] ) -> int: """simple docstring""" A = torch.load(UpperCamelCase__ , map_location="""cpu""" ) A = checkpoint["""Downstream"""] A = UniSpeechSatConfig.from_pretrained(UpperCamelCase__ ) A = WavaVecaFeatureExtractor.from_pretrained( UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , do_normalize=UpperCamelCase__ ) A = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): A = convert_classification(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif arch.endswith("""ForAudioFrameClassification""" ): A = convert_diarization(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif arch.endswith("""ForXVector""" ): A = convert_xvector(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: A = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowercase : List[str] = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") _lowercase : Tuple = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
546
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _lowerCAmelCase ( UpperCamelCase__: Any ) -> Tuple: """simple docstring""" def wrapper(*UpperCamelCase__: Union[str, Any] , **UpperCamelCase__: List[str] ): A = timeit.default_timer() A = func(*UpperCamelCase__ , **UpperCamelCase__ ) A = timeit.default_timer() - starttime return delta A = func.__name__ return wrapper def _lowerCAmelCase ( UpperCamelCase__: dict , UpperCamelCase__: List[str]=1_00 , UpperCamelCase__: int=None ) -> Any: """simple docstring""" A = [] A = seq_shapes or {} for i in range(UpperCamelCase__ ): A = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCamelCase__ , _ArrayXD ): A = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCamelCase__ , datasets.Value ): if v.dtype == "string": A = """The small grey turtle was surprisingly fast when challenged.""" else: A = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCamelCase__ , datasets.Sequence ): while isinstance(UpperCamelCase__ , datasets.Sequence ): A = v.feature A = seq_shapes[k] A = np.random.rand(*UpperCamelCase__ ).astype(v.dtype ) A = data dummy_data.append((i, example) ) return dummy_data def _lowerCAmelCase ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str]=1_00 , UpperCamelCase__: str=None ) -> Optional[int]: """simple docstring""" A = generate_examples(UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes=UpperCamelCase__ ) with ArrowWriter(features=UpperCamelCase__ , path=UpperCamelCase__ ) as writer: for key, record in dummy_data: A = features.encode_example(UpperCamelCase__ ) writer.write(UpperCamelCase__ ) A , A = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) A = datasets.Dataset.from_file(filename=UpperCamelCase__ , info=datasets.DatasetInfo(features=UpperCamelCase__ ) ) return dataset
546
1
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class lowerCAmelCase ( __UpperCAmelCase): def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = tempfile.mkdtemp() __snake_case = 8 # DPR tok __snake_case = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __snake_case = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __snake_case = os.path.join(lowerCamelCase__ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok __snake_case = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __snake_case = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) __snake_case = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) __snake_case = os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join(lowerCamelCase__ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase__ ) ) def lowerCAmelCase ( self ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def lowerCAmelCase ( self ) -> DPRContextEncoderTokenizer: '''simple docstring''' return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def lowerCAmelCase ( self ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = self.get_dummy_dataset() __snake_case = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: __snake_case = dataset __snake_case = RagRetriever( lowerCamelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __snake_case = self.get_dummy_dataset() __snake_case = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: __snake_case = os.path.join(self.tmpdirname , '''dataset''' ) __snake_case = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset __snake_case = RagRetriever( lowerCamelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: __snake_case = RagRetriever( lowerCamelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , lowerCamelCase__ ) , ) return retriever def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) __snake_case = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) __snake_case = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) __snake_case = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(lowerCamelCase__ , open(lowerCamelCase__ , '''wb''' ) ) __snake_case = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) __snake_case = RagRetriever( lowerCamelCase__ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = 1 __snake_case = self.get_dummy_canonical_hf_index_retriever() __snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __snake_case , __snake_case , __snake_case = retriever.retrieve(lowerCamelCase__ , n_docs=lowerCamelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCamelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowerCamelCase__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: __snake_case = self.get_dummy_dataset() retriever.save_pretrained(lowerCamelCase__ ) __snake_case = RagRetriever.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __snake_case = retriever.retrieve(lowerCamelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = 1 __snake_case = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase__ ) __snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __snake_case , __snake_case , __snake_case = retriever.retrieve(lowerCamelCase__ , n_docs=lowerCamelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCamelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowerCamelCase__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCamelCase__ ) __snake_case = RagRetriever.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __snake_case = retriever.retrieve(lowerCamelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = 1 __snake_case = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase__ ) __snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __snake_case , __snake_case , __snake_case = retriever.retrieve(lowerCamelCase__ , n_docs=lowerCamelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCamelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , lowerCamelCase__ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCamelCase__ ) __snake_case = RagRetriever.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __snake_case = retriever.retrieve(lowerCamelCase__ , n_docs=1 ) self.assertTrue(out is not None ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = 1 __snake_case = self.get_dummy_legacy_index_retriever() __snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __snake_case , __snake_case , __snake_case = retriever.retrieve(lowerCamelCase__ , n_docs=lowerCamelCase__ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCamelCase__ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , lowerCamelCase__ ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCamelCase__ ) __snake_case = RagRetriever.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __snake_case = retriever.retrieve(lowerCamelCase__ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' import torch __snake_case = 1 __snake_case = self.get_dummy_canonical_hf_index_retriever() __snake_case = [[5, 7], [10, 11]] __snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __snake_case = retriever(lowerCamelCase__ , lowerCamelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCamelCase__ ) __snake_case , __snake_case , __snake_case = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , np.ndarray ) __snake_case = retriever( lowerCamelCase__ , lowerCamelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCamelCase__ , return_tensors='''pt''' , ) __snake_case , __snake_case , __snake_case , __snake_case = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = self.get_dpr_ctx_encoder_tokenizer() __snake_case = 1 __snake_case = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCamelCase__ ) retriever.set_ctx_encoder_tokenizer(lowerCamelCase__ ) __snake_case = [[5, 7], [10, 11]] __snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) __snake_case = retriever(lowerCamelCase__ , lowerCamelCase__ , prefix=retriever.config.generator.prefix , n_docs=lowerCamelCase__ ) self.assertEqual( len(lowerCamelCase__ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , lowerCamelCase__ ) # check for doc token related keys in dictionary.
24
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __A = "CompVis/stable-diffusion-v1-1" __A = "CompVis/stable-diffusion-v1-2" __A = "CompVis/stable-diffusion-v1-3" __A = "CompVis/stable-diffusion-v1-4" class A ( __UpperCAmelCase ): def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ) -> Optional[int]: '''simple docstring''' super()._init_() lowercase__ = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) lowercase__ = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) lowercase__ = StableDiffusionPipeline.from_pretrained(lowerCamelCase__ ) lowercase__ = StableDiffusionPipeline( vae=lowerCamelCase__ , text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , feature_extractor=lowerCamelCase__ , requires_safety_checker=lowerCamelCase__ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A__ ( self ) -> Dict[str, Any]: '''simple docstring''' return {k: getattr(self , lowerCamelCase__ ) for k in self.config.keys() if not k.startswith("""_""" )} def A__ ( self , lowerCamelCase__ = "auto" ) -> int: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCamelCase__ ) def A__ ( self ) -> Dict: '''simple docstring''' self.enable_attention_slicing(lowerCamelCase__ ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> str: '''simple docstring''' return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> str: '''simple docstring''' return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> Any: '''simple docstring''' return self.pipea( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) @torch.no_grad() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ = 512 , lowerCamelCase__ = 512 , lowerCamelCase__ = 50 , lowerCamelCase__ = 7.5 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , lowerCamelCase__ = None , lowerCamelCase__ = 1 , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' lowercase__ = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(lowerCamelCase__ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 lowercase__ = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.2 lowercase__ = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.3 lowercase__ = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get first result from Stable Diffusion Checkpoint v1.4 lowercase__ = self.textaimg_sda_a( prompt=lowerCamelCase__ , height=lowerCamelCase__ , width=lowerCamelCase__ , num_inference_steps=lowerCamelCase__ , guidance_scale=lowerCamelCase__ , negative_prompt=lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ , eta=lowerCamelCase__ , generator=lowerCamelCase__ , latents=lowerCamelCase__ , output_type=lowerCamelCase__ , return_dict=lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=lowerCamelCase__ , **lowerCamelCase__ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
325
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_a ) class lowerCAmelCase ( _a ): def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ): super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def a__ ( self , lowerCAmelCase__=None ): _A= {} if top_k is not None: _A= top_k return {}, {}, postprocess_params def __call__( self , lowerCAmelCase__ , **lowerCAmelCase__ ): return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def a__ ( self , lowerCAmelCase__ ): _A= load_image(lowerCAmelCase__ ) _A= self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework ) return model_inputs def a__ ( self , lowerCAmelCase__ ): _A= self.model(**lowerCAmelCase__ ) return model_outputs def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__=5 ): if top_k > self.model.config.num_labels: _A= self.model.config.num_labels if self.framework == "pt": _A= model_outputs.logits.softmax(-1 )[0] _A, _A= probs.topk(lowerCAmelCase__ ) elif self.framework == "tf": _A= stable_softmax(model_outputs.logits , axis=-1 )[0] _A= tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__ ) _A, _A= topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) _A= scores.tolist() _A= ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__ , lowerCAmelCase__ )]
702
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def UpperCamelCase ( lowerCAmelCase_="" ) -> str: '''simple docstring''' _A= tempfile.mkdtemp() return os.path.join(lowerCAmelCase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase ( unittest.TestCase ): def a__ ( self ): _A= torch.rand(12 , dtype=torch.floataa ) - 0.5 _A= AgentAudio(lowerCAmelCase__ ) _A= str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase__ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) # Ensure that the file contains the same value as the original tensor _A, _A= sf.read(lowerCAmelCase__ ) self.assertTrue(torch.allclose(lowerCAmelCase__ , torch.tensor(lowerCAmelCase__ ) , atol=1E-4 ) ) def a__ ( self ): _A= torch.rand(12 , dtype=torch.floataa ) - 0.5 _A= get_new_path(suffix='.wav' ) sf.write(lowerCAmelCase__ , lowerCAmelCase__ , 16000 ) _A= AgentAudio(lowerCAmelCase__ ) self.assertTrue(torch.allclose(lowerCAmelCase__ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowerCAmelCase__ ) @require_vision @require_torch class lowerCAmelCase ( unittest.TestCase ): def a__ ( self ): _A= torch.randint(0 , 256 , (64, 64, 3) ) _A= AgentImage(lowerCAmelCase__ ) _A= str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase__ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) def a__ ( self ): _A= Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' _A= Image.open(lowerCAmelCase__ ) _A= AgentImage(lowerCAmelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) def a__ ( self ): _A= Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' _A= Image.open(lowerCAmelCase__ ) _A= AgentImage(lowerCAmelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase__ ) ) class lowerCAmelCase ( unittest.TestCase ): def a__ ( self ): _A= 'Hey!' _A= AgentText(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , agent_type.to_string() ) self.assertEqual(lowerCAmelCase__ , agent_type.to_raw() ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
476
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : List[Any] = """ClapFeatureExtractor""" _snake_case : int = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self :Optional[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :List[Any] ): super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self :List[Any] , lowerCamelCase__ :List[Any]=None , lowerCamelCase__ :Optional[int]=None , lowerCamelCase__ :Dict=None , **lowerCamelCase__ :Optional[Any] ): UpperCamelCase__ :List[str] = kwargs.pop("""sampling_rate""" , lowerCamelCase__ ) if text is None and audios is None: raise ValueError("""You have to specify either text or audios. Both cannot be none.""" ) if text is not None: UpperCamelCase__ :Optional[Any] = self.tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if audios is not None: UpperCamelCase__ :str = self.feature_extractor( lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None and audios is not None: UpperCamelCase__ :Tuple = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase__ ) , tensor_type=lowerCamelCase__ ) def __a ( self :Any , *lowerCamelCase__ :List[str] , **lowerCamelCase__ :Any ): return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def __a ( self :int , *lowerCamelCase__ :Any , **lowerCamelCase__ :Optional[int] ): return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def __a ( self :Tuple ): UpperCamelCase__ :List[str] = self.tokenizer.model_input_names UpperCamelCase__ :Tuple = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
45
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE__ = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } SCREAMING_SNAKE_CASE__ = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } SCREAMING_SNAKE_CASE__ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE__ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } SCREAMING_SNAKE_CASE__ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class snake_case (UpperCamelCase ): lowerCAmelCase__ :List[Any] = VOCAB_FILES_NAMES lowerCAmelCase__ :Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ :List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ :Optional[int] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class snake_case (UpperCamelCase ): lowerCAmelCase__ :Tuple = VOCAB_FILES_NAMES lowerCAmelCase__ :Dict = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ :Dict = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ :Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) SCREAMING_SNAKE_CASE__ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) SCREAMING_SNAKE_CASE__ = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(UpperCamelCase ) class snake_case : def __call__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,**UpperCAmelCase_ ,) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( UpperCAmelCase_ ,UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,**UpperCAmelCase_ ,) lowercase__ = titles if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else [titles] lowercase__ = texts if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else [texts] lowercase__ = len(UpperCAmelCase_ ) lowercase__ = questions if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else [questions] * n_passages if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( F'''There should be as many titles than texts but got {len(UpperCAmelCase_ )} titles and {len(UpperCAmelCase_ )} texts.''' ) lowercase__ = super().__call__(UpperCAmelCase_ ,UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ )["input_ids"] lowercase__ = super().__call__(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ )["input_ids"] lowercase__ = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCAmelCase_ ,UpperCAmelCase_ ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = 16 ,UpperCAmelCase_ = 64 ,UpperCAmelCase_ = 4 ,) -> List[DPRSpanPrediction]: '''simple docstring''' lowercase__ = reader_input["input_ids"] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(UpperCAmelCase_ ) lowercase__ = sorted(range(UpperCAmelCase_ ) ,reverse=UpperCAmelCase_ ,key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(UpperCAmelCase_ ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=UpperCAmelCase_ ,top_spans=UpperCAmelCase_ ,) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=UpperCAmelCase_ ,start_index=UpperCAmelCase_ ,end_index=UpperCAmelCase_ ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) ) if len(UpperCAmelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,) -> List[DPRSpanPrediction]: '''simple docstring''' lowercase__ = [] for start_index, start_score in enumerate(UpperCAmelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(UpperCAmelCase_ ,key=lambda UpperCAmelCase_ : x[1] ,reverse=UpperCAmelCase_ ) lowercase__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) lowercase__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCAmelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase ) class snake_case (UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ :int = VOCAB_FILES_NAMES lowerCAmelCase__ :Tuple = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ :Optional[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ :Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ :Tuple = ["input_ids", "attention_mask"]
704
'''simple docstring''' def lowerCamelCase ( _snake_case : list[int] ,_snake_case : list[int] ): '''simple docstring''' lowercase__ = len(_snake_case ) print("The following activities are selected:" ) # The first activity is always selected lowercase__ = 0 print(_snake_case ,end="," ) # Consider rest of the activities for j in range(_snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_snake_case ,end="," ) lowercase__ = j if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = [1, 3, 0, 5, 8, 5] SCREAMING_SNAKE_CASE__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
539
0
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self ): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = nn.Linear(3 , 4 ) __SCREAMING_SNAKE_CASE = nn.BatchNormad(4 ) __SCREAMING_SNAKE_CASE = nn.Linear(4 , 5 ) def _A ( self , _A ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(a_ ) ) ) class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def _A ( self , _A , *_A , **_A ): '''simple docstring''' return (args[0] + 1,) + args[1:], kwargs class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' def _A ( self , _A , _A ): '''simple docstring''' return output + 1 class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ModelForTest() __SCREAMING_SNAKE_CASE = ModelHook() add_hook_to_module(a_ , a_ ) self.assertEqual(test_model._hf_hook , a_ ) self.assertTrue(hasattr(a_ , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(a_ ) self.assertFalse(hasattr(a_ , '_hf_hook' ) ) self.assertFalse(hasattr(a_ , '_old_forward' ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ModelForTest() __SCREAMING_SNAKE_CASE = ModelHook() add_hook_to_module(a_ , a_ ) add_hook_to_module(a_ , a_ , append=a_ ) self.assertEqual(isinstance(test_model._hf_hook , a_ ) , a_ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(a_ , '_old_forward' ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward' ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ['x'] ) remove_hook_from_module(a_ ) self.assertFalse(hasattr(a_ , '_hf_hook' ) ) self.assertFalse(hasattr(a_ , '_old_forward' ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ModelForTest() __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = test_model(x + 1 ) __SCREAMING_SNAKE_CASE = test_model(x + 2 ) __SCREAMING_SNAKE_CASE = PreForwardHook() add_hook_to_module(a_ , a_ ) __SCREAMING_SNAKE_CASE = test_model(a_ ) self.assertTrue(torch.allclose(a_ , a_ , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __SCREAMING_SNAKE_CASE = PreForwardHook() add_hook_to_module(a_ , a_ ) __SCREAMING_SNAKE_CASE = test_model(a_ ) self.assertTrue(torch.allclose(a_ , a_ , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __SCREAMING_SNAKE_CASE = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(a_ , a_ ) __SCREAMING_SNAKE_CASE = test_model(a_ ) assert torch.allclose(a_ , a_ , atol=1e-5 ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ModelForTest() __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = test_model(a_ ) __SCREAMING_SNAKE_CASE = PostForwardHook() add_hook_to_module(a_ , a_ ) __SCREAMING_SNAKE_CASE = test_model(a_ ) self.assertTrue(torch.allclose(a_ , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __SCREAMING_SNAKE_CASE = PostForwardHook() add_hook_to_module(a_ , a_ ) __SCREAMING_SNAKE_CASE = test_model(a_ ) self.assertTrue(torch.allclose(a_ , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __SCREAMING_SNAKE_CASE = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(a_ , a_ ) __SCREAMING_SNAKE_CASE = test_model(a_ ) assert torch.allclose(a_ , output + 2 , atol=1e-5 ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ModelForTest() __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = test_model(a_ ) __SCREAMING_SNAKE_CASE = PostForwardHook() add_hook_to_module(a_ , a_ ) __SCREAMING_SNAKE_CASE = test_model(a_ ) self.assertTrue(torch.allclose(a_ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = test_model(a_ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(a_ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(a_ , AlignDevicesHook(io_same_device=a_ ) ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ).to(0 ) __SCREAMING_SNAKE_CASE = model(a_ ) self.assertEqual(output.device , torch.device(0 ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices __SCREAMING_SNAKE_CASE = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara , AlignDevicesHook(**a_ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**a_ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**a_ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device __SCREAMING_SNAKE_CASE = torch.device(hook_kwargs['execution_device'] ) self.assertEqual(model.batchnorm.running_mean.device , a_ ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(a_ ) self.assertEqual(output.device , a_ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload __SCREAMING_SNAKE_CASE = { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**a_ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**a_ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**a_ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(a_ ) self.assertEqual(output.device , a_ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices __SCREAMING_SNAKE_CASE = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(a_ , execution_device=a_ , offload=a_ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device __SCREAMING_SNAKE_CASE = torch.device(a_ ) self.assertEqual(model.batchnorm.running_mean.device , a_ ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(a_ ) self.assertEqual(output.device , a_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a_ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook(a_ , execution_device=a_ , offload=a_ , offload_buffers=a_ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(a_ ) self.assertEqual(output.device , a_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a_ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # This will move each submodule on different devices __SCREAMING_SNAKE_CASE = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( a_ , execution_device=a_ , offload=a_ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) # Buffers are not included in the offload by default, so are on the execution device __SCREAMING_SNAKE_CASE = torch.device(a_ ) self.assertEqual(model.batchnorm.running_mean.device , a_ ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(a_ ) self.assertEqual(output.device , a_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a_ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) # Now test with buffers included in the offload attach_align_device_hook( a_ , execution_device=a_ , offload=a_ , weights_map=model.state_dict() , offload_buffers=a_ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('meta' ) ) self.assertEqual(model.lineara.weight.device , torch.device('meta' ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta' ) ) __SCREAMING_SNAKE_CASE = torch.randn(2 , 3 ) __SCREAMING_SNAKE_CASE = model(a_ ) self.assertEqual(output.device , a_ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(a_ ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) ) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu' ) ) self.assertEqual(model.lineara.weight.device , torch.device('cpu' ) )
148
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class a_ ( snake_case ): UpperCAmelCase : str = (CMStochasticIterativeScheduler,) UpperCAmelCase : int = 10 def UpperCamelCase ( self : Dict , **a_ : List[str] ) -> Any: snake_case: Any ={ 'num_train_timesteps': 2_0_1, 'sigma_min': 0.0_0_2, 'sigma_max': 8_0.0, } config.update(**a_ ) return config def UpperCamelCase ( self : List[Any] ) -> List[Any]: snake_case: Any =1_0 snake_case: List[str] =self.get_scheduler_config() snake_case: List[Any] =self.scheduler_classes[0](**a_ ) scheduler.set_timesteps(a_ ) snake_case: Dict =scheduler.timesteps[0] snake_case: Union[str, Any] =scheduler.timesteps[1] snake_case: List[str] =self.dummy_sample snake_case: List[str] =0.1 * sample snake_case: int =scheduler.step(a_ , a_ , a_ ).prev_sample snake_case: Optional[Any] =scheduler.step(a_ , a_ , a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase ( self : int ) -> int: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a_ ) def UpperCamelCase ( self : Optional[Any] ) -> Dict: for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=a_ ) def UpperCamelCase ( self : Tuple ) -> List[str]: snake_case: List[Any] =self.scheduler_classes[0] snake_case: List[Any] =self.get_scheduler_config() snake_case: Any =scheduler_class(**a_ ) snake_case: Dict =1 scheduler.set_timesteps(a_ ) snake_case: List[Any] =scheduler.timesteps snake_case: Optional[Any] =torch.manual_seed(0 ) snake_case: Optional[Any] =self.dummy_model() snake_case: List[Any] =self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(a_ ): # 1. scale model input snake_case: Any =scheduler.scale_model_input(a_ , a_ ) # 2. predict noise residual snake_case: List[str] =model(a_ , a_ ) # 3. predict previous sample x_t-1 snake_case: Dict =scheduler.step(a_ , a_ , a_ , generator=a_ ).prev_sample snake_case: List[Any] =pred_prev_sample snake_case: Optional[Any] =torch.sum(torch.abs(a_ ) ) snake_case: Optional[Any] =torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 1_9_2.7_6_1_4 ) < 1E-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1E-3 def UpperCamelCase ( self : Dict ) -> Union[str, Any]: snake_case: Dict =self.scheduler_classes[0] snake_case: Tuple =self.get_scheduler_config() snake_case: str =scheduler_class(**a_ ) snake_case: List[Any] =[1_0_6, 0] scheduler.set_timesteps(timesteps=a_ ) snake_case: Optional[Any] =scheduler.timesteps snake_case: Dict =torch.manual_seed(0 ) snake_case: Optional[int] =self.dummy_model() snake_case: Any =self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case: List[Any] =scheduler.scale_model_input(a_ , a_ ) # 2. predict noise residual snake_case: Any =model(a_ , a_ ) # 3. predict previous sample x_t-1 snake_case: List[str] =scheduler.step(a_ , a_ , a_ , generator=a_ ).prev_sample snake_case: Optional[Any] =pred_prev_sample snake_case: Union[str, Any] =torch.sum(torch.abs(a_ ) ) snake_case: Tuple =torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 3_4_7.6_3_5_7 ) < 1E-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1E-3 def UpperCamelCase ( self : int ) -> Tuple: snake_case: List[Any] =self.scheduler_classes[0] snake_case: Union[str, Any] =self.get_scheduler_config() snake_case: str =scheduler_class(**a_ ) snake_case: str =[3_9, 3_0, 1_2, 1_5, 0] with self.assertRaises(a_ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=a_ ) def UpperCamelCase ( self : Dict ) -> Optional[int]: snake_case: Optional[Any] =self.scheduler_classes[0] snake_case: Dict =self.get_scheduler_config() snake_case: str =scheduler_class(**a_ ) snake_case: Any =[3_9, 3_0, 1_2, 1, 0] snake_case: List[Any] =len(a_ ) with self.assertRaises(a_ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=a_ , timesteps=a_ ) def UpperCamelCase ( self : Optional[Any] ) -> Tuple: snake_case: Any =self.scheduler_classes[0] snake_case: int =self.get_scheduler_config() snake_case: Optional[Any] =scheduler_class(**a_ ) snake_case: List[Any] =[scheduler.config.num_train_timesteps] with self.assertRaises( a_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=a_ )
350
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ : int = logging.get_logger(__name__) a_ : List[str] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class _snake_case ( A__ , A__ ): _lowercase : Optional[Any] = '''bit''' _lowercase : Tuple = ['''preactivation''', '''bottleneck'''] _lowercase : List[Any] = ['''SAME''', '''VALID'''] def __init__( self , a=3 , a=64 , a=[256, 512, 1024, 2048] , a=[3, 4, 6, 3] , a="preactivation" , a="relu" , a=None , a=32 , a=0.0 , a=False , a=32 , a=1 , a=None , a=None , **a , ) -> Any: super().__init__(**a) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types)}''') if global_padding is not None: if global_padding.upper() in self.supported_padding: SCREAMING_SNAKE_CASE = global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''') SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = global_padding SCREAMING_SNAKE_CASE = num_groups SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = embedding_dynamic_padding SCREAMING_SNAKE_CASE = output_stride SCREAMING_SNAKE_CASE = width_factor SCREAMING_SNAKE_CASE = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(a) + 1)] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=a , out_indices=a , stage_names=self.stage_names)
444
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _snake_case : def __init__( self , a , a=99 , a=13 , a=7 , a=9 , a=True , a=True , a=False , a=32 , a=5 , a=4 , a=37 , a=8 , a=0.1 , a=0.0_02 , a=1 , a=0 , a=0 , a=None , a=None , ) -> List[str]: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = encoder_seq_length SCREAMING_SNAKE_CASE = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE = self.decoder_seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_attention_mask SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = d_ff SCREAMING_SNAKE_CASE = relative_attention_num_buckets SCREAMING_SNAKE_CASE = dropout_rate SCREAMING_SNAKE_CASE = initializer_factor SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = decoder_start_token_id SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = decoder_layers def SCREAMING_SNAKE_CASE__ ( self) -> Any: return TaConfig.from_pretrained('google/umt5-base') def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a=None , a=None , a=None , a=None , a=None , ) -> Optional[int]: if attention_mask is None: SCREAMING_SNAKE_CASE = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: SCREAMING_SNAKE_CASE = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=a) if decoder_head_mask is None: SCREAMING_SNAKE_CASE = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=a) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=a) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE = input_ids.clamp(self.pad_token_id + 1) SCREAMING_SNAKE_CASE = decoder_input_ids.clamp(self.pad_token_id + 1) SCREAMING_SNAKE_CASE = self.get_config() SCREAMING_SNAKE_CASE = config.num_attention_heads SCREAMING_SNAKE_CASE = self.prepare_inputs_dict(a , a , a) return config, input_dict def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , ) -> Dict: SCREAMING_SNAKE_CASE = UMTaModel(config=a) model.to(a) model.eval() SCREAMING_SNAKE_CASE = model( input_ids=a , decoder_input_ids=a , attention_mask=a , decoder_attention_mask=a , ) SCREAMING_SNAKE_CASE = model(input_ids=a , decoder_input_ids=a) SCREAMING_SNAKE_CASE = result.last_hidden_state SCREAMING_SNAKE_CASE = result.past_key_values SCREAMING_SNAKE_CASE = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(a) , config.num_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]) , 4) def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a , ) -> Optional[int]: SCREAMING_SNAKE_CASE = UMTaModel(config=a).get_decoder().to(a).eval() # first forward pass SCREAMING_SNAKE_CASE = model(a , use_cache=a) SCREAMING_SNAKE_CASE = model(a) SCREAMING_SNAKE_CASE = model(a , use_cache=a) self.parent.assertTrue(len(a) == len(a)) self.parent.assertTrue(len(a) == len(a) + 1) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 1) , config.vocab_size) # append to next input_ids and SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1) SCREAMING_SNAKE_CASE = model(a)['last_hidden_state'] SCREAMING_SNAKE_CASE = model(a , past_key_values=a)['last_hidden_state'] # select random slice SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1]).item() SCREAMING_SNAKE_CASE = output_from_no_past[:, -1, random_slice_idx].detach() SCREAMING_SNAKE_CASE = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1E-3)) def SCREAMING_SNAKE_CASE__ ( self , a , a , ) -> str: SCREAMING_SNAKE_CASE = UMTaModel(config=a).to(a).half().eval() SCREAMING_SNAKE_CASE = model(**a)['last_hidden_state'] self.parent.assertFalse(torch.isnan(a).any().item()) @require_torch class _snake_case ( A__ , A__ , A__ , unittest.TestCase ): _lowercase : Any = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _lowercase : str = (UMTaForConditionalGeneration,) if is_torch_available() else () _lowercase : Tuple = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) _lowercase : int = True _lowercase : List[Any] = False _lowercase : Union[str, Any] = False _lowercase : int = True _lowercase : Any = True # The small UMT5 model needs higher percentages for CPU/MP tests _lowercase : int = [0.8, 0.9] def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = UMTaModelTester(self) @unittest.skip('Test has a segmentation fault on torch 1.8.0') def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = UMTaModel(config_and_inputs[0]).to(a) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=a , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision') def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = config_and_inputs[0] SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration(a).eval() model.to(a) SCREAMING_SNAKE_CASE = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=a), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=a), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=a), } for attn_name, (name, mask) in zip(a , head_masking.items()): SCREAMING_SNAKE_CASE = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": SCREAMING_SNAKE_CASE = torch.ones( config.num_decoder_layers , config.num_heads , device=a) SCREAMING_SNAKE_CASE = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=a , return_dict_in_generate=a , **a , ) # We check the state of decoder_attentions and cross_attentions just from the last step SCREAMING_SNAKE_CASE = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights]) , 0.0) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.') def SCREAMING_SNAKE_CASE__ ( self) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged') def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=a).to(a) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=a , legacy=a) SCREAMING_SNAKE_CASE = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] SCREAMING_SNAKE_CASE = tokenizer(a , return_tensors='pt' , padding=a).input_ids # fmt: off SCREAMING_SNAKE_CASE = torch.tensor( [ [ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1], ]) # fmt: on torch.testing.assert_allclose(a , a) SCREAMING_SNAKE_CASE = model.generate(input_ids.to(a)) SCREAMING_SNAKE_CASE = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a) self.assertEqual(a , a)
444
1
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a ( __lowerCAmelCase ): """simple docstring""" def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case_ , """embed_dim""" ) ) self.parent.assertTrue(hasattr(snake_case_ , """num_heads""" ) ) class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_=13 , snake_case_=64 , snake_case_=3 , snake_case_=[16, 48, 96] , snake_case_=[1, 3, 6] , snake_case_=[1, 2, 10] , snake_case_=[7, 3, 3] , snake_case_=[4, 2, 2] , snake_case_=[2, 1, 1] , snake_case_=[2, 2, 2] , snake_case_=[False, False, True] , snake_case_=[0.0, 0.0, 0.0] , snake_case_=0.0_2 , snake_case_=1e-1_2 , snake_case_=True , snake_case_=True , snake_case_=2 , ): '''simple docstring''' __UpperCAmelCase: int = parent __UpperCAmelCase: List[Any] = batch_size __UpperCAmelCase: Dict = image_size __UpperCAmelCase: List[Any] = patch_sizes __UpperCAmelCase: Any = patch_stride __UpperCAmelCase: List[str] = patch_padding __UpperCAmelCase: List[Any] = is_training __UpperCAmelCase: str = use_labels __UpperCAmelCase: Optional[int] = num_labels __UpperCAmelCase: Union[str, Any] = num_channels __UpperCAmelCase: int = embed_dim __UpperCAmelCase: int = num_heads __UpperCAmelCase: Any = stride_kv __UpperCAmelCase: Any = depth __UpperCAmelCase: Optional[Any] = cls_token __UpperCAmelCase: Optional[int] = attention_drop_rate __UpperCAmelCase: List[Any] = initializer_range __UpperCAmelCase: Any = layer_norm_eps def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase: Any = None if self.use_labels: __UpperCAmelCase: str = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase: Union[str, Any] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = CvtModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __UpperCAmelCase: Tuple = model(snake_case_ ) __UpperCAmelCase: Tuple = (self.image_size, self.image_size) __UpperCAmelCase, __UpperCAmelCase: Optional[int] = image_size[0], image_size[1] for i in range(len(self.depth ) ): __UpperCAmelCase: int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __UpperCAmelCase: List[str] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Dict = self.num_labels __UpperCAmelCase: str = CvtForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __UpperCAmelCase: Any = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = self.prepare_config_and_inputs() __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: Optional[Any] = config_and_inputs __UpperCAmelCase: List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (CvtModel, CvtForImageClassification) if is_torch_available() else () __lowerCAmelCase = ( {"""feature-extraction""": CvtModel, """image-classification""": CvtForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = CvtModelTester(self ) __UpperCAmelCase: int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def lowercase_ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ): '''simple docstring''' return @unittest.skip(reason="""Cvt does not output attentions""" ) def lowercase_ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def lowercase_ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase: Any = model_class(snake_case_ ) __UpperCAmelCase: Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase: Optional[int] = [*signature.parameters.keys()] __UpperCAmelCase: Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowercase_ ( self ): '''simple docstring''' def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ): __UpperCAmelCase: Tuple = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __UpperCAmelCase: Dict = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __UpperCAmelCase: int = outputs.hidden_states __UpperCAmelCase: List[Any] = len(self.model_tester.depth ) self.assertEqual(len(snake_case_ ) , snake_case_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __UpperCAmelCase, __UpperCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase: Tuple = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase: Tuple = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase_ ( self ): '''simple docstring''' pass @slow def lowercase_ ( self ): '''simple docstring''' for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase: str = CvtModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def UpperCamelCase__ ( ) -> Optional[int]: __UpperCAmelCase: Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case_ ) __UpperCAmelCase: Any = self.default_image_processor __UpperCAmelCase: int = prepare_img() __UpperCAmelCase: int = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): __UpperCAmelCase: Union[str, Any] = model(**snake_case_ ) # verify the logits __UpperCAmelCase: Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) __UpperCAmelCase: Any = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) )
523
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') SCREAMING_SNAKE_CASE_ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) SCREAMING_SNAKE_CASE_ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) SCREAMING_SNAKE_CASE_ = BeautifulSoup(res.text, 'html.parser') SCREAMING_SNAKE_CASE_ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"""https://google.com{link.get("href")}""")
523
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class A__ ( A ): """simple docstring""" _lowercase : Optional[Any] = '''openai-gpt''' _lowercase : Dict = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , A_ : int=4_0_4_7_8 , A_ : int=5_1_2 , A_ : Dict=7_6_8 , A_ : Union[str, Any]=1_2 , A_ : int=1_2 , A_ : Dict="gelu" , A_ : Optional[Any]=0.1 , A_ : Union[str, Any]=0.1 , A_ : Any=0.1 , A_ : List[Any]=1E-5 , A_ : Tuple=0.02 , A_ : List[Any]="cls_index" , A_ : Union[str, Any]=True , A_ : Union[str, Any]=None , A_ : Tuple=True , A_ : str=0.1 , **A_ : Optional[Any] , ): '''simple docstring''' _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : Tuple = n_positions _lowerCAmelCase : Optional[int] = n_embd _lowerCAmelCase : Dict = n_layer _lowerCAmelCase : Dict = n_head _lowerCAmelCase : List[Any] = afn _lowerCAmelCase : Optional[int] = resid_pdrop _lowerCAmelCase : Tuple = embd_pdrop _lowerCAmelCase : Tuple = attn_pdrop _lowerCAmelCase : Tuple = layer_norm_epsilon _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Optional[int] = summary_type _lowerCAmelCase : List[str] = summary_use_proj _lowerCAmelCase : Any = summary_activation _lowerCAmelCase : Dict = summary_first_dropout _lowerCAmelCase : Tuple = summary_proj_to_labels super().__init__(**A_ )
503
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __UpperCAmelCase = logging.get_logger(__name__) class A__ ( A ): """simple docstring""" _lowercase : List[Any] = ['''pixel_values'''] def __init__( self : Tuple , A_ : bool = True , A_ : Dict[str, int] = None , A_ : PILImageResampling = PILImageResampling.BILINEAR , A_ : bool = True , A_ : Union[int, float] = 1 / 2_5_5 , A_ : bool = True , A_ : Dict[str, int] = None , A_ : bool = True , **A_ : List[Any] , ): '''simple docstring''' super().__init__(**A_ ) _lowerCAmelCase : Optional[int] = size if size is not None else {"shortest_edge": 2_2_4} _lowerCAmelCase : Optional[int] = get_size_dict(A_ , default_to_square=A_ ) _lowerCAmelCase : Any = crop_size if crop_size is not None else {"height": 2_5_6, "width": 2_5_6} _lowerCAmelCase : str = get_size_dict(A_ , param_name="crop_size" ) _lowerCAmelCase : Any = do_resize _lowerCAmelCase : Optional[Any] = size _lowerCAmelCase : str = resample _lowerCAmelCase : Optional[Any] = do_rescale _lowerCAmelCase : Dict = rescale_factor _lowerCAmelCase : Any = do_center_crop _lowerCAmelCase : List[Any] = crop_size _lowerCAmelCase : List[Any] = do_flip_channel_order def __magic_name__ ( self : Tuple , A_ : np.ndarray , A_ : Dict[str, int] , A_ : PILImageResampling = PIL.Image.BILINEAR , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Dict , ): '''simple docstring''' _lowerCAmelCase : Any = get_size_dict(A_ , default_to_square=A_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowerCAmelCase : Union[str, Any] = get_resize_output_image_size(A_ , size=size["shortest_edge"] , default_to_square=A_ ) return resize(A_ , size=A_ , resample=A_ , data_format=A_ , **A_ ) def __magic_name__ ( self : Union[str, Any] , A_ : np.ndarray , A_ : Dict[str, int] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : List[str] , ): '''simple docstring''' _lowerCAmelCase : str = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(A_ , size=(size["height"], size["width"]) , data_format=A_ , **A_ ) def __magic_name__ ( self : Tuple , A_ : np.ndarray , A_ : Union[int, float] , A_ : Optional[Union[str, ChannelDimension]] = None , **A_ : Any , ): '''simple docstring''' return rescale(A_ , scale=A_ , data_format=A_ , **A_ ) def __magic_name__ ( self : Optional[Any] , A_ : np.ndarray , A_ : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' return flip_channel_order(A_ , data_format=A_ ) def __magic_name__ ( self : List[Any] , A_ : ImageInput , A_ : bool = None , A_ : Dict[str, int] = None , A_ : PILImageResampling = None , A_ : bool = None , A_ : float = None , A_ : bool = None , A_ : Dict[str, int] = None , A_ : bool = None , A_ : Optional[Union[str, TensorType]] = None , A_ : ChannelDimension = ChannelDimension.FIRST , **A_ : Tuple , ): '''simple docstring''' _lowerCAmelCase : str = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Dict = resample if resample is not None else self.resample _lowerCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : str = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _lowerCAmelCase : str = size if size is not None else self.size _lowerCAmelCase : str = get_size_dict(A_ , default_to_square=A_ ) _lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : List[str] = get_size_dict(A_ , param_name="crop_size" ) _lowerCAmelCase : Dict = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. _lowerCAmelCase : Optional[int] = [to_numpy_array(A_ ) for image in images] if do_resize: _lowerCAmelCase : Any = [self.resize(image=A_ , size=A_ , resample=A_ ) for image in images] if do_center_crop: _lowerCAmelCase : Tuple = [self.center_crop(image=A_ , size=A_ ) for image in images] if do_rescale: _lowerCAmelCase : Any = [self.rescale(image=A_ , scale=A_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _lowerCAmelCase : Dict = [self.flip_channel_order(image=A_ ) for image in images] _lowerCAmelCase : Optional[Any] = [to_channel_dimension_format(A_ , A_ ) for image in images] _lowerCAmelCase : Tuple = {"pixel_values": images} return BatchFeature(data=A_ , tensor_type=A_ ) def __magic_name__ ( self : List[Any] , A_ : Union[str, Any] , A_ : List[Tuple] = None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(A_ ): _lowerCAmelCase : Dict = target_sizes.numpy() _lowerCAmelCase : List[Any] = [] for idx in range(len(A_ ) ): _lowerCAmelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=A_ ) _lowerCAmelCase : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: _lowerCAmelCase : Tuple = logits.argmax(dim=1 ) _lowerCAmelCase : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
503
1
"""simple docstring""" import os def lowerCAmelCase_ () -> List[str]: with open(os.path.dirname(_SCREAMING_SNAKE_CASE ) + "/p022_names.txt" ) as file: a_ : Dict = str(file.readlines()[0] ) a_ : int = names.replace("\"" , "" ).split("," ) names.sort() a_ : List[Any] = 0 a_ : Any = 0 for i, name in enumerate(_SCREAMING_SNAKE_CASE ): for letter in name: name_score += ord(_SCREAMING_SNAKE_CASE ) - 64 total_score += (i + 1) * name_score a_ : List[str] = 0 return total_score if __name__ == "__main__": print(solution())
473
"""simple docstring""" def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :int = 1 , _SCREAMING_SNAKE_CASE :int = 1000 ) -> int: a_ : Tuple = 1 a_ : Optional[int] = 0 for divide_by_number in range(_SCREAMING_SNAKE_CASE , digit + 1 ): a_ : list[int] = [] a_ : Any = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_SCREAMING_SNAKE_CASE ): a_ : Optional[Any] = len(_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = divide_by_number else: has_been_divided.append(_SCREAMING_SNAKE_CASE ) a_ : Any = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
473
1
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = False , ): """simple docstring""" lowerCAmelCase__ : Optional[int] = cipher_alphabet or [chr(UpperCamelCase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCAmelCase__ : Any = { """a""": 0.0_8497, """b""": 0.0_1492, """c""": 0.0_2202, """d""": 0.0_4253, """e""": 0.1_1162, """f""": 0.0_2228, """g""": 0.0_2015, """h""": 0.0_6094, """i""": 0.0_7546, """j""": 0.0_0153, """k""": 0.0_1292, """l""": 0.0_4025, """m""": 0.0_2406, """n""": 0.0_6749, """o""": 0.0_7507, """p""": 0.0_1929, """q""": 0.0_0095, """r""": 0.0_7587, """s""": 0.0_6327, """t""": 0.0_9356, """u""": 0.0_2758, """v""": 0.0_0978, """w""": 0.0_2560, """x""": 0.0_0150, """y""": 0.0_1994, """z""": 0.0_0077, } else: # Custom frequencies dictionary lowerCAmelCase__ : Dict = frequencies_dict if not case_sensitive: lowerCAmelCase__ : Optional[Any] = ciphertext.lower() # Chi squared statistic values lowerCAmelCase__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(UpperCamelCase ) ): lowerCAmelCase__ : Any = """""" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCAmelCase__ : int = (alphabet_letters.index(letter.lower() ) - shift) % len( UpperCamelCase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCAmelCase__ : Tuple = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCAmelCase__ : List[Any] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCAmelCase__ : Any = decrypted_with_shift.lower().count(UpperCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCAmelCase__ : Tuple = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCAmelCase__ : Any = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCAmelCase__ : List[Any] = decrypted_with_shift.count(UpperCamelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCAmelCase__ : List[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCAmelCase__ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCAmelCase__ : str = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(UpperCamelCase ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCAmelCase__ : int = min( UpperCamelCase , key=UpperCamelCase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Any = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
160
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase_ ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : List[str] = self.dummy_uncond_unet lowerCAmelCase__ : Optional[Any] = PNDMScheduler() lowerCAmelCase__ : List[Any] = PNDMPipeline(unet=__UpperCAmelCase ,scheduler=__UpperCAmelCase ) pndm.to(__UpperCAmelCase ) pndm.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : int = pndm(generator=__UpperCAmelCase ,num_inference_steps=20 ,output_type="""numpy""" ).images lowerCAmelCase__ : List[str] = torch.manual_seed(0 ) lowerCAmelCase__ : Any = pndm(generator=__UpperCAmelCase ,num_inference_steps=20 ,output_type="""numpy""" ,return_dict=__UpperCAmelCase )[0] lowerCAmelCase__ : Dict = image[0, -3:, -3:, -1] lowerCAmelCase__ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Union[str, Any] = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Any = """google/ddpm-cifar10-32""" lowerCAmelCase__ : str = UNetaDModel.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = PNDMScheduler() lowerCAmelCase__ : Dict = PNDMPipeline(unet=__UpperCAmelCase ,scheduler=__UpperCAmelCase ) pndm.to(__UpperCAmelCase ) pndm.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase__ : int = pndm(generator=__UpperCAmelCase ,output_type="""numpy""" ).images lowerCAmelCase__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Optional[int] = np.array([0.1_5_6_4, 0.1_4_6_4_5, 0.1_4_0_6, 0.1_4_7_1_5, 0.1_2_4_2_5, 0.1_4_0_4_5, 0.1_3_1_1_5, 0.1_2_1_7_5, 0.1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
160
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class a ( __lowerCamelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __lowerCAmelCase : str = field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __lowerCAmelCase : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) __lowerCAmelCase : ClassVar[Features] = Features({"""summary""": Value("""string""" )} ) __lowerCAmelCase : str = "text" __lowerCAmelCase : str = "summary" @property def __lowerCamelCase ( self :Dict ): return {self.text_column: "text", self.summary_column: "summary"}
252
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class a : __lowerCAmelCase : int = XGLMConfig __lowerCAmelCase : Any = {} __lowerCAmelCase : str = """gelu""" def __init__( self :Optional[Any] ,__lowercase :int ,__lowercase :int=1_4 ,__lowercase :Optional[int]=7 ,__lowercase :Dict=True ,__lowercase :Union[str, Any]=True ,__lowercase :Tuple=True ,__lowercase :Tuple=9_9 ,__lowercase :Dict=3_2 ,__lowercase :Optional[Any]=2 ,__lowercase :Optional[int]=4 ,__lowercase :Dict=3_7 ,__lowercase :List[str]="gelu" ,__lowercase :Optional[Any]=0.1 ,__lowercase :List[str]=0.1 ,__lowercase :Optional[Any]=5_1_2 ,__lowercase :List[str]=0.02 ,): snake_case__ : Dict = parent snake_case__ : Dict = batch_size snake_case__ : str = seq_length snake_case__ : Optional[int] = is_training snake_case__ : List[Any] = use_input_mask snake_case__ : Tuple = use_labels snake_case__ : Optional[Any] = vocab_size snake_case__ : Optional[Any] = d_model snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : int = ffn_dim snake_case__ : Optional[int] = activation_function snake_case__ : int = activation_dropout snake_case__ : Any = attention_dropout snake_case__ : List[Any] = max_position_embeddings snake_case__ : Tuple = initializer_range snake_case__ : List[str] = None snake_case__ : Any = 0 snake_case__ : Dict = 2 snake_case__ : List[Any] = 1 def __lowerCamelCase ( self :Optional[int] ): return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def __lowerCamelCase ( self :Any ): snake_case__ : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) ,clip_value_min=0 ,clip_value_max=3 ) snake_case__ : Tuple = None if self.use_input_mask: snake_case__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : int = self.get_config() snake_case__ : int = floats_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, ) def __lowerCamelCase ( self :Dict ): return XGLMConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,num_layers=self.num_hidden_layers ,attention_heads=self.num_attention_heads ,ffn_dim=self.ffn_dim ,activation_function=self.activation_function ,activation_dropout=self.activation_dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,use_cache=__lowercase ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,return_dict=__lowercase ,) def __lowerCamelCase ( self :int ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : int = config_and_inputs snake_case__ : Tuple = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : List[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __lowerCAmelCase : List[str] = (TFXGLMForCausalLM,) if is_tf_available() else () __lowerCAmelCase : int = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) __lowerCAmelCase : str = False __lowerCAmelCase : Tuple = False __lowerCAmelCase : Optional[int] = False def __lowerCamelCase ( self :List[str] ): snake_case__ : int = TFXGLMModelTester(self ) snake_case__ : int = ConfigTester(self ,config_class=__lowercase ,n_embd=3_7 ) def __lowerCamelCase ( self :Union[str, Any] ): self.config_tester.run_common_tests() @slow def __lowerCamelCase ( self :Optional[Any] ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Any = TFXGLMModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def __lowerCamelCase ( self :Tuple ): super().test_resize_token_embeddings() @require_tf class a ( unittest.TestCase ): @slow def __lowerCamelCase ( self :List[str] ,__lowercase :List[Any]=True ): snake_case__ : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) snake_case__ : int = tf.convert_to_tensor([[2, 2_6_8, 9_8_6_5]] ,dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off snake_case__ : str = [2, 2_6_8, 9_8_6_5, 6_7, 1_1, 1_9_8_8, 5_7_2_5_2, 9_8_6_5, 5, 9_8_4, 6_7, 1_9_8_8, 2_1_3_8_3_8, 1_6_5_8, 5_3, 7_0_4_4_6, 3_3, 6_6_5_7, 2_7_8, 1_5_8_1] # fmt: on snake_case__ : Tuple = model.generate(__lowercase ,do_sample=__lowercase ,num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() ,__lowercase ) @slow def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Any = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) snake_case__ : Tuple = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) snake_case__ : int = tokenizer('''Today is a nice day and''' ,return_tensors='''tf''' ) snake_case__ : Optional[Any] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): snake_case__ : Optional[Any] = model.generate(__lowercase ,do_sample=__lowercase ,seed=[7, 0] ) snake_case__ : List[str] = tokenizer.decode(output_ids[0] ,skip_special_tokens=__lowercase ) snake_case__ : int = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__lowercase ,__lowercase ) @slow def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) snake_case__ : List[str] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) snake_case__ : List[str] = '''left''' # use different length sentences to test batching snake_case__ : List[str] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] snake_case__ : Optional[int] = tokenizer(__lowercase ,return_tensors='''tf''' ,padding=__lowercase ) snake_case__ : List[str] = inputs['''input_ids'''] snake_case__ : Union[str, Any] = model.generate(input_ids=__lowercase ,attention_mask=inputs['''attention_mask'''] ,max_new_tokens=1_2 ) snake_case__ : str = tokenizer(sentences[0] ,return_tensors='''tf''' ).input_ids snake_case__ : int = model.generate(input_ids=__lowercase ,max_new_tokens=1_2 ) snake_case__ : Optional[int] = tokenizer(sentences[1] ,return_tensors='''tf''' ).input_ids snake_case__ : Dict = model.generate(input_ids=__lowercase ,max_new_tokens=1_2 ) snake_case__ : List[str] = tokenizer.batch_decode(__lowercase ,skip_special_tokens=__lowercase ) snake_case__ : int = tokenizer.decode(output_non_padded[0] ,skip_special_tokens=__lowercase ) snake_case__ : Union[str, Any] = tokenizer.decode(output_padded[0] ,skip_special_tokens=__lowercase ) snake_case__ : List[Any] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__lowercase ,__lowercase ) self.assertListEqual(__lowercase ,[non_padded_sentence, padded_sentence] )
252
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __A : """simple docstring""" UpperCamelCase__ : int UpperCamelCase__ : int class __A : """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : list[list[Edge]] =[[] for _ in range(lowerCamelCase__ )] __UpperCamelCase : int =size def __getitem__( self , lowerCamelCase__ ): """simple docstring""" return iter(self._graph[vertex] ) @property def __lowercase ( self ): """simple docstring""" return self._size def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(lowerCamelCase__ , lowerCamelCase__ ) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] =deque([start_vertex] ) __UpperCamelCase : list[int | None] =[None] * self.size __UpperCamelCase : Optional[Any] =0 while queue: __UpperCamelCase : Tuple =queue.popleft() __UpperCamelCase : Optional[int] =distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __UpperCamelCase : List[str] =current_distance + edge.weight __UpperCamelCase : Any =distances[edge.destination_vertex] if ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and new_distance >= dest_vertex_distance ): continue __UpperCamelCase : str =new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
154
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=a ) class __A ( a ): """simple docstring""" UpperCamelCase__ : str =field(default="""image-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) UpperCamelCase__ : ClassVar[Features] =Features({"""image""": Image()} ) UpperCamelCase__ : ClassVar[Features] =Features({"""labels""": ClassLabel} ) UpperCamelCase__ : str ="image" UpperCamelCase__ : str ="labels" def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , lowerCamelCase__ ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) __UpperCamelCase : List[str] =copy.deepcopy(self ) __UpperCamelCase : Optional[Any] =self.label_schema.copy() __UpperCamelCase : List[Any] =features[self.label_column] __UpperCamelCase : Optional[int] =label_schema return task_template @property def __lowercase ( self ): """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
154
1
"""simple docstring""" from math import sqrt def lowercase ( __snake_case : int ): lowercase_ : Optional[int] = 0 for i in range(1 , int(sqrt(__snake_case ) + 1 ) ): if n % i == 0 and i != sqrt(__snake_case ): total += i + n // i elif i == sqrt(__snake_case ): total += i return total - n def lowercase ( __snake_case : int = 1_0_0_0_0 ): lowercase_ : Tuple = sum( i for i in range(1 , __snake_case ) if sum_of_divisors(sum_of_divisors(__snake_case ) ) == i and sum_of_divisors(__snake_case ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
231
"""simple docstring""" from __future__ import annotations def lowercase ( __snake_case : list[list[int]] ): lowercase_ : Optional[Any] = len(__snake_case ) # We need to create solution object to save path. lowercase_ : List[str] = [[0 for _ in range(__snake_case )] for _ in range(__snake_case )] lowercase_ : List[Any] = run_maze(__snake_case , 0 , 0 , __snake_case ) if solved: print('''\n'''.join(str(__snake_case ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def lowercase ( __snake_case : list[list[int]] , __snake_case : int , __snake_case : int , __snake_case : list[list[int]] ): lowercase_ : int = len(__snake_case ) # Final check point. if i == j == (size - 1): lowercase_ : List[Any] = 1 return True lowercase_ : Optional[int] = (not i < 0) and (not j < 0) # Check lower bounds lowercase_ : str = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. lowercase_ : Optional[int] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited lowercase_ : List[Any] = 1 # check for directions if ( run_maze(__snake_case , i + 1 , __snake_case , __snake_case ) or run_maze(__snake_case , __snake_case , j + 1 , __snake_case ) or run_maze(__snake_case , i - 1 , __snake_case , __snake_case ) or run_maze(__snake_case , __snake_case , j - 1 , __snake_case ) ): return True lowercase_ : List[Any] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
231
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : Optional[Any] = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
712
def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if index == number_of_items: return 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 ) if weights[index] <= max_weight: SCREAMING_SNAKE_CASE_ = values[index] + knapsack( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , max_weight - weights[index] , index + 1 ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
620
0
from functools import lru_cache def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> set: _A = 2 _A = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_snake_case ) if n > 1: factors.add(_snake_case ) return factors @lru_cache def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> int: return len(unique_prime_factors(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( _snake_case :list ) -> bool: return len(set(_snake_case ) ) in (0, 1) def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> list: _A = 2 while True: # Increment each value of a generated range _A = [base + i for i in range(_snake_case )] # Run elements through out unique_prime_factors function # Append our target number to the end. _A = [upf_len(_snake_case ) for x in group] checker.append(_snake_case ) # If all numbers in the list are equal, return the group variable. if equality(_snake_case ): return group # Increment our base variable by 1 base += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 4 ) -> int: _A = run(_snake_case ) return results[0] if len(_snake_case ) else None if __name__ == "__main__": print(solution())
2
'''simple docstring''' import re from filelock import FileLock try: import nltk __lowerCAmelCase = True except (ImportError, ModuleNotFoundError): __lowerCAmelCase = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def __lowerCamelCase ( lowerCAmelCase_ ) -> str: re.sub('<n>' , '' , lowerCAmelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCAmelCase_ ) )
358
0
from __future__ import annotations import math def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> list: '''simple docstring''' if len(_lowerCAmelCase ) != 2 or len(a[0] ) != 2 or len(_lowerCAmelCase ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) __snake_case = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_lowerCAmelCase ) ) ] def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(_lowerCAmelCase ) ) ] def _lowerCAmelCase ( _lowerCAmelCase ) -> tuple[list, list, list, list]: '''simple docstring''' if len(_lowerCAmelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) __snake_case = len(_lowerCAmelCase ) __snake_case = matrix_length // 2 __snake_case = [[a[i][j] for j in range(_lowerCAmelCase , _lowerCAmelCase )] for i in range(_lowerCAmelCase )] __snake_case = [ [a[i][j] for j in range(_lowerCAmelCase , _lowerCAmelCase )] for i in range(_lowerCAmelCase , _lowerCAmelCase ) ] __snake_case = [[a[i][j] for j in range(_lowerCAmelCase )] for i in range(_lowerCAmelCase )] __snake_case = [[a[i][j] for j in range(_lowerCAmelCase )] for i in range(_lowerCAmelCase , _lowerCAmelCase )] return top_left, top_right, bot_left, bot_right def _lowerCAmelCase ( _lowerCAmelCase ) -> tuple[int, int]: '''simple docstring''' return len(_lowerCAmelCase ), len(matrix[0] ) def _lowerCAmelCase ( _lowerCAmelCase ) -> None: '''simple docstring''' print("\n".join(str(_lowerCAmelCase ) for line in matrix ) ) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> list: '''simple docstring''' if matrix_dimensions(_lowerCAmelCase ) == (2, 2): return default_matrix_multiplication(_lowerCAmelCase , _lowerCAmelCase ) __snake_case , __snake_case , __snake_case , __snake_case = split_matrix(_lowerCAmelCase ) __snake_case , __snake_case , __snake_case , __snake_case = split_matrix(_lowerCAmelCase ) __snake_case = actual_strassen(_lowerCAmelCase , matrix_subtraction(_lowerCAmelCase , _lowerCAmelCase ) ) __snake_case = actual_strassen(matrix_addition(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) __snake_case = actual_strassen(matrix_addition(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) __snake_case = actual_strassen(_lowerCAmelCase , matrix_subtraction(_lowerCAmelCase , _lowerCAmelCase ) ) __snake_case = actual_strassen(matrix_addition(_lowerCAmelCase , _lowerCAmelCase ) , matrix_addition(_lowerCAmelCase , _lowerCAmelCase ) ) __snake_case = actual_strassen(matrix_subtraction(_lowerCAmelCase , _lowerCAmelCase ) , matrix_addition(_lowerCAmelCase , _lowerCAmelCase ) ) __snake_case = actual_strassen(matrix_subtraction(_lowerCAmelCase , _lowerCAmelCase ) , matrix_addition(_lowerCAmelCase , _lowerCAmelCase ) ) __snake_case = matrix_addition(matrix_subtraction(matrix_addition(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) , _lowerCAmelCase ) __snake_case = matrix_addition(_lowerCAmelCase , _lowerCAmelCase ) __snake_case = matrix_addition(_lowerCAmelCase , _lowerCAmelCase ) __snake_case = matrix_subtraction(matrix_subtraction(matrix_addition(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ) , _lowerCAmelCase ) # construct the new matrix from our 4 quadrants __snake_case = [] for i in range(len(_lowerCAmelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(_lowerCAmelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> list: '''simple docstring''' if matrix_dimensions(_lowerCAmelCase )[1] != matrix_dimensions(_lowerCAmelCase )[0]: __snake_case = ( "Unable to multiply these matrices, please check the dimensions.\n" F'''Matrix A: {matrixa}\n''' F'''Matrix B: {matrixa}''' ) raise Exception(_lowerCAmelCase ) __snake_case = matrix_dimensions(_lowerCAmelCase ) __snake_case = matrix_dimensions(_lowerCAmelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __snake_case = max(*_lowerCAmelCase , *_lowerCAmelCase ) __snake_case = int(math.pow(2 , math.ceil(math.loga(_lowerCAmelCase ) ) ) ) __snake_case = matrixa __snake_case = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , _lowerCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _lowerCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , _lowerCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __snake_case = actual_strassen(_lowerCAmelCase , _lowerCAmelCase ) # Removing the additional zeros for i in range(0 , _lowerCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , _lowerCAmelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A : List[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A : List[Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
473
from sklearn.metrics import mean_squared_error import datasets A : List[Any] = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' A : Optional[int] = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n' A : str = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase( datasets.Metric ): def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : int="uniform_average" , SCREAMING_SNAKE_CASE : Optional[int]=True ) -> Tuple: '''simple docstring''' __snake_case = mean_squared_error( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , sample_weight=SCREAMING_SNAKE_CASE , multioutput=SCREAMING_SNAKE_CASE , squared=SCREAMING_SNAKE_CASE ) return {"mse": mse}
473
1
import os import sys __A : Optional[int] = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __A : str = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> List[str]: '''simple docstring''' return AutoConfig.from_pretrained(*_UpperCAmelCase, **_UpperCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Optional[int]: '''simple docstring''' return AutoTokenizer.from_pretrained(*_UpperCAmelCase, **_UpperCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Tuple: '''simple docstring''' return AutoModel.from_pretrained(*_UpperCAmelCase, **_UpperCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Any: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*_UpperCAmelCase, **_UpperCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*_UpperCAmelCase, **_UpperCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Any: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*_UpperCAmelCase, **_UpperCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def SCREAMING_SNAKE_CASE__ ( *_UpperCAmelCase, **_UpperCAmelCase ) -> Any: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*_UpperCAmelCase, **_UpperCAmelCase )
343
class __A : def __init__( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[Any] = name lowerCAmelCase : int = val def __str__( self : str ): return f"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : Union[str, Any] , UpperCAmelCase_ : Dict ): return self.val < other.val class __A : def __init__( self : Union[str, Any] , UpperCAmelCase_ : str ): lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = {} lowerCAmelCase : Optional[Any] = self.build_heap(UpperCAmelCase_ ) def __getitem__( self : Union[str, Any] , UpperCAmelCase_ : str ): return self.get_value(UpperCAmelCase_ ) def lowercase__ ( self : int , UpperCAmelCase_ : Any ): return (idx - 1) // 2 def lowercase__ ( self : int , UpperCAmelCase_ : str ): return idx * 2 + 1 def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Any ): return idx * 2 + 2 def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[Any] ): return self.heap_dict[key] def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = len(UpperCAmelCase_ ) - 1 lowerCAmelCase : Union[str, Any] = self.get_parent_idx(UpperCAmelCase_ ) for idx, i in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Any = idx lowerCAmelCase : Union[str, Any] = i.val for i in range(UpperCAmelCase_ , -1 , -1 ): self.sift_down(UpperCAmelCase_ , UpperCAmelCase_ ) return array def lowercase__ ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): while True: lowerCAmelCase : Optional[int] = self.get_left_child_idx(UpperCAmelCase_ ) # noqa: E741 lowerCAmelCase : Union[str, Any] = self.get_right_child_idx(UpperCAmelCase_ ) lowerCAmelCase : Any = idx if l < len(UpperCAmelCase_ ) and array[l] < array[idx]: lowerCAmelCase : Tuple = l if r < len(UpperCAmelCase_ ) and array[r] < array[smallest]: lowerCAmelCase : Any = r if smallest != idx: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = array[smallest], array[idx] ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : List[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase : List[str] = smallest else: break def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = self.get_parent_idx(UpperCAmelCase_ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase , lowerCAmelCase : Optional[int] = self.heap[idx], self.heap[p] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase : Dict = p lowerCAmelCase : Optional[Any] = self.get_parent_idx(UpperCAmelCase_ ) def lowercase__ ( self : str ): return self.heap[0] def lowercase__ ( self : int ): lowerCAmelCase , lowerCAmelCase : str = self.heap[-1], self.heap[0] lowerCAmelCase , lowerCAmelCase : Dict = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase : Any = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowercase__ ( self : Any , UpperCAmelCase_ : Any ): self.heap.append(UpperCAmelCase_ ) lowerCAmelCase : str = len(self.heap ) - 1 lowerCAmelCase : List[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def lowercase__ ( self : Optional[int] ): return len(self.heap ) == 0 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase : Optional[int] = new_value lowerCAmelCase : str = new_value self.sift_up(self.idx_of_element[node] ) __A : Tuple = Node('''R''', -1) __A : int = Node('''B''', 6) __A : int = Node('''A''', 3) __A : Optional[Any] = Node('''X''', 1) __A : List[str] = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __A : Optional[int] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
343
1
'''simple docstring''' def lowerCAmelCase_ ( a : Union[str, Any] ): a__ = [] a__ = [] a__ = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator a__ = len(a ) if (len(a ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(a ) , 'Postfix'.center(a ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(a ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(a ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(a ) == 0: stack.append(a ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(a ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(a ) # push x to stack print( x.center(8 ) , (''.join(a )).ljust(a ) , (''.join(a )).ljust(a ) , sep=' | ' , ) # Output in tabular format while len(a ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(a )).ljust(a ) , (''.join(a )).ljust(a ) , sep=' | ' , ) # Output in tabular format return "".join(a ) # return Postfix as str def lowerCAmelCase_ ( a : int ): a__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(a ) ): if infix[i] == "(": a__ = ')' # change "(" to ")" elif infix[i] == ")": a__ = '(' # change ")" to "(" return (infix_2_postfix(''.join(a ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __A : str = input('\nEnter an Infix Equation = ') # Input an Infix equation __A : Any = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
717
'''simple docstring''' from __future__ import annotations __A : Optional[int] = list[list[int]] # assigning initial values to the grid __A : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __A : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCAmelCase_ ( a : Matrix , a : int , a : int , a : int ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCAmelCase_ ( a : Matrix ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCAmelCase_ ( a : Matrix ): if location := find_empty_location(a ): a__ , a__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): a__ = digit if sudoku(a ) is not None: return grid a__ = 0 return None def lowerCAmelCase_ ( a : Matrix ): for row in grid: for cell in row: print(a , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') __A : Optional[int] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
126
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging _UpperCamelCase = logging.get_logger(__name__) def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : Optional[Any] ) -> Tuple: try: with open(lowercase , "rb" ) as flax_state_f: __snake_case : Any = from_bytes(lowercase , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowercase ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(lowercase , lowercase ) def lowerCAmelCase__( lowercase : Any , lowercase : int ) -> List[Any]: try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights __snake_case : Any = flatten_dict(jax.tree_util.tree_map(lambda lowercase : x.dtype == jnp.bfloataa , lowercase ) ).values() if any(lowercase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) __snake_case : List[str] = jax.tree_util.tree_map( lambda lowercase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowercase ) __snake_case : List[str] = "" __snake_case : int = flatten_dict(lowercase , sep="." ) __snake_case : str = pt_model.state_dict() # keep track of unexpected & missing keys __snake_case : List[Any] = [] __snake_case : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __snake_case : Any = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __snake_case : List[Any] = flax_key_tuple_array[:-1] + ["weight"] __snake_case : Union[str, Any] = jnp.transpose(lowercase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __snake_case : int = flax_key_tuple_array[:-1] + ["weight"] __snake_case : List[Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __snake_case : Optional[int] = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowercase ): __snake_case : Dict = ( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) __snake_case : str = ".".join(lowercase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict __snake_case : Tuple = np.asarray(lowercase ) if not isinstance(lowercase , np.ndarray ) else flax_tensor __snake_case : List[Any] = torch.from_numpy(lowercase ) # remove from missing keys missing_keys.remove(lowercase ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowercase ) pt_model.load_state_dict(lowercase ) # re-transform missing_keys to list __snake_case : Optional[Any] = list(lowercase ) if len(lowercase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(lowercase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" " use it for predictions and inference." ) return pt_model
243
'''simple docstring''' import requests def snake_case_ (UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' _a = {'''Content-Type''': '''application/json'''} _a = requests.post(UpperCamelCase , json={'''text''': message_body} , headers=UpperCamelCase ) if response.status_code != 200: _a = ( '''Request to slack returned an error ''' f'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(UpperCamelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
22
0
def UpperCamelCase (lowercase_: Optional[int] , lowercase_: Any ) -> Tuple: A__ : Any = len(_lowerCAmelCase ) print("""The following activities are selected:""" ) # The first activity is always selected A__ : Optional[Any] = 0 print(_lowerCAmelCase , end=""",""" ) # Consider rest of the activities for j in range(_lowerCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_lowerCAmelCase , end=""",""" ) A__ : int = j if __name__ == "__main__": import doctest doctest.testmod() A_ : Optional[int] = [1, 3, 0, 5, 8, 5] A_ : Any = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
700
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore A_ : Dict = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" A_ : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(f'''{len(upper_files)} files contain uppercase characters:''') print('\n'.join(upper_files) + '\n') A_ : Tuple = [file for file in filepaths if ' ' in file] if space_files: print(f'''{len(space_files)} files contain space characters:''') print('\n'.join(space_files) + '\n') A_ : Any = [file for file in filepaths if '-' in file] if hyphen_files: print(f'''{len(hyphen_files)} files contain hyphen characters:''') print('\n'.join(hyphen_files) + '\n') A_ : List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(f'''{len(nodir_files)} files are not in a directory:''') print('\n'.join(nodir_files) + '\n') A_ : Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
64
0
snake_case = {str(digit): digit**5 for digit in range(1_0)} def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(snake_case__ ) ) def SCREAMING_SNAKE_CASE__ ( ) -> int: return sum( number for number in range(1000 , 100_0000 ) if number == digits_fifth_powers_sum(snake_case__ ) ) if __name__ == "__main__": print(solution())
67
def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Union[str, Any]: _lowercase = len(snake_case__ ) _lowercase = sum(snake_case__ ) _lowercase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _lowercase = True for i in range(1 , s + 1 ): _lowercase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _lowercase = dp[i][j - 1] if arr[i - 1] <= j: _lowercase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _lowercase = s - 2 * j break return diff
67
1
from collections.abc import Sequence from queue import Queue class __SCREAMING_SNAKE_CASE: def __init__( self: Optional[int] , UpperCamelCase: Optional[int] , UpperCamelCase: Tuple , UpperCamelCase: Optional[Any] , UpperCamelCase: List[Any]=None , UpperCamelCase: List[str]=None ) -> Dict: snake_case__ = start snake_case__ = end snake_case__ = val snake_case__ = (start + end) // 2 snake_case__ = left snake_case__ = right def __repr__( self: str ) -> List[Any]: return F'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class __SCREAMING_SNAKE_CASE: def __init__( self: Tuple , UpperCamelCase: int , UpperCamelCase: Optional[int] ) -> Dict: snake_case__ = collection snake_case__ = function if self.collection: snake_case__ = self._build_tree(0 , len(UpperCamelCase ) - 1 ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Tuple , UpperCamelCase: Dict ) -> Union[str, Any]: self._update_tree(self.root , UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: str , UpperCamelCase: int , UpperCamelCase: List[Any] ) -> List[Any]: return self._query_range(self.root , UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: Any , UpperCamelCase: List[str] ) -> str: if start == end: return SegmentTreeNode(UpperCamelCase , UpperCamelCase , self.collection[start] ) snake_case__ = (start + end) // 2 snake_case__ = self._build_tree(UpperCamelCase , UpperCamelCase ) snake_case__ = self._build_tree(mid + 1 , UpperCamelCase ) return SegmentTreeNode(UpperCamelCase , UpperCamelCase , self.fn(left.val , right.val ) , UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: Optional[int] , UpperCamelCase: List[str] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[Any] ) -> List[Any]: if node.start == i and node.end == i: snake_case__ = val return if i <= node.mid: self._update_tree(node.left , UpperCamelCase , UpperCamelCase ) else: self._update_tree(node.right , UpperCamelCase , UpperCamelCase ) snake_case__ = self.fn(node.left.val , node.right.val ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: int , UpperCamelCase: Any , UpperCamelCase: Optional[Any] ) -> Optional[Any]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , UpperCamelCase , UpperCamelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , UpperCamelCase , node.mid ) , self._query_range(node.right , node.mid + 1 , UpperCamelCase ) , ) else: # range in right child tree return self._query_range(node.right , UpperCamelCase , UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] ) -> Optional[int]: if self.root is not None: snake_case__ = Queue() queue.put(self.root ) while not queue.empty(): snake_case__ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) __UpperCamelCase : str = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
719
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : str = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) __UpperCamelCase : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def a_ ( _A ) -> Optional[int]: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: snake_case__ = model_type_to_module_name(_A ) snake_case__ = importlib.import_module(f'''.{module_name}''' , 'transformers.models' ) try: return getattr(_A , _A ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_A , '__name__' , _A ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. snake_case__ = importlib.import_module('transformers' ) if hasattr(_A , _A ): return getattr(_A , _A ) return None def a_ ( _A , _A = None , _A = False , _A = False , _A = None , _A = None , _A = None , _A = False , **_A , ) -> Optional[Any]: """simple docstring""" snake_case__ = get_file_from_repo( _A , _A , cache_dir=_A , force_download=_A , resume_download=_A , proxies=_A , use_auth_token=_A , revision=_A , local_files_only=_A , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(_A , encoding='utf-8' ) as reader: return json.load(_A ) class __SCREAMING_SNAKE_CASE: def __init__( self: Optional[int] ) -> Union[str, Any]: raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase ) def lowerCAmelCase_ ( cls: int , UpperCamelCase: int , **UpperCamelCase: str ) -> Optional[Any]: snake_case__ = kwargs.pop('config' , UpperCamelCase ) snake_case__ = kwargs.pop('trust_remote_code' , UpperCamelCase ) snake_case__ = True snake_case__ , snake_case__ = ImageProcessingMixin.get_image_processor_dict(UpperCamelCase , **UpperCamelCase ) snake_case__ = config_dict.get('image_processor_type' , UpperCamelCase ) snake_case__ = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): snake_case__ = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: snake_case__ = config_dict.pop('feature_extractor_type' , UpperCamelCase ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) snake_case__ = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): snake_case__ = config_dict['auto_map']['AutoFeatureExtractor'] snake_case__ = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCamelCase , UpperCamelCase ): snake_case__ = AutoConfig.from_pretrained(UpperCamelCase , **UpperCamelCase ) # It could be in `config.image_processor_type`` snake_case__ = getattr(UpperCamelCase , 'image_processor_type' , UpperCamelCase ) if hasattr(UpperCamelCase , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: snake_case__ = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: snake_case__ = image_processor_class_from_name(UpperCamelCase ) snake_case__ = image_processor_auto_map is not None snake_case__ = image_processor_class is not None or type(UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING snake_case__ = resolve_trust_remote_code( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if has_remote_code and trust_remote_code: snake_case__ = get_class_from_dynamic_module( UpperCamelCase , UpperCamelCase , **UpperCamelCase ) snake_case__ = kwargs.pop('code_revision' , UpperCamelCase ) if os.path.isdir(UpperCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCamelCase , **UpperCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCamelCase , **UpperCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCamelCase ) in IMAGE_PROCESSOR_MAPPING: snake_case__ = IMAGE_PROCESSOR_MAPPING[type(UpperCamelCase )] return image_processor_class.from_dict(UpperCamelCase , **UpperCamelCase ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCAmelCase_ ( UpperCamelCase: Optional[Any] , UpperCamelCase: int ) -> Optional[Any]: IMAGE_PROCESSOR_MAPPING.register(UpperCamelCase , UpperCamelCase )
372
0
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __magic_name__ : Tuple = logging.getLogger(__name__) @dataclass class lowercase__ : """simple docstring""" __lowerCAmelCase : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __lowerCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCAmelCase : Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __lowerCAmelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether tp freeze the encoder."""} ) __lowerCAmelCase : bool = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class lowercase__ : """simple docstring""" __lowerCAmelCase : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) __lowerCAmelCase : Optional[str] = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) __lowerCAmelCase : Optional[int] = field( default=1024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __lowerCAmelCase : Optional[int] = field( default=128 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __lowerCAmelCase : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) __lowerCAmelCase : Optional[int] = field( default=142 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __lowerCAmelCase : Optional[int] = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) __lowerCAmelCase : Optional[int] = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) __lowerCAmelCase : Optional[int] = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) __lowerCAmelCase : Optional[str] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Source language id for translation."""} ) __lowerCAmelCase : Optional[str] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Target language id for translation."""} ) __lowerCAmelCase : Optional[int] = field(default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """# num_beams to use for evaluation."""} ) __lowerCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , f"""{split}_results.json""" ) ) def UpperCamelCase (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase : Tuple = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): assert hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase : Dict = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase : Optional[Any] = SeqaSeqDataset # Get datasets UpperCamelCase : List[Any] = ( dataset_class( SCREAMING_SNAKE_CASE , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) UpperCamelCase : Optional[int] = ( dataset_class( SCREAMING_SNAKE_CASE , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase : Optional[Any] = ( dataset_class( SCREAMING_SNAKE_CASE , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase : Tuple = ( build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate else None ) UpperCamelCase : Optional[int] = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , data_args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , ) UpperCamelCase : Optional[Any] = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) UpperCamelCase : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase : Dict = train_result.metrics UpperCamelCase : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase : List[str] = trainer.evaluate(metric_key_prefix="""val""" ) UpperCamelCase : int = data_args.n_val UpperCamelCase : Any = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE ) if training_args.do_predict: logger.info("""*** Predict ***""" ) UpperCamelCase : List[Any] = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE , metric_key_prefix="""test""" ) UpperCamelCase : Union[str, Any] = test_output.metrics UpperCamelCase : List[str] = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase : Dict = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , SCREAMING_SNAKE_CASE , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE ) if training_args.predict_with_generate: UpperCamelCase : str = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = lmap(str.strip , SCREAMING_SNAKE_CASE ) write_txt_file(SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def UpperCamelCase (SCREAMING_SNAKE_CASE ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
102
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase_ ( self : Any ): __A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A ,"tf_padding" ) ) self.parent.assertTrue(hasattr(A ,"depth_multiplier" ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,A : int ,A : List[Any]=13 ,A : int=3 ,A : Optional[Any]=32 ,A : Union[str, Any]=0.25 ,A : Tuple=8 ,A : Optional[int]=True ,A : Union[str, Any]=10_24 ,A : Any=32 ,A : Optional[int]="relu6" ,A : int=0.1 ,A : Optional[Any]=0.02 ,A : Optional[Any]=True ,A : List[str]=True ,A : str=10 ,A : str=None ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = depth_multiplier __A = min_depth __A = tf_padding __A = int(last_hidden_size * depth_multiplier ) __A = output_stride __A = hidden_act __A = classifier_dropout_prob __A = use_labels __A = is_training __A = num_labels __A = initializer_range __A = scope def UpperCamelCase_ ( self : Optional[int] ): __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.num_labels ) __A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) __A = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase_ ( self : Any ): return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,min_depth=self.min_depth ,tf_padding=self.tf_padding ,hidden_act=self.hidden_act ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def UpperCamelCase_ ( self : Optional[int] ,A : str ,A : Tuple ,A : Optional[int] ,A : List[str] ): __A = MobileNetVaModel(config=A ) model.to(A ) model.eval() __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def UpperCamelCase_ ( self : List[Any] ,A : Union[str, Any] ,A : List[Any] ,A : int ,A : Union[str, Any] ): __A = self.num_labels __A = MobileNetVaForImageClassification(A ) model.to(A ) model.eval() __A = model(A ,labels=A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () snake_case_ = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : Any ): __A = MobileNetVaModelTester(self ) __A = MobileNetVaConfigTester(self ,config_class=A ,has_text_modality=A ) def UpperCamelCase_ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def UpperCamelCase_ ( self : Any ): pass def UpperCamelCase_ ( self : Optional[int] ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(A ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["pixel_values"] self.assertListEqual(arg_names[:1] ,A ) def UpperCamelCase_ ( self : List[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[int] ): def check_hidden_states_output(A : List[Any] ,A : List[Any] ,A : Optional[int] ): __A = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __A = model(**self._prepare_for_class(A ,A ) ) __A = outputs.hidden_states __A = 26 self.assertEqual(len(A ) ,A ) __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = True check_hidden_states_output(A ,A ,A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A = True check_hidden_states_output(A ,A ,A ) def UpperCamelCase_ ( self : Tuple ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MobileNetVaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> str: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : List[str] ): return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).to(A ) # forward pass with torch.no_grad(): __A = model(**A ) # verify the logits __A = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape ,A ) __A = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A ,atol=1E-4 ) )
55
0
from manim import * class a_ ( lowerCamelCase_ ): """simple docstring""" def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =Rectangle(height=0.5 ,width=0.5 ) SCREAMING_SNAKE_CASE =Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE =Rectangle(height=0.25 ,width=0.25 ) SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE =VGroup(*snake_case ).arrange(snake_case ,buff=0 ) SCREAMING_SNAKE_CASE =VGroup(*snake_case ).arrange(snake_case ,buff=0 ) SCREAMING_SNAKE_CASE =VGroup(snake_case ,snake_case ).arrange(snake_case ,buff=0 ) SCREAMING_SNAKE_CASE =Text('CPU' ,font_size=24 ) SCREAMING_SNAKE_CASE =Group(snake_case ,snake_case ).arrange(snake_case ,buff=0.5 ,aligned_edge=snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case ) SCREAMING_SNAKE_CASE =[mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE =VGroup(*snake_case ).arrange(snake_case ,buff=0 ) SCREAMING_SNAKE_CASE =Text('GPU' ,font_size=24 ) SCREAMING_SNAKE_CASE =Group(snake_case ,snake_case ).arrange(snake_case ,buff=0.5 ,aligned_edge=snake_case ) gpu.move_to([-1, -1, 0] ) self.add(snake_case ) SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE =VGroup(*snake_case ).arrange(snake_case ,buff=0 ) SCREAMING_SNAKE_CASE =Text('Model' ,font_size=24 ) SCREAMING_SNAKE_CASE =Group(snake_case ,snake_case ).arrange(snake_case ,buff=0.5 ,aligned_edge=snake_case ) model.move_to([3, -1.0, 0] ) self.add(snake_case ) SCREAMING_SNAKE_CASE =[] SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(snake_case ): SCREAMING_SNAKE_CASE =fill.copy().set_fill(snake_case ,opacity=0.8 ) target.move_to(snake_case ) model_arr.append(snake_case ) SCREAMING_SNAKE_CASE =Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(snake_case ) self.add(*snake_case ,*snake_case ) SCREAMING_SNAKE_CASE =[meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE =[meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE =VGroup(*snake_case ).arrange(snake_case ,buff=0 ) SCREAMING_SNAKE_CASE =VGroup(*snake_case ).arrange(snake_case ,buff=0 ) SCREAMING_SNAKE_CASE =VGroup(snake_case ,snake_case ).arrange(snake_case ,buff=0 ) SCREAMING_SNAKE_CASE =Text('Disk' ,font_size=24 ) SCREAMING_SNAKE_CASE =Group(snake_case ,snake_case ).arrange(snake_case ,buff=0.5 ,aligned_edge=snake_case ) disk.move_to([-4, -1.25, 0] ) self.add(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE =MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' ,font_size=18 ,) blue_text.next_to(snake_case ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(snake_case ) SCREAMING_SNAKE_CASE =MarkupText( f'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case ) ) SCREAMING_SNAKE_CASE =Square(0.3 ) input.set_fill(snake_case ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,snake_case ,buff=0.5 ) self.play(Write(snake_case ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=snake_case ,buff=0.02 ) self.play(MoveToTarget(snake_case ) ) self.play(FadeOut(snake_case ) ) SCREAMING_SNAKE_CASE =Arrow(start=snake_case ,end=snake_case ,color=snake_case ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,snake_case ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) SCREAMING_SNAKE_CASE =MarkupText( f'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case ,run_time=3 ) ) SCREAMING_SNAKE_CASE ={'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(snake_case ) ,Circumscribe(model_arr[0] ,color=snake_case ,**snake_case ) ,Circumscribe(model_cpu_arr[0] ,color=snake_case ,**snake_case ) ,Circumscribe(gpu_rect[0] ,color=snake_case ,**snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) SCREAMING_SNAKE_CASE =a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,snake_case ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) SCREAMING_SNAKE_CASE =AnimationGroup( FadeOut(snake_case ,run_time=0.5 ) ,MoveToTarget(snake_case ,run_time=0.5 ) ,FadeIn(snake_case ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(snake_case ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: SCREAMING_SNAKE_CASE =0.7 self.play( Circumscribe(model_arr[i] ,**snake_case ) ,Circumscribe(cpu_left_col_base[i] ,**snake_case ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=snake_case ,**snake_case ) ,Circumscribe(gpu_rect[0] ,color=snake_case ,**snake_case ) ,Circumscribe(model_arr[i + 1] ,color=snake_case ,**snake_case ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=snake_case ,**snake_case ) ,Circumscribe(cpu_left_col_base[-1] ,color=snake_case ,**snake_case ) ,Circumscribe(gpu_rect[0] ,color=snake_case ,**snake_case ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) SCREAMING_SNAKE_CASE =a_c SCREAMING_SNAKE_CASE =a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(snake_case ) ,FadeOut(snake_case ,run_time=0.5 ) ,) SCREAMING_SNAKE_CASE =MarkupText(f'Inference on a model too large for GPU memory\nis successfully completed.' ,font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case ,run_time=3 ) ,MoveToTarget(snake_case ) ) self.wait()
252
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class a_ : """simple docstring""" def __init__( self : Tuple ,snake_case : List[str] ,snake_case : List[str]=13 ,snake_case : Optional[Any]=7 ,snake_case : Union[str, Any]=False ,snake_case : str=True ,snake_case : Tuple=False ,snake_case : List[Any]=True ,snake_case : Tuple=33 ,snake_case : Dict=32 ,snake_case : str=5 ,snake_case : str=4 ,snake_case : int=37 ,snake_case : int="gelu" ,snake_case : int=0.1 ,snake_case : Dict=0.1 ,snake_case : int=512 ,snake_case : Optional[Any]=16 ,snake_case : List[Any]=2 ,snake_case : Tuple=0.02 ,snake_case : int=3 ,snake_case : Tuple=4 ,snake_case : List[str]=None ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =seq_length SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_input_mask SCREAMING_SNAKE_CASE =use_token_type_ids SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =hidden_size SCREAMING_SNAKE_CASE =num_hidden_layers SCREAMING_SNAKE_CASE =num_attention_heads SCREAMING_SNAKE_CASE =intermediate_size SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =hidden_dropout_prob SCREAMING_SNAKE_CASE =attention_probs_dropout_prob SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =type_vocab_size SCREAMING_SNAKE_CASE =type_sequence_label_size SCREAMING_SNAKE_CASE =initializer_range SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =num_choices SCREAMING_SNAKE_CASE =scope def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE =None if self.use_input_mask: SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self : str ): return EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _lowerCAmelCase ( self : Dict ,snake_case : List[str] ,snake_case : Union[str, Any] ,snake_case : Tuple ,snake_case : List[Any] ,snake_case : List[str] ,snake_case : str ): SCREAMING_SNAKE_CASE =EsmModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) SCREAMING_SNAKE_CASE =model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _lowerCAmelCase ( self : List[str] ,snake_case : int ,snake_case : str ,snake_case : Tuple ,snake_case : List[str] ,snake_case : Any ,snake_case : Any ): SCREAMING_SNAKE_CASE =EsmForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self : Tuple ,snake_case : str ,snake_case : str ,snake_case : Optional[Any] ,snake_case : Any ,snake_case : List[Any] ,snake_case : Dict ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =EsmForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE =model(snake_case ,attention_mask=snake_case ,labels=snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) =config_and_inputs SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = False __UpperCAmelCase = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase = () __UpperCAmelCase = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = True def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =EsmModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=snake_case ,hidden_size=37 ) def _lowerCAmelCase ( self : str ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE =type self.model_tester.create_and_check_model(*snake_case ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def _lowerCAmelCase ( self : Any ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =EsmModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def _lowerCAmelCase ( self : List[str] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE =EsmEmbeddings(config=snake_case ) SCREAMING_SNAKE_CASE =torch.as_tensor([[12, 31, 13, model.padding_idx]] ) SCREAMING_SNAKE_CASE =torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) SCREAMING_SNAKE_CASE =create_position_ids_from_input_ids(snake_case ,model.padding_idx ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(snake_case ,snake_case ) ) ) def _lowerCAmelCase ( self : int ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE =EsmEmbeddings(config=snake_case ) SCREAMING_SNAKE_CASE =torch.empty(2 ,4 ,30 ) SCREAMING_SNAKE_CASE =[ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] SCREAMING_SNAKE_CASE =torch.as_tensor([expected_single_positions, expected_single_positions] ) SCREAMING_SNAKE_CASE =embeddings.create_position_ids_from_inputs_embeds(snake_case ) self.assertEqual(position_ids.shape ,expected_positions.shape ) self.assertTrue(torch.all(torch.eq(snake_case ,snake_case ) ) ) @unittest.skip('Esm does not support embedding resizing' ) def _lowerCAmelCase ( self : List[str] ): pass @unittest.skip('Esm does not support embedding resizing' ) def _lowerCAmelCase ( self : Dict ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _lowerCAmelCase ( self : Optional[int] ): pass @require_torch class a_ ( lowerCamelCase_ ): """simple docstring""" @slow def _lowerCAmelCase ( self : Optional[int] ): with torch.no_grad(): SCREAMING_SNAKE_CASE =EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() SCREAMING_SNAKE_CASE =torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] SCREAMING_SNAKE_CASE =33 SCREAMING_SNAKE_CASE =torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape ,snake_case ) SCREAMING_SNAKE_CASE =torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,snake_case ,atol=1e-4 ) ) @slow def _lowerCAmelCase ( self : int ): with torch.no_grad(): SCREAMING_SNAKE_CASE =EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) model.eval() SCREAMING_SNAKE_CASE =torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE =model(snake_case )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE =torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,snake_case ,atol=1e-4 ) )
252
1
"""simple docstring""" from collections import deque class UpperCAmelCase : def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" _snake_case = process_name # process name _snake_case = arrival_time # arrival time of the process # completion time of finished process or last interrupted time _snake_case = arrival_time _snake_case = burst_time # remaining burst time _snake_case = 0 # total time of the process wait in ready queue _snake_case = 0 # time from arrival time to completion time class UpperCAmelCase : def __init__( self : Dict , __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : deque[Process] , __lowerCamelCase : int , ): """simple docstring""" # total number of mlfq's queues _snake_case = number_of_queues # time slice of queues that round robin algorithm applied _snake_case = time_slices # unfinished process is in this ready_queue _snake_case = queue # current time _snake_case = current_time # finished process is in this sequence queue _snake_case = deque() def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : list[Process] ): """simple docstring""" _snake_case = [] for i in range(len(__lowerCamelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : list[Process] ): """simple docstring""" _snake_case = [] for i in range(len(__lowerCamelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : list[Process] ): """simple docstring""" _snake_case = [] for i in range(len(__lowerCamelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : deque[Process] ): """simple docstring""" return [q.burst_time for q in queue] def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Process ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : deque[Process] ): """simple docstring""" _snake_case = deque() # sequence deque of finished process while len(__lowerCamelCase ) != 0: _snake_case = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__lowerCamelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _snake_case = 0 # set the process's turnaround time because it is finished _snake_case = self.current_time - cp.arrival_time # set the completion time _snake_case = self.current_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : deque[Process] , __lowerCamelCase : int ): """simple docstring""" _snake_case = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__lowerCamelCase ) ): _snake_case = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__lowerCamelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _snake_case = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__lowerCamelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _snake_case = 0 # set the finish time _snake_case = self.current_time # update the process' turnaround time because it is finished _snake_case = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__lowerCamelCase ) self.finish_queue.extend(__lowerCamelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __UpperCAmelCase ( self : List[str] ): """simple docstring""" # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): _snake_case , _snake_case = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest snake_case = Process('''P1''', 0, 5_3) snake_case = Process('''P2''', 0, 1_7) snake_case = Process('''P3''', 0, 6_8) snake_case = Process('''P4''', 0, 2_4) snake_case = 3 snake_case = [1_7, 2_5] snake_case = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) snake_case = Process('''P1''', 0, 5_3) snake_case = Process('''P2''', 0, 1_7) snake_case = Process('''P3''', 0, 6_8) snake_case = Process('''P4''', 0, 2_4) snake_case = 3 snake_case = [1_7, 2_5] snake_case = deque([Pa, Pa, Pa, Pa]) snake_case = MLFQ(number_of_queues, time_slices, queue, 0) snake_case = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( F"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( F"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
103
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __snake_case :Optional[Any] =logging.get_logger(__name__) __snake_case :int =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __snake_case :Optional[int] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase__ : A_ : str = field( default=_lowerCamelCase , metadata={'help': 'Model type selected in the list: ' + ', '.join(_lowerCamelCase )} ) A_ : str = field( default=_lowerCamelCase , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) A_ : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : int = field( default=1_2_8 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) A_ : int = field( default=6_4 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) A_ : int = field( default=3_0 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) A_ : bool = field( default=_lowerCamelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) A_ : bool = field( default=_lowerCamelCase , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) A_ : float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) A_ : int = field( default=2_0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) A_ : int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) A_ : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class lowerCAmelCase__ ( _lowerCamelCase ): A_ : str = 'train' A_ : str = 'dev' class lowerCAmelCase__ ( _lowerCamelCase ): A_ : SquadDataTrainingArguments A_ : List[SquadFeatures] A_ : Split A_ : bool def __init__( self : Optional[int] , __UpperCamelCase : SquadDataTrainingArguments , __UpperCamelCase : PreTrainedTokenizer , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Union[str, Split] = Split.train , __UpperCamelCase : Optional[bool] = False , __UpperCamelCase : Optional[str] = None , __UpperCamelCase : Optional[str] = "pt" , ) -> Any: A = args A = is_language_sensitive A = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__UpperCamelCase , __UpperCamelCase ): try: A = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) A = mode # Load data features from cache or dataset file A = 'v2' if args.version_2_with_negative else 'v1' A = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A = cached_features_file + '.lock' with FileLock(__UpperCamelCase ): if os.path.exists(__UpperCamelCase ) and not args.overwrite_cache: A = time.time() A = torch.load(__UpperCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A = self.old_features['features'] A = self.old_features.get('dataset' , __UpperCamelCase ) A = self.old_features.get('examples' , __UpperCamelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ' future run' ) else: if mode == Split.dev: A = self.processor.get_dev_examples(args.data_dir ) else: A = self.processor.get_train_examples(args.data_dir ) A , A = squad_convert_examples_to_features( examples=self.examples , tokenizer=__UpperCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__UpperCamelCase , ) A = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , __UpperCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Optional[Any] ) -> Tuple: return len(self.features ) def __getitem__( self : Tuple , __UpperCamelCase : List[Any] ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset A = self.features[i] A = torch.tensor(feature.input_ids , dtype=torch.long ) A = torch.tensor(feature.attention_mask , dtype=torch.long ) A = torch.tensor(feature.token_type_ids , dtype=torch.long ) A = torch.tensor(feature.cls_index , dtype=torch.long ) A = torch.tensor(feature.p_mask , dtype=torch.float ) A = torch.tensor(feature.is_impossible , dtype=torch.float ) A = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A = torch.tensor(feature.start_position , dtype=torch.long ) A = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
106
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _SCREAMING_SNAKE_CASE ( lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = 3_84 lowerCamelCase_ = 7 if "tiny" in model_name: lowerCamelCase_ = 96 lowerCamelCase_ = (2, 2, 6, 2) lowerCamelCase_ = (3, 6, 12, 24) elif "small" in model_name: lowerCamelCase_ = 96 lowerCamelCase_ = (2, 2, 18, 2) lowerCamelCase_ = (3, 6, 12, 24) elif "base" in model_name: lowerCamelCase_ = 1_28 lowerCamelCase_ = (2, 2, 18, 2) lowerCamelCase_ = (4, 8, 16, 32) lowerCamelCase_ = 12 lowerCamelCase_ = 5_12 elif "large" in model_name: lowerCamelCase_ = 1_92 lowerCamelCase_ = (2, 2, 18, 2) lowerCamelCase_ = (6, 12, 24, 48) lowerCamelCase_ = 12 lowerCamelCase_ = 7_68 # set label information lowerCamelCase_ = 1_50 lowerCamelCase_ = 'huggingface/label-files' lowerCamelCase_ = 'ade20k-id2label.json' lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = {v: k for k, v in idalabel.items()} lowerCamelCase_ = SwinConfig( embed_dim=lowercase , depths=lowercase , num_heads=lowercase , window_size=lowercase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) lowerCamelCase_ = UperNetConfig( backbone_config=lowercase , auxiliary_in_channels=lowercase , num_labels=lowercase , idalabel=lowercase , labelaid=lowercase , ) return config def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.norm2.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", f"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.stages.{i}.downsample.reduction.weight""", f"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.weight""", f"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.downsample.norm.bias""", f"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = dct.pop(lowercase ) lowerCamelCase_ = val def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowerCamelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) lowerCamelCase_ = state_dict.pop(f"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[:dim, :] lowerCamelCase_ = in_proj_bias[: dim] lowerCamelCase_ = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase_ = in_proj_bias[ dim : dim * 2 ] lowerCamelCase_ = in_proj_weight[ -dim :, : ] lowerCamelCase_ = in_proj_bias[-dim :] # fmt: on def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = x.shape lowerCamelCase_ = x.reshape(lowercase , 4 , in_channel // 4 ) lowerCamelCase_ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowercase , lowercase ) return x def _SCREAMING_SNAKE_CASE ( lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = x.shape lowerCamelCase_ = x.reshape(lowercase , in_channel // 4 , 4 ) lowerCamelCase_ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowercase , lowercase ) return x def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = x.shape[0] lowerCamelCase_ = x.reshape(4 , in_channel // 4 ) lowerCamelCase_ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowercase ) return x def _SCREAMING_SNAKE_CASE ( lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = x.shape[0] lowerCamelCase_ = x.reshape(in_channel // 4 , 4 ) lowerCamelCase_ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowercase ) return x def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } lowerCamelCase_ = model_name_to_url[model_name] lowerCamelCase_ = torch.hub.load_state_dict_from_url(lowercase , map_location='cpu' , file_name=lowercase )[ 'state_dict' ] for name, param in state_dict.items(): print(lowercase , param.shape ) lowerCamelCase_ = get_upernet_config(lowercase ) lowerCamelCase_ = UperNetForSemanticSegmentation(lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase_ = state_dict.pop(lowercase ) if "bn" in key: lowerCamelCase_ = key.replace('bn' , 'batch_norm' ) lowerCamelCase_ = val # rename keys lowerCamelCase_ = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) read_in_q_k_v(lowercase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowerCamelCase_ = reverse_correct_unfold_reduction_order(lowercase ) if "norm" in key: lowerCamelCase_ = reverse_correct_unfold_norm_order(lowercase ) model.load_state_dict(lowercase ) # verify on image lowerCamelCase_ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert('RGB' ) lowerCamelCase_ = SegformerImageProcessor() lowerCamelCase_ = processor(lowercase , return_tensors='pt' ).pixel_values with torch.no_grad(): lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowerCamelCase_ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": lowerCamelCase_ = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": lowerCamelCase_ = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": lowerCamelCase_ = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowercase ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase : Optional[Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
651
import cva import numpy as np class A: '''simple docstring''' def __init__( self : int , A_ : float , A_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): lowerCamelCase_ = k lowerCamelCase_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : str ) -> str: """simple docstring""" return str(self.k ) def a__ ( self : Any , A_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowerCamelCase_ = cva.imread(A_ , 0 ) lowerCamelCase_ , lowerCamelCase_ = img.shape lowerCamelCase_ = [] lowerCamelCase_ = img.copy() lowerCamelCase_ = cva.cvtColor(A_ , cva.COLOR_GRAY2RGB ) lowerCamelCase_ , lowerCamelCase_ = np.gradient(A_ ) lowerCamelCase_ = dx**2 lowerCamelCase_ = dy**2 lowerCamelCase_ = dx * dy lowerCamelCase_ = 0.04 lowerCamelCase_ = self.window_size // 2 for y in range(A_ , h - offset ): for x in range(A_ , w - offset ): lowerCamelCase_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase_ = (wxx * wyy) - (wxy**2) lowerCamelCase_ = wxx + wyy lowerCamelCase_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase : Optional[int] = HarrisCorner(0.04, 3) lowerCamelCase , lowerCamelCase : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
651
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __lowerCamelCase = pd.read_csv('''sample_data.csv''', header=None) __lowerCamelCase = df.shape[:1][0] # If you're using some other dataset input the target column __lowerCamelCase = df.iloc[:, 1:2] __lowerCamelCase = actual_data.values.reshape(len_data, 1) __lowerCamelCase = MinMaxScaler().fit_transform(actual_data) __lowerCamelCase = 10 __lowerCamelCase = 5 __lowerCamelCase = 20 __lowerCamelCase = len_data - periods * look_back __lowerCamelCase = actual_data[:division] __lowerCamelCase = actual_data[division - look_back :] __lowerCamelCase , __lowerCamelCase = [], [] __lowerCamelCase , __lowerCamelCase = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __lowerCamelCase = np.array(train_x) __lowerCamelCase = np.array(test_x) __lowerCamelCase = np.array([list(i.ravel()) for i in train_y]) __lowerCamelCase = np.array([list(i.ravel()) for i in test_y]) __lowerCamelCase = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') __lowerCamelCase = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) __lowerCamelCase = model.predict(x_test)
288
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "codegen" lowercase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , UpperCamelCase__=50400 , UpperCamelCase__=2048 , UpperCamelCase__=2048 , UpperCamelCase__=4096 , UpperCamelCase__=28 , UpperCamelCase__=16 , UpperCamelCase__=64 , UpperCamelCase__=None , UpperCamelCase__="gelu_new" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=50256 , UpperCamelCase__=50256 , UpperCamelCase__=False , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' A_ = vocab_size A_ = n_ctx A_ = n_positions A_ = n_embd A_ = n_layer A_ = n_head A_ = n_inner A_ = rotary_dim A_ = activation_function A_ = resid_pdrop A_ = embd_pdrop A_ = attn_pdrop A_ = layer_norm_epsilon A_ = initializer_range A_ = use_cache A_ = bos_token_id A_ = eos_token_id super().__init__( bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ = "default" , UpperCamelCase__ = None , UpperCamelCase__ = False , ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , task=UpperCamelCase__ , patching_specs=UpperCamelCase__ , use_past=UpperCamelCase__ ) if not getattr(self._config , """pad_token_id""" , UpperCamelCase__ ): # TODO: how to do that better? A_ = 0 @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' A_ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="""inputs""" ) A_ = {0: """batch""", 1: """past_sequence + sequence"""} else: A_ = {0: """batch""", 1: """sequence"""} return common_inputs @property def snake_case_ ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def snake_case_ ( self ) -> int: '''simple docstring''' return self._config.n_head def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' A_ = super(UpperCamelCase__ , self ).generate_dummy_inputs( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() A_ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_ , A_ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A_ = seqlen + 2 A_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A_ = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] A_ = common_inputs["""attention_mask"""] if self.use_past: A_ = ordered_inputs["""attention_mask"""].dtype A_ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: '''simple docstring''' return 13
288
1
def lowerCAmelCase__ ( lowerCamelCase_ : int = 10**9): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 1 lowerCAmelCase__ : List[str] = 2 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Dict = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowerCAmelCase__ : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
720
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : List[Any] =logging.get_logger(__name__) __snake_case : str ={ 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""mvp""" snake_case_ =["""past_key_values"""] snake_case_ ={"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__(self ,__lowerCamelCase=5_02_67 ,__lowerCamelCase=10_24 ,__lowerCamelCase=12 ,__lowerCamelCase=40_96 ,__lowerCamelCase=16 ,__lowerCamelCase=12 ,__lowerCamelCase=40_96 ,__lowerCamelCase=16 ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,__lowerCamelCase="gelu" ,__lowerCamelCase=10_24 ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.02 ,__lowerCamelCase=0.0 ,__lowerCamelCase=False ,__lowerCamelCase=True ,__lowerCamelCase=1 ,__lowerCamelCase=0 ,__lowerCamelCase=2 ,__lowerCamelCase=True ,__lowerCamelCase=2 ,__lowerCamelCase=2 ,__lowerCamelCase=False ,__lowerCamelCase=1_00 ,__lowerCamelCase=8_00 ,**__lowerCamelCase ,) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Optional[int] = d_model lowerCAmelCase__ : Any = encoder_ffn_dim lowerCAmelCase__ : str = encoder_layers lowerCAmelCase__ : Union[str, Any] = encoder_attention_heads lowerCAmelCase__ : Dict = decoder_ffn_dim lowerCAmelCase__ : Optional[int] = decoder_layers lowerCAmelCase__ : int = decoder_attention_heads lowerCAmelCase__ : str = dropout lowerCAmelCase__ : int = attention_dropout lowerCAmelCase__ : Optional[Any] = activation_dropout lowerCAmelCase__ : Optional[int] = activation_function lowerCAmelCase__ : int = init_std lowerCAmelCase__ : List[Any] = encoder_layerdrop lowerCAmelCase__ : Union[str, Any] = decoder_layerdrop lowerCAmelCase__ : Tuple = classifier_dropout lowerCAmelCase__ : Optional[int] = use_cache lowerCAmelCase__ : List[Any] = encoder_layers lowerCAmelCase__ : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase__ : Any = use_prompt lowerCAmelCase__ : Optional[Any] = prompt_length lowerCAmelCase__ : int = prompt_mid_dim super().__init__( pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,is_encoder_decoder=__lowerCamelCase ,decoder_start_token_id=__lowerCamelCase ,forced_eos_token_id=__lowerCamelCase ,**__lowerCamelCase ,) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' ,__lowerCamelCase ): lowerCAmelCase__ : Union[str, Any] = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' )
90
0
from sklearn.metrics import matthews_corrcoef import datasets lowerCamelCase : Optional[Any] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" lowerCamelCase : Union[str, Any] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" lowerCamelCase : Optional[int] = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A( datasets.Metric ): '''simple docstring''' def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def a__ ( self : Any , A_ : Optional[Any] , A_ : List[Any] , A_ : List[Any]=None ) -> Tuple: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(A_ , A_ , sample_weight=A_ ) ), }
70
def _lowercase ( UpperCAmelCase_ = 10 , UpperCAmelCase_ = 1_000 , UpperCAmelCase_ = True): """simple docstring""" assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""") return min_val if option else max_val def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" return int((number_a + number_a) / 2) def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" assert ( isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("""argument value for lower and higher must be(lower > higher)""") if not lower < to_guess < higher: raise ValueError( """guess value must be within the range of lower and higher value""") def answer(UpperCAmelCase_) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("""started...""") snake_case__ : Any = lower snake_case__ : Optional[Any] = higher snake_case__ : Dict = [] while True: snake_case__ : Optional[Any] = get_avg(UpperCAmelCase_ , UpperCAmelCase_) last_numbers.append(UpperCAmelCase_) if answer(UpperCAmelCase_) == "low": snake_case__ : Tuple = number elif answer(UpperCAmelCase_) == "high": snake_case__ : Any = number else: break print(F'guess the number : {last_numbers[-1]}') print(F'details : {last_numbers!s}') def _lowercase ( ): """simple docstring""" snake_case__ : Dict = int(input("""Enter lower value : """).strip()) snake_case__ : int = int(input("""Enter high value : """).strip()) snake_case__ : List[str] = int(input("""Enter value to guess : """).strip()) guess_the_number(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if __name__ == "__main__": main()
648
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __A : str = R''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(_A ) class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = "rag" SCREAMING_SNAKE_CASE_ : List[Any] = True def __init__( self : str , A : int=None , A : Dict=True , A : int=None , A : int=None , A : Union[str, Any]=None , A : Optional[int]=None , A : Union[str, Any]=None , A : List[str]=" / " , A : Optional[Any]=" // " , A : List[Any]=5 , A : Any=3_00 , A : Any=7_68 , A : Any=8 , A : Dict="wiki_dpr" , A : Optional[int]="train" , A : List[str]="compressed" , A : Union[str, Any]=None , A : Dict=None , A : Optional[int]=False , A : int=False , A : Optional[int]=0.0 , A : Dict=True , A : Any=False , A : List[str]=False , A : Any=False , A : str=True , A : str=None , **A : Dict , ) -> int: super().__init__( bos_token_id=A , pad_token_id=A , eos_token_id=A , decoder_start_token_id=A , forced_eos_token_id=A , is_encoder_decoder=A , prefix=A , vocab_size=A , **A , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowercase_ : str = kwargs.pop('''question_encoder''' ) lowercase_ : str = question_encoder_config.pop('''model_type''' ) lowercase_ : int = kwargs.pop('''generator''' ) lowercase_ : Any = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowercase_ : Tuple = AutoConfig.for_model(A , **A ) lowercase_ : str = AutoConfig.for_model(A , **A ) lowercase_ : List[str] = reduce_loss lowercase_ : Any = label_smoothing lowercase_ : List[str] = exclude_bos_score lowercase_ : Optional[int] = do_marginalize lowercase_ : Tuple = title_sep lowercase_ : Tuple = doc_sep lowercase_ : Union[str, Any] = n_docs lowercase_ : str = max_combined_length lowercase_ : Any = dataset lowercase_ : str = dataset_split lowercase_ : List[Any] = index_name lowercase_ : List[Any] = retrieval_vector_size lowercase_ : Tuple = retrieval_batch_size lowercase_ : Any = passages_path lowercase_ : Optional[int] = index_path lowercase_ : List[str] = use_dummy_dataset lowercase_ : Tuple = output_retrieved lowercase_ : Tuple = do_deduplication lowercase_ : Optional[Any] = use_cache if self.forced_eos_token_id is None: lowercase_ : int = getattr(self.generator , '''forced_eos_token_id''' , A ) @classmethod def A ( cls : Dict , A : PretrainedConfig , A : PretrainedConfig , **A : Any ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **A ) def A ( self : Optional[Any] ) -> Dict: lowercase_ : Any = copy.deepcopy(self.__dict__ ) lowercase_ : Optional[Any] = self.question_encoder.to_dict() lowercase_ : Any = self.generator.to_dict() lowercase_ : Any = self.__class__.model_type return output
141
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class _UpperCAmelCase ( _A ): def __init__( self : Optional[int] , A : Optional[Any]=0.01 , A : int=10_00 ) -> Optional[int]: lowercase_ : Dict = p_stop lowercase_ : Optional[Any] = max_length def __iter__( self : Dict ) -> Dict: lowercase_ : str = 0 lowercase_ : Optional[int] = False while not stop and count < self.max_length: yield count count += 1 lowercase_ : List[str] = random.random() < self.p_stop class _UpperCAmelCase ( unittest.TestCase ): def A ( self : List[Any] , A : Any , A : Union[str, Any] , A : Optional[Any]=False , A : Dict=True ) -> str: lowercase_ : Tuple = [ BatchSamplerShard(A , 2 , A , split_batches=A , even_batches=A ) for i in range(2 ) ] lowercase_ : Optional[Any] = [list(A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A ) for shard in batch_sampler_shards] , [len(A ) for e in expected] ) self.assertListEqual(A , A ) def A ( self : Dict ) -> Tuple: # Check the shards when the dataset is a round multiple of total batch size. lowercase_ : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) lowercase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase_ : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase_ : Tuple = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : List[str] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase_ : Tuple = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A , A ) lowercase_ : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A ) # Check the shards when the dataset is very small. lowercase_ : str = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A , A ) lowercase_ : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : List[str] = [[], []] self.check_batch_sampler_shards(A , A ) def A ( self : str ) -> str: # Check the shards when the dataset is a round multiple of batch size. lowercase_ : List[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) lowercase_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Dict = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. lowercase_ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase_ : Tuple = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A ) # Check the shards when the dataset is very small. lowercase_ : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : Dict = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A , A , split_batches=A ) lowercase_ : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : str = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A ) def A ( self : str ) -> int: # Check the shards when the dataset is a round multiple of total batch size. lowercase_ : str = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : Dict = BatchSampler(range(24 ) , batch_size=3 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase_ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=A ) lowercase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase_ : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=A ) lowercase_ : str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase_ : List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=A ) lowercase_ : Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A , A , even_batches=A ) # Check the shards when the dataset is very small. lowercase_ : List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : Tuple = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , even_batches=A ) lowercase_ : List[Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=A ) lowercase_ : Optional[Any] = [[], []] self.check_batch_sampler_shards(A , A , even_batches=A ) def A ( self : Optional[Any] ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of batch size. lowercase_ : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) lowercase_ : int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=A ) # Expected shouldn't change self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size. lowercase_ : List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : List[str] = BatchSampler(range(22 ) , batch_size=4 , drop_last=A ) lowercase_ : str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=A ) lowercase_ : Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) # Check the shards when the dataset is very small. lowercase_ : Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : Union[str, Any] = [[[0, 1]], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) lowercase_ : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=A ) lowercase_ : Dict = [[], []] self.check_batch_sampler_shards(A , A , split_batches=A , even_batches=A ) def A ( self : str ) -> str: lowercase_ : str = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] lowercase_ : Tuple = [BatchSamplerShard(A , 2 , A , even_batches=A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def A ( self : Union[str, Any] , A : Union[str, Any] , A : Tuple , A : Dict , A : str=False , A : Any=2 , A : Optional[int]=False ) -> Optional[Any]: random.seed(A ) lowercase_ : Any = list(A ) lowercase_ : Optional[int] = [ IterableDatasetShard( A , batch_size=A , drop_last=A , num_processes=A , process_index=A , split_batches=A , ) for i in range(A ) ] lowercase_ : Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A ) iterable_dataset_lists.append(list(A ) ) lowercase_ : List[Any] = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowercase_ : Dict = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A ) , len(A ) ) self.assertTrue(len(A ) % shard_batch_size == 0 ) lowercase_ : Optional[int] = [] for idx in range(0 , len(A ) , A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A ) < len(A ): reference += reference self.assertListEqual(A , reference[: len(A )] ) def A ( self : Optional[Any] ) -> List[str]: lowercase_ : int = 42 lowercase_ : Tuple = RandomIterableDataset() self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) # Edge case with a very small dataset lowercase_ : List[str] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) self.check_iterable_dataset_shards(A , A , batch_size=4 , drop_last=A , split_batches=A ) def A ( self : Optional[Any] ) -> Tuple: lowercase_ : List[str] = BatchSampler(range(16 ) , batch_size=4 , drop_last=A ) lowercase_ : int = SkipBatchSampler(A , 2 ) self.assertListEqual(list(A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : List[str] ) -> Union[str, Any]: lowercase_ : int = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : Dict ) -> int: lowercase_ : Optional[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) lowercase_ : Union[str, Any] = skip_first_batches(A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def A ( self : List[str] ) -> str: lowercase_ : Any = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def A ( self : Optional[Any] ) -> Optional[int]: Accelerator() lowercase_ : Tuple = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
141
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : Any , a : List[Any] , a : Optional[Any]=7 , a : Optional[Any]=3 , a : Optional[int]=1_8 , a : List[Any]=3_0 , a : Union[str, Any]=4_0_0 , a : Optional[Any]=True , a : int=None , a : Optional[Any]=True , a : Tuple=None , a : Any=True , ): '''simple docstring''' lowercase_ : List[str] = size if size is not None else {"shortest_edge": 2_0} lowercase_ : Union[str, Any] = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} lowercase_ : Optional[Any] = parent lowercase_ : int = batch_size lowercase_ : Any = num_channels lowercase_ : List[Any] = image_size lowercase_ : List[str] = min_resolution lowercase_ : List[str] = max_resolution lowercase_ : Tuple = do_resize lowercase_ : Optional[Any] = size lowercase_ : int = do_center_crop lowercase_ : List[Any] = crop_size lowercase_ : Optional[Any] = do_flip_channel_order def lowerCAmelCase__ ( self : int ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( UpperCamelCase__ , unittest.TestCase ): __lowerCamelCase: str = MobileViTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Union[str, Any] = MobileViTImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , "do_resize" ) ) self.assertTrue(hasattr(a , "size" ) ) self.assertTrue(hasattr(a , "do_center_crop" ) ) self.assertTrue(hasattr(a , "center_crop" ) ) self.assertTrue(hasattr(a , "do_flip_channel_order" ) ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) lowercase_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' pass def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input lowercase_ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase_ : Any = image_processing(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input lowercase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase_ : Any = image_processing(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input lowercase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase_ : Optional[int] = image_processing(a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
620
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : Tuple = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowercase__ : Optional[int] = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowercase__ : Dict = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE ( ) -> List[str]: a = ( list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1)) ) a = bs[:] a = 0 for b in range(2**8): if b not in bs: bs.append(__UpperCamelCase) cs.append(2**8 + n) n += 1 a = [chr(__UpperCamelCase) for n in cs] return dict(zip(__UpperCamelCase , __UpperCamelCase)) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> Union[str, Any]: a = set() a = word[0] for char in word[1:]: pairs.add((prev_char, char)) a = char return pairs class a__ ( UpperCamelCase__ ): a : List[str] = VOCAB_FILES_NAMES a : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP a : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self , A , A , A="replace" , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A=False , **A , ) -> int: '''simple docstring''' a = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else bos_token a = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else eos_token a = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else sep_token a = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else cls_token a = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else unk_token a = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( errors=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , add_prefix_space=A , **A , ) with open(A , encoding="utf-8" ) as vocab_handle: a = json.load(A ) a = {v: k for k, v in self.encoder.items()} a = errors # how to handle errors in decoding a = bytes_to_unicode() a = {v: k for k, v in self.byte_encoder.items()} with open(A , encoding="utf-8" ) as merges_handle: a = merges_handle.read().split("\n" )[1:-1] a = [tuple(merge.split() ) for merge in bpe_merges] a = dict(zip(A , range(len(A ) ) ) ) a = {} a = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' return len(self.encoder ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase_ ( self , A ) -> Union[str, Any]: '''simple docstring''' if token in self.cache: return self.cache[token] a = tuple(A ) a = get_pairs(A ) if not pairs: return token while True: a = min(A , key=lambda A : self.bpe_ranks.get(A , float("inf" ) ) ) if bigram not in self.bpe_ranks: break a , a = bigram a = [] a = 0 while i < len(A ): try: a = word.index(A , A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a = tuple(A ) a = new_word if len(A ) == 1: break else: a = get_pairs(A ) a = " ".join(A ) a = word return word def lowerCAmelCase_ ( self , A ) -> Optional[Any]: '''simple docstring''' a = [] for token in re.findall(self.pat , A ): a = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A ).split(" " ) ) return bpe_tokens def lowerCAmelCase_ ( self , A ) -> str: '''simple docstring''' return self.encoder.get(A , self.encoder.get(self.unk_token ) ) def lowerCAmelCase_ ( self , A ) -> List[str]: '''simple docstring''' return self.decoder.get(A ) def lowerCAmelCase_ ( self , A ) -> Dict: '''simple docstring''' a = "".join(A ) a = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase_ ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) a = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A , ensure_ascii=A ) + "\n" ) a = 0 with open(A , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) a = token_index writer.write(" ".join(A ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase_ ( self , A , A = None , A = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def lowerCAmelCase_ ( self , A , A = None ) -> List[int]: '''simple docstring''' a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase_ ( self , A , A=False , **A ) -> List[str]: '''simple docstring''' a = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A ) > 0 and not text[0].isspace()): a = " " + text return (text, kwargs) def lowerCAmelCase_ ( self , A , A = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self , A ) -> List[int]: '''simple docstring''' a = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(A ) a = " ".join(A ) a = self.encode(A ) if len(A ) > self.model_max_length: a = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
515
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( a_ ,a_ ,a_ ,unittest.TestCase ): __lowerCAmelCase = StableDiffusionInpaintPipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __lowerCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowerCAmelCase = frozenset([] ) def snake_case_ ( self ): torch.manual_seed(0 ) a_ : int = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=a_ , ) a_ : Optional[Any] = PNDMScheduler(skip_prk_steps=a_ ) torch.manual_seed(0 ) a_ : Optional[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) a_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) a_ : Tuple = CLIPTextModel(a_ ) a_ : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) a_ : Tuple = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def snake_case_ ( self , a_ , a_=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched a_ : str = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(a_ ) ).to(a_ ) a_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] a_ : Optional[Any] = Image.fromarray(np.uinta(a_ ) ).convert("RGB" ).resize((6_4, 6_4) ) a_ : List[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((6_4, 6_4) ) if str(a_ ).startswith("mps" ): a_ : Optional[Any] = torch.manual_seed(a_ ) else: a_ : Tuple = torch.Generator(device=a_ ).manual_seed(a_ ) a_ : str = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def snake_case_ ( self ): a_ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator a_ : Tuple = self.get_dummy_components() a_ : Dict = StableDiffusionInpaintPipeline(**a_ ) a_ : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) a_ : str = self.get_dummy_inputs(a_ ) a_ : Optional[int] = sd_pipe(**a_ ).images a_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a_ : str = np.array([0.4_727, 0.5_735, 0.3_941, 0.5_446, 0.5_926, 0.4_394, 0.5_062, 0.4_654, 0.4_476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def snake_case_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): a_ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) a_ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) a_ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) a_ : Dict = "stabilityai/stable-diffusion-2-inpainting" a_ : str = StableDiffusionInpaintPipeline.from_pretrained(a_ , safety_checker=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() a_ : Union[str, Any] = "Face of a yellow cat, high resolution, sitting on a park bench" a_ : List[Any] = torch.manual_seed(0 ) a_ : Any = pipe( prompt=a_ , image=a_ , mask_image=a_ , generator=a_ , output_type="np" , ) a_ : List[Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9e-3 def snake_case_ ( self ): a_ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) a_ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) a_ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) a_ : Optional[int] = "stabilityai/stable-diffusion-2-inpainting" a_ : Any = StableDiffusionInpaintPipeline.from_pretrained( a_ , torch_dtype=torch.floataa , safety_checker=a_ , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() a_ : Any = "Face of a yellow cat, high resolution, sitting on a park bench" a_ : int = torch.manual_seed(0 ) a_ : str = pipe( prompt=a_ , image=a_ , mask_image=a_ , generator=a_ , output_type="np" , ) a_ : int = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5e-1 def snake_case_ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() a_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) a_ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) a_ : str = "stabilityai/stable-diffusion-2-inpainting" a_ : List[Any] = PNDMScheduler.from_pretrained(a_ , subfolder="scheduler" ) a_ : List[str] = StableDiffusionInpaintPipeline.from_pretrained( a_ , safety_checker=a_ , scheduler=a_ , torch_dtype=torch.floataa , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() a_ : Tuple = "Face of a yellow cat, high resolution, sitting on a park bench" a_ : List[Any] = torch.manual_seed(0 ) a_ : Optional[int] = pipe( prompt=a_ , image=a_ , mask_image=a_ , generator=a_ , num_inference_steps=2 , output_type="np" , ) a_ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
370
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter SCREAMING_SNAKE_CASE_ = """Create a default config file for Accelerate with only a few flags set.""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__="no", SCREAMING_SNAKE_CASE__ = default_json_config_file, SCREAMING_SNAKE_CASE__ = False ) -> Tuple: a_ : Union[str, Any] = Path(SCREAMING_SNAKE_CASE__ ) path.parent.mkdir(parents=SCREAMING_SNAKE_CASE__, exist_ok=SCREAMING_SNAKE_CASE__ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False a_ : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) a_ : str = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): a_ : int = torch.cuda.device_count() a_ : Optional[Any] = num_gpus a_ : int = False if num_gpus > 1: a_ : Any = "MULTI_GPU" else: a_ : int = "NO" elif is_xpu_available() and use_xpu: a_ : int = torch.xpu.device_count() a_ : str = num_xpus a_ : Tuple = False if num_xpus > 1: a_ : int = "MULTI_XPU" else: a_ : List[str] = "NO" elif is_npu_available(): a_ : List[Any] = torch.npu.device_count() a_ : int = num_npus a_ : List[Any] = False if num_npus > 1: a_ : str = "MULTI_NPU" else: a_ : Union[str, Any] = "NO" else: a_ : Optional[Any] = 0 a_ : Optional[Any] = True a_ : Tuple = 1 a_ : Optional[int] = "NO" a_ : str = ClusterConfig(**SCREAMING_SNAKE_CASE__ ) config.to_json_file(SCREAMING_SNAKE_CASE__ ) return path def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: a_ : Dict = parser.add_parser("default", parents=SCREAMING_SNAKE_CASE__, help=SCREAMING_SNAKE_CASE__, formatter_class=SCREAMING_SNAKE_CASE__ ) parser.add_argument( "--config_file", default=SCREAMING_SNAKE_CASE__, help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ), dest="save_location", ) parser.add_argument( "--mixed_precision", choices=["no", "fp16", "bf16"], type=SCREAMING_SNAKE_CASE__, help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.", default="no", ) parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE__ ) -> Tuple: a_ : Any = write_basic_config(args.mixed_precision, args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
370
1
import os import time import numpy as np import onnxruntime as ort __UpperCamelCase : int = """1""" __UpperCamelCase : Dict = """0""" __UpperCamelCase : str = """1""" __UpperCamelCase : int = ort.SessionOptions() __UpperCamelCase : Dict = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") __UpperCamelCase : Tuple = ["""TensorrtExecutionProvider""", """CUDAExecutionProvider"""] __UpperCamelCase : int = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) __UpperCamelCase : Tuple = ort.RunOptions() __UpperCamelCase : int = 128 __UpperCamelCase : List[str] = 1 __UpperCamelCase : List[Any] = np.ones((batch, sequence), dtype=np.intaa) __UpperCamelCase : str = np.ones((batch, sequence), dtype=np.intaa) __UpperCamelCase : Optional[Any] = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") __UpperCamelCase : int = time.time() __UpperCamelCase : Dict = 2000 __UpperCamelCase : Optional[Any] = {} for iter in range(max_iters): __UpperCamelCase : Union[str, Any] = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1000 / max_iters))
80
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class _UpperCAmelCase ( __a): __a : List[Any] = """xmod""" def __init__( self , _A=3_05_22 , _A=7_68 , _A=12 , _A=12 , _A=30_72 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_12 , _A=2 , _A=0.02 , _A=1e-12 , _A=1 , _A=0 , _A=2 , _A="absolute" , _A=True , _A=None , _A=False , _A=2 , _A=False , _A=True , _A=True , _A=("en_XX",) , _A=None , **_A , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : int = hidden_act _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Dict = max_position_embeddings _UpperCAmelCase : List[Any] = type_vocab_size _UpperCAmelCase : str = initializer_range _UpperCAmelCase : Optional[Any] = layer_norm_eps _UpperCAmelCase : Any = position_embedding_type _UpperCAmelCase : Tuple = use_cache _UpperCAmelCase : Optional[int] = classifier_dropout _UpperCAmelCase : Dict = pre_norm _UpperCAmelCase : str = adapter_reduction_factor _UpperCAmelCase : List[str] = adapter_layer_norm _UpperCAmelCase : Union[str, Any] = adapter_reuse_layer_norm _UpperCAmelCase : List[Any] = ln_before_adapter _UpperCAmelCase : Any = list(_A ) _UpperCAmelCase : Dict = default_language class _UpperCAmelCase ( __a): @property def __snake_case ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCAmelCase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
238
0
"""simple docstring""" def __A ( a_ :str) -> list: if n_term == "": return [] __a : List[Any] = [] for temp in range(int(_A)): series.append(F"""1/{temp + 1}""" if series else '''1''') return series if __name__ == "__main__": A = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
709
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging A = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=768 ): super().__init__(_UpperCAmelCase ) __a : str = proj_size __a : Optional[Any] = CLIPVisionModel(_UpperCAmelCase ) __a : List[Any] = PaintByExampleMapper(_UpperCAmelCase ) __a : int = nn.LayerNorm(config.hidden_size ) __a : List[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __a : int = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False ): __a : str = self.model(pixel_values=_UpperCAmelCase ) __a : Union[str, Any] = clip_output.pooler_output __a : Optional[int] = self.mapper(latent_states[:, None] ) __a : int = self.final_layer_norm(_UpperCAmelCase ) __a : Optional[Any] = self.proj_out(_UpperCAmelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class __lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super().__init__() __a : List[str] = (config.num_hidden_layers + 1) // 5 __a : Optional[Any] = config.hidden_size __a : str = 1 __a : Union[str, Any] = nn.ModuleList( [ BasicTransformerBlock(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , activation_fn='''gelu''' , attention_bias=_UpperCAmelCase ) for _ in range(_UpperCAmelCase ) ] ) def _lowerCamelCase ( self , _UpperCAmelCase ): for block in self.blocks: __a : Union[str, Any] = block(_UpperCAmelCase ) return hidden_states
101
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ = 1_6 UpperCAmelCase_ = 3_2 def SCREAMING_SNAKE_CASE_ ( _snake_case :Accelerator , _snake_case :int = 16 ) -> Optional[Any]: _A = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _A = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_snake_case :Optional[int] ): # max_length=None => use the model max length (it's actually the default) _A = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_snake_case , max_length=_snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _A = datasets.map( _snake_case , batched=_snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _A = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_snake_case :Any ): # On TPU it's best to pad everything to the same length or training will be very slow. _A = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _A = 16 elif accelerator.mixed_precision != "no": _A = 8 else: _A = None return tokenizer.pad( _snake_case , padding='''longest''' , max_length=_snake_case , pad_to_multiple_of=_snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. _A = DataLoader( tokenized_datasets['''train'''] , shuffle=_snake_case , collate_fn=_snake_case , batch_size=_snake_case ) _A = DataLoader( tokenized_datasets['''validation'''] , shuffle=_snake_case , collate_fn=_snake_case , batch_size=_snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase_ = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :str ) -> Optional[int]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , _snake_case ) == "1": _A = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _A = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: _A = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _A = config['''lr'''] _A = int(config['''num_epochs'''] ) _A = int(config['''seed'''] ) _A = int(config['''batch_size'''] ) set_seed(_snake_case ) _A , _A = get_dataloaders(_snake_case , _snake_case ) _A = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _A = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _A = batch_size // MAX_GPU_BATCH_SIZE _A = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _A = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _A = model.to(accelerator.device ) # Instantiate optimizer _A = AdamW(params=model.parameters() , lr=_snake_case ) # Instantiate scheduler _A = get_linear_schedule_with_warmup( optimizer=_snake_case , num_warmup_steps=100 , num_training_steps=(len(_snake_case ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _A , _A , _A , _A , _A = accelerator.prepare( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _A = os.path.split(_snake_case )[-1].split('''.''' )[0] accelerator.init_trackers(_snake_case , _snake_case ) # Now we train the model for epoch in range(_snake_case ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _A = 0 for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _A = model(**_snake_case ) _A = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _A = loss / gradient_accumulation_steps accelerator.backward(_snake_case ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _A = model(**_snake_case ) _A = outputs.logits.argmax(dim=-1 ) _A , _A = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_snake_case , references=_snake_case , ) _A = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _snake_case ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(_snake_case ), '''epoch''': epoch, } , step=_snake_case , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: _A = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_snake_case , default=_snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=_snake_case , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) _A = parser.parse_args() _A = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_snake_case , _snake_case ) if __name__ == "__main__": main()
2
from math import factorial UpperCAmelCase : Tuple = {str(d): factorial(d) for d in range(10)} def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(SCREAMING_SNAKE_CASE ) ) def _A ( ): """simple docstring""" a__ : Any =7 * factorial(9 ) + 1 return sum(i for i in range(3 , SCREAMING_SNAKE_CASE ) if sum_of_digit_factorial(SCREAMING_SNAKE_CASE ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
563
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = 0 ) -> list: '''simple docstring''' _lowerCamelCase : str = length or len(_lowerCamelCase ) _lowerCamelCase : Optional[int] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _lowerCamelCase, _lowerCamelCase : List[Any] = list_data[i + 1], list_data[i] _lowerCamelCase : List[Any] = True return list_data if not swapped else bubble_sort(_lowerCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
386
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = 0 ) -> list: '''simple docstring''' _lowerCamelCase : str = length or len(_lowerCamelCase ) _lowerCamelCase : Optional[int] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _lowerCamelCase, _lowerCamelCase : List[Any] = list_data[i + 1], list_data[i] _lowerCamelCase : List[Any] = True return list_data if not swapped else bubble_sort(_lowerCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
386
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class A_ ( UpperCAmelCase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. _SCREAMING_SNAKE_CASE = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def _UpperCAmelCase ( self : Any ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) __a = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="gelu" , projection_dim=5_12 , ) __a = CLIPTextModel(_UpperCAmelCase ) __a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __a = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple=0 ): if str(_UpperCAmelCase ).startswith("mps" ): __a = torch.manual_seed(_UpperCAmelCase ) else: __a = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __a = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def _UpperCAmelCase ( self : Optional[Any] ): __a = "cpu" # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = TextToVideoSDPipeline(**_UpperCAmelCase ) __a = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a = self.get_dummy_inputs(_UpperCAmelCase ) __a = "np" __a = sd_pipe(**_UpperCAmelCase ).frames __a = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __a = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCAmelCase ( self : List[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _UpperCAmelCase ( self : Optional[Any] ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_UpperCAmelCase , expected_max_diff=1E-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _UpperCAmelCase ( self : Optional[int] ): pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def _UpperCAmelCase ( self : List[str] ): pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def _UpperCAmelCase ( self : int ): pass def _UpperCAmelCase ( self : Tuple ): return super().test_progress_bar() @slow @skip_mps class A_ ( unittest.TestCase ): def _UpperCAmelCase ( self : str ): __a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) __a = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) __a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __a = pipe.to("cuda" ) __a = "Spiderman is surfing" __a = torch.Generator(device="cpu" ).manual_seed(0 ) __a = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=25 , output_type="pt" ).frames __a = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def _UpperCAmelCase ( self : int ): __a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) __a = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) __a = pipe.to("cuda" ) __a = "Spiderman is surfing" __a = torch.Generator(device="cpu" ).manual_seed(0 ) __a = pipe(_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="pt" ).frames __a = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
197
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ = input_file.read() UpperCamelCase_ = regexp.search(_UpperCAmelCase ) return match def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: with open(_UpperCAmelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ = regexp.finditer(_UpperCAmelCase ) UpperCamelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = Path('./datasets' ) UpperCamelCase_ = list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
23
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
705
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels __magic_name__ : Union[str, Any] = object() # For specifying empty leaf dict `{}` __magic_name__ : Union[str, Any] = object() def lowerCAmelCase ( snake_case__ : str , snake_case__ : Optional[int] )-> str: A_ = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(snake_case__ ) - len(snake_case__ ) + 1 ): A_ = [x.match(snake_case__ ) for x, y in zip(snake_case__ , ks[i:] )] if matches and all(snake_case__ ): return True return False def lowerCAmelCase ( snake_case__ : int )-> int: def replace(snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] ): for rule, replacement in rules: if _match(snake_case__ , snake_case__ ): return replacement return val return replace def lowerCAmelCase ( )-> int: return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , snake_case__ )), (("transformer", "wte", "embedding"), P("mp" , snake_case__ )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(snake_case__ , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , snake_case__ )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(snake_case__ , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , snake_case__ )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowerCAmelCase ( snake_case__ : str )-> Optional[int]: A_ = _get_partition_rules() A_ = _replacement_rules(snake_case__ ) A_ = {k: _unmatched for k in flatten_dict(snake_case__ )} A_ = {k: replace(snake_case__ , snake_case__ ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(snake_case__ ) )
608
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): lowercase__ = ["""image_processor""", """tokenizer"""] lowercase__ = """ViTImageProcessor""" lowercase__ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Optional[Any] , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , a__ , ) lowercase_ = kwargs.pop("""feature_extractor""") lowercase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""") if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""") super().__init__(a__ , a__) def __call__( self : int , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Optional[int]): """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("""You have to specify either text, visual prompt or images.""") if text is not None and visual_prompt is not None: raise ValueError("""You have to specify exactly one type of prompt. Either text or visual prompt.""") if text is not None: lowercase_ = self.tokenizer(a__ , return_tensors=a__ , **a__) if visual_prompt is not None: lowercase_ = self.image_processor(a__ , return_tensors=a__ , **a__) if images is not None: lowercase_ = self.image_processor(a__ , return_tensors=a__ , **a__) if visual_prompt is not None and images is not None: lowercase_ = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: lowercase_ = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: lowercase_ = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**a__) , tensor_type=a__) def _UpperCAmelCase ( self : int , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[Any]): """simple docstring""" return self.tokenizer.batch_decode(*a__ , **a__) def _UpperCAmelCase ( self : List[str] , *lowerCAmelCase_ : Tuple , **lowerCAmelCase_ : int): """simple docstring""" return self.tokenizer.decode(*a__ , **a__) @property def _UpperCAmelCase ( self : List[str]): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , a__ , ) return self.image_processor_class @property def _UpperCAmelCase ( self : int): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , a__ , ) return self.image_processor
567
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case = logging.get_logger(__name__) snake_case = {"""vocab_file""": """spiece.model"""} snake_case = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } snake_case = { """AI-Sweden/gpt-sw3-126m""": 20_48, """AI-Sweden/gpt-sw3-350m""": 20_48, """AI-Sweden/gpt-sw3-1.6b""": 20_48, """AI-Sweden/gpt-sw3-6.7b""": 20_48, """AI-Sweden/gpt-sw3-20b""": 20_48, } class lowerCAmelCase ( UpperCamelCase_ ): A_ : Dict = VOCAB_FILES_NAMES A_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , a__ : Any , a__ : Dict=False , a__ : List[Any]=False , a__ : Dict=False , a__ : Any=None , a__ : Tuple=None , a__ : str=None , a__ : Optional[int]=None , a__ : Optional[Dict[str, Any]] = None , **a__ : Union[str, Any] , ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase__ : List[str] = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) lowerCAmelCase__ : Dict = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase__ : Tuple = "<|endoftext|>" if eos_token is None else eos_token lowerCAmelCase__ : List[str] = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase__ : List[str] = unk_token if pad_token is None else pad_token lowerCAmelCase__ : Any = eos_token if bos_token is None else bos_token else: lowerCAmelCase__ : str = "<pad>" if pad_token is None else pad_token lowerCAmelCase__ : Union[str, Any] = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=a__ , remove_space=a__ , keep_accents=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , pad_token=a__ , sp_model_kwargs=self.sp_model_kwargs , **a__ , ) lowerCAmelCase__ : Dict = do_lower_case lowerCAmelCase__ : Union[str, Any] = remove_space lowerCAmelCase__ : Any = keep_accents lowerCAmelCase__ : List[str] = vocab_file lowerCAmelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase__ : List[str] = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase__ : Dict = re.compile( F'''[{''.join(map(a__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]''' ) def __getstate__( self : str ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.__dict__.copy() lowerCAmelCase__ : List[str] = None return state def __setstate__( self : List[Any] , a__ : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Tuple = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ : int = {} lowerCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _A ( self : str ): '''simple docstring''' return len(self.sp_model ) def _A ( self : List[str] , a__ : str ): '''simple docstring''' lowerCAmelCase__ : str = self.non_printing_characters_re.sub("" , a__ ) # Normalize whitespaces lowerCAmelCase__ : int = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization lowerCAmelCase__ : Tuple = unicodedata.normalize("NFC" , a__ ) return text def _A ( self : str , a__ : str , **a__ : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.preprocess_text(a__ ) return self.sp_model.encode(a__ , out_type=a__ ) def _A ( self : List[str] , a__ : str ): '''simple docstring''' return self.sp_model.PieceToId(a__ ) def _A ( self : Optional[int] , a__ : int ): '''simple docstring''' return self.sp_model.IdToPiece(a__ ) @staticmethod def _A ( a__ : str ): '''simple docstring''' return out_string def _A ( self : int , a__ : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Tuple = "" lowerCAmelCase__ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Dict = [] else: current_sub_tokens.append(a__ ) lowerCAmelCase__ : Dict = False out_string += self.sp_model.decode(a__ ) return out_string def _A ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : int = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _A ( self : str , a__ : str , a__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase__ : List[str] = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ , "wb" ) as fi: lowerCAmelCase__ : int = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,) def _A ( self : List[Any] , a__ : Union[str, List[str]] , a__ : Union[str, bool] = False ): '''simple docstring''' if isinstance(a__ , a__ ): lowerCAmelCase__ : int = self.preprocess_text(a__ ) lowerCAmelCase__ : Dict = self.sp_model.encode(a__ ) else: lowerCAmelCase__ : Union[str, Any] = [self.preprocess_text(a__ ) for t in text] lowerCAmelCase__ : Optional[int] = self.sp_model.encode(a__ ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase__ : Union[str, Any] = torch.tensor(a__ ) return token_ids def _A ( self : Dict , a__ : Union[int, List[int]] ): '''simple docstring''' return self.sp_model.decode(a__ ) def _A ( self : int , a__ : "Conversation" ): '''simple docstring''' lowerCAmelCase__ : Any = [F'''User: {text}''' if is_user else F'''Bot: {text}''' for is_user, text in conversation.iter_texts()] lowerCAmelCase__ : List[str] = ( F'''{self.eos_token}{self.bos_token}''' + F'''{self.bos_token}'''.join(a__ ) + F'''{self.bos_token}Bot:''' ) return self.encode(text=a__ )
378
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __a(SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = filter(lambda SCREAMING_SNAKE_CASE_ : p.requires_grad , model.parameters() ) _lowerCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def __a(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' if metric == "rouge2": _lowerCAmelCase = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _lowerCAmelCase = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _lowerCAmelCase = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": _lowerCAmelCase = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) _lowerCAmelCase = ModelCheckpoint( dirpath=SCREAMING_SNAKE_CASE_ , filename=SCREAMING_SNAKE_CASE_ , monitor=F'''val_{metric}''' , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' return EarlyStopping( monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , ) class lowerCAmelCase_ ( pl.Callback ): def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = {f'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowerCAmelCase ) @rank_zero_only def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True ) -> None: logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _lowerCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _lowerCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": _lowerCAmelCase = od / "test_results.txt" _lowerCAmelCase = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowerCAmelCase = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' _lowerCAmelCase = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_lowerCAmelCase ) generations_file.parent.mkdir(exist_ok=_lowerCAmelCase ) with open(_lowerCAmelCase , "a+" ) as writer: for key in sorted(_lowerCAmelCase ): if key in ["log", "progress_bar", "preds"]: continue _lowerCAmelCase = metrics[key] if isinstance(_lowerCAmelCase , torch.Tensor ): _lowerCAmelCase = val.item() _lowerCAmelCase = f'''{key}: {val:.6f}\n''' writer.write(_lowerCAmelCase ) if not save_generations: return if "preds" in metrics: _lowerCAmelCase = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(_lowerCAmelCase ) @rank_zero_only def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: try: _lowerCAmelCase = pl_module.model.model.num_parameters() except AttributeError: _lowerCAmelCase = pl_module.model.num_parameters() _lowerCAmelCase = count_trainable_parameters(_lowerCAmelCase ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowerCAmelCase , _lowerCAmelCase , "test" ) @rank_zero_only def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
489
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}''' raise ValueError(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = F'''Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}''' raise ValueError(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = input_str.split("_" ) _lowerCAmelCase = 0 if use_pascal else 1 _lowerCAmelCase = words[start_index:] _lowerCAmelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] _lowerCAmelCase = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
489
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Any class A : def __init__( self : str , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = data lowerCAmelCase__ = None class A : def __init__( self : Tuple ): """simple docstring""" lowerCAmelCase__ = None lowerCAmelCase__ = None def __iter__( self : Any ): """simple docstring""" lowerCAmelCase__ = self.head while self.head: yield node.data lowerCAmelCase__ = node.next if node == self.head: break def __len__( self : Tuple ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self : int ): """simple docstring""" return "->".join(str(__magic_name__ ) for item in iter(self ) ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Any ): """simple docstring""" self.insert_nth(len(self ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : Any ): """simple docstring""" self.insert_nth(0 , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : int , __magic_name__ : Any ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError("list index out of range." ) lowerCAmelCase__ = Node(__magic_name__ ) if self.head is None: lowerCAmelCase__ = new_node # first node points itself lowerCAmelCase__ = lowerCAmelCase__ = new_node elif index == 0: # insert at head lowerCAmelCase__ = self.head lowerCAmelCase__ = lowerCAmelCase__ = new_node else: lowerCAmelCase__ = self.head for _ in range(index - 1 ): lowerCAmelCase__ = temp.next lowerCAmelCase__ = temp.next lowerCAmelCase__ = new_node if index == len(self ) - 1: # insert at tail lowerCAmelCase__ = new_node def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return self.delete_nth(0 ) def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : int = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError("list index out of range." ) lowerCAmelCase__ = self.head if self.head == self.tail: # just one node lowerCAmelCase__ = lowerCAmelCase__ = None elif index == 0: # delete head node lowerCAmelCase__ = self.tail.next.next lowerCAmelCase__ = self.head.next else: lowerCAmelCase__ = self.head for _ in range(index - 1 ): lowerCAmelCase__ = temp.next lowerCAmelCase__ = temp.next lowerCAmelCase__ = temp.next.next if index == len(self ) - 1: # delete at tail lowerCAmelCase__ = temp return delete_node.data def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return len(self ) == 0 def A ( ) -> None: '''simple docstring''' lowerCAmelCase__ = CircularLinkedList() assert len(UpperCamelCase_ ) == 0 assert circular_linked_list.is_empty() is True assert str(UpperCamelCase_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(UpperCamelCase_ ) == i circular_linked_list.insert_nth(UpperCamelCase_ , i + 1 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( __A : str , __A : str ): a_ : int = get_failure_array(__A ) # 2) Step through text searching for pattern a_ , a_ : Any = 0, 0 # index into text, pattern while i < len(__A ): if pattern[j] == text[i]: if j == (len(__A ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: a_ : Any = failure[j - 1] continue i += 1 return False def _UpperCAmelCase ( __A : str ): a_ : Optional[Any] = [0] a_ : Any = 0 a_ : int = 1 while j < len(__A ): if pattern[i] == pattern[j]: i += 1 elif i > 0: a_ : List[Any] = failure[i - 1] continue j += 1 failure.append(__A ) return failure if __name__ == "__main__": # Test 1) __lowerCAmelCase = 'abc1abc12' __lowerCAmelCase = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __lowerCAmelCase = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __lowerCAmelCase = 'ABABX' __lowerCAmelCase = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __lowerCAmelCase = 'AAAB' __lowerCAmelCase = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __lowerCAmelCase = 'abcdabcy' __lowerCAmelCase = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __lowerCAmelCase = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
466
0
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Any , *lowerCamelCase__ :Union[str, Any] , **lowerCamelCase__ :int ): warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
383
UpperCamelCase = 8.3_144_598 def A ( lowercase__ : float , lowercase__ : float ) -> float: if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example UpperCamelCase = 300 UpperCamelCase = 28 UpperCamelCase = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
383
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCamelCase = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
204
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
204
1
'''simple docstring''' __SCREAMING_SNAKE_CASE = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355_818, } def __a ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: a__ : List[str] = ( F'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' F'Valid values are: {", ".join(lowerCAmelCase__ )}' ) raise ValueError(lowerCAmelCase__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
340
'''simple docstring''' class lowerCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , A__ : list[int] ) -> None: '''simple docstring''' a__ : Union[str, Any] = len(A__ ) a__ : Tuple = [0] * len_array if len_array > 0: a__ : Dict = array[0] for i in range(1 , A__ ): a__ : Optional[Any] = self.prefix_sum[i - 1] + array[i] def __lowerCAmelCase ( self : int , A__ : int , A__ : int ) -> int: '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __lowerCAmelCase ( self : Tuple , A__ : int ) -> bool: '''simple docstring''' a__ : Tuple = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A__ ) return False if __name__ == "__main__": import doctest doctest.testmod()
340
1
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowercase_ = logging.getLogger(__name__) lowercase_ = "Hello world! cécé herlolip" lowercase_ = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: lowercase__ = BertAbsConfig( temp_dir='.' , finetune_bert=_SCREAMING_SNAKE_CASE , large=_SCREAMING_SNAKE_CASE , share_emb=_SCREAMING_SNAKE_CASE , use_bert_emb=_SCREAMING_SNAKE_CASE , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) lowercase__ = torch.load(_SCREAMING_SNAKE_CASE , lambda _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : storage ) lowercase__ = AbsSummarizer(_SCREAMING_SNAKE_CASE , torch.device('cpu' ) , _SCREAMING_SNAKE_CASE ) original.eval() lowercase__ = BertAbsSummarizer(_SCREAMING_SNAKE_CASE , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) lowercase__ = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs lowercase__ = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_SCREAMING_SNAKE_CASE )) ) lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) lowercase__ = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_SCREAMING_SNAKE_CASE )) ) lowercase__ = torch.tensor(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass lowercase__ = encoder_input_ids lowercase__ = decoder_input_ids lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical lowercase__ = original(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] lowercase__ = original.generator(_SCREAMING_SNAKE_CASE ) lowercase__ = new_model( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] lowercase__ = new_model.generator(_SCREAMING_SNAKE_CASE ) lowercase__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_SCREAMING_SNAKE_CASE ) ) lowercase__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_SCREAMING_SNAKE_CASE ) ) lowercase__ = torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) lowercase_ = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
235
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path A: Optional[int] = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def _snake_case ( UpperCamelCase : List[str]=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=UpperCAmelCase__ ) ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Tuple = None def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: '''simple docstring''' with TemporaryDirectory() as tmp_dir: UpperCAmelCase : str = dataset_module_factory(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path , dataset=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE , hash=dataset_module.hash , ) UpperCAmelCase : Optional[int] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_SCREAMING_SNAKE_CASE ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) UpperCAmelCase : Tuple = cached_path(_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE ) self.assertTrue(os.path.exists(_SCREAMING_SNAKE_CASE ) ) @pytest.mark.integration def _snake_case ( UpperCamelCase : int ): UpperCAmelCase : str = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" UpperCAmelCase : Optional[int] = dataset_module_factory("""wikipedia""" , cache_dir=UpperCamelCase ) UpperCAmelCase : List[Any] = import_main_class(dataset_module.module_path ) UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=UpperCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCAmelCase : List[str] = None builder_instance.download_and_prepare() UpperCAmelCase : List[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : List[str] = dataset_module_factory("""wikipedia""" , cache_dir=UpperCamelCase ) UpperCAmelCase : Optional[Any] = import_main_class(dataset_module.module_path , dataset=UpperCamelCase ) UpperCAmelCase : DatasetBuilder = builder_cls( cache_dir=UpperCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) UpperCAmelCase : Any = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase , UpperCamelCase ) assert "train" in ds assert isinstance(ds["""train"""] , UpperCamelCase ) assert next(iter(ds["""train"""] ) )
160
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = '▁' _lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} _lowerCAmelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } _lowerCAmelCase = { 'facebook/mbart-large-en-ro': 1_0_2_4, 'facebook/mbart-large-cc25': 1_0_2_4, } # fmt: off _lowerCAmelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class __UpperCAmelCase( A__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["""input_ids""", """attention_mask"""] __magic_name__ = [] __magic_name__ = [] def __init__( self , __magic_name__ , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="</s>" , __magic_name__="<s>" , __magic_name__="<unk>" , __magic_name__="<pad>" , __magic_name__="<mask>" , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__ = None , __magic_name__=None , **__magic_name__ , ): """simple docstring""" A_ : Tuple = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token A_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , tokenizer_file=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ , additional_special_tokens=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) A_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) A_ : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A_ : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A_ : int = 1 A_ : Dict = len(self.sp_model ) A_ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ ) } A_ : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} A_ : List[str] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A_ : Union[str, Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) A_ : Union[str, Any] = src_lang if src_lang is not None else '''en_XX''' A_ : Tuple = self.lang_code_to_id[self._src_lang] A_ : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : int = None A_ : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __magic_name__ ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCAmelCase ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCAmelCase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) A_ : Optional[int] = [1] * len(self.prefix_tokens ) A_ : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" A_ : List[str] = [self.sep_token_id] A_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) A_ : str = src_lang A_ : Tuple = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) A_ : Dict = self.convert_tokens_to_ids(__magic_name__ ) A_ : Any = tgt_lang_id return inputs def UpperCAmelCase ( self ): """simple docstring""" A_ : List[Any] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A_ : Optional[Any] = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : Optional[int] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A_ : Dict = os.path.join( __magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = "en_XX" , __magic_name__ = None , __magic_name__ = "ro_RO" , **__magic_name__ , ): """simple docstring""" A_ : List[Any] = src_lang A_ : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : int = self.lang_code_to_id[src_lang] A_ : int = [] A_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : Union[str, Any] = self.lang_code_to_id[lang] A_ : Any = [] A_ : Optional[int] = [self.eos_token_id, self.cur_lang_code]
708
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowerCAmelCase = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _lowerCAmelCase = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _lowerCAmelCase = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } _lowerCAmelCase = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } _lowerCAmelCase = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } _lowerCAmelCase = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } _lowerCAmelCase = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } _lowerCAmelCase = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } _lowerCAmelCase = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __UpperCAmelCase( A__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCAmelCase( A__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) _lowerCAmelCase = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) _lowerCAmelCase = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(A__ ) class __UpperCAmelCase: """simple docstring""" def __call__( self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , **__magic_name__ , ): """simple docstring""" if titles is None and texts is None: return super().__call__( __magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , return_tensors=__magic_name__ , return_attention_mask=__magic_name__ , **__magic_name__ , ) elif titles is None or texts is None: A_ : Dict = titles if texts is None else texts return super().__call__( __magic_name__ , __magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , return_tensors=__magic_name__ , return_attention_mask=__magic_name__ , **__magic_name__ , ) A_ : Optional[int] = titles if not isinstance(__magic_name__ , __magic_name__ ) else [titles] A_ : Dict = texts if not isinstance(__magic_name__ , __magic_name__ ) else [texts] A_ : Tuple = len(__magic_name__ ) A_ : Any = questions if not isinstance(__magic_name__ , __magic_name__ ) else [questions] * n_passages if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( f"""There should be as many titles than texts but got {len(__magic_name__ )} titles and {len(__magic_name__ )} texts.""" ) A_ : Optional[int] = super().__call__(__magic_name__ , __magic_name__ , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids'''] A_ : Dict = super().__call__(__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids'''] A_ : Tuple = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__magic_name__ , __magic_name__ ) ] } if return_attention_mask is not False: A_ : Dict = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A_ : Tuple = attention_mask return self.pad(__magic_name__ , padding=__magic_name__ , max_length=__magic_name__ , return_tensors=__magic_name__ ) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = 16 , __magic_name__ = 64 , __magic_name__ = 4 , ): """simple docstring""" A_ : Any = reader_input['''input_ids'''] A_ , A_ , A_ : Dict = reader_output[:3] A_ : Tuple = len(__magic_name__ ) A_ : int = sorted(range(__magic_name__ ) , reverse=__magic_name__ , key=relevance_logits.__getitem__ ) A_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: A_ : Any = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A_ : Optional[int] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A_ : List[Any] = sequence_ids.index(self.pad_token_id ) else: A_ : Dict = len(__magic_name__ ) A_ : List[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__magic_name__ , top_spans=__magic_name__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__magic_name__ , start_index=__magic_name__ , end_index=__magic_name__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__magic_name__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ): """simple docstring""" A_ : Union[str, Any] = [] for start_index, start_score in enumerate(__magic_name__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A_ : List[str] = sorted(__magic_name__ , key=lambda __magic_name__ : x[1] , reverse=__magic_name__ ) A_ : str = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"""Wrong span indices: [{start_index}:{end_index}]""" ) A_ : List[str] = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__magic_name__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A__ ) class __UpperCAmelCase( A__ , A__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = READER_PRETRAINED_VOCAB_FILES_MAP __magic_name__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = READER_PRETRAINED_INIT_CONFIGURATION __magic_name__ = ["""input_ids""", """attention_mask"""]
236
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = 'audio-spectrogram-transformer' def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=1e-12 , _lowerCAmelCase=16 , _lowerCAmelCase=True , _lowerCAmelCase=10 , _lowerCAmelCase=10 , _lowerCAmelCase=1024 , _lowerCAmelCase=128 , **_lowerCAmelCase , ): super().__init__(**_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : str = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : Optional[Any] = patch_size UpperCAmelCase__ : Tuple = qkv_bias UpperCAmelCase__ : Tuple = frequency_stride UpperCAmelCase__ : Union[str, Any] = time_stride UpperCAmelCase__ : Optional[Any] = max_length UpperCAmelCase__ : Optional[int] = num_mel_bins
79
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels UpperCamelCase_ : Optional[int] = object() # For specifying empty leaf dict `{}` UpperCamelCase_ : Optional[int] = object() def __a ( _UpperCamelCase: Union[str, Any] , _UpperCamelCase: Optional[Any] ) -> Optional[Any]: """simple docstring""" _snake_case = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(_UpperCamelCase ) - len(_UpperCamelCase ) + 1 ): _snake_case = [x.match(_UpperCamelCase ) for x, y in zip(_UpperCamelCase , ks[i:] )] if matches and all(_UpperCamelCase ): return True return False def __a ( _UpperCamelCase: Optional[Any] ) -> Union[str, Any]: """simple docstring""" def replace(_UpperCamelCase: Tuple , _UpperCamelCase: List[str] ): for rule, replacement in rules: if _match(_UpperCamelCase , _UpperCamelCase ): return replacement return val return replace def __a ( ) -> Any: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , _UpperCamelCase )), (("transformer", "wte", "embedding"), P("mp" , _UpperCamelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(_UpperCamelCase , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , _UpperCamelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(_UpperCamelCase , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , _UpperCamelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def __a ( _UpperCamelCase: Union[str, Any] ) -> Any: """simple docstring""" _snake_case = _get_partition_rules() _snake_case = _replacement_rules(_UpperCamelCase ) _snake_case = {k: _unmatched for k in flatten_dict(_UpperCamelCase )} _snake_case = {k: replace(_UpperCamelCase , _UpperCamelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(_UpperCamelCase ) )
185
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCamelCase : List[Any] = TypeVar('''T''') class _UpperCamelCase (Generic[T] ): def __init__( self , __UpperCamelCase )-> Optional[int]: __lowerCAmelCase = data __lowerCAmelCase = None def __str__( self )-> str: return F"""{self.data}""" class _UpperCamelCase (Generic[T] ): def __init__( self )-> None: __lowerCAmelCase = None def __iter__( self )-> Iterator[T]: __lowerCAmelCase = self.top while node: yield node.data __lowerCAmelCase = node.next def __str__( self )-> str: return "->".join([str(__UpperCamelCase ) for item in self] ) def __len__( self )-> int: return len(tuple(iter(self ) ) ) def __UpperCAmelCase ( self )-> bool: return self.top is None def __UpperCAmelCase ( self , __UpperCamelCase )-> None: __lowerCAmelCase = Node(__UpperCamelCase ) if not self.is_empty(): __lowerCAmelCase = self.top __lowerCAmelCase = node def __UpperCAmelCase ( self )-> T: if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , __UpperCamelCase ) __lowerCAmelCase = self.top __lowerCAmelCase = self.top.next return pop_node.data def __UpperCAmelCase ( self )-> T: if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def __UpperCAmelCase ( self )-> None: __lowerCAmelCase = None if __name__ == "__main__": from doctest import testmod testmod()
290
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Any = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class _UpperCamelCase (a_ ): snake_case_ = """bloom""" snake_case_ = ["""past_key_values"""] snake_case_ = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self , __UpperCamelCase=2_5_0_8_8_0 , __UpperCamelCase=6_4 , __UpperCamelCase=2 , __UpperCamelCase=8 , __UpperCamelCase=1e-5 , __UpperCamelCase=0.0_2 , __UpperCamelCase=True , __UpperCamelCase=1 , __UpperCamelCase=2 , __UpperCamelCase=False , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=1 , __UpperCamelCase=False , **__UpperCamelCase , )-> Dict: __lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg __lowerCAmelCase = kwargs.pop("n_embed" , __UpperCamelCase ) __lowerCAmelCase = hidden_size if n_embed is None else n_embed __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = pretraining_tp __lowerCAmelCase = apply_residual_connection_post_layernorm __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id __lowerCAmelCase = slow_but_exact super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) class _UpperCamelCase (a_ ): snake_case_ = version.parse("""1.12""" ) def __init__( self , __UpperCamelCase , __UpperCamelCase = "default" , __UpperCamelCase = None , __UpperCamelCase = False , )-> str: super().__init__(__UpperCamelCase , task=__UpperCamelCase , patching_specs=__UpperCamelCase , use_past=__UpperCamelCase ) if not getattr(self._config , "pad_token_id" , __UpperCamelCase ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def __UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: __lowerCAmelCase = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" , inverted_values_shape=__UpperCamelCase ) __lowerCAmelCase = {0: "batch", 1: "past_sequence + sequence"} else: __lowerCAmelCase = {0: "batch", 1: "sequence"} return common_inputs @property def __UpperCAmelCase ( self )-> int: return self._config.n_layer @property def __UpperCAmelCase ( self )-> int: return self._config.n_head @property def __UpperCAmelCase ( self )-> float: return 1e-3 def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , )-> Mapping[str, Any]: __lowerCAmelCase = super(__UpperCamelCase , self ).generate_dummy_inputs( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = self._config.hidden_size // self.num_attention_heads __lowerCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __lowerCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __lowerCAmelCase = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs["attention_mask"] if self.use_past: __lowerCAmelCase = ordered_inputs["attention_mask"].dtype __lowerCAmelCase = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) return ordered_inputs @property def __UpperCAmelCase ( self )-> int: return 1_3
290
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case__ ( a_ ): _SCREAMING_SNAKE_CASE : Optional[int] = ["image_processor", "tokenizer"] _SCREAMING_SNAKE_CASE : Any = "CLIPImageProcessor" _SCREAMING_SNAKE_CASE : str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : Any , A__ : Union[str, Any]=None , A__ : Optional[Any]=None , **A__ : List[Any] ) -> Optional[Any]: '''simple docstring''' snake_case_ : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A__ , ) snake_case_ : int = kwargs.pop("feature_extractor" ) snake_case_ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A__ , A__ ) def __call__( self : Union[str, Any] , A__ : Any=None , A__ : Tuple=None , A__ : List[str]=None , **A__ : Dict ) -> Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: snake_case_ : str = self.tokenizer(A__ , return_tensors=A__ , **A__ ) if images is not None: snake_case_ : Tuple = self.image_processor(A__ , return_tensors=A__ , **A__ ) if text is not None and images is not None: snake_case_ : Dict = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A__ ) , tensor_type=A__ ) def UpperCAmelCase__ ( self : Optional[int] , *A__ : Union[str, Any] , **A__ : Optional[int] ) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*A__ , **A__ ) def UpperCAmelCase__ ( self : Any , *A__ : Any , **A__ : Optional[Any] ) -> str: '''simple docstring''' return self.tokenizer.decode(*A__ , **A__ ) @property def UpperCAmelCase__ ( self : Tuple ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = self.tokenizer.model_input_names snake_case_ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self : Optional[Any] ) -> int: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A__ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self : Any ) -> List[str]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A__ , ) return self.image_processor
666
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params __UpperCamelCase : Union[str, Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def a_ ( _A ) -> Any: """simple docstring""" for pegasus_name, hf_name in PATTERNS: snake_case__ = k.replace(_A , _A ) return k def a_ ( _A , _A ) -> PegasusForConditionalGeneration: """simple docstring""" snake_case__ = DEFAULTS.copy() cfg_kwargs.update(_A ) snake_case__ = PegasusConfig(**_A ) snake_case__ = PegasusForConditionalGeneration(_A ) snake_case__ = torch_model.model.state_dict() snake_case__ = {} for k, v in tf_weights.items(): snake_case__ = rename_state_dict_key(_A ) if new_k not in sd: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: snake_case__ = v.T snake_case__ = torch.tensor(_A , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected snake_case__ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) snake_case__ = mapping['shared.weight'] snake_case__ = mapping['shared.weight'] snake_case__ = {k: torch.zeros_like(_A ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**_A ) snake_case__ , snake_case__ = torch_model.model.load_state_dict(_A , strict=_A ) snake_case__ = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def a_ ( _A="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: """simple docstring""" snake_case__ = tf.train.list_variables(_A ) snake_case__ = {} snake_case__ = ['Adafactor', 'global_step'] for name, shape in tqdm(_A , desc='converting tf checkpoint to dict' ): snake_case__ = any(pat in name for pat in ignore_name ) if skip_key: continue snake_case__ = tf.train.load_variable(_A , _A ) snake_case__ = array return tf_weights def a_ ( _A , _A ) -> List[Any]: """simple docstring""" # save tokenizer first snake_case__ = Path(_A ).parent.name snake_case__ = task_specific_params[f'''summarization_{dataset}''']['max_position_embeddings'] snake_case__ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=_A ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(_A ) # convert model snake_case__ = get_tf_weights_as_numpy(_A ) snake_case__ = task_specific_params[f'''summarization_{dataset}'''] if dataset == "large": snake_case__ = task_specific_params snake_case__ = convert_pegasus(_A , _A ) torch_model.save_pretrained(_A ) snake_case__ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(_A , Path(_A ) / 'pytorch_model.bin' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") __UpperCamelCase : List[Any] = parser.parse_args() if args.save_dir is None: __UpperCamelCase : Any = Path(args.tf_ckpt_path).parent.name __UpperCamelCase : List[Any] = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
328
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
702
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder a = """base_with_context""" def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : List[str] ): """simple docstring""" _lowerCAmelCase :Dict = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) _lowerCAmelCase :Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__magic_name__ ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase :Optional[int] = weights[f"""layers_{lyr_num}"""] _lowerCAmelCase :Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) _lowerCAmelCase :Any = ly_weight['attention'] _lowerCAmelCase :Any = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _lowerCAmelCase :Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _lowerCAmelCase :Any = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _lowerCAmelCase :Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _lowerCAmelCase :List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _lowerCAmelCase :Any = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _lowerCAmelCase :Optional[int] = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :int = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) _lowerCAmelCase :Union[str, Any] = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__magic_name__ ) for lyr_num, lyr in enumerate(model.encoders ): _lowerCAmelCase :Any = weights[f"""layers_{lyr_num}"""] _lowerCAmelCase :str = ly_weight['attention'] _lowerCAmelCase :str = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _lowerCAmelCase :Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _lowerCAmelCase :Tuple = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _lowerCAmelCase :str = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _lowerCAmelCase :Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) _lowerCAmelCase :Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _lowerCAmelCase :int = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _lowerCAmelCase :Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _lowerCAmelCase :str = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ): """simple docstring""" _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) _lowerCAmelCase :Any = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) _lowerCAmelCase :Dict = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__magic_name__ ) _lowerCAmelCase :List[Any] = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowerCAmelCase :int = weights[f"""layers_{lyr_num}"""] _lowerCAmelCase :Tuple = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) _lowerCAmelCase :Tuple = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) _lowerCAmelCase :Tuple = ly_weight['self_attention'] _lowerCAmelCase :Dict = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _lowerCAmelCase :Tuple = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _lowerCAmelCase :Tuple = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _lowerCAmelCase :List[Any] = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _lowerCAmelCase :List[Any] = ly_weight['MultiHeadDotProductAttention_0'] _lowerCAmelCase :Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) _lowerCAmelCase :Any = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) _lowerCAmelCase :str = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) _lowerCAmelCase :str = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) _lowerCAmelCase :Union[str, Any] = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) _lowerCAmelCase :int = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) _lowerCAmelCase :Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) _lowerCAmelCase :List[Any] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) _lowerCAmelCase :List[str] = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) _lowerCAmelCase :Optional[Any] = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def UpperCamelCase_( __magic_name__ : Optional[Any] ): """simple docstring""" _lowerCAmelCase :Dict = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowerCAmelCase :Tuple = jnp.tree_util.tree_map(onp.array , __magic_name__ ) _lowerCAmelCase :List[str] = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] _lowerCAmelCase :Any = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) _lowerCAmelCase :Tuple = inference.parse_training_gin_file(__magic_name__ , __magic_name__ ) _lowerCAmelCase :List[Any] = inference.InferenceModel(args.checkpoint_path , __magic_name__ ) _lowerCAmelCase :Dict = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) _lowerCAmelCase :Dict = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) _lowerCAmelCase :Any = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) _lowerCAmelCase :Any = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowerCAmelCase :str = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , __magic_name__ ) _lowerCAmelCase :Optional[int] = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , __magic_name__ ) _lowerCAmelCase :List[str] = load_decoder(ta_checkpoint['target']['decoder'] , __magic_name__ ) _lowerCAmelCase :Tuple = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) _lowerCAmelCase :Union[str, Any] = SpectrogramDiffusionPipeline( notes_encoder=__magic_name__ , continuous_encoder=__magic_name__ , decoder=__magic_name__ , scheduler=__magic_name__ , melgan=__magic_name__ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) a = parser.parse_args() main(args)
382
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _A : int = logging.get_logger(__name__) _A : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _A : Any = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } _A : Optional[int] = { """distilbert-base-uncased""": 5_12, """distilbert-base-uncased-distilled-squad""": 5_12, """distilbert-base-cased""": 5_12, """distilbert-base-cased-distilled-squad""": 5_12, """distilbert-base-german-cased""": 5_12, """distilbert-base-multilingual-cased""": 5_12, } _A : Optional[Any] = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Dict = VOCAB_FILES_NAMES lowerCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : Dict = ["""input_ids""", """attention_mask"""] lowerCamelCase__ : str = DistilBertTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ): '''simple docstring''' super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , A_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , A_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , A_ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE__ = getattr(A_ , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = strip_accents SCREAMING_SNAKE_CASE__ = tokenize_chinese_chars SCREAMING_SNAKE_CASE__ = normalizer_class(**A_ ) SCREAMING_SNAKE_CASE__ = do_lower_case def lowercase_ ( self , A_ , A_=None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , A_ , A_ = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , A_ , A_ = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
100
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Any = IFInpaintingPipeline lowerCamelCase__ : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} lowerCamelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowerCamelCase__ : Tuple = PipelineTesterMixin.required_optional_params - {"""latents"""} def lowercase_ ( self ): '''simple docstring''' return self._get_dummy_components() def lowercase_ ( self , A_ , A_=0 ): '''simple docstring''' if str(A_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(A_ ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=A_ ).manual_seed(A_ ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowercase_ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def lowercase_ ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def lowercase_ ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def lowercase_ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def lowercase_ ( self ): '''simple docstring''' self._test_save_load_local() def lowercase_ ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
100
1
'''simple docstring''' def _UpperCAmelCase ( a : float , a : float ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(1_0_0, 0.25) = }""") print(f"""{price_plus_tax(125.50, 0.05) = }""")
7
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
1
"""simple docstring""" def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[int]: """simple docstring""" if index == r: for j in range(__A ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCamelCase = arr[i] combination_util(__A , __A , __A , index + 1 , __A , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__A , __A , __A , __A , __A , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Dict: """simple docstring""" # A temporary array to store all combination one by one UpperCamelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(__A , __A , __A , 0 , __A , 0 ) if __name__ == "__main__": # Driver code to check the function above SCREAMING_SNAKE_CASE = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
554
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def A__ ( __A : List[str] , __A : Optional[Any] , __A : Union[str, Any] , __A : int="attention" ) ->str: __A =params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] __A =params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] __A =params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] __A =params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def A__ ( __A : Optional[int] , __A : List[str] , __A : Any , __A : Tuple=False ) ->Any: if split_mlp_wi: __A =params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] __A =params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] __A =(wi_a, wi_a) else: __A =params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] __A =params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def A__ ( __A : int , __A : Any , __A : Any , __A : Optional[Any] ) ->str: return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def A__ ( __A : dict , *, __A : int , __A : bool ) ->Optional[Any]: __A =traverse_util.flatten_dict(variables['''target'''] ) __A ={'''/'''.join(__A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __A ='''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , __A ) __A =collections.OrderedDict() # Shared embeddings. __A =old['''token_embedder/embedding'''] # Encoder. for i in range(__A ): # Block i, layer 0 (Self Attention). __A =tax_layer_norm_lookup(__A , __A , '''encoder''' , '''pre_attention_layer_norm''' ) __A , __A , __A , __A =tax_attention_lookup(__A , __A , '''encoder''' , '''attention''' ) __A =layer_norm __A =k.T __A =o.T __A =q.T __A =v.T # Block i, layer 1 (MLP). __A =tax_layer_norm_lookup(__A , __A , '''encoder''' , '''pre_mlp_layer_norm''' ) __A , __A =tax_mlp_lookup(__A , __A , '''encoder''' , __A ) __A =layer_norm if split_mlp_wi: __A =wi[0].T __A =wi[1].T else: __A =wi.T __A =wo.T __A =old[ '''encoder/relpos_bias/rel_embedding''' ].T __A =old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(__A ): # Block i, layer 0 (Self Attention). __A =tax_layer_norm_lookup(__A , __A , '''decoder''' , '''pre_self_attention_layer_norm''' ) __A , __A , __A , __A =tax_attention_lookup(__A , __A , '''decoder''' , '''self_attention''' ) __A =layer_norm __A =k.T __A =o.T __A =q.T __A =v.T # Block i, layer 1 (Cross Attention). __A =tax_layer_norm_lookup(__A , __A , '''decoder''' , '''pre_cross_attention_layer_norm''' ) __A , __A , __A , __A =tax_attention_lookup(__A , __A , '''decoder''' , '''encoder_decoder_attention''' ) __A =layer_norm __A =k.T __A =o.T __A =q.T __A =v.T # Block i, layer 2 (MLP). __A =tax_layer_norm_lookup(__A , __A , '''decoder''' , '''pre_mlp_layer_norm''' ) __A , __A =tax_mlp_lookup(__A , __A , '''decoder''' , __A ) __A =layer_norm if split_mlp_wi: __A =wi[0].T __A =wi[1].T else: __A =wi.T __A =wo.T __A =old['''decoder/decoder_norm/scale'''] __A =old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __A =old['''decoder/logits_dense/kernel'''].T return new def A__ ( __A : Union[str, Any] , __A : bool ) ->Any: __A =collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __A =state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __A =state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) __A =state_dict['''shared.weight'''] return state_dict def A__ ( __A : str , __A : Optional[int] , __A : int , __A : Optional[Any] ) ->Tuple: __A =checkpoints.load_tax_checkpoint(__A ) __A =convert_tax_to_pytorch(__A , num_layers=config.num_layers , is_encoder_only=__A ) __A =make_state_dict(__A , __A ) model.load_state_dict(__A , strict=__A ) def A__ ( __A : List[str] , __A : str , __A : str , __A : bool = False ) ->List[str]: __A =TaConfig.from_json_file(__A ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __A =TaEncoderModel(__A ) else: __A =TaForConditionalGeneration(__A ) # Load weights from tf checkpoint load_tax_weights_in_ta(__A , __A , __A , __A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__A ) # Verify that we can load the checkpoint. model.from_pretrained(__A ) print('''Done''' ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) _lowerCamelCase : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
184
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCAmelCase = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } __UpperCAmelCase = { '''squeezebert/squeezebert-uncased''': 512, '''squeezebert/squeezebert-mnli''': 512, '''squeezebert/squeezebert-mnli-headless''': 512, } __UpperCAmelCase = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class a__ ( a__ ): '''simple docstring''' lowercase__ : Optional[int] = VOCAB_FILES_NAMES lowercase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase__ : int = PRETRAINED_INIT_CONFIGURATION lowercase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Tuple = SqueezeBertTokenizer def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_="[UNK]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[PAD]" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Optional[Any]: super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase_ ) != tokenize_chinese_chars ): lowerCAmelCase__ = getattr(lowerCamelCase_ , normalizer_state.pop('''type''' ) ) lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = strip_accents lowerCAmelCase__ = tokenize_chinese_chars lowerCAmelCase__ = normalizer_class(**lowerCamelCase_ ) lowerCAmelCase__ = do_lower_case def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=None ) -> Union[str, Any]: lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: lowerCAmelCase__ = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
98
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCAmelCase = logging.get_logger(__name__) # General docstring __UpperCAmelCase = '''RegNetConfig''' # Base docstring __UpperCAmelCase = '''facebook/regnet-y-040''' __UpperCAmelCase = [1, 1_088, 7, 7] # Image classification docstring __UpperCAmelCase = '''facebook/regnet-y-040''' __UpperCAmelCase = '''tabby, tabby cat''' __UpperCAmelCase = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 3 , lowerCamelCase_ = 1 , lowerCamelCase_ = 1 , lowerCamelCase_ = "relu" , ) -> int: super().__init__() lowerCAmelCase__ = nn.Convad( lowerCamelCase_ , lowerCamelCase_ , kernel_size=lowerCamelCase_ , stride=lowerCamelCase_ , padding=kernel_size // 2 , groups=lowerCamelCase_ , bias=lowerCamelCase_ , ) lowerCAmelCase__ = nn.BatchNormad(lowerCamelCase_ ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else nn.Identity() def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Dict: lowerCAmelCase__ = self.convolution(lowerCamelCase_ ) lowerCAmelCase__ = self.normalization(lowerCamelCase_ ) lowerCAmelCase__ = self.activation(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[Any]: super().__init__() lowerCAmelCase__ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) lowerCAmelCase__ = config.num_channels def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: lowerCAmelCase__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowerCAmelCase__ = self.embedder(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 2 ) -> Any: super().__init__() lowerCAmelCase__ = nn.Convad(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , stride=lowerCamelCase_ , bias=lowerCamelCase_ ) lowerCAmelCase__ = nn.BatchNormad(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Tensor: lowerCAmelCase__ = self.convolution(lowerCamelCase_ ) lowerCAmelCase__ = self.normalization(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: super().__init__() lowerCAmelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) lowerCAmelCase__ = nn.Sequential( nn.Convad(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 ) , nn.ReLU() , nn.Convad(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 ) , nn.Sigmoid() , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: # b c h w -> b c 1 1 lowerCAmelCase__ = self.pooler(lowerCamelCase_ ) lowerCAmelCase__ = self.attention(lowerCamelCase_ ) lowerCAmelCase__ = hidden_state * attention return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 ) -> Optional[int]: super().__init__() lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( RegNetShortCut(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ = nn.Sequential( RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ ) , ) lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = hidden_state lowerCAmelCase__ = self.layer(lowerCamelCase_ ) lowerCAmelCase__ = self.shortcut(lowerCamelCase_ ) hidden_state += residual lowerCAmelCase__ = self.activation(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 1 ) -> Optional[int]: super().__init__() lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( RegNetShortCut(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ = nn.Sequential( RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , groups=lowerCamelCase_ , activation=config.hidden_act ) , RegNetSELayer(lowerCamelCase_ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(lowerCamelCase_ , lowerCamelCase_ , kernel_size=1 , activation=lowerCamelCase_ ) , ) lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Union[str, Any]: lowerCAmelCase__ = hidden_state lowerCAmelCase__ = self.layer(lowerCamelCase_ ) lowerCAmelCase__ = self.shortcut(lowerCamelCase_ ) hidden_state += residual lowerCAmelCase__ = self.activation(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 2 , lowerCamelCase_ = 2 , ) -> Dict: super().__init__() lowerCAmelCase__ = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowerCAmelCase__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , stride=lowerCamelCase_ , ) , *[layer(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for _ in range(depth - 1 )] , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = self.layers(lowerCamelCase_ ) return hidden_state class a__ ( nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[int]: super().__init__() lowerCAmelCase__ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCamelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCamelCase_ , config.depths[1:] ): self.stages.append(RegNetStage(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , depth=lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = True ) -> BaseModelOutputWithNoAttention: lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(lowerCamelCase_ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase_ , hidden_states=lowerCamelCase_ ) class a__ ( a__ ): '''simple docstring''' lowercase__ : List[Any] = RegNetConfig lowercase__ : Tuple = "regnet" lowercase__ : List[str] = "pixel_values" lowercase__ : Tuple = True def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: if isinstance(lowerCamelCase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=False ) -> int: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = value __UpperCAmelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __UpperCAmelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , a__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[int]: super().__init__(lowerCamelCase_ ) lowerCAmelCase__ = config lowerCAmelCase__ = RegNetEmbeddings(lowerCamelCase_ ) lowerCAmelCase__ = RegNetEncoder(lowerCamelCase_ ) lowerCAmelCase__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None ) -> BaseModelOutputWithPoolingAndNoAttention: lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(lowerCamelCase_ ) lowerCAmelCase__ = self.encoder( lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(lowerCamelCase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase_ , pooler_output=lowerCamelCase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , a__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class a__ ( a__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> Optional[Any]: super().__init__(lowerCamelCase_ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = RegNetModel(lowerCamelCase_ ) # classification head lowerCAmelCase__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> ImageClassifierOutputWithNoAttention: lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet(lowerCamelCase_ , output_hidden_states=lowerCamelCase_ , return_dict=lowerCamelCase_ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier(lowerCamelCase_ ) lowerCAmelCase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ = '''single_label_classification''' else: lowerCAmelCase__ = '''multi_label_classification''' if self.config.problem_type == "regression": lowerCAmelCase__ = MSELoss() if self.num_labels == 1: lowerCAmelCase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase__ = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ = CrossEntropyLoss() lowerCAmelCase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ = BCEWithLogitsLoss() lowerCAmelCase__ = loss_fct(lowerCamelCase_ , lowerCamelCase_ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCamelCase_ , logits=lowerCamelCase_ , hidden_states=outputs.hidden_states )
98
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _a: List[Any] = logging.get_logger(__name__) _a: Union[str, Any] = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = 'perceiver' def __init__( self : List[Any] , lowerCAmelCase : Union[str, Any]=256 , lowerCAmelCase : Union[str, Any]=1_280 , lowerCAmelCase : Dict=768 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : Optional[int]=26 , lowerCAmelCase : Dict=8 , lowerCAmelCase : Any=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any=None , lowerCAmelCase : List[Any]="kv" , lowerCAmelCase : Any=1 , lowerCAmelCase : int=1 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Union[str, Any]=1e-12 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Union[str, Any]=262 , lowerCAmelCase : Tuple=2_048 , lowerCAmelCase : Optional[Any]=56 , lowerCAmelCase : str=[368, 496] , lowerCAmelCase : Optional[int]=16 , lowerCAmelCase : Optional[int]=1_920 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : List[str]=[1, 16, 224, 224] , **lowerCAmelCase : int , ): '''simple docstring''' super().__init__(**lowerCAmelCase ) UpperCAmelCase_ = num_latents UpperCAmelCase_ = d_latents UpperCAmelCase_ = d_model UpperCAmelCase_ = num_blocks UpperCAmelCase_ = num_self_attends_per_block UpperCAmelCase_ = num_self_attention_heads UpperCAmelCase_ = num_cross_attention_heads UpperCAmelCase_ = qk_channels UpperCAmelCase_ = v_channels UpperCAmelCase_ = cross_attention_shape_for_attention UpperCAmelCase_ = self_attention_widening_factor UpperCAmelCase_ = cross_attention_widening_factor UpperCAmelCase_ = hidden_act UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = use_query_residual # masked language modeling attributes UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings # image classification attributes UpperCAmelCase_ = image_size # flow attributes UpperCAmelCase_ = train_size # multimodal autoencoding attributes UpperCAmelCase_ = num_frames UpperCAmelCase_ = audio_samples_per_frame UpperCAmelCase_ = samples_per_patch UpperCAmelCase_ = output_shape class __UpperCamelCase ( lowercase ): @property def __A ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __A ( self : Dict ): '''simple docstring''' return 1e-4 def __A ( self : List[Any] , lowerCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 40 , lowerCAmelCase : int = 40 , ): '''simple docstring''' if isinstance(lowerCAmelCase , lowerCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ = compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase_ = preprocessor.num_special_tokens_to_add(lowerCAmelCase ) UpperCAmelCase_ = compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase_ = [" ".join(["a"] ) * seq_length] * batch_size UpperCAmelCase_ = dict(preprocessor(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) UpperCAmelCase_ = inputs.pop("input_ids" ) return inputs elif isinstance(lowerCAmelCase , lowerCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase_ = compute_effective_axis_dimension(lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase_ = self._generate_dummy_images(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = dict(preprocessor(images=lowerCAmelCase , return_tensors=lowerCAmelCase ) ) UpperCAmelCase_ = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
162
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = [0] * len(_SCREAMING_SNAKE_CASE ) lowercase__ = [] lowercase__ = [1] * len(_SCREAMING_SNAKE_CASE ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(_SCREAMING_SNAKE_CASE ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_SCREAMING_SNAKE_CASE ) print(max(_SCREAMING_SNAKE_CASE ) ) # Adjacency list of Graph lowercase_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
235
0
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _lowercase : def __init__( self: List[Any] , UpperCamelCase__: int , ): lowerCamelCase__ : str = parent lowerCamelCase__ : Tuple = 13 lowerCamelCase__ : int = 7 lowerCamelCase__ : Tuple = 30 lowerCamelCase__ : str = self.seq_length + self.mem_len lowerCamelCase__ : Any = 15 lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : str = 99 lowerCamelCase__ : str = [10, 50, 80] lowerCamelCase__ : int = 32 lowerCamelCase__ : Dict = 32 lowerCamelCase__ : Tuple = 4 lowerCamelCase__ : str = 8 lowerCamelCase__ : Dict = 128 lowerCamelCase__ : Optional[int] = 2 lowerCamelCase__ : Optional[int] = 2 lowerCamelCase__ : Dict = None lowerCamelCase__ : List[Any] = 1 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[str] = 3 lowerCamelCase__ : Optional[Any] = self.vocab_size - 1 lowerCamelCase__ : List[Any] = 0.01 def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[int] = None if self.use_labels: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Dict = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def lowerCamelCase_ ( self: List[str] ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Any , UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] ): lowerCamelCase__ : Union[str, Any] = TFTransfoXLModel(UpperCamelCase__ ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = model(UpperCamelCase__ ).to_tuple() lowerCamelCase__ : List[str] = {"""input_ids""": input_ids_a, """mems""": mems_a} lowerCamelCase__ , lowerCamelCase__ : List[Any] = model(UpperCamelCase__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowerCamelCase_ ( self: Dict , UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] ): lowerCamelCase__ : Tuple = TFTransfoXLLMHeadModel(UpperCamelCase__ ) lowerCamelCase__ , lowerCamelCase__ : List[str] = model(UpperCamelCase__ ).to_tuple() lowerCamelCase__ : Optional[int] = {"""input_ids""": input_ids_a, """labels""": lm_labels} lowerCamelCase__ , lowerCamelCase__ : str = model(UpperCamelCase__ ).to_tuple() lowerCamelCase__ , lowerCamelCase__ : Any = model([input_ids_a, mems_a] ).to_tuple() lowerCamelCase__ : List[str] = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} lowerCamelCase__ , lowerCamelCase__ : Dict = model(UpperCamelCase__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Dict , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : Dict = TFTransfoXLForSequenceClassification(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Tuple = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : Optional[Any] = config_and_inputs lowerCamelCase__ : Dict = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) a = () if is_tf_available() else () a = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented a = False a = False a = False a = False def lowerCamelCase_ ( self: str , UpperCamelCase__: str , UpperCamelCase__: Tuple , UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: str ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def lowerCamelCase_ ( self: str ): lowerCamelCase__ : List[str] = TFTransfoXLModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , d_embed=37 ) def lowerCamelCase_ ( self: List[Any] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self: Dict ): self.model_tester.set_seed() lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): self.model_tester.set_seed() lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowerCamelCase__ : int = model_class(UpperCamelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowerCamelCase__ : Union[str, Any] = model.get_output_embeddings() assert isinstance(UpperCamelCase__ , tf.keras.layers.Layer ) lowerCamelCase__ : Any = model.get_bias() assert name is None else: lowerCamelCase__ : List[str] = model.get_output_embeddings() assert x is None lowerCamelCase__ : int = model.get_bias() assert name is None def lowerCamelCase_ ( self: str ): # TODO JP: Make TransfoXL XLA compliant pass @slow def lowerCamelCase_ ( self: List[Any] ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Tuple = TFTransfoXLModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def lowerCamelCase_ ( self: Tuple ): pass @require_tf class _lowercase ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Any = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off lowerCamelCase__ : Optional[Any] = tf.convert_to_tensor([[33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowerCamelCase__ : Optional[int] = [33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0,33,1,1_857,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,28,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowerCamelCase__ : List[Any] = model.generate(UpperCamelCase__ , max_length=200 , do_sample=UpperCamelCase__ ) self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase__ )
708
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowercase ( _lowercase ): a = """""" a = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) a = None # compression type in fsspec. ex: "gzip" a = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self: str , UpperCamelCase__: str = "" , UpperCamelCase__: Optional[str] = None , UpperCamelCase__: Optional[dict] = None , **UpperCamelCase__: List[Any] ): super().__init__(self , **UpperCamelCase__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase__ : List[Any] = fsspec.open( UpperCamelCase__ , mode="""rb""" , protocol=UpperCamelCase__ , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase__ : str = os.path.basename(self.file.path.split("""::""" )[0] ) lowerCamelCase__ : Union[str, Any] = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) lowerCamelCase__ : Tuple = None @classmethod def lowerCamelCase_ ( cls: Optional[int] , UpperCamelCase__: Optional[int] ): # compressed file paths are always relative to the archive root return super()._strip_protocol(UpperCamelCase__ ).lstrip("""/""" ) def lowerCamelCase_ ( self: Tuple ): if self.dir_cache is None: lowerCamelCase__ : Dict = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} lowerCamelCase__ : int = {f["""name"""]: f} def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: str ): return self.file.open().read() def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: str , UpperCamelCase__: str = "rb" , UpperCamelCase__: Optional[int]=None , UpperCamelCase__: Tuple=True , UpperCamelCase__: Tuple=None , **UpperCamelCase__: Optional[Any] , ): lowerCamelCase__ : Union[str, Any] = self._strip_protocol(UpperCamelCase__ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class _lowercase ( _lowercase ): a = """bz2""" a = """bz2""" a = """.bz2""" class _lowercase ( _lowercase ): a = """gzip""" a = """gzip""" a = """.gz""" class _lowercase ( _lowercase ): a = """lz4""" a = """lz4""" a = """.lz4""" class _lowercase ( _lowercase ): a = """xz""" a = """xz""" a = """.xz""" class _lowercase ( _lowercase ): a = """zstd""" a = """zstd""" a = """.zst""" def __init__( self: int , UpperCamelCase__: str , UpperCamelCase__: str = "rb" , UpperCamelCase__: Optional[str] = None , UpperCamelCase__: Optional[dict] = None , UpperCamelCase__: int = DEFAULT_BLOCK_SIZE , **UpperCamelCase__: Dict , ): super().__init__( fo=UpperCamelCase__ , mode=UpperCamelCase__ , target_protocol=UpperCamelCase__ , target_options=UpperCamelCase__ , block_size=UpperCamelCase__ , **UpperCamelCase__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase__ : Tuple = self.file.__enter__ class _lowercase : def __init__( self: Optional[int] , UpperCamelCase__: Any ): lowerCamelCase__ : Optional[int] = file_ def __enter__( self: List[Any] ): self._file.__enter__() return self def __exit__( self: Any , *UpperCamelCase__: str , **UpperCamelCase__: Any ): self._file.__exit__(*UpperCamelCase__ , **UpperCamelCase__ ) def __iter__( self: Any ): return iter(self._file ) def lowerCamelCase_ ( self: List[Any] ): return next(self._file ) def __getattr__( self: List[str] , UpperCamelCase__: Dict ): return getattr(self._file , UpperCamelCase__ ) def fixed_enter(*UpperCamelCase__: Union[str, Any] , **UpperCamelCase__: List[str] ): return WrappedFile(_enter(*UpperCamelCase__ , **UpperCamelCase__ ) ) lowerCamelCase__ : Optional[Any] = fixed_enter
631
0
import argparse import os import re import packaging.version __magic_name__ = '''examples/''' __magic_name__ = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __magic_name__ = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } __magic_name__ = '''README.md''' def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_): '''simple docstring''' with open(lowerCAmelCase_ , "r" , encoding="utf-8" , newline="\n") as f: lowerCamelCase_ : Tuple = f.read() lowerCamelCase_ ,lowerCamelCase_ : Union[str, Any] = REPLACE_PATTERNS[pattern] lowerCamelCase_ : Any = replace.replace("VERSION" , lowerCAmelCase_) lowerCamelCase_ : Any = re_pattern.sub(lowerCAmelCase_ , lowerCAmelCase_) with open(lowerCAmelCase_ , "w" , encoding="utf-8" , newline="\n") as f: f.write(lowerCAmelCase_) def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' for folder, directories, fnames in os.walk(lowerCAmelCase_): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects") if "legacy" in directories: directories.remove("legacy") for fname in fnames: if fname.endswith(".py"): update_version_in_file(os.path.join(lowerCAmelCase_ , lowerCAmelCase_) , lowerCAmelCase_ , pattern="examples") def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_=False): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) if not patch: update_version_in_examples(lowerCAmelCase_) def __magic_name__ ( ): '''simple docstring''' lowerCamelCase_ : Optional[Any] = "🤗 Transformers currently provides the following architectures" lowerCamelCase_ : int = "1. Want to contribute a new model?" with open(lowerCAmelCase_ , "r" , encoding="utf-8" , newline="\n") as f: lowerCamelCase_ : int = f.readlines() # Find the start of the list. lowerCamelCase_ : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt): start_index += 1 start_index += 1 lowerCamelCase_ : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt): if lines[index].startswith("1."): lowerCamelCase_ : int = lines[index].replace( "https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , ) index += 1 with open(lowerCAmelCase_ , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(lowerCAmelCase_) def __magic_name__ ( ): '''simple docstring''' with open(REPLACE_FILES["init"] , "r") as f: lowerCamelCase_ : int = f.read() lowerCamelCase_ : Optional[Any] = REPLACE_PATTERNS["init"][0].search(lowerCAmelCase_).groups()[0] return packaging.version.parse(lowerCAmelCase_) def __magic_name__ ( lowerCAmelCase_=False): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!") if default_version.is_devrelease: lowerCamelCase_ : Union[str, Any] = default_version.base_version elif patch: lowerCamelCase_ : int = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: lowerCamelCase_ : Union[str, Any] = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. lowerCamelCase_ : int = input(F"""Which version are you releasing? [{default_version}]""") if len(lowerCAmelCase_) == 0: lowerCamelCase_ : Tuple = default_version print(F"""Updating version to {version}.""") global_version_update(lowerCAmelCase_ , patch=lowerCAmelCase_) def __magic_name__ ( ): '''simple docstring''' lowerCamelCase_ : Any = get_version() lowerCamelCase_ : Dict = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" lowerCamelCase_ : int = current_version.base_version # Check with the user we got that right. lowerCamelCase_ : List[Any] = input(F"""Which version are we developing now? [{dev_version}]""") if len(lowerCAmelCase_) == 0: lowerCamelCase_ : List[Any] = dev_version print(F"""Updating version to {version}.""") global_version_update(lowerCAmelCase_) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __magic_name__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
250
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''ConditionalDetrFeatureExtractor'''] __magic_name__ = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
250
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore a__ : Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" a__ : int = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('''\n'''.join(upper_files) + '''\n''') a__ : str = [file for file in filepaths if ''' ''' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('''\n'''.join(space_files) + '''\n''') a__ : Optional[Any] = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('''\n'''.join(hyphen_files) + '''\n''') a__ : List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('''\n'''.join(nodir_files) + '''\n''') a__ : Optional[int] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
333
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = AutoencoderKL __SCREAMING_SNAKE_CASE : Optional[int] = 'sample' __SCREAMING_SNAKE_CASE : Any = 1E-2 @property def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = 4 SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : int = (32, 32) SCREAMING_SNAKE_CASE : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCamelCase ) return {"sample": image} @property def __lowerCAmelCase ( self ) ->str: return (3, 32, 32) @property def __lowerCAmelCase ( self ) ->Dict: return (3, 32, 32) def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self ) ->Dict: pass def __lowerCAmelCase ( self ) ->Optional[Any]: pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def __lowerCAmelCase ( self ) ->Dict: # enable deterministic behavior for gradient checkpointing SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = self.model_class(**_lowerCamelCase ) model.to(_lowerCamelCase ) assert not model.is_gradient_checkpointing and model.training SCREAMING_SNAKE_CASE : Tuple = model(**_lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn_like(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing SCREAMING_SNAKE_CASE : str = self.model_class(**_lowerCamelCase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowerCamelCase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training SCREAMING_SNAKE_CASE : Any = model_a(**_lowerCamelCase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() SCREAMING_SNAKE_CASE : Tuple = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) SCREAMING_SNAKE_CASE : List[Any] = dict(model.named_parameters() ) SCREAMING_SNAKE_CASE : Optional[int] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : str = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) SCREAMING_SNAKE_CASE : Dict = model.to(_lowerCamelCase ) model.eval() if torch_device == "mps": SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(0 ) else: SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE : List[Any] = image.to(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase , sample_posterior=_lowerCamelCase , generator=_lowerCamelCase ).sample SCREAMING_SNAKE_CASE : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": SCREAMING_SNAKE_CASE : str = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: SCREAMING_SNAKE_CASE : Dict = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(_lowerCamelCase , _lowerCamelCase , rtol=1e-2 ) ) @slow class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Union[str, Any]: return F"""gaussian_noise_s={seed}_shape={"_".join([str(_lowerCamelCase ) for s in shape] )}.npy""" def __lowerCAmelCase ( self ) ->Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self , _lowerCamelCase=0 , _lowerCamelCase=(4, 3, 512, 512) , _lowerCamelCase=False ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowerCamelCase , _lowerCamelCase ) ) ).to(_lowerCamelCase ).to(_lowerCamelCase ) return image def __lowerCAmelCase ( self , _lowerCamelCase="CompVis/stable-diffusion-v1-4" , _lowerCamelCase=False ) ->List[Any]: SCREAMING_SNAKE_CASE : List[str] = '''fp16''' if fpaa else None SCREAMING_SNAKE_CASE : Dict = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL.from_pretrained( _lowerCamelCase , subfolder='''vae''' , torch_dtype=_lowerCamelCase , revision=_lowerCamelCase , ) model.to(_lowerCamelCase ).eval() return model def __lowerCAmelCase ( self , _lowerCamelCase=0 ) ->Optional[int]: if torch_device == "mps": return torch.manual_seed(_lowerCamelCase ) return torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.get_generator(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , generator=_lowerCamelCase , sample_posterior=_lowerCamelCase ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : Any = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE : Any = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model(fpaa=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_sd_image(_lowerCamelCase , fpaa=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.get_generator(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase , generator=_lowerCamelCase , sample_posterior=_lowerCamelCase ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : Optional[int] = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE : str = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(_lowerCamelCase ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : Dict = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : str = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE : Any = sample[-1, -2:, :2, -2:].flatten().cpu() SCREAMING_SNAKE_CASE : Tuple = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model(fpaa=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] SCREAMING_SNAKE_CASE : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(_lowerCamelCase ) assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model(fpaa=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) , fpaa=_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model.decode(_lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[int]: SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : int = self.get_sd_image(_lowerCamelCase , shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model.decode(_lowerCamelCase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model.decode(_lowerCamelCase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_generator(_lowerCamelCase ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model.encode(_lowerCamelCase ).latent_dist SCREAMING_SNAKE_CASE : int = dist.sample(generator=_lowerCamelCase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] SCREAMING_SNAKE_CASE : Optional[Any] = sample[0, -1, -3:, -3:].flatten().cpu() SCREAMING_SNAKE_CASE : List[str] = torch.tensor(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(_lowerCamelCase , _lowerCamelCase , atol=_lowerCamelCase )
333
1
from heapq import heappop, heappush import numpy as np def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) ->Tuple: UpperCAmelCase , UpperCAmelCase = grid.shape UpperCAmelCase = [-1, 1, 0, 0] UpperCAmelCase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCAmelCase , UpperCAmelCase = [(0, source)], set() UpperCAmelCase = np.full((rows, cols) , np.inf ) UpperCAmelCase = 0 UpperCAmelCase = np.empty((rows, cols) , dtype=__snake_case ) UpperCAmelCase = None while queue: ((UpperCAmelCase) , (UpperCAmelCase)) = heappop(__snake_case ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCAmelCase = [] while (x, y) != source: path.append((x, y) ) UpperCAmelCase , UpperCAmelCase = predecessors[x, y] path.append(__snake_case ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__snake_case ) ): UpperCAmelCase , UpperCAmelCase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCAmelCase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__snake_case , (dist + 1, (nx, ny)) ) UpperCAmelCase = dist + 1 UpperCAmelCase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
377
from __future__ import annotations def __lowerCAmelCase ( __snake_case ): __lowerCAmelCase = len(__snake_case ) # We need to create solution object to save path. __lowerCAmelCase = [[0 for _ in range(__snake_case )] for _ in range(__snake_case )] __lowerCAmelCase = run_maze(__snake_case , 0 , 0 , __snake_case ) if solved: print("\n".join(str(__snake_case ) for row in solutions ) ) else: print("No solution exists!" ) return solved def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case , __snake_case ): __lowerCAmelCase = len(__snake_case ) # Final check point. if i == j == (size - 1): __lowerCAmelCase = 1 return True __lowerCAmelCase = (not i < 0) and (not j < 0) # Check lower bounds __lowerCAmelCase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowerCAmelCase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowerCAmelCase = 1 # check for directions if ( run_maze(__snake_case , i + 1 , __snake_case , __snake_case ) or run_maze(__snake_case , __snake_case , j + 1 , __snake_case ) or run_maze(__snake_case , i - 1 , __snake_case , __snake_case ) or run_maze(__snake_case , __snake_case , j - 1 , __snake_case ) ): return True __lowerCAmelCase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
367
0
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _snake_case ( _snake_case : Optional[Any] ) -> Optional[int]: '''simple docstring''' _A = VideoMAEConfig() set_architecture_configs(_snake_case , _snake_case ) if "finetuned" not in model_name: _A = False if "finetuned" in model_name: _A = 'huggingface/label-files' if "kinetics" in model_name: _A = 4_00 _A = 'kinetics400-id2label.json' elif "ssv2" in model_name: _A = 1_74 _A = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) _A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) _A = {int(_snake_case ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} return config def _snake_case ( _snake_case : Tuple , _snake_case : Tuple ) -> Any: '''simple docstring''' if "small" in model_name: _A = 3_84 _A = 15_36 _A = 12 _A = 16 _A = 12 _A = 3 _A = 1_92 _A = 7_68 elif "large" in model_name: _A = 10_24 _A = 40_96 _A = 24 _A = 16 _A = 12 _A = 8 _A = 5_12 _A = 20_48 elif "huge" in model_name: _A = 12_80 _A = 51_20 _A = 32 _A = 16 _A = 12 _A = 8 _A = 6_40 _A = 25_60 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def _snake_case ( _snake_case : Tuple ) -> Any: '''simple docstring''' if "encoder." in name: _A = name.replace('encoder.' , '' ) if "cls_token" in name: _A = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: _A = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _A = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _A = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _A = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: _A = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _A = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: _A = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: _A = name.replace('attn' , 'attention.self' ) if "attn" in name: _A = name.replace('attn' , 'attention.attention' ) if "norm1" in name: _A = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _A = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _A = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _A = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _A = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _A = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _A = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _A = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _A = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: _A = name.replace('head' , 'classifier' ) return name def _snake_case ( _snake_case : str , _snake_case : Optional[int] ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): _A = orig_state_dict.pop(_snake_case ) if key.startswith('encoder.' ): _A = key.replace('encoder.' , '' ) if "qkv" in key: _A = key.split('.' ) if key.startswith('decoder.blocks' ): _A = config.decoder_hidden_size _A = int(key_split[2] ) _A = 'decoder.decoder_layers.' if "weight" in key: _A = val[:dim, :] _A = val[dim : dim * 2, :] _A = val[-dim:, :] else: _A = config.hidden_size _A = int(key_split[1] ) _A = 'videomae.encoder.layer.' if "weight" in key: _A = val[:dim, :] _A = val[dim : dim * 2, :] _A = val[-dim:, :] else: _A = val return orig_state_dict def _snake_case ( ) -> Union[str, Any]: '''simple docstring''' _A = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _A = np.load(_snake_case ) return list(_snake_case ) def _snake_case ( _snake_case : Tuple , _snake_case : List[Any] , _snake_case : int , _snake_case : Dict ) -> Tuple: '''simple docstring''' _A = get_videomae_config(_snake_case ) if "finetuned" in model_name: _A = VideoMAEForVideoClassification(_snake_case ) else: _A = VideoMAEForPreTraining(_snake_case ) # download original checkpoint, hosted on Google Drive _A = 'pytorch_model.bin' gdown.cached_download(_snake_case , _snake_case , quiet=_snake_case ) _A = torch.load(_snake_case , map_location='cpu' ) if "model" in files: _A = files['model'] else: _A = files['module'] _A = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) model.eval() # verify model on basic input _A = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _A = prepare_video() _A = image_processor(_snake_case , return_tensors='pt' ) if "finetuned" not in model_name: _A = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _A = torch.load(_snake_case ) _A = model(**_snake_case ) _A = outputs.logits _A = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _A = torch.Size([1, 4_00] ) _A = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": _A = torch.Size([1, 1_74] ) _A = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": _A = torch.Size([1, 14_08, 15_36] ) _A = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": _A = torch.Size([1, 14_08, 15_36] ) _A = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one _A = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": _A = torch.Size([1, 14_08, 15_36] ) _A = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": _A = torch.Size([1, 4_00] ) _A = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": _A = torch.Size([1, 4_00] ) _A = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _A = torch.Size([1, 4_00] ) _A = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": _A = torch.Size([1, 4_00] ) _A = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": _A = torch.Size([1, 14_08, 15_36] ) _A = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _A = torch.Size([1, 1_74] ) _A = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": _A = torch.Size([1, 14_08, 15_36] ) _A = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": _A = torch.Size([1, 1_74] ) _A = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _snake_case , atol=1E-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1E-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": _A = outputs.loss assert torch.allclose(_snake_case , _snake_case , atol=1E-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) model.save_pretrained(_snake_case ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(_snake_case , organization='nielsr' ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''', type=str, help=( '''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct''' ''' download link.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''/Users/nielsrogge/Documents/VideoMAE/Test''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
718
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : list[int] ) -> list[int]: '''simple docstring''' if len(_snake_case ) == 0: return array _A , _A = min(_snake_case ), max(_snake_case ) # Compute the variables _A = _max - _min + 1 _A , _A = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: _A = i - _min _A = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. _A = 0 for i in range(_snake_case ): while holes_repeat[i] > 0: _A = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() a = input('''Enter numbers separated by comma:\n''') a = [int(x) for x in user_input.split(''',''')] print(pigeon_sort(unsorted))
505
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def _UpperCAmelCase ( a : str , a : str , a : Optional[Any] ): snake_case__ = os.path.abspath(a ) logger.info(F'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model snake_case__ = tf.train.list_variables(a ) snake_case__ = [] snake_case__ = [] snake_case__ = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") snake_case__ = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(F'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' snake_case__ = name[1:] # figure out how many levels deep the name is snake_case__ = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(a ) # read data snake_case__ = tf.train.load_variable(a , a ) names.append("""/""".join(a ) ) arrays.append(a ) logger.info(F'''Read a total of {len(a ):,} layers''' ) # Sanity check if len(set(a ) ) != 1: raise ValueError(F'''Found layer names with different depths (layer depth {list(set(a ) )})''' ) snake_case__ = list(set(a ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(a , a ): snake_case__ = full_name.split("""/""" ) snake_case__ = model snake_case__ = [] for i, m_name in enumerate(a ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): snake_case__ = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) snake_case__ = getattr(a , """embeddings""" ) snake_case__ = getattr(a , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) snake_case__ = getattr(a , """encoder""" ) snake_case__ = getattr(a , """layer""" ) snake_case__ = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) snake_case__ = getattr(a , """pooler""" ) snake_case__ = getattr(a , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) snake_case__ = getattr(a , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) snake_case__ = getattr(a , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) snake_case__ = getattr(a , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) snake_case__ = getattr(a , """token_type_embeddings""" ) else: raise ValueError(F'''Unknown embedding layer with name {full_name}''' ) trace.append("""weight""" ) snake_case__ = getattr(a , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) snake_case__ = getattr(a , """attention""" ) snake_case__ = getattr(a , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) snake_case__ = getattr(a , """attention""" ) snake_case__ = getattr(a , """output""" ) snake_case__ = getattr(a , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) snake_case__ = getattr(a , """attention""" ) snake_case__ = getattr(a , """output""" ) snake_case__ = getattr(a , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) snake_case__ = getattr(a , """output""" ) snake_case__ = getattr(a , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) snake_case__ = getattr(a , """output""" ) snake_case__ = getattr(a , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) snake_case__ = getattr(a , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) snake_case__ = getattr(a , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) snake_case__ = getattr(a , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) snake_case__ = getattr(a , """intermediate""" ) snake_case__ = getattr(a , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) snake_case__ = getattr(a , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) snake_case__ = getattr(a , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) snake_case__ = getattr(a , """weight""" ) else: logger.warning(F'''Ignored {m_name}''' ) # for certain layers reshape is necessary snake_case__ = """.""".join(a ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , a ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""" , a ): snake_case__ = array.reshape(pointer.data.shape ) if "kernel" in full_name: snake_case__ = array.transpose() if pointer.shape == array.shape: snake_case__ = torch.from_numpy(a ) else: raise ValueError( F'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' F''' {array.shape}''' ) logger.info(F'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def _UpperCAmelCase ( a : Optional[int] , a : List[str] , a : Optional[int] ): # Instantiate model logger.info(F'''Loading model based on config from {config_path}...''' ) snake_case__ = BertConfig.from_json_file(a ) snake_case__ = BertModel(a ) # Load weights from checkpoint logger.info(F'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(a , a , a ) # Save pytorch-model logger.info(F'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) a__ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
654
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) def _UpperCAmelCase ( a : List[str] , a : Any=False ): snake_case__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _UpperCAmelCase ( a : int , a : List[Any] , a : Union[str, Any]=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case__ = """""" else: snake_case__ = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) snake_case__ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[ : config.hidden_size, : ] snake_case__ = in_proj_bias[: config.hidden_size] snake_case__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ = in_proj_weight[ -config.hidden_size :, : ] snake_case__ = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( a : Dict , a : Union[str, Any] , a : int ): snake_case__ = dct.pop(a ) snake_case__ = val def _UpperCAmelCase ( ): snake_case__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def _UpperCAmelCase ( a : List[str] , a : Tuple ): snake_case__ = DeiTConfig() # all deit models have fine-tuned heads snake_case__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ = 1000 snake_case__ = """huggingface/label-files""" snake_case__ = """imagenet-1k-id2label.json""" snake_case__ = json.load(open(hf_hub_download(a , a , repo_type="""dataset""" ) , """r""" ) ) snake_case__ = {int(a ): v for k, v in idalabel.items()} snake_case__ = idalabel snake_case__ = {v: k for k, v in idalabel.items()} snake_case__ = int(deit_name[-6:-4] ) snake_case__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): snake_case__ = 192 snake_case__ = 768 snake_case__ = 12 snake_case__ = 3 elif deit_name[9:].startswith("""small""" ): snake_case__ = 384 snake_case__ = 1536 snake_case__ = 12 snake_case__ = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): snake_case__ = 1024 snake_case__ = 4096 snake_case__ = 24 snake_case__ = 16 # load original model from timm snake_case__ = timm.create_model(a , pretrained=a ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ = timm_model.state_dict() snake_case__ = create_rename_keys(a , a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a , a ) # load HuggingFace model snake_case__ = DeiTForImageClassificationWithTeacher(a ).eval() model.load_state_dict(a ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ = DeiTImageProcessor(size=a , crop_size=config.image_size ) snake_case__ = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case__ = encoding["""pixel_values"""] snake_case__ = model(a ) snake_case__ = timm_model(a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a , outputs.logits , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) a__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
654
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCAmelCase = logging.getLogger(__name__) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = """token-classification""" def __init__( self , snake_case ): if type(snake_case ) == dict: lowercase = Namespace(**snake_case ) lowercase = import_module('tasks' ) try: lowercase = getattr(snake_case , hparams.task_type ) lowercase = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) lowercase = self.token_classification_task.get_labels(hparams.labels ) lowercase = CrossEntropyLoss().ignore_index super().__init__(snake_case , len(self.labels ) , self.mode ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return self.model(**snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": lowercase = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase = self(**snake_case ) lowercase = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.hparams for mode in ["train", "dev", "test"]: lowercase = self._feature_file(snake_case ) if os.path.exists(snake_case ) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , snake_case ) lowercase = torch.load(snake_case ) else: logger.info('Creating features from dataset file at %s' , args.data_dir ) lowercase = self.token_classification_task.read_examples_from_file(args.data_dir , snake_case ) lowercase = self.token_classification_task.convert_examples_to_features( snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['xlnet'] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['xlnet'] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=snake_case , pad_on_left=bool(self.config.model_type in ['xlnet'] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('Saving features into cached file %s' , snake_case ) torch.save(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = False ): lowercase = self._feature_file(snake_case ) logger.info('Loading features from cached file %s' , snake_case ) lowercase = torch.load(snake_case ) lowercase = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowercase = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowercase = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowercase = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowercase = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(snake_case , snake_case , snake_case , snake_case ) , batch_size=snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): """Compute validation""" "" lowercase = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": lowercase = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids lowercase = self(**snake_case ) lowercase , lowercase = outputs[:2] lowercase = logits.detach().cpu().numpy() lowercase = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = torch.stack([x['val_loss'] for x in outputs] ).mean() lowercase = np.concatenate([x['pred'] for x in outputs] , axis=0 ) lowercase = np.argmax(snake_case , axis=2 ) lowercase = np.concatenate([x['target'] for x in outputs] , axis=0 ) lowercase = dict(enumerate(self.labels ) ) lowercase = [[] for _ in range(out_label_ids.shape[0] )] lowercase = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowercase = { 'val_loss': val_loss_mean, 'accuracy_score': accuracy_score(snake_case , snake_case ), 'precision': precision_score(snake_case , snake_case ), 'recall': recall_score(snake_case , snake_case ), 'f1': fa_score(snake_case , snake_case ), } lowercase = dict(results.items() ) lowercase = results return ret, preds_list, out_label_list def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # when stable lowercase , lowercase , lowercase = self._eval_end(snake_case ) lowercase = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # updating to test_epoch_end instead of deprecated test_end lowercase , lowercase , lowercase = self._eval_end(snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowercase = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case , snake_case ): # Add NER specific options BaseTransformer.add_model_specific_args(snake_case , snake_case ) parser.add_argument( '--task_type' , default='NER' , type=snake_case , help='Task type to fine tune in training (e.g. NER, POS, etc)' ) parser.add_argument( '--max_seq_length' , default=128 , type=snake_case , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--labels' , default='' , type=snake_case , help='Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.' , ) parser.add_argument( '--gpus' , default=0 , type=snake_case , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) return parser if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCAmelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCAmelCase = parser.parse_args() UpperCAmelCase = NERTransformer(args) UpperCAmelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCAmelCase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) UpperCAmelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
565
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = k_size // 2 lowercase , lowercase = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowercase = 1 / (2 * pi * sigma) * exp(-(square(__SCREAMING_SNAKE_CASE ) + square(__SCREAMING_SNAKE_CASE )) / (2 * square(__SCREAMING_SNAKE_CASE )) ) return g def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase , lowercase = image.shape[0], image.shape[1] # dst image height and width lowercase = height - k_size + 1 lowercase = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowercase = zeros((dst_height * dst_width, k_size * k_size) ) lowercase = 0 for i, j in product(range(__SCREAMING_SNAKE_CASE ) , range(__SCREAMING_SNAKE_CASE ) ): lowercase = ravel(image[i : i + k_size, j : j + k_size] ) lowercase = window row += 1 # turn the kernel into shape(k*k, 1) lowercase = gen_gaussian_kernel(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = ravel(__SCREAMING_SNAKE_CASE ) # reshape and get the dst image lowercase = dot(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).reshape(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) return dst if __name__ == "__main__": # read original image UpperCAmelCase = imread(R'''../image_data/lena.jpg''') # turn image in gray scale value UpperCAmelCase = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size UpperCAmelCase = gaussian_filter(gray, 3, sigma=1) UpperCAmelCase = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
565
1
from __future__ import annotations def lowerCamelCase__ ( _lowercase , _lowercase = None , _lowercase = None ): '''simple docstring''' if start is None: UpperCAmelCase_ : List[str] = 0 if end is None: UpperCAmelCase_ : Dict = len(_lowercase ) - 1 if start >= end: return UpperCAmelCase_ : Optional[Any] = (start + end) // 2 slowsort(_lowercase , _lowercase , _lowercase ) slowsort(_lowercase , mid + 1 , _lowercase ) if sequence[end] < sequence[mid]: UpperCAmelCase_, UpperCAmelCase_ : List[str] = sequence[mid], sequence[end] slowsort(_lowercase , _lowercase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
30
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase__ = logging.get_logger(__name__) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = ['pixel_values'] def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_A : int , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase__ : Dict = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase__ : int = get_size_dict(_A , default_to_square=_A ) UpperCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase__ : List[str] = get_size_dict(_A , param_name='''crop_size''' ) UpperCAmelCase__ : str = do_resize UpperCAmelCase__ : List[Any] = size UpperCAmelCase__ : int = resample UpperCAmelCase__ : int = do_center_crop UpperCAmelCase__ : List[str] = crop_size UpperCAmelCase__ : Union[str, Any] = do_rescale UpperCAmelCase__ : Optional[int] = rescale_factor UpperCAmelCase__ : List[Any] = do_normalize UpperCAmelCase__ : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase__ : Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase_ ( self : str , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = get_size_dict(_A , default_to_square=_A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: UpperCAmelCase__ : Tuple = int((256 / 224) * size['''shortest_edge'''] ) UpperCAmelCase__ : Tuple = get_resize_output_image_size(_A , size=_A , default_to_square=_A ) UpperCAmelCase__ : Dict = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( _A , size=(size_dict['''height'''], size_dict['''width''']) , resample=_A , data_format=_A , **_A ) def lowercase_ ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def lowercase_ ( self : List[str] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Dict , ): '''simple docstring''' return rescale(_A , scale=_A , data_format=_A , **_A ) def lowercase_ ( self : Dict , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ): '''simple docstring''' return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def lowercase_ ( self : Optional[Any] , _A : ImageInput , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = None , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, Iterable[float]]] = None , _A : Optional[Union[float, Iterable[float]]] = None , _A : Optional[TensorType] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ): '''simple docstring''' UpperCAmelCase__ : str = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ : Optional[int] = resample if resample is not None else self.resample UpperCAmelCase__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ : Tuple = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ : List[str] = image_std if image_std is not None else self.image_std UpperCAmelCase__ : Tuple = size if size is not None else self.size UpperCAmelCase__ : int = get_size_dict(_A , default_to_square=_A ) UpperCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase__ : int = get_size_dict(_A , param_name='''crop_size''' ) UpperCAmelCase__ : Union[str, Any] = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase__ : int = [to_numpy_array(_A ) for image in images] if do_resize: UpperCAmelCase__ : str = [self.resize(_A , _A , _A ) for image in images] if do_center_crop: UpperCAmelCase__ : Tuple = [self.center_crop(_A , _A ) for image in images] if do_rescale: UpperCAmelCase__ : Optional[int] = [self.rescale(_A , _A ) for image in images] if do_normalize: UpperCAmelCase__ : Any = [self.normalize(_A , _A , _A ) for image in images] UpperCAmelCase__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images] UpperCAmelCase__ : Dict = {'''pixel_values''': images} return BatchFeature(data=_A , tensor_type=_A )
75
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class __magic_name__ ( __lowerCAmelCase): A: int = "realm" def __init__( self : Optional[Any] , lowerCamelCase__ : str=30522 , lowerCamelCase__ : Optional[int]=768 , lowerCamelCase__ : Dict=128 , lowerCamelCase__ : Union[str, Any]=12 , lowerCamelCase__ : Any=12 , lowerCamelCase__ : Union[str, Any]=8 , lowerCamelCase__ : List[str]=3072 , lowerCamelCase__ : Any="gelu_new" , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : Dict=512 , lowerCamelCase__ : str=2 , lowerCamelCase__ : Optional[int]=0.02 , lowerCamelCase__ : Optional[Any]=1E-1_2 , lowerCamelCase__ : int=256 , lowerCamelCase__ : int=10 , lowerCamelCase__ : Optional[Any]=1E-3 , lowerCamelCase__ : List[Any]=5 , lowerCamelCase__ : List[str]=320 , lowerCamelCase__ : str=13353718 , lowerCamelCase__ : Dict=5000 , lowerCamelCase__ : Dict=1 , lowerCamelCase__ : List[str]=0 , lowerCamelCase__ : Tuple=2 , **lowerCamelCase__ : Union[str, Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) # Common config UpperCamelCase__ : int = vocab_size UpperCamelCase__ : Optional[int] = max_position_embeddings UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Union[str, Any] = retriever_proj_size UpperCamelCase__ : Dict = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : int = num_candidates UpperCamelCase__ : Any = intermediate_size UpperCamelCase__ : Tuple = hidden_act UpperCamelCase__ : List[str] = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = initializer_range UpperCamelCase__ : List[str] = type_vocab_size UpperCamelCase__ : str = layer_norm_eps # Reader config UpperCamelCase__ : Dict = span_hidden_size UpperCamelCase__ : int = max_span_width UpperCamelCase__ : str = reader_layer_norm_eps UpperCamelCase__ : int = reader_beam_size UpperCamelCase__ : Optional[Any] = reader_seq_len # Retrieval config UpperCamelCase__ : Dict = num_block_records UpperCamelCase__ : Optional[Any] = searcher_beam_size
106
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __UpperCamelCase : Dict = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
106
1
"""simple docstring""" import math from datetime import datetime, timedelta def _snake_case ( _snake_case : int ) -> datetime: '''simple docstring''' _A = year % 19 _A = year % 4 _A = year % 7 _A = math.floor(year / 1_00 ) _A = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _A = leap_day_inhibits / 4 _A = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _A = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _A = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 18 ) else: return datetime(_snake_case , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): a = '''will be''' if year > datetime.now().year else '''was''' print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
7
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
431
0
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) snake_case_ : Tuple = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } snake_case_ : Optional[Any] = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } snake_case_ : Optional[Any] = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } snake_case_ : Optional[Any] = { "num_train_timesteps": 40, "sigma_min": 0.002, "sigma_max": 80.0, } snake_case_ : List[str] = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } snake_case_ : str = { "num_train_timesteps": 151, "sigma_min": 0.002, "sigma_max": 80.0, } def __snake_case ( _UpperCAmelCase : int): if isinstance(lowerCamelCase__, lowerCamelCase__): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''') def __snake_case ( _UpperCAmelCase : Optional[int], _UpperCAmelCase : Any, _UpperCAmelCase : int, _UpperCAmelCase : Tuple, _UpperCAmelCase : Any=False): UpperCamelCase = checkpoint[f'{old_prefix}.in_layers.0.weight'] UpperCamelCase = checkpoint[f'{old_prefix}.in_layers.0.bias'] UpperCamelCase = checkpoint[f'{old_prefix}.in_layers.2.weight'] UpperCamelCase = checkpoint[f'{old_prefix}.in_layers.2.bias'] UpperCamelCase = checkpoint[f'{old_prefix}.emb_layers.1.weight'] UpperCamelCase = checkpoint[f'{old_prefix}.emb_layers.1.bias'] UpperCamelCase = checkpoint[f'{old_prefix}.out_layers.0.weight'] UpperCamelCase = checkpoint[f'{old_prefix}.out_layers.0.bias'] UpperCamelCase = checkpoint[f'{old_prefix}.out_layers.3.weight'] UpperCamelCase = checkpoint[f'{old_prefix}.out_layers.3.bias'] if has_skip: UpperCamelCase = checkpoint[f'{old_prefix}.skip_connection.weight'] UpperCamelCase = checkpoint[f'{old_prefix}.skip_connection.bias'] return new_checkpoint def __snake_case ( _UpperCAmelCase : Any, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : List[Any], _UpperCAmelCase : Optional[int]=None): UpperCamelCase = checkpoint[f'{old_prefix}.qkv.weight'].chunk(3, dim=0) UpperCamelCase = checkpoint[f'{old_prefix}.qkv.bias'].chunk(3, dim=0) UpperCamelCase = checkpoint[f'{old_prefix}.norm.weight'] UpperCamelCase = checkpoint[f'{old_prefix}.norm.bias'] UpperCamelCase = weight_q.squeeze(-1).squeeze(-1) UpperCamelCase = bias_q.squeeze(-1).squeeze(-1) UpperCamelCase = weight_k.squeeze(-1).squeeze(-1) UpperCamelCase = bias_k.squeeze(-1).squeeze(-1) UpperCamelCase = weight_v.squeeze(-1).squeeze(-1) UpperCamelCase = bias_v.squeeze(-1).squeeze(-1) UpperCamelCase = ( checkpoint[f'{old_prefix}.proj_out.weight'].squeeze(-1).squeeze(-1) ) UpperCamelCase = checkpoint[f'{old_prefix}.proj_out.bias'].squeeze(-1).squeeze(-1) return new_checkpoint def __snake_case ( _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Any): UpperCamelCase = torch.load(lowerCamelCase__, map_location='''cpu''') UpperCamelCase = {} UpperCamelCase = checkpoint["time_embed.0.weight"] UpperCamelCase = checkpoint["time_embed.0.bias"] UpperCamelCase = checkpoint["time_embed.2.weight"] UpperCamelCase = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: UpperCamelCase = checkpoint["label_emb.weight"] UpperCamelCase = checkpoint["input_blocks.0.0.weight"] UpperCamelCase = checkpoint["input_blocks.0.0.bias"] UpperCamelCase = unet_config["down_block_types"] UpperCamelCase = unet_config["layers_per_block"] UpperCamelCase = unet_config["attention_head_dim"] UpperCamelCase = unet_config["block_out_channels"] UpperCamelCase = 1 UpperCamelCase = channels_list[0] for i, layer_type in enumerate(lowerCamelCase__): UpperCamelCase = channels_list[i] UpperCamelCase = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowerCamelCase__): UpperCamelCase = f'down_blocks.{i}.resnets.{j}' UpperCamelCase = f'input_blocks.{current_layer}.0' UpperCamelCase = True if j == 0 and downsample_block_has_skip else False UpperCamelCase = convert_resnet(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, has_skip=lowerCamelCase__) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowerCamelCase__): UpperCamelCase = f'down_blocks.{i}.resnets.{j}' UpperCamelCase = f'input_blocks.{current_layer}.0' UpperCamelCase = True if j == 0 and downsample_block_has_skip else False UpperCamelCase = convert_resnet(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, has_skip=lowerCamelCase__) UpperCamelCase = f'down_blocks.{i}.attentions.{j}' UpperCamelCase = f'input_blocks.{current_layer}.1' UpperCamelCase = convert_attention( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) current_layer += 1 if i != len(lowerCamelCase__) - 1: UpperCamelCase = f'down_blocks.{i}.downsamplers.0' UpperCamelCase = f'input_blocks.{current_layer}.0' UpperCamelCase = convert_resnet(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) current_layer += 1 UpperCamelCase = current_channels # hardcoded the mid-block for now UpperCamelCase = "mid_block.resnets.0" UpperCamelCase = "middle_block.0" UpperCamelCase = convert_resnet(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) UpperCamelCase = "mid_block.attentions.0" UpperCamelCase = "middle_block.1" UpperCamelCase = convert_attention(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) UpperCamelCase = "mid_block.resnets.1" UpperCamelCase = "middle_block.2" UpperCamelCase = convert_resnet(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) UpperCamelCase = 0 UpperCamelCase = unet_config["up_block_types"] for i, layer_type in enumerate(lowerCamelCase__): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1): UpperCamelCase = f'up_blocks.{i}.resnets.{j}' UpperCamelCase = f'output_blocks.{current_layer}.0' UpperCamelCase = convert_resnet(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, has_skip=lowerCamelCase__) current_layer += 1 if i != len(lowerCamelCase__) - 1: UpperCamelCase = f'up_blocks.{i}.upsamplers.0' UpperCamelCase = f'output_blocks.{current_layer-1}.1' UpperCamelCase = convert_resnet(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1): UpperCamelCase = f'up_blocks.{i}.resnets.{j}' UpperCamelCase = f'output_blocks.{current_layer}.0' UpperCamelCase = convert_resnet(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, has_skip=lowerCamelCase__) UpperCamelCase = f'up_blocks.{i}.attentions.{j}' UpperCamelCase = f'output_blocks.{current_layer}.1' UpperCamelCase = convert_attention( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) current_layer += 1 if i != len(lowerCamelCase__) - 1: UpperCamelCase = f'up_blocks.{i}.upsamplers.0' UpperCamelCase = f'output_blocks.{current_layer-1}.2' UpperCamelCase = convert_resnet(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__) UpperCamelCase = checkpoint["out.0.weight"] UpperCamelCase = checkpoint["out.0.bias"] UpperCamelCase = checkpoint["out.2.weight"] UpperCamelCase = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": snake_case_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') snake_case_ : Any = parser.parse_args() snake_case_ : Optional[Any] = strabool(args.class_cond) snake_case_ : Any = os.path.basename(args.unet_path) print(F'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: snake_case_ : Optional[int] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): snake_case_ : str = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: snake_case_ : List[Any] = TEST_UNET_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: snake_case_ : List[str] = None snake_case_ : str = con_pt_to_diffuser(args.unet_path, unet_config) snake_case_ : str = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: snake_case_ : Union[str, Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: snake_case_ : List[Any] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): snake_case_ : List[str] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'''Checkpoint type {ckpt_name} is not currently supported.''') snake_case_ : Optional[int] = CMStochasticIterativeScheduler(**scheduler_config) snake_case_ : Optional[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
710
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class lowercase__ : '''simple docstring''' def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' raise NotImplementedError() def UpperCAmelCase ( self ): '''simple docstring''' raise NotImplementedError() class lowercase__ ( snake_case_ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ = False , **lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = tokenizer UpperCamelCase = skip_prompt UpperCamelCase = decode_kwargs # variables used in the streaming process UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = True def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: UpperCamelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: UpperCamelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) UpperCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): UpperCamelCase = text[self.print_len :] UpperCamelCase = [] UpperCamelCase = 0 # If the last token is a CJK character, we print the characters. elif len(lowerCamelCase__ ) > 0 and self._is_chinese_char(ord(text[-1] ) ): UpperCamelCase = text[self.print_len :] self.print_len += len(lowerCamelCase__ ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: UpperCamelCase = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(lowerCamelCase__ ) self.on_finalized_text(lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self.token_cache ) > 0: UpperCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) UpperCamelCase = text[self.print_len :] UpperCamelCase = [] UpperCamelCase = 0 else: UpperCamelCase = '''''' UpperCamelCase = True self.on_finalized_text(lowerCamelCase__ , stream_end=lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = False ): '''simple docstring''' print(lowerCamelCase__ , flush=lowerCamelCase__ , end='''''' if not stream_end else None ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' if ( (cp >= 0x4_E_0_0 and cp <= 0x9_F_F_F) or (cp >= 0x3_4_0_0 and cp <= 0x4_D_B_F) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_A_6_D_F) # or (cp >= 0x2_A_7_0_0 and cp <= 0x2_B_7_3_F) # or (cp >= 0x2_B_7_4_0 and cp <= 0x2_B_8_1_F) # or (cp >= 0x2_B_8_2_0 and cp <= 0x2_C_E_A_F) # or (cp >= 0xF_9_0_0 and cp <= 0xF_A_F_F) or (cp >= 0x2_F_8_0_0 and cp <= 0x2_F_A_1_F) # ): # return True return False class lowercase__ ( snake_case_ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = None , **lowerCamelCase__ ): '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase = Queue() UpperCamelCase = None UpperCamelCase = timeout def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = False ): '''simple docstring''' self.text_queue.put(lowerCamelCase__ , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): '''simple docstring''' return self def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
350
0