code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
|---|---|---|---|---|
"""simple docstring"""
def _snake_case ( lowercase__ , lowercase__ ):
if digit_amount > 0:
return round(number - int(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
return number - int(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3))
| 630
|
'''simple docstring'''
import gc
import math
import unittest
import torch
from diffusers import UNetaDModel
from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
_A = logging.get_logger(__name__)
enable_full_determinism()
class SCREAMING_SNAKE_CASE_ ( snake_case , snake_case , unittest.TestCase ):
__a : List[Any] = UNetaDModel
__a : Union[str, Any] = '''sample'''
@property
def _snake_case ( self ) -> Optional[int]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : List[Any] = 4
__SCREAMING_SNAKE_CASE : Dict = 3
__SCREAMING_SNAKE_CASE : Union[str, Any] = (3_2, 3_2)
__SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase )
__SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1_0] ).to(lowercase )
return {"sample": noise, "timestep": time_step}
@property
def _snake_case ( self ) -> Tuple:
'''simple docstring'''
return (3, 3_2, 3_2)
@property
def _snake_case ( self ) -> List[Any]:
'''simple docstring'''
return (3, 3_2, 3_2)
def _snake_case ( self ) -> Optional[int]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
'''block_out_channels''': (3_2, 6_4),
'''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''),
'''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''),
'''attention_head_dim''': 3,
'''out_channels''': 3,
'''in_channels''': 3,
'''layers_per_block''': 2,
'''sample_size''': 3_2,
}
__SCREAMING_SNAKE_CASE : int = self.dummy_input
return init_dict, inputs_dict
class SCREAMING_SNAKE_CASE_ ( snake_case , snake_case , unittest.TestCase ):
__a : str = UNetaDModel
__a : Optional[Any] = '''sample'''
@property
def _snake_case ( self ) -> Dict:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Any = 4
__SCREAMING_SNAKE_CASE : Any = 4
__SCREAMING_SNAKE_CASE : str = (3_2, 3_2)
__SCREAMING_SNAKE_CASE : int = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase )
__SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1_0] ).to(lowercase )
return {"sample": noise, "timestep": time_step}
@property
def _snake_case ( self ) -> Any:
'''simple docstring'''
return (4, 3_2, 3_2)
@property
def _snake_case ( self ) -> int:
'''simple docstring'''
return (4, 3_2, 3_2)
def _snake_case ( self ) -> str:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : List[str] = {
'''sample_size''': 3_2,
'''in_channels''': 4,
'''out_channels''': 4,
'''layers_per_block''': 2,
'''block_out_channels''': (3_2, 6_4),
'''attention_head_dim''': 3_2,
'''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''),
'''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''),
}
__SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_input
return init_dict, inputs_dict
def _snake_case ( self ) -> List[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=lowercase )
self.assertIsNotNone(lowercase )
self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 )
model.to(lowercase )
__SCREAMING_SNAKE_CASE : int = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' )
def _snake_case ( self ) -> List[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=lowercase )
model.to(lowercase )
__SCREAMING_SNAKE_CASE : int = model(**self.dummy_input ).sample
assert image is not None, "Make sure output is not None"
@unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' )
def _snake_case ( self ) -> List[str]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=lowercase )
model_accelerate.to(lowercase )
model_accelerate.eval()
__SCREAMING_SNAKE_CASE : str = torch.randn(
1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , )
__SCREAMING_SNAKE_CASE : str = noise.to(lowercase )
__SCREAMING_SNAKE_CASE : List[str] = torch.tensor([1_0] * noise.shape[0] ).to(lowercase )
__SCREAMING_SNAKE_CASE : int = model_accelerate(lowercase , lowercase )['''sample''']
# two models don't need to stay in the device at the same time
del model_accelerate
torch.cuda.empty_cache()
gc.collect()
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDModel.from_pretrained(
'''fusing/unet-ldm-dummy-update''' , output_loading_info=lowercase , low_cpu_mem_usage=lowercase )
model_normal_load.to(lowercase )
model_normal_load.eval()
__SCREAMING_SNAKE_CASE : List[Any] = model_normal_load(lowercase , lowercase )['''sample''']
assert torch_all_close(lowercase , lowercase , rtol=1e-3 )
def _snake_case ( self ) -> List[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' )
model.eval()
model.to(lowercase )
__SCREAMING_SNAKE_CASE : Dict = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
__SCREAMING_SNAKE_CASE : Tuple = noise.to(lowercase )
__SCREAMING_SNAKE_CASE : Tuple = torch.tensor([1_0] * noise.shape[0] ).to(lowercase )
with torch.no_grad():
__SCREAMING_SNAKE_CASE : Optional[int] = model(lowercase , lowercase ).sample
__SCREAMING_SNAKE_CASE : List[str] = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
__SCREAMING_SNAKE_CASE : Dict = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] )
# fmt: on
self.assertTrue(torch_all_close(lowercase , lowercase , rtol=1e-3 ) )
class SCREAMING_SNAKE_CASE_ ( snake_case , snake_case , unittest.TestCase ):
__a : List[str] = UNetaDModel
__a : Any = '''sample'''
@property
def _snake_case ( self , lowercase=(3_2, 3_2) ) -> List[Any]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : Union[str, Any] = 4
__SCREAMING_SNAKE_CASE : int = 3
__SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase )
__SCREAMING_SNAKE_CASE : Any = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=lowercase )
return {"sample": noise, "timestep": time_step}
@property
def _snake_case ( self ) -> Union[str, Any]:
'''simple docstring'''
return (3, 3_2, 3_2)
@property
def _snake_case ( self ) -> List[str]:
'''simple docstring'''
return (3, 3_2, 3_2)
def _snake_case ( self ) -> int:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : List[Any] = {
'''block_out_channels''': [3_2, 6_4, 6_4, 6_4],
'''in_channels''': 3,
'''layers_per_block''': 1,
'''out_channels''': 3,
'''time_embedding_type''': '''fourier''',
'''norm_eps''': 1e-6,
'''mid_block_scale_factor''': math.sqrt(2.0 ),
'''norm_num_groups''': None,
'''down_block_types''': [
'''SkipDownBlock2D''',
'''AttnSkipDownBlock2D''',
'''SkipDownBlock2D''',
'''SkipDownBlock2D''',
],
'''up_block_types''': [
'''SkipUpBlock2D''',
'''SkipUpBlock2D''',
'''AttnSkipUpBlock2D''',
'''SkipUpBlock2D''',
],
}
__SCREAMING_SNAKE_CASE : int = self.dummy_input
return init_dict, inputs_dict
@slow
def _snake_case ( self ) -> Any:
'''simple docstring'''
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=lowercase )
self.assertIsNotNone(lowercase )
self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 )
model.to(lowercase )
__SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_input
__SCREAMING_SNAKE_CASE : str = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(lowercase )
__SCREAMING_SNAKE_CASE : Union[str, Any] = noise
__SCREAMING_SNAKE_CASE : Dict = model(**lowercase )
assert image is not None, "Make sure output is not None"
@slow
def _snake_case ( self ) -> Optional[int]:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : str = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' )
model.to(lowercase )
__SCREAMING_SNAKE_CASE : Any = 4
__SCREAMING_SNAKE_CASE : Dict = 3
__SCREAMING_SNAKE_CASE : Tuple = (2_5_6, 2_5_6)
__SCREAMING_SNAKE_CASE : Dict = torch.ones((batch_size, num_channels) + sizes ).to(lowercase )
__SCREAMING_SNAKE_CASE : List[str] = torch.tensor(batch_size * [1e-4] ).to(lowercase )
with torch.no_grad():
__SCREAMING_SNAKE_CASE : Any = model(lowercase , lowercase ).sample
__SCREAMING_SNAKE_CASE : int = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
__SCREAMING_SNAKE_CASE : str = torch.tensor([-4_8_4_2.8_6_9_1, -6_4_9_9.6_6_3_1, -3_8_0_0.1_9_5_3, -7_9_7_8.2_6_8_6, -1_0_9_8_0.7_1_2_9, -2_0_0_2_8.8_5_3_5, 8_1_4_8.2_8_2_2, 2_3_4_2.2_9_0_5, 5_6_7.7_6_0_8] )
# fmt: on
self.assertTrue(torch_all_close(lowercase , lowercase , rtol=1e-2 ) )
def _snake_case ( self ) -> Tuple:
'''simple docstring'''
__SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' )
model.to(lowercase )
__SCREAMING_SNAKE_CASE : int = 4
__SCREAMING_SNAKE_CASE : str = 3
__SCREAMING_SNAKE_CASE : Optional[Any] = (3_2, 3_2)
__SCREAMING_SNAKE_CASE : str = torch.ones((batch_size, num_channels) + sizes ).to(lowercase )
__SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(lowercase )
with torch.no_grad():
__SCREAMING_SNAKE_CASE : Dict = model(lowercase , lowercase ).sample
__SCREAMING_SNAKE_CASE : str = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
__SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] )
# fmt: on
self.assertTrue(torch_all_close(lowercase , lowercase , rtol=1e-2 ) )
def _snake_case ( self ) -> str:
'''simple docstring'''
pass
| 158
| 0
|
'''simple docstring'''
import unittest
from knapsack import knapsack as k
class __UpperCAmelCase( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self ):
"""simple docstring"""
A_ : Tuple = 0
A_ : Union[str, Any] = [0]
A_ : Any = [0]
A_ : Tuple = len(__magic_name__ )
self.assertEqual(k.knapsack(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , 0 )
A_ : str = [60]
A_ : Dict = [10]
A_ : List[str] = len(__magic_name__ )
self.assertEqual(k.knapsack(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , 0 )
def UpperCAmelCase ( self ):
"""simple docstring"""
A_ : int = 3
A_ : Tuple = [1, 2, 3]
A_ : Dict = [3, 2, 1]
A_ : Union[str, Any] = len(__magic_name__ )
self.assertEqual(k.knapsack(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , 5 )
def UpperCAmelCase ( self ):
"""simple docstring"""
A_ : Tuple = 50
A_ : Any = [60, 100, 120]
A_ : Optional[int] = [10, 20, 30]
A_ : str = len(__magic_name__ )
self.assertEqual(k.knapsack(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , 220 )
if __name__ == "__main__":
unittest.main()
| 718
|
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
_lowerCAmelCase = logging.get_logger(__name__)
def a__ ( a , a ) -> Optional[Any]:
A_ : Union[str, Any] = nn.functional.normalize(a )
A_ : str = nn.functional.normalize(a )
return torch.mm(a , normalized_text_embeds.t() )
class __UpperCAmelCase( A__ ):
"""simple docstring"""
__magic_name__ = CLIPConfig
__magic_name__ = ["""CLIPEncoderLayer"""]
def __init__( self , __magic_name__ ):
"""simple docstring"""
super().__init__(__magic_name__ )
A_ : str = CLIPVisionModel(config.vision_config )
A_ : List[Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__magic_name__ )
A_ : Union[str, Any] = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__magic_name__ )
A_ : Union[str, Any] = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__magic_name__ )
A_ : List[str] = nn.Parameter(torch.ones(17 ) , requires_grad=__magic_name__ )
A_ : str = nn.Parameter(torch.ones(3 ) , requires_grad=__magic_name__ )
@torch.no_grad()
def UpperCAmelCase ( self , __magic_name__ , __magic_name__ ):
"""simple docstring"""
A_ : Optional[Any] = self.vision_model(__magic_name__ )[1] # pooled_output
A_ : Optional[int] = self.visual_projection(__magic_name__ )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
A_ : str = cosine_distance(__magic_name__ , self.special_care_embeds ).cpu().float().numpy()
A_ : Dict = cosine_distance(__magic_name__ , self.concept_embeds ).cpu().float().numpy()
A_ : Tuple = []
A_ : int = image_embeds.shape[0]
for i in range(__magic_name__ ):
A_ : Optional[int] = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
A_ : Union[str, Any] = 0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
A_ : int = special_cos_dist[i][concept_idx]
A_ : str = self.special_care_embeds_weights[concept_idx].item()
A_ : Optional[int] = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} )
A_ : Dict = 0.01
for concept_idx in range(len(cos_dist[0] ) ):
A_ : List[Any] = cos_dist[i][concept_idx]
A_ : Tuple = self.concept_embeds_weights[concept_idx].item()
A_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(__magic_name__ )
result.append(__magic_name__ )
A_ : Dict = [len(res['''bad_concepts'''] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def UpperCAmelCase ( self , __magic_name__ , __magic_name__ ):
"""simple docstring"""
A_ : Optional[int] = self.vision_model(__magic_name__ )[1] # pooled_output
A_ : Dict = self.visual_projection(__magic_name__ )
A_ : Union[str, Any] = cosine_distance(__magic_name__ , self.special_care_embeds )
A_ : Any = cosine_distance(__magic_name__ , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
A_ : Union[str, Any] = 0.0
A_ : str = special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
A_ : Union[str, Any] = torch.any(special_scores > 0 , dim=1 )
A_ : Tuple = special_care * 0.01
A_ : List[Any] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
A_ : Dict = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
A_ : str = torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 236
| 0
|
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
A : Optional[Any] = 10
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int:
'''simple docstring'''
for i in range(_lowerCAmelCase , _lowerCAmelCase ):
if array[i] == target:
return i
return -1
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int:
'''simple docstring'''
__snake_case = 0
__snake_case = len(_lowerCAmelCase )
while left <= right:
if right - left < precision:
return lin_search(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case = (left + right) // 3 + 1
__snake_case = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__snake_case = one_third - 1
elif array[two_third] < target:
__snake_case = two_third + 1
else:
__snake_case = one_third + 1
__snake_case = two_third - 1
else:
return -1
def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int:
'''simple docstring'''
if left < right:
if right - left < precision:
return lin_search(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
__snake_case = (left + right) // 3 + 1
__snake_case = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(_lowerCAmelCase , one_third - 1 , _lowerCAmelCase , _lowerCAmelCase )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , _lowerCAmelCase , _lowerCAmelCase )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
A : Union[str, Any] = input('Enter numbers separated by comma:\n').strip()
A : Any = [int(item.strip()) for item in user_input.split(',')]
assert collection == sorted(collection), f"List must be ordered.\n{collection}."
A : Any = int(input('Enter the number to be found in the list:\n').strip())
A : Optional[int] = ite_ternary_search(collection, target)
A : int = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(f'''Iterative search: {target} found at positions: {resulta}''')
print(f'''Recursive search: {target} found at positions: {resulta}''')
else:
print('Not found')
| 371
|
from __future__ import annotations
def _lowerCAmelCase ( _lowerCAmelCase ) -> list[int]:
'''simple docstring'''
__snake_case = 2
__snake_case = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(_lowerCAmelCase )
if n > 1:
factors.append(_lowerCAmelCase )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371
| 1
|
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings
__UpperCAmelCase = R"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n"
@add_start_docstrings(__SCREAMING_SNAKE_CASE )
class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCAmelCase_ ="rag"
UpperCAmelCase_ =True
def __init__( self , _A=None , _A=True , _A=None , _A=None , _A=None , _A=None , _A=None , _A=" / " , _A=" // " , _A=5 , _A=300 , _A=768 , _A=8 , _A="wiki_dpr" , _A="train" , _A="compressed" , _A=None , _A=None , _A=False , _A=False , _A=0.0 , _A=True , _A=False , _A=False , _A=False , _A=True , _A=None , **_A , ) -> int:
super().__init__(
bos_token_id=_A , pad_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , forced_eos_token_id=_A , is_encoder_decoder=_A , prefix=_A , vocab_size=_A , **_A , )
assert (
"question_encoder" in kwargs and "generator" in kwargs
), "Config has to be initialized with question_encoder and generator config"
SCREAMING_SNAKE_CASE_ = kwargs.pop('''question_encoder''' )
SCREAMING_SNAKE_CASE_ = question_encoder_config.pop('''model_type''' )
SCREAMING_SNAKE_CASE_ = kwargs.pop('''generator''' )
SCREAMING_SNAKE_CASE_ = decoder_config.pop('''model_type''' )
from ..auto.configuration_auto import AutoConfig
SCREAMING_SNAKE_CASE_ = AutoConfig.for_model(_A , **_A )
SCREAMING_SNAKE_CASE_ = AutoConfig.for_model(_A , **_A )
SCREAMING_SNAKE_CASE_ = reduce_loss
SCREAMING_SNAKE_CASE_ = label_smoothing
SCREAMING_SNAKE_CASE_ = exclude_bos_score
SCREAMING_SNAKE_CASE_ = do_marginalize
SCREAMING_SNAKE_CASE_ = title_sep
SCREAMING_SNAKE_CASE_ = doc_sep
SCREAMING_SNAKE_CASE_ = n_docs
SCREAMING_SNAKE_CASE_ = max_combined_length
SCREAMING_SNAKE_CASE_ = dataset
SCREAMING_SNAKE_CASE_ = dataset_split
SCREAMING_SNAKE_CASE_ = index_name
SCREAMING_SNAKE_CASE_ = retrieval_vector_size
SCREAMING_SNAKE_CASE_ = retrieval_batch_size
SCREAMING_SNAKE_CASE_ = passages_path
SCREAMING_SNAKE_CASE_ = index_path
SCREAMING_SNAKE_CASE_ = use_dummy_dataset
SCREAMING_SNAKE_CASE_ = output_retrieved
SCREAMING_SNAKE_CASE_ = do_deduplication
SCREAMING_SNAKE_CASE_ = use_cache
if self.forced_eos_token_id is None:
SCREAMING_SNAKE_CASE_ = getattr(self.generator , '''forced_eos_token_id''' , _A )
@classmethod
def _UpperCamelCase ( cls , _A , _A , **_A ) -> PretrainedConfig:
return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_A )
def _UpperCamelCase ( self ) -> Dict:
SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE_ = self.question_encoder.to_dict()
SCREAMING_SNAKE_CASE_ = self.generator.to_dict()
SCREAMING_SNAKE_CASE_ = self.__class__.model_type
return output
| 597
|
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ =KandinskyVaaImgaImgPipeline
UpperCAmelCase_ =["image_embeds", "negative_image_embeds", "image"]
UpperCAmelCase_ =[
"image_embeds",
"negative_image_embeds",
"image",
]
UpperCAmelCase_ =[
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
UpperCAmelCase_ =False
@property
def _UpperCamelCase ( self ) -> Optional[Any]:
return 32
@property
def _UpperCamelCase ( self ) -> Tuple:
return 32
@property
def _UpperCamelCase ( self ) -> List[Any]:
return self.time_input_dim
@property
def _UpperCamelCase ( self ) -> Tuple:
return self.time_input_dim * 4
@property
def _UpperCamelCase ( self ) -> List[Any]:
return 100
@property
def _UpperCamelCase ( self ) -> int:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(**_A )
return model
@property
def _UpperCamelCase ( self ) -> List[Any]:
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCamelCase ( self ) -> Optional[int]:
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCamelCase ( self ) -> List[str]:
SCREAMING_SNAKE_CASE_ = self.dummy_unet
SCREAMING_SNAKE_CASE_ = self.dummy_movq
SCREAMING_SNAKE_CASE_ = {
'''num_train_timesteps''': 1000,
'''beta_schedule''': '''linear''',
'''beta_start''': 0.0_0085,
'''beta_end''': 0.012,
'''clip_sample''': False,
'''set_alpha_to_one''': False,
'''steps_offset''': 0,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
}
SCREAMING_SNAKE_CASE_ = DDIMScheduler(**_A )
SCREAMING_SNAKE_CASE_ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def _UpperCamelCase ( self , _A , _A=0 ) -> Dict:
SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A )
SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
_A )
# create init_image
SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A )
SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 )[0]
SCREAMING_SNAKE_CASE_ = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((256, 256) )
if str(_A ).startswith('''mps''' ):
SCREAMING_SNAKE_CASE_ = torch.manual_seed(_A )
else:
SCREAMING_SNAKE_CASE_ = torch.Generator(device=_A ).manual_seed(_A )
SCREAMING_SNAKE_CASE_ = {
'''image''': init_image,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''num_inference_steps''': 10,
'''guidance_scale''': 7.0,
'''strength''': 0.2,
'''output_type''': '''np''',
}
return inputs
def _UpperCamelCase ( self ) -> List[str]:
SCREAMING_SNAKE_CASE_ = '''cpu'''
SCREAMING_SNAKE_CASE_ = self.get_dummy_components()
SCREAMING_SNAKE_CASE_ = self.pipeline_class(**_A )
SCREAMING_SNAKE_CASE_ = pipe.to(_A )
pipe.set_progress_bar_config(disable=_A )
SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs(_A ) )
SCREAMING_SNAKE_CASE_ = output.images
SCREAMING_SNAKE_CASE_ = pipe(
**self.get_dummy_inputs(_A ) , return_dict=_A , )[0]
SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE_ = np.array(
[0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def _UpperCamelCase ( self ) -> Any:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase ( self ) -> str:
SCREAMING_SNAKE_CASE_ = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_img2img_frog.npy''' )
SCREAMING_SNAKE_CASE_ = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
SCREAMING_SNAKE_CASE_ = '''A red cartoon frog, 4k'''
SCREAMING_SNAKE_CASE_ = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(_A )
SCREAMING_SNAKE_CASE_ = KandinskyVaaImgaImgPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE_ = pipeline.to(_A )
pipeline.set_progress_bar_config(disable=_A )
SCREAMING_SNAKE_CASE_ = torch.Generator(device='''cpu''' ).manual_seed(0 )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pipe_prior(
_A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
SCREAMING_SNAKE_CASE_ = pipeline(
image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , )
SCREAMING_SNAKE_CASE_ = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(_A , _A )
| 597
| 1
|
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : List[str] , snake_case_ : Tuple , snake_case_ : int=13 , snake_case_ : int=32 , snake_case_ : int=3 , snake_case_ : Tuple=4 , snake_case_ : List[str]=[10, 20, 30, 40] , snake_case_ : int=[2, 2, 3, 2] , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=True , snake_case_ : List[str]=37 , snake_case_ : Tuple="gelu" , snake_case_ : int=10 , snake_case_ : str=0.02 , snake_case_ : int=["stage2", "stage3", "stage4"] , snake_case_ : List[Any]=[2, 3, 4] , snake_case_ : List[Any]=None , ):
UpperCamelCase_: int = parent
UpperCamelCase_: str = batch_size
UpperCamelCase_: Tuple = image_size
UpperCamelCase_: Dict = num_channels
UpperCamelCase_: Any = num_stages
UpperCamelCase_: Optional[int] = hidden_sizes
UpperCamelCase_: str = depths
UpperCamelCase_: Any = is_training
UpperCamelCase_: Union[str, Any] = use_labels
UpperCamelCase_: Dict = intermediate_size
UpperCamelCase_: Union[str, Any] = hidden_act
UpperCamelCase_: List[Any] = num_labels
UpperCamelCase_: Tuple = initializer_range
UpperCamelCase_: Optional[Any] = out_features
UpperCamelCase_: Optional[int] = out_indices
UpperCamelCase_: List[str] = scope
def lowerCAmelCase__ ( self : Tuple ):
UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase_: Optional[Any] = None
if self.use_labels:
UpperCamelCase_: Tuple = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase_: List[str] = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase__ ( self : Any ):
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : Tuple ):
UpperCamelCase_: Optional[int] = ConvNextVaModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
UpperCamelCase_: int = model(__lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] ):
UpperCamelCase_: int = ConvNextVaForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
UpperCamelCase_: Optional[Any] = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase__ ( self : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] ):
UpperCamelCase_: List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
UpperCamelCase_: Dict = model(__lowerCamelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCamelCase_: str = None
UpperCamelCase_: Any = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
UpperCamelCase_: Dict = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowerCAmelCase__ ( self : Tuple ):
UpperCamelCase_: List[str] = self.prepare_config_and_inputs()
UpperCamelCase_: Dict = config_and_inputs
UpperCamelCase_: str = {'''pixel_values''': pixel_values}
return config, inputs_dict
def lowerCAmelCase__ ( self : List[str] ):
UpperCamelCase_: Dict = self.prepare_config_and_inputs()
UpperCamelCase_: Any = config_and_inputs
UpperCamelCase_: int = {'''pixel_values''': pixel_values, '''labels''': labels}
return config, inputs_dict
@require_torch
class _UpperCamelCase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
__UpperCamelCase : int = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__UpperCamelCase : str = (
{'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__UpperCamelCase : int = False
__UpperCamelCase : int = False
__UpperCamelCase : Tuple = False
__UpperCamelCase : Tuple = False
__UpperCamelCase : Dict = False
def lowerCAmelCase__ ( self : Any ):
UpperCamelCase_: int = ConvNextVaModelTester(self )
UpperCamelCase_: str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase__ ( self : Optional[Any] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase__ ( self : str ):
return
@unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" )
def lowerCAmelCase__ ( self : int ):
pass
@unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" )
def lowerCAmelCase__ ( self : Optional[int] ):
pass
@unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" )
def lowerCAmelCase__ ( self : Tuple ):
pass
def lowerCAmelCase__ ( self : Optional[Any] ):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCamelCase_: List[Any] = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCamelCase_: List[str] = True
if model_class.__name__ in [
*get_values(__lowerCamelCase ),
*get_values(__lowerCamelCase ),
]:
continue
UpperCamelCase_: List[str] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
UpperCamelCase_: int = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
UpperCamelCase_: Tuple = model(**__lowerCamelCase ).loss
loss.backward()
def lowerCAmelCase__ ( self : List[Any] ):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
UpperCamelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_with_labels()
UpperCamelCase_: Optional[int] = False
UpperCamelCase_: Dict = True
if (
model_class.__name__
in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCamelCase_: int = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.train()
UpperCamelCase_: List[str] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
UpperCamelCase_: Tuple = model(**__lowerCamelCase ).loss
loss.backward()
def lowerCAmelCase__ ( self : int ):
UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_: Dict = model_class(__lowerCamelCase )
UpperCamelCase_: Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase_: Union[str, Any] = [*signature.parameters.keys()]
UpperCamelCase_: str = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def lowerCAmelCase__ ( self : int ):
UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase__ ( self : Tuple ):
def check_hidden_states_output(snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : Dict ):
UpperCamelCase_: Any = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
UpperCamelCase_: Any = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
UpperCamelCase_: Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCamelCase_: Tuple = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_: Tuple = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_: Tuple = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase__ ( self : Optional[Any] ):
UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase__ ( self : Dict ):
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase_: Tuple = ConvNextVaModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def A__ ( ) -> int:
UpperCamelCase_: Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase__ ( self : str ):
return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None
@slow
def lowerCAmelCase__ ( self : Tuple ):
UpperCamelCase_: Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(__lowerCamelCase )
UpperCamelCase_: Optional[Any] = self.default_image_processor
UpperCamelCase_: Any = prepare_img()
UpperCamelCase_: Tuple = preprocessor(images=__lowerCamelCase , return_tensors="""pt""" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
UpperCamelCase_: Optional[int] = model(**__lowerCamelCase )
# verify the logits
UpperCamelCase_: Tuple = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
UpperCamelCase_: Tuple = torch.tensor([0.9996, 0.1966, -0.4386] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
| 548
|
class UpperCamelCase__ :
def __init__( self : str, __lowerCamelCase : Optional[Any] ) -> str:
UpperCamelCase__ : Dict = val
UpperCamelCase__ : Dict = None
UpperCamelCase__ : Union[str, Any] = None
def __lowercase( self : Optional[int], __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]:
if self.val:
if val < self.val:
if self.left is None:
UpperCamelCase__ : int = Node(__lowerCamelCase )
else:
self.left.insert(__lowerCamelCase )
elif val > self.val:
if self.right is None:
UpperCamelCase__ : Dict = Node(__lowerCamelCase )
else:
self.right.insert(__lowerCamelCase )
else:
UpperCamelCase__ : int = val
def _lowercase ( __lowerCamelCase : List[str] ,__lowerCamelCase : Tuple ) -> Optional[int]:
'''simple docstring'''
if root:
inorder(root.left ,__lowerCamelCase )
res.append(root.val )
inorder(root.right ,__lowerCamelCase )
def _lowercase ( __lowerCamelCase : Dict ) -> Optional[int]:
'''simple docstring'''
if len(__lowerCamelCase ) == 0:
return arr
UpperCamelCase__ : Tuple = Node(arr[0] )
for i in range(1 ,len(__lowerCamelCase ) ):
root.insert(arr[i] )
# Traverse BST in order.
UpperCamelCase__ : List[Any] = []
inorder(__lowerCamelCase ,__lowerCamelCase )
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 344
| 0
|
'''simple docstring'''
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class _snake_case ( lowerCAmelCase__ ):
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , **_lowerCamelCase , ):
super().__init__(features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
UpperCAmelCase__ : Tuple = Sql(
cache_dir=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , sql=_SCREAMING_SNAKE_CASE , con=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
def snake_case__ ( self):
UpperCAmelCase__ : Optional[Any] = None
UpperCAmelCase__ : str = None
UpperCAmelCase__ : List[Any] = None
UpperCAmelCase__ : List[Any] = None
self.builder.download_and_prepare(
download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , )
# Build dataset for splits
UpperCAmelCase__ : Dict = self.builder.as_dataset(
split="""train""" , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory)
return dataset
class _snake_case :
def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ):
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''')
UpperCAmelCase__ : Optional[Any] = dataset
UpperCAmelCase__ : Any = name
UpperCAmelCase__ : Dict = con
UpperCAmelCase__ : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
UpperCAmelCase__ : Any = num_proc
UpperCAmelCase__ : Union[str, Any] = to_sql_kwargs
def snake_case__ ( self):
UpperCAmelCase__ : str = self.to_sql_kwargs.pop("""sql""" , _SCREAMING_SNAKE_CASE)
UpperCAmelCase__ : Tuple = self.to_sql_kwargs.pop("""con""" , _SCREAMING_SNAKE_CASE)
UpperCAmelCase__ : Dict = self.to_sql_kwargs.pop("""index""" , _SCREAMING_SNAKE_CASE)
UpperCAmelCase__ : Tuple = self._write(index=_SCREAMING_SNAKE_CASE , **self.to_sql_kwargs)
return written
def snake_case__ ( self , _lowerCamelCase):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = args
UpperCAmelCase__ : Union[str, Any] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
UpperCAmelCase__ : Dict = query_table(
table=self.dataset.data , key=slice(_SCREAMING_SNAKE_CASE , offset + self.batch_size) , indices=self.dataset._indices , )
UpperCAmelCase__ : List[str] = batch.to_pandas()
UpperCAmelCase__ : int = df.to_sql(self.name , self.con , index=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
return num_rows or len(_SCREAMING_SNAKE_CASE)
def snake_case__ ( self , _lowerCamelCase , **_lowerCamelCase):
UpperCAmelCase__ : Any = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs))
else:
UpperCAmelCase__ , UpperCAmelCase__ : str = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 709
|
'''simple docstring'''
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
__A ='scheduler_config.json'
class _snake_case ( a__ ):
lowerCAmelCase :Union[str, Any] = 1
lowerCAmelCase :Union[str, Any] = 2
lowerCAmelCase :Optional[int] = 3
lowerCAmelCase :Optional[int] = 4
lowerCAmelCase :Any = 5
lowerCAmelCase :Tuple = 6
lowerCAmelCase :List[Any] = 7
lowerCAmelCase :str = 8
lowerCAmelCase :List[Any] = 9
lowerCAmelCase :List[str] = 10
lowerCAmelCase :Union[str, Any] = 11
lowerCAmelCase :Optional[int] = 12
lowerCAmelCase :str = 13
lowerCAmelCase :Dict = 14
@dataclass
class _snake_case ( a__ ):
lowerCAmelCase :torch.FloatTensor
class _snake_case :
lowerCAmelCase :str = SCHEDULER_CONFIG_NAME
lowerCAmelCase :Union[str, Any] = []
lowerCAmelCase :List[str] = True
@classmethod
def snake_case__ ( cls , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase=False , **_lowerCamelCase , ):
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = cls.load_config(
pretrained_model_name_or_path=_lowerCamelCase , subfolder=_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , return_commit_hash=_lowerCamelCase , **_lowerCamelCase , )
return cls.from_config(_lowerCamelCase , return_unused_kwargs=_lowerCamelCase , **_lowerCamelCase)
def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = False , **_lowerCamelCase):
self.save_config(save_directory=_lowerCamelCase , push_to_hub=_lowerCamelCase , **_lowerCamelCase)
@property
def snake_case__ ( self):
return self._get_compatibles()
@classmethod
def snake_case__ ( cls):
UpperCAmelCase__ : List[Any] = list(set([cls.__name__] + cls._compatibles))
UpperCAmelCase__ : int = importlib.import_module(__name__.split(""".""")[0])
UpperCAmelCase__ : Dict = [
getattr(_lowerCamelCase , _lowerCamelCase) for c in compatible_classes_str if hasattr(_lowerCamelCase , _lowerCamelCase)
]
return compatible_classes
| 113
| 0
|
"""simple docstring"""
from itertools import permutations
def lowerCAmelCase ( __UpperCamelCase ):
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
UpperCAmelCase__ : List[str] = [7, 11, 13, 17]
for i, test in enumerate(__UpperCamelCase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowerCAmelCase ( __UpperCamelCase = 10 ):
'''simple docstring'''
return sum(
int("""""".join(map(__UpperCamelCase , __UpperCamelCase ) ) )
for num in permutations(range(__UpperCamelCase ) )
if is_substring_divisible(__UpperCamelCase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 65
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[str] = 'gpt_bigcode'
__UpperCAmelCase : Tuple = ['past_key_values']
__UpperCAmelCase : Dict = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ):
__a = vocab_size
__a = n_positions
__a = n_embd
__a = n_layer
__a = n_head
__a = n_inner
__a = activation_function
__a = resid_pdrop
__a = embd_pdrop
__a = attn_pdrop
__a = layer_norm_epsilon
__a = initializer_range
__a = scale_attn_weights
__a = use_cache
__a = attention_softmax_in_fpaa
__a = scale_attention_softmax_in_fpaa
__a = multi_query
__a = bos_token_id
__a = eos_token_id
super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
| 695
| 0
|
"""simple docstring"""
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def snake_case__ ( __lowerCamelCase : Optional[int] ):
"""simple docstring"""
random.seed(lowerCAmelCase__ )
np.random.seed(lowerCAmelCase__ )
torch.manual_seed(lowerCAmelCase__ )
torch.cuda.manual_seed_all(lowerCAmelCase__ )
# ^^ safe to call this function even if cuda is not available
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Any, lowerCamelCase : Iterable[torch.nn.Parameter], lowerCamelCase : float = 0.9_999, lowerCamelCase : float = 0.0, lowerCamelCase : int = 0, lowerCamelCase : bool = False, lowerCamelCase : Union[float, int] = 1.0, lowerCamelCase : Union[float, int] = 2 / 3, lowerCamelCase : Optional[Any] = None, lowerCamelCase : Dict[str, Any] = None, **lowerCamelCase : int, )-> List[Any]:
if isinstance(snake_case__, torch.nn.Module ):
lowerCamelCase__ : Optional[Any] =(
'''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. '''
'''Please pass the parameters of the module instead.'''
)
deprecate(
'''passing a `torch.nn.Module` to `ExponentialMovingAverage`''', '''1.0.0''', snake_case__, standard_warn=snake_case__, )
lowerCamelCase__ : Union[str, Any] =parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
lowerCamelCase__ : Optional[Any] =True
if kwargs.get('''max_value''', snake_case__ ) is not None:
lowerCamelCase__ : Optional[Any] ='''The `max_value` argument is deprecated. Please use `decay` instead.'''
deprecate('''max_value''', '''1.0.0''', snake_case__, standard_warn=snake_case__ )
lowerCamelCase__ : List[str] =kwargs['''max_value''']
if kwargs.get('''min_value''', snake_case__ ) is not None:
lowerCamelCase__ : str ='''The `min_value` argument is deprecated. Please use `min_decay` instead.'''
deprecate('''min_value''', '''1.0.0''', snake_case__, standard_warn=snake_case__ )
lowerCamelCase__ : int =kwargs['''min_value''']
lowerCamelCase__ : List[Any] =list(snake_case__ )
lowerCamelCase__ : Dict =[p.clone().detach() for p in parameters]
if kwargs.get('''device''', snake_case__ ) is not None:
lowerCamelCase__ : Optional[Any] ='''The `device` argument is deprecated. Please use `to` instead.'''
deprecate('''device''', '''1.0.0''', snake_case__, standard_warn=snake_case__ )
self.to(device=kwargs['''device'''] )
lowerCamelCase__ : List[str] =None
lowerCamelCase__ : Tuple =decay
lowerCamelCase__ : List[Any] =min_decay
lowerCamelCase__ : Optional[int] =update_after_step
lowerCamelCase__ : List[str] =use_ema_warmup
lowerCamelCase__ : List[Any] =inv_gamma
lowerCamelCase__ : List[str] =power
lowerCamelCase__ : Optional[Any] =0
lowerCamelCase__ : Dict =None # set in `step()`
lowerCamelCase__ : Any =model_cls
lowerCamelCase__ : Any =model_config
@classmethod
def snake_case ( cls : Dict, lowerCamelCase : List[Any], lowerCamelCase : Any )-> Union[str, Any]:
lowerCamelCase__ , lowerCamelCase__ : Dict =model_cls.load_config(snake_case__, return_unused_kwargs=snake_case__ )
lowerCamelCase__ : Optional[int] =model_cls.from_pretrained(snake_case__ )
lowerCamelCase__ : Dict =cls(model.parameters(), model_cls=snake_case__, model_config=model.config )
ema_model.load_state_dict(snake_case__ )
return ema_model
def snake_case ( self : Optional[Any], lowerCamelCase : List[Any] )-> int:
if self.model_cls is None:
raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' )
if self.model_config is None:
raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' )
lowerCamelCase__ : List[Any] =self.model_cls.from_config(self.model_config )
lowerCamelCase__ : List[Any] =self.state_dict()
state_dict.pop('''shadow_params''', snake_case__ )
model.register_to_config(**snake_case__ )
self.copy_to(model.parameters() )
model.save_pretrained(snake_case__ )
def snake_case ( self : List[str], lowerCamelCase : int )-> Optional[int]:
lowerCamelCase__ : int =max(0, optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
lowerCamelCase__ : str =1 - (1 + step / self.inv_gamma) ** -self.power
else:
lowerCamelCase__ : List[Any] =(1 + step) / (10 + step)
lowerCamelCase__ : Any =min(snake_case__, self.decay )
# make sure decay is not smaller than min_decay
lowerCamelCase__ : Optional[Any] =max(snake_case__, self.min_decay )
return cur_decay_value
@torch.no_grad()
def snake_case ( self : List[str], lowerCamelCase : Iterable[torch.nn.Parameter] )-> Dict:
if isinstance(snake_case__, torch.nn.Module ):
lowerCamelCase__ : List[str] =(
'''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. '''
'''Please pass the parameters of the module instead.'''
)
deprecate(
'''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''', '''1.0.0''', snake_case__, standard_warn=snake_case__, )
lowerCamelCase__ : Dict =parameters.parameters()
lowerCamelCase__ : List[Any] =list(snake_case__ )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
lowerCamelCase__ : Optional[Any] =self.get_decay(self.optimization_step )
lowerCamelCase__ : Any =decay
lowerCamelCase__ : Tuple =1 - decay
lowerCamelCase__ : Tuple =contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params, snake_case__ ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
lowerCamelCase__ : int =deepspeed.zero.GatheredParameters(snake_case__, modifier_rank=snake_case__ )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(snake_case__ )
def snake_case ( self : List[Any], lowerCamelCase : Iterable[torch.nn.Parameter] )-> Dict:
lowerCamelCase__ : Any =list(snake_case__ )
for s_param, param in zip(self.shadow_params, snake_case__ ):
param.data.copy_(s_param.to(param.device ).data )
def snake_case ( self : List[str], lowerCamelCase : int=None, lowerCamelCase : int=None )-> str:
lowerCamelCase__ : Dict =[
p.to(device=snake_case__, dtype=snake_case__ ) if p.is_floating_point() else p.to(device=snake_case__ )
for p in self.shadow_params
]
def snake_case ( self : Optional[int] )-> Optional[int]:
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def snake_case ( self : Any, lowerCamelCase : Iterable[torch.nn.Parameter] )-> str:
lowerCamelCase__ : Optional[Any] =[param.detach().cpu().clone() for param in parameters]
def snake_case ( self : str, lowerCamelCase : Iterable[torch.nn.Parameter] )-> List[Any]:
if self.temp_stored_params is None:
raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' )
for c_param, param in zip(self.temp_stored_params, snake_case__ ):
param.data.copy_(c_param.data )
# Better memory-wise.
lowerCamelCase__ : int =None
def snake_case ( self : Union[str, Any], lowerCamelCase : dict )-> Optional[int]:
lowerCamelCase__ : Dict =copy.deepcopy(snake_case__ )
lowerCamelCase__ : List[str] =state_dict.get('''decay''', self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError('''Decay must be between 0 and 1''' )
lowerCamelCase__ : Dict =state_dict.get('''min_decay''', self.min_decay )
if not isinstance(self.min_decay, snake_case__ ):
raise ValueError('''Invalid min_decay''' )
lowerCamelCase__ : Optional[Any] =state_dict.get('''optimization_step''', self.optimization_step )
if not isinstance(self.optimization_step, snake_case__ ):
raise ValueError('''Invalid optimization_step''' )
lowerCamelCase__ : str =state_dict.get('''update_after_step''', self.update_after_step )
if not isinstance(self.update_after_step, snake_case__ ):
raise ValueError('''Invalid update_after_step''' )
lowerCamelCase__ : Optional[int] =state_dict.get('''use_ema_warmup''', self.use_ema_warmup )
if not isinstance(self.use_ema_warmup, snake_case__ ):
raise ValueError('''Invalid use_ema_warmup''' )
lowerCamelCase__ : Tuple =state_dict.get('''inv_gamma''', self.inv_gamma )
if not isinstance(self.inv_gamma, (float, int) ):
raise ValueError('''Invalid inv_gamma''' )
lowerCamelCase__ : Optional[int] =state_dict.get('''power''', self.power )
if not isinstance(self.power, (float, int) ):
raise ValueError('''Invalid power''' )
lowerCamelCase__ : str =state_dict.get('''shadow_params''', snake_case__ )
if shadow_params is not None:
lowerCamelCase__ : Dict =shadow_params
if not isinstance(self.shadow_params, snake_case__ ):
raise ValueError('''shadow_params must be a list''' )
if not all(isinstance(snake_case__, torch.Tensor ) for p in self.shadow_params ):
raise ValueError('''shadow_params must all be Tensors''' )
| 706
|
"""simple docstring"""
import os
def snake_case__ ( ):
"""simple docstring"""
with open(os.path.dirname(__lowerCamelCase ) + '''/p022_names.txt''' ) as file:
lowerCamelCase__ : Tuple =str(file.readlines()[0] )
lowerCamelCase__ : int =names.replace('''"''' , '''''' ).split(''',''' )
names.sort()
lowerCamelCase__ : Union[str, Any] =0
lowerCamelCase__ : str =0
for i, name in enumerate(__lowerCamelCase ):
for letter in name:
name_score += ord(__lowerCamelCase ) - 64
total_score += (i + 1) * name_score
lowerCamelCase__ : Dict =0
return total_score
if __name__ == "__main__":
print(solution())
| 625
| 0
|
"""simple docstring"""
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
A_ = logging.get_logger(__name__)
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ):
def constraint_to_multiple_of(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=0 ,lowerCAmelCase__=None ):
lowerCamelCase_ = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowerCamelCase_ = math.floor(val / multiple ) * multiple
if x < min_val:
lowerCamelCase_ = math.ceil(val / multiple ) * multiple
return x
lowerCamelCase_ = (output_size, output_size) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else output_size
lowerCamelCase_ , lowerCamelCase_ = get_image_size(lowerCAmelCase__ )
lowerCamelCase_ , lowerCamelCase_ = output_size
# determine new height and width
lowerCamelCase_ = output_height / input_height
lowerCamelCase_ = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowerCamelCase_ = scale_width
else:
# fit height
lowerCamelCase_ = scale_height
lowerCamelCase_ = constraint_to_multiple_of(scale_height * input_height ,multiple=lowerCAmelCase__ )
lowerCamelCase_ = constraint_to_multiple_of(scale_width * input_width ,multiple=lowerCAmelCase__ )
return (new_height, new_width)
class __lowerCamelCase ( lowerCAmelCase ):
a__: int = ['pixel_values']
def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = False , UpperCAmelCase = 1 , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ):
super().__init__(**UpperCAmelCase )
lowerCamelCase_ = size if size is not None else {'''height''': 384, '''width''': 384}
lowerCamelCase_ = get_size_dict(UpperCAmelCase )
lowerCamelCase_ = do_resize
lowerCamelCase_ = size
lowerCamelCase_ = keep_aspect_ratio
lowerCamelCase_ = ensure_multiple_of
lowerCamelCase_ = resample
lowerCamelCase_ = do_rescale
lowerCamelCase_ = rescale_factor
lowerCamelCase_ = do_normalize
lowerCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False , UpperCAmelCase = 1 , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ):
lowerCamelCase_ = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" )
lowerCamelCase_ = get_resize_output_image_size(
UpperCAmelCase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=UpperCAmelCase , multiple=UpperCAmelCase , )
return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ):
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ):
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ):
lowerCamelCase_ = do_resize if do_resize is not None else self.do_resize
lowerCamelCase_ = size if size is not None else self.size
lowerCamelCase_ = get_size_dict(UpperCAmelCase )
lowerCamelCase_ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowerCamelCase_ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowerCamelCase_ = resample if resample is not None else self.resample
lowerCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase_ = image_mean if image_mean is not None else self.image_mean
lowerCamelCase_ = image_std if image_std is not None else self.image_std
lowerCamelCase_ = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
lowerCamelCase_ = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
lowerCamelCase_ = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_rescale:
lowerCamelCase_ = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
lowerCamelCase_ = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
lowerCamelCase_ = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
lowerCamelCase_ = {'''pixel_values''': images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None ):
lowerCamelCase_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(UpperCAmelCase ):
lowerCamelCase_ = target_sizes.numpy()
lowerCamelCase_ = []
for idx in range(len(UpperCAmelCase ) ):
lowerCamelCase_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCAmelCase )
lowerCamelCase_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(UpperCAmelCase )
else:
lowerCamelCase_ = logits.argmax(dim=1 )
lowerCamelCase_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 29
|
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mvp import MvpTokenizer
a_ = logging.get_logger(__name__)
a_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
# See all MVP models at https://huggingface.co/models?filter=mvp
a_ = {
'vocab_file': {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json',
},
'added_tokens.json': {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json',
},
'merges_file': {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt',
},
'tokenizer_file': {
'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json',
},
}
a_ = {
'RUCAIBox/mvp': 1_024,
}
class _lowercase ( snake_case_ ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ['input_ids', 'attention_mask']
lowercase = MvpTokenizer
def __init__( self : int , snake_case : str=None , snake_case : int=None , snake_case : Optional[Any]=None , snake_case : Union[str, Any]="replace" , snake_case : Optional[int]="<s>" , snake_case : List[Any]="</s>" , snake_case : Dict="</s>" , snake_case : Tuple="<s>" , snake_case : Any="<unk>" , snake_case : Tuple="<pad>" , snake_case : List[str]="<mask>" , snake_case : int=False , snake_case : Tuple=True , **snake_case : Dict , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , )
UpperCamelCase_ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , snake_case ) != add_prefix_space:
UpperCamelCase_ : Optional[int] = getattr(snake_case , pre_tok_state.pop('type' ) )
UpperCamelCase_ : Optional[Any] = add_prefix_space
UpperCamelCase_ : int = pre_tok_class(**snake_case )
UpperCamelCase_ : Any = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
UpperCamelCase_ : Optional[int] = 'post_processor'
UpperCamelCase_ : Optional[Any] = getattr(self.backend_tokenizer , snake_case , snake_case )
if tokenizer_component_instance:
UpperCamelCase_ : List[Any] = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
UpperCamelCase_ : Any = tuple(state['sep'] )
if "cls" in state:
UpperCamelCase_ : int = tuple(state['cls'] )
UpperCamelCase_ : Optional[int] = False
if state.get('add_prefix_space' , snake_case ) != add_prefix_space:
UpperCamelCase_ : Union[str, Any] = add_prefix_space
UpperCamelCase_ : Optional[int] = True
if state.get('trim_offsets' , snake_case ) != trim_offsets:
UpperCamelCase_ : Dict = trim_offsets
UpperCamelCase_ : Optional[int] = True
if changes_to_apply:
UpperCamelCase_ : str = getattr(snake_case , state.pop('type' ) )
UpperCamelCase_ : Union[str, Any] = component_class(**snake_case )
setattr(self.backend_tokenizer , snake_case , snake_case )
@property
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case : List[Any] ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else value
UpperCamelCase_ : Tuple = value
def SCREAMING_SNAKE_CASE__ ( self : Any , *snake_case : int , **snake_case : Dict ) -> BatchEncoding:
"""simple docstring"""
UpperCamelCase_ : Optional[int] = kwargs.get('is_split_into_words' , snake_case )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
'to use it with pretokenized inputs.' )
return super()._batch_encode_plus(*snake_case , **snake_case )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , *snake_case : Optional[int] , **snake_case : int ) -> BatchEncoding:
"""simple docstring"""
UpperCamelCase_ : Optional[int] = kwargs.get('is_split_into_words' , snake_case )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
'to use it with pretokenized inputs.' )
return super()._encode_plus(*snake_case , **snake_case )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCamelCase_ : str = self._tokenizer.model.save(snake_case , name=snake_case )
return tuple(snake_case )
def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Union[str, Any] , snake_case : Union[str, Any]=None ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase_ : Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
UpperCamelCase_ : List[str] = [self.sep_token_id]
UpperCamelCase_ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 417
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : Dict = {
'configuration_bigbird_pegasus': [
'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BigBirdPegasusConfig',
'BigBirdPegasusOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST',
'BigBirdPegasusForCausalLM',
'BigBirdPegasusForConditionalGeneration',
'BigBirdPegasusForQuestionAnswering',
'BigBirdPegasusForSequenceClassification',
'BigBirdPegasusModel',
'BigBirdPegasusPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
__A : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 698
|
__A : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_0217_6634e-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.355_818,
}
def __a ( A__ : str , A__ : str , A__ : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
SCREAMING_SNAKE_CASE = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(A__ )}"
)
raise ValueError(A__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 698
| 1
|
import os
def __lowerCAmelCase( ) -> Union[str, Any]:
"""simple docstring"""
with open(os.path.dirname(_SCREAMING_SNAKE_CASE ) + '/grid.txt' ) as f:
_A = [] # noqa: E741
for _ in range(20 ):
l.append([int(_SCREAMING_SNAKE_CASE ) for x in f.readline().split()] )
_A = 0
# right
for i in range(20 ):
for j in range(17 ):
_A = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3]
if temp > maximum:
_A = temp
# down
for i in range(17 ):
for j in range(20 ):
_A = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j]
if temp > maximum:
_A = temp
# diagonal 1
for i in range(17 ):
for j in range(17 ):
_A = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3]
if temp > maximum:
_A = temp
# diagonal 2
for i in range(17 ):
for j in range(3 , 20 ):
_A = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3]
if temp > maximum:
_A = temp
return maximum
if __name__ == "__main__":
print(solution())
| 27
|
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline
else:
from .pipeline_unclip import UnCLIPPipeline
from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline
from .text_proj import UnCLIPTextProjModel
| 513
| 0
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__magic_name__ : Any = logging.get_logger(__name__)
__magic_name__ : List[str] = {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json',
'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json',
}
class lowerCamelCase ( __snake_case ):
"""simple docstring"""
lowerCAmelCase_ = """roberta"""
def __init__( self , __UpperCamelCase=50265 , __UpperCamelCase=768 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase="absolute" , __UpperCamelCase=True , __UpperCamelCase=None , **__UpperCamelCase , ):
super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase )
A_ = vocab_size
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = hidden_act
A_ = intermediate_size
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = max_position_embeddings
A_ = type_vocab_size
A_ = initializer_range
A_ = layer_norm_eps
A_ = position_embedding_type
A_ = use_cache
A_ = classifier_dropout
class lowerCamelCase ( __snake_case ):
"""simple docstring"""
@property
def lowercase_ ( self ):
if self.task == "multiple-choice":
A_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
A_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 608
|
from __future__ import annotations
from collections.abc import MutableSequence
class lowerCamelCase :
"""simple docstring"""
def __init__( self , __UpperCamelCase , __UpperCamelCase ):
if len(__UpperCamelCase ) != degree + 1:
raise ValueError(
"The number of coefficients should be equal to the degree + 1." )
A_ = list(__UpperCamelCase )
A_ = degree
def __add__( self , __UpperCamelCase ):
if self.degree > polynomial_a.degree:
A_ = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , __UpperCamelCase )
else:
A_ = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , __UpperCamelCase )
def __sub__( self , __UpperCamelCase ):
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self ):
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self , __UpperCamelCase ):
A_ = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , __UpperCamelCase )
def lowercase_ ( self , __UpperCamelCase ):
A_ = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self ):
A_ = ""
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__UpperCamelCase )
return polynomial
def __repr__( self ):
return self.__str__()
def lowercase_ ( self ):
A_ = [0] * self.degree
for i in range(self.degree ):
A_ = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , __UpperCamelCase )
def lowercase_ ( self , __UpperCamelCase = 0 ):
A_ = [0] * (self.degree + 2)
A_ = constant
for i in range(self.degree + 1 ):
A_ = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , __UpperCamelCase )
def __eq__( self , __UpperCamelCase ):
if not isinstance(__UpperCamelCase , __UpperCamelCase ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self , __UpperCamelCase ):
return not self.__eq__(__UpperCamelCase )
| 608
| 1
|
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
_SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
class _snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__snake_case = ["input_features", "is_longer"]
def __init__( self: str , __UpperCamelCase: List[str]=64 , __UpperCamelCase: Optional[int]=4_8000 , __UpperCamelCase: int=480 , __UpperCamelCase: Optional[Any]=10 , __UpperCamelCase: Dict=1024 , __UpperCamelCase: Tuple=0.0 , __UpperCamelCase: Union[str, Any]=False , __UpperCamelCase: float = 0 , __UpperCamelCase: float = 1_4000 , __UpperCamelCase: int = None , __UpperCamelCase: str = "fusion" , __UpperCamelCase: str = "repeatpad" , **__UpperCamelCase: List[Any] , ) -> Tuple:
super().__init__(
feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
__magic_name__ : Optional[int] = top_db
__magic_name__ : Dict = truncation
__magic_name__ : Optional[Any] = padding
__magic_name__ : List[str] = fft_window_size
__magic_name__ : Dict = (fft_window_size >> 1) + 1
__magic_name__ : Optional[int] = hop_length
__magic_name__ : str = max_length_s
__magic_name__ : Tuple = max_length_s * sampling_rate
__magic_name__ : str = sampling_rate
__magic_name__ : Optional[Any] = frequency_min
__magic_name__ : str = frequency_max
__magic_name__ : List[Any] = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=_SCREAMING_SNAKE_CASE , max_frequency=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , norm=_SCREAMING_SNAKE_CASE , mel_scale="htk" , )
__magic_name__ : Dict = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=_SCREAMING_SNAKE_CASE , max_frequency=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , norm="slaney" , mel_scale="slaney" , )
def lowerCAmelCase__ ( self: Any ) -> Dict[str, Any]:
__magic_name__ : List[str] = copy.deepcopy(self.__dict__ )
__magic_name__ : Optional[int] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def lowerCAmelCase__ ( self: Any , __UpperCamelCase: np.array , __UpperCamelCase: Optional[np.array] = None ) -> np.ndarray:
__magic_name__ : Any = spectrogram(
_SCREAMING_SNAKE_CASE , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_SCREAMING_SNAKE_CASE , log_mel="dB" , )
return log_mel_spectrogram.T
def lowerCAmelCase__ ( self: Optional[Any] , __UpperCamelCase: int , __UpperCamelCase: List[str] , __UpperCamelCase: Dict ) -> List[str]:
__magic_name__ : Any = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
__magic_name__ : Any = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
__magic_name__ : Union[str, Any] = [0]
# randomly choose index for each part
__magic_name__ : Union[str, Any] = np.random.choice(ranges[0] )
__magic_name__ : Optional[Any] = np.random.choice(ranges[1] )
__magic_name__ : Tuple = np.random.choice(ranges[2] )
__magic_name__ : int = mel[idx_front : idx_front + chunk_frames, :]
__magic_name__ : Dict = mel[idx_middle : idx_middle + chunk_frames, :]
__magic_name__ : int = mel[idx_back : idx_back + chunk_frames, :]
__magic_name__ : Optional[int] = torch.tensor(mel[None, None, :] )
__magic_name__ : List[str] = torch.nn.functional.interpolate(
_SCREAMING_SNAKE_CASE , size=[chunk_frames, 64] , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE )
__magic_name__ : int = mel_shrink[0][0].numpy()
__magic_name__ : Tuple = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def lowerCAmelCase__ ( self: Union[str, Any] , __UpperCamelCase: np.array , __UpperCamelCase: List[Any] , __UpperCamelCase: str , __UpperCamelCase: Tuple ) -> np.array:
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
__magic_name__ : Optional[Any] = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
__magic_name__ : str = len(_SCREAMING_SNAKE_CASE ) - max_length
__magic_name__ : str = np.random.randint(0 , overflow + 1 )
__magic_name__ : Dict = waveform[idx : idx + max_length]
__magic_name__ : Any = self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
__magic_name__ : Dict = self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE , self.mel_filters )
__magic_name__ : Dict = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
__magic_name__ : Dict = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
__magic_name__ : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 )
__magic_name__ : Union[str, Any] = False
else:
__magic_name__ : Tuple = self._random_mel_fusion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
__magic_name__ : Optional[Any] = True
else:
raise NotImplementedError(f"""data_truncating {truncation} not implemented""" )
else:
__magic_name__ : Optional[Any] = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
__magic_name__ : Union[str, Any] = int(max_length / len(_SCREAMING_SNAKE_CASE ) )
__magic_name__ : Tuple = np.stack(np.tile(_SCREAMING_SNAKE_CASE , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
__magic_name__ : Any = int(max_length / len(_SCREAMING_SNAKE_CASE ) )
__magic_name__ : Tuple = np.stack(np.tile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
__magic_name__ : Dict = np.pad(_SCREAMING_SNAKE_CASE , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 )
if truncation == "fusion":
__magic_name__ : Optional[int] = self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE , self.mel_filters )
__magic_name__ : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
__magic_name__ : Tuple = self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self: Any , __UpperCamelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCamelCase: str = None , __UpperCamelCase: Optional[str] = None , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: Optional[Union[str, TensorType]] = None , **__UpperCamelCase: Any , ) -> BatchFeature:
__magic_name__ : List[str] = truncation if truncation is not None else self.truncation
__magic_name__ : Tuple = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"""
f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"""
f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
__magic_name__ : int = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
__magic_name__ : Optional[Any] = is_batched_numpy or (
isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__magic_name__ : List[str] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ):
__magic_name__ : Dict = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__magic_name__ : Union[str, Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__magic_name__ : str = [np.asarray(_SCREAMING_SNAKE_CASE )]
# convert to mel spectrogram, truncate and pad if needed.
__magic_name__ : Optional[int] = [
self._get_input_mel(_SCREAMING_SNAKE_CASE , max_length if max_length else self.nb_max_samples , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
for waveform in raw_speech
]
__magic_name__ : Optional[int] = []
__magic_name__ : List[Any] = []
for mel, longer in padded_inputs:
input_mel.append(_SCREAMING_SNAKE_CASE )
is_longer.append(_SCREAMING_SNAKE_CASE )
if truncation == "fusion" and sum(_SCREAMING_SNAKE_CASE ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
__magic_name__ : int = np.random.randint(0 , len(_SCREAMING_SNAKE_CASE ) )
__magic_name__ : int = True
if isinstance(input_mel[0] , _SCREAMING_SNAKE_CASE ):
__magic_name__ : Optional[int] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
__magic_name__ : str = [[longer] for longer in is_longer]
__magic_name__ : List[str] = {"input_features": input_mel, "is_longer": is_longer}
__magic_name__ : Dict = BatchFeature(_SCREAMING_SNAKE_CASE )
if return_tensors is not None:
__magic_name__ : Dict = input_features.convert_to_tensors(_SCREAMING_SNAKE_CASE )
return input_features
| 436
|
"""simple docstring"""
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
__snake_case : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model')
__snake_case : Union[str, Any] = {'target_lang': 'fi', 'source_lang': 'en'}
__snake_case : Union[str, Any] = '>>zh<<'
__snake_case : List[str] = 'Helsinki-NLP/'
if is_torch_available():
__snake_case : Optional[int] = 'pt'
elif is_tf_available():
__snake_case : List[Any] = 'tf'
else:
__snake_case : Union[str, Any] = 'jax'
@require_sentencepiece
class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = MarianTokenizer
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
def _SCREAMING_SNAKE_CASE ( self: int) -> Tuple:
"""simple docstring"""
super().setUp()
__lowerCAmelCase : Dict = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"]
__lowerCAmelCase : Union[str, Any] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE))))
__lowerCAmelCase : int = Path(self.tmpdirname)
save_json(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["vocab"])
save_json(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"])
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["source_spm"])
copyfile(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["target_spm"])
__lowerCAmelCase : Tuple = MarianTokenizer.from_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname)
def _SCREAMING_SNAKE_CASE ( self: Dict , **_SCREAMING_SNAKE_CASE: List[str]) -> MarianTokenizer:
"""simple docstring"""
return MarianTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[str]) -> Dict:
"""simple docstring"""
return (
"This is a test",
"This is a test",
)
def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> int:
"""simple docstring"""
__lowerCAmelCase : Union[str, Any] = "</s>"
__lowerCAmelCase : int = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]:
"""simple docstring"""
__lowerCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , "</s>")
self.assertEqual(vocab_keys[1] , "<unk>")
self.assertEqual(vocab_keys[-1] , "<pad>")
self.assertEqual(len(_SCREAMING_SNAKE_CASE) , 9)
def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 9)
def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Any:
"""simple docstring"""
__lowerCAmelCase : Optional[Any] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""")
__lowerCAmelCase : int = en_de_tokenizer(["I am a small frog"] , return_tensors=_SCREAMING_SNAKE_CASE)
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
__lowerCAmelCase : Optional[int] = [38, 121, 14, 697, 3_8848, 0]
self.assertListEqual(_SCREAMING_SNAKE_CASE , batch.input_ids[0])
__lowerCAmelCase : Tuple = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE)
__lowerCAmelCase : List[Any] = [x.name for x in Path(_SCREAMING_SNAKE_CASE).glob("*")]
self.assertIn("source.spm" , _SCREAMING_SNAKE_CASE)
MarianTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE)
def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]:
"""simple docstring"""
__lowerCAmelCase : List[str] = self.get_tokenizer()
__lowerCAmelCase : int = tok(
["I am a small frog" * 1000, "I am a small frog"] , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE)
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
self.assertEqual(batch.input_ids.shape , (2, 512))
def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase : Any = self.get_tokenizer()
__lowerCAmelCase : str = tok(["I am a tiny frog", "I am a small frog"] , padding=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE)
self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
self.assertEqual(batch_smaller.input_ids.shape , (2, 10))
@slow
def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Optional[Any]:
"""simple docstring"""
__lowerCAmelCase : Optional[int] = {"input_ids": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_SCREAMING_SNAKE_CASE , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , )
def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Any:
"""simple docstring"""
__lowerCAmelCase : List[Any] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs")
__lowerCAmelCase : List[str] = "Tämä on testi"
__lowerCAmelCase : int = "This is a test"
__lowerCAmelCase : Union[str, Any] = [76, 7, 2047, 2]
__lowerCAmelCase : Dict = [69, 12, 11, 940, 2]
__lowerCAmelCase : List[str] = tokenizer(_SCREAMING_SNAKE_CASE).input_ids
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
__lowerCAmelCase : str = tokenizer(text_target=_SCREAMING_SNAKE_CASE).input_ids
self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
__lowerCAmelCase : Dict = tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE)
self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
| 293
| 0
|
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
snake_case__ : Union[str, Any] = """platform"""
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ):
if attention_mask is None:
__lowercase = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
__lowercase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
__lowercase = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__lowercase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__lowercase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _A :
'''simple docstring'''
def __init__( self : Dict , lowerCamelCase : Any , lowerCamelCase : List[Any]=13 , lowerCamelCase : Tuple=7 , lowerCamelCase : List[str]=True , lowerCamelCase : Optional[Any]=False , lowerCamelCase : Optional[int]=99 , lowerCamelCase : Any=16 , lowerCamelCase : Optional[Any]=2 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : Any=4 , lowerCamelCase : Optional[Any]="gelu" , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[int]=32 , lowerCamelCase : Tuple=2 , lowerCamelCase : List[Any]=1 , lowerCamelCase : Tuple=0 , lowerCamelCase : Optional[Any]=0.02 , ):
'''simple docstring'''
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = eos_token_id
__lowercase = pad_token_id
__lowercase = bos_token_id
__lowercase = initializer_range
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
__lowercase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
__lowercase = shift_tokens_right(lowerCamelCase , 1 , 2 )
__lowercase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase , )
__lowercase = prepare_blenderbot_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase )
return config, inputs_dict
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase , __lowercase = self.prepare_config_and_inputs()
return config, inputs_dict
def _snake_case ( self : int , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : Dict ):
'''simple docstring'''
__lowercase = 20
__lowercase = model_class_name(lowerCamelCase )
__lowercase = model.encode(inputs_dict["input_ids"] )
__lowercase , __lowercase = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
__lowercase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase )
__lowercase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" )
__lowercase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowercase = model.decode(
decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , )
__lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
__lowercase = model.decode(
decoder_input_ids[:, -1:] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase , )
__lowercase = model.decode(lowerCamelCase , lowerCamelCase )
__lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _snake_case ( self : Any , lowerCamelCase : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : str ):
'''simple docstring'''
__lowercase = 20
__lowercase = model_class_name(lowerCamelCase )
__lowercase = model.encode(inputs_dict["input_ids"] )
__lowercase , __lowercase = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
__lowercase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__lowercase = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase , lowerCamelCase )
__lowercase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowercase = model.decode(
decoder_input_ids[:, :-1] , lowerCamelCase , decoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , decoder_position_ids=lowerCamelCase , )
__lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
__lowercase = model.decode(
decoder_input_ids[:, -1:] , lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase , decoder_position_ids=lowerCamelCase , )
__lowercase = model.decode(lowerCamelCase , lowerCamelCase , decoder_attention_mask=lowerCamelCase )
__lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class _A ( unittest.TestCase ):
'''simple docstring'''
_snake_case : Optional[Any] = 99
def _snake_case ( self : List[str] ):
'''simple docstring'''
__lowercase = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
__lowercase = input_ids.shape[0]
__lowercase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase , __lowercase , __lowercase = self._get_config_and_data()
__lowercase = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase )
__lowercase = lm_model(input_ids=lowerCamelCase )
__lowercase = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape , lowerCamelCase )
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
__lowercase = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase )
__lowercase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
__lowercase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
__lowercase = lm_model(input_ids=lowerCamelCase , decoder_input_ids=lowerCamelCase )
__lowercase = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape , lowerCamelCase )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
__lowercase = shift_tokens_right(lowerCamelCase , 1 , 2 )
__lowercase = np.equal(lowerCamelCase , 1 ).astype(np.floataa ).sum()
__lowercase = np.equal(lowerCamelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(lowerCamelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class _A ( _lowercase , unittest.TestCase , _lowercase ):
'''simple docstring'''
_snake_case : Union[str, Any] = True
_snake_case : Tuple = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
_snake_case : Tuple = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
__lowercase = FlaxBlenderbotSmallModelTester(self )
def _snake_case ( self : str ):
'''simple docstring'''
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCamelCase , lowerCamelCase , lowerCamelCase )
def _snake_case ( self : Tuple ):
'''simple docstring'''
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase , lowerCamelCase , lowerCamelCase )
def _snake_case ( self : List[Any] ):
'''simple docstring'''
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(lowerCamelCase , lowerCamelCase )
__lowercase = model_class(lowerCamelCase )
@jax.jit
def encode_jitted(lowerCamelCase : Optional[int] , lowerCamelCase : List[Any]=None , **lowerCamelCase : Optional[Any] ):
return model.encode(input_ids=lowerCamelCase , attention_mask=lowerCamelCase )
with self.subTest("JIT Enabled" ):
__lowercase = encode_jitted(**lowerCamelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = encode_jitted(**lowerCamelCase ).to_tuple()
self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) )
for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = model_class(lowerCamelCase )
__lowercase = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] )
__lowercase = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCamelCase : int , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple ):
return model.decode(
decoder_input_ids=lowerCamelCase , decoder_attention_mask=lowerCamelCase , encoder_outputs=lowerCamelCase , )
with self.subTest("JIT Enabled" ):
__lowercase = decode_jitted(**lowerCamelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
__lowercase = decode_jitted(**lowerCamelCase ).to_tuple()
self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) )
for jitted_output, output in zip(lowerCamelCase , lowerCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _snake_case ( self : Any ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("facebook/blenderbot_small-90M" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
__lowercase = np.ones((1, 1) ) * model.config.eos_token_id
__lowercase = model(lowerCamelCase )
self.assertIsNotNone(lowerCamelCase )
| 655
|
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _A :
'''simple docstring'''
_snake_case : int
_snake_case : TreeNode | None = None
_snake_case : TreeNode | None = None
snake_case__ : Dict = namedtuple("""CoinsDistribResult""", """moves excess""")
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if root is None:
return 0
# Validation
def count_nodes(_SCREAMING_SNAKE_CASE ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(_SCREAMING_SNAKE_CASE ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ):
raise ValueError("The nodes number should be same as the number of coins" )
# Main calculation
def get_distrib(_SCREAMING_SNAKE_CASE ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
__lowercase , __lowercase = get_distrib(node.left )
__lowercase , __lowercase = get_distrib(node.right )
__lowercase = 1 - left_distrib_excess
__lowercase = 1 - right_distrib_excess
__lowercase = (
left_distrib_moves
+ right_distrib_moves
+ abs(_SCREAMING_SNAKE_CASE )
+ abs(_SCREAMING_SNAKE_CASE )
)
__lowercase = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return get_distrib(_SCREAMING_SNAKE_CASE )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 655
| 1
|
from __future__ import annotations
import math
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
UpperCAmelCase_ = [num for num in range(3, 1_0_0_0_0_1, 2) if not is_prime(num)]
def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> list[int]:
if not isinstance(_snake_case , _snake_case ):
raise ValueError('''n must be an integer''' )
if n <= 0:
raise ValueError('''n must be >= 0''' )
_A = []
for num in range(len(_snake_case ) ):
_A = 0
while 2 * i * i <= odd_composites[num]:
_A = odd_composites[num] - 2 * i * i
if is_prime(_snake_case ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(_snake_case ) == n:
return list_nums
return []
def SCREAMING_SNAKE_CASE_ ( ) -> int:
return compute_nums(1 )[0]
if __name__ == "__main__":
print(f'{solution() = }')
| 2
|
def snake_case__ ( lowercase , lowercase ):
if density <= 0:
raise ValueError("Impossible fluid density" )
if bulk_modulus <= 0:
raise ValueError("Impossible bulk modulus" )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 613
| 0
|
'''simple docstring'''
from math import pi, sqrt, tan
def __snake_case ( UpperCAmelCase_ : float ):
if side_length < 0:
raise ValueError("surface_area_cube() only accepts non-negative values" )
return 6 * side_length**2
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
if length < 0 or breadth < 0 or height < 0:
raise ValueError("surface_area_cuboid() only accepts non-negative values" )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def __snake_case ( UpperCAmelCase_ : float ):
if radius < 0:
raise ValueError("surface_area_sphere() only accepts non-negative values" )
return 4 * pi * radius**2
def __snake_case ( UpperCAmelCase_ : float ):
if radius < 0:
raise ValueError("surface_area_hemisphere() only accepts non-negative values" )
return 3 * pi * radius**2
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
if radius < 0 or height < 0:
raise ValueError("surface_area_cone() only accepts non-negative values" )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
"surface_area_conical_frustum() only accepts non-negative values" )
lowerCamelCase_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
if radius < 0 or height < 0:
raise ValueError("surface_area_cylinder() only accepts non-negative values" )
return 2 * pi * radius * (height + radius)
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
if torus_radius < 0 or tube_radius < 0:
raise ValueError("surface_area_torus() only accepts non-negative values" )
if torus_radius < tube_radius:
raise ValueError(
"surface_area_torus() does not support spindle or self intersecting tori" )
return 4 * pow(UpperCAmelCase_ , 2 ) * torus_radius * tube_radius
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
if length < 0 or width < 0:
raise ValueError("area_rectangle() only accepts non-negative values" )
return length * width
def __snake_case ( UpperCAmelCase_ : float ):
if side_length < 0:
raise ValueError("area_square() only accepts non-negative values" )
return side_length**2
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
if base < 0 or height < 0:
raise ValueError("area_triangle() only accepts non-negative values" )
return (base * height) / 2
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError("area_triangle_three_sides() only accepts non-negative values" )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError("Given three sides do not form a triangle" )
lowerCamelCase_ = (sidea + sidea + sidea) / 2
lowerCamelCase_ = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
if base < 0 or height < 0:
raise ValueError("area_parallelogram() only accepts non-negative values" )
return base * height
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
if basea < 0 or basea < 0 or height < 0:
raise ValueError("area_trapezium() only accepts non-negative values" )
return 1 / 2 * (basea + basea) * height
def __snake_case ( UpperCAmelCase_ : float ):
if radius < 0:
raise ValueError("area_circle() only accepts non-negative values" )
return pi * radius**2
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
if radius_x < 0 or radius_y < 0:
raise ValueError("area_ellipse() only accepts non-negative values" )
return pi * radius_x * radius_y
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError("area_rhombus() only accepts non-negative values" )
return 1 / 2 * diagonal_a * diagonal_a
def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : float ):
if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or sides < 3:
raise ValueError(
"area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides" )
elif length < 0:
raise ValueError(
"area_reg_polygon() only accepts non-negative values as \
length of a side" )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print("""[DEMO] Areas of various geometric shapes: \n""")
print(f'''Rectangle: {area_rectangle(10, 20) = }''')
print(f'''Square: {area_square(10) = }''')
print(f'''Triangle: {area_triangle(10, 10) = }''')
print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''')
print(f'''Parallelogram: {area_parallelogram(10, 20) = }''')
print(f'''Rhombus: {area_rhombus(10, 20) = }''')
print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''')
print(f'''Circle: {area_circle(20) = }''')
print(f'''Ellipse: {area_ellipse(10, 20) = }''')
print("""\nSurface Areas of various geometric shapes: \n""")
print(f'''Cube: {surface_area_cube(20) = }''')
print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''')
print(f'''Sphere: {surface_area_sphere(20) = }''')
print(f'''Hemisphere: {surface_area_hemisphere(20) = }''')
print(f'''Cone: {surface_area_cone(10, 20) = }''')
print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''')
print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''')
print(f'''Torus: {surface_area_torus(20, 10) = }''')
print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''')
print(f'''Square: {area_reg_polygon(4, 10) = }''')
print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
| 445
|
'''simple docstring'''
import math
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ):
return math.pow(UpperCAmelCase_ , 2 ) - a
def __snake_case ( UpperCAmelCase_ : float ):
return 2 * x
def __snake_case ( UpperCAmelCase_ : float ):
lowerCamelCase_ = 2.0
while start <= a:
lowerCamelCase_ = math.pow(UpperCAmelCase_ , 2 )
return start
def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 9999 , UpperCAmelCase_ : float = 0.00_0000_0000_0001 ):
if a < 0:
raise ValueError("math domain error" )
lowerCamelCase_ = get_initial_point(UpperCAmelCase_ )
for _ in range(UpperCAmelCase_ ):
lowerCamelCase_ = value
lowerCamelCase_ = value - fx(UpperCAmelCase_ , UpperCAmelCase_ ) / fx_derivative(UpperCAmelCase_ )
if abs(prev_value - value ) < tolerance:
return value
return value
if __name__ == "__main__":
from doctest import testmod
testmod()
| 445
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE : List[Any] = {
"configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"],
"processing_trocr": ["TrOCRProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : Optional[int] = [
"TROCR_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrOCRForCausalLM",
"TrOCRPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 89
|
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = int(_A )
if n_element < 1:
SCREAMING_SNAKE_CASE__ = ValueError('''a should be a positive number''' )
raise my_error
SCREAMING_SNAKE_CASE__ = [1]
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = (0, 0, 0)
SCREAMING_SNAKE_CASE__ = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : Tuple = input('''Enter the last number (nth term) of the Hamming Number Series: ''')
print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''')
_SCREAMING_SNAKE_CASE : int = hamming(int(n))
print('''-----------------------------------------------------''')
print(F"The list with nth numbers is: {hamming_numbers}")
print('''-----------------------------------------------------''')
| 493
| 0
|
import inspect
import unittest
from transformers import RegNetConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import RegNetForImageClassification, RegNetModel
from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class UpperCamelCase__:
"""simple docstring"""
def __init__( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : Tuple=3 , snake_case__ : int=32 , snake_case__ : Optional[Any]=3 , snake_case__ : List[Any]=10 , snake_case__ : Optional[Any]=[10, 20, 30, 40] , snake_case__ : Dict=[1, 1, 2, 1] , snake_case__ : Tuple=True , snake_case__ : int=True , snake_case__ : str="relu" , snake_case__ : List[Any]=3 , snake_case__ : Dict=None , ):
"""simple docstring"""
A =parent
A =batch_size
A =image_size
A =num_channels
A =embeddings_size
A =hidden_sizes
A =depths
A =is_training
A =use_labels
A =hidden_act
A =num_labels
A =scope
A =len(snake_case__ )
def _a ( self : Tuple ):
"""simple docstring"""
A =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A =None
if self.use_labels:
A =ids_tensor([self.batch_size] , self.num_labels )
A =self.get_config()
return config, pixel_values, labels
def _a ( self : List[str] ):
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def _a ( self : str , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] ):
"""simple docstring"""
A =RegNetModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
A =model(snake_case__ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _a ( self : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] ):
"""simple docstring"""
A =self.num_labels
A =RegNetForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
A =model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _a ( self : Dict ):
"""simple docstring"""
A =self.prepare_config_and_inputs()
A , A , A =config_and_inputs
A ={"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
_A = (RegNetModel, RegNetForImageClassification) if is_torch_available() else ()
_A = (
{"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification}
if is_torch_available()
else {}
)
_A = False
_A = False
_A = False
_A = False
def _a ( self : List[str] ):
"""simple docstring"""
A =RegNetModelTester(self )
A =ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ )
def _a ( self : List[Any] ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _a ( self : int ):
"""simple docstring"""
return
@unittest.skip(reason="RegNet does not use inputs_embeds" )
def _a ( self : str ):
"""simple docstring"""
pass
@unittest.skip(reason="RegNet does not support input and output embeddings" )
def _a ( self : List[str] ):
"""simple docstring"""
pass
def _a ( self : str ):
"""simple docstring"""
A , A =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A =model_class(snake_case__ )
A =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A =[*signature.parameters.keys()]
A =["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case__ )
def _a ( self : Optional[int] ):
"""simple docstring"""
A =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def _a ( self : List[Any] ):
"""simple docstring"""
A , A =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A =model_class(config=snake_case__ )
for name, module in model.named_modules():
if isinstance(snake_case__ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
def _a ( self : Any ):
"""simple docstring"""
def check_hidden_states_output(snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : List[str] ):
A =model_class(snake_case__ )
model.to(snake_case__ )
model.eval()
with torch.no_grad():
A =model(**self._prepare_for_class(snake_case__ , snake_case__ ) )
A =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A =self.model_tester.num_stages
self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
A , A =self.model_tester.prepare_config_and_inputs_for_common()
A =["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
A =layer_type
A =True
check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A =True
check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ )
def _a ( self : Union[str, Any] ):
"""simple docstring"""
A =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
@slow
def _a ( self : List[Any] ):
"""simple docstring"""
for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A =RegNetModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def UpperCamelCase_ ( ) ->Tuple:
A =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCamelCase__( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _a ( self : Any ):
"""simple docstring"""
return (
AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _a ( self : Optional[int] ):
"""simple docstring"""
A =RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case__ )
A =self.default_image_processor
A =prepare_img()
A =image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ )
# forward pass
with torch.no_grad():
A =model(**snake_case__ )
# verify the logits
A =torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , snake_case__ )
A =torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(snake_case__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
| 710
|
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class UpperCamelCase__:
"""simple docstring"""
_A = 42
_A = None
_A = None
__a = namedtuple("""CoinsDistribResult""", """moves excess""")
def UpperCamelCase_ ( a_ ) ->int:
if root is None:
return 0
# Validation
def count_nodes(a_ ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(a_ ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(a_ ) != count_coins(a_ ):
raise ValueError("The nodes number should be same as the number of coins" )
# Main calculation
def get_distrib(a_ ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
A , A =get_distrib(node.left )
A , A =get_distrib(node.right )
A =1 - left_distrib_excess
A =1 - right_distrib_excess
A =(
left_distrib_moves
+ right_distrib_moves
+ abs(a_ )
+ abs(a_ )
)
A =node.data - coins_to_left - coins_to_right
return CoinsDistribResult(a_ , a_ )
return get_distrib(a_ )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 689
| 0
|
import unittest
from transformers import BigBirdTokenizer, BigBirdTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a_ : List[str] = '▁'
a_ : str = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class _snake_case ( A__ , unittest.TestCase ):
_lowercase : str = BigBirdTokenizer
_lowercase : Any = BigBirdTokenizerFast
_lowercase : Tuple = True
_lowercase : int = True
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
super().setUp()
SCREAMING_SNAKE_CASE = self.tokenizer_class(a , keep_accents=a)
tokenizer.save_pretrained(self.tmpdirname)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = '<s>'
SCREAMING_SNAKE_CASE = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(a) , a)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(a) , a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '<unk>')
self.assertEqual(vocab_keys[1] , '<s>')
self.assertEqual(vocab_keys[-1] , '[MASK]')
self.assertEqual(len(a) , 1004)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1000)
def SCREAMING_SNAKE_CASE__ ( self) -> str:
if not self.test_rust_tokenizer:
return
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE = 'I was born in 92000, and this is falsé.'
SCREAMING_SNAKE_CASE = tokenizer.tokenize(a)
SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(a)
self.assertListEqual(a , a)
SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a)
SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a , add_special_tokens=a)
self.assertListEqual(a , a)
SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE = tokenizer.encode(a)
SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a)
self.assertListEqual(a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = BigBirdTokenizer(a , keep_accents=a)
SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test')
self.assertListEqual(a , ['▁This', '▁is', '▁a', '▁t', 'est'])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a) , [285, 46, 10, 170, 382] , )
SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.')
self.assertListEqual(
a , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(a)
self.assertListEqual(
a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(a)
self.assertListEqual(
a , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = 'Hello World!'
SCREAMING_SNAKE_CASE = [65, 1_8536, 2260, 101, 66]
self.assertListEqual(a , self.big_tokenizer.encode(a))
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
# fmt: off
SCREAMING_SNAKE_CASE = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231
# fmt: on
self.assertListEqual(a , self.big_tokenizer.encode(a))
@require_torch
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
import torch
from transformers import BigBirdConfig, BigBirdModel
# Build sequence
SCREAMING_SNAKE_CASE = list(self.big_tokenizer.get_vocab().keys())[:10]
SCREAMING_SNAKE_CASE = ' '.join(a)
SCREAMING_SNAKE_CASE = self.big_tokenizer.encode_plus(a , return_tensors='pt' , return_token_type_ids=a)
SCREAMING_SNAKE_CASE = self.big_tokenizer.batch_encode_plus(
[sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=a)
SCREAMING_SNAKE_CASE = BigBirdConfig(attention_type='original_full')
SCREAMING_SNAKE_CASE = BigBirdModel(a)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**a)
model(**a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base')
SCREAMING_SNAKE_CASE = tokenizer.decode(tokenizer('Paris is the [MASK].').input_ids)
self.assertTrue(decoded_text == '[CLS] Paris is the[MASK].[SEP]')
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
# fmt: off
SCREAMING_SNAKE_CASE = {'input_ids': [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=a , model_name='google/bigbird-roberta-base' , revision='215c99f1600e06f83acce68422f2035b2b5c3510' , )
| 73
|
lowerCAmelCase : List[str] = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Any = set()
# keep track of all the paths to be checked
SCREAMING_SNAKE_CASE_: Tuple = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
SCREAMING_SNAKE_CASE_: List[Any] = queue.pop(0 )
# get the last node from the path
SCREAMING_SNAKE_CASE_: Tuple = path[-1]
if node not in explored:
SCREAMING_SNAKE_CASE_: Union[str, Any] = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
SCREAMING_SNAKE_CASE_: int = list(_UpperCAmelCase )
new_path.append(_UpperCAmelCase )
queue.append(_UpperCAmelCase )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(_UpperCAmelCase )
# in case there's no path between the 2 nodes
return []
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
SCREAMING_SNAKE_CASE_: List[Any] = [start]
SCREAMING_SNAKE_CASE_: List[str] = set(_UpperCAmelCase )
# Keep tab on distances from `start` node.
SCREAMING_SNAKE_CASE_: Union[str, Any] = {start: 0, target: -1}
while queue:
SCREAMING_SNAKE_CASE_: Dict = queue.pop(0 )
if node == target:
SCREAMING_SNAKE_CASE_: Tuple = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(_UpperCAmelCase )
queue.append(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Union[str, Any] = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
| 671
| 0
|
'''simple docstring'''
import os
def lowerCAmelCase( a__ : str = "input.txt" ):
'''simple docstring'''
with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file:
lowerCamelCase__ = [
[int(a__ ) for element in line.split("," )]
for line in input_file.readlines()
]
lowerCamelCase__ = len(a__ )
lowerCamelCase__ = len(matrix[0] )
lowerCamelCase__ = [[-1 for _ in range(a__ )] for _ in range(a__ )]
for i in range(a__ ):
lowerCamelCase__ = matrix[i][0]
for j in range(1 , a__ ):
for i in range(a__ ):
lowerCamelCase__ = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , a__ ):
lowerCamelCase__ = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 426
|
'''simple docstring'''
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case_ :
"""simple docstring"""
def __init__( self , UpperCamelCase , UpperCamelCase=13 , UpperCamelCase=32 , UpperCamelCase=3 , UpperCamelCase=4 , UpperCamelCase=[10, 20, 30, 40] , UpperCamelCase=[2, 2, 3, 2] , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=37 , UpperCamelCase="gelu" , UpperCamelCase=10 , UpperCamelCase=0.0_2 , UpperCamelCase=["stage2", "stage3", "stage4"] , UpperCamelCase=[2, 3, 4] , UpperCamelCase=None , ):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = image_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = num_stages
lowerCamelCase__ = hidden_sizes
lowerCamelCase__ = depths
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = num_labels
lowerCamelCase__ = initializer_range
lowerCamelCase__ = out_features
lowerCamelCase__ = out_indices
lowerCamelCase__ = scope
def __UpperCAmelCase ( self):
lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_labels)
lowerCamelCase__ = self.get_config()
return config, pixel_values, labels
def __UpperCAmelCase ( self):
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase):
lowerCamelCase__ = ConvNextVaModel(config=UpperCamelCase)
model.to(UpperCamelCase)
model.eval()
lowerCamelCase__ = model(UpperCamelCase)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase):
lowerCamelCase__ = ConvNextVaForImageClassification(UpperCamelCase)
model.to(UpperCamelCase)
model.eval()
lowerCamelCase__ = model(UpperCamelCase , labels=UpperCamelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase):
lowerCamelCase__ = ConvNextVaBackbone(config=UpperCamelCase)
model.to(UpperCamelCase)
model.eval()
lowerCamelCase__ = model(UpperCamelCase)
# verify hidden states
self.parent.assertEqual(len(result.feature_maps) , len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[1], 4, 4])
# verify channels
self.parent.assertEqual(len(model.channels) , len(config.out_features))
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:])
# verify backbone works with out_features=None
lowerCamelCase__ = None
lowerCamelCase__ = ConvNextVaBackbone(config=UpperCamelCase)
model.to(UpperCamelCase)
model.eval()
lowerCamelCase__ = model(UpperCamelCase)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps) , 1)
self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.hidden_sizes[-1], 1, 1])
# verify channels
self.parent.assertEqual(len(model.channels) , 1)
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]])
def __UpperCAmelCase ( self):
lowerCamelCase__ = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs
lowerCamelCase__ = {"pixel_values": pixel_values}
return config, inputs_dict
def __UpperCAmelCase ( self):
lowerCamelCase__ = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs
lowerCamelCase__ = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class snake_case_ ( A__ , A__ , unittest.TestCase ):
"""simple docstring"""
__lowerCAmelCase : Optional[Any] =(
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
__lowerCAmelCase : Optional[int] =(
{'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
__lowerCAmelCase : Dict =False
__lowerCAmelCase : List[Any] =False
__lowerCAmelCase : Union[str, Any] =False
__lowerCAmelCase : Tuple =False
__lowerCAmelCase : Tuple =False
def __UpperCAmelCase ( self):
lowerCamelCase__ = ConvNextVaModelTester(self)
lowerCamelCase__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37)
def __UpperCAmelCase ( self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __UpperCAmelCase ( self):
return
@unittest.skip(reason="ConvNextV2 does not use inputs_embeds")
def __UpperCAmelCase ( self):
pass
@unittest.skip(reason="ConvNextV2 does not support input and output embeddings")
def __UpperCAmelCase ( self):
pass
@unittest.skip(reason="ConvNextV2 does not use feedforward chunking")
def __UpperCAmelCase ( self):
pass
def __UpperCAmelCase ( self):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_with_labels()
lowerCamelCase__ = True
if model_class.__name__ in [
*get_values(UpperCamelCase),
*get_values(UpperCamelCase),
]:
continue
lowerCamelCase__ = model_class(UpperCamelCase)
model.to(UpperCamelCase)
model.train()
lowerCamelCase__ = self._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase)
lowerCamelCase__ = model(**UpperCamelCase).loss
loss.backward()
def __UpperCAmelCase ( self):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_with_labels()
lowerCamelCase__ = False
lowerCamelCase__ = True
if (
model_class.__name__
in [*get_values(UpperCamelCase), *get_values(UpperCamelCase)]
or not model_class.supports_gradient_checkpointing
):
continue
lowerCamelCase__ = model_class(UpperCamelCase)
model.to(UpperCamelCase)
model.gradient_checkpointing_enable()
model.train()
lowerCamelCase__ = self._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase)
lowerCamelCase__ = model(**UpperCamelCase).loss
loss.backward()
def __UpperCAmelCase ( self):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(UpperCamelCase)
lowerCamelCase__ = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , UpperCamelCase)
def __UpperCAmelCase ( self):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase)
def __UpperCAmelCase ( self):
def check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase):
lowerCamelCase__ = model_class(UpperCamelCase)
model.to(UpperCamelCase)
model.eval()
with torch.no_grad():
lowerCamelCase__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase))
lowerCamelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCamelCase__ = self.model_tester.num_stages
self.assertEqual(len(UpperCamelCase) , expected_num_stages + 1)
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = True
check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ = True
check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase)
def __UpperCAmelCase ( self):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase)
@slow
def __UpperCAmelCase ( self):
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ = ConvNextVaModel.from_pretrained(UpperCamelCase)
self.assertIsNotNone(UpperCamelCase)
def lowerCAmelCase( ):
'''simple docstring'''
lowerCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class snake_case_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __UpperCAmelCase ( self):
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224") if is_vision_available() else None
@slow
def __UpperCAmelCase ( self):
lowerCamelCase__ = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224").to(UpperCamelCase)
lowerCamelCase__ = self.default_image_processor
lowerCamelCase__ = prepare_img()
lowerCamelCase__ = preprocessor(images=UpperCamelCase , return_tensors="pt").to(UpperCamelCase)
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**UpperCamelCase)
# verify the logits
lowerCamelCase__ = torch.Size((1, 10_00))
self.assertEqual(outputs.logits.shape , UpperCamelCase)
lowerCamelCase__ = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6]).to(UpperCamelCase)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1E-4))
| 426
| 1
|
'''simple docstring'''
import os
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_doctest_list.py
UpperCAmelCase_ : List[Any] = '.'
if __name__ == "__main__":
UpperCAmelCase_ : Any = os.path.join(REPO_PATH, 'utils/documentation_tests.txt')
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : Union[str, Any] = []
with open(doctest_file_path) as fp:
for line in fp:
UpperCAmelCase_ : int = line.strip()
UpperCAmelCase_ : str = os.path.join(REPO_PATH, line)
if not (os.path.isfile(path) or os.path.isdir(path)):
non_existent_paths.append(line)
all_paths.append(path)
if len(non_existent_paths) > 0:
UpperCAmelCase_ : int = '\n'.join(non_existent_paths)
raise ValueError(F"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}")
if all_paths != sorted(all_paths):
raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
| 533
|
'''simple docstring'''
import collections
import inspect
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class lowercase__ :
'''simple docstring'''
def __init__( self , __snake_case , __snake_case=13 , __snake_case=32 , __snake_case=2 , __snake_case=3 , __snake_case=16 , __snake_case=[1, 2, 1] , __snake_case=[2, 2, 4] , __snake_case=2 , __snake_case=2.0 , __snake_case=True , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.1 , __snake_case="gelu" , __snake_case=False , __snake_case=True , __snake_case=0.02 , __snake_case=1e-5 , __snake_case=True , __snake_case=None , __snake_case=True , __snake_case=10 , __snake_case=8 , __snake_case=["stage1", "stage2", "stage3"] , __snake_case=[1, 2, 3] , ):
_SCREAMING_SNAKE_CASE : List[Any] = parent
_SCREAMING_SNAKE_CASE : List[str] = batch_size
_SCREAMING_SNAKE_CASE : str = image_size
_SCREAMING_SNAKE_CASE : Any = patch_size
_SCREAMING_SNAKE_CASE : int = num_channels
_SCREAMING_SNAKE_CASE : Optional[int] = embed_dim
_SCREAMING_SNAKE_CASE : List[str] = depths
_SCREAMING_SNAKE_CASE : Optional[Any] = num_heads
_SCREAMING_SNAKE_CASE : Dict = window_size
_SCREAMING_SNAKE_CASE : int = mlp_ratio
_SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias
_SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob
_SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob
_SCREAMING_SNAKE_CASE : str = drop_path_rate
_SCREAMING_SNAKE_CASE : List[Any] = hidden_act
_SCREAMING_SNAKE_CASE : List[str] = use_absolute_embeddings
_SCREAMING_SNAKE_CASE : Optional[int] = patch_norm
_SCREAMING_SNAKE_CASE : str = layer_norm_eps
_SCREAMING_SNAKE_CASE : List[Any] = initializer_range
_SCREAMING_SNAKE_CASE : Union[str, Any] = is_training
_SCREAMING_SNAKE_CASE : Tuple = scope
_SCREAMING_SNAKE_CASE : Optional[Any] = use_labels
_SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size
_SCREAMING_SNAKE_CASE : Tuple = encoder_stride
_SCREAMING_SNAKE_CASE : Dict = out_features
_SCREAMING_SNAKE_CASE : Optional[Any] = out_indices
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_SCREAMING_SNAKE_CASE : Any = None
if self.use_labels:
_SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_SCREAMING_SNAKE_CASE : List[str] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase_ ( self ):
return MaskFormerSwinConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case ):
_SCREAMING_SNAKE_CASE : Any = MaskFormerSwinModel(config=__snake_case )
model.to(__snake_case )
model.eval()
_SCREAMING_SNAKE_CASE : Any = model(__snake_case )
_SCREAMING_SNAKE_CASE : List[str] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
_SCREAMING_SNAKE_CASE : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case ):
_SCREAMING_SNAKE_CASE : str = MaskFormerSwinBackbone(config=__snake_case )
model.to(__snake_case )
model.eval()
_SCREAMING_SNAKE_CASE : Optional[int] = model(__snake_case )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , [16, 32, 64] )
# verify ValueError
with self.parent.assertRaises(__snake_case ):
_SCREAMING_SNAKE_CASE : Optional[Any] = ["""stem"""]
_SCREAMING_SNAKE_CASE : Any = MaskFormerSwinBackbone(config=__snake_case )
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.prepare_config_and_inputs()
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = config_and_inputs
_SCREAMING_SNAKE_CASE : List[str] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase__ ( _snake_case , _snake_case , unittest.TestCase ):
'''simple docstring'''
A_ : Any = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
A_ : List[Any] = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {}
A_ : Optional[Any] = False
A_ : Dict = False
A_ : Optional[int] = False
A_ : Union[str, Any] = False
A_ : Union[str, Any] = False
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE : str = MaskFormerSwinModelTester(self )
_SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=__snake_case , embed_dim=37 )
@require_torch_multi_gpu
@unittest.skip(
reason=(
"""`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"""
""" `nn.DataParallel`"""
) )
def UpperCAmelCase_ ( self ):
pass
def UpperCAmelCase_ ( self ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCAmelCase_ ( self ):
return
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__snake_case )
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__snake_case )
@unittest.skip("""Swin does not use inputs_embeds""" )
def UpperCAmelCase_ ( self ):
pass
@unittest.skip("""Swin does not support feedforward chunking""" )
def UpperCAmelCase_ ( self ):
pass
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : Dict = model_class(__snake_case )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_SCREAMING_SNAKE_CASE : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) )
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : Optional[int] = model_class(__snake_case )
_SCREAMING_SNAKE_CASE : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()]
_SCREAMING_SNAKE_CASE : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __snake_case )
@unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" )
def UpperCAmelCase_ ( self ):
pass
@unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" )
def UpperCAmelCase_ ( self ):
pass
def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ):
_SCREAMING_SNAKE_CASE : List[str] = model_class(__snake_case )
model.to(__snake_case )
model.eval()
with torch.no_grad():
_SCREAMING_SNAKE_CASE : str = model(**self._prepare_for_class(__snake_case , __snake_case ) )
_SCREAMING_SNAKE_CASE : str = outputs.hidden_states
_SCREAMING_SNAKE_CASE : Optional[int] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__snake_case ) , __snake_case )
# Swin has a different seq_length
_SCREAMING_SNAKE_CASE : Any = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_SCREAMING_SNAKE_CASE : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_SCREAMING_SNAKE_CASE : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : Union[str, Any] = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_SCREAMING_SNAKE_CASE : List[str] = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , __snake_case )
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
_SCREAMING_SNAKE_CASE : str = 3
_SCREAMING_SNAKE_CASE : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
_SCREAMING_SNAKE_CASE : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
_SCREAMING_SNAKE_CASE : Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
_SCREAMING_SNAKE_CASE : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : List[str] = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_SCREAMING_SNAKE_CASE : Dict = True
self.check_hidden_states_output(__snake_case , __snake_case , __snake_case , (padded_height, padded_width) )
@unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" )
def UpperCAmelCase_ ( self ):
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def UpperCAmelCase_ ( self ):
pass
@unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" )
def UpperCAmelCase_ ( self ):
pass
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(__snake_case ):
_SCREAMING_SNAKE_CASE : Optional[int] = 0
return t
def check_equivalence(__snake_case , __snake_case , __snake_case , __snake_case={} ):
with torch.no_grad():
_SCREAMING_SNAKE_CASE : Dict = model(**__snake_case , return_dict=__snake_case , **__snake_case )
_SCREAMING_SNAKE_CASE : Optional[int] = model(**__snake_case , return_dict=__snake_case , **__snake_case ).to_tuple()
def recursive_check(__snake_case , __snake_case ):
if isinstance(__snake_case , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__snake_case , __snake_case ):
recursive_check(__snake_case , __snake_case )
elif isinstance(__snake_case , __snake_case ):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values() , dict_object.values() ):
recursive_check(__snake_case , __snake_case )
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(__snake_case ) , set_nan_tensor_to_zero(__snake_case ) , atol=1e-5 ) , msg=(
"""Tuple and dict output are not equal. Difference:"""
f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:"""
f""" {torch.isnan(__snake_case ).any()} and `inf`: {torch.isinf(__snake_case )}. Dict has"""
f""" `nan`: {torch.isnan(__snake_case ).any()} and `inf`: {torch.isinf(__snake_case )}."""
) , )
recursive_check(__snake_case , __snake_case )
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(__snake_case )
model.to(__snake_case )
model.eval()
_SCREAMING_SNAKE_CASE : str = self._prepare_for_class(__snake_case , __snake_case )
_SCREAMING_SNAKE_CASE : str = self._prepare_for_class(__snake_case , __snake_case )
check_equivalence(__snake_case , __snake_case , __snake_case )
_SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case )
_SCREAMING_SNAKE_CASE : int = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case )
check_equivalence(__snake_case , __snake_case , __snake_case )
_SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(__snake_case , __snake_case )
_SCREAMING_SNAKE_CASE : Optional[int] = self._prepare_for_class(__snake_case , __snake_case )
check_equivalence(__snake_case , __snake_case , __snake_case , {"""output_hidden_states""": True} )
_SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case )
_SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case )
check_equivalence(__snake_case , __snake_case , __snake_case , {"""output_hidden_states""": True} )
@require_torch
class lowercase__ ( unittest.TestCase , _snake_case ):
'''simple docstring'''
A_ : Any = (MaskFormerSwinBackbone,) if is_torch_available() else ()
A_ : List[Any] = MaskFormerSwinConfig
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerSwinModelTester(self )
def UpperCAmelCase_ ( self ):
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
_SCREAMING_SNAKE_CASE : Optional[int] = inputs_dict["""pixel_values"""].shape[0]
for backbone_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : List[Any] = backbone_class(__snake_case )
backbone.to(__snake_case )
backbone.eval()
_SCREAMING_SNAKE_CASE : List[str] = backbone(**__snake_case )
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps , __snake_case )
self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) )
for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ):
self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) )
self.assertIsNone(outputs.hidden_states )
self.assertIsNone(outputs.attentions )
# Test output_hidden_states=True
_SCREAMING_SNAKE_CASE : Optional[Any] = backbone(**__snake_case , output_hidden_states=__snake_case )
self.assertIsNotNone(outputs.hidden_states )
self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) )
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) )
# Test output_attentions=True
if self.has_attentions:
_SCREAMING_SNAKE_CASE : Optional[int] = backbone(**__snake_case , output_attentions=__snake_case )
self.assertIsNotNone(outputs.attentions )
| 533
| 1
|
def lowerCamelCase__ (_UpperCAmelCase = 10**9):
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = 2
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(f"""{solution() = }""")
| 700
|
import os
from collections.abc import Iterator
def lowerCamelCase__ (_UpperCAmelCase = "."):
for dir_path, dir_names, filenames in os.walk(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_UpperCAmelCase)[1] in (".py", ".ipynb"):
yield os.path.join(_UpperCAmelCase , _UpperCAmelCase).lstrip('./')
def lowerCamelCase__ (_UpperCAmelCase):
return F'''{i * ' '}*''' if i else "\n##"
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = old_path.split(os.sep)
for i, new_part in enumerate(new_path.split(os.sep)):
if (i + 1 > len(_UpperCAmelCase) or old_parts[i] != new_part) and new_part:
print(F'''{md_prefix(_UpperCAmelCase)} {new_part.replace('_' , ' ').title()}''')
return new_path
def lowerCamelCase__ (_UpperCAmelCase = "."):
SCREAMING_SNAKE_CASE = ''
for filepath in sorted(good_file_paths(_UpperCAmelCase)):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = os.path.split(_UpperCAmelCase)
if filepath != old_path:
SCREAMING_SNAKE_CASE = print_path(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = (filepath.count(os.sep) + 1) if filepath else 0
SCREAMING_SNAKE_CASE = F'''{filepath}/{filename}'''.replace(' ' , '%20')
SCREAMING_SNAKE_CASE = os.path.splitext(filename.replace('_' , ' ').title())[0]
print(F'''{md_prefix(_UpperCAmelCase)} [{filename}]({url})''')
if __name__ == "__main__":
print_directory_md('.')
| 444
| 0
|
'''simple docstring'''
import os
# Precomputes a list of the 100 first triangular numbers
UpperCamelCase_ = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)]
def lowercase__( ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = os.path.dirname(os.path.realpath(__UpperCamelCase ) )
SCREAMING_SNAKE_CASE : List[str] = os.path.join(__UpperCamelCase ,'words.txt' )
SCREAMING_SNAKE_CASE : Any = ''
with open(__UpperCamelCase ) as f:
SCREAMING_SNAKE_CASE : Dict = f.readline()
SCREAMING_SNAKE_CASE : Union[str, Any] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )]
SCREAMING_SNAKE_CASE : str = [
word
for word in [sum(ord(__UpperCamelCase ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(__UpperCamelCase )
if __name__ == "__main__":
print(solution())
| 28
|
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCamelCase_ = logging.get_logger("transformers.models.speecht5")
def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Any ):
"""simple docstring"""
hf_model.apply_weight_norm()
SCREAMING_SNAKE_CASE : Any = checkpoint['input_conv.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_conv.weight_v']
SCREAMING_SNAKE_CASE : str = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates ) ):
SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"upsamples.{i}.1.weight_g"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"upsamples.{i}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
SCREAMING_SNAKE_CASE : int = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : str = checkpoint[f"blocks.{i}.convs1.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs1.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Dict = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_g"]
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"blocks.{i}.convs2.{j}.1.weight_v"]
SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"blocks.{i}.convs2.{j}.1.bias"]
SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint['output_conv.1.weight_g']
SCREAMING_SNAKE_CASE : List[Any] = checkpoint['output_conv.1.weight_v']
SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Any ,__UpperCamelCase: str=None ,__UpperCamelCase: Tuple=None ,):
"""simple docstring"""
if config_path is not None:
SCREAMING_SNAKE_CASE : List[Any] = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase )
else:
SCREAMING_SNAKE_CASE : Optional[int] = SpeechTaHifiGanConfig()
SCREAMING_SNAKE_CASE : Optional[Any] = SpeechTaHifiGan(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(__UpperCamelCase )
load_weights(orig_checkpoint['model']['generator'] ,__UpperCamelCase ,__UpperCamelCase )
SCREAMING_SNAKE_CASE : int = np.load(__UpperCamelCase )
SCREAMING_SNAKE_CASE : List[Any] = stats[0].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = stats[1].reshape(-1 )
SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ).float()
SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(__UpperCamelCase ).float()
model.save_pretrained(__UpperCamelCase )
if repo_id:
print('Pushing to the hub...' )
model.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase_ = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
UpperCamelCase_ = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28
| 1
|
from typing import TYPE_CHECKING
from ...utils import _LazyModule
a_ = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 286
|
import inspect
import unittest
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def _UpperCAmelCase ( self: Union[str, Any] ) -> Dict:
'''simple docstring'''
try:
import diffusers # noqa: F401
except ImportError:
assert False
def _UpperCAmelCase ( self: Dict ) -> Dict:
'''simple docstring'''
import diffusers
from diffusers.dependency_versions_table import deps
__UpperCAmelCase = inspect.getmembers(__lowerCAmelCase , inspect.isclass )
for cls_name, cls_module in all_classes:
if "dummy_" in cls_module.__module__:
for backend in cls_module._backends:
if backend == "k_diffusion":
__UpperCAmelCase = "k-diffusion"
elif backend == "invisible_watermark":
__UpperCAmelCase = "invisible-watermark"
assert backend in deps, F'''{backend} is not in the deps table!'''
| 286
| 1
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A = logging.get_logger(__name__)
__A = {
'MIT/ast-finetuned-audioset-10-10-0.4593': (
'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json'
),
}
class SCREAMING_SNAKE_CASE ( snake_case ):
"""simple docstring"""
A_ = "audio-spectrogram-transformer"
def __init__( self: Optional[Any] , __A: int=7_68 , __A: Optional[Any]=12 , __A: Tuple=12 , __A: Union[str, Any]=30_72 , __A: str="gelu" , __A: str=0.0 , __A: List[Any]=0.0 , __A: List[str]=0.02 , __A: List[str]=1e-12 , __A: Any=16 , __A: Dict=True , __A: Optional[Any]=10 , __A: Union[str, Any]=10 , __A: str=10_24 , __A: Optional[int]=1_28 , **__A: Tuple , ) -> List[Any]:
super().__init__(**__A )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = patch_size
_A = qkv_bias
_A = frequency_stride
_A = time_stride
_A = max_length
_A = num_mel_bins
| 484
|
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class SCREAMING_SNAKE_CASE ( snake_case ):
"""simple docstring"""
def __A ( self: Tuple ) -> Dict:
_A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__A , '''width_multiplier''' ) )
class SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self: Dict , __A: Optional[Any] , __A: Optional[int]=13 , __A: Union[str, Any]=64 , __A: Dict=2 , __A: str=3 , __A: Dict="swish" , __A: List[str]=3 , __A: Union[str, Any]=32 , __A: str=0.1 , __A: int=0.02 , __A: Optional[Any]=True , __A: str=True , __A: List[Any]=10 , __A: Dict=None , __A: Optional[Any]=0.25 , __A: Optional[int]=0.0 , __A: Tuple=0.0 , ) -> Optional[int]:
_A = parent
_A = batch_size
_A = image_size
_A = patch_size
_A = num_channels
_A = make_divisible(5_12 * width_multiplier , divisor=8 )
_A = hidden_act
_A = conv_kernel_size
_A = output_stride
_A = classifier_dropout_prob
_A = use_labels
_A = is_training
_A = num_labels
_A = initializer_range
_A = scope
_A = width_multiplier
_A = ffn_dropout
_A = attn_dropout
def __A ( self: Dict ) -> List[str]:
_A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.num_labels )
_A = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_A = self.get_config()
return config, pixel_values, labels, pixel_labels
def __A ( self: Tuple ) -> Optional[Any]:
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def __A ( self: Dict , __A: Union[str, Any] , __A: int , __A: Dict , __A: List[str] ) -> str:
_A = MobileViTVaModel(config=__A )
model.to(__A )
model.eval()
_A = model(__A )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __A ( self: str , __A: int , __A: Optional[Any] , __A: int , __A: Tuple ) -> Any:
_A = self.num_labels
_A = MobileViTVaForImageClassification(__A )
model.to(__A )
model.eval()
_A = model(__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self: List[Any] , __A: Optional[Any] , __A: Tuple , __A: int , __A: List[Any] ) -> Optional[Any]:
_A = self.num_labels
_A = MobileViTVaForSemanticSegmentation(__A )
model.to(__A )
model.eval()
_A = model(__A )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
_A = model(__A , labels=__A )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __A ( self: Dict ) -> List[Any]:
_A = self.prepare_config_and_inputs()
_A ,_A ,_A ,_A = config_and_inputs
_A = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ):
"""simple docstring"""
A_ = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
A_ = (
{
"feature-extraction": MobileViTVaModel,
"image-classification": MobileViTVaForImageClassification,
"image-segmentation": MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
A_ = False
A_ = False
A_ = False
A_ = False
def __A ( self: str ) -> Optional[Any]:
_A = MobileViTVaModelTester(self )
_A = MobileViTVaConfigTester(self , config_class=__A , has_text_modality=__A )
def __A ( self: Any ) -> Union[str, Any]:
self.config_tester.run_common_tests()
@unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' )
def __A ( self: Any ) -> List[str]:
pass
@unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' )
def __A ( self: int ) -> Any:
pass
@unittest.skip(reason='''MobileViTV2 does not output attentions''' )
def __A ( self: Optional[Any] ) -> Optional[Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' )
def __A ( self: Any ) -> Any:
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __A ( self: Optional[int] ) -> List[str]:
pass
def __A ( self: List[Any] ) -> Optional[Any]:
_A ,_A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(__A )
_A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A = [*signature.parameters.keys()]
_A = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __A )
def __A ( self: List[str] ) -> int:
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __A ( self: str ) -> int:
def check_hidden_states_output(__A: List[str] , __A: str , __A: Optional[int] ):
_A = model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
_A = model(**self._prepare_for_class(__A , __A ) )
_A = outputs.hidden_states
_A = 5
self.assertEqual(len(__A ) , __A )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
_A = 2
for i in range(len(__A ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
_A ,_A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = True
check_hidden_states_output(__A , __A , __A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A = True
check_hidden_states_output(__A , __A , __A )
def __A ( self: str ) -> Any:
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
def __A ( self: int ) -> Tuple:
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__A )
@slow
def __A ( self: Dict ) -> Optional[Any]:
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = MobileViTVaModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def __A ( ):
'''simple docstring'''
_A = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __A ( self: int ) -> Optional[Any]:
return (
MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' )
if is_vision_available()
else None
)
@slow
def __A ( self: Optional[Any] ) -> Optional[int]:
_A = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to(
__A )
_A = self.default_image_processor
_A = prepare_img()
_A = image_processor(images=__A , return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
_A = model(**__A )
# verify the logits
_A = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __A )
_A = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) )
@slow
def __A ( self: List[str] ) -> Tuple:
_A = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
_A = model.to(__A )
_A = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
_A = prepare_img()
_A = image_processor(images=__A , return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
_A = model(**__A )
_A = outputs.logits
# verify the logits
_A = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , __A )
_A = torch.tensor(
[
[[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]],
[[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]],
[[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]],
] , device=__A , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __A , atol=1e-4 ) )
@slow
def __A ( self: List[Any] ) -> Optional[int]:
_A = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
_A = model.to(__A )
_A = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' )
_A = prepare_img()
_A = image_processor(images=__A , return_tensors='''pt''' ).to(__A )
# forward pass
with torch.no_grad():
_A = model(**__A )
_A = outputs.logits.detach().cpu()
_A = image_processor.post_process_semantic_segmentation(outputs=__A , target_sizes=[(50, 60)] )
_A = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , __A )
_A = image_processor.post_process_semantic_segmentation(outputs=__A )
_A = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , __A )
| 484
| 1
|
"""simple docstring"""
import argparse
import json
import os
import torch
from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowerCamelCase (a_ :List[str] , a_ :Any , a_ :Any , a_ :str , a_ :Optional[Any]) -> Optional[Any]:
# Load configuration defined in the metadata file
with open(a_) as metadata_file:
lowercase :List[str] = json.load(a_)
lowercase :Optional[Any] = LukeConfig(use_entity_aware_attention=a_ , **metadata['''model_config'''])
# Load in the weights from the checkpoint_path
lowercase :Dict = torch.load(a_ , map_location='''cpu''')
# Load the entity vocab file
lowercase :Dict = load_entity_vocab(a_)
lowercase :int = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''])
# Add special tokens to the token vocabulary for downstream tasks
lowercase :List[str] = AddedToken('''<ent>''' , lstrip=a_ , rstrip=a_)
lowercase :Optional[Any] = AddedToken('''<ent2>''' , lstrip=a_ , rstrip=a_)
tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]})
config.vocab_size += 2
print(F"""Saving tokenizer to {pytorch_dump_folder_path}""")
tokenizer.save_pretrained(a_)
with open(os.path.join(a_ , LukeTokenizer.vocab_files_names['''entity_vocab_file''']) , '''w''') as f:
json.dump(a_ , a_)
lowercase :Optional[Any] = LukeTokenizer.from_pretrained(a_)
# Initialize the embeddings of the special tokens
lowercase :str = state_dict['''embeddings.word_embeddings.weight''']
lowercase :int = word_emb[tokenizer.convert_tokens_to_ids(['''@'''])[0]].unsqueeze(0)
lowercase :Optional[int] = word_emb[tokenizer.convert_tokens_to_ids(['''#'''])[0]].unsqueeze(0)
lowercase :Dict = torch.cat([word_emb, ent_emb, enta_emb])
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers):
for matrix_name in ["query.weight", "query.bias"]:
lowercase :Tuple = F"""encoder.layer.{layer_index}.attention.self."""
lowercase :int = state_dict[prefix + matrix_name]
lowercase :Dict = state_dict[prefix + matrix_name]
lowercase :int = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
lowercase :Any = state_dict['''entity_embeddings.entity_embeddings.weight''']
lowercase :Tuple = entity_emb[entity_vocab['''[MASK]''']]
lowercase :Union[str, Any] = LukeModel(config=a_).eval()
lowercase :List[str] = model.load_state_dict(a_ , strict=a_)
if not (len(a_) == 1 and missing_keys[0] == "embeddings.position_ids"):
raise ValueError(F"""Missing keys {', '.join(a_)}. Expected only missing embeddings.position_ids""")
if not (all(key.startswith('''entity_predictions''') or key.startswith('''lm_head''') for key in unexpected_keys)):
raise ValueError(
'''Unexpected keys'''
F""" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions') or key.startswith('lm_head'))])}""")
# Check outputs
lowercase :str = LukeTokenizer.from_pretrained(a_ , task='''entity_classification''')
lowercase :str = (
'''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the'''
''' new world number one avoid a humiliating second- round exit at Wimbledon .'''
)
lowercase :str = (39, 42)
lowercase :Any = tokenizer(a_ , entity_spans=[span] , add_prefix_space=a_ , return_tensors='''pt''')
lowercase :List[Any] = model(**a_)
# Verify word hidden states
if model_size == "large":
lowercase :str = torch.Size((1, 42, 1024))
lowercase :Any = torch.tensor(
[[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]])
else: # base
lowercase :Union[str, Any] = torch.Size((1, 42, 768))
lowercase :Tuple = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]])
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""")
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a_ , atol=1E-4):
raise ValueError
# Verify entity hidden states
if model_size == "large":
lowercase :Union[str, Any] = torch.Size((1, 1, 1024))
lowercase :Any = torch.tensor([[0.04_66, -0.01_06, -0.01_79]])
else: # base
lowercase :str = torch.Size((1, 1, 768))
lowercase :int = torch.tensor([[0.14_57, 0.10_44, 0.01_74]])
if not (outputs.entity_last_hidden_state.shape != expected_shape):
raise ValueError(
F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"""
F""" {expected_shape}""")
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a_ , atol=1E-4):
raise ValueError
# Finally, save our PyTorch model and tokenizer
print('''Saving PyTorch model to {}'''.format(a_))
model.save_pretrained(a_)
def lowerCamelCase (a_ :Union[str, Any]) -> Any:
lowercase :Union[str, Any] = {}
with open(a_ , '''r''' , encoding='''utf-8''') as f:
for index, line in enumerate(a_):
lowercase :str = line.rstrip().split('''\t''')
lowercase :Tuple = index
return entity_vocab
if __name__ == "__main__":
UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''')
parser.add_argument(
'''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.'''
)
parser.add_argument(
'''--entity_vocab_path''',
default=None,
type=str,
help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.'''
)
parser.add_argument(
'''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.'''
)
UpperCAmelCase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 713
|
"""simple docstring"""
UpperCAmelCase = {str(digit): digit**5 for digit in range(10)}
def lowerCamelCase (a_ :int) -> int:
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(a_))
def lowerCamelCase () -> int:
return sum(
number
for number in range(1000 , 100_0000)
if number == digits_fifth_powers_sum(a_))
if __name__ == "__main__":
print(solution())
| 475
| 0
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : Union[str, Any] , a__ : str , ):
UpperCAmelCase = parent
UpperCAmelCase = 13
UpperCAmelCase = 7
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = True
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = False
UpperCAmelCase = 2
UpperCAmelCase = 99
UpperCAmelCase = 0
UpperCAmelCase = 32
UpperCAmelCase = 2
UpperCAmelCase = 4
UpperCAmelCase = 0.1
UpperCAmelCase = 0.1
UpperCAmelCase = 512
UpperCAmelCase = 16
UpperCAmelCase = 2
UpperCAmelCase = 0.02
UpperCAmelCase = 3
UpperCAmelCase = 4
UpperCAmelCase = '''last'''
UpperCAmelCase = True
UpperCAmelCase = None
UpperCAmelCase = 0
def __snake_case ( self : str ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
UpperCAmelCase = None
if self.use_input_lengths:
UpperCAmelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
UpperCAmelCase = None
if self.use_token_type_ids:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def __snake_case ( self : Dict , a__ : Optional[Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : Union[str, Any] , a__ : Optional[int] , a__ : int , a__ : Tuple , a__ : Optional[Any] , a__ : Union[str, Any] , ):
UpperCAmelCase = TFFlaubertModel(config=a__ )
UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids}
UpperCAmelCase = model(a__ )
UpperCAmelCase = [input_ids, input_mask]
UpperCAmelCase = model(a__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __snake_case ( self : str , a__ : Tuple , a__ : Tuple , a__ : Optional[int] , a__ : str , a__ : Any , a__ : List[str] , a__ : str , a__ : List[str] , a__ : int , ):
UpperCAmelCase = TFFlaubertWithLMHeadModel(a__ )
UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids}
UpperCAmelCase = model(a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __snake_case ( self : List[Any] , a__ : Optional[int] , a__ : List[Any] , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : List[Any] , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : int , a__ : int , ):
UpperCAmelCase = TFFlaubertForQuestionAnsweringSimple(a__ )
UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths}
UpperCAmelCase = model(a__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Optional[Any] , a__ : Tuple , a__ : Dict , a__ : Dict , a__ : List[Any] , a__ : List[Any] , a__ : List[str] , a__ : Union[str, Any] , ):
UpperCAmelCase = TFFlaubertForSequenceClassification(a__ )
UpperCAmelCase = {'''input_ids''': input_ids, '''lengths''': input_lengths}
UpperCAmelCase = model(a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __snake_case ( self : Any , a__ : Optional[int] , a__ : Dict , a__ : Any , a__ : Optional[Any] , a__ : str , a__ : Optional[int] , a__ : Any , a__ : Any , a__ : List[Any] , ):
UpperCAmelCase = self.num_labels
UpperCAmelCase = TFFlaubertForTokenClassification(config=a__ )
UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
UpperCAmelCase = model(a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __snake_case ( self : Union[str, Any] , a__ : Optional[Any] , a__ : Any , a__ : Any , a__ : Optional[int] , a__ : str , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Tuple , a__ : Tuple , ):
UpperCAmelCase = self.num_choices
UpperCAmelCase = TFFlaubertForMultipleChoice(config=a__ )
UpperCAmelCase = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) )
UpperCAmelCase = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
UpperCAmelCase = model(a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __snake_case ( self : int ):
UpperCAmelCase = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
), (
UpperCAmelCase
),
) = config_and_inputs
UpperCAmelCase = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''langs''': token_type_ids,
'''lengths''': input_lengths,
}
return config, inputs_dict
@require_tf
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =(
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
_lowerCamelCase =(
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
_lowerCamelCase =(
{
"feature-extraction": TFFlaubertModel,
"fill-mask": TFFlaubertWithLMHeadModel,
"question-answering": TFFlaubertForQuestionAnsweringSimple,
"text-classification": TFFlaubertForSequenceClassification,
"token-classification": TFFlaubertForTokenClassification,
"zero-shot": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
_lowerCamelCase =False
_lowerCamelCase =False
def __snake_case ( self : Union[str, Any] , a__ : Optional[Any] , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : str , a__ : Optional[int] ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def __snake_case ( self : int ):
UpperCAmelCase = TFFlaubertModelTester(self )
UpperCAmelCase = ConfigTester(self , config_class=a__ , emb_dim=37 )
def __snake_case ( self : Optional[int] ):
self.config_tester.run_common_tests()
def __snake_case ( self : List[str] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*a__ )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*a__ )
def __snake_case ( self : List[Any] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*a__ )
def __snake_case ( self : Tuple ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*a__ )
def __snake_case ( self : List[str] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*a__ )
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*a__ )
@slow
def __snake_case ( self : Dict ):
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = TFFlaubertModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
@require_tf
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' )
UpperCAmelCase = tf.convert_to_tensor(
[[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
UpperCAmelCase = model(a__ )[0]
UpperCAmelCase = tf.TensorShape((1, 8, 512) )
self.assertEqual(output.shape , a__ )
# compare the actual values for a slice.
UpperCAmelCase = tf.convert_to_tensor(
[
[
[-1.8_768_773, -1.566_555, 0.27_072_418],
[-1.6_920_038, -0.5_873_505, 1.9_329_599],
[-2.9_563_985, -1.6_993_835, 1.7_972_052],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 51
|
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase_ ( self, A=None, A=None, A=None, **A ):
'''simple docstring'''
if tokenize_kwargs is None:
SCREAMING_SNAKE_CASE : Optional[int] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
SCREAMING_SNAKE_CASE : Tuple = truncation
SCREAMING_SNAKE_CASE : int = tokenize_kwargs
SCREAMING_SNAKE_CASE : Optional[Any] = {}
if return_tensors is not None:
SCREAMING_SNAKE_CASE : Optional[int] = return_tensors
return preprocess_params, {}, postprocess_params
def UpperCamelCase_ ( self, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = self.framework
SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(A, return_tensors=A, **A )
return model_inputs
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.model(**A )
return model_outputs
def UpperCamelCase_ ( self, A, A=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self, *A, **A ):
'''simple docstring'''
return super().__call__(*A, **A )
| 28
| 0
|
"""simple docstring"""
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a :str = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Tuple = [
"FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FocalNetForImageClassification",
"FocalNetForMaskedImageModeling",
"FocalNetBackbone",
"FocalNetModel",
"FocalNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
a :Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 12
|
"""simple docstring"""
import os
a :List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000}
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Any = 0
SCREAMING_SNAKE_CASE__ : Dict = 0
while index < len(__lowerCAmelCase ) - 1:
SCREAMING_SNAKE_CASE__ : List[Any] = SYMBOLS[numerals[index]]
SCREAMING_SNAKE_CASE__ : Dict = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Optional[int] = """"""
SCREAMING_SNAKE_CASE__ : int = num // 1000
numerals += m_count * "M"
num %= 1000
SCREAMING_SNAKE_CASE__ : List[str] = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
SCREAMING_SNAKE_CASE__ : List[Any] = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def _lowercase ( __lowerCAmelCase = "/p089_roman.txt" ) -> int:
SCREAMING_SNAKE_CASE__ : int = 0
with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea:
SCREAMING_SNAKE_CASE__ : str = filea.readlines()
for line in lines:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = line.strip()
SCREAMING_SNAKE_CASE__ : Dict = parse_roman_numerals(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = generate_roman_numerals(__lowerCAmelCase )
savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase )
return savings
if __name__ == "__main__":
print(f'{solution() = }')
| 12
| 1
|
"""simple docstring"""
import json
import sys
def __a ( A , A ) -> Any:
'''simple docstring'''
with open(A , encoding="utf-8" ) as f:
A__ = json.load(A )
A__ = ["<details>", "<summary>Show updated benchmarks!</summary>", " "]
for benchmark_name in sorted(A ):
A__ = results[benchmark_name]
A__ = benchmark_name.split("/" )[-1]
output_md.append(f"""### Benchmark: {benchmark_file_name}""" )
A__ = "| metric |"
A__ = "|--------|"
A__ = "| new / old (diff) |"
for metric_name in sorted(A ):
A__ = benchmark_res[metric_name]
A__ = metric_vals["new"]
A__ = metric_vals.get("old" , A )
A__ = metric_vals.get("diff" , A )
A__ = f""" {new_val:f}""" if isinstance(A , (int, float) ) else "None"
if old_val is not None:
val_str += f""" / {old_val:f}""" if isinstance(A , (int, float) ) else "None"
if dif_val is not None:
val_str += f""" ({dif_val:f})""" if isinstance(A , (int, float) ) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append("</details>" )
with open(A , "w" , encoding="utf-8" ) as f:
f.writelines("\n".join(A ) )
if __name__ == "__main__":
__UpperCAmelCase =sys.argv[1]
__UpperCAmelCase =sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 337
|
"""simple docstring"""
import unittest
from transformers import GPTNeoXJapaneseConfig, is_torch_available
from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel
class lowerCAmelCase__ :
def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__=True , UpperCamelCase__=5_12 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ):
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_input_mask
A__ = use_token_type_ids
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_multiple_size
A__ = hidden_act
A__ = hidden_dropout
A__ = attention_dropout
A__ = weight_tying
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = type_sequence_label_size
A__ = initializer_range
A__ = num_labels
A__ = num_choices
A__ = scope
def lowercase_ ( self ):
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A__ = None
if self.use_input_mask:
A__ = random_attention_mask([self.batch_size, self.seq_length] )
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A__ = self.get_config()
return config, input_ids, input_mask, token_labels
def lowercase_ ( self ):
'''simple docstring'''
return GPTNeoXJapaneseConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , )
def lowercase_ ( self ):
'''simple docstring'''
A__ , A__ , A__ , A__ = self.prepare_config_and_inputs()
A__ = True
return config, input_ids, input_mask, token_labels
def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
A__ = GPTNeoXJapaneseModel(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )
A__ = model(UpperCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
A__ = True
A__ = GPTNeoXJapaneseModel(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
A__ = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
'''simple docstring'''
A__ = True
A__ = GPTNeoXJapaneseForCausalLM(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
# first forward pass
A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ )
A__ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A__ = ids_tensor((self.batch_size, 3) , config.vocab_size )
A__ = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A__ = torch.cat([input_ids, next_tokens] , dim=-1 )
A__ = torch.cat([input_mask, next_mask] , dim=-1 )
A__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ )
A__ = output_from_no_past["hidden_states"][0]
A__ = model(
UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["hidden_states"][0]
# select random slice
A__ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A__ = output_from_no_past[:, -3:, random_slice_idx].detach()
A__ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) )
def lowercase_ ( self ):
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ , A__ = config_and_inputs
A__ = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
lowercase__ : Union[str, Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else ()
lowercase__ : Optional[int] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else ()
lowercase__ : Optional[Any] = (
{"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM}
if is_torch_available()
else {}
)
lowercase__ : Any = False
lowercase__ : str = False
lowercase__ : Tuple = False
lowercase__ : str = False
def lowercase_ ( self ):
'''simple docstring'''
A__ = GPTNeoXJapaneseModelTester(self )
A__ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 )
def lowercase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ):
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def lowercase_ ( self ):
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def lowercase_ ( self ):
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder()
A__ = None
self.model_tester.create_and_check_model_as_decoder(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def lowercase_ ( self ):
'''simple docstring'''
A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def lowercase_ ( self ):
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase__ )
@slow
def lowercase_ ( self ):
'''simple docstring'''
A__ = "abeja/gpt-neox-japanese-2.7b"
A__ = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"]
A__ = [
"データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。",
"100年後に必要とされる会社は、「人」が中心の会社です。",
"フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。",
"国境の長いトンネルを抜けると、そこは雪国だった。",
"美味しい日本食といえば、やっぱりお寿司ですよね。",
]
A__ = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCamelCase__ )
A__ = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCamelCase__ )
A__ = []
for prompt in prompts:
A__ = tokenizer(UpperCamelCase__ , return_tensors="pt" ).input_ids
A__ = model.generate(UpperCamelCase__ , max_length=50 )
A__ = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ )
predicted_outputs += generated_string
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
| 337
| 1
|
from manim import *
class _UpperCamelCase ( _A ):
'''simple docstring'''
def lowerCAmelCase__ ( self : Union[str, Any] ):
UpperCamelCase_: Tuple = Rectangle(height=0.5 , width=0.5 )
UpperCamelCase_: Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
UpperCamelCase_: Union[str, Any] = [mem.copy() for i in range(6 )]
UpperCamelCase_: Any = [mem.copy() for i in range(6 )]
UpperCamelCase_: Any = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCamelCase_: Any = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCamelCase_: Optional[Any] = VGroup(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCamelCase_: List[str] = Text("""CPU""" , font_size=24 )
UpperCamelCase_: Dict = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(snake_case_ )
UpperCamelCase_: Union[str, Any] = [mem.copy() for i in range(4 )]
UpperCamelCase_: Tuple = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCamelCase_: Optional[Any] = Text("""GPU""" , font_size=24 )
UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ )
gpu.move_to([-1, -1, 0] )
self.add(snake_case_ )
UpperCamelCase_: Optional[Any] = [mem.copy() for i in range(6 )]
UpperCamelCase_: Union[str, Any] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCamelCase_: List[Any] = Text("""Model""" , font_size=24 )
UpperCamelCase_: Optional[int] = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , buff=0.5 , aligned_edge=snake_case_ )
model.move_to([3, -1.0, 0] )
self.add(snake_case_ )
UpperCamelCase_: str = []
for i, rect in enumerate(snake_case_ ):
rect.set_stroke(snake_case_ )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
UpperCamelCase_: List[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(snake_case_ , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case_ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=snake_case_ , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=snake_case_ , buff=0.0 )
self.add(snake_case_ )
cpu_targs.append(snake_case_ )
UpperCamelCase_: Optional[Any] = [mem.copy() for i in range(6 )]
UpperCamelCase_: Optional[int] = VGroup(*snake_case_ ).arrange(snake_case_ , buff=0 )
UpperCamelCase_: Optional[int] = Text("""Loaded Checkpoint""" , font_size=24 )
UpperCamelCase_: int = Group(snake_case_ , snake_case_ ).arrange(snake_case_ , aligned_edge=snake_case_ , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
UpperCamelCase_: List[Any] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
UpperCamelCase_: int = MarkupText(
f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(snake_case_ , snake_case_ )
UpperCamelCase_: Optional[int] = MarkupText(
f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(snake_case_ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
UpperCamelCase_: int = MarkupText(
f'''Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(snake_case_ ) , Write(snake_case_ ) )
self.play(Write(snake_case_ , run_time=1 ) , Create(snake_case_ , run_time=1 ) )
UpperCamelCase_: Any = []
UpperCamelCase_: List[str] = []
for i, rect in enumerate(snake_case_ ):
UpperCamelCase_: int = fill.copy().set_fill(snake_case_ , opacity=0.7 )
target.move_to(snake_case_ )
first_animations.append(GrowFromCenter(snake_case_ , run_time=1 ) )
UpperCamelCase_: int = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(snake_case_ , run_time=1.5 ) )
self.play(*snake_case_ )
self.play(*snake_case_ )
self.wait()
| 670
|
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
lowerCamelCase_ : Optional[int] = HUGGINGFACE_HUB_CACHE
lowerCamelCase_ : List[str] = """config.json"""
lowerCamelCase_ : Any = """diffusion_pytorch_model.bin"""
lowerCamelCase_ : Union[str, Any] = """diffusion_flax_model.msgpack"""
lowerCamelCase_ : Dict = """model.onnx"""
lowerCamelCase_ : List[Any] = """diffusion_pytorch_model.safetensors"""
lowerCamelCase_ : Optional[Any] = """weights.pb"""
lowerCamelCase_ : Optional[Any] = """https://huggingface.co"""
lowerCamelCase_ : Union[str, Any] = default_cache_path
lowerCamelCase_ : Tuple = """diffusers_modules"""
lowerCamelCase_ : Optional[Any] = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules"""))
lowerCamelCase_ : str = ["""fp16""", """non-ema"""]
lowerCamelCase_ : List[Any] = """.self_attn"""
| 670
| 1
|
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __lowercase (__snake_case ):
_UpperCamelCase = ["""image_processor""", """tokenizer"""]
_UpperCamelCase = """Pix2StructImageProcessor"""
_UpperCamelCase = ("""T5Tokenizer""", """T5TokenizerFast""")
def __init__( self , A_ , A_ ) ->List[str]:
'''simple docstring'''
__lowerCAmelCase : Optional[int] = False
super().__init__(snake_case_ , snake_case_ )
def __call__( self , A_=None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 2048 , A_ = 0 , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ) ->List[str]:
'''simple docstring'''
if images is None and text is None:
raise ValueError('''You have to specify either images or text.''' )
# Get only text
if images is None and not self.image_processor.is_vqa:
__lowerCAmelCase : Union[str, Any] = self.tokenizer
__lowerCAmelCase : Any = self.tokenizer(
text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , )
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
__lowerCAmelCase : List[str] = self.image_processor(
snake_case_ , return_tensors=snake_case_ , max_patches=snake_case_ , **snake_case_ )
else:
# add pixel_values and bbox
__lowerCAmelCase : Tuple = self.image_processor(
snake_case_ , return_tensors=snake_case_ , max_patches=snake_case_ , header_text=snake_case_ , **snake_case_ )
if text is not None and not self.image_processor.is_vqa:
__lowerCAmelCase : Dict = self.tokenizer(
text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , )
if "attention_mask" in text_encoding:
__lowerCAmelCase : Union[str, Any] = text_encoding.pop('''attention_mask''' )
if "input_ids" in text_encoding:
__lowerCAmelCase : Any = text_encoding.pop('''input_ids''' )
else:
__lowerCAmelCase : str = None
if text_encoding is not None:
encoding_image_processor.update(snake_case_ )
return encoding_image_processor
def UpperCamelCase__ ( self , *A_ , **A_ ) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ )
def UpperCamelCase__ ( self , *A_ , **A_ ) ->List[Any]:
'''simple docstring'''
return self.tokenizer.decode(*snake_case_ , **snake_case_ )
@property
def UpperCamelCase__ ( self ) ->str:
'''simple docstring'''
__lowerCAmelCase : int = self.tokenizer.model_input_names
__lowerCAmelCase : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 492
|
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class lowerCamelCase:
'''simple docstring'''
def __init__( self , snake_case_ , ):
_A = parent
_A = 13
_A = 7
_A = True
_A = True
_A = True
_A = 99
_A = 32
_A = 2
_A = 4
_A = 37
_A = 'gelu'
_A = 0.1
_A = 0.1
_A = 512
_A = 16
_A = 2
_A = 0.02
_A = 3
_A = 4
_A = None
def lowerCAmelCase__ ( self ):
_A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A = None
if self.use_input_mask:
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = None
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A = ids_tensor([self.batch_size] , self.num_choices )
_A = EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase__ ( self ):
(
(
_A
), (
_A
), (
_A
), (
_A
), (
_A
), (
_A
),
) = self.prepare_config_and_inputs()
_A = True
_A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = TFEsmModel(config=snake_case_ )
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
_A = model(snake_case_ )
_A = [input_ids, input_mask]
_A = model(snake_case_ )
_A = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ):
_A = True
_A = TFEsmModel(config=snake_case_ )
_A = {
'input_ids': input_ids,
'attention_mask': input_mask,
'encoder_hidden_states': encoder_hidden_states,
'encoder_attention_mask': encoder_attention_mask,
}
_A = model(snake_case_ )
_A = [input_ids, input_mask]
_A = model(snake_case_ , encoder_hidden_states=snake_case_ )
# Also check the case where encoder outputs are not passed
_A = model(snake_case_ , attention_mask=snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = TFEsmForMaskedLM(config=snake_case_ )
_A = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = self.num_labels
_A = TFEsmForTokenClassification(config=snake_case_ )
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
_A = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase__ ( self ):
_A = self.prepare_config_and_inputs()
(
(
_A
), (
_A
), (
_A
), (
_A
), (
_A
), (
_A
),
) = config_and_inputs
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
__magic_name__ = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
__magic_name__ = (
{
'feature-extraction': TFEsmModel,
'fill-mask': TFEsmForMaskedLM,
'text-classification': TFEsmForSequenceClassification,
'token-classification': TFEsmForTokenClassification,
'zero-shot': TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
def lowerCAmelCase__ ( self ):
_A = TFEsmModelTester(self )
_A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def lowerCAmelCase__ ( self ):
self.config_tester.run_common_tests()
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@slow
def lowerCAmelCase__ ( self ):
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFEsmModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
@unittest.skip('Protein models do not support embedding resizing.' )
def lowerCAmelCase__ ( self ):
pass
@unittest.skip('Protein models do not support embedding resizing.' )
def lowerCAmelCase__ ( self ):
pass
def lowerCAmelCase__ ( self ):
_A, _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(snake_case_ )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
_A = model.get_bias()
assert isinstance(snake_case_ , snake_case_ )
for k, v in name.items():
assert isinstance(snake_case_ , tf.Variable )
else:
_A = model.get_output_embeddings()
assert x is None
_A = model.get_bias()
assert name is None
@require_tf
class lowerCamelCase( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase__ ( self ):
_A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
_A = tf.constant([[0, 1, 2, 3, 4, 5]] )
_A = model(snake_case_ )[0]
_A = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , snake_case_ )
# compare the actual values for a slice.
_A = tf.constant(
[
[
[8.92_1518, -10.58_9814, -6.467_1307],
[-6.396_7156, -13.91_1377, -1.121_1915],
[-7.78_1247, -13.95_1557, -3.74_0592],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) )
@slow
def lowerCAmelCase__ ( self ):
_A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
_A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
_A = model(snake_case_ )[0]
# compare the actual values for a slice.
_A = tf.constant(
[
[
[0.1444_3092, 0.5412_5327, 0.324_7739],
[0.3034_0484, 0.0052_6676, 0.3107_7722],
[0.3227_8043, -0.2498_7096, 0.341_4628],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 27
| 0
|
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def UpperCAmelCase ( A__ , A__ , A__=0 ) -> Optional[Any]:
# Format the message.
if name is None:
_snake_case : Any = None
else:
_snake_case : Tuple = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
_snake_case : Dict = fmt.format(A__ )
# Print and recurse (if needed).
if isinstance(A__ , A__ ):
if msg is not None:
print(A__ )
for k in val.keys():
recursive_print(A__ , val[k] , spaces + 2 )
elif isinstance(A__ , torch.Tensor ):
print(A__ , """:""" , val.size() )
else:
print(A__ , """:""" , A__ )
def UpperCAmelCase ( A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]:
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
_snake_case : Any = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
_snake_case : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:]
_snake_case : Union[str, Any] = param.view(*A__ )
_snake_case : Tuple = param.transpose(0 , 2 )
_snake_case : Tuple = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
_snake_case : str = (num_heads, num_splits, hidden_size) + input_shape[1:]
_snake_case : Union[str, Any] = param.view(*A__ )
_snake_case : int = param.transpose(0 , 1 ).contiguous()
_snake_case : List[Any] = param.view(*A__ )
return param
def UpperCAmelCase ( A__ , A__ , A__ ) -> Tuple:
# The converted output model.
_snake_case : Union[str, Any] = {}
# old versions did not store training args
_snake_case : str = input_state_dict.get("""args""" , A__ )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
_snake_case : List[Any] = ds_args.padded_vocab_size
_snake_case : Any = ds_args.max_position_embeddings
_snake_case : List[Any] = ds_args.hidden_size
_snake_case : List[str] = ds_args.num_layers
_snake_case : Tuple = ds_args.num_attention_heads
_snake_case : int = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
_snake_case : Union[str, Any] = config.n_head
# The hidden_size per head.
_snake_case : Tuple = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
_snake_case : Tuple = input_state_dict["""checkpoint_version"""]
else:
_snake_case : Dict = 0.0
# The model.
_snake_case : Tuple = input_state_dict["""model"""]
# The language model.
_snake_case : str = model["""language_model"""]
# The embeddings.
_snake_case : List[str] = lm["""embedding"""]
# The word embeddings.
_snake_case : Optional[int] = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
_snake_case : List[Any] = word_embeddings[: config.vocab_size, :]
_snake_case : str = word_embeddings
# The position embeddings.
_snake_case : Tuple = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
_snake_case : str = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
_snake_case : Union[str, Any] = pos_embeddings
# The transformer.
_snake_case : List[str] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
_snake_case : List[str] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
_snake_case : Union[str, Any] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
_snake_case : List[Any] = layer_re.match(A__ )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
_snake_case : str = int(m.group(1 ) )
# The name of the operation.
_snake_case : List[str] = m.group(2 )
# Is it a weight or a bias?
_snake_case : Optional[int] = m.group(3 )
# The name of the layer.
_snake_case : Optional[int] = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
_snake_case : Optional[int] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
_snake_case : Any = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
_snake_case : Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , A__ , A__ )
_snake_case : Optional[int] = causal_mask
# Insert a "dummy" tensor for masked_bias.
_snake_case : Any = torch.tensor(-1E4 , dtype=torch.floataa )
_snake_case : int = masked_bias
_snake_case : int = fix_query_key_value_ordering(A__ , A__ , 3 , A__ , A__ )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
_snake_case : int = out_val.transpose(0 , 1 ).contiguous()
# Store.
_snake_case : Union[str, Any] = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
_snake_case : Tuple = fix_query_key_value_ordering(A__ , A__ , 3 , A__ , A__ )
# Store. No change of shape.
_snake_case : List[Any] = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
_snake_case : List[str] = megatron_to_transformers[op_name]
_snake_case : Optional[Any] = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
_snake_case : Optional[int] = megatron_to_transformers[op_name]
_snake_case : str = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
_snake_case : List[Any] = transformer["""final_layernorm.weight"""]
_snake_case : Any = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
_snake_case : str = word_embeddings
# It should be done!
return output_state_dict
def UpperCAmelCase ( ) -> Union[str, Any]:
# Create the argument parser.
_snake_case : int = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""" , type=A__ , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , )
parser.add_argument(
"""--config_file""" , default="""""" , type=A__ , help="""An optional config json file describing the pre-trained model.""" , )
_snake_case : Optional[Any] = parser.parse_args()
# Extract the basename.
_snake_case : Any = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
_snake_case : str = torch.load(A__ , map_location="""cpu""" )
else:
_snake_case : int = torch.load(args.path_to_checkpoint , map_location="""cpu""" )
_snake_case : Optional[int] = input_state_dict.get("""args""" , A__ )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
_snake_case : Optional[int] = """gelu_fast"""
elif ds_args.openai_gelu:
_snake_case : Optional[int] = """gelu_new"""
else:
_snake_case : Optional[int] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
_snake_case : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
_snake_case : int = GPTaConfig(
vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=A__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=A__ , summary_activation=A__ , summary_proj_to_labels=A__ , summary_first_dropout=0.1 , scale_attn_weights=A__ , use_cache=A__ , bos_token_id=5_02_56 , eos_token_id=5_02_56 , )
else:
_snake_case : Optional[Any] = GPTaConfig.from_json_file(args.config_file )
_snake_case : int = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
_snake_case : List[Any] = convert_megatron_checkpoint(A__ , A__ , A__ )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(A__ , A__ )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
_snake_case : Tuple = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
_snake_case : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
_snake_case : Optional[Any] = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
_snake_case : List[str] = """gpt2"""
_snake_case : int = AutoTokenizer.from_pretrained(A__ )
_snake_case : Tuple = type(A__ ).__name__
_snake_case : Any = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(A__ )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(A__ )
# Store the state_dict to file.
_snake_case : Tuple = os.path.join(A__ , """pytorch_model.bin""" )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(A__ , A__ )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 700
|
from unittest import TestCase
from datasets import Sequence, Value
from datasets.arrow_dataset import Dataset
class __SCREAMING_SNAKE_CASE ( lowercase__ ):
"""simple docstring"""
def __lowerCamelCase( self ):
"""simple docstring"""
return [
{"col_1": 3, "col_2": "a"},
{"col_1": 2, "col_2": "b"},
{"col_1": 1, "col_2": "c"},
{"col_1": 0, "col_2": "d"},
]
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : Optional[Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]}
return Dataset.from_dict(SCREAMING_SNAKE_CASE__ )
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : Optional[Any] = self._create_example_records()
_snake_case : Optional[int] = Dataset.from_list(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] )
for i, r in enumerate(SCREAMING_SNAKE_CASE__ ):
self.assertDictEqual(SCREAMING_SNAKE_CASE__ , example_records[i] )
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : Tuple = self._create_example_records()
_snake_case : Optional[Any] = Dataset.from_list(SCREAMING_SNAKE_CASE__ )
_snake_case : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} )
self.assertEqual(dset.info , dset_from_dict.info )
def __lowerCamelCase( self ): # checks what happens with missing columns
"""simple docstring"""
_snake_case : List[str] = [{"""col_1""": 1}, {"""col_2""": """x"""}]
_snake_case : List[str] = Dataset.from_list(SCREAMING_SNAKE_CASE__ )
self.assertDictEqual(dset[0] , {"""col_1""": 1} )
self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns
def __lowerCamelCase( self ): # checks if the type can be inferred from the second record
"""simple docstring"""
_snake_case : List[str] = [{"""col_1""": []}, {"""col_1""": [1, 2]}]
_snake_case : str = Dataset.from_list(SCREAMING_SNAKE_CASE__ )
self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) )
def __lowerCamelCase( self ):
"""simple docstring"""
_snake_case : Optional[Any] = Dataset.from_list([] )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 0 )
self.assertListEqual(dset.column_names , [] )
| 519
| 0
|
import json
import os
import unittest
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
a_ = BioGptTokenizer
a_ = False
def lowercase ( self : Union[str, Any] ) -> Union[str, Any]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowerCAmelCase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
__lowerCAmelCase = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) )
__lowerCAmelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' ) as fp:
fp.write(json.dumps(lowerCAmelCase_ ) )
with open(self.merges_file , 'w' ) as fp:
fp.write('\n'.join(lowerCAmelCase_ ) )
def lowercase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] ) -> int:
__lowerCAmelCase = 'lower newer'
__lowerCAmelCase = 'lower newer'
return input_text, output_text
def lowercase ( self : Optional[Any] ) -> int:
__lowerCAmelCase = BioGptTokenizer(self.vocab_file , self.merges_file )
__lowerCAmelCase = 'lower'
__lowerCAmelCase = ['low', 'er</w>']
__lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase_ )
self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
__lowerCAmelCase = tokens + ['<unk>']
__lowerCAmelCase = [1_4, 1_5, 2_0]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ )
@slow
def lowercase ( self : int ) -> Union[str, Any]:
__lowerCAmelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' )
__lowerCAmelCase = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase_ )
__lowerCAmelCase = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase_ )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ )
__lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ )
self.assertTrue(encoded_sentence == [2] + text )
self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
| 53
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"""microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""",
}
class __magic_name__ ( lowercase__ , lowercase__ ):
_SCREAMING_SNAKE_CASE : Dict = 'resnet'
_SCREAMING_SNAKE_CASE : Optional[Any] = ['basic', 'bottleneck']
def __init__( self : Any , snake_case_ : Optional[int]=3 , snake_case_ : List[Any]=64 , snake_case_ : Union[str, Any]=[256, 512, 1024, 2048] , snake_case_ : Union[str, Any]=[3, 4, 6, 3] , snake_case_ : str="bottleneck" , snake_case_ : Tuple="relu" , snake_case_ : Union[str, Any]=False , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[int]=None , **snake_case_ : Any , ):
super().__init__(**snake_case_ )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
__snake_case = num_channels
__snake_case = embedding_size
__snake_case = hidden_sizes
__snake_case = depths
__snake_case = layer_type
__snake_case = hidden_act
__snake_case = downsample_in_first_stage
__snake_case = ["stem"] + [F'''stage{idx}''' for idx in range(1 , len(snake_case_ ) + 1 )]
__snake_case , __snake_case = get_aligned_output_features_output_indices(
out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names )
class __magic_name__ ( lowercase__ ):
_SCREAMING_SNAKE_CASE : Dict = version.parse('1.11' )
@property
def lowerCAmelCase ( self : Optional[Any] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def lowerCAmelCase ( self : str ):
return 1e-3
| 163
| 0
|
import math
def _snake_case ( __snake_case ) -> str:
'''simple docstring'''
UpperCAmelCase_ : int = 0
UpperCAmelCase_ : int = 0
while num > 0:
UpperCAmelCase_ : Tuple = num % 8
UpperCAmelCase_ : Optional[Any] = octal + (remainder * math.floor(math.pow(1_0 , __snake_case ) ))
counter += 1
UpperCAmelCase_ : Any = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return F"""0o{int(__snake_case )}"""
def _snake_case ( ) -> None:
'''simple docstring'''
print("\n2 in octal is:" )
print(decimal_to_octal(2 ) ) # = 2
print("\n8 in octal is:" )
print(decimal_to_octal(8 ) ) # = 10
print("\n65 in octal is:" )
print(decimal_to_octal(6_5 ) ) # = 101
print("\n216 in octal is:" )
print(decimal_to_octal(2_1_6 ) ) # = 330
print("\n512 in octal is:" )
print(decimal_to_octal(5_1_2 ) ) # = 1000
print("\n" )
if __name__ == "__main__":
main()
| 455
|
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__lowerCamelCase = 16
__lowerCamelCase = 32
def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = 1_6 ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ : int = AutoTokenizer.from_pretrained("bert-base-cased" )
UpperCAmelCase_ : List[Any] = DatasetDict(
{
"train": dataset["train"].select(__snake_case ),
"validation": dataset["train"].select(__snake_case ),
"test": dataset["validation"],
} )
def tokenize_function(__snake_case ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : List[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__snake_case , max_length=__snake_case )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCAmelCase_ : int = datasets.map(
__snake_case , batched=__snake_case , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Tuple = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(__snake_case ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCAmelCase_ : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCAmelCase_ : Optional[Any] = 1_6
elif accelerator.mixed_precision != "no":
UpperCAmelCase_ : str = 8
else:
UpperCAmelCase_ : Dict = None
return tokenizer.pad(
__snake_case , padding="longest" , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors="pt" , )
# Instantiate dataloaders.
UpperCAmelCase_ : List[str] = DataLoader(
tokenized_datasets["train"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
UpperCAmelCase_ : Union[str, Any] = DataLoader(
tokenized_datasets["validation"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets["test"] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case )
return train_dataloader, eval_dataloader, test_dataloader
def _snake_case ( __snake_case , __snake_case ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ : Tuple = []
# Download the dataset
UpperCAmelCase_ : Optional[int] = load_dataset("glue" , "mrpc" )
# Create our splits
UpperCAmelCase_ : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
UpperCAmelCase_ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : Optional[int] = config["lr"]
UpperCAmelCase_ : Dict = int(config["num_epochs"] )
UpperCAmelCase_ : Union[str, Any] = int(config["seed"] )
UpperCAmelCase_ : Optional[Any] = int(config["batch_size"] )
UpperCAmelCase_ : Optional[Any] = evaluate.load("glue" , "mrpc" )
# If the batch size is too big we use gradient accumulation
UpperCAmelCase_ : Optional[int] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
UpperCAmelCase_ : int = batch_size // MAX_GPU_BATCH_SIZE
UpperCAmelCase_ : List[str] = MAX_GPU_BATCH_SIZE
set_seed(__snake_case )
# New Code #
# Create our folds:
UpperCAmelCase_ : int = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] )
UpperCAmelCase_ : Dict = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(__snake_case ):
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = get_fold_dataloaders(
__snake_case , __snake_case , __snake_case , __snake_case , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__snake_case )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase_ : Union[str, Any] = model.to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase_ : Tuple = AdamW(params=model.parameters() , lr=__snake_case )
# Instantiate scheduler
UpperCAmelCase_ : str = get_linear_schedule_with_warmup(
optimizer=__snake_case , num_warmup_steps=1_0_0 , num_training_steps=(len(__snake_case ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
# Now we train the model
for epoch in range(__snake_case ):
model.train()
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
UpperCAmelCase_ : Optional[Any] = model(**__snake_case )
UpperCAmelCase_ : Dict = outputs.loss
UpperCAmelCase_ : List[Any] = loss / gradient_accumulation_steps
accelerator.backward(__snake_case )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : str = model(**__snake_case )
UpperCAmelCase_ : Optional[int] = outputs.logits.argmax(dim=-1 )
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) )
metric.add_batch(
predictions=__snake_case , references=__snake_case , )
UpperCAmelCase_ : Optional[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , __snake_case )
# New Code #
# We also run predictions on the test set at the very end
UpperCAmelCase_ : Union[str, Any] = []
for step, batch in enumerate(__snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Tuple = model(**__snake_case )
UpperCAmelCase_ : Optional[int] = outputs.logits
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = accelerator.gather_for_metrics((predictions, batch["labels"]) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(__snake_case , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
UpperCAmelCase_ : Union[str, Any] = torch.cat(__snake_case , dim=0 )
UpperCAmelCase_ : str = torch.stack(__snake_case , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
UpperCAmelCase_ : List[str] = metric.compute(predictions=__snake_case , references=__snake_case )
accelerator.print("Average test metrics from all folds:" , __snake_case )
def _snake_case ( ) -> str:
'''simple docstring'''
UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=__snake_case , default=__snake_case , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
# New Code #
parser.add_argument("--num_folds" , type=__snake_case , default=3 , help="The number of splits to perform across the dataset" )
UpperCAmelCase_ : Any = parser.parse_args()
UpperCAmelCase_ : List[Any] = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6}
training_function(__snake_case , __snake_case )
if __name__ == "__main__":
main()
| 455
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__UpperCAmelCase = {
"""configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""],
"""tokenization_perceiver""": ["""PerceiverTokenizer"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ["""PerceiverFeatureExtractor"""]
__UpperCAmelCase = ["""PerceiverImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"""PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PerceiverForImageClassificationConvProcessing""",
"""PerceiverForImageClassificationFourier""",
"""PerceiverForImageClassificationLearned""",
"""PerceiverForMaskedLM""",
"""PerceiverForMultimodalAutoencoding""",
"""PerceiverForOpticalFlow""",
"""PerceiverForSequenceClassification""",
"""PerceiverLayer""",
"""PerceiverModel""",
"""PerceiverPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 379
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
__UpperCAmelCase = """CompVis/stable-diffusion-v1-1"""
__UpperCAmelCase = """CompVis/stable-diffusion-v1-2"""
__UpperCAmelCase = """CompVis/stable-diffusion-v1-3"""
__UpperCAmelCase = """CompVis/stable-diffusion-v1-4"""
class UpperCamelCase__ ( lowercase_ ):
"""simple docstring"""
def __init__( self : List[str] , lowerCamelCase_ : AutoencoderKL , lowerCamelCase_ : CLIPTextModel , lowerCamelCase_ : CLIPTokenizer , lowerCamelCase_ : UNetaDConditionModel , lowerCamelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCamelCase_ : StableDiffusionSafetyChecker , lowerCamelCase_ : CLIPImageProcessor , lowerCamelCase_ : bool = True , ):
'''simple docstring'''
super()._init_()
SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionPipeline.from_pretrained(lowerCamelCase_ )
SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionPipeline(
vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , safety_checker=lowerCamelCase_ , feature_extractor=lowerCamelCase_ , requires_safety_checker=lowerCamelCase_ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def lowerCamelCase_ ( self : int ):
'''simple docstring'''
return {k: getattr(self , lowerCamelCase_ ) for k in self.config.keys() if not k.startswith("""_""" )}
def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[Union[str, int]] = "auto" ):
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
SCREAMING_SNAKE_CASE : Optional[int] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(lowerCamelCase_ )
def lowerCamelCase_ ( self : Dict ):
'''simple docstring'''
self.enable_attention_slicing(lowerCamelCase_ )
@torch.no_grad()
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str]] , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Union[str, Any] , ):
'''simple docstring'''
return self.pipea(
prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , )
@torch.no_grad()
def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Union[str, List[str]] , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Union[str, Any] , ):
'''simple docstring'''
return self.pipea(
prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , )
@torch.no_grad()
def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str]] , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : str , ):
'''simple docstring'''
return self.pipea(
prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , )
@torch.no_grad()
def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Union[str, List[str]] , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Dict , ):
'''simple docstring'''
return self.pipea(
prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , )
@torch.no_grad()
def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, List[str]] , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 5_12 , lowerCamelCase_ : int = 50 , lowerCamelCase_ : float = 7.5 , lowerCamelCase_ : Optional[Union[str, List[str]]] = None , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[torch.FloatTensor] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCamelCase_ : int = 1 , **lowerCamelCase_ : Any , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = """cuda""" if torch.cuda.is_available() else """cpu"""
self.to(lowerCamelCase_ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' )
# Get first result from Stable Diffusion Checkpoint v1.1
SCREAMING_SNAKE_CASE : List[str] = self.textaimg_sda_a(
prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , )
# Get first result from Stable Diffusion Checkpoint v1.2
SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a(
prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , )
# Get first result from Stable Diffusion Checkpoint v1.3
SCREAMING_SNAKE_CASE : int = self.textaimg_sda_a(
prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , )
# Get first result from Stable Diffusion Checkpoint v1.4
SCREAMING_SNAKE_CASE : Optional[int] = self.textaimg_sda_a(
prompt=lowerCamelCase_ , height=lowerCamelCase_ , width=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , output_type=lowerCamelCase_ , return_dict=lowerCamelCase_ , callback=lowerCamelCase_ , callback_steps=lowerCamelCase_ , **lowerCamelCase_ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 379
| 1
|
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase : List[Any] = logging.get_logger(__name__)
lowercase : str = {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json",
}
class __lowercase ( snake_case__ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = '''xlnet'''
UpperCAmelCase_ : Optional[int] = ['''mems''']
UpperCAmelCase_ : Optional[int] = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , __UpperCAmelCase=3_20_00 , __UpperCAmelCase=10_24 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=40_96 , __UpperCAmelCase="gelu" , __UpperCAmelCase=True , __UpperCAmelCase="bi" , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=-1 , __UpperCAmelCase=False , __UpperCAmelCase="last" , __UpperCAmelCase=True , __UpperCAmelCase="tanh" , __UpperCAmelCase=0.1 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=5 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Any:
A : Any = vocab_size
A : Any = d_model
A : Tuple = n_layer
A : Dict = n_head
if d_model % n_head != 0:
raise ValueError(f'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
f'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' )
A : Any = d_model // n_head
A : Union[str, Any] = ff_activation
A : Dict = d_inner
A : Optional[int] = untie_r
A : Any = attn_type
A : Tuple = initializer_range
A : List[Any] = layer_norm_eps
A : str = dropout
A : Tuple = mem_len
A : Optional[Any] = reuse_len
A : Any = bi_data
A : Optional[int] = clamp_len
A : int = same_length
A : int = summary_type
A : Tuple = summary_use_proj
A : Dict = summary_activation
A : Optional[int] = summary_last_dropout
A : str = start_n_top
A : List[str] = end_n_top
A : Union[str, Any] = bos_token_id
A : List[Any] = pad_token_id
A : Any = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'''
''' instead.''' , lowercase_ , )
A : Optional[int] = kwargs["use_cache"]
A : Dict = use_mems_eval
A : Optional[int] = use_mems_train
super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ )
@property
def snake_case ( self ) -> str:
logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def snake_case ( self , __UpperCAmelCase ) -> List[str]:
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 704
|
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = TextToVideoSDPipeline
UpperCAmelCase_ : str = TEXT_TO_IMAGE_PARAMS
UpperCAmelCase_ : Dict = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
UpperCAmelCase_ : Dict = frozenset(
[
'''num_inference_steps''',
'''generator''',
'''latents''',
'''return_dict''',
'''callback''',
'''callback_steps''',
] )
def snake_case ( self ) -> int:
torch.manual_seed(0 )
A : Any = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , )
A : int = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
torch.manual_seed(0 )
A : List[Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
A : List[str] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=5_12 , )
A : int = CLIPTextModel(__UpperCAmelCase )
A : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
A : Optional[Any] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> List[Any]:
if str(__UpperCAmelCase ).startswith('''mps''' ):
A : List[str] = torch.manual_seed(__UpperCAmelCase )
else:
A : Optional[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
A : Optional[Any] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def snake_case ( self ) -> List[str]:
A : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A : Dict = self.get_dummy_components()
A : Any = TextToVideoSDPipeline(**__UpperCAmelCase )
A : Union[str, Any] = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
A : Optional[int] = self.get_dummy_inputs(__UpperCAmelCase )
A : Optional[int] = '''np'''
A : Dict = sd_pipe(**__UpperCAmelCase ).frames
A : Tuple = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
A : Any = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def snake_case ( self ) -> Dict:
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__UpperCAmelCase , expected_max_diff=3E-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def snake_case ( self ) -> str:
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCAmelCase , expected_max_diff=1E-2 )
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def snake_case ( self ) -> Any:
pass
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def snake_case ( self ) -> Tuple:
pass
@unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' )
def snake_case ( self ) -> List[str]:
pass
def snake_case ( self ) -> Dict:
return super().test_progress_bar()
@slow
@skip_mps
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
def snake_case ( self ) -> int:
A : List[str] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' )
A : List[Any] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
A : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
A : Optional[int] = pipe.to('''cuda''' )
A : List[Any] = '''Spiderman is surfing'''
A : Any = torch.Generator(device='''cpu''' ).manual_seed(0 )
A : List[Any] = pipe(__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=25 , output_type='''pt''' ).frames
A : Optional[int] = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5E-2
def snake_case ( self ) -> Union[str, Any]:
A : Union[str, Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' )
A : Tuple = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
A : Any = pipe.to('''cuda''' )
A : int = '''Spiderman is surfing'''
A : List[str] = torch.Generator(device='''cpu''' ).manual_seed(0 )
A : List[Any] = pipe(__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='''pt''' ).frames
A : List[str] = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5E-2
| 423
| 0
|
import colorsys
from PIL import Image # type: ignore
def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> float:
_UpperCAmelCase = x
_UpperCAmelCase = y
for step in range(_lowerCAmelCase ): # noqa: B007
_UpperCAmelCase = a * a - b * b + x
_UpperCAmelCase = 2 * a * b + y
_UpperCAmelCase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def __lowerCamelCase ( _lowerCAmelCase ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def __lowerCamelCase ( _lowerCAmelCase ) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(_lowerCAmelCase , 1 , 1 ) )
def __lowerCamelCase ( _lowerCAmelCase = 800 , _lowerCAmelCase = 600 , _lowerCAmelCase = -0.6 , _lowerCAmelCase = 0 , _lowerCAmelCase = 3.2 , _lowerCAmelCase = 50 , _lowerCAmelCase = True , ) -> Image.Image:
_UpperCAmelCase = Image.new("RGB" , (image_width, image_height) )
_UpperCAmelCase = img.load()
# loop through the image-coordinates
for image_x in range(_lowerCAmelCase ):
for image_y in range(_lowerCAmelCase ):
# determine the figure-coordinates based on the image-coordinates
_UpperCAmelCase = figure_width / image_width * image_height
_UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width
_UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height
_UpperCAmelCase = get_distance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
_UpperCAmelCase = get_color_coded_rgb(_lowerCAmelCase )
else:
_UpperCAmelCase = get_black_and_white_rgb(_lowerCAmelCase )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
__lowerCAmelCase = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 684
|
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] , lowerCAmelCase: str , lowerCAmelCase: str ) -> Union[str, Any]:
# Construct model
if gpta_config_file == "":
_UpperCAmelCase : Optional[int] = GPTaConfig()
else:
_UpperCAmelCase : Optional[Any] = GPTaConfig.from_json_file(lowerCAmelCase )
_UpperCAmelCase : Optional[int] = GPTaModel(lowerCAmelCase )
# Load weights from numpy
load_tf_weights_in_gpta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
# Save pytorch-model
_UpperCAmelCase : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
_UpperCAmelCase : Optional[int] = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(F'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(model.state_dict() , lowerCAmelCase )
print(F'Save configuration file to {pytorch_config_dump_path}' )
with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
SCREAMING_SNAKE_CASE_ = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 300
| 0
|
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE = {
"BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json",
# See all AltCLIP models at https://huggingface.co/models?filter=altclip
}
class SCREAMING_SNAKE_CASE_ ( _a ):
"""simple docstring"""
__lowerCAmelCase : Union[str, Any] ='''altclip_text_model'''
def __init__( self :Optional[int], snake_case :Optional[Any]=25_0002, snake_case :int=1024, snake_case :int=24, snake_case :Dict=16, snake_case :str=4096, snake_case :Dict="gelu", snake_case :Dict=0.1, snake_case :Any=0.1, snake_case :Optional[Any]=514, snake_case :Dict=1, snake_case :Dict=0.0_2, snake_case :int=0.0_2, snake_case :List[str]=1e-0_5, snake_case :Optional[Any]=1, snake_case :Optional[int]=0, snake_case :List[Any]=2, snake_case :str="absolute", snake_case :Dict=True, snake_case :Optional[Any]=768, **snake_case :List[str], ):
"""simple docstring"""
super().__init__(pad_token_id=snake_case, bos_token_id=snake_case, eos_token_id=snake_case, **snake_case)
_lowercase =vocab_size
_lowercase =hidden_size
_lowercase =num_hidden_layers
_lowercase =num_attention_heads
_lowercase =hidden_act
_lowercase =intermediate_size
_lowercase =hidden_dropout_prob
_lowercase =attention_probs_dropout_prob
_lowercase =max_position_embeddings
_lowercase =type_vocab_size
_lowercase =initializer_range
_lowercase =initializer_factor
_lowercase =layer_norm_eps
_lowercase =position_embedding_type
_lowercase =use_cache
_lowercase =project_dim
class SCREAMING_SNAKE_CASE_ ( _a ):
"""simple docstring"""
__lowerCAmelCase : List[str] ='''altclip_vision_model'''
def __init__( self :List[Any], snake_case :Optional[int]=768, snake_case :Dict=3072, snake_case :Optional[int]=512, snake_case :Dict=12, snake_case :List[str]=12, snake_case :Any=3, snake_case :int=224, snake_case :List[str]=32, snake_case :Tuple="quick_gelu", snake_case :Optional[Any]=1e-5, snake_case :Union[str, Any]=0.0, snake_case :Tuple=0.0_2, snake_case :str=1.0, **snake_case :int, ):
"""simple docstring"""
super().__init__(**snake_case)
_lowercase =hidden_size
_lowercase =intermediate_size
_lowercase =projection_dim
_lowercase =num_hidden_layers
_lowercase =num_attention_heads
_lowercase =num_channels
_lowercase =patch_size
_lowercase =image_size
_lowercase =initializer_range
_lowercase =initializer_factor
_lowercase =attention_dropout
_lowercase =layer_norm_eps
_lowercase =hidden_act
@classmethod
def UpperCamelCase__ ( cls :Union[str, Any], snake_case :Union[str, os.PathLike], **snake_case :Optional[Any]):
"""simple docstring"""
cls._set_token_in_kwargs(snake_case)
_lowercase , _lowercase =cls.get_config_dict(snake_case, **snake_case)
# get the vision config dict if we are loading from AltCLIPConfig
if config_dict.get('model_type') == "altclip":
_lowercase =config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls, 'model_type') and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''')
return cls.from_dict(snake_case, **snake_case)
class SCREAMING_SNAKE_CASE_ ( _a ):
"""simple docstring"""
__lowerCAmelCase : int ='''altclip'''
__lowerCAmelCase : Union[str, Any] =True
def __init__( self :Union[str, Any], snake_case :Any=None, snake_case :str=None, snake_case :List[Any]=768, snake_case :Optional[Any]=2.6_5_9_2, **snake_case :Tuple):
"""simple docstring"""
_lowercase =kwargs.pop('text_config_dict', snake_case)
_lowercase =kwargs.pop('vision_config_dict', snake_case)
super().__init__(**snake_case)
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
_lowercase ={}
# This is the complete result when using `text_config_dict`.
_lowercase =AltCLIPTextConfig(**snake_case).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
_lowercase =(
f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. '''
f'''The value `text_config_dict["{key}"]` will be used instead.'''
)
# If inferred from default argument values (just to be super careful)
else:
_lowercase =(
f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The '''
f'''value `text_config["{key}"]` will be overriden.'''
)
logger.warning(snake_case)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if vision_config_dict is not None:
if vision_config is None:
_lowercase ={}
# This is the complete result when using `vision_config_dict`.
_lowercase =AltCLIPVisionConfig(**snake_case).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
_lowercase ={
str(snake_case): value for key, value in _vision_config_dict['id2label'].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
_lowercase =(
f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different '''
f'''values. The value `vision_config_dict["{key}"]` will be used instead.'''
)
# If inferred from default argument values (just to be super careful)
else:
_lowercase =(
f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. '''
f'''The value `vision_config["{key}"]` will be overriden.'''
)
logger.warning(snake_case)
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict)
if text_config is None:
_lowercase ={}
logger.info('`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.')
if vision_config is None:
_lowercase ={}
logger.info('`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.')
_lowercase =AltCLIPTextConfig(**snake_case)
_lowercase =AltCLIPVisionConfig(**snake_case)
_lowercase =projection_dim
_lowercase =logit_scale_init_value
_lowercase =1.0
@classmethod
def UpperCamelCase__ ( cls :int, snake_case :AltCLIPTextConfig, snake_case :AltCLIPVisionConfig, **snake_case :Dict):
"""simple docstring"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **snake_case)
def UpperCamelCase__ ( self :Union[str, Any]):
"""simple docstring"""
_lowercase =copy.deepcopy(self.__dict__)
_lowercase =self.text_config.to_dict()
_lowercase =self.vision_config.to_dict()
_lowercase =self.__class__.model_type
return output
| 557
|
import itertools
import random
import unittest
import numpy as np
from transformers import ASTFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
_SCREAMING_SNAKE_CASE = random.Random()
if is_torch_available():
import torch
def _snake_case (_snake_case : str , _snake_case : Optional[Any]=1.0 , _snake_case : int=None , _snake_case : Optional[int]=None) -> Optional[int]:
if rng is None:
_lowercase =global_rng
_lowercase =[]
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self :int, snake_case :List[Any], snake_case :List[str]=7, snake_case :Union[str, Any]=400, snake_case :List[Any]=2000, snake_case :Union[str, Any]=1, snake_case :Tuple=0.0, snake_case :Tuple=1_6000, snake_case :Optional[Any]=True, snake_case :List[Any]=True, ):
"""simple docstring"""
_lowercase =parent
_lowercase =batch_size
_lowercase =min_seq_length
_lowercase =max_seq_length
_lowercase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
_lowercase =feature_size
_lowercase =padding_value
_lowercase =sampling_rate
_lowercase =return_attention_mask
_lowercase =do_normalize
def UpperCamelCase__ ( self :int):
"""simple docstring"""
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def UpperCamelCase__ ( self :Tuple, snake_case :Optional[Any]=False, snake_case :int=False):
"""simple docstring"""
def _flatten(snake_case :Optional[int]):
return list(itertools.chain(*snake_case))
if equal_length:
_lowercase =floats_list((self.batch_size, self.max_seq_length))
else:
# make sure that inputs increase in size
_lowercase =[
_flatten(floats_list((x, self.feature_size)))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
_lowercase =[np.asarray(snake_case) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class SCREAMING_SNAKE_CASE_ ( _a , unittest.TestCase ):
"""simple docstring"""
__lowerCAmelCase : Any =ASTFeatureExtractor
def UpperCamelCase__ ( self :str):
"""simple docstring"""
_lowercase =ASTFeatureExtractionTester(self)
def UpperCamelCase__ ( self :int):
"""simple docstring"""
_lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
_lowercase =[floats_list((1, x))[0] for x in range(800, 1400, 200)]
_lowercase =[np.asarray(snake_case) for speech_input in speech_inputs]
# Test not batched input
_lowercase =feat_extract(speech_inputs[0], return_tensors='np').input_values
_lowercase =feat_extract(np_speech_inputs[0], return_tensors='np').input_values
self.assertTrue(np.allclose(snake_case, snake_case, atol=1e-3))
# Test batched
_lowercase =feat_extract(snake_case, padding=snake_case, return_tensors='np').input_values
_lowercase =feat_extract(snake_case, padding=snake_case, return_tensors='np').input_values
for enc_seq_a, enc_seq_a in zip(snake_case, snake_case):
self.assertTrue(np.allclose(snake_case, snake_case, atol=1e-3))
# Test 2-D numpy arrays are batched.
_lowercase =[floats_list((1, x))[0] for x in (800, 800, 800)]
_lowercase =np.asarray(snake_case)
_lowercase =feat_extract(snake_case, return_tensors='np').input_values
_lowercase =feat_extract(snake_case, return_tensors='np').input_values
for enc_seq_a, enc_seq_a in zip(snake_case, snake_case):
self.assertTrue(np.allclose(snake_case, snake_case, atol=1e-3))
@require_torch
def UpperCamelCase__ ( self :Tuple):
"""simple docstring"""
import torch
_lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
_lowercase =np.random.rand(100).astype(np.floataa)
_lowercase =np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
_lowercase =feature_extractor.pad([{'input_values': inputs}], return_tensors='np')
self.assertTrue(np_processed.input_values.dtype == np.floataa)
_lowercase =feature_extractor.pad([{'input_values': inputs}], return_tensors='pt')
self.assertTrue(pt_processed.input_values.dtype == torch.floataa)
def UpperCamelCase__ ( self :Tuple, snake_case :Any):
"""simple docstring"""
from datasets import load_dataset
_lowercase =load_dataset('hf-internal-testing/librispeech_asr_dummy', 'clean', split='validation')
# automatic decoding with librispeech
_lowercase =ds.sort('id').select(range(snake_case))[:num_samples]['audio']
return [x["array"] for x in speech_samples]
@require_torch
def UpperCamelCase__ ( self :str):
"""simple docstring"""
_lowercase =torch.tensor(
[-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6,
-1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3,
-1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6,
-0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9])
# fmt: on
_lowercase =self._load_datasamples(1)
_lowercase =ASTFeatureExtractor()
_lowercase =feature_extractor(snake_case, return_tensors='pt').input_values
self.assertEquals(input_values.shape, (1, 1024, 128))
self.assertTrue(torch.allclose(input_values[0, 0, :30], snake_case, atol=1e-4))
| 557
| 1
|
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch)
# also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml
# same for Vicuna-13b
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipImageProcessor,
InstructBlipConfig,
InstructBlipForConditionalGeneration,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
LlamaConfig,
LlamaTokenizerFast,
TaConfig,
TaTokenizerFast,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def a():
'''simple docstring'''
snake_case_ = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg'
snake_case_ = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('RGB' )
return image
def a(lowercase__ ):
'''simple docstring'''
snake_case_ = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') )
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') )
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') )
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') )
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') )
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) )
rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") )
rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") )
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') )
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') )
# fmt: on
return rename_keys
def a(lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
snake_case_ = dct.pop(lowercase__ )
snake_case_ = val
def a(lowercase__ , lowercase__ ):
'''simple docstring'''
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
snake_case_ = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" )
snake_case_ = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" )
# next, set bias in the state dict
snake_case_ = torch.cat((q_bias, torch.zeros_like(lowercase__ , requires_grad=lowercase__ ), v_bias) )
snake_case_ = qkv_bias
def a(lowercase__ ):
'''simple docstring'''
snake_case_ = 364 if 'coco' in model_name else 224
snake_case_ = InstructBlipVisionConfig(image_size=lowercase__ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "t5-xl" in model_name:
snake_case_ = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
snake_case_ = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict()
elif "vicuna-7b" in model_name:
snake_case_ = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=32001 ).to_dict()
elif "vicuna-13b" in model_name:
snake_case_ = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=32001 ).to_dict()
else:
raise ValueError('Model name not supported' )
# the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1
snake_case_ = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict()
snake_case_ = InstructBlipConfig(vision_config=lowercase__ , text_config=lowercase__ , qformer_config=lowercase__ )
return config, image_size
@torch.no_grad()
def a(lowercase__ , lowercase__=None , lowercase__=False ):
'''simple docstring'''
snake_case_ = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' )
qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} )
if "t5" in model_name:
snake_case_ = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' )
elif "vicuna" in model_name:
# the following was used in the original implementation:
# tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left")
# tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# tokenizer.add_special_tokens({"bos_token": "</s>"})
# tokenizer.add_special_tokens({"eos_token": "</s>"})
# tokenizer.add_special_tokens({"unk_token": "</s>"})
snake_case_ = LlamaTokenizerFast.from_pretrained(
'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' )
tokenizer.add_special_tokens({'pad_token': '[PAD]'} )
snake_case_ , snake_case_ = get_blipa_config(lowercase__ )
snake_case_ = InstructBlipForConditionalGeneration(lowercase__ ).eval()
snake_case_ = {
'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'),
'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'),
'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'),
'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'),
}
snake_case_ , snake_case_ = model_name_to_original[model_name]
# load original model
print('Loading original model...' )
snake_case_ = 'cuda:1' if torch.cuda.is_available() else 'cpu'
snake_case_ = 'cuda:2' if torch.cuda.is_available() else 'cpu'
snake_case_ , snake_case_ , snake_case_ = load_model_and_preprocess(
name=lowercase__ , model_type=lowercase__ , is_eval=lowercase__ , device=lowercase__ )
original_model.eval()
print('Done!' )
# update state dict keys
snake_case_ = original_model.state_dict()
snake_case_ = create_rename_keys(lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
snake_case_ = state_dict.pop(lowercase__ )
if key.startswith('Qformer.bert' ):
snake_case_ = key.replace('Qformer.bert' , 'qformer' )
if "attention.self" in key:
snake_case_ = key.replace('self' , 'attention' )
if "llm_proj" in key:
snake_case_ = key.replace('llm_proj' , 'language_projection' )
if "t5_proj" in key:
snake_case_ = key.replace('t5_proj' , 'language_projection' )
if key.startswith('llm_model' ):
snake_case_ = key.replace('llm_model' , 'language_model' )
if key.startswith('t5' ):
snake_case_ = key.replace('t5' , 'language' )
snake_case_ = val
# read in qv biases
read_in_q_v_bias(lowercase__ , lowercase__ )
# note: weights get loaded in torch.float32 by default
hf_model.load_state_dict(lowercase__ , strict=lowercase__ )
snake_case_ = load_demo_image()
snake_case_ = 'What is unusual about this image?'
# create processor
snake_case_ = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=lowercase__ , image_std=lowercase__ )
snake_case_ = InstructBlipProcessor(
image_processor=lowercase__ , tokenizer=lowercase__ , qformer_tokenizer=lowercase__ , )
snake_case_ = processor(images=lowercase__ , text=lowercase__ , return_tensors='pt' ).to(lowercase__ )
# make sure processor creates exact same pixel values
snake_case_ = vis_processors['eval'](lowercase__ ).unsqueeze(0 ).to(lowercase__ )
snake_case_ = inputs.pixel_values
assert torch.allclose(original_pixel_values.to(pixel_values.device ) , lowercase__ )
original_model.to(lowercase__ )
hf_model.to(lowercase__ )
with torch.no_grad():
if "vicuna" in model_name:
snake_case_ = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits
snake_case_ = hf_model(**lowercase__ ).logits
else:
snake_case_ = original_model(
{'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits
snake_case_ = tokenizer('\n' , return_tensors='pt' ).input_ids.to(lowercase__ )
snake_case_ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 )
snake_case_ = hf_model(**lowercase__ , labels=lowercase__ ).logits
print('First values of original logits:' , original_logits[0, :3, :3] )
print('First values of HF logits:' , logits[0, :3, :3] )
# assert values
assert original_logits.shape == logits.shape
snake_case_ = 1e-4 if 'vicuna' in model_name else 1e-5
assert torch.allclose(original_logits.to(logits.device ) , lowercase__ , atol=lowercase__ )
print('Looks ok!' )
print('Generating with original model...' )
snake_case_ = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 )
# important: we need to cast the weights of the HF model to the appropriate type
print('Generating with HF model...' )
snake_case_ = hf_model.generate(
**lowercase__ , do_sample=lowercase__ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , )
if "vicuna" in model_name:
# convert output id 0 to 2 (eos_token_id)
# TODO add this in the generate method?
snake_case_ = 2
print('Original generation:' , lowercase__ )
snake_case_ = processor.batch_decode(lowercase__ , skip_special_tokens=lowercase__ )
snake_case_ = [text.strip() for text in output_text]
print('HF generation:' , lowercase__ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(lowercase__ )
hf_model.save_pretrained(lowercase__ )
if push_to_hub:
processor.push_to_hub(f"""Salesforce/{model_name}""" )
hf_model.push_to_hub(f"""Salesforce/{model_name}""" )
if __name__ == "__main__":
A = argparse.ArgumentParser()
A = [
'instructblip-vicuna-7b',
'instructblip-vicuna-13b',
'instructblip-flan-t5-xl',
'instructblip-flan-t5-xxl',
]
parser.add_argument(
'--model_name',
default='instructblip-flan-t5-xl',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub after converting',
)
A = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 187
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
A = {
'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'],
'processing_speech_to_text': ['Speech2TextProcessor'],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = ['Speech2TextTokenizer']
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = ['Speech2TextFeatureExtractor']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = [
'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFSpeech2TextForConditionalGeneration',
'TFSpeech2TextModel',
'TFSpeech2TextPreTrainedModel',
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A = [
'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Speech2TextForConditionalGeneration',
'Speech2TextModel',
'Speech2TextPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 187
| 1
|
'''simple docstring'''
from __future__ import annotations
from typing import Generic, TypeVar
lowerCAmelCase : List[str] = TypeVar('''T''')
class UpperCAmelCase__ ( Generic[T] ):
def __init__( self , UpperCamelCase ) -> List[Any]:
__lowerCAmelCase = data
__lowerCAmelCase = self
__lowerCAmelCase = 0
class UpperCAmelCase__ ( Generic[T] ):
def __init__( self ) -> int:
# map from node name to the node object
__lowerCAmelCase = {}
def UpperCAmelCase_ ( self , UpperCamelCase ) -> str:
# create a new set with x as its member
__lowerCAmelCase = DisjointSetTreeNode(UpperCAmelCase_ )
def UpperCAmelCase_ ( self , UpperCamelCase ) -> List[str]:
# find the set x belongs to (with path-compression)
__lowerCAmelCase = self.map[data]
if elem_ref != elem_ref.parent:
__lowerCAmelCase = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]:
# helper function for union operation
if nodea.rank > nodea.rank:
__lowerCAmelCase = nodea
else:
__lowerCAmelCase = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase ) -> List[str]:
# merge 2 disjoint sets
self.link(self.find_set(UpperCAmelCase_ ) , self.find_set(UpperCAmelCase_ ) )
class UpperCAmelCase__ ( Generic[T] ):
def __init__( self ) -> Union[str, Any]:
# connections: map from the node to the neighbouring nodes (with weights)
__lowerCAmelCase = {}
def UpperCAmelCase_ ( self , UpperCamelCase ) -> Optional[Any]:
# add a node ONLY if its not present in the graph
if node not in self.connections:
__lowerCAmelCase = {}
def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int:
# add an edge with the given weight
self.add_node(UpperCAmelCase_ )
self.add_node(UpperCAmelCase_ )
__lowerCAmelCase = weight
__lowerCAmelCase = weight
def UpperCAmelCase_ ( self ) -> Any:
__lowerCAmelCase = []
__lowerCAmelCase = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda UpperCamelCase : x[2] )
# creating the disjoint set
__lowerCAmelCase = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(UpperCAmelCase_ )
# MST generation
__lowerCAmelCase = 0
__lowerCAmelCase = 0
__lowerCAmelCase = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = edges[index]
index += 1
__lowerCAmelCase = disjoint_set.find_set(UpperCAmelCase_ )
__lowerCAmelCase = disjoint_set.find_set(UpperCAmelCase_ )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
disjoint_set.union(UpperCAmelCase_ , UpperCAmelCase_ )
return graph
| 711
|
'''simple docstring'''
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
lowerCAmelCase : List[str] = logging.get_logger(__name__)
lowerCAmelCase : Dict[Optional[str], Type[Formatter]] = {}
lowerCAmelCase : Dict[Optional[str], str] = {}
lowerCAmelCase : Dict[Optional[str], Exception] = {}
def __lowerCAmelCase ( lowerCamelCase : type , lowerCamelCase : Optional[str] , lowerCamelCase : Optional[List[str]] = None , ):
'''simple docstring'''
__lowerCAmelCase = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' )
__lowerCAmelCase = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' )
__lowerCAmelCase = format_type
def __lowerCAmelCase ( lowerCamelCase : Exception , lowerCamelCase : Optional[str] , lowerCamelCase : Optional[List[str]] = None ):
'''simple docstring'''
__lowerCAmelCase = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
__lowerCAmelCase = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=['''python'''])
_register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow'''])
_register_formatter(NumpyFormatter, '''numpy''', aliases=['''np'''])
_register_formatter(PandasFormatter, '''pandas''', aliases=['''pd'''])
_register_formatter(CustomFormatter, '''custom''')
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch'''])
else:
lowerCAmelCase : Optional[int] = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''')
_register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch'''])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf'''])
else:
lowerCAmelCase : str = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''')
_register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf'''])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, '''jax''', aliases=[])
else:
lowerCAmelCase : Any = ValueError('''JAX needs to be installed to be able to return JAX arrays.''')
_register_unavailable_formatter(_jax_error, '''jax''', aliases=[])
def __lowerCAmelCase ( lowerCamelCase : Optional[str] ):
'''simple docstring'''
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def __lowerCAmelCase ( lowerCamelCase : Optional[str] , **lowerCamelCase : Tuple ):
'''simple docstring'''
__lowerCAmelCase = get_format_type_from_alias(lowerCamelCase )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**lowerCamelCase )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
| 39
| 0
|
def __A ( _A ):
"""simple docstring"""
if bit_count < 0:
raise ValueError("The given input must be positive" )
# get the generated string sequence
__a = gray_code_sequence_string(_A )
#
# convert them to integers
for i in range(len(_A ) ):
__a = int(sequence[i] , 2 )
return sequence
def __A ( _A ):
"""simple docstring"""
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__a = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__a = gray_code_sequence_string(bit_count - 1 )
__a = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__a = '''0''' + smaller_sequence[i]
sequence.append(_A )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__a = '''1''' + smaller_sequence[i]
sequence.append(_A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 197
|
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :str = XCLIPTextConfig()
# derive patch size from model name
__magic_name__ :Union[str, Any] = model_name.find('''patch''' )
__magic_name__ :Optional[Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] )
__magic_name__ :int = XCLIPVisionConfig(patch_size=snake_case, num_frames=snake_case )
if "large" in model_name:
__magic_name__ :Dict = 7_6_8
__magic_name__ :int = 3_0_7_2
__magic_name__ :List[Any] = 1_2
__magic_name__ :str = 1_0_2_4
__magic_name__ :Any = 4_0_9_6
__magic_name__ :Optional[Any] = 1_6
__magic_name__ :Union[str, Any] = 2_4
__magic_name__ :Union[str, Any] = 7_6_8
__magic_name__ :Tuple = 3_0_7_2
if model_name == "xclip-large-patch14-16-frames":
__magic_name__ :List[str] = 3_3_6
__magic_name__ :Any = XCLIPConfig.from_text_vision_configs(snake_case, snake_case )
if "large" in model_name:
__magic_name__ :str = 7_6_8
return config
def __lowercase ( snake_case ):
"""simple docstring"""
if name == "token_embedding.weight":
__magic_name__ :Any = name.replace('''token_embedding.weight''', '''text_model.embeddings.token_embedding.weight''' )
if name == "positional_embedding":
__magic_name__ :Any = name.replace('''positional_embedding''', '''text_model.embeddings.position_embedding.weight''' )
if "ln_1" in name:
__magic_name__ :List[str] = name.replace('''ln_1''', '''layer_norm1''' )
if "ln_2" in name:
__magic_name__ :str = name.replace('''ln_2''', '''layer_norm2''' )
if "c_fc" in name:
__magic_name__ :List[Any] = name.replace('''c_fc''', '''fc1''' )
if "c_proj" in name:
__magic_name__ :Any = name.replace('''c_proj''', '''fc2''' )
if name.startswith('''transformer.resblocks''' ):
__magic_name__ :Any = name.replace('''transformer.resblocks''', '''text_model.encoder.layers''' )
if "attn.out_proj" in name and "message" not in name:
__magic_name__ :Union[str, Any] = name.replace('''attn.out_proj''', '''self_attn.out_proj''' )
if "ln_final" in name:
__magic_name__ :Tuple = name.replace('''ln_final''', '''text_model.final_layer_norm''' )
# visual encoder
if name == "visual.class_embedding":
__magic_name__ :List[Any] = name.replace('''visual.class_embedding''', '''vision_model.embeddings.class_embedding''' )
if name == "visual.positional_embedding":
__magic_name__ :Any = name.replace('''visual.positional_embedding''', '''vision_model.embeddings.position_embedding.weight''' )
if name.startswith('''visual.transformer.resblocks''' ):
__magic_name__ :Union[str, Any] = name.replace('''visual.transformer.resblocks''', '''vision_model.encoder.layers''' )
if "visual.conv1" in name:
__magic_name__ :Tuple = name.replace('''visual.conv1''', '''vision_model.embeddings.patch_embedding''' )
if "visual.ln_pre" in name:
__magic_name__ :Tuple = name.replace('''visual.ln_pre''', '''vision_model.pre_layernorm''' )
if "visual.ln_post" in name:
__magic_name__ :Optional[Any] = name.replace('''visual.ln_post''', '''vision_model.post_layernorm''' )
if "visual.proj" in name:
__magic_name__ :Tuple = name.replace('''visual.proj''', '''visual_projection.weight''' )
if "text_projection" in name:
__magic_name__ :int = name.replace('''text_projection''', '''text_projection.weight''' )
# things on top
if "prompts_visual_proj" in name:
__magic_name__ :int = name.replace('''prompts_visual_proj''', '''prompts_visual_projection''' )
if "prompts_visual_ln" in name:
__magic_name__ :Dict = name.replace('''prompts_visual_ln''', '''prompts_visual_layernorm''' )
# mit
if name == "mit.positional_embedding":
__magic_name__ :List[Any] = name.replace('''positional''', '''position''' )
if name.startswith('''mit.resblocks''' ):
__magic_name__ :Union[str, Any] = name.replace('''mit.resblocks''', '''mit.encoder.layers''' )
# prompts generator
if name.startswith('''prompts_generator.norm''' ):
__magic_name__ :str = name.replace('''prompts_generator.norm''', '''prompts_generator.layernorm''' )
return name
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__magic_name__ :Any = orig_state_dict.pop(snake_case )
if "attn.in_proj" in key:
__magic_name__ :str = key.split('''.''' )
if key.startswith('''visual''' ):
__magic_name__ :List[Any] = key_split[3]
__magic_name__ :List[Any] = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
__magic_name__ :List[Any] = val[
:dim, :
]
__magic_name__ :List[str] = val[
dim : dim * 2, :
]
__magic_name__ :List[str] = val[
-dim:, :
]
else:
__magic_name__ :str = val[
:dim
]
__magic_name__ :Optional[int] = val[
dim : dim * 2
]
__magic_name__ :Any = val[
-dim:
]
else:
if "weight" in key:
__magic_name__ :int = val[
:dim, :
]
__magic_name__ :Union[str, Any] = val[
dim : dim * 2, :
]
__magic_name__ :List[Any] = val[
-dim:, :
]
else:
__magic_name__ :Union[str, Any] = val[:dim]
__magic_name__ :str = val[
dim : dim * 2
]
__magic_name__ :Dict = val[-dim:]
elif key.startswith('''mit''' ):
__magic_name__ :List[Any] = key_split[2]
__magic_name__ :Any = config.vision_config.mit_hidden_size
if "weight" in key:
__magic_name__ :Union[str, Any] = val[:dim, :]
__magic_name__ :Optional[int] = val[dim : dim * 2, :]
__magic_name__ :int = val[-dim:, :]
else:
__magic_name__ :Tuple = val[:dim]
__magic_name__ :Optional[int] = val[dim : dim * 2]
__magic_name__ :Optional[int] = val[-dim:]
else:
__magic_name__ :Any = key_split[2]
__magic_name__ :List[Any] = config.text_config.hidden_size
if "weight" in key:
__magic_name__ :Union[str, Any] = val[:dim, :]
__magic_name__ :Tuple = val[
dim : dim * 2, :
]
__magic_name__ :str = val[-dim:, :]
else:
__magic_name__ :int = val[:dim]
__magic_name__ :Any = val[
dim : dim * 2
]
__magic_name__ :str = val[-dim:]
else:
__magic_name__ :Tuple = rename_key(snake_case )
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
__magic_name__ :List[Any] = val.T
__magic_name__ :Optional[Any] = val
return orig_state_dict
def __lowercase ( snake_case ):
"""simple docstring"""
if num_frames == 8:
__magic_name__ :Any = '''eating_spaghetti_8_frames.npy'''
elif num_frames == 1_6:
__magic_name__ :List[Any] = '''eating_spaghetti.npy'''
elif num_frames == 3_2:
__magic_name__ :Tuple = '''eating_spaghetti_32_frames.npy'''
__magic_name__ :str = hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''', filename=snake_case, repo_type='''dataset''', )
__magic_name__ :List[Any] = np.load(snake_case )
return list(snake_case )
def __lowercase ( snake_case, snake_case=None, snake_case=False ):
"""simple docstring"""
__magic_name__ :Union[str, Any] = {
# fully supervised kinetics-400 checkpoints
'''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''',
'''xclip-base-patch32-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'''
),
'''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''',
'''xclip-base-patch16-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'''
),
'''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb''',
'''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f''',
# fully supervised kinetics-600 checkpoints
'''xclip-base-patch16-kinetics-600''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'''
),
'''xclip-base-patch16-kinetics-600-16-frames''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'''
),
'''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be''',
# few shot
'''xclip-base-patch16-hmdb-2-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'''
),
'''xclip-base-patch16-hmdb-4-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'''
),
'''xclip-base-patch16-hmdb-8-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'''
),
'''xclip-base-patch16-hmdb-16-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'''
),
'''xclip-base-patch16-ucf-2-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'''
),
'''xclip-base-patch16-ucf-4-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'''
),
'''xclip-base-patch16-ucf-8-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'''
),
'''xclip-base-patch16-ucf-16-shot''': (
'''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'''
),
# zero shot
'''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''',
}
__magic_name__ :Optional[int] = model_to_url[model_name]
__magic_name__ :List[str] = 8
if "16-frames" in model_name:
__magic_name__ :List[Any] = 1_6
elif "shot" in model_name:
__magic_name__ :Dict = 3_2
__magic_name__ :str = get_xclip_config(snake_case, snake_case )
__magic_name__ :List[Any] = XCLIPModel(snake_case )
model.eval()
if "drive" in checkpoint_url:
__magic_name__ :Any = '''pytorch_model.bin'''
gdown.cached_download(snake_case, snake_case, quiet=snake_case )
__magic_name__ :Optional[Any] = torch.load(snake_case, map_location='''cpu''' )['''model''']
else:
__magic_name__ :Optional[int] = torch.hub.load_state_dict_from_url(snake_case )['''model''']
__magic_name__ :List[str] = convert_state_dict(snake_case, snake_case )
__magic_name__ :List[Any] = XCLIPModel(snake_case )
__magic_name__ , __magic_name__ :Optional[Any] = model.load_state_dict(snake_case, strict=snake_case )
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
__magic_name__ :str = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4
__magic_name__ :Optional[int] = VideoMAEImageProcessor(size=snake_case )
__magic_name__ :Optional[int] = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' )
__magic_name__ :Tuple = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' )
__magic_name__ :Optional[int] = XCLIPProcessor(image_processor=snake_case, tokenizer=snake_case )
__magic_name__ :List[Any] = prepare_video(snake_case )
__magic_name__ :str = processor(
text=['''playing sports''', '''eating spaghetti''', '''go shopping'''], videos=snake_case, return_tensors='''pt''', padding=snake_case )
print('''Shape of pixel values:''', inputs.pixel_values.shape )
with torch.no_grad():
__magic_name__ :Tuple = model(**snake_case )
# Verify outputs
__magic_name__ :Any = outputs.logits_per_video
__magic_name__ :str = logits_per_video.softmax(dim=1 )
print('''Probs:''', snake_case )
# kinetics-400
if model_name == "xclip-base-patch32":
__magic_name__ :Dict = torch.tensor([[0.0019, 0.9951, 0.0030]] )
elif model_name == "xclip-base-patch32-16-frames":
__magic_name__ :str = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] )
elif model_name == "xclip-base-patch16":
__magic_name__ :Tuple = torch.tensor([[0.0083, 0.9681, 0.0236]] )
elif model_name == "xclip-base-patch16-16-frames":
__magic_name__ :Tuple = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] )
elif model_name == "xclip-large-patch14":
__magic_name__ :str = torch.tensor([[0.0062, 0.9864, 0.0075]] )
elif model_name == "xclip-large-patch14-16-frames":
__magic_name__ :Optional[int] = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] )
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
__magic_name__ :Optional[int] = torch.tensor([[0.0555, 0.8914, 0.0531]] )
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
__magic_name__ :List[str] = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] )
elif model_name == "xclip-large-patch14-kinetics-600":
__magic_name__ :List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] )
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
__magic_name__ :Tuple = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-4-shot":
__magic_name__ :List[str] = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-8-shot":
__magic_name__ :Optional[int] = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] )
elif model_name == "xclip-base-patch16-hmdb-16-shot":
__magic_name__ :Optional[int] = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-2-shot":
__magic_name__ :Union[str, Any] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-4-shot":
__magic_name__ :Union[str, Any] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] )
elif model_name == "xclip-base-patch16-ucf-8-shot":
__magic_name__ :Optional[int] = torch.tensor([[0.0027, 0.9904, 0.0070]] )
elif model_name == "xclip-base-patch16-ucf-16-shot":
__magic_name__ :Any = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] )
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
__magic_name__ :Optional[int] = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] )
else:
raise ValueError(f'''Model name {model_name} not supported''' )
assert torch.allclose(snake_case, snake_case, atol=1E-3 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case )
if push_to_hub:
print('''Pushing model, processor and slow tokenizer files to the hub...''' )
model.push_to_hub(snake_case, organization='''nielsr''' )
processor.push_to_hub(snake_case, organization='''nielsr''' )
slow_tokenizer.push_to_hub(snake_case, organization='''nielsr''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""xclip-base-patch32""",
type=str,
help="""Name of the model.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 0
| 0
|
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowerCAmelCase: str = logging.get_logger(__name__)
class a__( lowerCamelCase__ ):
lowercase__ = ["""pixel_values"""]
def __init__( self : Optional[Any] , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 2_55 , __snake_case : bool = True , __snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , __snake_case : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **__snake_case : Tuple , ):
super().__init__(**__snake_case )
a : List[Any] = size if size is not None else {'shortest_edge': 2_24}
a : List[Any] = get_size_dict(__snake_case , default_to_square=__snake_case )
a : List[str] = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24}
a : Optional[Any] = get_size_dict(__snake_case , param_name='crop_size' )
a : Any = do_resize
a : Optional[int] = size
a : Any = resample
a : Tuple = do_center_crop
a : List[str] = crop_size
a : List[Any] = do_rescale
a : List[str] = rescale_factor
a : Union[str, Any] = do_normalize
a : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
a : Optional[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def lowercase_ ( self : Dict , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[str] , ):
a : Optional[Any] = get_size_dict(__snake_case , default_to_square=__snake_case )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
a : Tuple = int((2_56 / 2_24) * size['shortest_edge'] )
a : Optional[Any] = get_resize_output_image_size(__snake_case , size=__snake_case , default_to_square=__snake_case )
a : Tuple = {'height': output_size[0], 'width': output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" )
return resize(
__snake_case , size=(size_dict['height'], size_dict['width']) , resample=__snake_case , data_format=__snake_case , **__snake_case )
def lowercase_ ( self : List[str] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Tuple , ):
a : Tuple = get_size_dict(__snake_case )
if "height" not in size or "width" not in size:
raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(__snake_case , size=(size['height'], size['width']) , data_format=__snake_case , **__snake_case )
def lowercase_ ( self : int , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : int , ):
return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case )
def lowercase_ ( self : Any , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ):
return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case )
def lowercase_ ( self : Tuple , __snake_case : ImageInput , __snake_case : Optional[bool] = None , __snake_case : Optional[Dict[str, int]] = None , __snake_case : PILImageResampling = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Dict[str, int]] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[float] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[float, Iterable[float]]] = None , __snake_case : Optional[Union[float, Iterable[float]]] = None , __snake_case : Optional[TensorType] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : int , ):
a : Optional[int] = do_resize if do_resize is not None else self.do_resize
a : str = resample if resample is not None else self.resample
a : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
a : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
a : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
a : str = do_normalize if do_normalize is not None else self.do_normalize
a : List[Any] = image_mean if image_mean is not None else self.image_mean
a : Any = image_std if image_std is not None else self.image_std
a : Optional[int] = size if size is not None else self.size
a : List[Any] = get_size_dict(__snake_case , default_to_square=__snake_case )
a : List[str] = crop_size if crop_size is not None else self.crop_size
a : Tuple = get_size_dict(__snake_case , param_name='crop_size' )
a : str = make_list_of_images(__snake_case )
if not valid_images(__snake_case ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
a : List[str] = [to_numpy_array(__snake_case ) for image in images]
if do_resize:
a : Union[str, Any] = [self.resize(__snake_case , __snake_case , __snake_case ) for image in images]
if do_center_crop:
a : List[str] = [self.center_crop(__snake_case , __snake_case ) for image in images]
if do_rescale:
a : Tuple = [self.rescale(__snake_case , __snake_case ) for image in images]
if do_normalize:
a : Optional[Any] = [self.normalize(__snake_case , __snake_case , __snake_case ) for image in images]
a : List[str] = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images]
a : Any = {'pixel_values': images}
return BatchFeature(data=__snake_case , tensor_type=__snake_case )
| 195
|
'''simple docstring'''
from pathlib import Path
import fire
def lowerCamelCase__ ( _A , _A , _A ):
a : Optional[Any] = Path(_A )
a : Tuple = Path(_A )
dest_dir.mkdir(exist_ok=_A )
for path in src_dir.iterdir():
a : Tuple = [x.rstrip() for x in list(path.open().readlines() )][:n]
a : List[str] = dest_dir.joinpath(path.name )
print(_A )
dest_path.open('w' ).write('\n'.join(_A ) )
if __name__ == "__main__":
fire.Fire(minify)
| 195
| 1
|
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
__a = get_logger(__name__)
class __lowercase :
UpperCamelCase = '''dummy_data'''
UpperCamelCase = '''datasets'''
UpperCamelCase = False
def __init__( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Union[Version, str] , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[List[Callable]] = None , ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = 0
UpperCAmelCase = dataset_name
UpperCAmelCase = cache_dir
UpperCAmelCase = use_local_dummy_data
UpperCAmelCase = config
# download_callbacks take a single url as input
UpperCAmelCase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
UpperCAmelCase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
UpperCAmelCase = str(__lowerCamelCase )
# to be downloaded
UpperCAmelCase = None
UpperCAmelCase = None
@property
def _lowercase ( self : Any ) -> str:
"""simple docstring"""
if self._dummy_file is None:
UpperCAmelCase = self.download_dummy_data()
return self._dummy_file
@property
def _lowercase ( self : Tuple ) -> Tuple:
"""simple docstring"""
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("""dummy""" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("""dummy""" , self.version_name )
@property
def _lowercase ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return os.path.join(self.dummy_data_folder , """dummy_data.zip""" )
def _lowercase ( self : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
UpperCAmelCase = cached_path(
__lowerCamelCase , cache_dir=self.cache_dir , extract_compressed_file=__lowerCamelCase , force_extract=__lowerCamelCase )
return os.path.join(__lowerCamelCase , self.dummy_file_name )
@property
def _lowercase ( self : Dict ) -> Dict:
"""simple docstring"""
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def _lowercase ( self : Union[str, Any] ) -> str:
"""simple docstring"""
if self._bucket_url is None:
UpperCAmelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) )
return self._bucket_url
@property
def _lowercase ( self : Any ) -> int:
"""simple docstring"""
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] )
def _lowercase ( self : Union[str, Any] , __lowerCamelCase : List[str] , *__lowerCamelCase : Dict ) -> List[str]:
"""simple docstring"""
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
UpperCAmelCase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
UpperCAmelCase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__lowerCamelCase , __lowerCamelCase ):
return self.create_dummy_data_dict(__lowerCamelCase , __lowerCamelCase )
elif isinstance(__lowerCamelCase , (list, tuple) ):
return self.create_dummy_data_list(__lowerCamelCase , __lowerCamelCase )
else:
return self.create_dummy_data_single(__lowerCamelCase , __lowerCamelCase )
def _lowercase ( self : Dict , __lowerCamelCase : List[str] , *__lowerCamelCase : str ) -> str:
"""simple docstring"""
return self.download_and_extract(__lowerCamelCase )
def _lowercase ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ) -> Any:
"""simple docstring"""
return self.download_and_extract(__lowerCamelCase )
def _lowercase ( self : int , __lowerCamelCase : Tuple , *__lowerCamelCase : Any , **__lowerCamelCase : List[str] ) -> int:
"""simple docstring"""
return path
def _lowercase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
return {}
def _lowercase ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ) -> int:
"""simple docstring"""
UpperCAmelCase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__lowerCamelCase , __lowerCamelCase ):
for single_url in single_urls:
download_callback(__lowerCamelCase )
else:
UpperCAmelCase = single_urls
download_callback(__lowerCamelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__lowerCamelCase , __lowerCamelCase ):
UpperCAmelCase = [os.path.join(__lowerCamelCase , urllib.parse.quote_plus(Path(__lowerCamelCase ).name ) ) for x in single_urls]
else:
UpperCAmelCase = single_urls
UpperCAmelCase = os.path.join(__lowerCamelCase , urllib.parse.quote_plus(Path(__lowerCamelCase ).name ) )
UpperCAmelCase = value
# make sure that values are unique
if all(isinstance(__lowerCamelCase , __lowerCamelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
UpperCAmelCase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def _lowercase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int ) -> int:
"""simple docstring"""
UpperCAmelCase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
UpperCAmelCase = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __lowerCamelCase ) ) for url in data_url )
UpperCAmelCase = all(
url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
UpperCAmelCase = [data_url[0]] * len(__lowerCamelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__lowerCamelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
UpperCAmelCase = os.path.join(__lowerCamelCase , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) )
dummy_data_list.append(__lowerCamelCase )
return dummy_data_list
def _lowercase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple ) -> Optional[Any]:
"""simple docstring"""
for download_callback in self.download_callbacks:
download_callback(__lowerCamelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
UpperCAmelCase = os.path.join(__lowerCamelCase , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) )
if os.path.exists(__lowerCamelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def _lowercase ( self : Tuple ) -> Dict:
"""simple docstring"""
pass
def _lowercase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
pass
def _lowercase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] ) -> Dict:
"""simple docstring"""
def _iter_archive_members(__lowerCamelCase : int ):
# this preserves the order of the members inside the ZIP archive
UpperCAmelCase = Path(self.dummy_file ).parent
UpperCAmelCase = path.relative_to(__lowerCamelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
UpperCAmelCase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__lowerCamelCase )
UpperCAmelCase = Path(__lowerCamelCase )
UpperCAmelCase = _iter_archive_members(__lowerCamelCase ) if self.use_local_dummy_data else path.rglob("""*""" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ):
yield file_path.relative_to(__lowerCamelCase ).as_posix(), file_path.open("""rb""" )
def _lowercase ( self : str , __lowerCamelCase : List[Any] ) -> str:
"""simple docstring"""
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
UpperCAmelCase = [paths]
for path in paths:
if os.path.isfile(__lowerCamelCase ):
if os.path.basename(__lowerCamelCase ).startswith((""".""", """__""") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__lowerCamelCase ):
if os.path.basename(__lowerCamelCase ).startswith((""".""", """__""") ):
continue
dirnames.sort()
for filename in sorted(__lowerCamelCase ):
if filename.startswith((""".""", """__""") ):
continue
yield os.path.join(__lowerCamelCase , __lowerCamelCase )
| 377
|
def _UpperCamelCase ( lowerCAmelCase_ ) ->int:
if n == 1 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
return 0
elif n == 2:
return 1
else:
UpperCAmelCase = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def _UpperCamelCase ( lowerCAmelCase_ ) ->int:
UpperCAmelCase = 0
UpperCAmelCase = 2
while digits < n:
index += 1
UpperCAmelCase = len(str(fibonacci(lowerCAmelCase_ ) ) )
return index
def _UpperCamelCase ( lowerCAmelCase_ = 1_0_0_0 ) ->int:
return fibonacci_digits_index(lowerCAmelCase_ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 377
| 1
|
'''simple docstring'''
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase__ = get_tests_dir('fixtures/spiece.model')
@require_sentencepiece
@require_tokenizers
class _A ( UpperCamelCase , unittest.TestCase ):
'''simple docstring'''
_lowercase = DebertaVaTokenizer
_lowercase = DebertaVaTokenizerFast
_lowercase = True
_lowercase = True
def __lowerCAmelCase ( self : Optional[Any] )-> List[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
snake_case__ : List[Any] = DebertaVaTokenizer(UpperCamelCase_ , unk_token="""<unk>""" )
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self : List[str] , lowerCamelCase : str )-> Any:
snake_case__ : int = "this is a test"
snake_case__ : Tuple = "this is a test"
return input_text, output_text
def __lowerCAmelCase ( self : Dict )-> List[str]:
snake_case__ : Tuple = "<pad>"
snake_case__ : int = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ )
def __lowerCAmelCase ( self : int )-> Dict:
snake_case__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """<unk>""" )
self.assertEqual(vocab_keys[-1] , """[PAD]""" )
self.assertEqual(len(UpperCamelCase_ ) , 30_001 )
def __lowerCAmelCase ( self : Optional[int] )-> str:
self.assertEqual(self.get_tokenizer().vocab_size , 30_000 )
def __lowerCAmelCase ( self : int )-> List[str]:
# fmt: off
snake_case__ : List[str] = " \tHeLLo!how \n Are yoU? "
snake_case__ : Tuple = ["▁hello", "!", "how", "▁are", "▁you", "?"]
# fmt: on
snake_case__ : List[Any] = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ )
snake_case__ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : List[str] = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ )
snake_case__ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
@unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" )
def __lowerCAmelCase ( self : int )-> Union[str, Any]:
pass
@unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" )
def __lowerCAmelCase ( self : Optional[Any] )-> int:
pass
def __lowerCAmelCase ( self : List[str] )-> List[str]:
# fmt: off
snake_case__ : List[Any] = "I was born in 92000, and this is falsé."
snake_case__ : Optional[int] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
snake_case__ : Optional[Any] = DebertaVaTokenizer(UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
snake_case__ : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Dict = DebertaVaTokenizerFast(UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
snake_case__ : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def __lowerCAmelCase ( self : Union[str, Any] )-> Optional[Any]:
# fmt: off
snake_case__ : List[str] = "I was born in 92000, and this is falsé."
snake_case__ : Optional[int] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
snake_case__ : str = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
snake_case__ : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Union[str, Any] = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
snake_case__ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def __lowerCAmelCase ( self : Tuple )-> Any:
# fmt: off
snake_case__ : Optional[int] = "I was born in 92000, and this is falsé."
snake_case__ : str = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ]
# fmt: on
snake_case__ : List[str] = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
snake_case__ : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : List[str] = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
snake_case__ : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def __lowerCAmelCase ( self : Optional[Any] )-> int:
# fmt: off
snake_case__ : Union[str, Any] = "I was born in 92000, and this is falsé."
snake_case__ : Any = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
snake_case__ : List[Any] = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
snake_case__ : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : int = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
snake_case__ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def __lowerCAmelCase ( self : Tuple )-> Optional[Any]:
# fmt: off
snake_case__ : Optional[int] = " \tHeLLo!how \n Are yoU? "
snake_case__ : int = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"]
# fmt: on
snake_case__ : int = DebertaVaTokenizer(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
snake_case__ : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Tuple = DebertaVaTokenizerFast(UpperCamelCase_ , do_lower_case=UpperCamelCase_ , split_by_punct=UpperCamelCase_ )
snake_case__ : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def __lowerCAmelCase ( self : Any )-> str:
snake_case__ : List[Any] = self.get_tokenizer()
snake_case__ : Union[str, Any] = self.get_rust_tokenizer()
snake_case__ : Union[str, Any] = "I was born in 92000, and this is falsé."
snake_case__ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
snake_case__ : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Optional[int] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
snake_case__ : Optional[int] = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Optional[int] = self.get_rust_tokenizer()
snake_case__ : int = tokenizer.encode(UpperCamelCase_ )
snake_case__ : Any = rust_tokenizer.encode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def __lowerCAmelCase ( self : int )-> int:
snake_case__ : str = "This is a test"
snake_case__ : List[Any] = [13, 1, 4_398, 25, 21, 1_289]
snake_case__ : Optional[int] = ["▁", "T", "his", "▁is", "▁a", "▁test"]
snake_case__ : Dict = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"]
snake_case__ : int = DebertaVaTokenizer(UpperCamelCase_ , keep_accents=UpperCamelCase_ )
snake_case__ : List[Any] = DebertaVaTokenizerFast(UpperCamelCase_ , keep_accents=UpperCamelCase_ )
snake_case__ : Tuple = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Tuple = tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Dict = tokenizer.convert_ids_to_tokens(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : str = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Optional[int] = rust_tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : str = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
# fmt: off
snake_case__ : Dict = "I was born in 92000, and this is falsé."
snake_case__ : Dict = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9]
snake_case__ : Dict = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ]
snake_case__ : Any = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ]
# fmt: on
snake_case__ : List[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Dict = tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : int = tokenizer.convert_ids_to_tokens(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Dict = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Union[str, Any] = rust_tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
snake_case__ : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def __lowerCAmelCase ( self : Any )-> Optional[int]:
snake_case__ : List[str] = DebertaVaTokenizer(UpperCamelCase_ )
snake_case__ : Optional[Any] = tokenizer.encode("""sequence builders""" )
snake_case__ : int = tokenizer.encode("""multi-sequence build""" )
snake_case__ : Tuple = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ )
snake_case__ : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase_ )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase_ , )
@slow
def __lowerCAmelCase ( self : List[str] )-> int:
# fmt: off
snake_case__ : int = {"input_ids": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCamelCase_ , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
| 710
|
'''simple docstring'''
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _A ( UpperCamelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCamelCase : NestedDataStructureLike[PathLike] , lowerCamelCase : Optional[NamedSplit] = None , lowerCamelCase : Optional[Features] = None , lowerCamelCase : str = None , lowerCamelCase : bool = False , lowerCamelCase : bool = False , lowerCamelCase : Optional[int] = None , **lowerCamelCase : str , )-> str:
super().__init__(
lowerCamelCase , split=lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase , streaming=lowerCamelCase , num_proc=lowerCamelCase , **lowerCamelCase , )
snake_case__ : List[Any] = path_or_paths if isinstance(lowerCamelCase , lowerCamelCase ) else {self.split: path_or_paths}
snake_case__ : Optional[int] = Text(
cache_dir=lowerCamelCase , data_files=lowerCamelCase , features=lowerCamelCase , **lowerCamelCase , )
def __lowerCAmelCase ( self : List[str] )-> str:
# Build iterable dataset
if self.streaming:
snake_case__ : Optional[int] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
snake_case__ : List[str] = None
snake_case__ : Dict = None
snake_case__ : Optional[Any] = None
snake_case__ : List[Any] = None
self.builder.download_and_prepare(
download_config=lowerCamelCase , download_mode=lowerCamelCase , verification_mode=lowerCamelCase , base_path=lowerCamelCase , num_proc=self.num_proc , )
snake_case__ : Tuple = self.builder.as_dataset(
split=self.split , verification_mode=lowerCamelCase , in_memory=self.keep_in_memory )
return dataset
| 172
| 0
|
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __SCREAMING_SNAKE_CASE (__A ):
"""simple docstring"""
_a : List[Any] = ['''image_processor''', '''tokenizer''']
_a : List[Any] = '''ViTImageProcessor'''
_a : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ):
"""simple docstring"""
a_ = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , UpperCamelCase__ , )
a_ = kwargs.pop('feature_extractor' )
a_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(UpperCamelCase__ , UpperCamelCase__ )
def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ):
"""simple docstring"""
if text is None and visual_prompt is None and images is None:
raise ValueError('You have to specify either text, visual prompt or images.' )
if text is not None and visual_prompt is not None:
raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' )
if text is not None:
a_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ )
if visual_prompt is not None:
a_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ )
if images is not None:
a_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ )
if visual_prompt is not None and images is not None:
a_ = {
'pixel_values': image_features.pixel_values,
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
a_ = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
a_ = {
'conditional_pixel_values': prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ )
def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ):
"""simple docstring"""
return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ )
def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ):
"""simple docstring"""
return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ )
@property
def _a ( self ):
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCamelCase__ , )
return self.image_processor_class
@property
def _a ( self ):
"""simple docstring"""
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCamelCase__ , )
return self.image_processor
| 536
|
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
__lowerCAmelCase = logging.get_logger("transformers.models.speecht5")
def __UpperCamelCase ( lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Any ):
"""simple docstring"""
hf_model.apply_weight_norm()
a_ = checkpoint['input_conv.weight_g']
a_ = checkpoint['input_conv.weight_v']
a_ = checkpoint['input_conv.bias']
for i in range(len(config.upsample_rates ) ):
a_ = checkpoint[F'upsamples.{i}.1.weight_g']
a_ = checkpoint[F'upsamples.{i}.1.weight_v']
a_ = checkpoint[F'upsamples.{i}.1.bias']
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
a_ = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_g']
a_ = checkpoint[F'blocks.{i}.convs1.{j}.1.weight_v']
a_ = checkpoint[F'blocks.{i}.convs1.{j}.1.bias']
a_ = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_g']
a_ = checkpoint[F'blocks.{i}.convs2.{j}.1.weight_v']
a_ = checkpoint[F'blocks.{i}.convs2.{j}.1.bias']
a_ = checkpoint['output_conv.1.weight_g']
a_ = checkpoint['output_conv.1.weight_v']
a_ = checkpoint['output_conv.1.bias']
hf_model.remove_weight_norm()
@torch.no_grad()
def __UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : List[str]=None , lowercase_ : Tuple=None , ):
"""simple docstring"""
if config_path is not None:
a_ = SpeechTaHifiGanConfig.from_pretrained(lowercase_ )
else:
a_ = SpeechTaHifiGanConfig()
a_ = SpeechTaHifiGan(lowercase_ )
a_ = torch.load(lowercase_ )
load_weights(orig_checkpoint['model']['generator'] , lowercase_ , lowercase_ )
a_ = np.load(lowercase_ )
a_ = stats[0].reshape(-1 )
a_ = stats[1].reshape(-1 )
a_ = torch.from_numpy(lowercase_ ).float()
a_ = torch.from_numpy(lowercase_ ).float()
model.save_pretrained(lowercase_ )
if repo_id:
print('Pushing to the hub...' )
model.push_to_hub(lowercase_ )
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
__lowerCAmelCase = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 536
| 1
|
def a_ (_lowerCAmelCase : int = 100 )-> int:
snake_case: int = n * (n + 1) * (2 * n + 1) / 6
snake_case: Optional[int] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 708
|
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class lowerCamelCase :
__lowerCamelCase = 42
__lowerCamelCase = None
__lowerCamelCase = None
def a_ (_lowerCAmelCase : TreeNode | None )-> bool:
# Validation
def is_valid_tree(_lowerCAmelCase : TreeNode | None ) -> bool:
if node is None:
return True
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
return False
try:
float(node.data )
except (TypeError, ValueError):
return False
return is_valid_tree(node.left ) and is_valid_tree(node.right )
if not is_valid_tree(_lowerCAmelCase ):
raise ValueError(
"""Each node should be type of TreeNode and data should be float.""" )
def is_binary_search_tree_recursive_check(
_lowerCAmelCase : TreeNode | None , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> bool:
if node is None:
return True
return (
left_bound < node.data < right_bound
and is_binary_search_tree_recursive_check(node.left , _lowerCAmelCase , node.data )
and is_binary_search_tree_recursive_check(
node.right , node.data , _lowerCAmelCase )
)
return is_binary_search_tree_recursive_check(_lowerCAmelCase , -float("""inf""" ) , float("""inf""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 164
| 0
|
from collections import deque
from .hash_table import HashTable
class lowerCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self , *__lowercase , **__lowercase) -> List[str]:
super().__init__(*__lowercase , **__lowercase)
def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Union[str, Any]:
__UpperCamelCase :int = deque([]) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowercase)
__UpperCamelCase :str = self.values[key]
def UpperCamelCase__ ( self) -> int:
return (
sum(self.charge_factor - len(__lowercase) for slot in self.values)
/ self.size_table
* self.charge_factor
)
def UpperCamelCase__ ( self , __lowercase , __lowercase=None) -> str:
if not (
len(self.values[key]) == self.charge_factor and self.values.count(__lowercase) == 0
):
return key
return super()._collision_resolution(__lowercase , __lowercase)
| 167
|
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__lowercase = logging.get_logger(__name__)
__lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
# See all BART models at https://huggingface.co/models?filter=bart
__lowercase = {
'''vocab_file''': {
'''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''',
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''',
'''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''',
'''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''',
'''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''',
'''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''',
},
'''merges_file''': {
'''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''',
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''',
'''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''',
'''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''',
'''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''',
'''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''',
},
}
__lowercase = {
'''facebook/bart-base''': 1024,
'''facebook/bart-large''': 1024,
'''facebook/bart-large-mnli''': 1024,
'''facebook/bart-large-cnn''': 1024,
'''facebook/bart-large-xsum''': 1024,
'''yjernite/bart_eli5''': 1024,
}
@lru_cache()
def lowerCamelCase ( ):
'''simple docstring'''
__UpperCamelCase :List[str] = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
__UpperCamelCase :Tuple = bs[:]
__UpperCamelCase :int = 0
for b in range(2**8 ):
if b not in bs:
bs.append(SCREAMING_SNAKE_CASE )
cs.append(2**8 + n )
n += 1
__UpperCamelCase :List[Any] = [chr(SCREAMING_SNAKE_CASE ) for n in cs]
return dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :Tuple = set()
__UpperCamelCase :List[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCamelCase :Optional[Any] = char
return pairs
class lowerCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
a__ : Dict = VOCAB_FILES_NAMES
a__ : Any = PRETRAINED_VOCAB_FILES_MAP
a__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ : str = ["""input_ids""", """attention_mask"""]
def __init__( self , __lowercase , __lowercase , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , **__lowercase , ) -> int:
__UpperCamelCase :Dict = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else bos_token
__UpperCamelCase :List[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else eos_token
__UpperCamelCase :Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else sep_token
__UpperCamelCase :List[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else cls_token
__UpperCamelCase :Any = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else unk_token
__UpperCamelCase :Dict = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCamelCase :int = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else mask_token
super().__init__(
errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , )
with open(__lowercase , encoding='''utf-8''') as vocab_handle:
__UpperCamelCase :List[str] = json.load(__lowercase)
__UpperCamelCase :List[Any] = {v: k for k, v in self.encoder.items()}
__UpperCamelCase :Union[str, Any] = errors # how to handle errors in decoding
__UpperCamelCase :Tuple = bytes_to_unicode()
__UpperCamelCase :Tuple = {v: k for k, v in self.byte_encoder.items()}
with open(__lowercase , encoding='''utf-8''') as merges_handle:
__UpperCamelCase :Optional[int] = merges_handle.read().split('''\n''')[1:-1]
__UpperCamelCase :Any = [tuple(merge.split()) for merge in bpe_merges]
__UpperCamelCase :List[Any] = dict(zip(__lowercase , range(len(__lowercase))))
__UpperCamelCase :Union[str, Any] = {}
__UpperCamelCase :str = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCamelCase :List[Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''')
@property
def UpperCamelCase__ ( self) -> str:
return len(self.encoder)
def UpperCamelCase__ ( self) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder)
def UpperCamelCase__ ( self , __lowercase) -> str:
if token in self.cache:
return self.cache[token]
__UpperCamelCase :Tuple = tuple(__lowercase)
__UpperCamelCase :Optional[int] = get_pairs(__lowercase)
if not pairs:
return token
while True:
__UpperCamelCase :Tuple = min(__lowercase , key=lambda __lowercase: self.bpe_ranks.get(__lowercase , float('''inf''')))
if bigram not in self.bpe_ranks:
break
__UpperCamelCase , __UpperCamelCase :Optional[int] = bigram
__UpperCamelCase :Tuple = []
__UpperCamelCase :Dict = 0
while i < len(__lowercase):
try:
__UpperCamelCase :Dict = word.index(__lowercase , __lowercase)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
__UpperCamelCase :Union[str, Any] = j
if word[i] == first and i < len(__lowercase) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
__UpperCamelCase :Tuple = tuple(__lowercase)
__UpperCamelCase :List[Any] = new_word
if len(__lowercase) == 1:
break
else:
__UpperCamelCase :Optional[int] = get_pairs(__lowercase)
__UpperCamelCase :Any = ''' '''.join(__lowercase)
__UpperCamelCase :Dict = word
return word
def UpperCamelCase__ ( self , __lowercase) -> Any:
__UpperCamelCase :Optional[Any] = []
for token in re.findall(self.pat , __lowercase):
__UpperCamelCase :List[Any] = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase).split(''' '''))
return bpe_tokens
def UpperCamelCase__ ( self , __lowercase) -> Optional[int]:
return self.encoder.get(__lowercase , self.encoder.get(self.unk_token))
def UpperCamelCase__ ( self , __lowercase) -> Optional[int]:
return self.decoder.get(__lowercase)
def UpperCamelCase__ ( self , __lowercase) -> List[Any]:
__UpperCamelCase :List[str] = ''''''.join(__lowercase)
__UpperCamelCase :Tuple = bytearray([self.byte_decoder[c] for c in text]).decode('''utf-8''' , errors=self.errors)
return text
def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Tuple[str]:
if not os.path.isdir(__lowercase):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""")
return
__UpperCamelCase :Any = os.path.join(
__lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''])
__UpperCamelCase :Dict = os.path.join(
__lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''])
with open(__lowercase , '''w''' , encoding='''utf-8''') as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase) + '''\n''')
__UpperCamelCase :int = 0
with open(__lowercase , '''w''' , encoding='''utf-8''') as writer:
writer.write('''#version: 0.2\n''')
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase: kv[1]):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''')
__UpperCamelCase :Optional[int] = token_index
writer.write(''' '''.join(__lowercase) + '''\n''')
index += 1
return vocab_file, merge_file
def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCamelCase :Optional[Any] = [self.cls_token_id]
__UpperCamelCase :str = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase)
if token_ids_a is None:
return [1] + ([0] * len(__lowercase)) + [1]
return [1] + ([0] * len(__lowercase)) + [1, 1] + ([0] * len(__lowercase)) + [1]
def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]:
__UpperCamelCase :Optional[int] = [self.sep_token_id]
__UpperCamelCase :Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def UpperCamelCase__ ( self , __lowercase , __lowercase=False , **__lowercase) -> Any:
__UpperCamelCase :List[Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(__lowercase) > 0 and not text[0].isspace()):
__UpperCamelCase :Optional[Any] = ''' ''' + text
return (text, kwargs)
| 167
| 1
|
"""simple docstring"""
import requests
A__ : Optional[int] = """YOUR API KEY"""
def a__ ( lowerCAmelCase : str , lowerCAmelCase : str = giphy_api_key ):
'''simple docstring'''
UpperCAmelCase__ : str = "+".join(query.split() )
UpperCAmelCase__ : Dict = F"https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}"
UpperCAmelCase__ : List[Any] = requests.get(lowerCAmelCase ).json()["data"]
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print("""\n""".join(get_gifs("""space ship""")))
| 700
|
"""simple docstring"""
from timeit import timeit
def a__ ( lowerCAmelCase : int ):
'''simple docstring'''
if number < 0:
raise ValueError("the value of input must not be negative" )
UpperCAmelCase__ : Tuple = 0
while number:
number &= number - 1
result += 1
return result
def a__ ( lowerCAmelCase : int ):
'''simple docstring'''
if number < 0:
raise ValueError("the value of input must not be negative" )
UpperCAmelCase__ : Union[str, Any] = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def a__ ( ):
'''simple docstring'''
def do_benchmark(lowerCAmelCase : int ) -> None:
UpperCAmelCase__ : Dict = "import __main__ as z"
print(F"Benchmark when {number = }:" )
print(F"{get_set_bits_count_using_modulo_operator(lowerCAmelCase ) = }" )
UpperCAmelCase__ : Tuple = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=lowerCAmelCase )
print(F"timeit() runs in {timing} seconds" )
print(F"{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase ) = }" )
UpperCAmelCase__ : Any = timeit(
"z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=lowerCAmelCase , )
print(F"timeit() runs in {timing} seconds" )
for number in (25, 37, 58, 0):
do_benchmark(lowerCAmelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 660
| 0
|
def _SCREAMING_SNAKE_CASE ( a ) -> list[int]:
if length <= 0 or not isinstance(a , a ):
raise ValueError('Length must be a positive integer.' )
return [n * (2 * n - 1) for n in range(a )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 239
|
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
UpperCAmelCase : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
UpperCAmelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase]
UpperCAmelCase : set[int] = {ord(char) for char in VALID_CHARS}
UpperCAmelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def _SCREAMING_SNAKE_CASE ( a , a ) -> str | None:
__A : str = ""
__A : int
__A : int
__A : int
for keychar, cipherchar in zip(cycle(a ) , a ):
__A : List[Any] = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(a )
return decoded
def _SCREAMING_SNAKE_CASE ( a ) -> list[str]:
__A : list[str] = []
for key in product(a , repeat=3 ):
__A : str = try_key(a , a )
if encoded is not None:
possibles.append(a )
return possibles
def _SCREAMING_SNAKE_CASE ( a , a ) -> list[str]:
return [possible for possible in possibles if common_word in possible.lower()]
def _SCREAMING_SNAKE_CASE ( a = "p059_cipher.txt" ) -> int:
__A : list[int]
__A : list[str]
__A : str
__A : str
__A : str = Path(a ).parent.joinpath(a ).read_text(encoding='utf-8' )
__A : Union[str, Any] = [int(a ) for number in data.strip().split(',' )]
__A : Any = filter_valid_chars(a )
for common_word in COMMON_WORDS:
__A : Tuple = filter_common_word(a , a )
if len(a ) == 1:
break
__A : Union[str, Any] = possibles[0]
return sum(ord(a ) for char in decoded_text )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 239
| 1
|
'''simple docstring'''
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def __A ( a_ : Any=None ,a_ : List[Any]=None ):
return field(default_factory=lambda: default ,metadata=a_ )
@dataclass
class lowerCamelCase :
snake_case_ = field(
metadata={"help": "The csv file to plot."} , )
snake_case_ = field(
default=_A , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , )
snake_case_ = field(
default=_A , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , )
snake_case_ = field(
default=_A , metadata={"help": "Disable logarithmic scale when plotting"} , )
snake_case_ = field(
default=_A , metadata={
"help": "Whether the csv file has training results or inference results. Defaults to inference results."
} , )
snake_case_ = field(
default=_A , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , )
snake_case_ = list_field(
default=_A , metadata={"help": "List of model names that are used instead of the ones in the csv file."} )
def __A ( a_ : Tuple ):
try:
int(a_ )
return True
except ValueError:
return False
def __A ( a_ : int ):
try:
float(a_ )
return True
except ValueError:
return False
class lowerCamelCase :
def __init__( self , a_ ):
lowerCAmelCase : Optional[Any] = args
lowerCAmelCase : List[str] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline="" ) as csv_file:
lowerCAmelCase : str = csv.DictReader(a_ )
for row in reader:
lowerCAmelCase : Tuple = row["model"]
self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) )
self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) )
if can_convert_to_int(row["result"] ):
# value is not None
lowerCAmelCase : Union[str, Any] = int(row["result"] )
elif can_convert_to_float(row["result"] ):
# value is not None
lowerCAmelCase : Optional[int] = float(row["result"] )
def _lowerCamelCase ( self ):
lowerCAmelCase : Any = plt.subplots()
lowerCAmelCase : int = "Time usage" if self.args.is_time else "Memory usage"
lowerCAmelCase : List[Any] = title_str + " for training" if self.args.is_train else title_str + " for inference"
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale("log" )
ax.set_yscale("log" )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
lowerCAmelCase : str = sorted(set(self.result_dict[model_name]["bsz"] ) )
lowerCAmelCase : List[str] = sorted(set(self.result_dict[model_name]["seq_len"] ) )
lowerCAmelCase : Union[str, Any] = self.result_dict[model_name]["result"]
(lowerCAmelCase) : str = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
lowerCAmelCase : Union[str, Any] = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
lowerCAmelCase : int = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=a_ , )
else:
lowerCAmelCase : Any = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
(lowerCAmelCase) : Any = (
("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz")
)
lowerCAmelCase : Union[str, Any] = np.asarray(a_ , a_ )[: len(a_ )]
plt.scatter(
a_ , a_ , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' )
plt.plot(a_ , a_ , "--" )
title_str += F''' {label_model_name} vs.'''
lowerCAmelCase : List[str] = title_str[:-4]
lowerCAmelCase : List[Any] = "Time in s" if self.args.is_time else "Memory in MB"
# plot
plt.title(a_ )
plt.xlabel(a_ )
plt.ylabel(a_ )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def __A ( ):
lowerCAmelCase : Optional[Any] = HfArgumentParser(a_ )
lowerCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0]
lowerCAmelCase : str = Plot(args=a_ )
plot.plot()
if __name__ == "__main__":
main()
| 717
|
'''simple docstring'''
def __A ( a_ : int ):
assert (
isinstance(a_ ,a_ ) and number_of_steps > 0
), f'''number_of_steps needs to be positive integer, your input {number_of_steps}'''
if number_of_steps == 1:
return 1
lowerCAmelCase , lowerCAmelCase : int = 1, 1
for _ in range(number_of_steps - 1 ):
lowerCAmelCase , lowerCAmelCase : Union[str, Any] = current + previous, current
return current
if __name__ == "__main__":
import doctest
doctest.testmod()
| 551
| 0
|
'''simple docstring'''
def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Optional[Any]:
'''simple docstring'''
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
a_ = str(bin(lowerCamelCase__ ) )[2:] # remove the leading "0b"
a_ = str(bin(lowerCamelCase__ ) )[2:]
a_ = max(len(lowerCamelCase__ ) ,len(lowerCamelCase__ ) )
return "0b" + "".join(
str(int("1" in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(lowerCamelCase__ ) ,b_binary.zfill(lowerCamelCase__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 685
|
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
__A =logging.getLogger(__name__)
def lowerCamelCase_ ( ):
lowerCamelCase_ = argparse.ArgumentParser(
description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." )
parser.add_argument(
"--dataset_name" , type=lowerCamelCase__ , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , )
parser.add_argument(
"--dataset_config" , type=lowerCamelCase__ , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." )
parser.add_argument(
"--tokenizer_name_or_path" , type=lowerCamelCase__ , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , )
parser.add_argument(
"--shard_size" , type=lowerCamelCase__ , default=1_0_0_0 , help="Number of entries to go in a single shard." , )
parser.add_argument("--split" , type=lowerCamelCase__ , default="train" , choices=["train", "test", "validation"] )
parser.add_argument(
"--limit" , default=lowerCamelCase__ , type=lowerCamelCase__ , help="Limit the number of shards (used for debugging)." , )
parser.add_argument(
"--max_length" , type=lowerCamelCase__ , default=5_1_2 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum"
" sequence length that is a multiple of 8." , )
parser.add_argument(
"--output_dir" , default="tf-tpu" , type=lowerCamelCase__ , help="Output directory where the TFRecord shards will be saved. If the"
" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"
" shards will be directly saved to a Google Cloud Storage bucket." , )
lowerCamelCase_ = parser.parse_args()
return args
def lowerCamelCase_ ( lowerCamelCase__ ):
def fn(lowerCamelCase__ ):
return tokenizer(examples["text"] )
return fn
def lowerCamelCase_ ( lowerCamelCase__ ):
lowerCamelCase_ = []
for i in range(len(tokenized_data["input_ids"] ) ):
lowerCamelCase_ = {
"input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ),
"attention_mask": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ),
}
lowerCamelCase_ = tf.train.Features(feature=lowerCamelCase__ )
lowerCamelCase_ = tf.train.Example(features=lowerCamelCase__ )
lowerCamelCase_ = example.SerializeToString()
records.append(lowerCamelCase__ )
return records
def lowerCamelCase_ ( lowerCamelCase__ ):
lowerCamelCase_ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
lowerCamelCase_ = min(len(lowerCamelCase__ ) , args.limit )
lowerCamelCase_ = dataset.select(range(lowerCamelCase__ ) )
print(F'Limiting the dataset to {args.limit} entries.' )
lowerCamelCase_ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
lowerCamelCase_ = os.path.join(args.output_dir , args.split )
if not os.path.exists(lowerCamelCase__ ):
os.makedirs(lowerCamelCase__ )
else:
lowerCamelCase_ = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
lowerCamelCase_ = tokenize_function(lowerCamelCase__ )
lowerCamelCase_ = dataset.map(lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=4 , remove_columns=["text"] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(lowerCamelCase__ ):
# Concatenate all texts.
lowerCamelCase_ = {k: sum(examples[k] , [] ) for k in examples.keys()}
lowerCamelCase_ = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
lowerCamelCase_ = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
lowerCamelCase_ = {
k: [t[i : i + args.max_length] for i in range(0 , lowerCamelCase__ , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
lowerCamelCase_ = dataset_tokenized.map(lowerCamelCase__ , batched=lowerCamelCase__ , batch_size=1_0_0_0 , num_proc=4 )
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for shard in range(0 , len(lowerCamelCase__ ) , args.shard_size ):
lowerCamelCase_ = grouped_dataset[shard : shard + args.shard_size]
lowerCamelCase_ = len(dataset_snapshot["input_ids"] )
lowerCamelCase_ = os.path.join(lowerCamelCase__ , F'dataset-{shard_count}-{records_containing}.tfrecord' )
lowerCamelCase_ = get_serialized_examples(lowerCamelCase__ )
with tf.io.TFRecordWriter(lowerCamelCase__ ) as out_file:
for i in range(len(lowerCamelCase__ ) ):
lowerCamelCase_ = serialized_examples[i]
out_file.write(lowerCamelCase__ )
print("Wrote file {} containing {} records".format(lowerCamelCase__ , lowerCamelCase__ ) )
shard_count += 1
total_records += records_containing
with open(F'split-{args.split}-records-count.txt' , "w" ) as f:
print(F'Total {args.split} records: {total_records}' , file=lowerCamelCase__ )
if __name__ == "__main__":
__A =parse_args()
main(args)
| 463
| 0
|
from math import sqrt
def a ( snake_case__: int ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ) and (
number >= 0
), "'number' must been an int and positive"
lowercase_ = True
# 0 and 1 are none primes.
if number <= 1:
lowercase_ = False
for divisor in range(2 , int(round(sqrt(_lowercase ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
lowercase_ = False
break
# precondition
assert isinstance(_lowercase , _lowercase ), "'status' must been from type bool"
return status
def a ( snake_case__: Optional[Any] ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
lowercase_ = list(range(2 , n + 1 ) )
lowercase_ = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(_lowercase ) ):
for j in range(i + 1 , len(_lowercase ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
lowercase_ = 0
# filters actual prime numbers.
lowercase_ = [x for x in begin_list if x != 0]
# precondition
assert isinstance(_lowercase , _lowercase ), "'ans' must been from type list"
return ans
def a ( snake_case__: Union[str, Any] ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ) and (n > 2), "'N' must been an int and > 2"
lowercase_ = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(_lowercase ):
ans.append(_lowercase )
# precondition
assert isinstance(_lowercase , _lowercase ), "'ans' must been from type list"
return ans
def a ( snake_case__: int ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ) and number >= 0, "'number' must been an int and >= 0"
lowercase_ = [] # this list will be returns of the function.
# potential prime number factors.
lowercase_ = 2
lowercase_ = number
if number == 0 or number == 1:
ans.append(_lowercase )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(_lowercase ):
while quotient != 1:
if is_prime(_lowercase ) and (quotient % factor == 0):
ans.append(_lowercase )
quotient /= factor
else:
factor += 1
else:
ans.append(_lowercase )
# precondition
assert isinstance(_lowercase , _lowercase ), "'ans' must been from type list"
return ans
def a ( snake_case__: Any ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase_ = 0
# prime factorization of 'number'
lowercase_ = prime_factorization(_lowercase )
lowercase_ = max(_lowercase )
# precondition
assert isinstance(_lowercase , _lowercase ), "'ans' must been from type int"
return ans
def a ( snake_case__: int ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ) and (
number >= 0
), "'number' bust been an int and >= 0"
lowercase_ = 0
# prime factorization of 'number'
lowercase_ = prime_factorization(_lowercase )
lowercase_ = min(_lowercase )
# precondition
assert isinstance(_lowercase , _lowercase ), "'ans' must been from type int"
return ans
def a ( snake_case__: Tuple ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ), "'number' must been an int"
assert isinstance(number % 2 == 0 , _lowercase ), "compare bust been from type bool"
return number % 2 == 0
def a ( snake_case__: Optional[Any] ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ), "'number' must been an int"
assert isinstance(number % 2 != 0 , _lowercase ), "compare bust been from type bool"
return number % 2 != 0
def a ( snake_case__: Any ):
'''simple docstring'''
assert (
isinstance(_lowercase , _lowercase ) and (number > 2) and is_even(_lowercase )
), "'number' must been an int, even and > 2"
lowercase_ = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
lowercase_ = get_prime_numbers(_lowercase )
lowercase_ = len(_lowercase )
# run variable for while-loops.
lowercase_ = 0
lowercase_ = None
# exit variable. for break up the loops
lowercase_ = True
while i < len_pn and loop:
lowercase_ = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
lowercase_ = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(_lowercase , _lowercase )
and (len(_lowercase ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def a ( snake_case__: Optional[Any] , snake_case__: Tuple ):
'''simple docstring'''
assert (
isinstance(_lowercase , _lowercase )
and isinstance(_lowercase , _lowercase )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
lowercase_ = 0
while numbera != 0:
lowercase_ = numbera % numbera
lowercase_ = numbera
lowercase_ = rest
# precondition
assert isinstance(_lowercase , _lowercase ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def a ( snake_case__: Optional[int] , snake_case__: Optional[int] ):
'''simple docstring'''
assert (
isinstance(_lowercase , _lowercase )
and isinstance(_lowercase , _lowercase )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
lowercase_ = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
lowercase_ = prime_factorization(_lowercase )
lowercase_ = prime_factorization(_lowercase )
elif numbera == 1 or numbera == 1:
lowercase_ = []
lowercase_ = []
lowercase_ = max(_lowercase , _lowercase )
lowercase_ = 0
lowercase_ = 0
lowercase_ = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
lowercase_ = prime_fac_a.count(_lowercase )
lowercase_ = prime_fac_a.count(_lowercase )
for _ in range(max(_lowercase , _lowercase ) ):
ans *= n
else:
lowercase_ = prime_fac_a.count(_lowercase )
for _ in range(_lowercase ):
ans *= n
done.append(_lowercase )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
lowercase_ = prime_fac_a.count(_lowercase )
for _ in range(_lowercase ):
ans *= n
done.append(_lowercase )
# precondition
assert isinstance(_lowercase , _lowercase ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def a ( snake_case__: Dict ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ) and (n >= 0), "'number' must been a positive int"
lowercase_ = 0
lowercase_ = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(_lowercase ):
ans += 1
# precondition
assert isinstance(_lowercase , _lowercase ) and is_prime(
_lowercase ), "'ans' must been a prime number and from type int"
return ans
def a ( snake_case__: List[str] , snake_case__: Tuple ):
'''simple docstring'''
assert (
is_prime(_lowercase ) and is_prime(_lowercase ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
lowercase_ = p_number_a + 1 # jump to the next number
lowercase_ = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(_lowercase ):
number += 1
while number < p_number_a:
ans.append(_lowercase )
number += 1
# fetch the next prime number.
while not is_prime(_lowercase ):
number += 1
# precondition
assert (
isinstance(_lowercase , _lowercase )
and ans[0] != p_number_a
and ans[len(_lowercase ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def a ( snake_case__: Tuple ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ) and (n >= 1), "'n' must been int and >= 1"
lowercase_ = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(_lowercase )
# precondition
assert ans[0] == 1 and ans[len(_lowercase ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def a ( snake_case__: Tuple ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ) and (
number > 1
), "'number' must been an int and >= 1"
lowercase_ = get_divisors(_lowercase )
# precondition
assert (
isinstance(_lowercase , _lowercase )
and (divisors[0] == 1)
and (divisors[len(_lowercase ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def a ( snake_case__: Union[str, Any] , snake_case__: Union[str, Any] ):
'''simple docstring'''
assert (
isinstance(_lowercase , _lowercase )
and isinstance(_lowercase , _lowercase )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
lowercase_ = gcd(abs(_lowercase ) , abs(_lowercase ) )
# precondition
assert (
isinstance(_lowercase , _lowercase )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def a ( snake_case__: List[str] ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ) and (n >= 0), "'n' must been a int and >= 0"
lowercase_ = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def a ( snake_case__: str ):
'''simple docstring'''
assert isinstance(_lowercase , _lowercase ) and (n >= 0), "'n' must been an int and >= 0"
lowercase_ = 0
lowercase_ = 1
lowercase_ = 1 # this will be return
for _ in range(n - 1 ):
lowercase_ = ans
ans += fiba
lowercase_ = tmp
return ans
| 718
|
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class lowercase__( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Dict ) -> int:
lowercase_ = [
'''safety_checker/pytorch_model.bin''',
'''safety_checker/model.safetensors''',
'''vae/diffusion_pytorch_model.bin''',
'''vae/diffusion_pytorch_model.safetensors''',
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) )
def _lowercase ( self : Optional[int] ) -> str:
lowercase_ = [
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) )
def _lowercase ( self : Tuple ) -> Tuple:
lowercase_ = [
'''safety_checker/pytorch_model.bin''',
'''safety_checker/model.safetensors''',
'''vae/diffusion_pytorch_model.bin''',
'''vae/diffusion_pytorch_model.safetensors''',
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
'''unet/diffusion_pytorch_model.bin''',
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) )
def _lowercase ( self : Optional[Any] ) -> List[Any]:
lowercase_ = [
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
]
self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) )
def _lowercase ( self : Optional[Any] ) -> List[str]:
lowercase_ = [
'''safety_checker/pytorch_model.bin''',
'''safety_checker/model.safetensors''',
'''vae/diffusion_pytorch_model.bin''',
'''vae/diffusion_pytorch_model.safetensors''',
'''text_encoder/pytorch_model.bin''',
# Removed: 'text_encoder/model.safetensors',
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) )
def _lowercase ( self : Any ) -> Optional[Any]:
lowercase_ = [
'''safety_checker/pytorch_model.fp16.bin''',
'''safety_checker/model.fp16.safetensors''',
'''vae/diffusion_pytorch_model.fp16.bin''',
'''vae/diffusion_pytorch_model.fp16.safetensors''',
'''text_encoder/pytorch_model.fp16.bin''',
'''text_encoder/model.fp16.safetensors''',
'''unet/diffusion_pytorch_model.fp16.bin''',
'''unet/diffusion_pytorch_model.fp16.safetensors''',
]
lowercase_ = '''fp16'''
self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) )
def _lowercase ( self : List[Any] ) -> int:
lowercase_ = [
'''unet/diffusion_pytorch_model.fp16.bin''',
'''unet/diffusion_pytorch_model.fp16.safetensors''',
]
lowercase_ = '''fp16'''
self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) )
def _lowercase ( self : Any ) -> int:
# pass variant but use the non-variant filenames
lowercase_ = [
'''unet/diffusion_pytorch_model.bin''',
'''unet/diffusion_pytorch_model.safetensors''',
]
lowercase_ = '''fp16'''
self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) )
def _lowercase ( self : str ) -> List[str]:
lowercase_ = [
'''safety_checker/pytorch_model.fp16.bin''',
'''safety_checker/model.fp16.safetensors''',
'''vae/diffusion_pytorch_model.fp16.bin''',
'''vae/diffusion_pytorch_model.fp16.safetensors''',
'''text_encoder/pytorch_model.fp16.bin''',
'''text_encoder/model.fp16.safetensors''',
'''unet/diffusion_pytorch_model.fp16.bin''',
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ = '''fp16'''
self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) )
def _lowercase ( self : Union[str, Any] ) -> Tuple:
lowercase_ = [
'''text_encoder/pytorch_model.fp16.bin''',
'''text_encoder/model.fp16.safetensors''',
]
lowercase_ = '''fp16'''
self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) )
def _lowercase ( self : Dict ) -> Any:
# pass variant but use the non-variant filenames
lowercase_ = [
'''text_encoder/pytorch_model.bin''',
'''text_encoder/model.safetensors''',
]
lowercase_ = '''fp16'''
self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) )
def _lowercase ( self : Optional[int] ) -> Optional[Any]:
lowercase_ = [
'''safety_checker/pytorch_model.fp16.bin''',
'''safety_checker/model.fp16.safetensors''',
'''vae/diffusion_pytorch_model.fp16.bin''',
'''vae/diffusion_pytorch_model.fp16.safetensors''',
'''text_encoder/pytorch_model.fp16.bin''',
# 'text_encoder/model.fp16.safetensors',
'''unet/diffusion_pytorch_model.fp16.bin''',
'''unet/diffusion_pytorch_model.fp16.safetensors''',
]
lowercase_ = '''fp16'''
self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ ) )
| 409
| 0
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_A = logging.get_logger(__name__)
class _lowerCamelCase ( a_ ):
_lowerCamelCase :List[Any] = ["input_features", "attention_mask"]
def __init__( self : Optional[int] , UpperCamelCase : Any=80 , UpperCamelCase : Dict=1_60_00 , UpperCamelCase : List[Any]=80 , UpperCamelCase : Union[str, Any]=0.0 , UpperCamelCase : Dict=True , UpperCamelCase : Optional[int]=True , UpperCamelCase : Tuple=True , **UpperCamelCase : Optional[Any] , ) -> List[str]:
"""simple docstring"""
super().__init__(feature_size=UpperCamelCase , sampling_rate=UpperCamelCase , padding_value=UpperCamelCase , **UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = num_mel_bins
lowerCAmelCase__ : Optional[int] = do_ceptral_normalize
lowerCAmelCase__ : int = normalize_means
lowerCAmelCase__ : Dict = normalize_vars
lowerCAmelCase__ : str = True
def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : np.ndarray , ) -> np.ndarray:
"""simple docstring"""
lowerCAmelCase__ : List[Any] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
lowerCAmelCase__ : Union[str, Any] = torch.from_numpy(UpperCamelCase ).unsqueeze(0 )
lowerCAmelCase__ : Dict = ta_kaldi.fbank(UpperCamelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def _lowerCAmelCase ( UpperCamelCase : np.ndarray , UpperCamelCase : int , UpperCamelCase : Optional[bool] = True , UpperCamelCase : Optional[bool] = True , UpperCamelCase : float = 0.0 , ) -> np.ndarray:
"""simple docstring"""
# make sure we normalize float32 arrays
if normalize_means:
lowerCAmelCase__ : Tuple = x[:input_length].mean(axis=0 )
lowerCAmelCase__ : Tuple = np.subtract(UpperCamelCase , UpperCamelCase )
if normalize_vars:
lowerCAmelCase__ : Any = x[:input_length].std(axis=0 )
lowerCAmelCase__ : str = np.divide(UpperCamelCase , UpperCamelCase )
if input_length < x.shape[0]:
lowerCAmelCase__ : List[str] = padding_value
# make sure array is in float32
lowerCAmelCase__ : int = x.astype(np.floataa )
return x
def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : List[np.ndarray] , UpperCamelCase : Optional[np.ndarray] = None ) -> List[np.ndarray]:
"""simple docstring"""
lowerCAmelCase__ : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(UpperCamelCase , UpperCamelCase , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(UpperCamelCase , UpperCamelCase )
]
def __call__( self : str , UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase : Union[bool, str, PaddingStrategy] = False , UpperCamelCase : Optional[int] = None , UpperCamelCase : bool = False , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[bool] = None , **UpperCamelCase : List[str] , ) -> BatchFeature:
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"""
f""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
lowerCAmelCase__ : List[Any] = isinstance(UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
lowerCAmelCase__ : Union[str, Any] = is_batched_numpy or (
isinstance(UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCAmelCase__ : Any = [np.asarray(UpperCamelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(UpperCamelCase , np.ndarray ):
lowerCAmelCase__ : List[Any] = np.asarray(UpperCamelCase , dtype=np.floataa )
elif isinstance(UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCAmelCase__ : List[str] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCAmelCase__ : Union[str, Any] = [raw_speech]
# extract fbank features
lowerCAmelCase__ : Dict = [self._extract_fbank_features(UpperCamelCase ) for waveform in raw_speech]
# convert into correct format for padding
lowerCAmelCase__ : int = BatchFeature({"""input_features""": features} )
lowerCAmelCase__ : Union[str, Any] = self.pad(
UpperCamelCase , padding=UpperCamelCase , max_length=UpperCamelCase , truncation=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_attention_mask=UpperCamelCase , **UpperCamelCase , )
# make sure list is in array format
lowerCAmelCase__ : List[Any] = padded_inputs.get("""input_features""" )
if isinstance(input_features[0] , UpperCamelCase ):
lowerCAmelCase__ : Tuple = [np.asarray(UpperCamelCase , dtype=np.floataa ) for feature in input_features]
lowerCAmelCase__ : List[str] = padded_inputs.get("""attention_mask""" )
if attention_mask is not None:
lowerCAmelCase__ : List[Any] = [np.asarray(UpperCamelCase , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
lowerCAmelCase__ : Optional[Any] = (
np.array(UpperCamelCase , dtype=np.intaa )
if self._get_padding_strategies(UpperCamelCase , max_length=UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
lowerCAmelCase__ : int = self.normalize(
padded_inputs["""input_features"""] , attention_mask=UpperCamelCase )
if return_tensors is not None:
lowerCAmelCase__ : Tuple = padded_inputs.convert_to_tensors(UpperCamelCase )
return padded_inputs
| 299
|
"""simple docstring"""
import os
import unittest
from tempfile import TemporaryDirectory
import torch
import torch.nn as nn
from accelerate.utils import (
OffloadedWeightsLoader,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
)
class _lowerCamelCase ( nn.Module ):
def __init__( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
super().__init__()
lowerCAmelCase__ : Optional[int] = nn.Linear(3 , 4 )
lowerCAmelCase__ : int = nn.BatchNormad(4 )
lowerCAmelCase__ : Optional[Any] = nn.Linear(4 , 5 )
def _lowerCAmelCase ( self : List[str] , UpperCamelCase : List[Any] ) -> Tuple:
"""simple docstring"""
return self.lineara(self.batchnorm(self.lineara(UpperCamelCase ) ) )
class _lowerCamelCase ( unittest.TestCase ):
def _lowerCAmelCase ( self : Any ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ : Any = ModelForTest()
with TemporaryDirectory() as tmp_dir:
offload_state_dict(UpperCamelCase , model.state_dict() )
lowerCAmelCase__ : List[str] = os.path.join(UpperCamelCase , """index.json""" )
self.assertTrue(os.path.isfile(UpperCamelCase ) )
# TODO: add tests on what is inside the index
for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]:
lowerCAmelCase__ : Tuple = os.path.join(UpperCamelCase , f"""{key}.dat""" )
self.assertTrue(os.path.isfile(UpperCamelCase ) )
# TODO: add tests on the fact weights are properly loaded
def _lowerCAmelCase ( self : Dict ) -> int:
"""simple docstring"""
lowerCAmelCase__ : List[str] = [torch.floataa, torch.floataa, torch.bfloataa]
for dtype in dtypes:
lowerCAmelCase__ : Union[str, Any] = torch.randn(2 , 3 , dtype=UpperCamelCase )
with TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ : Optional[Any] = offload_weight(UpperCamelCase , """weight""" , UpperCamelCase , {} )
lowerCAmelCase__ : Dict = os.path.join(UpperCamelCase , """weight.dat""" )
self.assertTrue(os.path.isfile(UpperCamelCase ) )
self.assertDictEqual(UpperCamelCase , {"""weight""": {"""shape""": [2, 3], """dtype""": str(UpperCamelCase ).split(""".""" )[1]}} )
lowerCAmelCase__ : Any = load_offloaded_weight(UpperCamelCase , index["""weight"""] )
self.assertTrue(torch.equal(UpperCamelCase , UpperCamelCase ) )
def _lowerCAmelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = ModelForTest()
lowerCAmelCase__ : Optional[Any] = model.state_dict()
lowerCAmelCase__ : Tuple = {k: v for k, v in state_dict.items() if """linear2""" not in k}
lowerCAmelCase__ : Any = {k: v for k, v in state_dict.items() if """linear2""" in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(UpperCamelCase , UpperCamelCase )
lowerCAmelCase__ : str = OffloadedWeightsLoader(state_dict=UpperCamelCase , save_folder=UpperCamelCase )
# Every key is there with the right value
self.assertEqual(sorted(UpperCamelCase ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(UpperCamelCase , weight_map[key] ) )
lowerCAmelCase__ : str = {k: v for k, v in state_dict.items() if """weight""" in k}
lowerCAmelCase__ : str = {k: v for k, v in state_dict.items() if """weight""" not in k}
with TemporaryDirectory() as tmp_dir:
offload_state_dict(UpperCamelCase , UpperCamelCase )
lowerCAmelCase__ : Any = OffloadedWeightsLoader(state_dict=UpperCamelCase , save_folder=UpperCamelCase )
# Every key is there with the right value
self.assertEqual(sorted(UpperCamelCase ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(UpperCamelCase , weight_map[key] ) )
with TemporaryDirectory() as tmp_dir:
offload_state_dict(UpperCamelCase , UpperCamelCase )
# Duplicates are removed
lowerCAmelCase__ : List[str] = OffloadedWeightsLoader(state_dict=UpperCamelCase , save_folder=UpperCamelCase )
# Every key is there with the right value
self.assertEqual(sorted(UpperCamelCase ) , sorted(state_dict.keys() ) )
for key, param in state_dict.items():
self.assertTrue(torch.allclose(UpperCamelCase , weight_map[key] ) )
def _lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
lowerCAmelCase__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2}
lowerCAmelCase__ : Any = extract_submodules_state_dict(UpperCamelCase , ["""a.1""", """a.2"""] )
self.assertDictEqual(UpperCamelCase , {"""a.1""": 0, """a.2""": 2} )
lowerCAmelCase__ : str = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2}
lowerCAmelCase__ : Union[str, Any] = extract_submodules_state_dict(UpperCamelCase , ["""a.1""", """a.2"""] )
self.assertDictEqual(UpperCamelCase , {"""a.1.a""": 0, """a.2.a""": 2} )
| 299
| 1
|
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def _A ( ):
lowercase__ , lowercase__ = 9, 14 # noqa: F841
lowercase__ = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
lowercase__ = defaultdict(__magic_name__ )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
lowercase__ = mst(__magic_name__ )
lowercase__ = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
lowercase__ = tuple(answer[:2] )
lowercase__ = tuple(edge[::-1] )
assert edge in result or reverse in result
| 611
|
def _A ( __magic_name__ , __magic_name__ ):
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
lowercase__ = str(bin(__magic_name__ ) )[2:] # remove the leading "0b"
lowercase__ = str(bin(__magic_name__ ) )[2:] # remove the leading "0b"
lowercase__ = max(len(__magic_name__ ) , len(__magic_name__ ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(__magic_name__ ) , b_binary.zfill(__magic_name__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 611
| 1
|
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('TEST_SAGEMAKER' ,'False' ) ) is not True ,reason='Skipping test because should only be run when releasing minor transformers version' ,)
@pytest.mark.usefixtures('sm_env' )
@parameterized_class(
[
{
'framework': 'pytorch',
'script': 'run_glue_model_parallelism.py',
'model_name_or_path': 'roberta-large',
'instance_type': 'ml.p3dn.24xlarge',
'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2},
},
{
'framework': 'pytorch',
'script': 'run_glue.py',
'model_name_or_path': 'roberta-large',
'instance_type': 'ml.p3dn.24xlarge',
'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2},
},
] )
class __magic_name__ (unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self:str ):
if self.framework == "pytorch":
subprocess.run(
F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=_a , )
assert hasattr(self , '''env''' )
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Tuple ):
# configuration for running training on smdistributed Model Parallel
snake_case__ = {
'''enabled''': True,
'''processes_per_host''': 8,
}
snake_case__ = {
'''enabled''': True,
'''parameters''': {
'''microbatches''': 4,
'''placement_strategy''': '''spread''',
'''pipeline''': '''interleaved''',
'''optimize''': '''speed''',
'''partitions''': 4,
'''ddp''': True,
},
}
snake_case__ = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options}
snake_case__ = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer'''
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=_a , instance_type=self.instance_type , debugger_hook_config=_a , hyperparameters={
**self.env.hyperparameters,
'''model_name_or_path''': self.model_name_or_path,
'''max_steps''': 5_00,
} , metric_definitions=self.env.metric_definitions , distribution=_a , py_version='''py36''' , )
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:int ):
TrainingJobAnalytics(_a ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Optional[Any] ):
# create estimator
snake_case__ = self.create_estimator(_a )
# run training
estimator.fit()
# result dataframe
snake_case__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
snake_case__ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
snake_case__ = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
snake_case__ = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_99_99 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F"""{estimator.latest_training_job.name}.json""" , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _a )
| 33
|
from copy import deepcopy
class __magic_name__ :
'''simple docstring'''
def __init__( self:int , _a:list[int] | None = None , _a:int | None = None ):
if arr is None and size is not None:
snake_case__ = size
snake_case__ = [0] * size
elif arr is not None:
self.init(_a )
else:
raise ValueError('''Either arr or size must be specified''' )
def SCREAMING_SNAKE_CASE__ ( self:Any , _a:list[int] ):
snake_case__ = len(_a )
snake_case__ = deepcopy(_a )
for i in range(1 , self.size ):
snake_case__ = self.next_(_a )
if j < self.size:
self.tree[j] += self.tree[i]
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
snake_case__ = self.next_(_a )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:int ):
return index + (index & (-index))
@staticmethod
def SCREAMING_SNAKE_CASE__ ( _a:int ):
return index - (index & (-index))
def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:int , _a:int ):
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
snake_case__ = self.next_(_a )
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ):
self.add(_a , value - self.get(_a ) )
def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ):
if right == 0:
return 0
snake_case__ = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
snake_case__ = self.prev(_a )
return result
def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:int , _a:int ):
return self.prefix(_a ) - self.prefix(_a )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ):
return self.query(_a , index + 1 )
def SCREAMING_SNAKE_CASE__ ( self:str , _a:int ):
value -= self.tree[0]
if value < 0:
return -1
snake_case__ = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
snake_case__ = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33
| 1
|
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase : Optional[Any] = logging.get_logger(__name__)
lowercase : Union[str, Any] = {
"""vocab_file""": """vocab.json""",
"""tokenizer_config_file""": """tokenizer_config.json""",
"""merges_file""": """merges.txt""",
}
lowercase : Optional[int] = {
"""vocab_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json"""
),
},
"""tokenizer_config_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json"""
),
},
"""merges_file""": {
"""facebook/s2t-wav2vec2-large-en-de""": (
"""https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt"""
),
},
}
lowercase : List[Any] = """</w>"""
lowercase : str = """@@ """
def UpperCAmelCase_ ( _UpperCAmelCase ) -> Any:
lowerCamelCase_: List[Any] = set()
lowerCamelCase_: Union[str, Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase_: Any = char
return pairs
# Speech2Text2 has no max input length
lowercase : List[Any] = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4}
class a__ ( __SCREAMING_SNAKE_CASE ):
_A = VOCAB_FILES_NAMES
_A = PRETRAINED_VOCAB_FILES_MAP
_A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_A = ["input_ids", "attention_mask"]
def __init__( self : Union[str, Any] , A_ : Optional[Any] , A_ : Any="<s>" , A_ : Union[str, Any]="<pad>" , A_ : Optional[int]="</s>" , A_ : Tuple="<unk>" , A_ : List[Any]=False , A_ : Dict=None , **A_ : List[Any] , ) -> Any:
"""simple docstring"""
super().__init__(
unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , do_lower_case=A_ , **A_ , )
lowerCamelCase_: int = do_lower_case
with open(A_ , encoding="""utf-8""" ) as vocab_handle:
lowerCamelCase_: Union[str, Any] = json.load(A_ )
lowerCamelCase_: Any = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(f"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" )
lowerCamelCase_: int = None
lowerCamelCase_: Union[str, Any] = None
else:
with open(A_ , encoding="""utf-8""" ) as merges_handle:
lowerCamelCase_: Optional[Any] = merges_handle.read().split("""\n""" )[:-1]
lowerCamelCase_: List[Any] = [tuple(merge.split()[:2] ) for merge in merges]
lowerCamelCase_: Union[str, Any] = dict(zip(A_ , range(len(A_ ) ) ) )
lowerCamelCase_: int = {}
@property
def lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
return len(self.decoder )
def lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , A_ : List[str] ) -> Tuple:
"""simple docstring"""
lowerCamelCase_: Optional[Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
lowerCamelCase_: List[str] = get_pairs(A_ )
if not pairs:
return token
while True:
lowerCamelCase_: Optional[int] = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase_: Union[str, Any] = bigram
lowerCamelCase_: Optional[Any] = []
lowerCamelCase_: Any = 0
while i < len(A_ ):
try:
lowerCamelCase_: Optional[Any] = word.index(A_ , A_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase_: Tuple = j
if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase_: Dict = tuple(A_ )
lowerCamelCase_: Union[str, Any] = new_word
if len(A_ ) == 1:
break
else:
lowerCamelCase_: List[Any] = get_pairs(A_ )
lowerCamelCase_: Optional[Any] = """ """.join(A_ )
if word == "\n " + BPE_TOKEN_MERGES:
lowerCamelCase_: int = """\n""" + BPE_TOKEN_MERGES
if word.endswith(A_ ):
lowerCamelCase_: str = word.replace(A_ , """""" )
lowerCamelCase_: Optional[Any] = word.replace(""" """ , A_ )
lowerCamelCase_: Optional[Any] = word
return word
def lowerCAmelCase ( self : int , A_ : Union[str, Any] ) -> str:
"""simple docstring"""
if self.bpe_ranks is None:
raise ValueError(
"""This tokenizer was instantiated without a `merges.txt` file, so"""
""" that it can only be used for decoding, not for encoding."""
"""Make sure to provide `merges.txt` file at instantiation to enable """
"""encoding.""" )
if self.do_lower_case:
lowerCamelCase_: Optional[int] = text.lower()
lowerCamelCase_: Dict = text.split()
lowerCamelCase_: Any = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(A_ ).split(""" """ ) ) )
return split_tokens
def lowerCAmelCase ( self : List[str] , A_ : str ) -> int:
"""simple docstring"""
return self.encoder.get(A_ , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : Dict , A_ : int ) -> str:
"""simple docstring"""
lowerCamelCase_: int = self.decoder.get(A_ , self.unk_token )
return result
def lowerCAmelCase ( self : List[Any] , A_ : List[str] ) -> str:
"""simple docstring"""
lowerCamelCase_: str = """ """.join(A_ )
# make sure @@ tokens are concatenated
lowerCamelCase_: Dict = """""".join(string.split(A_ ) )
return string
def lowerCAmelCase ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(A_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCamelCase_: List[str] = os.path.join(
A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCamelCase_: str = os.path.join(
A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(A_ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + """\n""" )
lowerCamelCase_: Any = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(A_ , """w""" , encoding="""utf-8""" ) as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive."""
""" Please check that the tokenizer is not corrupted!""" )
lowerCamelCase_: str = token_index
writer.write(""" """.join(A_ ) + """\n""" )
index += 1
return (vocab_file, merges_file)
| 703
|
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .autoencoder_kl import AutoencoderKL
from .controlnet import ControlNetModel
from .dual_transformer_ad import DualTransformeraDModel
from .modeling_utils import ModelMixin
from .prior_transformer import PriorTransformer
from .ta_film_transformer import TaFilmDecoder
from .transformer_ad import TransformeraDModel
from .unet_ad import UNetaDModel
from .unet_ad import UNetaDModel
from .unet_ad_condition import UNetaDConditionModel
from .unet_ad_condition import UNetaDConditionModel
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_ad_condition_flax import FlaxUNetaDConditionModel
from .vae_flax import FlaxAutoencoderKL
| 584
| 0
|
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
_lowercase = logging.get_logger(__name__)
class lowerCAmelCase_ ( _lowercase ):
'''simple docstring'''
def __init__( self : Union[str, Any] ,*A_ : int ,**A_ : Union[str, Any] ) -> None:
warnings.warn(
'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use OwlViTImageProcessor instead.' ,A_ ,)
super().__init__(*A_ ,**A_ )
| 91
|
"""simple docstring"""
from __future__ import annotations
def __UpperCamelCase ( snake_case__ , snake_case__ = None , snake_case__ = None ):
if start is None:
A_ : Dict = 0
if end is None:
A_ : Dict = len(snake_case__ ) - 1
if start >= end:
return
A_ : List[Any] = (start + end) // 2
slowsort(snake_case__ , snake_case__ , snake_case__ )
slowsort(snake_case__ , mid + 1 , snake_case__ )
if sequence[end] < sequence[mid]:
A_ , A_ : Dict = sequence[mid], sequence[end]
slowsort(snake_case__ , snake_case__ , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 180
| 0
|
"""simple docstring"""
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class _lowerCamelCase (tf.keras.optimizers.schedules.LearningRateSchedule ):
def __init__( self : List[Any] , lowerCamelCase_ : float , lowerCamelCase_ : Callable , lowerCamelCase_ : int , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : str = None , ):
"""simple docstring"""
super().__init__()
_lowercase : Dict = initial_learning_rate
_lowercase : List[Any] = warmup_steps
_lowercase : Tuple = power
_lowercase : int = decay_schedule_fn
_lowercase : Any = name
def __call__( self : List[str] , lowerCamelCase_ : int ):
"""simple docstring"""
with tf.name_scope(self.name or 'WarmUp' ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
_lowercase : Optional[Any] = tf.cast(lowerCamelCase_ , tf.floataa )
_lowercase : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa )
_lowercase : List[str] = global_step_float / warmup_steps_float
_lowercase : Dict = self.initial_learning_rate * tf.math.pow(lowerCamelCase_ , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowerCamelCase_ , )
def __UpperCAmelCase ( self : Dict ):
"""simple docstring"""
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 0.0 ,__UpperCAmelCase = 0.9 ,__UpperCAmelCase = 0.9_9_9 ,__UpperCAmelCase = 1E-8 ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = 0.0 ,__UpperCAmelCase = 1.0 ,__UpperCAmelCase = None ,):
"""simple docstring"""
_lowercase : str = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=__UpperCAmelCase ,decay_steps=num_train_steps - num_warmup_steps ,end_learning_rate=init_lr * min_lr_ratio ,power=__UpperCAmelCase ,)
if num_warmup_steps:
_lowercase : List[str] = WarmUp(
initial_learning_rate=__UpperCAmelCase ,decay_schedule_fn=__UpperCAmelCase ,warmup_steps=__UpperCAmelCase ,)
if weight_decay_rate > 0.0:
_lowercase : Union[str, Any] = AdamWeightDecay(
learning_rate=__UpperCAmelCase ,weight_decay_rate=__UpperCAmelCase ,beta_a=__UpperCAmelCase ,beta_a=__UpperCAmelCase ,epsilon=__UpperCAmelCase ,clipnorm=__UpperCAmelCase ,global_clipnorm=__UpperCAmelCase ,exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] ,include_in_weight_decay=__UpperCAmelCase ,)
else:
_lowercase : Optional[int] = tf.keras.optimizers.Adam(
learning_rate=__UpperCAmelCase ,beta_a=__UpperCAmelCase ,beta_a=__UpperCAmelCase ,epsilon=__UpperCAmelCase ,clipnorm=__UpperCAmelCase ,global_clipnorm=__UpperCAmelCase ,)
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class _lowerCamelCase (__lowerCamelCase ):
def __init__( self : Dict , lowerCamelCase_ : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , lowerCamelCase_ : float = 0.9 , lowerCamelCase_ : float = 0.999 , lowerCamelCase_ : float = 1E-7 , lowerCamelCase_ : bool = False , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[List[str]] = None , lowerCamelCase_ : Optional[List[str]] = None , lowerCamelCase_ : str = "AdamWeightDecay" , **lowerCamelCase_ : int , ):
"""simple docstring"""
super().__init__(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ )
_lowercase : Union[str, Any] = weight_decay_rate
_lowercase : str = include_in_weight_decay
_lowercase : Dict = exclude_from_weight_decay
@classmethod
def __UpperCAmelCase ( cls : Union[str, Any] , lowerCamelCase_ : str ):
"""simple docstring"""
_lowercase : Tuple = {'WarmUp': WarmUp}
return super(lowerCamelCase_ , cls ).from_config(lowerCamelCase_ , custom_objects=lowerCamelCase_ )
def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict ):
"""simple docstring"""
super(lowerCamelCase_ , self )._prepare_local(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
_lowercase : Union[str, Any] = tf.constant(
self.weight_decay_rate , name='adam_weight_decay_rate' )
def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple ):
"""simple docstring"""
_lowercase : Any = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , )
return tf.no_op()
def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Dict ):
"""simple docstring"""
_lowercase : int = list(zip(*lowerCamelCase_ ) )
return super(lowerCamelCase_ , self ).apply_gradients(zip(lowerCamelCase_ , lowerCamelCase_ ) , name=lowerCamelCase_ , **lowerCamelCase_ )
def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : str ):
"""simple docstring"""
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
_lowercase : int = apply_state or {}
_lowercase : List[Any] = apply_state.get((var_device, var_dtype) )
if coefficients is None:
_lowercase : Any = self._fallback_apply_state(lowerCamelCase_ , lowerCamelCase_ )
_lowercase : Union[str, Any] = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=None ):
"""simple docstring"""
_lowercase : List[Any] = self._get_lr(var.device , var.dtype.base_dtype , lowerCamelCase_ )
_lowercase : Union[str, Any] = self._decay_weights_op(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
with tf.control_dependencies([decay] ):
return super(lowerCamelCase_ , self )._resource_apply_dense(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ )
def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any]=None ):
"""simple docstring"""
_lowercase : Any = self._get_lr(var.device , var.dtype.base_dtype , lowerCamelCase_ )
_lowercase : List[Any] = self._decay_weights_op(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
with tf.control_dependencies([decay] ):
return super(lowerCamelCase_ , self )._resource_apply_sparse(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ )
def __UpperCAmelCase ( self : Dict ):
"""simple docstring"""
_lowercase : List[Any] = super().get_config()
config.update({'weight_decay_rate': self.weight_decay_rate} )
return config
def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[Any] ):
"""simple docstring"""
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(lowerCamelCase_ , lowerCamelCase_ ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(lowerCamelCase_ , lowerCamelCase_ ) is not None:
return False
return True
class _lowerCamelCase (__lowerCamelCase ):
def __init__( self : Union[str, Any] ):
"""simple docstring"""
_lowercase : Any = []
_lowercase : List[Any] = None
@property
def __UpperCAmelCase ( self : int ):
"""simple docstring"""
if self._accum_steps is None:
_lowercase : List[str] = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=lowerCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def __UpperCAmelCase ( self : Optional[Any] ):
"""simple docstring"""
if not self._gradients:
raise ValueError('The accumulator should be called first to initialize the gradients' )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self : List[Any] , lowerCamelCase_ : int ):
"""simple docstring"""
if not self._gradients:
_lowercase : Optional[int] = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(lowerCamelCase_ ) , trainable=lowerCamelCase_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(lowerCamelCase_ ) != len(self._gradients ):
raise ValueError(F'''Expected {len(self._gradients )} gradients, but got {len(lowerCamelCase_ )}''' )
for accum_gradient, gradient in zip(self._gradients , lowerCamelCase_ ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(lowerCamelCase_ )
self._accum_steps.assign_add(1 )
def __UpperCAmelCase ( self : List[Any] ):
"""simple docstring"""
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(lowerCamelCase_ ) )
| 716
|
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class _lowerCamelCase (__lowerCamelCase ):
_snake_case = ["input_features", "attention_mask"]
def __init__( self : int , lowerCamelCase_ : List[str]=8_0 , lowerCamelCase_ : Tuple=1_6_0_0_0 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : List[Any]=1_0 , lowerCamelCase_ : List[str]=2_5 , lowerCamelCase_ : List[Any]="hamming_window" , lowerCamelCase_ : Tuple=3_2768.0 , lowerCamelCase_ : int=0.97 , lowerCamelCase_ : Optional[int]=1.0 , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Optional[int]=False , **lowerCamelCase_ : Optional[Any] , ):
"""simple docstring"""
super().__init__(feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , **lowerCamelCase_ )
_lowercase : Dict = feature_size
_lowercase : Dict = sampling_rate
_lowercase : Tuple = padding_value
_lowercase : int = hop_length
_lowercase : Any = win_length
_lowercase : Union[str, Any] = frame_signal_scale
_lowercase : Tuple = preemphasis_coeff
_lowercase : Tuple = mel_floor
_lowercase : Tuple = normalize_means
_lowercase : List[Any] = normalize_vars
_lowercase : List[str] = win_function
_lowercase : int = return_attention_mask
_lowercase : Optional[Any] = win_length * sampling_rate // 1_0_0_0
_lowercase : Tuple = hop_length * sampling_rate // 1_0_0_0
_lowercase : str = optimal_fft_length(self.sample_size )
_lowercase : Dict = (self.n_fft // 2) + 1
def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : np.array ):
"""simple docstring"""
if self.win_function == "hamming_window":
_lowercase : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCamelCase_ )
else:
_lowercase : Union[str, Any] = window_function(window_length=self.sample_size , name=self.win_function )
_lowercase : Tuple = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , )
_lowercase : Tuple = spectrogram(
one_waveform * self.frame_signal_scale , window=lowerCamelCase_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowerCamelCase_ , preemphasis=self.preemphasis_coeff , mel_filters=lowerCamelCase_ , mel_floor=self.mel_floor , log_mel='log' , )
return msfc_features.T
def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Dict , lowerCamelCase_ : Tuple ):
"""simple docstring"""
if self.normalize_means:
_lowercase : Optional[int] = x[:input_length].mean(axis=0 )
_lowercase : int = np.subtract(lowerCamelCase_ , lowerCamelCase_ )
if self.normalize_vars:
_lowercase : int = x[:input_length].std(axis=0 )
_lowercase : Optional[Any] = np.divide(lowerCamelCase_ , lowerCamelCase_ )
if input_length < x.shape[0]:
_lowercase : Dict = padding_value
# make sure array is in float32
_lowercase : Tuple = x.astype(np.floataa )
return x
def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[np.ndarray] , lowerCamelCase_ : Optional[np.ndarray] = None ):
"""simple docstring"""
_lowercase : Dict = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(lowerCamelCase_ , lowerCamelCase_ , self.padding_value ) for x, n in zip(lowerCamelCase_ , lowerCamelCase_ )]
def __call__( self : Dict , lowerCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[int] , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
_lowercase : Optional[Any] = isinstance(lowerCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_lowercase : Optional[int] = is_batched_numpy or (
isinstance(lowerCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_lowercase : str = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray ):
_lowercase : Tuple = np.asarray(lowerCamelCase_ , dtype=np.floataa )
elif isinstance(lowerCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_lowercase : Optional[int] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_lowercase : str = [raw_speech]
# extract fbank features
_lowercase : Optional[Any] = [self._extract_mfsc_features(lowerCamelCase_ ) for one_waveform in raw_speech]
# convert into correct format for padding
_lowercase : Optional[int] = BatchFeature({'input_features': features} )
_lowercase : Tuple = self.pad(
lowerCamelCase_ , padding=lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , )
# make sure list is in array format
_lowercase : Dict = padded_inputs.get('input_features' )
if isinstance(input_features[0] , lowerCamelCase_ ):
_lowercase : List[str] = [np.asarray(lowerCamelCase_ , dtype=np.floataa ) for feature in input_features]
_lowercase : List[Any] = padded_inputs.get('attention_mask' )
if attention_mask is not None:
_lowercase : Union[str, Any] = [np.asarray(lowerCamelCase_ , dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
_lowercase : int = (
np.array(lowerCamelCase_ , dtype=np.intaa )
if self._get_padding_strategies(lowerCamelCase_ , max_length=lowerCamelCase_ ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
_lowercase : List[Any] = self.normalize(
padded_inputs['input_features'] , attention_mask=lowerCamelCase_ )
if return_tensors is not None:
_lowercase : Union[str, Any] = padded_inputs.convert_to_tensors(lowerCamelCase_ )
return padded_inputs
| 283
| 0
|
"""simple docstring"""
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__UpperCamelCase : Optional[int] = logging.get_logger(__name__)
__UpperCamelCase : str = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''}
__UpperCamelCase : str = {
'''vocab_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''',
},
'''emoji_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''',
},
}
__UpperCamelCase : Optional[Any] = {
'''abeja/gpt-neox-japanese-2.7b''': 2048,
}
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Any ):
with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f:
lowerCAmelCase = json.loads(f.read() )
lowerCAmelCase = collections.OrderedDict()
lowerCAmelCase = collections.OrderedDict()
lowerCAmelCase = collections.OrderedDict()
with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f:
lowerCAmelCase = f.readlines()
lowerCAmelCase = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token]
for idx, b in enumerate(_UpperCAmelCase ):
lowerCAmelCase = b
lowerCAmelCase = idx
for wd in b:
lowerCAmelCase = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class a ( a__ ):
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = ['''input_ids''', '''attention_mask''']
def __init__( self , _snake_case , _snake_case , _snake_case="<|endoftext|>" , _snake_case="<|endoftext|>" , _snake_case="<|startoftext|>" , _snake_case="<|endoftext|>" , _snake_case=False , **_snake_case , ):
"""simple docstring"""
super().__init__(
unk_token=_snake_case , pad_token=_snake_case , bos_token=_snake_case , eos_token=_snake_case , do_clean_text=_snake_case , **_snake_case , )
if not os.path.isfile(_snake_case ):
raise ValueError(
F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'
' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' )
if not os.path.isfile(_snake_case ):
raise ValueError(
F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'
' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' )
lowerCAmelCase = do_clean_text
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = load_vocab_and_emoji(_snake_case , _snake_case )
lowerCAmelCase = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def UpperCamelCase__ ( self ):
"""simple docstring"""
return len(self.raw_vocab )
def UpperCamelCase__ ( self ):
"""simple docstring"""
return dict(self.raw_vocab , **self.added_tokens_encoder )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.subword_tokenizer.tokenize(_snake_case , clean=self.do_clean_text )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.vocab.get(_snake_case , self.vocab.get(self.unk_token ) )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
return self.subword_tokenizer.convert_id_to_token(_snake_case )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = ''.join(_snake_case ).strip()
return out_string
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_snake_case , add_special_tokens=_snake_case ) + [self.eos_token_id] )
if len(_snake_case ) > self.model_max_length:
lowerCAmelCase = input_ids[-self.model_max_length :]
return input_ids
def UpperCamelCase__ ( self , _snake_case , _snake_case = None ):
"""simple docstring"""
lowerCAmelCase = 0
if os.path.isdir(_snake_case ):
lowerCAmelCase = os.path.join(
_snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
lowerCAmelCase = os.path.join(
_snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] )
else:
lowerCAmelCase = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file']
)
lowerCAmelCase = (
(filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file']
)
with open(_snake_case , 'w' , encoding='utf-8' ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
' Please check that the vocabulary is not corrupted!' )
lowerCAmelCase = token_index
writer.write(','.join(_snake_case ) + '\n' )
index += 1
with open(_snake_case , 'w' , encoding='utf-8' ) as writer:
json.dump(self.emoji , _snake_case )
return vocab_file, emoji_file
class a ( a__ ):
def __init__( self , _snake_case , _snake_case , _snake_case ):
"""simple docstring"""
lowerCAmelCase = vocab # same as swe
lowerCAmelCase = ids_to_tokens # same as bpe
lowerCAmelCase = emoji
lowerCAmelCase = np.max([len(_snake_case ) for w in self.vocab.keys()] )
lowerCAmelCase = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' )
lowerCAmelCase = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' )
lowerCAmelCase = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' )
lowerCAmelCase = re.compile(
r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' )
lowerCAmelCase = re.compile(
r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' )
lowerCAmelCase = re.compile(
r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' )
lowerCAmelCase = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿'
lowerCAmelCase = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟'
lowerCAmelCase = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} )
def __len__( self ):
"""simple docstring"""
return len(self.ids_to_tokens )
def UpperCamelCase__ ( self , _snake_case ):
"""simple docstring"""
lowerCAmelCase = self.content_repattera.sub('<URL>' , _snake_case )
lowerCAmelCase = self.content_repattera.sub('<EMAIL>' , _snake_case )
lowerCAmelCase = self.content_repattera.sub('<TEL>' , _snake_case )
lowerCAmelCase = self.content_repattera.sub('<DATE>' , _snake_case )
lowerCAmelCase = self.content_repattera.sub('<DATE>' , _snake_case )
lowerCAmelCase = self.content_repattera.sub('<PRICE>' , _snake_case )
lowerCAmelCase = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
lowerCAmelCase = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' )
return content
def UpperCamelCase__ ( self , _snake_case , _snake_case=False ):
"""simple docstring"""
lowerCAmelCase = text.replace(' ' , '<SP>' )
lowerCAmelCase = text.replace(' ' , '<SP>' )
lowerCAmelCase = text.replace('\r\n' , '<BR>' )
lowerCAmelCase = text.replace('\n' , '<BR>' )
lowerCAmelCase = text.replace('\r' , '<BR>' )
lowerCAmelCase = text.replace('\t' , '<TAB>' )
lowerCAmelCase = text.replace('—' , 'ー' )
lowerCAmelCase = text.replace('−' , 'ー' )
for k, v in self.emoji["emoji"].items():
if k in text:
lowerCAmelCase = text.replace(_snake_case , _snake_case )
if clean:
lowerCAmelCase = self.clean_text(_snake_case )
def check_simbol(_snake_case ):
lowerCAmelCase = x.encode()
if len(_snake_case ) == 1 and len(_snake_case ) == 2:
lowerCAmelCase = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0xc_2a1 and c <= 0xc_2bf)
or (c >= 0xc_780 and c <= 0xc_783)
or (c >= 0xc_ab9 and c <= 0xc_bbf)
or (c >= 0xc_c80 and c <= 0xc_da2)
):
return True
return False
def checkuae(_snake_case ):
lowerCAmelCase = x.encode()
if len(_snake_case ) == 1 and len(_snake_case ) == 3:
lowerCAmelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0xe28_080 and c <= 0xe2b_07f:
return True
return False
lowerCAmelCase = 0
lowerCAmelCase = []
while pos < len(_snake_case ):
lowerCAmelCase = min(len(_snake_case ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3
lowerCAmelCase = [] # (token_id, token, pos)
for e in range(_snake_case , _snake_case , -1 ):
lowerCAmelCase = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(_snake_case ) > 2:
lowerCAmelCase = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(_snake_case ) > 0:
# the smallest token_id is adopted
lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = sorted(_snake_case , key=lambda _snake_case : x[0] )[0]
result.append(_snake_case )
lowerCAmelCase = e
else:
lowerCAmelCase = pos + 1
lowerCAmelCase = text[pos:end]
if check_simbol(_snake_case ):
result.append('<KIGOU>' )
elif checkuae(_snake_case ):
result.append('<U2000U2BFF>' )
else:
for i in wd.encode('utf-8' ):
result.append('<|byte%d|>' % i )
lowerCAmelCase = end
return result
def UpperCamelCase__ ( self , _snake_case , _snake_case="\n" ):
"""simple docstring"""
lowerCAmelCase = []
lowerCAmelCase = []
lowerCAmelCase = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(_snake_case ) > 0:
words.append(bytearray(_snake_case ).decode('utf-8' , errors='replace' ) )
lowerCAmelCase = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji['emoji_inv'][word] )
elif word == "<SP>":
words.append(' ' )
elif word == "<BR>":
words.append(_snake_case )
elif word == "<TAB>":
words.append('\t' )
elif word == "<BLOCK>":
words.append('▀' )
elif word == "<KIGOU>":
words.append('ǀ' )
elif word == "<U2000U2BFF>":
words.append('‖' )
else:
words.append(_snake_case )
if len(_snake_case ) > 0:
words.append(bytearray(_snake_case ).decode('utf-8' , errors='replace' ) )
lowerCAmelCase = ''.join(_snake_case )
return text
| 4
|
'''simple docstring'''
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import BatchEncoding, MarianTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available
if is_sentencepiece_available():
from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase_ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model')
lowerCAmelCase_ : int = {'target_lang': 'fi', 'source_lang': 'en'}
lowerCAmelCase_ : str = '>>zh<<'
lowerCAmelCase_ : List[str] = 'Helsinki-NLP/'
if is_torch_available():
lowerCAmelCase_ : Dict = 'pt'
elif is_tf_available():
lowerCAmelCase_ : Union[str, Any] = 'tf'
else:
lowerCAmelCase_ : int = 'jax'
@require_sentencepiece
class SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ):
__magic_name__ : Dict = MarianTokenizer
__magic_name__ : Any = False
__magic_name__ : str = True
def lowercase_ ( self : Any ):
'''simple docstring'''
super().setUp()
a_ : Optional[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""]
a_ : Optional[int] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) )
a_ : List[str] = Path(self.tmpdirname )
save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab"""] )
save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] )
if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists():
copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""source_spm"""] )
copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""target_spm"""] )
a_ : Dict = MarianTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase_ ( self : Tuple , **lowercase__ : int ):
'''simple docstring'''
return MarianTokenizer.from_pretrained(self.tmpdirname , **lowercase__ )
def lowercase_ ( self : int , lowercase__ : int ):
'''simple docstring'''
return (
"This is a test",
"This is a test",
)
def lowercase_ ( self : List[str] ):
'''simple docstring'''
a_ : Optional[int] = """</s>"""
a_ : Optional[int] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ )
def lowercase_ ( self : Tuple ):
'''simple docstring'''
a_ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """</s>""" )
self.assertEqual(vocab_keys[1] , """<unk>""" )
self.assertEqual(vocab_keys[-1] , """<pad>""" )
self.assertEqual(len(lowercase__ ) , 9 )
def lowercase_ ( self : List[Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 9 )
def lowercase_ ( self : str ):
'''simple docstring'''
a_ : str = MarianTokenizer.from_pretrained(F"{ORG_NAME}opus-mt-en-de" )
a_ : Any = en_de_tokenizer(["""I am a small frog"""] , return_tensors=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
a_ : str = [38, 121, 14, 697, 3_8848, 0]
self.assertListEqual(lowercase__ , batch.input_ids[0] )
a_ : Union[str, Any] = tempfile.mkdtemp()
en_de_tokenizer.save_pretrained(lowercase__ )
a_ : Union[str, Any] = [x.name for x in Path(lowercase__ ).glob("""*""" )]
self.assertIn("""source.spm""" , lowercase__ )
MarianTokenizer.from_pretrained(lowercase__ )
def lowercase_ ( self : str ):
'''simple docstring'''
a_ : int = self.get_tokenizer()
a_ : Dict = tok(
["""I am a small frog""" * 1000, """I am a small frog"""] , padding=lowercase__ , truncation=lowercase__ , return_tensors=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(batch.input_ids.shape , (2, 512) )
def lowercase_ ( self : Optional[Any] ):
'''simple docstring'''
a_ : List[str] = self.get_tokenizer()
a_ : Dict = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=lowercase__ , return_tensors=lowercase__ )
self.assertIsInstance(lowercase__ , lowercase__ )
self.assertEqual(batch_smaller.input_ids.shape , (2, 10) )
@slow
def lowercase_ ( self : List[Any] ):
'''simple docstring'''
a_ : Optional[int] = {"""input_ids""": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowercase__ , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , )
def lowercase_ ( self : int ):
'''simple docstring'''
a_ : Tuple = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" )
a_ : Tuple = """Tämä on testi"""
a_ : Union[str, Any] = """This is a test"""
a_ : Union[str, Any] = [76, 7, 2047, 2]
a_ : Optional[int] = [69, 12, 11, 940, 2]
a_ : Optional[Any] = tokenizer(lowercase__ ).input_ids
self.assertListEqual(lowercase__ , lowercase__ )
a_ : Optional[int] = tokenizer(text_target=lowercase__ ).input_ids
self.assertListEqual(lowercase__ , lowercase__ )
a_ : str = tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ )
self.assertEqual(lowercase__ , lowercase__ )
| 442
| 0
|
'''simple docstring'''
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .autoencoder_kl import AutoencoderKL
from .controlnet import ControlNetModel
from .dual_transformer_ad import DualTransformeraDModel
from .modeling_utils import ModelMixin
from .prior_transformer import PriorTransformer
from .ta_film_transformer import TaFilmDecoder
from .transformer_ad import TransformeraDModel
from .unet_ad import UNetaDModel
from .unet_ad import UNetaDModel
from .unet_ad_condition import UNetaDConditionModel
from .unet_ad_condition import UNetaDConditionModel
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_ad_condition_flax import FlaxUNetaDConditionModel
from .vae_flax import FlaxAutoencoderKL
| 705
|
'''simple docstring'''
def _lowerCamelCase ( lowerCamelCase_ : Union[str, Any] ):
"""simple docstring"""
if collection == []:
return []
# get some information about the collection
UpperCAmelCase_ : str = len(lowerCamelCase_ )
UpperCAmelCase_ : int = max(lowerCamelCase_ )
UpperCAmelCase_ : int = min(lowerCamelCase_ )
# create the counting array
UpperCAmelCase_ : List[str] = coll_max + 1 - coll_min
UpperCAmelCase_ : List[Any] = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , lowerCamelCase_ ):
UpperCAmelCase_ : Optional[int] = counting_arr[i] + counting_arr[i - 1]
# create the output collection
UpperCAmelCase_ : str = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , lowerCamelCase_ ) ):
UpperCAmelCase_ : Optional[int] = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def _lowerCamelCase ( lowerCamelCase_ : Any ):
"""simple docstring"""
return "".join([chr(lowerCamelCase_ ) for i in counting_sort([ord(lowerCamelCase_ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt"
snake_case__ : Any = input('''Enter numbers separated by a comma:\n''').strip()
snake_case__ : int = [int(item) for item in user_input.split(''',''')]
print(counting_sort(unsorted))
| 389
| 0
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
snake_case__ : Tuple = 'huggingface/label-files'
snake_case__ : Union[str, Any] = 'imagenet-1k-id2label.json'
snake_case__ : str = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
snake_case__ : Tuple = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
snake_case__ : Optional[Any] = {v: k for k, v in idalabel.items()}
snake_case__ : Tuple = 'std_conv' if 'bit' in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
snake_case__ : str = BitConfig(
conv_layer=__SCREAMING_SNAKE_CASE , num_labels=1000 , idalabel=__SCREAMING_SNAKE_CASE , labelaid=__SCREAMING_SNAKE_CASE , )
return config
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> Optional[Any]:
if "stem.conv" in name:
snake_case__ : str = name.replace('stem.conv' , 'bit.embedder.convolution' )
if "blocks" in name:
snake_case__ : Any = name.replace('blocks' , 'layers' )
if "head.fc" in name:
snake_case__ : Any = name.replace('head.fc' , 'classifier.1' )
if name.startswith('norm' ):
snake_case__ : Optional[int] = 'bit.' + name
if "bit" not in name and "classifier" not in name:
snake_case__ : str = 'bit.encoder.' + name
return name
def UpperCamelCase__ ( ) -> Any:
snake_case__ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg'
snake_case__ : Dict = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw )
return im
@torch.no_grad()
def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Optional[Any]:
snake_case__ : Tuple = get_config(__SCREAMING_SNAKE_CASE )
# load original model from timm
snake_case__ : Tuple = create_model(__SCREAMING_SNAKE_CASE , pretrained=__SCREAMING_SNAKE_CASE )
timm_model.eval()
# load state_dict of original model
snake_case__ : Tuple = timm_model.state_dict()
for key in state_dict.copy().keys():
snake_case__ : int = state_dict.pop(__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = val.squeeze() if 'head' in key else val
# load HuggingFace model
snake_case__ : List[Any] = BitForImageClassification(__SCREAMING_SNAKE_CASE )
model.eval()
model.load_state_dict(__SCREAMING_SNAKE_CASE )
# create image processor
snake_case__ : Tuple = create_transform(**resolve_data_config({} , model=__SCREAMING_SNAKE_CASE ) )
snake_case__ : Optional[Any] = transform.transforms
snake_case__ : Any = {
'bilinear': PILImageResampling.BILINEAR,
'bicubic': PILImageResampling.BICUBIC,
'nearest': PILImageResampling.NEAREST,
}
snake_case__ : Optional[int] = BitImageProcessor(
do_resize=__SCREAMING_SNAKE_CASE , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__SCREAMING_SNAKE_CASE , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=__SCREAMING_SNAKE_CASE , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
snake_case__ : Dict = prepare_img()
snake_case__ : Union[str, Any] = transform(__SCREAMING_SNAKE_CASE ).unsqueeze(0 )
snake_case__ : Dict = processor(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values
# verify pixel values
assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# verify logits
with torch.no_grad():
snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = outputs.logits
print('Logits:' , logits[0, :3] )
print('Predicted class:' , model.config.idalabel[logits.argmax(-1 ).item()] )
snake_case__ : List[str] = timm_model(__SCREAMING_SNAKE_CASE )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
print(f"Saving model {model_name} and processor to {pytorch_dump_folder_path}" )
model.save_pretrained(__SCREAMING_SNAKE_CASE )
processor.save_pretrained(__SCREAMING_SNAKE_CASE )
if push_to_hub:
print(f"Pushing model {model_name} and processor to the hub" )
model.push_to_hub(f"ybelkada/{model_name}" )
processor.push_to_hub(f"ybelkada/{model_name}" )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="resnetv2_50x1_bitm",
type=str,
help="Name of the BiT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model to the hub.",
)
A_ = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 270
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
A_ = {
"configuration_roberta_prelayernorm": [
"ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP",
"RobertaPreLayerNormConfig",
"RobertaPreLayerNormOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaPreLayerNormForCausalLM",
"RobertaPreLayerNormForMaskedLM",
"RobertaPreLayerNormForMultipleChoice",
"RobertaPreLayerNormForQuestionAnswering",
"RobertaPreLayerNormForSequenceClassification",
"RobertaPreLayerNormForTokenClassification",
"RobertaPreLayerNormModel",
"RobertaPreLayerNormPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaPreLayerNormForCausalLM",
"TFRobertaPreLayerNormForMaskedLM",
"TFRobertaPreLayerNormForMultipleChoice",
"TFRobertaPreLayerNormForQuestionAnswering",
"TFRobertaPreLayerNormForSequenceClassification",
"TFRobertaPreLayerNormForTokenClassification",
"TFRobertaPreLayerNormMainLayer",
"TFRobertaPreLayerNormModel",
"TFRobertaPreLayerNormPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ = [
"FlaxRobertaPreLayerNormForCausalLM",
"FlaxRobertaPreLayerNormForMaskedLM",
"FlaxRobertaPreLayerNormForMultipleChoice",
"FlaxRobertaPreLayerNormForQuestionAnswering",
"FlaxRobertaPreLayerNormForSequenceClassification",
"FlaxRobertaPreLayerNormForTokenClassification",
"FlaxRobertaPreLayerNormModel",
"FlaxRobertaPreLayerNormPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 270
| 1
|
'''simple docstring'''
from __future__ import annotations
from cmath import sqrt
def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> tuple[complex, complex]:
'''simple docstring'''
if a == 0:
raise ValueError('Coefficient \'a\' must not be zero.' )
UpperCAmelCase_ : str = b * b - 4 * a * c
UpperCAmelCase_ : Optional[int] = (-b + sqrt(UpperCamelCase )) / (2 * a)
UpperCAmelCase_ : str = (-b - sqrt(UpperCamelCase )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def SCREAMING_SNAKE_CASE( ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ : List[Any] = quadratic_roots(a=5 ,b=6 ,c=1 )
print(f"""The solutions are: {solutiona} and {solutiona}""" )
if __name__ == "__main__":
main()
| 712
|
'''simple docstring'''
import numpy
class lowercase :
def __init__( self , _snake_case , _snake_case) -> None:
UpperCAmelCase_ : Optional[Any] = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
UpperCAmelCase_ : Tuple = numpy.random.rand(
self.input_array.shape[1] , 4)
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
UpperCAmelCase_ : List[str] = numpy.random.rand(
4 , 3)
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
UpperCAmelCase_ : Dict = numpy.random.rand(3 , 1)
# Real output values provided.
UpperCAmelCase_ : str = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
UpperCAmelCase_ : Union[str, Any] = numpy.zeros(output_array.shape)
def _snake_case ( self) -> numpy.ndarray:
UpperCAmelCase_ : Any = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights))
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
UpperCAmelCase_ : Tuple = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ))
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
UpperCAmelCase_ : int = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ))
return self.layer_between_second_hidden_layer_and_output
def _snake_case ( self) -> None:
UpperCAmelCase_ : Optional[int] = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output) , )
UpperCAmelCase_ : Any = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer) , )
UpperCAmelCase_ : Tuple = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def _snake_case ( self , _snake_case , _snake_case , _snake_case) -> None:
for iteration in range(1 , iterations + 1):
UpperCAmelCase_ : int = self.feedforward()
self.back_propagation()
if give_loss:
UpperCAmelCase_ : List[Any] = numpy.mean(numpy.square(output - self.feedforward()))
print(F"""Iteration {iteration} Loss: {loss}""")
def _snake_case ( self , _snake_case) -> int:
UpperCAmelCase_ : Optional[int] = input_arr
UpperCAmelCase_ : Tuple = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights))
UpperCAmelCase_ : Optional[int] = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ))
UpperCAmelCase_ : int = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ))
return int(self.layer_between_second_hidden_layer_and_output > 0.6)
def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> numpy.ndarray:
return 1 / (1 + numpy.exp(-value ))
def SCREAMING_SNAKE_CASE( UpperCamelCase ) -> numpy.ndarray:
return (value) * (1 - (value))
def SCREAMING_SNAKE_CASE( ) -> int:
UpperCAmelCase_ : Optional[int] = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) ,dtype=numpy.floataa ,)
# True output values for the given input values.
UpperCAmelCase_ : Dict = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) ,dtype=numpy.floataa )
# Calling neural network class.
UpperCAmelCase_ : List[str] = TwoHiddenLayerNeuralNetwork(
input_array=UpperCamelCase ,output_array=UpperCamelCase )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=UpperCamelCase ,iterations=1_0 ,give_loss=UpperCamelCase )
return neural_network.predict(numpy.array(([1, 1, 1]) ,dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 471
| 0
|
from typing import TYPE_CHECKING
from ...utils import _LazyModule
SCREAMING_SNAKE_CASE = {'tokenization_byt5': ['ByT5Tokenizer']}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 99
|
def a (lowerCAmelCase__ ):
__a = False
while is_sorted is False: # Until all the indices are traversed keep looping
__a = True
for i in range(0 , len(lowerCAmelCase__ ) - 1 , 2 ): # iterating over all even indices
if input_list[i] > input_list[i + 1]:
__a , __a = input_list[i + 1], input_list[i]
# swapping if elements not in order
__a = False
for i in range(1 , len(lowerCAmelCase__ ) - 1 , 2 ): # iterating over all odd indices
if input_list[i] > input_list[i + 1]:
__a , __a = input_list[i + 1], input_list[i]
# swapping if elements not in order
__a = False
return input_list
if __name__ == "__main__":
print('Enter list to be sorted')
SCREAMING_SNAKE_CASE = [int(x) for x in input().split()]
# inputing elements of the list in one line
SCREAMING_SNAKE_CASE = odd_even_sort(input_list)
print('The sorted list is')
print(sorted_list)
| 99
| 1
|
'''simple docstring'''
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
SCREAMING_SNAKE_CASE__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json"
with io.open(filename, "r", encoding="utf-8") as f:
SCREAMING_SNAKE_CASE__ = json.load(f)
@require_torch
class snake_case (unittest.TestCase ):
def _a ( self ,UpperCAmelCase_ ) -> Tuple:
return FSMTTokenizer.from_pretrained(UpperCAmelCase_ )
def _a ( self ,UpperCAmelCase_ ) -> Optional[Any]:
lowercase__ = FSMTForConditionalGeneration.from_pretrained(UpperCAmelCase_ ).to(UpperCAmelCase_ )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
["en-ru", 26.0],
["ru-en", 22.0],
["en-de", 22.0],
["de-en", 29.0],
] )
@slow
def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> List[Any]:
# note: this test is not testing the best performance since it only evals a small batch
# but it should be enough to detect a regression in the output quality
lowercase__ = F'''facebook/wmt19-{pair}'''
lowercase__ = self.get_tokenizer(UpperCAmelCase_ )
lowercase__ = self.get_model(UpperCAmelCase_ )
lowercase__ = bleu_data[pair]["src"]
lowercase__ = bleu_data[pair]["tgt"]
lowercase__ = tokenizer(UpperCAmelCase_ ,return_tensors="pt" ,truncation=UpperCAmelCase_ ,padding="longest" ).to(UpperCAmelCase_ )
lowercase__ = model.generate(
input_ids=batch.input_ids ,num_beams=8 ,)
lowercase__ = tokenizer.batch_decode(
UpperCAmelCase_ ,skip_special_tokens=UpperCAmelCase_ ,clean_up_tokenization_spaces=UpperCAmelCase_ )
lowercase__ = calculate_bleu(UpperCAmelCase_ ,UpperCAmelCase_ )
print(UpperCAmelCase_ )
self.assertGreaterEqual(scores["bleu"] ,UpperCAmelCase_ )
| 539
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class snake_case (UpperCamelCase , unittest.TestCase ):
lowerCAmelCase__ :int = TextToVideoSDPipeline
lowerCAmelCase__ :Union[str, Any] = TEXT_TO_IMAGE_PARAMS
lowerCAmelCase__ :List[str] = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
lowerCAmelCase__ :Optional[Any] = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback",
"callback_steps",
] )
def _a ( self ) -> Optional[int]:
torch.manual_seed(0 )
lowercase__ = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") ,up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") ,cross_attention_dim=32 ,attention_head_dim=4 ,)
lowercase__ = DDIMScheduler(
beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule="scaled_linear" ,clip_sample=UpperCAmelCase_ ,set_alpha_to_one=UpperCAmelCase_ ,)
torch.manual_seed(0 )
lowercase__ = AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] ,up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] ,latent_channels=4 ,sample_size=128 ,)
torch.manual_seed(0 )
lowercase__ = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,hidden_act="gelu" ,projection_dim=512 ,)
lowercase__ = CLIPTextModel(UpperCAmelCase_ )
lowercase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
lowercase__ = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return components
def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_=0 ) -> int:
if str(UpperCAmelCase_ ).startswith("mps" ):
lowercase__ = torch.manual_seed(UpperCAmelCase_ )
else:
lowercase__ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
lowercase__ = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "pt",
}
return inputs
def _a ( self ) -> Tuple:
lowercase__ = "cpu" # ensure determinism for the device-dependent torch.Generator
lowercase__ = self.get_dummy_components()
lowercase__ = TextToVideoSDPipeline(**UpperCAmelCase_ )
lowercase__ = sd_pipe.to(UpperCAmelCase_ )
sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowercase__ = self.get_dummy_inputs(UpperCAmelCase_ )
lowercase__ = "np"
lowercase__ = sd_pipe(**UpperCAmelCase_ ).frames
lowercase__ = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
lowercase__ = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _a ( self ) -> List[Any]:
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ ,expected_max_diff=3E-3 )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() ,reason="XFormers attention is only available with CUDA and `xformers` installed" ,)
def _a ( self ) -> Dict:
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ ,expected_max_diff=1E-2 )
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." )
def _a ( self ) -> Union[str, Any]:
pass
@unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." )
def _a ( self ) -> Union[str, Any]:
pass
@unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." )
def _a ( self ) -> Union[str, Any]:
pass
def _a ( self ) -> str:
return super().test_progress_bar()
@slow
@skip_mps
class snake_case (unittest.TestCase ):
def _a ( self ) -> Optional[int]:
lowercase__ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" )
lowercase__ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" )
lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
lowercase__ = pipe.to("cuda" )
lowercase__ = "Spiderman is surfing"
lowercase__ = torch.Generator(device="cpu" ).manual_seed(0 )
lowercase__ = pipe(UpperCAmelCase_ ,generator=UpperCAmelCase_ ,num_inference_steps=25 ,output_type="pt" ).frames
lowercase__ = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5E-2
def _a ( self ) -> Optional[int]:
lowercase__ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" )
lowercase__ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" )
lowercase__ = pipe.to("cuda" )
lowercase__ = "Spiderman is surfing"
lowercase__ = torch.Generator(device="cpu" ).manual_seed(0 )
lowercase__ = pipe(UpperCAmelCase_ ,generator=UpperCAmelCase_ ,num_inference_steps=2 ,output_type="pt" ).frames
lowercase__ = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5E-2
| 539
| 1
|
'''simple docstring'''
import logging
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from accelerate.utils.imports import (
is_abit_bnb_available,
is_abit_bnb_available,
is_bnb_available,
)
from ..big_modeling import dispatch_model, init_empty_weights
from .dataclasses import BnbQuantizationConfig
from .modeling import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_weight,
set_module_tensor_to_device,
)
if is_bnb_available():
import bitsandbytes as bnb
from copy import deepcopy
__UpperCAmelCase = logging.getLogger(__name__)
def _snake_case ( A , A , A = None , A = None , A = None , A = None , A = None , A = False , ) -> Union[str, Any]:
lowerCAmelCase__ = bnb_quantization_config.load_in_abit
lowerCAmelCase__ = bnb_quantization_config.load_in_abit
if load_in_abit and not is_abit_bnb_available():
raise ImportError(
'''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,'''
''' make sure you have the latest version of `bitsandbytes` installed.''' )
if load_in_abit and not is_abit_bnb_available():
raise ValueError(
'''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,'''
'''make sure you have the latest version of `bitsandbytes` installed.''' )
lowerCAmelCase__ = []
# custom device map
if isinstance(A , A ) and len(device_map.keys() ) > 1:
lowerCAmelCase__ = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
lowerCAmelCase__ = get_keys_to_not_convert(A )
# add cpu modules to skip modules only for 4-bit modules
if load_in_abit:
bnb_quantization_config.skip_modules.extend(A )
lowerCAmelCase__ = bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fpaa_modules is None:
lowerCAmelCase__ = []
lowerCAmelCase__ = bnb_quantization_config.keep_in_fpaa_modules
modules_to_not_convert.extend(A )
# compatibility with peft
lowerCAmelCase__ = load_in_abit
lowerCAmelCase__ = load_in_abit
lowerCAmelCase__ = get_parameter_device(A )
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
'''It is not recommended to quantize a loaded model. '''
'''The model should be instantiated under the `init_empty_weights` context manager.''' )
lowerCAmelCase__ = replace_with_bnb_layers(A , A , modules_to_not_convert=A )
# convert param to the right dtype
lowerCAmelCase__ = bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ):
param.to(torch.floataa )
if param.dtype != torch.floataa:
lowerCAmelCase__ = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' )
lowerCAmelCase__ = getattr(A , A , A )
if param is not None:
param.to(torch.floataa )
elif torch.is_floating_point(A ):
param.to(A )
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device() )
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device() )
else:
raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' )
logger.info(
F"""The model device type is {model_device.type}. However, cuda is needed for quantization."""
'''We move the model to cuda.''' )
return model
elif weights_location is None:
raise RuntimeError(
F"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ )
else:
with init_empty_weights():
lowerCAmelCase__ = replace_with_bnb_layers(
A , A , modules_to_not_convert=A )
lowerCAmelCase__ = get_quantized_model_device_map(
A , A , A , max_memory=A , no_split_module_classes=A , )
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
lowerCAmelCase__ = True
lowerCAmelCase__ = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] )
load_checkpoint_in_model(
A , A , A , dtype=bnb_quantization_config.torch_dtype , offload_folder=A , offload_state_dict=A , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , )
return dispatch_model(A , device_map=A , offload_dir=A )
def _snake_case ( A , A , A=None , A=None , A=None ) -> List[Any]:
if device_map is None:
if torch.cuda.is_available():
lowerCAmelCase__ = {'''''': torch.cuda.current_device()}
else:
raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' )
logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' )
if isinstance(A , A ):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
'''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or '''
'''\'sequential\'.''' )
lowerCAmelCase__ = {}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules )
} )
special_dtypes.update(
{
name: torch.floataa
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules )
} )
lowerCAmelCase__ = {}
lowerCAmelCase__ = special_dtypes
lowerCAmelCase__ = no_split_module_classes
lowerCAmelCase__ = bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
lowerCAmelCase__ = get_balanced_memory(
A , low_zero=(device_map == '''balanced_low_0''') , max_memory=A , **A , )
lowerCAmelCase__ = max_memory
lowerCAmelCase__ = infer_auto_device_map(A , **A )
if isinstance(A , A ):
# check if don't have any quantized module on the cpu
lowerCAmelCase__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules
lowerCAmelCase__ = {
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_abit:
raise ValueError(
'''
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
these modules in `torch_dtype`, you need to pass a custom `device_map` to
`load_and_quantize_model`. Check
https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk
for more details.
''' )
else:
logger.info(
'''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' )
del device_map_without_some_modules
return device_map
def _snake_case ( A , A , A=None , A=None ) -> Any:
if modules_to_not_convert is None:
lowerCAmelCase__ = []
lowerCAmelCase__ , lowerCAmelCase__ = _replace_with_bnb_layers(
A , A , A , A )
if not has_been_replaced:
logger.warning(
'''You are loading your model in 8bit or 4bit but no linear modules were found in your model.'''
''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.'''
''' Please double check your model architecture, or submit an issue on github if you think this is'''
''' a bug.''' )
return model
def _snake_case ( A , A , A=None , A=None , ) -> Optional[Any]:
lowerCAmelCase__ = False
for name, module in model.named_children():
if current_key_name is None:
lowerCAmelCase__ = []
current_key_name.append(A )
if isinstance(A , nn.Linear ) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
lowerCAmelCase__ = '''.'''.join(A )
lowerCAmelCase__ = True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
lowerCAmelCase__ = False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_abit:
lowerCAmelCase__ = bnb.nn.LinearabitLt(
module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=A , threshold=bnb_quantization_config.llm_inta_threshold , )
elif bnb_quantization_config.load_in_abit:
lowerCAmelCase__ = bnb.nn.Linearabit(
module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , )
else:
raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' )
lowerCAmelCase__ = module.weight.data
if module.bias is not None:
lowerCAmelCase__ = module.bias.data
bnb_module.requires_grad_(A )
setattr(A , A , A )
lowerCAmelCase__ = True
if len(list(module.children() ) ) > 0:
lowerCAmelCase__ , lowerCAmelCase__ = _replace_with_bnb_layers(
A , A , A , A )
lowerCAmelCase__ = has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def _snake_case ( A ) -> Tuple:
# Create a copy of the model
with init_empty_weights():
lowerCAmelCase__ = deepcopy(A ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
lowerCAmelCase__ = find_tied_parameters(A )
# For compatibility with Accelerate < 0.18
if isinstance(A , A ):
lowerCAmelCase__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
lowerCAmelCase__ = sum(A , [] )
lowerCAmelCase__ = len(A ) > 0
# Check if it is a base model
lowerCAmelCase__ = False
if hasattr(A , '''base_model_prefix''' ):
lowerCAmelCase__ = not hasattr(A , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
lowerCAmelCase__ = list(model.named_children() )
lowerCAmelCase__ = [list_modules[-1][0]]
# add last module together with tied weights
lowerCAmelCase__ = set(A ) - set(A )
lowerCAmelCase__ = list(set(A ) ) + list(A )
# remove ".weight" from the keys
lowerCAmelCase__ = ['''.weight''', '''.bias''']
lowerCAmelCase__ = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
lowerCAmelCase__ = name.replace(A , '''''' )
filtered_module_names.append(A )
return filtered_module_names
def _snake_case ( A ) -> Optional[int]:
for m in model.modules():
if isinstance(A , bnb.nn.Linearabit ):
return True
return False
def _snake_case ( A ) -> Union[str, Any]:
return next(parameter.parameters() ).device
def _snake_case ( A , A , A , A , A , A , A ) -> Any:
# if it is not quantized, we quantize and offload the quantized weights and the SCB stats
if fpaa_statistics is None:
set_module_tensor_to_device(A , A , 0 , dtype=A , value=A )
lowerCAmelCase__ = param_name
lowerCAmelCase__ = model
if "." in tensor_name:
lowerCAmelCase__ = tensor_name.split('''.''' )
for split in splits[:-1]:
lowerCAmelCase__ = getattr(A , A )
if new_module is None:
raise ValueError(F"""{module} has no attribute {split}.""" )
lowerCAmelCase__ = new_module
lowerCAmelCase__ = splits[-1]
# offload weights
lowerCAmelCase__ = False
offload_weight(module._parameters[tensor_name] , A , A , index=A )
if hasattr(module._parameters[tensor_name] , '''SCB''' ):
offload_weight(
module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , A , index=A , )
else:
offload_weight(A , A , A , index=A )
offload_weight(A , param_name.replace('''weight''' , '''SCB''' ) , A , index=A )
set_module_tensor_to_device(A , A , '''meta''' , dtype=A , value=torch.empty(*param.size() ) )
| 90
|
'''simple docstring'''
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE : List[str] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"}
_SCREAMING_SNAKE_CASE : Tuple = {
"vocab_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt",
},
"emoji_file": {
"abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json",
},
}
_SCREAMING_SNAKE_CASE : int = {
"abeja/gpt-neox-japanese-2.7b": 2048,
}
def UpperCamelCase_( snake_case : List[Any] , snake_case : List[str] ):
'''simple docstring'''
with open(snake_case , "r" , encoding="utf-8" ) as f:
snake_case_ = json.loads(f.read() )
snake_case_ = collections.OrderedDict()
snake_case_ = collections.OrderedDict()
snake_case_ = collections.OrderedDict()
with open(snake_case , "r" , encoding="utf-8" ) as f:
snake_case_ = f.readlines()
snake_case_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token]
for idx, b in enumerate(snake_case ):
snake_case_ = b
snake_case_ = idx
for wd in b:
snake_case_ = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class _snake_case ( lowercase_ ):
lowerCAmelCase_ : Union[str, Any] = VOCAB_FILES_NAMES
lowerCAmelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase_ : int = ["input_ids", "attention_mask"]
def __init__( self , a__ , a__ , a__="<|endoftext|>" , a__="<|endoftext|>" , a__="<|startoftext|>" , a__="<|endoftext|>" , a__=False , **a__ , ) -> Optional[int]:
'''simple docstring'''
super().__init__(
unk_token=a__ , pad_token=a__ , bos_token=a__ , eos_token=a__ , do_clean_text=a__ , **a__ , )
if not os.path.isfile(a__ ):
raise ValueError(
F'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'
" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
if not os.path.isfile(a__ ):
raise ValueError(
F'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'
" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
snake_case_ = do_clean_text
snake_case_ , snake_case_ , snake_case_ , snake_case_ = load_vocab_and_emoji(a__ , a__ )
snake_case_ = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def lowerCAmelCase__ ( self ) -> Any:
'''simple docstring'''
return len(self.raw_vocab )
def lowerCAmelCase__ ( self ) -> str:
'''simple docstring'''
return dict(self.raw_vocab , **self.added_tokens_encoder )
def lowerCAmelCase__ ( self , a__ ) -> Any:
'''simple docstring'''
return self.subword_tokenizer.tokenize(a__ , clean=self.do_clean_text )
def lowerCAmelCase__ ( self , a__ ) -> List[Any]:
'''simple docstring'''
return self.vocab.get(a__ , self.vocab.get(self.unk_token ) )
def lowerCAmelCase__ ( self , a__ ) -> List[Any]:
'''simple docstring'''
return self.subword_tokenizer.convert_id_to_token(a__ )
def lowerCAmelCase__ ( self , a__ ) -> Any:
'''simple docstring'''
snake_case_ = "".join(a__ ).strip()
return out_string
def lowerCAmelCase__ ( self , a__ ) -> List[int]:
'''simple docstring'''
snake_case_ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(a__ , add_special_tokens=a__ ) + [self.eos_token_id] )
if len(a__ ) > self.model_max_length:
snake_case_ = input_ids[-self.model_max_length :]
return input_ids
def lowerCAmelCase__ ( self , a__ , a__ = None ) -> Tuple[str]:
'''simple docstring'''
snake_case_ = 0
if os.path.isdir(a__ ):
snake_case_ = os.path.join(
a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
snake_case_ = os.path.join(
a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] )
else:
snake_case_ = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"]
)
snake_case_ = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"]
)
with open(a__ , "w" , encoding="utf-8" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
" Please check that the vocabulary is not corrupted!" )
snake_case_ = token_index
writer.write(",".join(a__ ) + "\n" )
index += 1
with open(a__ , "w" , encoding="utf-8" ) as writer:
json.dump(self.emoji , a__ )
return vocab_file, emoji_file
class _snake_case ( lowercase_ ):
def __init__( self , a__ , a__ , a__ ) -> Any:
'''simple docstring'''
snake_case_ = vocab # same as swe
snake_case_ = ids_to_tokens # same as bpe
snake_case_ = emoji
snake_case_ = np.max([len(a__ ) for w in self.vocab.keys()] )
snake_case_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" )
snake_case_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" )
snake_case_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" )
snake_case_ = re.compile(
r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
snake_case_ = re.compile(
r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
snake_case_ = re.compile(
r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" )
snake_case_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
snake_case_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
snake_case_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} )
def __len__( self ) -> List[Any]:
'''simple docstring'''
return len(self.ids_to_tokens )
def lowerCAmelCase__ ( self , a__ ) -> str:
'''simple docstring'''
snake_case_ = self.content_repattera.sub("<URL>" , a__ )
snake_case_ = self.content_repattera.sub("<EMAIL>" , a__ )
snake_case_ = self.content_repattera.sub("<TEL>" , a__ )
snake_case_ = self.content_repattera.sub("<DATE>" , a__ )
snake_case_ = self.content_repattera.sub("<DATE>" , a__ )
snake_case_ = self.content_repattera.sub("<PRICE>" , a__ )
snake_case_ = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
snake_case_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" )
return content
def lowerCAmelCase__ ( self , a__ , a__=False ) -> Optional[Any]:
'''simple docstring'''
snake_case_ = text.replace(" " , "<SP>" )
snake_case_ = text.replace(" " , "<SP>" )
snake_case_ = text.replace("\r\n" , "<BR>" )
snake_case_ = text.replace("\n" , "<BR>" )
snake_case_ = text.replace("\r" , "<BR>" )
snake_case_ = text.replace("\t" , "<TAB>" )
snake_case_ = text.replace("—" , "ー" )
snake_case_ = text.replace("−" , "ー" )
for k, v in self.emoji["emoji"].items():
if k in text:
snake_case_ = text.replace(a__ , a__ )
if clean:
snake_case_ = self.clean_text(a__ )
def check_simbol(a__ ):
snake_case_ = x.encode()
if len(a__ ) == 1 and len(a__ ) == 2:
snake_case_ = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0XC_2_A_1 and c <= 0XC_2_B_F)
or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3)
or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F)
or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2)
):
return True
return False
def checkuae(a__ ):
snake_case_ = x.encode()
if len(a__ ) == 1 and len(a__ ) == 3:
snake_case_ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F:
return True
return False
snake_case_ = 0
snake_case_ = []
while pos < len(a__ ):
snake_case_ = min(len(a__ ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3
snake_case_ = [] # (token_id, token, pos)
for e in range(a__ , a__ , -1 ):
snake_case_ = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(a__ ) > 2:
snake_case_ = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(a__ ) > 0:
# the smallest token_id is adopted
snake_case_ , snake_case_ , snake_case_ = sorted(a__ , key=lambda a__ : x[0] )[0]
result.append(a__ )
snake_case_ = e
else:
snake_case_ = pos + 1
snake_case_ = text[pos:end]
if check_simbol(a__ ):
result.append("<KIGOU>" )
elif checkuae(a__ ):
result.append("<U2000U2BFF>" )
else:
for i in wd.encode("utf-8" ):
result.append("<|byte%d|>" % i )
snake_case_ = end
return result
def lowerCAmelCase__ ( self , a__ , a__="\n" ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ = []
snake_case_ = []
snake_case_ = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(a__ ) > 0:
words.append(bytearray(a__ ).decode("utf-8" , errors="replace" ) )
snake_case_ = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["emoji_inv"][word] )
elif word == "<SP>":
words.append(" " )
elif word == "<BR>":
words.append(a__ )
elif word == "<TAB>":
words.append("\t" )
elif word == "<BLOCK>":
words.append("▀" )
elif word == "<KIGOU>":
words.append("ǀ" )
elif word == "<U2000U2BFF>":
words.append("‖" )
else:
words.append(a__ )
if len(a__ ) > 0:
words.append(bytearray(a__ ).decode("utf-8" , errors="replace" ) )
snake_case_ = "".join(a__ )
return text
| 400
| 0
|
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
SCREAMING_SNAKE_CASE__ = 3
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
print('Generating primitive root of p' )
while True:
__a : Optional[int] = random.randrange(3 , lowerCamelCase_ )
if pow(lowerCamelCase_ , 2 , lowerCamelCase_ ) == 1:
continue
if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) == 1:
continue
return g
def UpperCAmelCase__ ( lowerCamelCase_ : int ):
print('Generating prime p...' )
__a : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_ ) # select large prime number.
__a : Any = primitive_root(lowerCamelCase_ ) # one primitive root on modulo p.
__a : Optional[int] = random.randrange(3 , lowerCamelCase_ ) # private_key -> have to be greater than 2 for safety.
__a : Optional[int] = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ )
__a : List[Any] = (key_size, e_a, e_a, p)
__a : str = (key_size, d)
return public_key, private_key
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : int ):
if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ):
print('\nWARNING:' )
print(
f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'''
'Use a different name or delete these files and re-run this program.' )
sys.exit()
__a , __a : Dict = generate_key(lowerCamelCase_ )
print(f'''\nWriting public key to file {name}_pubkey.txt...''' )
with open(f'''{name}_pubkey.txt''' , 'w' ) as fo:
fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' )
print(f'''Writing private key to file {name}_privkey.txt...''' )
with open(f'''{name}_privkey.txt''' , 'w' ) as fo:
fo.write(f'''{private_key[0]},{private_key[1]}''' )
def UpperCAmelCase__ ( ):
print('Making key files...' )
make_key_files('elgamal' , 2_0_4_8 )
print('Key files generation successful' )
if __name__ == "__main__":
main()
| 577
|
import unittest
from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class _UpperCamelCase( __lowerCamelCase , unittest.TestCase ):
__SCREAMING_SNAKE_CASE : List[str] = XLNetTokenizer
__SCREAMING_SNAKE_CASE : str = XLNetTokenizerFast
__SCREAMING_SNAKE_CASE : Tuple = True
__SCREAMING_SNAKE_CASE : Tuple = True
def __lowerCAmelCase ( self : int ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__a : str = XLNetTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
tokenizer.sanitize_special_tokens()
tokenizer.save_pretrained(self.tmpdirname )
def __lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
__a : Tuple = '<s>'
__a : int = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
__a : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<unk>' )
self.assertEqual(vocab_keys[1] , '<s>' )
self.assertEqual(vocab_keys[-1] , '<eod>' )
self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 1_0_0_6 )
def __lowerCAmelCase ( self : Dict ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 )
def __lowerCAmelCase ( self : str ):
'''simple docstring'''
__a : Any = XLNetTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ )
__a : Dict = tokenizer.tokenize('This is a test' )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] )
__a : Optional[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
__a : Optional[Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(SCREAMING_SNAKE_CASE__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] )
__a : str = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def __lowerCAmelCase ( self : Any ):
'''simple docstring'''
__a : Union[str, Any] = XLNetTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ )
__a : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + '',
'i',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
'se',
'.',
] , )
self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['▁he', 'll', 'o'] )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
__a : Any = XLNetTokenizer(SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ )
__a : Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
SCREAMING_SNAKE_CASE__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
'se',
'.',
] , )
@slow
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
__a : str = XLNetTokenizer.from_pretrained('xlnet-base-cased' )
__a : List[str] = tokenizer.encode('sequence builders' , add_special_tokens=SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = tokenizer.encode('multi-sequence build' , add_special_tokens=SCREAMING_SNAKE_CASE__ )
__a : int = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ )
__a : Optional[int] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert encoded_sentence == text + [4, 3]
assert encoded_pair == text + [4] + text_a + [4, 3]
@slow
def __lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
__a : str = {'input_ids': [[1_7, 2_1_4_4_2, 2_7_0, 1_7, 1_0, 1_4_6_4_5, 3_1_8, 3_4, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 7_7_5_2, 2_2_0_1_8, 2_3, 2_1, 1_7, 4_5_4_6, 3_1_4_5, 7_8_7, 1_3, 3_3_5_2, 1_4_4_3_1, 1_3, 5_5_0_0, 1_1, 1_1_7_6, 5_8_0, 1_3, 1_6_8_1_9, 4_7_9_7, 2_3, 1_7, 1_0, 1_7_1_3_5, 6_5_8, 1_9, 4_5_7, 7_9_3_2, 1_3, 1_8_4, 1_9, 3_1_5_4, 1_7_1_3_5, 6_4_6_8, 1_9, 1_4_0_4, 1_2_2_6_9, 1_9, 4_2_2_9, 5_3_5_6, 1_6_2_6_4, 4_6, 1_9, 1_7, 2_0_5_4_5, 1_0_3_9_5, 9, 9, 9, 1_1, 2_8, 6_4_2_1, 9_5_3_1, 2_0_7_2_9, 1_7, 1_0, 3_5_3, 1_7_0_2_2, 1_1, 2_1, 6_4_2_1, 9_5_3_1, 1_6_9_4_9, 1_7, 1_0, 1_1_5_0_9, 7_5_3, 1_1, 3_3, 9_5, 2_4_2_1, 7_3_8_5, 9_5_6, 1_4_4_3_1, 2_6_2_6, 2_5, 8_4_2, 7_3_8_5, 4_8_3_6, 2_1, 1_4_2_9, 2_2_7_2, 9_8_5_5, 3_1_2_0, 1_6_1, 2_4_7_3_8, 1_9, 1_3_2_0_3, 6_5_8, 2_1_8, 7_8_7, 2_1, 4_3_0, 1_8_4_8_2, 8_4_7, 2_6_3_7, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2_2, 2_2_1_7_8, 2_7, 1_0_6_4, 2_2, 9_5_6, 1_3, 1_1_1_0_1, 1_4_2_9, 5_8_5_4, 2_4_3_1_3, 1_8_9_5_3, 4_0, 4_2_2, 2_4_3_6_6, 6_8, 1_7_5_8, 3_7, 1_0_4_8_3, 1_4_2_5_7, 3_1, 2_0_7, 2_6_3, 2_1, 2_0_3, 3_7_7_3, 2_5, 7_1, 9_7_3_5, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_2, 2_0_4_9, 3_4_4_2, 1_7, 1_3_8_9_4, 3_3_8_0, 2_3, 9_5, 1_8, 1_7_6_3_4, 2_2_8_8, 9, 4, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='xlnet-base-cased' , revision='c841166438c31ec7ca9a106dee7bb312b73ae511' , )
| 577
| 1
|
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : int ):
# prepare kernel
# the kernel size have to be odd
if (ksize % 2) == 0:
__lowerCAmelCase = ksize + 1
__lowerCAmelCase = np.zeros((ksize, ksize), dtype=np.floataa )
# each value
for y in range(lowerCAmelCase_ ):
for x in range(lowerCAmelCase_ ):
# distance from center
__lowerCAmelCase = x - ksize // 2
__lowerCAmelCase = y - ksize // 2
# degree to radiant
__lowerCAmelCase = theta / 180 * np.pi
__lowerCAmelCase = np.cos(_theta )
__lowerCAmelCase = np.sin(_theta )
# get kernel x
__lowerCAmelCase = cos_theta * px + sin_theta * py
# get kernel y
__lowerCAmelCase = -sin_theta * px + cos_theta * py
# fill kernel
__lowerCAmelCase = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
_snake_case : Any = imread('../image_data/lena.jpg')
# turn image in gray scale value
_snake_case : Union[str, Any] = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
_snake_case : Dict = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 120, 150]:
_snake_case : Any = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
_snake_case : int = out / out.max() * 255
_snake_case : int = out.astype(np.uinta)
imshow('Original', gray)
imshow('Gabor filter with 20x20 mask and 6 directions', out)
waitKey(0)
| 53
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def a_ ( lowerCAmelCase_ : str=None ):
if subparsers is not None:
__lowerCAmelCase = subparsers.add_parser('env' )
else:
__lowerCAmelCase = argparse.ArgumentParser('Accelerate env command' )
parser.add_argument(
'--config_file', default=lowerCAmelCase_, help='The config file to use for the default values in the launching script.' )
if subparsers is not None:
parser.set_defaults(func=lowerCAmelCase_ )
return parser
def a_ ( lowerCAmelCase_ : Optional[int] ):
__lowerCAmelCase = torch.__version__
__lowerCAmelCase = torch.cuda.is_available()
__lowerCAmelCase = is_xpu_available()
__lowerCAmelCase = is_npu_available()
__lowerCAmelCase = 'Not found'
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ):
__lowerCAmelCase = load_config_from_file(args.config_file ).to_dict()
__lowerCAmelCase = {
'`Accelerate` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'Numpy version': np.__version__,
'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""",
'PyTorch XPU available': str(lowerCAmelCase_ ),
'PyTorch NPU available': str(lowerCAmelCase_ ),
'System RAM': F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""",
}
if pt_cuda_available:
__lowerCAmelCase = torch.cuda.get_device_name()
print('\nCopy-and-paste the text below in your GitHub issue\n' )
print('\n'.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) )
print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' )
__lowerCAmelCase = (
'\n'.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] )
if isinstance(lowerCAmelCase_, lowerCAmelCase_ )
else F"""\t{accelerate_config}"""
)
print(lowerCAmelCase_ )
__lowerCAmelCase = accelerate_config
return info
def a_ ( ):
__lowerCAmelCase = env_command_parser()
__lowerCAmelCase = parser.parse_args()
env_command(lowerCAmelCase_ )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 53
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase : Any = {
"configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"],
"processing_layoutlmv2": ["LayoutLMv2Processor"],
"tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[Any] = ["LayoutLMv2TokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[Any] = ["LayoutLMv2FeatureExtractor"]
__lowerCAmelCase : Dict = ["LayoutLMv2ImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : Optional[Any] = [
"LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST",
"LayoutLMv2ForQuestionAnswering",
"LayoutLMv2ForSequenceClassification",
"LayoutLMv2ForTokenClassification",
"LayoutLMv2Layer",
"LayoutLMv2Model",
"LayoutLMv2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig
from .processing_layoutlmva import LayoutLMvaProcessor
from .tokenization_layoutlmva import LayoutLMvaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_layoutlmva import (
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaLayer,
LayoutLMvaModel,
LayoutLMvaPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 284
|
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCAmelCase : Optional[int] = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __lowerCAmelCase ( lowerCAmelCase_ ):
"""simple docstring"""
A__ : Dict = '''segformer'''
def __init__( self : Optional[Any] , _snake_case : List[str]=3 , _snake_case : Union[str, Any]=4 , _snake_case : str=[2, 2, 2, 2] , _snake_case : Dict=[8, 4, 2, 1] , _snake_case : List[Any]=[32, 64, 160, 256] , _snake_case : Dict=[7, 3, 3, 3] , _snake_case : List[Any]=[4, 2, 2, 2] , _snake_case : Tuple=[1, 2, 5, 8] , _snake_case : Optional[Any]=[4, 4, 4, 4] , _snake_case : Optional[int]="gelu" , _snake_case : Optional[int]=0.0 , _snake_case : Optional[int]=0.0 , _snake_case : int=0.1 , _snake_case : Any=0.02 , _snake_case : Optional[int]=0.1 , _snake_case : Union[str, Any]=1E-6 , _snake_case : Tuple=256 , _snake_case : str=255 , **_snake_case : Any , ):
super().__init__(**_snake_case )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
'''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be'''
''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , _snake_case , )
__lowercase : Any = num_channels
__lowercase : Optional[Any] = num_encoder_blocks
__lowercase : List[str] = depths
__lowercase : str = sr_ratios
__lowercase : List[str] = hidden_sizes
__lowercase : List[str] = patch_sizes
__lowercase : Dict = strides
__lowercase : Optional[int] = mlp_ratios
__lowercase : List[str] = num_attention_heads
__lowercase : Optional[int] = hidden_act
__lowercase : List[Any] = hidden_dropout_prob
__lowercase : Optional[Any] = attention_probs_dropout_prob
__lowercase : List[Any] = classifier_dropout_prob
__lowercase : str = initializer_range
__lowercase : Optional[int] = drop_path_rate
__lowercase : List[str] = layer_norm_eps
__lowercase : List[str] = decoder_hidden_size
__lowercase : Union[str, Any] = kwargs.get('''reshape_last_stage''' , _snake_case )
__lowercase : str = semantic_loss_ignore_index
class __lowerCAmelCase ( lowerCAmelCase_ ):
"""simple docstring"""
A__ : Union[str, Any] = version.parse('''1.11''' )
@property
def snake_case_ ( self : Dict ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def snake_case_ ( self : int ):
return 1E-4
@property
def snake_case_ ( self : List[Any] ):
return 12
| 284
| 1
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__UpperCamelCase : Dict = {
"""configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = [
"""MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegaForCausalLM""",
"""MegaForMaskedLM""",
"""MegaForMultipleChoice""",
"""MegaForQuestionAnswering""",
"""MegaForSequenceClassification""",
"""MegaForTokenClassification""",
"""MegaModel""",
"""MegaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 80
|
'''simple docstring'''
lowerCAmelCase_ : str = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowerCAmelCase_ : int = [{"type": "code", "content": INSTALL_CONTENT}]
lowerCAmelCase_ : Union[str, Any] = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 489
| 0
|
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[str] ,__A : str ,__A : Dict=3 ,__A : str=32 ,__A : int=3 ,__A : Union[str, Any]=10 ,__A : Optional[Any]=[10, 20, 30, 40] ,__A : List[str]=[1, 1, 2, 1] ,__A : Optional[int]=True ,__A : Optional[Any]=True ,__A : int="relu" ,__A : Union[str, Any]=3 ,__A : List[Any]=None ,) -> int:
_lowercase = parent
_lowercase = batch_size
_lowercase = image_size
_lowercase = num_channels
_lowercase = embeddings_size
_lowercase = hidden_sizes
_lowercase = depths
_lowercase = is_training
_lowercase = use_labels
_lowercase = hidden_act
_lowercase = num_labels
_lowercase = scope
_lowercase = len(__A )
def __UpperCAmelCase ( self : Optional[Any] ) -> Any:
_lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowercase = self.get_config()
return config, pixel_values
def __UpperCAmelCase ( self : Any ) -> int:
return RegNetConfig(
num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,)
def __UpperCAmelCase ( self : Tuple ,__A : Any ,__A : Union[str, Any] ) -> List[Any]:
_lowercase = FlaxRegNetModel(config=__A )
_lowercase = model(__A )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def __UpperCAmelCase ( self : List[Any] ,__A : Optional[int] ,__A : Dict ) -> Any:
_lowercase = self.num_labels
_lowercase = FlaxRegNetForImageClassification(config=__A )
_lowercase = model(__A )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self : Tuple ) -> Any:
_lowercase = self.prepare_config_and_inputs()
_lowercase , _lowercase = config_and_inputs
_lowercase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class A_ ( UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = False
SCREAMING_SNAKE_CASE_ : Any = False
SCREAMING_SNAKE_CASE_ : Union[str, Any] = False
def __UpperCAmelCase ( self : Dict ) -> None:
_lowercase = FlaxRegNetModelTester(self )
_lowercase = ConfigTester(self ,config_class=__A ,has_text_modality=__A )
def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __UpperCAmelCase ( self : Optional[int] ) -> Any:
return
def __UpperCAmelCase ( self : Dict ) -> int:
_lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def __UpperCAmelCase ( self : Optional[Any] ) -> Any:
_lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
@unittest.skip(reason='RegNet does not use inputs_embeds' )
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
pass
@unittest.skip(reason='RegNet does not support input and output embeddings' )
def __UpperCAmelCase ( self : Tuple ) -> Any:
pass
def __UpperCAmelCase ( self : Dict ) -> List[str]:
_lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase = model_class(__A )
_lowercase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowercase = [*signature.parameters.keys()]
_lowercase = ['pixel_values']
self.assertListEqual(arg_names[:1] ,__A )
def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]:
def check_hidden_states_output(__A : Optional[Any] ,__A : Optional[int] ,__A : str ):
_lowercase = model_class(__A )
_lowercase = model(**self._prepare_for_class(__A ,__A ) )
_lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowercase = self.model_tester.num_stages
self.assertEqual(len(__A ) ,expected_num_stages + 1 )
_lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase = True
check_hidden_states_output(__A ,__A ,__A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowercase = True
check_hidden_states_output(__A ,__A ,__A )
def __UpperCAmelCase ( self : Optional[Any] ) -> int:
_lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_lowercase = self._prepare_for_class(__A ,__A )
_lowercase = model_class(__A )
@jax.jit
def model_jitted(__A : Any ,**__A : Union[str, Any] ):
return model(pixel_values=__A ,**__A )
with self.subTest('JIT Enabled' ):
_lowercase = model_jitted(**__A ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
_lowercase = model_jitted(**__A ).to_tuple()
self.assertEqual(len(__A ) ,len(__A ) )
for jitted_output, output in zip(__A ,__A ):
self.assertEqual(jitted_output.shape ,output.shape )
def SCREAMING_SNAKE_CASE__ ( ) -> str:
_lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_flax
class A_ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __UpperCAmelCase ( self : str ) -> Any:
return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None
@slow
def __UpperCAmelCase ( self : Optional[Any] ) -> Any:
_lowercase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' )
_lowercase = self.default_image_processor
_lowercase = prepare_img()
_lowercase = image_processor(images=__A ,return_tensors='np' )
_lowercase = model(**__A )
# verify the logits
_lowercase = (1, 1000)
self.assertEqual(outputs.logits.shape ,__A )
_lowercase = jnp.array([-0.4180, -1.5051, -3.4836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,__A ,atol=1e-4 ) )
| 707
|
snake_case = """0.18.2"""
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 535
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__UpperCAmelCase = {"tokenization_byt5": ["ByT5Tokenizer"]}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 329
|
'''simple docstring'''
def lowerCAmelCase_ ( __A : int = 50 ):
'''simple docstring'''
snake_case: Dict = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(F'{solution() = }')
| 329
| 1
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class a ( _a , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase = RoCBertTokenizer
__UpperCAmelCase = None
__UpperCAmelCase = False
__UpperCAmelCase = True
__UpperCAmelCase = filter_non_english
def __magic_name__ ( self : Union[str, Any] ):
'''simple docstring'''
super().setUp()
snake_case__ : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d''']
snake_case__ : Any = {}
snake_case__ : List[Any] = {}
for i, value in enumerate(_A ):
snake_case__ : List[Any] = i
snake_case__ : List[str] = i
snake_case__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
snake_case__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] )
snake_case__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer:
json.dump(_A , _A , ensure_ascii=_A )
with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer:
json.dump(_A , _A , ensure_ascii=_A )
def __magic_name__ ( self : Optional[int] ):
'''simple docstring'''
snake_case__ : List[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
snake_case__ : str = tokenizer.tokenize('''你好[SEP]你是谁''' )
self.assertListEqual(_A , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(_A ) , [5, 6, 2, 5, 7, 8] )
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(_A ) , [5, 6, 2, 5, 7, 8] )
def __magic_name__ ( self : Optional[Any] ):
'''simple docstring'''
snake_case__ : List[Any] = RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __magic_name__ ( self : Any ):
'''simple docstring'''
snake_case__ : int = RoCBertBasicTokenizer(do_lower_case=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __magic_name__ ( self : List[Any] ):
'''simple docstring'''
snake_case__ : str = RoCBertBasicTokenizer(do_lower_case=_A , strip_accents=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __magic_name__ ( self : Dict ):
'''simple docstring'''
snake_case__ : Dict = RoCBertBasicTokenizer(do_lower_case=_A , strip_accents=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __magic_name__ ( self : str ):
'''simple docstring'''
snake_case__ : str = RoCBertBasicTokenizer(do_lower_case=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __magic_name__ ( self : Optional[int] ):
'''simple docstring'''
snake_case__ : Tuple = RoCBertBasicTokenizer(do_lower_case=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __magic_name__ ( self : int ):
'''simple docstring'''
snake_case__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=_A , strip_accents=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __magic_name__ ( self : int ):
'''simple docstring'''
snake_case__ : Dict = RoCBertBasicTokenizer(do_lower_case=_A , strip_accents=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __magic_name__ ( self : int ):
'''simple docstring'''
snake_case__ : Any = RoCBertBasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __magic_name__ ( self : List[str] ):
'''simple docstring'''
snake_case__ : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
snake_case__ : str = {}
for i, token in enumerate(_A ):
snake_case__ : List[str] = i
snake_case__ : Optional[int] = RoCBertWordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def __magic_name__ ( self : Dict ):
'''simple docstring'''
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __magic_name__ ( self : Tuple ):
'''simple docstring'''
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __magic_name__ ( self : Union[str, Any] ):
'''simple docstring'''
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def __magic_name__ ( self : Dict ):
'''simple docstring'''
snake_case__ : Optional[int] = self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
if self.test_rust_tokenizer:
snake_case__ : Dict = self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
def __magic_name__ ( self : Union[str, Any] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A )
snake_case__ : List[Any] = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence."""
snake_case__ : Union[str, Any] = tokenizer_r.encode_plus(
_A , return_attention_mask=_A , return_token_type_ids=_A , return_offsets_mapping=_A , add_special_tokens=_A , )
snake_case__ : Dict = tokenizer_r.do_lower_case if hasattr(_A , '''do_lower_case''' ) else False
snake_case__ : Union[str, Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''Allen'''),
((2_1, 2_3), '''##NL'''),
((2_3, 2_4), '''##P'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 1_5), tokenizer_r.mask_token),
((1_6, 2_1), '''allen'''),
((2_1, 2_3), '''##nl'''),
((2_3, 2_4), '''##p'''),
((2_5, 3_3), '''sentence'''),
((3_3, 3_4), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def __magic_name__ ( self : List[str] ):
'''simple docstring'''
snake_case__ : Dict = ['''的''', '''人''', '''有''']
snake_case__ : Tuple = ''''''.join(_A )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
snake_case__ : Dict = True
snake_case__ : List[Any] = self.tokenizer_class.from_pretrained(_A , **_A )
snake_case__ : str = self.rust_tokenizer_class.from_pretrained(_A , **_A )
snake_case__ : int = tokenizer_p.encode(_A , add_special_tokens=_A )
snake_case__ : str = tokenizer_r.encode(_A , add_special_tokens=_A )
snake_case__ : str = tokenizer_r.convert_ids_to_tokens(_A )
snake_case__ : str = tokenizer_p.convert_ids_to_tokens(_A )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(_A , _A )
self.assertListEqual(_A , _A )
snake_case__ : Tuple = False
snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A )
snake_case__ : Tuple = self.tokenizer_class.from_pretrained(_A , **_A )
snake_case__ : int = tokenizer_r.encode(_A , add_special_tokens=_A )
snake_case__ : str = tokenizer_p.encode(_A , add_special_tokens=_A )
snake_case__ : str = tokenizer_r.convert_ids_to_tokens(_A )
snake_case__ : List[str] = tokenizer_p.convert_ids_to_tokens(_A )
# it is expected that only the first Chinese character is not preceded by "##".
snake_case__ : Union[str, Any] = [
F"""##{token}""" if idx != 0 else token for idx, token in enumerate(_A )
]
self.assertListEqual(_A , _A )
self.assertListEqual(_A , _A )
@slow
def __magic_name__ ( self : Optional[Any] ):
'''simple docstring'''
snake_case__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file )
snake_case__ : Optional[Any] = tokenizer.encode('''你好''' , add_special_tokens=_A )
snake_case__ : Tuple = tokenizer.encode('''你是谁''' , add_special_tokens=_A )
snake_case__ : int = tokenizer.build_inputs_with_special_tokens(_A )
snake_case__ : Any = tokenizer.build_inputs_with_special_tokens(_A , _A )
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def __magic_name__ ( self : Any ):
'''simple docstring'''
snake_case__ : Any = self.get_tokenizers(do_lower_case=_A )
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}""" ):
snake_case__ : Any = '''你好,你是谁'''
snake_case__ : Optional[Any] = tokenizer.tokenize(_A )
snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(_A )
snake_case__ : Dict = tokenizer.convert_tokens_to_shape_ids(_A )
snake_case__ : str = tokenizer.convert_tokens_to_pronunciation_ids(_A )
snake_case__ : str = tokenizer.prepare_for_model(
_A , _A , _A , add_special_tokens=_A )
snake_case__ : Union[str, Any] = tokenizer.encode_plus(_A , add_special_tokens=_A )
self.assertEqual(_A , _A )
| 714
|
'''simple docstring'''
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def _a ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] ):
"""simple docstring"""
snake_case__ : Any = BigBirdConfig.from_json_file(__lowerCAmelCase )
print(F"""Building PyTorch model from configuration: {config}""" )
if is_trivia_qa:
snake_case__ : str = BigBirdForQuestionAnswering(__lowerCAmelCase )
else:
snake_case__ : Tuple = BigBirdForPreTraining(__lowerCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(__lowerCAmelCase , __lowerCAmelCase , is_trivia_qa=__lowerCAmelCase )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(__lowerCAmelCase )
if __name__ == "__main__":
lowerCAmelCase__ : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--big_bird_config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained BERT model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head."""
)
lowerCAmelCase__ : Optional[int] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 502
| 0
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
snake_case__ : int = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
snake_case__ : Union[str, Any] = (
{
'''feature-extraction''': TFMobileBertModel,
'''fill-mask''': TFMobileBertForMaskedLM,
'''question-answering''': TFMobileBertForQuestionAnswering,
'''text-classification''': TFMobileBertForSequenceClassification,
'''token-classification''': TFMobileBertForTokenClassification,
'''zero-shot''': TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case__ : Dict = False
snake_case__ : Optional[int] = False
def a_ ( self , a__ , a__ , a__=False ):
__SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(a__ , a__ , return_labels=a__ )
if return_labels:
if model_class in get_values(a__ ):
__SCREAMING_SNAKE_CASE : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.02 , a__=3 , a__=4 , a__=None , ):
__SCREAMING_SNAKE_CASE : Tuple = parent
__SCREAMING_SNAKE_CASE : str = batch_size
__SCREAMING_SNAKE_CASE : int = seq_length
__SCREAMING_SNAKE_CASE : Any = is_training
__SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask
__SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids
__SCREAMING_SNAKE_CASE : Dict = use_labels
__SCREAMING_SNAKE_CASE : List[Any] = vocab_size
__SCREAMING_SNAKE_CASE : str = hidden_size
__SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers
__SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads
__SCREAMING_SNAKE_CASE : Any = intermediate_size
__SCREAMING_SNAKE_CASE : List[str] = hidden_act
__SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob
__SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob
__SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings
__SCREAMING_SNAKE_CASE : int = type_vocab_size
__SCREAMING_SNAKE_CASE : Any = type_sequence_label_size
__SCREAMING_SNAKE_CASE : List[str] = initializer_range
__SCREAMING_SNAKE_CASE : Optional[int] = num_labels
__SCREAMING_SNAKE_CASE : Any = num_choices
__SCREAMING_SNAKE_CASE : List[str] = scope
__SCREAMING_SNAKE_CASE : Optional[int] = embedding_size
def a_ ( self ):
__SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__SCREAMING_SNAKE_CASE : Dict = None
if self.use_input_mask:
__SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__SCREAMING_SNAKE_CASE : Optional[Any] = None
if self.use_token_type_ids:
__SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__SCREAMING_SNAKE_CASE : List[str] = None
__SCREAMING_SNAKE_CASE : List[Any] = None
__SCREAMING_SNAKE_CASE : Any = None
if self.use_labels:
__SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
__SCREAMING_SNAKE_CASE : Optional[Any] = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ):
__SCREAMING_SNAKE_CASE : List[str] = TFMobileBertModel(config=a__ )
__SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ )
__SCREAMING_SNAKE_CASE : Any = [input_ids, input_mask]
__SCREAMING_SNAKE_CASE : str = model(a__ )
__SCREAMING_SNAKE_CASE : int = model(a__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ):
__SCREAMING_SNAKE_CASE : Tuple = TFMobileBertForMaskedLM(config=a__ )
__SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ):
__SCREAMING_SNAKE_CASE : str = TFMobileBertForNextSentencePrediction(config=a__ )
__SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__SCREAMING_SNAKE_CASE : Tuple = model(a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ):
__SCREAMING_SNAKE_CASE : Optional[Any] = TFMobileBertForPreTraining(config=a__ )
__SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__SCREAMING_SNAKE_CASE : Optional[int] = model(a__ )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ):
__SCREAMING_SNAKE_CASE : Any = self.num_labels
__SCREAMING_SNAKE_CASE : Optional[int] = TFMobileBertForSequenceClassification(config=a__ )
__SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__SCREAMING_SNAKE_CASE : Dict = model(a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ):
__SCREAMING_SNAKE_CASE : List[Any] = self.num_choices
__SCREAMING_SNAKE_CASE : int = TFMobileBertForMultipleChoice(config=a__ )
__SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) )
__SCREAMING_SNAKE_CASE : Any = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) )
__SCREAMING_SNAKE_CASE : List[str] = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) )
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
__SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ):
__SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels
__SCREAMING_SNAKE_CASE : int = TFMobileBertForTokenClassification(config=a__ )
__SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__SCREAMING_SNAKE_CASE : Any = model(a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ):
__SCREAMING_SNAKE_CASE : Dict = TFMobileBertForQuestionAnswering(config=a__ )
__SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
__SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a_ ( self ):
__SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs()
(
(
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) , (
__SCREAMING_SNAKE_CASE
) ,
) : Union[str, Any] = config_and_inputs
__SCREAMING_SNAKE_CASE : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def a_ ( self ):
__SCREAMING_SNAKE_CASE : int = TFMobileBertModelTest.TFMobileBertModelTester(self )
__SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=a__ , hidden_size=37 )
def a_ ( self ):
self.config_tester.run_common_tests()
def a_ ( self ):
__SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*a__ )
def a_ ( self ):
__SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*a__ )
def a_ ( self ):
__SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*a__ )
def a_ ( self ):
__SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*a__ )
def a_ ( self ):
__SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*a__ )
def a_ ( self ):
__SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*a__ )
def a_ ( self ):
__SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*a__ )
def a_ ( self ):
__SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*a__ )
@slow
def a_ ( self ):
# for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["google/mobilebert-uncased"]:
__SCREAMING_SNAKE_CASE : Any = TFMobileBertModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
@require_tf
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def a_ ( self ):
__SCREAMING_SNAKE_CASE : List[str] = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" )
__SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] )
__SCREAMING_SNAKE_CASE : str = model(a__ )[0]
__SCREAMING_SNAKE_CASE : Dict = [1, 6, 30522]
self.assertEqual(output.shape , a__ )
__SCREAMING_SNAKE_CASE : str = tf.constant(
[
[
[-4.5919547, -9.248295, -9.645256],
[-6.7306175, -6.440284, -6.6052837],
[-7.2743506, -6.7847915, -6.024673],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-4 )
| 211
|
'''simple docstring'''
import comet # From: unbabel-comet
import torch
import datasets
lowercase = datasets.logging.get_logger(__name__)
lowercase = '''\
@inproceedings{rei-EtAl:2020:WMT,
author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},
title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},
booktitle = {Proceedings of the Fifth Conference on Machine Translation},
month = {November},
year = {2020},
address = {Online},
publisher = {Association for Computational Linguistics},
pages = {909--918},
}
@inproceedings{rei-etal-2020-comet,
title = "{COMET}: A Neural Framework for {MT} Evaluation",
author = "Rei, Ricardo and
Stewart, Craig and
Farinha, Ana C and
Lavie, Alon",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",
pages = "2685--2702",
}
'''
lowercase = '''\
Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).
With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.
See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.
'''
lowercase = '''
COMET score.
Args:
`sources` (list of str): Source sentences
`predictions` (list of str): candidate translations
`references` (list of str): reference translations
`cuda` (bool): If set to True, runs COMET using GPU
`show_progress` (bool): Shows progress
`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.
Returns:
`samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.
`scores`: List of scores.
Examples:
>>> comet_metric = datasets.load_metric(\'comet\')
>>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use
>>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]
>>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]
>>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]
>>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)
>>> print([round(v, 2) for v in results["scores"]])
[0.19, 0.92]
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def a_ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"sources": datasets.Value("string" , id="sequence" ),
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[
"https://github.com/Unbabel/COMET",
"https://www.aclweb.org/anthology/2020.emnlp-main.213/",
"http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6",
] , )
def a_ ( self , a__ ):
if self.config_name == "default":
__SCREAMING_SNAKE_CASE : Union[str, Any] = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) )
else:
__SCREAMING_SNAKE_CASE : Optional[Any] = comet.load_from_checkpoint(comet.download_model(self.config_name ) )
def a_ ( self , a__ , a__ , a__ , a__=None , a__=False ):
if gpus is None:
__SCREAMING_SNAKE_CASE : List[str] = 1 if torch.cuda.is_available() else 0
__SCREAMING_SNAKE_CASE : Any = {"src": sources, "mt": predictions, "ref": references}
__SCREAMING_SNAKE_CASE : int = [dict(zip(a__ , a__ ) ) for t in zip(*data.values() )]
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = self.scorer.predict(a__ , gpus=a__ , progress_bar=a__ )
return {"mean_score": mean_score, "scores": scores}
| 211
| 1
|
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_snake_case : str = get_tests_dir("fixtures/test_sentencepiece.model")
if is_sentencepiece_available():
import sentencepiece as sp
_snake_case : List[Any] = 5
_snake_case : Union[str, Any] = 10
@require_sentencepiece
@require_tokenizers
class a (_lowerCAmelCase , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : str = SpeechaTextTokenizer
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : str = True
def __snake_case ( self : Any ) -> Tuple:
super().setUp()
__snake_case : List[Any] = sp.SentencePieceProcessor()
spm_model.Load(lowerCamelCase )
__snake_case : int = ["<s>", "<pad>", "</s>", "<unk>"]
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(lowerCamelCase ) )]
__snake_case : int = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) )
__snake_case : Tuple = Path(self.tmpdirname )
save_json(lowerCamelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(lowerCamelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] )
__snake_case : Optional[int] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def __snake_case ( self : Dict ) -> Optional[int]:
__snake_case : Tuple = "<pad>"
__snake_case : Union[str, Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase )
def __snake_case ( self : str ) -> str:
__snake_case : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(lowerCamelCase ) , 1001 )
def __snake_case ( self : Tuple ) -> List[str]:
self.assertEqual(self.get_tokenizer().vocab_size , 1001 )
def __snake_case ( self : Dict ) -> Optional[int]:
__snake_case : Union[str, Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__snake_case : Optional[Any] = tokenizer.tokenize("This is a test" )
self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [289, 50, 14, 174, 386] , )
__snake_case : Tuple = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , )
__snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(lowerCamelCase )
self.assertListEqual(lowerCamelCase , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase )
self.assertListEqual(
lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , )
@slow
def __snake_case ( self : List[Any] ) -> str:
# fmt: off
__snake_case : List[Any] = {"input_ids": [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCamelCase , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , )
@require_sentencepiece
class a (unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : int = "valhalla/s2t_mustc_multilinguial_medium"
__UpperCAmelCase : str = "C'est trop cool"
__UpperCAmelCase : Optional[Any] = "Esto es genial"
@classmethod
def __snake_case ( cls : List[str] ) -> int:
__snake_case : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def __snake_case ( self : Any ) -> Optional[int]:
self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 )
def __snake_case ( self : str ) -> List[Any]:
self.assertEqual(self.tokenizer.vocab_size , 10000 )
def __snake_case ( self : List[Any] ) -> str:
self.assertIn(lowerCamelCase , self.tokenizer.all_special_ids )
__snake_case : Union[str, Any] = [ES_CODE, 4, 1601, 47, 7647, 2]
__snake_case : int = self.tokenizer.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase )
__snake_case : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase )
self.assertEqual(lowerCamelCase , lowerCamelCase )
self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase )
def __snake_case ( self : List[Any] ) -> str:
__snake_case : Any = "fr"
__snake_case : Union[str, Any] = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , lowerCamelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def __snake_case ( self : Any ) -> List[Any]:
__snake_case : Dict = "fr"
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__snake_case : List[str] = "es"
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 203
|
import unittest
from transformers import BertGenerationTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_snake_case : Optional[int] = "▁"
_snake_case : Tuple = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class a (_lowerCAmelCase , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = BertGenerationTokenizer
__UpperCAmelCase : List[Any] = False
__UpperCAmelCase : List[Any] = True
def __snake_case ( self : Optional[int] ) -> Optional[int]:
super().setUp()
__snake_case : Tuple = BertGenerationTokenizer(lowerCamelCase , keep_accents=lowerCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def __snake_case ( self : Dict ) -> int:
__snake_case : str = "<s>"
__snake_case : Any = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase )
def __snake_case ( self : str ) -> Optional[Any]:
__snake_case : int = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<unk>" )
self.assertEqual(vocab_keys[1] , "<s>" )
self.assertEqual(vocab_keys[-1] , "<pad>" )
self.assertEqual(len(lowerCamelCase ) , 1002 )
def __snake_case ( self : List[str] ) -> Optional[int]:
self.assertEqual(self.get_tokenizer().vocab_size , 1000 )
def __snake_case ( self : List[str] ) -> Union[str, Any]:
__snake_case : List[Any] = BertGenerationTokenizer(lowerCamelCase , keep_accents=lowerCamelCase )
__snake_case : int = tokenizer.tokenize("This is a test" )
self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [285, 46, 10, 170, 382] , )
__snake_case : str = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
lowerCamelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
__snake_case : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase )
self.assertListEqual(
lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
__snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase )
self.assertListEqual(
lowerCamelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
@cached_property
def __snake_case ( self : str ) -> List[Any]:
return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" )
@slow
def __snake_case ( self : Tuple ) -> Union[str, Any]:
__snake_case : Union[str, Any] = "Hello World!"
__snake_case : List[str] = [18536, 2260, 101]
self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) )
@slow
def __snake_case ( self : str ) -> Optional[int]:
__snake_case : List[Any] = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"
)
__snake_case : Any = [
871,
419,
358,
946,
991,
2521,
452,
358,
1357,
387,
7751,
3536,
112,
985,
456,
126,
865,
938,
5400,
5734,
458,
1368,
467,
786,
2462,
5246,
1159,
633,
865,
4519,
457,
582,
852,
2557,
427,
916,
508,
405,
34324,
497,
391,
408,
11342,
1244,
385,
100,
938,
985,
456,
574,
362,
12597,
3200,
3129,
1172,
]
self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) )
@require_torch
@slow
def __snake_case ( self : Optional[Any] ) -> str:
import torch
from transformers import BertGenerationConfig, BertGenerationEncoder
# Build sequence
__snake_case : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10]
__snake_case : Union[str, Any] = " ".join(lowerCamelCase )
__snake_case : Optional[int] = self.big_tokenizer.encode_plus(lowerCamelCase , return_tensors="pt" , return_token_type_ids=lowerCamelCase )
__snake_case : Optional[Any] = self.big_tokenizer.batch_encode_plus(
[sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=lowerCamelCase )
__snake_case : List[Any] = BertGenerationConfig()
__snake_case : Dict = BertGenerationEncoder(lowerCamelCase )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**lowerCamelCase )
model(**lowerCamelCase )
@slow
def __snake_case ( self : List[Any] ) -> List[Any]:
# fmt: off
__snake_case : Optional[Any] = {"input_ids": [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCamelCase , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
| 203
| 1
|
'''simple docstring'''
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
def __a(SCREAMING_SNAKE_CASE_ : Union[List, PIL.Image.Image, torch.Tensor] ):
'''simple docstring'''
warnings.warn(
"The preprocess method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor.preprocess instead" , SCREAMING_SNAKE_CASE_ , )
if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ):
return image
elif isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ):
_lowerCAmelCase = [image]
if isinstance(image[0] , PIL.Image.Image ):
_lowerCAmelCase , _lowerCAmelCase = image[0].size
_lowerCAmelCase , _lowerCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
_lowerCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image]
_lowerCAmelCase = np.concatenate(SCREAMING_SNAKE_CASE_ , axis=0 )
_lowerCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ).astype(np.floataa ) / 255.0
_lowerCAmelCase = image.transpose(0 , 3 , 1 , 2 )
_lowerCAmelCase = 2.0 * image - 1.0
_lowerCAmelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ )
elif isinstance(image[0] , torch.Tensor ):
_lowerCAmelCase = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 )
return image
def __a(SCREAMING_SNAKE_CASE_ : Union[List, PIL.Image.Image, torch.Tensor] ):
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ):
return mask
elif isinstance(SCREAMING_SNAKE_CASE_ , PIL.Image.Image ):
_lowerCAmelCase = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
_lowerCAmelCase , _lowerCAmelCase = mask[0].size
_lowerCAmelCase , _lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
_lowerCAmelCase = [np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask]
_lowerCAmelCase = np.concatenate(SCREAMING_SNAKE_CASE_ , axis=0 )
_lowerCAmelCase = mask.astype(np.floataa ) / 255.0
_lowerCAmelCase = 0
_lowerCAmelCase = 1
_lowerCAmelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ )
elif isinstance(mask[0] , torch.Tensor ):
_lowerCAmelCase = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 )
return mask
class lowerCAmelCase_ ( __magic_name__ ):
__lowerCamelCase : UNetaDModel
__lowerCamelCase : RePaintScheduler
def __init__( self , _lowerCAmelCase , _lowerCAmelCase ) -> Dict:
super().__init__()
self.register_modules(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase )
@torch.no_grad()
def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 250 , _lowerCAmelCase = 0.0 , _lowerCAmelCase = 10 , _lowerCAmelCase = 10 , _lowerCAmelCase = None , _lowerCAmelCase = "pil" , _lowerCAmelCase = True , ) -> Union[ImagePipelineOutput, Tuple]:
_lowerCAmelCase = image
_lowerCAmelCase = _preprocess_image(_lowerCAmelCase )
_lowerCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype )
_lowerCAmelCase = _preprocess_mask(_lowerCAmelCase )
_lowerCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype )
_lowerCAmelCase = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(_lowerCAmelCase )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
_lowerCAmelCase = original_image.shape
_lowerCAmelCase = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.device )
_lowerCAmelCase = eta
_lowerCAmelCase = self.scheduler.timesteps[0] + 1
_lowerCAmelCase = generator[0] if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
_lowerCAmelCase = self.unet(_lowerCAmelCase , _lowerCAmelCase ).sample
# compute previous image: x_t -> x_t-1
_lowerCAmelCase = self.scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
_lowerCAmelCase = self.scheduler.undo_step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
_lowerCAmelCase = t
_lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
_lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_lowerCAmelCase = self.numpy_to_pil(_lowerCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_lowerCAmelCase )
| 18
|
'''simple docstring'''
from __future__ import annotations
def __a(SCREAMING_SNAKE_CASE_ : list ):
'''simple docstring'''
if not nums:
raise ValueError("List is empty" )
return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 18
| 1
|
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
UpperCamelCase_ = {
'''vocab_file''': {
'''facebook/dpr-ctx_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt'''
),
'''facebook/dpr-ctx_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''facebook/dpr-ctx_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json'''
),
'''facebook/dpr-ctx_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json'''
),
},
}
UpperCamelCase_ = {
'''vocab_file''': {
'''facebook/dpr-question_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt'''
),
'''facebook/dpr-question_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''facebook/dpr-question_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json'''
),
'''facebook/dpr-question_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json'''
),
},
}
UpperCamelCase_ = {
'''vocab_file''': {
'''facebook/dpr-reader-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt'''
),
'''facebook/dpr-reader-multiset-base''': (
'''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''facebook/dpr-reader-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json'''
),
'''facebook/dpr-reader-multiset-base''': (
'''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json'''
),
},
}
UpperCamelCase_ = {
'''facebook/dpr-ctx_encoder-single-nq-base''': 512,
'''facebook/dpr-ctx_encoder-multiset-base''': 512,
}
UpperCamelCase_ = {
'''facebook/dpr-question_encoder-single-nq-base''': 512,
'''facebook/dpr-question_encoder-multiset-base''': 512,
}
UpperCamelCase_ = {
'''facebook/dpr-reader-single-nq-base''': 512,
'''facebook/dpr-reader-multiset-base''': 512,
}
UpperCamelCase_ = {
'''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True},
'''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True},
}
UpperCamelCase_ = {
'''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True},
'''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True},
}
UpperCamelCase_ = {
'''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True},
'''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True},
}
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Dict = VOCAB_FILES_NAMES
A__ : Dict = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ : Dict = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ : Dict = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
A__ : Optional[Any] = DPRContextEncoderTokenizer
class _snake_case ( __snake_case ):
'''simple docstring'''
A__ : Tuple = VOCAB_FILES_NAMES
A__ : str = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ : Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
A__ : Optional[Any] = DPRQuestionEncoderTokenizer
UpperCamelCase_ = collections.namedtuple(
'''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text''']
)
UpperCamelCase_ = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits'''])
UpperCamelCase_ = R'''
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `\'tf\'`: Return TensorFlow `tf.constant` objects.
- `\'pt\'`: Return PyTorch `torch.Tensor` objects.
- `\'np\'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer\'s default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Return:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
'''
@add_start_docstrings(__snake_case )
class _snake_case :
'''simple docstring'''
def __call__( self: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Optional[str] = None ,lowerCamelCase_: Optional[str] = None ,lowerCamelCase_: Union[bool, str] = False ,lowerCamelCase_: Union[bool, str] = False ,lowerCamelCase_: Optional[int] = None ,lowerCamelCase_: Optional[Union[str, TensorType]] = None ,lowerCamelCase_: Optional[bool] = None ,**lowerCamelCase_: Optional[Any] ,) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
lowerCamelCase_ ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,**lowerCamelCase_ ,)
elif titles is None or texts is None:
UpperCAmelCase_ : Tuple = titles if texts is None else texts
return super().__call__(
lowerCamelCase_ ,lowerCamelCase_ ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ ,max_length=lowerCamelCase_ ,return_tensors=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,**lowerCamelCase_ ,)
UpperCAmelCase_ : Any = titles if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else [titles]
UpperCAmelCase_ : Tuple = texts if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else [texts]
UpperCAmelCase_ : Optional[Any] = len(lowerCamelCase_ )
UpperCAmelCase_ : int = questions if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else [questions] * n_passages
assert len(lowerCamelCase_ ) == len(
lowerCamelCase_ ), F'''There should be as many titles than texts but got {len(lowerCamelCase_ )} titles and {len(lowerCamelCase_ )} texts.'''
UpperCAmelCase_ : int = super().__call__(lowerCamelCase_ ,lowerCamelCase_ ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ )["""input_ids"""]
UpperCAmelCase_ : str = super().__call__(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,padding=lowerCamelCase_ ,truncation=lowerCamelCase_ )["""input_ids"""]
UpperCAmelCase_ : Any = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(lowerCamelCase_ ,lowerCamelCase_ )
]
}
if return_attention_mask is not False:
UpperCAmelCase_ : Dict = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
UpperCAmelCase_ : List[str] = attention_mask
return self.pad(lowerCamelCase_ ,padding=lowerCamelCase_ ,max_length=lowerCamelCase_ ,return_tensors=lowerCamelCase_ )
def A__ ( self: int ,lowerCamelCase_: BatchEncoding ,lowerCamelCase_: DPRReaderOutput ,lowerCamelCase_: int = 16 ,lowerCamelCase_: int = 64 ,lowerCamelCase_: int = 4 ,) -> List[DPRSpanPrediction]:
UpperCAmelCase_ : Optional[int] = reader_input["""input_ids"""]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = reader_output[:3]
UpperCAmelCase_ : Optional[Any] = len(lowerCamelCase_ )
UpperCAmelCase_ : Optional[int] = sorted(range(lowerCamelCase_ ) ,reverse=lowerCamelCase_ ,key=relevance_logits.__getitem__ )
UpperCAmelCase_ : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
UpperCAmelCase_ : List[str] = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
UpperCAmelCase_ : str = sequence_ids.index(self.sep_token_id ,2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
UpperCAmelCase_ : List[Any] = sequence_ids.index(self.pad_token_id )
else:
UpperCAmelCase_ : Optional[int] = len(lowerCamelCase_ )
UpperCAmelCase_ : Dict = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] ,end_logits=end_logits[doc_id][passage_offset:sequence_len] ,max_answer_length=lowerCamelCase_ ,top_spans=lowerCamelCase_ ,)
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] ,relevance_score=relevance_logits[doc_id] ,doc_id=lowerCamelCase_ ,start_index=lowerCamelCase_ ,end_index=lowerCamelCase_ ,text=self.decode(sequence_ids[start_index : end_index + 1] ) ,) )
if len(lowerCamelCase_ ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def A__ ( self: Any ,lowerCamelCase_: List[int] ,lowerCamelCase_: List[int] ,lowerCamelCase_: int ,lowerCamelCase_: int ,) -> List[DPRSpanPrediction]:
UpperCAmelCase_ : Union[str, Any] = []
for start_index, start_score in enumerate(lowerCamelCase_ ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
UpperCAmelCase_ : Optional[int] = sorted(lowerCamelCase_ ,key=lambda lowerCamelCase_ : x[1] ,reverse=lowerCamelCase_ )
UpperCAmelCase_ : Optional[Any] = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, F'''Wrong span indices: [{start_index}:{end_index}]'''
UpperCAmelCase_ : Any = end_index - start_index + 1
assert length <= max_answer_length, F'''Span is too long: {length} > {max_answer_length}'''
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(lowerCamelCase_ ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(__snake_case )
class _snake_case ( __snake_case , __snake_case ):
'''simple docstring'''
A__ : int = VOCAB_FILES_NAMES
A__ : Tuple = READER_PRETRAINED_VOCAB_FILES_MAP
A__ : List[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ : List[str] = READER_PRETRAINED_INIT_CONFIGURATION
A__ : int = ["input_ids", "attention_mask"]
A__ : str = DPRReaderTokenizer
| 322
|
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
UpperCamelCase_ = HfApi()
UpperCamelCase_ = {}
# fmt: off
UpperCamelCase_ = torch.tensor([
-0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7,
1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9,
-1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9,
0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7
])
UpperCamelCase_ = torch.tensor([
-2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6,
1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8,
-2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8,
2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5
])
UpperCamelCase_ = torch.tensor([
-0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9,
-0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4,
-0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5,
0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3
])
UpperCamelCase_ = torch.tensor([
0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2,
-0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9,
0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5,
-0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5
])
UpperCamelCase_ = torch.tensor([
0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3,
-0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5,
0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9,
-0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6
])
UpperCamelCase_ = torch.tensor([
0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8,
-0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0,
0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3,
-0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1
])
UpperCamelCase_ = torch.tensor([
0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2,
-0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8,
0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4,
-0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0
])
UpperCamelCase_ = torch.tensor([
0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2,
-0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0,
0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6,
-0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3
])
UpperCamelCase_ = torch.tensor([
-1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0,
1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3,
-2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0,
1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1])
UpperCamelCase_ = torch.tensor([
-1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4,
0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1,
-2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9,
1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6
])
UpperCamelCase_ = torch.tensor([
-1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2,
0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7,
-2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1,
1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5
])
UpperCamelCase_ = torch.tensor([
-2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9,
1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1,
-3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1,
3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6
])
UpperCamelCase_ = torch.tensor([
-2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0,
1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8,
-2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5,
2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3
])
UpperCamelCase_ = torch.tensor([
-2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6,
1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8,
-3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0,
3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3
])
UpperCamelCase_ = torch.tensor([
-1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4,
1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1,
-2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9,
1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9
])
# fmt: on
UpperCamelCase_ = api.list_models(filter='''diffusers''')
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
UpperCamelCase_ = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1]
print(F"Started running {mod.modelId}!!!")
if mod.modelId.startswith('''CompVis'''):
UpperCamelCase_ = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''')
else:
UpperCamelCase_ = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
UpperCamelCase_ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
UpperCamelCase_ = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
UpperCamelCase_ = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3
)
print(F"{mod.modelId} has passed successfully!!!")
| 322
| 1
|
'''simple docstring'''
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class __snake_case ( __UpperCamelCase ,unittest.TestCase):
"""simple docstring"""
lowercase = PriorTransformer
lowercase = 'hidden_states'
@property
def __lowercase ( self : Dict ) -> Any:
lowerCAmelCase_ : List[Any] = 4
lowerCAmelCase_ : Optional[int] = 8
lowerCAmelCase_ : Optional[Any] = 7
lowerCAmelCase_ : Union[str, Any] = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase )
lowerCAmelCase_ : Optional[int] = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase )
lowerCAmelCase_ : int = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def __lowercase ( self : List[Any] , lowerCamelCase : Tuple=0 ) -> Any:
torch.manual_seed(lowerCamelCase )
lowerCAmelCase_ : Optional[int] = 4
lowerCAmelCase_ : Optional[Any] = 8
lowerCAmelCase_ : List[str] = 7
lowerCAmelCase_ : Any = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase )
lowerCAmelCase_ : Tuple = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase )
lowerCAmelCase_ : Dict = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def __lowercase ( self : Optional[int] ) -> List[Any]:
return (4, 8)
@property
def __lowercase ( self : Optional[Any] ) -> List[str]:
return (4, 8)
def __lowercase ( self : str ) -> List[Any]:
lowerCAmelCase_ : Any = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 4,
"""num_layers""": 2,
"""embedding_dim""": 8,
"""num_embeddings""": 7,
"""additional_embeddings""": 4,
}
lowerCAmelCase_ : str = self.dummy_input
return init_dict, inputs_dict
def __lowercase ( self : Any ) -> List[str]:
lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = PriorTransformer.from_pretrained(
"""hf-internal-testing/prior-dummy""" , output_loading_info=lowerCamelCase )
self.assertIsNotNone(lowerCamelCase )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(lowerCamelCase )
lowerCAmelCase_ : List[str] = model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def __lowercase ( self : List[str] ) -> Optional[Any]:
lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common()
lowerCAmelCase_ : List[Any] = self.model_class(**lowerCamelCase )
lowerCAmelCase_ : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : Tuple = [*signature.parameters.keys()]
lowerCAmelCase_ : Any = ["""hidden_states""", """timestep"""]
self.assertListEqual(arg_names[:2] , lowerCamelCase )
def __lowercase ( self : str ) -> Union[str, Any]:
lowerCAmelCase_ : Dict = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" )
lowerCAmelCase_ : Optional[int] = model.to(lowerCamelCase )
if hasattr(lowerCamelCase , """set_default_attn_processor""" ):
model.set_default_attn_processor()
lowerCAmelCase_ : Any = self.get_dummy_seed_input()
with torch.no_grad():
lowerCAmelCase_ : Optional[Any] = model(**lowerCamelCase )[0]
lowerCAmelCase_ : int = output[0, :5].flatten().cpu()
print(lowerCamelCase )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
lowerCAmelCase_ : str = torch.tensor([-1.3_436, -0.2_870, 0.7_538, 0.4_368, -0.0_239] )
self.assertTrue(torch_all_close(lowerCamelCase , lowerCamelCase , rtol=1E-2 ) )
@slow
class __snake_case ( unittest.TestCase):
"""simple docstring"""
def __lowercase ( self : Dict , lowerCamelCase : str=1 , lowerCamelCase : List[str]=7_68 , lowerCamelCase : Dict=77 , lowerCamelCase : Dict=0 ) -> Dict:
torch.manual_seed(lowerCamelCase )
lowerCAmelCase_ : Tuple = batch_size
lowerCAmelCase_ : int = embedding_dim
lowerCAmelCase_ : str = num_embeddings
lowerCAmelCase_ : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase )
lowerCAmelCase_ : List[str] = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase )
lowerCAmelCase_ : str = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def __lowercase ( self : List[Any] ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.5_861, 0.1_283, -0.0_931, 0.0_882, 0.4_476, 0.1_329, -0.0_498, 0.0_640]],
[37, [-0.4_913, 0.0_110, -0.0_483, 0.0_541, 0.4_954, -0.0_170, 0.0_354, 0.1_651]],
# fmt: on
] )
def __lowercase ( self : Any , lowerCamelCase : Any , lowerCamelCase : List[Any] ) -> List[Any]:
lowerCAmelCase_ : List[str] = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" )
model.to(lowerCamelCase )
lowerCAmelCase_ : str = self.get_dummy_seed_input(seed=lowerCamelCase )
with torch.no_grad():
lowerCAmelCase_ : List[str] = model(**lowerCamelCase )[0]
assert list(sample.shape ) == [1, 7_68]
lowerCAmelCase_ : Optional[Any] = sample[0, :8].flatten().cpu()
print(lowerCamelCase )
lowerCAmelCase_ : Optional[int] = torch.tensor(lowerCamelCase )
assert torch_all_close(lowerCamelCase , lowerCamelCase , atol=1E-3 )
| 275
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_a : List[str] = {
'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'],
'configuration_data2vec_text': [
'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Data2VecTextConfig',
'Data2VecTextOnnxConfig',
],
'configuration_data2vec_vision': [
'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP',
'Data2VecVisionConfig',
'Data2VecVisionOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a : Optional[Any] = [
'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST',
'Data2VecAudioForAudioFrameClassification',
'Data2VecAudioForCTC',
'Data2VecAudioForSequenceClassification',
'Data2VecAudioForXVector',
'Data2VecAudioModel',
'Data2VecAudioPreTrainedModel',
]
_a : str = [
'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST',
'Data2VecTextForCausalLM',
'Data2VecTextForMaskedLM',
'Data2VecTextForMultipleChoice',
'Data2VecTextForQuestionAnswering',
'Data2VecTextForSequenceClassification',
'Data2VecTextForTokenClassification',
'Data2VecTextModel',
'Data2VecTextPreTrainedModel',
]
_a : Tuple = [
'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST',
'Data2VecVisionForImageClassification',
'Data2VecVisionForMaskedImageModeling',
'Data2VecVisionForSemanticSegmentation',
'Data2VecVisionModel',
'Data2VecVisionPreTrainedModel',
]
if is_tf_available():
_a : Dict = [
'TFData2VecVisionForImageClassification',
'TFData2VecVisionForSemanticSegmentation',
'TFData2VecVisionModel',
'TFData2VecVisionPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
_a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 479
| 0
|
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __magic_name__ (lowercase__ , lowercase__ , unittest.TestCase ):
lowerCamelCase__ = IFInpaintingSuperResolutionPipeline
lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
lowerCamelCase__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} )
lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def __a ( self ) -> List[str]:
return self._get_superresolution_dummy_components()
def __a ( self , _a , _a=0 ) -> List[str]:
if str(UpperCAmelCase__ ).startswith("mps" ):
lowerCAmelCase_ = torch.manual_seed(UpperCAmelCase__ )
else:
lowerCAmelCase_ = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
lowerCAmelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ )
lowerCAmelCase_ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def __a ( self ) -> Optional[Any]:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def __a ( self ) -> Tuple:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def __a ( self ) -> Any:
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __a ( self ) -> Any:
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __a ( self ) -> Union[str, Any]:
self._test_save_load_local()
def __a ( self ) -> Tuple:
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 700
|
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __magic_name__ (unittest.TestCase ):
def __a ( self ) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __a ( self ) -> Dict:
lowerCAmelCase_ = 1
lowerCAmelCase_ = 3
lowerCAmelCase_ = (32, 32)
lowerCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a )
return image
@property
def __a ( self ) -> int:
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def __a ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def __a ( self ) -> int:
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(_a )
@property
def __a ( self ) -> List[str]:
def extract(*_a , **_a ):
class __magic_name__ :
def __init__( self ) -> List[str]:
lowerCAmelCase_ = torch.ones([0] )
def __a ( self , _a ) -> int:
self.pixel_values.to(_a )
return self
return Out()
return extract
def __a ( self ) -> Dict:
lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.dummy_cond_unet
lowerCAmelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , )
lowerCAmelCase_ = self.dummy_vae
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
lowerCAmelCase_ = StableDiffusionPipeline(
unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = "A painting of a squirrel eating a burger"
lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0]
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase_ = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ) -> Union[str, Any]:
lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.dummy_cond_unet
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a )
lowerCAmelCase_ = self.dummy_vae
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
lowerCAmelCase_ = StableDiffusionPipeline(
unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = "A painting of a squirrel eating a burger"
lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0]
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase_ = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ) -> Any:
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_a )
assert isinstance(_a , _a )
assert isinstance(pipe.scheduler , _a )
assert pipe.safety_checker is None
lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_a )
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(_a )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def __a ( self ) -> Any:
lowerCAmelCase_ = self.dummy_cond_unet
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a )
lowerCAmelCase_ = self.dummy_vae
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# put models in fp16
lowerCAmelCase_ = unet.half()
lowerCAmelCase_ = vae.half()
lowerCAmelCase_ = bert.half()
# make sure here that pndm scheduler skips prk
lowerCAmelCase_ = StableDiffusionPipeline(
unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = "A painting of a squirrel eating a burger"
lowerCAmelCase_ = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class __magic_name__ (unittest.TestCase ):
def __a ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self ) -> Any:
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a )
lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = (
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"
" children from bahnhof zoo, detailed "
)
lowerCAmelCase_ = 4003660346
lowerCAmelCase_ = 7
# without safety guidance (sld_guidance_scale = 0)
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ) -> Optional[Any]:
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a )
lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = "padme amidala taking a bath artwork, safe for work, no nudity"
lowerCAmelCase_ = 2734971755
lowerCAmelCase_ = 7
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ) -> int:
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = (
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."
" leyendecker"
)
lowerCAmelCase_ = 1044355234
lowerCAmelCase_ = 12
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 226
| 0
|
"""simple docstring"""
def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> list:
'''simple docstring'''
if bit_count < 0:
raise ValueError("""The given input must be positive""" )
# get the generated string sequence
__UpperCAmelCase : str = gray_code_sequence_string(UpperCAmelCase__ )
#
# convert them to integers
for i in range(len(UpperCAmelCase__ ) ):
__UpperCAmelCase : Union[str, Any] = int(sequence[i] , 2 )
return sequence
def lowerCamelCase ( _UpperCamelCase : Tuple ) -> list:
'''simple docstring'''
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__UpperCAmelCase : Dict = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__UpperCAmelCase : Union[str, Any] = gray_code_sequence_string(bit_count - 1 )
__UpperCAmelCase : Tuple = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__UpperCAmelCase : Union[str, Any] = '0' + smaller_sequence[i]
sequence.append(UpperCAmelCase__ )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__UpperCAmelCase : str = '1' + smaller_sequence[i]
sequence.append(UpperCAmelCase__ )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 139
|
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
A_ : Optional[Any] = data_utils.TransfoXLTokenizer
A_ : Union[str, Any] = data_utils.TransfoXLCorpus
A_ : Any = data_utils
A_ : Optional[Any] = data_utils
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]:
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(UpperCAmelCase__ , 'rb' ) as fp:
UpperCamelCase_: Union[str, Any] = pickle.load(UpperCAmelCase__ , encoding='latin1' )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file']
print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' )
UpperCamelCase_: Union[str, Any] = corpus.vocab.__dict__
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: str = corpus.__dict__
corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ )
UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CORPUS_NAME
print(F'''Save dataset to {pytorch_dataset_dump_path}''' )
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
UpperCamelCase_: Any = os.path.abspath(UpperCAmelCase__ )
UpperCamelCase_: Dict = os.path.abspath(UpperCAmelCase__ )
print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' )
# Initialise PyTorch model
if transfo_xl_config_file == "":
UpperCamelCase_: List[str] = TransfoXLConfig()
else:
UpperCamelCase_: Optional[int] = TransfoXLConfig.from_json_file(UpperCAmelCase__ )
print(F'''Building PyTorch model from configuration: {config}''' )
UpperCamelCase_: Union[str, Any] = TransfoXLLMHeadModel(UpperCAmelCase__ )
UpperCamelCase_: Tuple = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
# Save pytorch-model
UpperCamelCase_: str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
print(F'''Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}''' )
torch.save(model.state_dict() , UpperCAmelCase__ )
print(F'''Save configuration file to {os.path.abspath(UpperCAmelCase__ )}''' )
with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
A_ : int = argparse.ArgumentParser()
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the folder to store the PyTorch model or dataset/vocab.',
)
parser.add_argument(
'--tf_checkpoint_path',
default='',
type=str,
help='An optional path to a TensorFlow checkpoint path to be converted.',
)
parser.add_argument(
'--transfo_xl_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--transfo_xl_dataset_file',
default='',
type=str,
help='An optional dataset file to be converted in a vocabulary.',
)
A_ : Tuple = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 57
| 0
|
'''simple docstring'''
import baseaa
import io
import json
import os
from copy import deepcopy
from ..optimizer import AcceleratedOptimizer
from ..scheduler import AcceleratedScheduler
class SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Optional[int] , lowercase__ : Tuple ) ->Union[str, Any]:
'''simple docstring'''
if isinstance(lowercase__ , lowercase__ ):
# Don't modify user's data should they want to reuse it (e.g. in tests), because once we
# modified it, it will not be accepted here again, since `auto` values would have been overridden
_UpperCamelCase : Union[str, Any] = deepcopy(lowercase__ )
elif os.path.exists(lowercase__ ):
with io.open(lowercase__ , "r" , encoding="utf-8" ) as f:
_UpperCamelCase : Dict = json.load(lowercase__ )
else:
try:
_UpperCamelCase : List[str] = baseaa.urlsafe_baadecode(lowercase__ ).decode("utf-8" )
_UpperCamelCase : Union[str, Any] = json.loads(lowercase__ )
except (UnicodeDecodeError, AttributeError, ValueError):
raise ValueError(
f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' )
_UpperCamelCase : Union[str, Any] = config
self.set_stage_and_offload()
def snake_case__ ( self : Optional[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCamelCase : List[Any] = self.get_value("zero_optimization.stage" , -1 )
# offload
_UpperCamelCase : Tuple = False
if self.is_zeroa() or self.is_zeroa():
_UpperCamelCase : Optional[int] = set(["cpu", "nvme"] )
_UpperCamelCase : Tuple = set(
[
self.get_value("zero_optimization.offload_optimizer.device" ),
self.get_value("zero_optimization.offload_param.device" ),
] )
if len(offload_devices & offload_devices_valid ) > 0:
_UpperCamelCase : Tuple = True
def snake_case__ ( self : Tuple , lowercase__ : List[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCamelCase : int = self.config
# find the config node of interest if it exists
_UpperCamelCase : Optional[int] = ds_key_long.split("." )
_UpperCamelCase : List[str] = nodes.pop()
for node in nodes:
_UpperCamelCase : Optional[int] = config.get(lowercase__ )
if config is None:
return None, ds_key
return config, ds_key
def snake_case__ ( self : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : List[str]=None ) ->List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase : Dict = self.find_config_node(lowercase__ )
if config is None:
return default
return config.get(lowercase__ , lowercase__ )
def snake_case__ ( self : str , lowercase__ : Any , lowercase__ : Tuple=False ) ->int:
'''simple docstring'''
_UpperCamelCase : Dict = self.config
# find the config node of interest if it exists
_UpperCamelCase : Union[str, Any] = ds_key_long.split("." )
for node in nodes:
_UpperCamelCase : Union[str, Any] = config
_UpperCamelCase : Optional[int] = config.get(lowercase__ )
if config is None:
if must_exist:
raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' )
else:
return
# if found remove it
if parent_config is not None:
parent_config.pop(lowercase__ )
def snake_case__ ( self : List[str] , lowercase__ : int ) ->str:
'''simple docstring'''
_UpperCamelCase : int = self.get_value(lowercase__ )
return False if value is None else bool(lowercase__ )
def snake_case__ ( self : Optional[Any] , lowercase__ : Optional[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCamelCase : Union[str, Any] = self.get_value(lowercase__ )
return False if value is None else not bool(lowercase__ )
def snake_case__ ( self : Dict ) ->Tuple:
'''simple docstring'''
return self._stage == 2
def snake_case__ ( self : Any ) ->int:
'''simple docstring'''
return self._stage == 3
def snake_case__ ( self : Union[str, Any] ) ->List[str]:
'''simple docstring'''
return self._offload
class SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : List[Any] , lowercase__ : Dict ) ->Optional[int]:
'''simple docstring'''
_UpperCamelCase : Union[str, Any] = engine
def snake_case__ ( self : Optional[Any] , lowercase__ : int , **lowercase__ : Dict ) ->List[Any]:
'''simple docstring'''
self.engine.backward(lowercase__ , **lowercase__ )
# Deepspeed's `engine.step` performs the following operations:
# - gradient accumulation check
# - gradient clipping
# - optimizer step
# - zero grad
# - checking overflow
# - lr_scheduler step (only if engine.lr_scheduler is not None)
self.engine.step()
# and this plugin overrides the above calls with no-ops when Accelerate runs under
# Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple
# training loop that works transparently under many training regimes.
class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowercase__ : Optional[Any] ) ->Tuple:
'''simple docstring'''
super().__init__(lowercase__ , device_placement=lowercase__ , scaler=lowercase__ )
_UpperCamelCase : Dict = hasattr(self.optimizer , "overflow" )
def snake_case__ ( self : List[Any] , lowercase__ : Union[str, Any]=None ) ->List[str]:
'''simple docstring'''
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
def snake_case__ ( self : Tuple ) ->List[str]:
'''simple docstring'''
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
@property
def snake_case__ ( self : Tuple ) ->List[str]:
'''simple docstring'''
if self.__has_overflow__:
return self.optimizer.overflow
return False
class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self : Any , lowercase__ : List[str] , lowercase__ : List[Any] ) ->Any:
'''simple docstring'''
super().__init__(lowercase__ , lowercase__ )
def snake_case__ ( self : Union[str, Any] ) ->List[str]:
'''simple docstring'''
pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
class SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any]=0.0_0_1 , lowercase__ : Tuple=0 , **lowercase__ : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCamelCase : str = params
_UpperCamelCase : Any = lr
_UpperCamelCase : List[Any] = weight_decay
_UpperCamelCase : Optional[int] = kwargs
class SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : Optional[Any]=None , lowercase__ : Tuple=0 , **lowercase__ : List[Any] ) ->str:
'''simple docstring'''
_UpperCamelCase : List[Any] = optimizer
_UpperCamelCase : List[Any] = total_num_steps
_UpperCamelCase : int = warmup_num_steps
_UpperCamelCase : str = kwargs
| 204
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase_ : Union[str, Any] = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : Tuple = [
"""OPT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""OPTForCausalLM""",
"""OPTModel""",
"""OPTPreTrainedModel""",
"""OPTForSequenceClassification""",
"""OPTForQuestionAnswering""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : str = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ : List[Any] = [
"""FlaxOPTForCausalLM""",
"""FlaxOPTModel""",
"""FlaxOPTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
lowerCAmelCase_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 204
| 1
|
from collections.abc import Sequence
from queue import Queue
class _UpperCamelCase:
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None ):
'''simple docstring'''
__a : Tuple = start
__a : Dict = end
__a : List[str] = val
__a : List[Any] = (start + end) // 2
__a : Optional[Any] = left
__a : List[str] = right
def __repr__( self : Dict ):
'''simple docstring'''
return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})'''
class _UpperCamelCase:
def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Sequence , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
__a : Tuple = collection
__a : Dict = function
if self.collection:
__a : int = self._build_tree(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 )
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
self._update_tree(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
return self._query_range(self.root , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
if start == end:
return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.collection[start] )
__a : Tuple = (start + end) // 2
__a : Optional[int] = self._build_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : Tuple = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE__ )
return SegmentTreeNode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
if node.start == i and node.end == i:
__a : Optional[Any] = val
return
if i <= node.mid:
self._update_tree(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
self._update_tree(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
__a : int = self.fn(node.left.val , node.right.val )
def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ):
'''simple docstring'''
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , SCREAMING_SNAKE_CASE__ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE__ ) , )
else:
# range in right child tree
return self._query_range(node.right , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def __lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.root is not None:
__a : Tuple = Queue()
queue.put(self.root )
while not queue.empty():
__a : Tuple = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print('''*''' * 50)
SCREAMING_SNAKE_CASE__ = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 47
|
from math import factorial
def UpperCamelCase ( snake_case__ , snake_case__):
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError("Please enter positive integers for n and k where n >= k")
return factorial(snake_case__) // (factorial(snake_case__) * factorial(n - k))
if __name__ == "__main__":
print(
'''The number of five-card hands possible from a standard''',
f"fifty-two card deck is: {combinations(52, 5)}\n",
)
print(
'''If a class of 40 students must be arranged into groups of''',
f"4 for group projects, there are {combinations(40, 4)} ways",
'''to arrange them.\n''',
)
print(
'''If 10 teams are competing in a Formula One race, there''',
f"are {combinations(10, 3)} ways that first, second and",
'''third place can be awarded.''',
)
| 659
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
lowercase_ : List[Any] = logging.get_logger(__name__)
class UpperCamelCase ( lowerCamelCase__ ):
A__ = ["""pixel_values"""]
def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = True , snake_case__ = None , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , **snake_case__ , ):
"""simple docstring"""
super().__init__(**__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else {'''shortest_edge''': 256}
_SCREAMING_SNAKE_CASE : Any = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_SCREAMING_SNAKE_CASE : Any = get_size_dict(__lowerCamelCase , param_name="crop_size" )
_SCREAMING_SNAKE_CASE : Dict = do_resize
_SCREAMING_SNAKE_CASE : str = size
_SCREAMING_SNAKE_CASE : Tuple = resample
_SCREAMING_SNAKE_CASE : List[Any] = do_center_crop
_SCREAMING_SNAKE_CASE : Dict = crop_size
_SCREAMING_SNAKE_CASE : Optional[int] = do_rescale
_SCREAMING_SNAKE_CASE : List[str] = rescale_factor
_SCREAMING_SNAKE_CASE : List[Any] = do_normalize
_SCREAMING_SNAKE_CASE : Optional[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_SCREAMING_SNAKE_CASE : str = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Dict = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
_SCREAMING_SNAKE_CASE : str = get_resize_output_image_size(__lowerCamelCase , size=size["shortest_edge"] , default_to_square=__lowerCamelCase )
return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(__lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' )
return center_crop(__lowerCamelCase , size=(size["height"], size["width"]) , data_format=__lowerCamelCase , **__lowerCamelCase )
def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ ):
"""simple docstring"""
return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ):
"""simple docstring"""
return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[int] = do_resize if do_resize is not None else self.do_resize
_SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else self.size
_SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = resample if resample is not None else self.resample
_SCREAMING_SNAKE_CASE : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
_SCREAMING_SNAKE_CASE : Any = crop_size if crop_size is not None else self.crop_size
_SCREAMING_SNAKE_CASE : List[str] = get_size_dict(__lowerCamelCase , param_name="crop_size" )
_SCREAMING_SNAKE_CASE : List[str] = do_rescale if do_rescale is not None else self.do_rescale
_SCREAMING_SNAKE_CASE : str = rescale_factor if rescale_factor is not None else self.rescale_factor
_SCREAMING_SNAKE_CASE : int = do_normalize if do_normalize is not None else self.do_normalize
_SCREAMING_SNAKE_CASE : Optional[Any] = image_mean if image_mean is not None else self.image_mean
_SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else self.image_std
_SCREAMING_SNAKE_CASE : Any = make_list_of_images(__lowerCamelCase )
if not valid_images(__lowerCamelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
_SCREAMING_SNAKE_CASE : Union[str, Any] = [to_numpy_array(__lowerCamelCase ) for image in images]
if do_resize:
_SCREAMING_SNAKE_CASE : str = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images]
if do_center_crop:
_SCREAMING_SNAKE_CASE : List[Any] = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images]
if do_rescale:
_SCREAMING_SNAKE_CASE : Any = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images]
if do_normalize:
_SCREAMING_SNAKE_CASE : Tuple = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images]
_SCREAMING_SNAKE_CASE : int = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images]
_SCREAMING_SNAKE_CASE : int = {'''pixel_values''': images}
return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ = None ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits" )
if is_torch_tensor(__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : str = target_sizes.numpy()
_SCREAMING_SNAKE_CASE : Optional[Any] = []
for idx in range(len(__lowerCamelCase ) ):
_SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(__lowerCamelCase )
else:
_SCREAMING_SNAKE_CASE : Optional[Any] = logits.argmax(dim=1 )
_SCREAMING_SNAKE_CASE : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 702
|
"""simple docstring"""
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class UpperCamelCase ( __SCREAMING_SNAKE_CASE ):
A__ = ["""image_processor""", """tokenizer"""]
A__ = """AutoImageProcessor"""
A__ = """AutoTokenizer"""
def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : int = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , snake_case__ , )
_SCREAMING_SNAKE_CASE : Any = kwargs.pop("feature_extractor" )
_SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(snake_case__ , snake_case__ )
_SCREAMING_SNAKE_CASE : Any = self.image_processor
_SCREAMING_SNAKE_CASE : Any = False
def __call__( self , *snake_case__ , **snake_case__ ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*snake_case__ , **snake_case__ )
_SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("images" , snake_case__ )
_SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop("text" , snake_case__ )
if len(snake_case__ ) > 0:
_SCREAMING_SNAKE_CASE : Optional[Any] = args[0]
_SCREAMING_SNAKE_CASE : List[str] = args[1:]
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor(snake_case__ , *snake_case__ , **snake_case__ )
if text is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(snake_case__ , **snake_case__ )
if text is None:
return inputs
elif images is None:
return encodings
else:
_SCREAMING_SNAKE_CASE : List[Any] = encodings["input_ids"]
return inputs
def __SCREAMING_SNAKE_CASE ( self , *snake_case__ , **snake_case__ ):
"""simple docstring"""
return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ )
def __SCREAMING_SNAKE_CASE ( self , *snake_case__ , **snake_case__ ):
"""simple docstring"""
return self.tokenizer.decode(*snake_case__ , **snake_case__ )
@contextmanager
def __SCREAMING_SNAKE_CASE ( self ):
"""simple docstring"""
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your images inputs, or in a separate call." )
_SCREAMING_SNAKE_CASE : Dict = True
_SCREAMING_SNAKE_CASE : str = self.tokenizer
yield
_SCREAMING_SNAKE_CASE : str = self.image_processor
_SCREAMING_SNAKE_CASE : int = False
def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__=False , snake_case__=None ):
"""simple docstring"""
if added_vocab is None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.get_added_vocab()
_SCREAMING_SNAKE_CASE : int = {}
while tokens:
_SCREAMING_SNAKE_CASE : List[Any] = re.search(r"<s_(.*?)>" , snake_case__ , re.IGNORECASE )
if start_token is None:
break
_SCREAMING_SNAKE_CASE : List[Any] = start_token.group(1 )
_SCREAMING_SNAKE_CASE : Any = re.search(rF'''</s_{key}>''' , snake_case__ , re.IGNORECASE )
_SCREAMING_SNAKE_CASE : Tuple = start_token.group()
if end_token is None:
_SCREAMING_SNAKE_CASE : Optional[int] = tokens.replace(snake_case__ , "" )
else:
_SCREAMING_SNAKE_CASE : Any = end_token.group()
_SCREAMING_SNAKE_CASE : Union[str, Any] = re.escape(snake_case__ )
_SCREAMING_SNAKE_CASE : Union[str, Any] = re.escape(snake_case__ )
_SCREAMING_SNAKE_CASE : str = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''' , snake_case__ , re.IGNORECASE )
if content is not None:
_SCREAMING_SNAKE_CASE : Optional[Any] = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
_SCREAMING_SNAKE_CASE : Dict = self.tokenajson(snake_case__ , is_inner_value=snake_case__ , added_vocab=snake_case__ )
if value:
if len(snake_case__ ) == 1:
_SCREAMING_SNAKE_CASE : Optional[Any] = value[0]
_SCREAMING_SNAKE_CASE : Dict = value
else: # leaf nodes
_SCREAMING_SNAKE_CASE : Dict = []
for leaf in content.split(r"<sep/>" ):
_SCREAMING_SNAKE_CASE : int = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
_SCREAMING_SNAKE_CASE : Optional[Any] = leaf[1:-2] # for categorical special tokens
output[key].append(snake_case__ )
if len(output[key] ) == 1:
_SCREAMING_SNAKE_CASE : Dict = output[key][0]
_SCREAMING_SNAKE_CASE : List[Any] = tokens[tokens.find(snake_case__ ) + len(snake_case__ ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=snake_case__ , added_vocab=snake_case__ )
if len(snake_case__ ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def __SCREAMING_SNAKE_CASE ( self ):
"""simple docstring"""
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case__ , )
return self.image_processor_class
@property
def __SCREAMING_SNAKE_CASE ( self ):
"""simple docstring"""
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , snake_case__ , )
return self.image_processor
| 295
| 0
|
"""simple docstring"""
# Note: if you intend to run this script make sure you look under scripts/fsmt/
# to locate the appropriate script to do the work correctly. There is a set of scripts to:
# - download and prepare data and run the conversion script
# - perform eval to get the best hparam into the config
# - generate model_cards - useful if you have multiple models from the same paper
import argparse
import json
import os
import re
from collections import OrderedDict
from os.path import basename, dirname
import fairseq
import torch
from fairseq import hub_utils
from fairseq.data.dictionary import Dictionary
from transformers import FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
lowerCAmelCase__ =2
# based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping`
# values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults:
#
# * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users)
# * `early_stopping`: `False` consistently scored better
# * `length_penalty` varied, so will assign the best one depending on the model
lowerCAmelCase__ ={
# fairseq:
"wmt19-ru-en": {"length_penalty": 1.1},
"wmt19-en-ru": {"length_penalty": 1.15},
"wmt19-en-de": {"length_penalty": 1.0},
"wmt19-de-en": {"length_penalty": 1.1},
# allenai:
"wmt16-en-de-dist-12-1": {"length_penalty": 0.6},
"wmt16-en-de-dist-6-1": {"length_penalty": 0.6},
"wmt16-en-de-12-1": {"length_penalty": 0.8},
"wmt19-de-en-6-6-base": {"length_penalty": 0.6},
"wmt19-de-en-6-6-big": {"length_penalty": 0.6},
}
# this remaps the different models to their organization names
lowerCAmelCase__ ={}
for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
lowerCAmelCase__ ="facebook"
for m in [
"wmt16-en-de-dist-12-1",
"wmt16-en-de-dist-6-1",
"wmt16-en-de-12-1",
"wmt19-de-en-6-6-base",
"wmt19-de-en-6-6-big",
]:
lowerCAmelCase__ ="allenai"
def _a ( UpperCAmelCase__ ) -> Any:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
__SCREAMING_SNAKE_CASE = dict((re.sub(r'''@@$''' , '''''' , UpperCAmelCase__ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , UpperCAmelCase__ ), v) for k, v in d.items() )
__SCREAMING_SNAKE_CASE = '''<s> <pad> </s> <unk>'''.split()
# restore the special tokens
for k in keep_keys:
del da[f"""{k}</w>"""]
__SCREAMING_SNAKE_CASE = d[k] # restore
return da
def _a ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple:
# prep
assert os.path.exists(UpperCAmelCase__ )
os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ )
print(f"""Writing results to {pytorch_dump_folder_path}""" )
# handle various types of models
__SCREAMING_SNAKE_CASE = basename(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = dirname(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel
__SCREAMING_SNAKE_CASE = cls.hub_models()
__SCREAMING_SNAKE_CASE = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''}
__SCREAMING_SNAKE_CASE = '''.'''
# note: since the model dump is old, fairseq has upgraded its model some
# time later, and it does a whole lot of rewrites and splits on the saved
# weights, therefore we can't use torch.load() directly on the model file.
# see: upgrade_state_dict(state_dict) in fairseq_model.py
print(f"""using checkpoint {checkpoint_file}""" )
__SCREAMING_SNAKE_CASE = hub_utils.from_pretrained(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , archive_map=UpperCAmelCase__ , **UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = vars(chkpt['''args''']['''model'''] )
__SCREAMING_SNAKE_CASE = args['''source_lang''']
__SCREAMING_SNAKE_CASE = args['''target_lang''']
__SCREAMING_SNAKE_CASE = dirname(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = basename(UpperCAmelCase__ )
# dicts
__SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , f"""dict.{src_lang}.txt""" )
__SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , f"""dict.{tgt_lang}.txt""" )
__SCREAMING_SNAKE_CASE = Dictionary.load(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = rewrite_dict_keys(src_dict.indices )
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , '''vocab-src.json''' )
print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" )
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ , indent=UpperCAmelCase__ ) )
# detect whether this is a do_lower_case situation, which can be derived by checking whether we
# have at least one uppercase letter in the source vocab
__SCREAMING_SNAKE_CASE = True
for k in src_vocab.keys():
if not k.islower():
__SCREAMING_SNAKE_CASE = False
break
__SCREAMING_SNAKE_CASE = Dictionary.load(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = rewrite_dict_keys(tgt_dict.indices )
__SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , '''vocab-tgt.json''' )
print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" )
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ , indent=UpperCAmelCase__ ) )
# merges_file (bpecodes)
__SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , VOCAB_FILES_NAMES['''merges_file'''] )
for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code"
__SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
if os.path.exists(UpperCAmelCase__ ):
break
with open(UpperCAmelCase__ , encoding='''utf-8''' ) as fin:
__SCREAMING_SNAKE_CASE = fin.read()
__SCREAMING_SNAKE_CASE = re.sub(r''' \d+$''' , '''''' , UpperCAmelCase__ , 0 , re.M ) # remove frequency number
print(f"""Generating {merges_file}""" )
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as fout:
fout.write(UpperCAmelCase__ )
# model config
__SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , '''config.json''' )
# validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe -
# may have to modify the tokenizer if a different type is used by a future model
assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args["bpe"]}"""
assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args["tokenizer"]}"""
__SCREAMING_SNAKE_CASE = {
'''architectures''': ['''FSMTForConditionalGeneration'''],
'''model_type''': '''fsmt''',
'''activation_dropout''': args['''activation_dropout'''],
'''activation_function''': '''relu''',
'''attention_dropout''': args['''attention_dropout'''],
'''d_model''': args['''decoder_embed_dim'''],
'''dropout''': args['''dropout'''],
'''init_std''': 0.02,
'''max_position_embeddings''': args['''max_source_positions'''],
'''num_hidden_layers''': args['''encoder_layers'''],
'''src_vocab_size''': src_vocab_size,
'''tgt_vocab_size''': tgt_vocab_size,
'''langs''': [src_lang, tgt_lang],
'''encoder_attention_heads''': args['''encoder_attention_heads'''],
'''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''],
'''encoder_layerdrop''': args['''encoder_layerdrop'''],
'''encoder_layers''': args['''encoder_layers'''],
'''decoder_attention_heads''': args['''decoder_attention_heads'''],
'''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''],
'''decoder_layerdrop''': args['''decoder_layerdrop'''],
'''decoder_layers''': args['''decoder_layers'''],
'''bos_token_id''': 0,
'''pad_token_id''': 1,
'''eos_token_id''': 2,
'''is_encoder_decoder''': True,
'''scale_embedding''': not args['''no_scale_embedding'''],
'''tie_word_embeddings''': args['''share_all_embeddings'''],
}
# good hparam defaults to start with
__SCREAMING_SNAKE_CASE = 5
__SCREAMING_SNAKE_CASE = False
if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]:
__SCREAMING_SNAKE_CASE = best_score_hparams[model_dir]['''length_penalty''']
else:
__SCREAMING_SNAKE_CASE = 1.0
print(f"""Generating {fsmt_model_config_file}""" )
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ , indent=UpperCAmelCase__ ) )
# tokenizer config
__SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = {
'''langs''': [src_lang, tgt_lang],
'''model_max_length''': 10_24,
'''do_lower_case''': do_lower_case,
}
print(f"""Generating {fsmt_tokenizer_config_file}""" )
with open(UpperCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ , indent=UpperCAmelCase__ ) )
# model
__SCREAMING_SNAKE_CASE = chkpt['''models'''][0]
__SCREAMING_SNAKE_CASE = model.state_dict()
# rename keys to start with 'model.'
__SCREAMING_SNAKE_CASE = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() )
# remove unneeded keys
__SCREAMING_SNAKE_CASE = [
'''model.model''',
'''model.encoder.version''',
'''model.decoder.version''',
'''model.encoder_embed_tokens.weight''',
'''model.decoder_embed_tokens.weight''',
'''model.encoder.embed_positions._float_tensor''',
'''model.decoder.embed_positions._float_tensor''',
]
for k in ignore_keys:
model_state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = FSMTConfig.from_pretrained(UpperCAmelCase__ )
__SCREAMING_SNAKE_CASE = FSMTForConditionalGeneration(UpperCAmelCase__ )
# check that it loads ok
model_new.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ )
# save
__SCREAMING_SNAKE_CASE = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ )
print(f"""Generating {pytorch_weights_dump_path}""" )
torch.save(UpperCAmelCase__ , UpperCAmelCase__ )
print('''Conversion is done!''' )
print('''\nLast step is to upload the files to s3''' )
print(f"""cd {data_root}""" )
print(f"""transformers-cli upload {model_dir}""" )
if __name__ == "__main__":
lowerCAmelCase__ =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fsmt_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"
" bpecodes, etc."
),
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowerCAmelCase__ =parser.parse_args()
convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
| 482
|
"""simple docstring"""
def _a ( UpperCAmelCase__ ) -> int:
__SCREAMING_SNAKE_CASE = hex_num.strip()
if not hex_num:
raise ValueError('''No value was passed to the function''' )
__SCREAMING_SNAKE_CASE = hex_num[0] == '''-'''
if is_negative:
__SCREAMING_SNAKE_CASE = hex_num[1:]
try:
__SCREAMING_SNAKE_CASE = int(UpperCAmelCase__ , 16 )
except ValueError:
raise ValueError('''Invalid value was passed to the function''' )
__SCREAMING_SNAKE_CASE = ''''''
while int_num > 0:
__SCREAMING_SNAKE_CASE = str(int_num % 2 ) + bin_str
int_num >>= 1
return int(('''-''' + bin_str) if is_negative else bin_str )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 482
| 1
|
'''simple docstring'''
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def _snake_case ( lowercase ) -> Dict:
if not is_accelerate_available():
return method
__a : List[Any] = version.parse(accelerate.__version__ ).base_version
if version.parse(_lowerCAmelCase ) < version.parse("""0.17.0""" ):
return method
def wrapper(self , *lowercase , **lowercase ):
if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ):
self._hf_hook.pre_forward(self )
return method(self , *_lowerCAmelCase , **_lowerCAmelCase )
return wrapper
| 701
|
'''simple docstring'''
def _snake_case ( lowercase ) -> bool:
if not isinstance(lowercase , lowercase ):
raise ValueError("""check_bouncy() accepts only integer arguments""" )
__a : str = str(lowercase )
__a : Any = """""".join(sorted(lowercase ) )
return sorted_str_n != str_n and sorted_str_n[::-1] != str_n
def _snake_case ( lowercase = 9_9 ) -> int:
if not 0 < percent < 1_0_0:
raise ValueError("""solution() only accepts values from 0 to 100""" )
__a : List[str] = 0
__a : Union[str, Any] = 1
while True:
if check_bouncy(lowercase ):
bouncy_num += 1
if (bouncy_num / num) * 1_0_0 >= percent:
return num
num += 1
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f'''{solution(99)}''')
| 697
| 0
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class a ( unittest.TestCase ):
def __snake_case ( self ):
UpperCAmelCase__ : List[str] = tempfile.mkdtemp()
UpperCAmelCase__ : Union[str, Any] = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'的',
'价',
'格',
'是',
'15',
'便',
'alex',
'##andra',
',',
'。',
'-',
't',
'shirt',
]
UpperCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
UpperCAmelCase__ : int = {
'do_resize': True,
'size': {'height': 224, 'width': 224},
'do_center_crop': True,
'crop_size': {'height': 18, 'width': 18},
'do_normalize': True,
'image_mean': [0.48145466, 0.4578275, 0.40821073],
'image_std': [0.26862954, 0.26130258, 0.27577711],
'do_convert_rgb': True,
}
UpperCAmelCase__ : int = os.path.join(self.tmpdirname , UpperCamelCase_ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
def __snake_case ( self , **UpperCamelCase_ ):
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def __snake_case ( self , **UpperCamelCase_ ):
return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def __snake_case ( self , **UpperCamelCase_ ):
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def __snake_case ( self ):
shutil.rmtree(self.tmpdirname )
def __snake_case ( self ):
UpperCAmelCase__ : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
UpperCAmelCase__ : Optional[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __snake_case ( self ):
UpperCAmelCase__ : Dict = self.get_tokenizer()
UpperCAmelCase__ : Optional[Any] = self.get_rust_tokenizer()
UpperCAmelCase__ : Optional[int] = self.get_image_processor()
UpperCAmelCase__ : Dict = ChineseCLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
processor_slow.save_pretrained(self.tmpdirname )
UpperCAmelCase__ : Dict = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ )
UpperCAmelCase__ : Dict = ChineseCLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
processor_fast.save_pretrained(self.tmpdirname )
UpperCAmelCase__ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_ )
self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_ )
self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_ )
def __snake_case ( self ):
UpperCAmelCase__ : int = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase__ : Tuple = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' )
UpperCAmelCase__ : Optional[Any] = self.get_image_processor(do_normalize=UpperCamelCase_ )
UpperCAmelCase__ : Dict = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=UpperCamelCase_ )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCamelCase_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCamelCase_ )
def __snake_case ( self ):
UpperCAmelCase__ : Any = self.get_image_processor()
UpperCAmelCase__ : Optional[Any] = self.get_tokenizer()
UpperCAmelCase__ : Dict = ChineseCLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
UpperCAmelCase__ : Dict = self.prepare_image_inputs()
UpperCAmelCase__ : List[Any] = image_processor(UpperCamelCase_ , return_tensors='np' )
UpperCAmelCase__ : Optional[Any] = processor(images=UpperCamelCase_ , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __snake_case ( self ):
UpperCAmelCase__ : str = self.get_image_processor()
UpperCAmelCase__ : Optional[Any] = self.get_tokenizer()
UpperCAmelCase__ : Optional[Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
UpperCAmelCase__ : Dict = 'Alexandra,T-shirt的价格是15便士。'
UpperCAmelCase__ : str = processor(text=UpperCamelCase_ )
UpperCAmelCase__ : Optional[int] = tokenizer(UpperCamelCase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __snake_case ( self ):
UpperCAmelCase__ : int = self.get_image_processor()
UpperCAmelCase__ : List[Any] = self.get_tokenizer()
UpperCAmelCase__ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
UpperCAmelCase__ : Tuple = 'Alexandra,T-shirt的价格是15便士。'
UpperCAmelCase__ : Optional[int] = self.prepare_image_inputs()
UpperCAmelCase__ : Any = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(UpperCamelCase_ ):
processor()
def __snake_case ( self ):
UpperCAmelCase__ : Any = self.get_image_processor()
UpperCAmelCase__ : List[Any] = self.get_tokenizer()
UpperCAmelCase__ : Tuple = ChineseCLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
UpperCAmelCase__ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
UpperCAmelCase__ : str = processor.batch_decode(UpperCamelCase_ )
UpperCAmelCase__ : Tuple = tokenizer.batch_decode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def __snake_case ( self ):
UpperCAmelCase__ : List[Any] = self.get_image_processor()
UpperCAmelCase__ : Union[str, Any] = self.get_tokenizer()
UpperCAmelCase__ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
UpperCAmelCase__ : Optional[int] = 'Alexandra,T-shirt的价格是15便士。'
UpperCAmelCase__ : Optional[Any] = self.prepare_image_inputs()
UpperCAmelCase__ : List[str] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 110
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase = logging.get_logger(__name__)
_UpperCAmelCase = {
"""xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""",
"""xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""",
"""xlm-roberta-large-finetuned-conll02-dutch""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll02-spanish""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-english""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-german""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"""
),
}
class UpperCAmelCase ( __A ):
'''simple docstring'''
lowerCamelCase_ = '''xlm-roberta'''
def __init__( self , lowercase=3_0_5_2_2 , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_1_2 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=None , **lowercase , ):
"""simple docstring"""
super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
A_ : Union[str, Any] = vocab_size
A_ : int = hidden_size
A_ : Dict = num_hidden_layers
A_ : List[str] = num_attention_heads
A_ : Tuple = hidden_act
A_ : Optional[int] = intermediate_size
A_ : Any = hidden_dropout_prob
A_ : Tuple = attention_probs_dropout_prob
A_ : int = max_position_embeddings
A_ : Union[str, Any] = type_vocab_size
A_ : List[str] = initializer_range
A_ : Tuple = layer_norm_eps
A_ : str = position_embedding_type
A_ : Any = use_cache
A_ : str = classifier_dropout
class UpperCAmelCase ( __A ):
'''simple docstring'''
@property
def lowerCAmelCase_ ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
A_ : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
A_ : str = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 558
| 0
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase_ = {
'configuration_trajectory_transformer': [
'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TrajectoryTransformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase_ = [
'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrajectoryTransformerModel',
'TrajectoryTransformerPreTrainedModel',
'load_tf_weights_in_trajectory_transformer',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 712
|
'''simple docstring'''
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 435
| 0
|
'''simple docstring'''
def _lowerCAmelCase ( __magic_name__ : int ) -> int:
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ), f'''The input value of [n={number}] is not an integer'''
if number == 1:
return 2
elif number < 1:
lowercase : Optional[Any] =f'''The input value of [n={number}] has to be > 0'''
raise ValueError(UpperCAmelCase_ )
else:
lowercase : List[Any] =sylvester(number - 1 )
lowercase : str =num - 1
lowercase : List[str] =num
return lower * upper + 1
if __name__ == "__main__":
print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
| 92
|
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
_lowercase = """\
@inproceedings{wang2019glue,
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
note={In the Proceedings of ICLR.},
year={2019}
}
"""
_lowercase = """\
GLUE, the General Language Understanding Evaluation benchmark
(https://gluebenchmark.com/) is a collection of resources for training,
evaluating, and analyzing natural language understanding systems.
"""
_lowercase = """
Compute GLUE evaluation metric associated to each GLUE dataset.
Args:
predictions: list of predictions to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
Returns: depending on the GLUE subset, one or several of:
\"accuracy\": Accuracy
\"f1\": F1 score
\"pearson\": Pearson Correlation
\"spearmanr\": Spearman Correlation
\"matthews_correlation\": Matthew Correlation
Examples:
>>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
>>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0, 'f1': 1.0}
>>> glue_metric = datasets.load_metric('glue', 'stsb')
>>> references = [0., 1., 2., 3., 4., 5.]
>>> predictions = [0., 1., 2., 3., 4., 5.]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})
{'pearson': 1.0, 'spearmanr': 1.0}
>>> glue_metric = datasets.load_metric('glue', 'cola')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'matthews_correlation': 1.0}
"""
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] ) -> int:
return float((preds == labels).mean() )
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ : Tuple =simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =float(fa_score(y_true=UpperCAmelCase_ , y_pred=UpperCAmelCase_ ) )
return {
"accuracy": acc,
"f1": fa,
}
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict ) -> List[str]:
SCREAMING_SNAKE_CASE_ : str =float(pearsonr(UpperCAmelCase_ , UpperCAmelCase_ )[0] )
SCREAMING_SNAKE_CASE_ : List[str] =float(spearmanr(UpperCAmelCase_ , UpperCAmelCase_ )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
def _snake_case ( self ) -> str:
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["sst2", "mnli", "mnli_mismatched", "mnli_matched", '''
'''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ),
'''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ),
} ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , )
def _snake_case ( self , __A , __A ) -> List[Any]:
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(__A , __A )}
elif self.config_name == "stsb":
return pearson_and_spearman(__A , __A )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(__A , __A )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(__A , __A )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["sst2", "mnli", "mnli_mismatched", "mnli_matched", '''
'''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
| 443
| 0
|
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , __A , __A=13 , __A=30 , __A=2 , __A=3 , __A=True , __A=True , __A=32 , __A=2 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.02 , __A=3 , __A=0.6 , __A=None , ) -> Any:
_lowerCAmelCase =parent
_lowerCAmelCase =batch_size
_lowerCAmelCase =image_size
_lowerCAmelCase =patch_size
_lowerCAmelCase =num_channels
_lowerCAmelCase =is_training
_lowerCAmelCase =use_labels
_lowerCAmelCase =hidden_size
_lowerCAmelCase =num_hidden_layers
_lowerCAmelCase =num_attention_heads
_lowerCAmelCase =intermediate_size
_lowerCAmelCase =hidden_act
_lowerCAmelCase =hidden_dropout_prob
_lowerCAmelCase =attention_probs_dropout_prob
_lowerCAmelCase =type_sequence_label_size
_lowerCAmelCase =initializer_range
_lowerCAmelCase =mask_ratio
_lowerCAmelCase =scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_lowerCAmelCase =(image_size // patch_size) ** 2
_lowerCAmelCase =int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def UpperCamelCase__ ( self ) -> str:
_lowerCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase =None
if self.use_labels:
_lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase =self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ ( self ) -> Optional[Any]:
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def UpperCamelCase__ ( self , __A , __A , __A ) -> int:
_lowerCAmelCase =TFViTMAEModel(config=snake_case_ )
_lowerCAmelCase =model(snake_case_ , training=snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase__ ( self , __A , __A , __A ) -> str:
_lowerCAmelCase =TFViTMAEForPreTraining(snake_case_ )
_lowerCAmelCase =model(snake_case_ , training=snake_case_ )
# expected sequence length = num_patches
_lowerCAmelCase =(self.image_size // self.patch_size) ** 2
_lowerCAmelCase =self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_lowerCAmelCase =1
_lowerCAmelCase =TFViTMAEForPreTraining(snake_case_ )
_lowerCAmelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase =model(snake_case_ , training=snake_case_ )
_lowerCAmelCase =self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def UpperCamelCase__ ( self ) -> Optional[int]:
_lowerCAmelCase =self.prepare_config_and_inputs()
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) =config_and_inputs
_lowerCAmelCase ={'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase):
"""simple docstring"""
lowercase : int = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
lowercase : List[str] = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {}
lowercase : List[Any] = False
lowercase : str = False
lowercase : Dict = False
lowercase : Dict = False
def UpperCamelCase__ ( self ) -> Optional[int]:
_lowerCAmelCase =TFViTMAEModelTester(self )
_lowerCAmelCase =ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 )
def UpperCamelCase__ ( self ) -> Tuple:
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMAE does not use inputs_embeds' )
def UpperCamelCase__ ( self ) -> Union[str, Any]:
pass
def UpperCamelCase__ ( self ) -> Any:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(snake_case_ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
_lowerCAmelCase =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case_ , tf.keras.layers.Layer ) )
def UpperCamelCase__ ( self ) -> Tuple:
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(snake_case_ )
_lowerCAmelCase =inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase =[*signature.parameters.keys()]
_lowerCAmelCase =['pixel_values']
self.assertListEqual(arg_names[:1] , snake_case_ )
def UpperCamelCase__ ( self ) -> str:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def UpperCamelCase__ ( self ) -> List[Any]:
_lowerCAmelCase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*snake_case_ )
def UpperCamelCase__ ( self ) -> str:
# make the mask reproducible
np.random.seed(2 )
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase =int((config.image_size // config.patch_size) ** 2 )
_lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(snake_case_ )
_lowerCAmelCase =self._prepare_for_class(snake_case_ , snake_case_ )
_lowerCAmelCase =model(snake_case_ , noise=snake_case_ )
_lowerCAmelCase =copy.deepcopy(self._prepare_for_class(snake_case_ , snake_case_ ) )
_lowerCAmelCase =model(**snake_case_ , noise=snake_case_ )
_lowerCAmelCase =outputs_dict[0].numpy()
_lowerCAmelCase =outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 )
def UpperCamelCase__ ( self ) -> str:
# make the mask reproducible
np.random.seed(2 )
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase =int((config.image_size // config.patch_size) ** 2 )
_lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(__A ):
_lowerCAmelCase ={}
for k, v in inputs_dict.items():
if tf.is_tensor(snake_case_ ):
_lowerCAmelCase =v.numpy()
else:
_lowerCAmelCase =np.array(snake_case_ )
return inputs_np_dict
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(snake_case_ )
_lowerCAmelCase =self._prepare_for_class(snake_case_ , snake_case_ )
_lowerCAmelCase =prepare_numpy_arrays(snake_case_ )
_lowerCAmelCase =model(snake_case_ , noise=snake_case_ )
_lowerCAmelCase =model(**snake_case_ , noise=snake_case_ )
self.assert_outputs_same(snake_case_ , snake_case_ )
def UpperCamelCase__ ( self , __A , __A , __A ) -> Any:
# make masks reproducible
np.random.seed(2 )
_lowerCAmelCase =int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
_lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_lowerCAmelCase =tf.constant(snake_case_ )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_lowerCAmelCase =tf_noise
super().check_pt_tf_models(snake_case_ , snake_case_ , snake_case_ )
def UpperCamelCase__ ( self ) -> int:
# make mask reproducible
np.random.seed(2 )
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase ={
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(snake_case_ )
if module_member_name.endswith('MainLayer' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('MainLayer' )] == model_class.__name__[: -len('Model' )]
for module_member in (getattr(snake_case_ , snake_case_ ),)
if isinstance(snake_case_ , snake_case_ )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(snake_case_ , '_keras_serializable' , snake_case_ )
}
_lowerCAmelCase =int((config.image_size // config.patch_size) ** 2 )
_lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_lowerCAmelCase =tf.convert_to_tensor(snake_case_ )
inputs_dict.update({'noise': noise} )
for main_layer_class in tf_main_layer_classes:
_lowerCAmelCase =main_layer_class(snake_case_ )
_lowerCAmelCase ={
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
_lowerCAmelCase =tf.keras.Model(snake_case_ , outputs=main_layer(snake_case_ ) )
_lowerCAmelCase =model(snake_case_ )
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCAmelCase =os.path.join(snake_case_ , 'keras_model.h5' )
model.save(snake_case_ )
_lowerCAmelCase =tf.keras.models.load_model(
snake_case_ , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(snake_case_ , tf.keras.Model )
_lowerCAmelCase =model(snake_case_ )
self.assert_outputs_same(snake_case_ , snake_case_ )
@slow
def UpperCamelCase__ ( self ) -> Any:
# make mask reproducible
np.random.seed(2 )
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase =int((config.image_size // config.patch_size) ** 2 )
_lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(snake_case_ )
_lowerCAmelCase =self._prepare_for_class(snake_case_ , snake_case_ )
_lowerCAmelCase =model(snake_case_ , noise=snake_case_ )
if model_class.__name__ == "TFViTMAEModel":
_lowerCAmelCase =outputs.last_hidden_state.numpy()
_lowerCAmelCase =0
else:
_lowerCAmelCase =outputs.logits.numpy()
_lowerCAmelCase =0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(snake_case_ , saved_model=snake_case_ )
_lowerCAmelCase =model_class.from_pretrained(snake_case_ )
_lowerCAmelCase =model(snake_case_ , noise=snake_case_ )
if model_class.__name__ == "TFViTMAEModel":
_lowerCAmelCase =after_outputs['last_hidden_state'].numpy()
_lowerCAmelCase =0
else:
_lowerCAmelCase =after_outputs['logits'].numpy()
_lowerCAmelCase =0
_lowerCAmelCase =np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(snake_case_ , 1E-5 )
def UpperCamelCase__ ( self ) -> Optional[Any]:
# make mask reproducible
np.random.seed(2 )
_lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase =int((config.image_size // config.patch_size) ** 2 )
_lowerCAmelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
_lowerCAmelCase =model_class(snake_case_ )
_lowerCAmelCase =self._prepare_for_class(snake_case_ , snake_case_ )
_lowerCAmelCase =model(snake_case_ , noise=snake_case_ )
_lowerCAmelCase =model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(snake_case_ )
_lowerCAmelCase =model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
_lowerCAmelCase =model_class.from_config(model.config )
_lowerCAmelCase =new_model(snake_case_ ) # Build model
new_model.set_weights(model.get_weights() )
_lowerCAmelCase =new_model(snake_case_ , noise=snake_case_ )
self.assert_outputs_same(snake_case_ , snake_case_ )
@unittest.skip(
reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' )
def UpperCamelCase__ ( self ) -> Optional[int]:
pass
@unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' )
def UpperCamelCase__ ( self ) -> List[Any]:
pass
@slow
def UpperCamelCase__ ( self ) -> Optional[int]:
_lowerCAmelCase =TFViTMAEModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(snake_case_ )
def UpperCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
@cached_property
def UpperCamelCase__ ( self ) -> int:
return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None
@slow
def UpperCamelCase__ ( self ) -> Dict:
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
_lowerCAmelCase =TFViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' )
_lowerCAmelCase =self.default_image_processor
_lowerCAmelCase =prepare_img()
_lowerCAmelCase =image_processor(images=snake_case_ , return_tensors='tf' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_lowerCAmelCase =ViTMAEConfig()
_lowerCAmelCase =int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_lowerCAmelCase =np.random.uniform(size=(1, num_patches) )
# forward pass
_lowerCAmelCase =model(**snake_case_ , noise=snake_case_ )
# verify the logits
_lowerCAmelCase =tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , snake_case_ )
_lowerCAmelCase =tf.convert_to_tensor(
[[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case_ , atol=1E-4 )
| 720
|
'''simple docstring'''
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
lowercase_ = logging.getLogger(__name__)
class SCREAMING_SNAKE_CASE ( __lowercase):
"""simple docstring"""
lowercase : int = 'sequence-classification'
def __init__( self , __A ) -> List[Any]:
if type(__A ) == dict:
_lowerCAmelCase =Namespace(**__A )
_lowerCAmelCase =glue_output_modes[hparams.task]
_lowerCAmelCase =glue_tasks_num_labels[hparams.task]
super().__init__(__A , __A , self.mode )
def UpperCamelCase__ ( self , **__A ) -> Any:
return self.model(**__A )
def UpperCamelCase__ ( self , __A , __A ) -> Union[str, Any]:
_lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
_lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None
_lowerCAmelCase =self(**__A )
_lowerCAmelCase =outputs[0]
_lowerCAmelCase =self.trainer.lr_schedulers[0]['scheduler']
_lowerCAmelCase ={'loss': loss, 'rate': lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def UpperCamelCase__ ( self ) -> Any:
_lowerCAmelCase =self.hparams
_lowerCAmelCase =processors[args.task]()
_lowerCAmelCase =processor.get_labels()
for mode in ["train", "dev"]:
_lowerCAmelCase =self._feature_file(__A )
if os.path.exists(__A ) and not args.overwrite_cache:
logger.info('Loading features from cached file %s' , __A )
else:
logger.info('Creating features from dataset file at %s' , args.data_dir )
_lowerCAmelCase =(
processor.get_dev_examples(args.data_dir )
if mode == 'dev'
else processor.get_train_examples(args.data_dir )
)
_lowerCAmelCase =convert_examples_to_features(
__A , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , )
logger.info('Saving features into cached file %s' , __A )
torch.save(__A , __A )
def UpperCamelCase__ ( self , __A , __A , __A = False ) -> DataLoader:
_lowerCAmelCase ='dev' if mode == 'test' else mode
_lowerCAmelCase =self._feature_file(__A )
logger.info('Loading features from cached file %s' , __A )
_lowerCAmelCase =torch.load(__A )
_lowerCAmelCase =torch.tensor([f.input_ids for f in features] , dtype=torch.long )
_lowerCAmelCase =torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
_lowerCAmelCase =torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
if self.hparams.glue_output_mode == "classification":
_lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.long )
elif self.hparams.glue_output_mode == "regression":
_lowerCAmelCase =torch.tensor([f.label for f in features] , dtype=torch.float )
return DataLoader(
TensorDataset(__A , __A , __A , __A ) , batch_size=__A , shuffle=__A , )
def UpperCamelCase__ ( self , __A , __A ) -> List[str]:
_lowerCAmelCase ={'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
_lowerCAmelCase =batch[2] if self.config.model_type in ['bert', 'xlnet', 'albert'] else None
_lowerCAmelCase =self(**__A )
_lowerCAmelCase , _lowerCAmelCase =outputs[:2]
_lowerCAmelCase =logits.detach().cpu().numpy()
_lowerCAmelCase =inputs['labels'].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def UpperCamelCase__ ( self , __A ) -> tuple:
_lowerCAmelCase =torch.stack([x['val_loss'] for x in outputs] ).mean().detach().cpu().item()
_lowerCAmelCase =np.concatenate([x['pred'] for x in outputs] , axis=0 )
if self.hparams.glue_output_mode == "classification":
_lowerCAmelCase =np.argmax(__A , axis=1 )
elif self.hparams.glue_output_mode == "regression":
_lowerCAmelCase =np.squeeze(__A )
_lowerCAmelCase =np.concatenate([x['target'] for x in outputs] , axis=0 )
_lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )]
_lowerCAmelCase =[[] for _ in range(out_label_ids.shape[0] )]
_lowerCAmelCase ={**{'val_loss': val_loss_mean}, **compute_metrics(self.hparams.task , __A , __A )}
_lowerCAmelCase =dict(results.items() )
_lowerCAmelCase =results
return ret, preds_list, out_label_list
def UpperCamelCase__ ( self , __A ) -> dict:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A )
_lowerCAmelCase =ret['log']
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def UpperCamelCase__ ( self , __A ) -> dict:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =self._eval_end(__A )
_lowerCAmelCase =ret['log']
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def UpperCamelCase__ ( __A , __A ) -> Any:
BaseTransformer.add_model_specific_args(__A , __A )
parser.add_argument(
'--max_seq_length' , default=128 , type=__A , help=(
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
) , )
parser.add_argument(
'--task' , default='' , type=__A , required=__A , help='The GLUE task to run' , )
parser.add_argument(
'--gpus' , default=0 , type=__A , help='The number of GPUs allocated for this, it is by default 0 meaning none' , )
parser.add_argument(
'--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' )
return parser
def UpperCamelCase__ ( ):
'''simple docstring'''
_lowerCAmelCase =argparse.ArgumentParser()
add_generic_args(a__ , os.getcwd() )
_lowerCAmelCase =GLUETransformer.add_model_specific_args(a__ , os.getcwd() )
_lowerCAmelCase =parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
_lowerCAmelCase =os.path.join(
'./results' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , )
os.makedirs(args.output_dir )
_lowerCAmelCase =GLUETransformer(a__ )
_lowerCAmelCase =generic_train(a__ , a__ )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
_lowerCAmelCase =sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt' ) , recursive=a__ ) )
_lowerCAmelCase =model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(a__ )
if __name__ == "__main__":
main()
| 58
| 0
|
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def a__ ( A_, A_, A_ ):
'''simple docstring'''
if gpta_config_file == "":
__magic_name__ = GPTaConfig()
else:
__magic_name__ = GPTaConfig.from_json_file(A_ )
__magic_name__ = GPTaModel(A_ )
# Load weights from numpy
load_tf_weights_in_gpta(A_, A_, A_ )
# Save pytorch-model
__magic_name__ = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
__magic_name__ = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(model.state_dict(), A_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(A_, """w""", encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__lowerCAmelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
__lowerCAmelCase : Tuple = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 529
|
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class UpperCAmelCase_ ( _A ):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCamelCase__ : Optional[Any]=0.01 , UpperCamelCase__ : Tuple=1000 ) -> str:
"""simple docstring"""
__magic_name__ = p_stop
__magic_name__ = max_length
def __iter__( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__magic_name__ = 0
__magic_name__ = False
while not stop and count < self.max_length:
yield count
count += 1
__magic_name__ = random.random() < self.p_stop
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str=False , UpperCamelCase__ : Optional[Any]=True ) -> Dict:
"""simple docstring"""
__magic_name__ = [
BatchSamplerShard(UpperCamelCase__ , 2 , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
for i in range(2 )
]
__magic_name__ = [list(UpperCamelCase__ ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(UpperCamelCase__ ) for shard in batch_sampler_shards] , [len(UpperCamelCase__ ) for e in expected] )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def _lowercase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__magic_name__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
__magic_name__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
__magic_name__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
__magic_name__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
# Check the shards when the dataset is very small.
__magic_name__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [[], []]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
def _lowercase ( self : Tuple ) -> int:
"""simple docstring"""
__magic_name__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size.
__magic_name__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
__magic_name__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
# Check the shards when the dataset is very small.
__magic_name__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [[], []]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
def _lowercase ( self : int ) -> str:
"""simple docstring"""
__magic_name__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
__magic_name__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
__magic_name__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
__magic_name__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is very small.
__magic_name__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [[[0, 1]], []]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [[], []]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
def _lowercase ( self : Optional[int] ) -> int:
"""simple docstring"""
__magic_name__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size.
__magic_name__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
__magic_name__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is very small.
__magic_name__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [[[0, 1]], []]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [[], []]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
def _lowercase ( self : Dict ) -> str:
"""simple docstring"""
__magic_name__ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
__magic_name__ = [BatchSamplerShard(UpperCamelCase__ , 2 , UpperCamelCase__ , even_batches=UpperCamelCase__ ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def _lowercase ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Union[str, Any]=False ) -> Union[str, Any]:
"""simple docstring"""
random.seed(UpperCamelCase__ )
__magic_name__ = list(UpperCamelCase__ )
__magic_name__ = [
IterableDatasetShard(
UpperCamelCase__ , batch_size=UpperCamelCase__ , drop_last=UpperCamelCase__ , num_processes=UpperCamelCase__ , process_index=UpperCamelCase__ , split_batches=UpperCamelCase__ , )
for i in range(UpperCamelCase__ )
]
__magic_name__ = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(UpperCamelCase__ )
iterable_dataset_lists.append(list(UpperCamelCase__ ) )
__magic_name__ = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
__magic_name__ = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) )
self.assertTrue(len(UpperCamelCase__ ) % shard_batch_size == 0 )
__magic_name__ = []
for idx in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(UpperCamelCase__ ) < len(UpperCamelCase__ ):
reference += reference
self.assertListEqual(UpperCamelCase__ , reference[: len(UpperCamelCase__ )] )
def _lowercase ( self : Tuple ) -> List[str]:
"""simple docstring"""
__magic_name__ = 42
__magic_name__ = RandomIterableDataset()
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
# Edge case with a very small dataset
__magic_name__ = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
def _lowercase ( self : List[Any] ) -> int:
"""simple docstring"""
__magic_name__ = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = SkipBatchSampler(UpperCamelCase__ , 2 )
self.assertListEqual(list(UpperCamelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase ( self : Tuple ) -> str:
"""simple docstring"""
__magic_name__ = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase ( self : str ) -> List[str]:
"""simple docstring"""
__magic_name__ = DataLoader(list(range(16 ) ) , batch_size=4 )
__magic_name__ = skip_first_batches(UpperCamelCase__ , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase ( self : List[str] ) -> Tuple:
"""simple docstring"""
__magic_name__ = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(UpperCamelCase__ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(UpperCamelCase__ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _lowercase ( self : Tuple ) -> List[str]:
"""simple docstring"""
Accelerator()
__magic_name__ = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(UpperCamelCase__ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(UpperCamelCase__ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 529
| 1
|
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
lowerCamelCase__ = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json"""
with io.open(filename, """r""", encoding="""utf-8""") as f:
lowerCamelCase__ = json.load(f)
@require_torch
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def UpperCamelCase_ ( self : Union[str, Any] , __lowercase : Union[str, Any] ):
'''simple docstring'''
return FSMTTokenizer.from_pretrained(__lowercase )
def UpperCamelCase_ ( self : List[Any] , __lowercase : List[Any] ):
'''simple docstring'''
__a = FSMTForConditionalGeneration.from_pretrained(__lowercase ).to(__lowercase )
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
["""en-ru""", 26.0],
["""ru-en""", 22.0],
["""en-de""", 22.0],
["""de-en""", 29.0],
] )
@slow
def UpperCamelCase_ ( self : str , __lowercase : List[str] , __lowercase : Tuple ):
'''simple docstring'''
__a = F"facebook/wmt19-{pair}"
__a = self.get_tokenizer(__lowercase )
__a = self.get_model(__lowercase )
__a = bleu_data[pair]["""src"""]
__a = bleu_data[pair]["""tgt"""]
__a = tokenizer(__lowercase , return_tensors="""pt""" , truncation=__lowercase , padding="""longest""" ).to(__lowercase )
__a = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
__a = tokenizer.batch_decode(
__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase )
__a = calculate_bleu(__lowercase , __lowercase )
print(__lowercase )
self.assertGreaterEqual(scores["""bleu"""] , __lowercase )
| 717
|
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=False ):
"""simple docstring"""
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__a = len(set_a.intersection(_SCREAMING_SNAKE_CASE ) )
if alternative_union:
__a = len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE )
else:
__a = len(set_a.union(_SCREAMING_SNAKE_CASE ) )
return intersection / union
if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ):
__a = [element for element in set_a if element in set_b]
if alternative_union:
__a = len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE )
return len(_SCREAMING_SNAKE_CASE ) / union
else:
__a = set_a + [element for element in set_b if element not in set_a]
return len(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )
return len(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )
return None
if __name__ == "__main__":
lowerCamelCase__ = {"""a""", """b""", """c""", """d""", """e"""}
lowerCamelCase__ = {"""c""", """d""", """e""", """f""", """h""", """i"""}
print(jaccard_similarity(set_a, set_b))
| 547
| 0
|
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def A_ ( a , a , a , a ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = BigBirdConfig.from_json_file(a )
print(f"Building PyTorch model from configuration: {config}" )
if is_trivia_qa:
SCREAMING_SNAKE_CASE_ : Any = BigBirdForQuestionAnswering(a )
else:
SCREAMING_SNAKE_CASE_ : Tuple = BigBirdForPreTraining(a )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(a , a , is_trivia_qa=a )
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}" )
model.save_pretrained(a )
if __name__ == "__main__":
lowerCAmelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--big_bird_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.'
)
lowerCAmelCase : Optional[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 511
|
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
lowerCAmelCase : str = logging.get_logger(__name__)
lowerCAmelCase : int = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _A ( __magic_name__):
SCREAMING_SNAKE_CASE : int = '''gpt_neo'''
SCREAMING_SNAKE_CASE : Tuple = ['''past_key_values''']
SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=24 , _SCREAMING_SNAKE_CASE=[[["global", "local"], 12]] , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=5_0256 , **_SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = vocab_size
SCREAMING_SNAKE_CASE_ : Any = max_position_embeddings
SCREAMING_SNAKE_CASE_ : str = hidden_size
SCREAMING_SNAKE_CASE_ : List[Any] = num_layers
SCREAMING_SNAKE_CASE_ : List[str] = num_heads
SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size
SCREAMING_SNAKE_CASE_ : Optional[int] = window_size
SCREAMING_SNAKE_CASE_ : int = activation_function
SCREAMING_SNAKE_CASE_ : Union[str, Any] = resid_dropout
SCREAMING_SNAKE_CASE_ : Optional[Any] = embed_dropout
SCREAMING_SNAKE_CASE_ : int = attention_dropout
SCREAMING_SNAKE_CASE_ : int = classifier_dropout
SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_epsilon
SCREAMING_SNAKE_CASE_ : Dict = initializer_range
SCREAMING_SNAKE_CASE_ : List[Any] = use_cache
SCREAMING_SNAKE_CASE_ : List[Any] = bos_token_id
SCREAMING_SNAKE_CASE_ : Union[str, Any] = eos_token_id
SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_types
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.expand_attention_types_params(_SCREAMING_SNAKE_CASE )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.attention_layers)` == `config.num_layers` '
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
'`config.attention_layers` is prepared using `config.attention_types`. '
'Please verify the value of `config.attention_types` argument.' )
super().__init__(bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@staticmethod
def UpperCAmelCase ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def A_ ( a , a , a , a ):
"""simple docstring"""
import torch
SCREAMING_SNAKE_CASE_ : List[Any] = input.size()
SCREAMING_SNAKE_CASE_ : str = len(a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = shape[dimension]
SCREAMING_SNAKE_CASE_ : List[Any] = torch.arange(0 , a , a )
SCREAMING_SNAKE_CASE_ : List[str] = torch.div(sizedim - size , a , rounding_mode='floor' ) + 1
SCREAMING_SNAKE_CASE_ : Tuple = torch.arange(a ) + low_indices[:min_length][:, None]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [slice(a )] * rank
SCREAMING_SNAKE_CASE_ : int = indices
SCREAMING_SNAKE_CASE_ : int = input[s]
SCREAMING_SNAKE_CASE_ : List[str] = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(a )
def A_ ( a , a ):
"""simple docstring"""
import torch
SCREAMING_SNAKE_CASE_ : str = torch.arange(1 , a )
SCREAMING_SNAKE_CASE_ : List[str] = torch.remainder(a , a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = remainders == 0
SCREAMING_SNAKE_CASE_ : Any = candidates[divisor_indices]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.max(a )
return largest_divisor, torch.div(a , a , rounding_mode='floor' )
class _A ( __magic_name__):
@property
def UpperCAmelCase ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} )
if self.use_past:
self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='inputs' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {0: 'batch', 1: 'past_sequence + sequence'}
else:
SCREAMING_SNAKE_CASE_ : List[Any] = {0: 'batch', 1: 'sequence'}
return common_inputs
@property
def UpperCAmelCase ( self ):
"""simple docstring"""
return self._config.num_heads
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = super(_SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs(
_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE_ : int = OrderedDict({'input_ids': common_inputs['input_ids']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE_ : Any = seqlen + 2
SCREAMING_SNAKE_CASE_ : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE_ : List[Any] = [
(torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE_ : Tuple = common_inputs['attention_mask']
if self.use_past:
SCREAMING_SNAKE_CASE_ : Any = ordered_inputs['attention_mask'].dtype
SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat(
[ordered_inputs['attention_mask'], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 )
return ordered_inputs
@property
def UpperCAmelCase ( self ):
"""simple docstring"""
return 13
| 511
| 1
|
'''simple docstring'''
_SCREAMING_SNAKE_CASE = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []}
_SCREAMING_SNAKE_CASE = ["a", "b", "c", "d", "e"]
def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> Any:
snake_case = start
# add current to visited
visited.append(__lowerCAmelCase )
snake_case = edges[current]
for neighbor in neighbors:
# if neighbor not in visited, visit
if neighbor not in visited:
snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# if all neighbors visited add current to sort
sort.append(__lowerCAmelCase )
# if all vertices haven't been visited select a new one to visit
if len(__lowerCAmelCase ) != len(__lowerCAmelCase ):
for vertice in vertices:
if vertice not in visited:
snake_case = topological_sort(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# return sort
return sort
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = topological_sort("a", [], [])
print(sort)
| 517
|
'''simple docstring'''
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
_SCREAMING_SNAKE_CASE = random.Random()
def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any]=1.0 , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[int]=None ) -> Optional[Any]:
if rng is None:
snake_case = global_rng
snake_case = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , __snake_case : int , __snake_case : Dict=7 , __snake_case : Optional[int]=4_00 , __snake_case : Optional[int]=20_00 , __snake_case : List[str]=1 , __snake_case : str=0.0 , __snake_case : Dict=1_60_00 , __snake_case : Dict=True , __snake_case : Optional[int]=True , )-> Optional[int]:
snake_case = parent
snake_case = batch_size
snake_case = min_seq_length
snake_case = max_seq_length
snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
snake_case = feature_size
snake_case = padding_value
snake_case = sampling_rate
snake_case = return_attention_mask
snake_case = do_normalize
def lowerCAmelCase ( self : Union[str, Any] )-> Dict:
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def lowerCAmelCase ( self : Tuple , __snake_case : List[Any]=False , __snake_case : int=False )-> Tuple:
def _flatten(__snake_case : List[str] ):
return list(itertools.chain(*__snake_case ) )
if equal_length:
snake_case = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
snake_case = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
snake_case = [np.asarray(__snake_case ) for x in speech_inputs]
return speech_inputs
class _lowerCAmelCase ( A__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = WavaVecaFeatureExtractor
def lowerCAmelCase ( self : Tuple )-> Optional[Any]:
snake_case = WavaVecaFeatureExtractionTester(self )
def lowerCAmelCase ( self : Dict , __snake_case : str )-> List[Any]:
self.assertTrue(np.all(np.mean(__snake_case , axis=0 ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(__snake_case , axis=0 ) - 1 ) < 1e-3 ) )
def lowerCAmelCase ( self : Optional[Any] )-> Optional[int]:
# Tests that all call wrap to encode_plus and batch_encode_plus
snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
snake_case = [np.asarray(__snake_case ) for speech_input in speech_inputs]
# Test not batched input
snake_case = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values
snake_case = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values
self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1e-3 ) )
# Test batched
snake_case = feat_extract(__snake_case , return_tensors="""np""" ).input_values
snake_case = feat_extract(__snake_case , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ):
self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
snake_case = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
snake_case = np.asarray(__snake_case )
snake_case = feat_extract(__snake_case , return_tensors="""np""" ).input_values
snake_case = feat_extract(__snake_case , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(__snake_case , __snake_case ):
self.assertTrue(np.allclose(__snake_case , __snake_case , atol=1e-3 ) )
def lowerCAmelCase ( self : int )-> List[str]:
snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
snake_case = ["""longest""", """max_length""", """do_not_pad"""]
snake_case = [None, 16_00, None]
for max_length, padding in zip(__snake_case , __snake_case ):
snake_case = feat_extract(__snake_case , padding=__snake_case , max_length=__snake_case , return_tensors="""np""" )
snake_case = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:8_00] )
self.assertTrue(input_values[0][8_00:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[1][:10_00] )
self.assertTrue(input_values[0][10_00:].sum() < 1e-6 )
self._check_zero_mean_unit_variance(input_values[2][:12_00] )
def lowerCAmelCase ( self : Any )-> Tuple:
snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
snake_case = range(8_00 , 14_00 , 2_00 )
snake_case = [floats_list((1, x) )[0] for x in lengths]
snake_case = ["""longest""", """max_length""", """do_not_pad"""]
snake_case = [None, 16_00, None]
for max_length, padding in zip(__snake_case , __snake_case ):
snake_case = feat_extract(__snake_case , max_length=__snake_case , padding=__snake_case )
snake_case = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:8_00] )
self._check_zero_mean_unit_variance(input_values[1][:10_00] )
self._check_zero_mean_unit_variance(input_values[2][:12_00] )
def lowerCAmelCase ( self : int )-> str:
snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
snake_case = feat_extract(
__snake_case , truncation=__snake_case , max_length=10_00 , padding="""max_length""" , return_tensors="""np""" )
snake_case = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :8_00] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def lowerCAmelCase ( self : int )-> str:
snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
snake_case = feat_extract(
__snake_case , truncation=__snake_case , max_length=10_00 , padding="""longest""" , return_tensors="""np""" )
snake_case = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :8_00] )
self._check_zero_mean_unit_variance(input_values[1, :10_00] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 10_00) )
snake_case = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
snake_case = feat_extract(
__snake_case , truncation=__snake_case , max_length=20_00 , padding="""longest""" , return_tensors="""np""" )
snake_case = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :8_00] )
self._check_zero_mean_unit_variance(input_values[1, :10_00] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 12_00) )
@require_torch
def lowerCAmelCase ( self : List[str] )-> Union[str, Any]:
import torch
snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
snake_case = np.random.rand(1_00 ).astype(np.floataa )
snake_case = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
snake_case = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
snake_case = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def lowerCAmelCase ( self : str )-> List[Any]:
# this test makes sure that models that are using
# group norm don't have their feature extractor return the
# attention_mask
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
snake_case = WavaVecaConfig.from_pretrained(__snake_case )
snake_case = WavaVecaFeatureExtractor.from_pretrained(__snake_case )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
| 517
| 1
|
import sys
def lowerCamelCase_ ( _UpperCamelCase ) -> Tuple:
"""simple docstring"""
snake_case_ : Union[str, Any] = len(_UpperCamelCase )
snake_case_ : List[Any] = [[0 for x in range(_UpperCamelCase )] for x in range(_UpperCamelCase )]
snake_case_ : List[Any] = [[0 for x in range(_UpperCamelCase )] for x in range(_UpperCamelCase )]
for chain_length in range(2 , _UpperCamelCase ):
for a in range(1 , n - chain_length + 1 ):
snake_case_ : Dict = a + chain_length - 1
snake_case_ : Tuple = sys.maxsize
for c in range(_UpperCamelCase , _UpperCamelCase ):
snake_case_ : Dict = (
matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b]
)
if cost < matrix[a][b]:
snake_case_ : List[str] = cost
snake_case_ : int = c
return matrix, sol
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any:
"""simple docstring"""
if i == j:
print('''A''' + str(_UpperCamelCase ) , end=''' ''' )
else:
print('''(''' , end=''' ''' )
print_optiomal_solution(_UpperCamelCase , _UpperCamelCase , optimal_solution[i][j] )
print_optiomal_solution(_UpperCamelCase , optimal_solution[i][j] + 1 , _UpperCamelCase )
print(''')''' , end=''' ''' )
def lowerCamelCase_ ( ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : Tuple = [30, 35, 15, 5, 10, 20, 25]
snake_case_ : str = len(_UpperCamelCase )
# Size of matrix created from above array will be
# 30*35 35*15 15*5 5*10 10*20 20*25
snake_case_ , snake_case_ : Optional[Any] = matrix_chain_order(_UpperCamelCase )
print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) )
print_optiomal_solution(_UpperCamelCase , 1 , n - 1 )
if __name__ == "__main__":
main()
| 60
|
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class UpperCAmelCase_ ( _A ):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCamelCase__ : Optional[Any]=0.01 , UpperCamelCase__ : Tuple=1000 ) -> str:
"""simple docstring"""
__magic_name__ = p_stop
__magic_name__ = max_length
def __iter__( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__magic_name__ = 0
__magic_name__ = False
while not stop and count < self.max_length:
yield count
count += 1
__magic_name__ = random.random() < self.p_stop
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str=False , UpperCamelCase__ : Optional[Any]=True ) -> Dict:
"""simple docstring"""
__magic_name__ = [
BatchSamplerShard(UpperCamelCase__ , 2 , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
for i in range(2 )
]
__magic_name__ = [list(UpperCamelCase__ ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(UpperCamelCase__ ) for shard in batch_sampler_shards] , [len(UpperCamelCase__ ) for e in expected] )
self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ )
def _lowercase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__magic_name__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
__magic_name__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
__magic_name__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
__magic_name__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
# Check the shards when the dataset is very small.
__magic_name__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
__magic_name__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [[], []]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ )
def _lowercase ( self : Tuple ) -> int:
"""simple docstring"""
__magic_name__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size.
__magic_name__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
__magic_name__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
# Check the shards when the dataset is very small.
__magic_name__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [[], []]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ )
def _lowercase ( self : int ) -> str:
"""simple docstring"""
__magic_name__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
__magic_name__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
__magic_name__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
__magic_name__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is very small.
__magic_name__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [[[0, 1]], []]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ )
__magic_name__ = [[], []]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ )
def _lowercase ( self : Optional[int] ) -> int:
"""simple docstring"""
__magic_name__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size.
__magic_name__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
__magic_name__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
# Check the shards when the dataset is very small.
__magic_name__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [[[0, 1]], []]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
__magic_name__ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = [[], []]
self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ )
def _lowercase ( self : Dict ) -> str:
"""simple docstring"""
__magic_name__ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
__magic_name__ = [BatchSamplerShard(UpperCamelCase__ , 2 , UpperCamelCase__ , even_batches=UpperCamelCase__ ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def _lowercase ( self : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Union[str, Any]=False ) -> Union[str, Any]:
"""simple docstring"""
random.seed(UpperCamelCase__ )
__magic_name__ = list(UpperCamelCase__ )
__magic_name__ = [
IterableDatasetShard(
UpperCamelCase__ , batch_size=UpperCamelCase__ , drop_last=UpperCamelCase__ , num_processes=UpperCamelCase__ , process_index=UpperCamelCase__ , split_batches=UpperCamelCase__ , )
for i in range(UpperCamelCase__ )
]
__magic_name__ = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(UpperCamelCase__ )
iterable_dataset_lists.append(list(UpperCamelCase__ ) )
__magic_name__ = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
__magic_name__ = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) )
self.assertTrue(len(UpperCamelCase__ ) % shard_batch_size == 0 )
__magic_name__ = []
for idx in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(UpperCamelCase__ ) < len(UpperCamelCase__ ):
reference += reference
self.assertListEqual(UpperCamelCase__ , reference[: len(UpperCamelCase__ )] )
def _lowercase ( self : Tuple ) -> List[str]:
"""simple docstring"""
__magic_name__ = 42
__magic_name__ = RandomIterableDataset()
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
# Edge case with a very small dataset
__magic_name__ = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ )
def _lowercase ( self : List[Any] ) -> int:
"""simple docstring"""
__magic_name__ = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCamelCase__ )
__magic_name__ = SkipBatchSampler(UpperCamelCase__ , 2 )
self.assertListEqual(list(UpperCamelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase ( self : Tuple ) -> str:
"""simple docstring"""
__magic_name__ = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase ( self : str ) -> List[str]:
"""simple docstring"""
__magic_name__ = DataLoader(list(range(16 ) ) , batch_size=4 )
__magic_name__ = skip_first_batches(UpperCamelCase__ , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowercase ( self : List[str] ) -> Tuple:
"""simple docstring"""
__magic_name__ = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(UpperCamelCase__ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(UpperCamelCase__ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _lowercase ( self : Tuple ) -> List[str]:
"""simple docstring"""
Accelerator()
__magic_name__ = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(UpperCamelCase__ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(UpperCamelCase__ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 529
| 0
|
'''simple docstring'''
import argparse
from pathlib import Path
import fairseq
import torch
from fairseq.models.xmod import XMODModel as FairseqXmodModel
from packaging import version
from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('0.12.2'):
raise Exception('requires fairseq >= 0.12.2')
if version.parse(fairseq.__version__) > version.parse('2'):
raise Exception('requires fairseq < v2')
logging.set_verbosity_info()
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = 'Hello, World!'
__magic_name__ = 'en_XX'
def lowerCamelCase ( lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : bool):
A_ : Dict = Path("""data_bin""")
A_ : Union[str, Any] = FairseqXmodModel.from_pretrained(
model_name_or_path=str(Path(_lowerCAmelCase).parent) , checkpoint_file=Path(_lowerCAmelCase).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(_lowerCAmelCase) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(_lowerCAmelCase).parent / """sentencepiece.bpe.model""") , src_dict=str(data_dir / """dict.txt""") , )
xmod.eval() # disable dropout
print(_lowerCAmelCase)
A_ : Tuple = xmod.model.encoder.sentence_encoder
A_ : List[str] = XmodConfig(
vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , )
if classification_head:
A_ : List[Any] = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("""Our X-MOD config:""" , _lowerCAmelCase)
A_ : Optional[Any] = XmodForSequenceClassification(_lowerCAmelCase) if classification_head else XmodForMaskedLM(_lowerCAmelCase)
model.eval()
# Now let's copy all the weights.
# Embeddings
A_ : str = xmod_sent_encoder.embed_tokens.weight
A_ : List[Any] = xmod_sent_encoder.embed_positions.weight
A_ : Optional[int] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them.
A_ : Any = xmod_sent_encoder.layernorm_embedding.weight
A_ : str = xmod_sent_encoder.layernorm_embedding.bias
for i in range(config.num_hidden_layers):
# Encoder: start of layer
A_ : Optional[Any] = model.roberta.encoder.layer[i]
A_ : str = xmod_sent_encoder.layers[i]
# self attention
A_ : Any = layer.attention.self
if not (
xmod_layer.self_attn.k_proj.weight.data.shape
== xmod_layer.self_attn.q_proj.weight.data.shape
== xmod_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size))
):
raise AssertionError("""Dimensions of self-attention weights do not match.""")
A_ : Tuple = xmod_layer.self_attn.q_proj.weight
A_ : Optional[int] = xmod_layer.self_attn.q_proj.bias
A_ : Tuple = xmod_layer.self_attn.k_proj.weight
A_ : Optional[int] = xmod_layer.self_attn.k_proj.bias
A_ : Union[str, Any] = xmod_layer.self_attn.v_proj.weight
A_ : Dict = xmod_layer.self_attn.v_proj.bias
# self-attention output
A_ : Dict = layer.attention.output
if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape:
raise AssertionError("""Dimensions of self-attention output weights do not match.""")
A_ : List[Any] = xmod_layer.self_attn.out_proj.weight
A_ : Union[str, Any] = xmod_layer.self_attn.out_proj.bias
A_ : str = xmod_layer.self_attn_layer_norm.weight
A_ : Tuple = xmod_layer.self_attn_layer_norm.bias
# intermediate
A_ : int = layer.intermediate
if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of intermediate weights do not match.""")
A_ : Any = xmod_layer.fca.weight
A_ : Dict = xmod_layer.fca.bias
# output
A_ : Tuple = layer.output
if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape:
raise AssertionError("""Dimensions of feed-forward weights do not match.""")
A_ : str = xmod_layer.fca.weight
A_ : Any = xmod_layer.fca.bias
A_ : List[str] = xmod_layer.final_layer_norm.weight
A_ : List[Any] = xmod_layer.final_layer_norm.bias
if bert_output.adapter_layer_norm is not None:
A_ : Union[str, Any] = xmod_layer.adapter_layer_norm.weight
A_ : Tuple = xmod_layer.adapter_layer_norm.bias
if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()):
raise AssertionError("""Lists of language adapters do not match.""")
for lang_code, adapter in xmod_layer.adapter_modules.items():
A_ : Optional[int] = bert_output.adapter_modules[lang_code]
A_ : List[Any] = xmod_layer.adapter_modules[lang_code]
A_ : int = from_adapter.fca.weight
A_ : Dict = from_adapter.fca.bias
A_ : int = from_adapter.fca.weight
A_ : Any = from_adapter.fca.bias
# end of layer
if xmod_sent_encoder.layer_norm is not None:
A_ : str = xmod_sent_encoder.layer_norm.weight
A_ : Optional[Any] = xmod_sent_encoder.layer_norm.bias
if classification_head:
A_ : int = xmod.model.classification_heads["mnli"].dense.weight
A_ : Any = xmod.model.classification_heads["mnli"].dense.bias
A_ : List[Any] = xmod.model.classification_heads["mnli"].out_proj.weight
A_ : Optional[Any] = xmod.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
A_ : Any = xmod.model.encoder.lm_head.dense.weight
A_ : Any = xmod.model.encoder.lm_head.dense.bias
A_ : Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight
A_ : Optional[int] = xmod.model.encoder.lm_head.layer_norm.bias
A_ : Optional[int] = xmod.model.encoder.lm_head.weight
A_ : List[Any] = xmod.model.encoder.lm_head.bias
# Let's check that we get the same results.
A_ : Any = xmod.encode(_lowerCAmelCase).unsqueeze(0) # batch of size 1
model.roberta.set_default_language(_lowerCAmelCase)
A_ : int = model(_lowerCAmelCase)[0]
if classification_head:
A_ : List[str] = xmod.model.classification_heads["mnli"](xmod.extract_features(_lowerCAmelCase))
else:
A_ : str = xmod.model(_lowerCAmelCase , lang_id=[SAMPLE_LANGUAGE])[0]
print(our_output.shape , their_output.shape)
A_ : Dict = torch.max(torch.abs(our_output - their_output)).item()
print(F'max_absolute_diff = {max_absolute_diff}') # ~ 1e-7
A_ : Dict = torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-3)
print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""")
if not success:
raise Exception("""Something went wRoNg""")
Path(_lowerCAmelCase).mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase)
print(F'Saving model to {pytorch_dump_folder_path}')
model.save_pretrained(_lowerCAmelCase)
if __name__ == "__main__":
__magic_name__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--classification_head', action='store_true', help='Whether to convert a final classification head.'
)
__magic_name__ = parser.parse_args()
convert_xmod_checkpoint_to_pytorch(
args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 711
|
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__magic_name__ = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = ["""pixel_values"""]
def __init__( self : Optional[Any] ,_a : bool = True ,_a : Dict[str, int] = None ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : bool = True ,_a : Dict[str, int] = None ,_a : bool = True ,_a : Union[int, float] = 1 / 255 ,_a : bool = True ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = True ,**_a : Dict ,):
'''simple docstring'''
super().__init__(**_a )
A_ : Tuple = size if size is not None else {"""shortest_edge""": 224}
A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a )
A_ : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a ,param_name="""crop_size""" )
A_ : Any = do_resize
A_ : List[str] = size
A_ : Union[str, Any] = resample
A_ : Dict = do_center_crop
A_ : List[str] = crop_size
A_ : Any = do_rescale
A_ : Union[str, Any] = rescale_factor
A_ : Any = do_normalize
A_ : List[str] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
A_ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD
A_ : Tuple = do_convert_rgb
def _a ( self : Optional[int] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : PILImageResampling = PILImageResampling.BICUBIC ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[Any] ,):
'''simple docstring'''
A_ : Optional[Any] = get_size_dict(_a ,default_to_square=_a )
if "shortest_edge" not in size:
raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
A_ : Tuple = get_resize_output_image_size(_a ,size=size["""shortest_edge"""] ,default_to_square=_a )
return resize(_a ,size=_a ,resample=_a ,data_format=_a ,**_a )
def _a ( self : List[Any] ,_a : np.ndarray ,_a : Dict[str, int] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Optional[int] ,):
'''simple docstring'''
A_ : Optional[int] = get_size_dict(_a )
if "height" not in size or "width" not in size:
raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(_a ,size=(size["""height"""], size["""width"""]) ,data_format=_a ,**_a )
def _a ( self : Any ,_a : np.ndarray ,_a : Union[int, float] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : Any ,):
'''simple docstring'''
return rescale(_a ,scale=_a ,data_format=_a ,**_a )
def _a ( self : Any ,_a : np.ndarray ,_a : Union[float, List[float]] ,_a : Union[float, List[float]] ,_a : Optional[Union[str, ChannelDimension]] = None ,**_a : List[str] ,):
'''simple docstring'''
return normalize(_a ,mean=_a ,std=_a ,data_format=_a ,**_a )
def _a ( self : Optional[Any] ,_a : ImageInput ,_a : bool = None ,_a : Dict[str, int] = None ,_a : PILImageResampling = None ,_a : bool = None ,_a : int = None ,_a : bool = None ,_a : float = None ,_a : bool = None ,_a : Optional[Union[float, List[float]]] = None ,_a : Optional[Union[float, List[float]]] = None ,_a : bool = None ,_a : Optional[Union[str, TensorType]] = None ,_a : Optional[ChannelDimension] = ChannelDimension.FIRST ,**_a : int ,):
'''simple docstring'''
A_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
A_ : Tuple = size if size is not None else self.size
A_ : Optional[int] = get_size_dict(_a ,param_name="""size""" ,default_to_square=_a )
A_ : List[str] = resample if resample is not None else self.resample
A_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop
A_ : Any = crop_size if crop_size is not None else self.crop_size
A_ : int = get_size_dict(_a ,param_name="""crop_size""" ,default_to_square=_a )
A_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale
A_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
A_ : Any = do_normalize if do_normalize is not None else self.do_normalize
A_ : int = image_mean if image_mean is not None else self.image_mean
A_ : int = image_std if image_std is not None else self.image_std
A_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
A_ : int = make_list_of_images(_a )
if not valid_images(_a ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
A_ : Optional[int] = [convert_to_rgb(_a ) for image in images]
# All transformations expect numpy arrays.
A_ : Dict = [to_numpy_array(_a ) for image in images]
if do_resize:
A_ : int = [self.resize(image=_a ,size=_a ,resample=_a ) for image in images]
if do_center_crop:
A_ : Tuple = [self.center_crop(image=_a ,size=_a ) for image in images]
if do_rescale:
A_ : List[str] = [self.rescale(image=_a ,scale=_a ) for image in images]
if do_normalize:
A_ : Any = [self.normalize(image=_a ,mean=_a ,std=_a ) for image in images]
A_ : List[str] = [to_channel_dimension_format(_a ,_a ) for image in images]
A_ : List[str] = {"""pixel_values""": images}
return BatchFeature(data=_a ,tensor_type=_a )
| 27
| 0
|
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
_UpperCAmelCase : Tuple = {
"facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json",
# See all LeViT models at https://huggingface.co/models?filter=levit
}
class lowerCAmelCase_ ( snake_case__ ):
UpperCamelCase_ :str = 'levit'
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int]=224 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=3 , SCREAMING_SNAKE_CASE_ : int=2 , SCREAMING_SNAKE_CASE_ : int=1 , SCREAMING_SNAKE_CASE_ : Dict=16 , SCREAMING_SNAKE_CASE_ : Optional[Any]=[128, 256, 384] , SCREAMING_SNAKE_CASE_ : str=[4, 8, 12] , SCREAMING_SNAKE_CASE_ : Any=[4, 4, 4] , SCREAMING_SNAKE_CASE_ : List[Any]=[16, 16, 16] , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 , SCREAMING_SNAKE_CASE_ : int=[2, 2, 2] , SCREAMING_SNAKE_CASE_ : Optional[Any]=[2, 2, 2] , SCREAMING_SNAKE_CASE_ : List[Any]=0.02 , **SCREAMING_SNAKE_CASE_ : Tuple , ):
super().__init__(**SCREAMING_SNAKE_CASE_ )
lowerCAmelCase__ = image_size
lowerCAmelCase__ = num_channels
lowerCAmelCase__ = kernel_size
lowerCAmelCase__ = stride
lowerCAmelCase__ = padding
lowerCAmelCase__ = hidden_sizes
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = depths
lowerCAmelCase__ = key_dim
lowerCAmelCase__ = drop_path_rate
lowerCAmelCase__ = patch_size
lowerCAmelCase__ = attention_ratio
lowerCAmelCase__ = mlp_ratio
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = [
['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
class lowerCAmelCase_ ( snake_case__ ):
UpperCamelCase_ :List[Any] = version.parse('1.11' )
@property
def __snake_case ( self : Any ):
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def __snake_case ( self : List[Any] ):
return 1e-4
| 668
|
from typing import Any
def lowerCAmelCase_ (lowercase__ : list , lowercase__ : list , lowercase__ : dict , lowercase__ : dict , lowercase__ : dict , ) -> list:
'''simple docstring'''
_validation(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , )
# Creates data structures and fill initial step
lowerCAmelCase__ = {}
lowerCAmelCase__ = {}
for state in states_space:
lowerCAmelCase__ = observations_space[0]
lowerCAmelCase__ = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
lowerCAmelCase__ = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(lowercase__ ) ):
lowerCAmelCase__ = observations_space[o]
lowerCAmelCase__ = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
lowerCAmelCase__ = ''''''
lowerCAmelCase__ = -1
for k_state in states_space:
lowerCAmelCase__ = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
lowerCAmelCase__ = probability
lowerCAmelCase__ = k_state
# Update probabilities and pointers dicts
lowerCAmelCase__ = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
lowerCAmelCase__ = arg_max
# The final observation
lowerCAmelCase__ = observations_space[len(lowercase__ ) - 1]
# argmax for given final observation
lowerCAmelCase__ = ''''''
lowerCAmelCase__ = -1
for k_state in states_space:
lowerCAmelCase__ = probabilities[(k_state, final_observation)]
if probability > max_probability:
lowerCAmelCase__ = probability
lowerCAmelCase__ = k_state
lowerCAmelCase__ = arg_max
# Process pointers backwards
lowerCAmelCase__ = last_state
lowerCAmelCase__ = []
for o in range(len(lowercase__ ) - 1 , -1 , -1 ):
result.append(lowercase__ )
lowerCAmelCase__ = pointers[previous, observations_space[o]]
result.reverse()
return result
def lowerCAmelCase_ (lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , ) -> None:
'''simple docstring'''
_validate_not_empty(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , )
_validate_lists(lowercase__ , lowercase__ )
_validate_dicts(
lowercase__ , lowercase__ , lowercase__ )
def lowerCAmelCase_ (lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , ) -> None:
'''simple docstring'''
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError('''There\'s an empty parameter''' )
def lowerCAmelCase_ (lowercase__ : Any , lowercase__ : Any ) -> None:
'''simple docstring'''
_validate_list(lowercase__ , '''observations_space''' )
_validate_list(lowercase__ , '''states_space''' )
def lowerCAmelCase_ (lowercase__ : Any , lowercase__ : str ) -> None:
'''simple docstring'''
if not isinstance(_object , lowercase__ ):
lowerCAmelCase__ = f'{var_name} must be a list'
raise ValueError(lowercase__ )
else:
for x in _object:
if not isinstance(lowercase__ , lowercase__ ):
lowerCAmelCase__ = f'{var_name} must be a list of strings'
raise ValueError(lowercase__ )
def lowerCAmelCase_ (lowercase__ : Any , lowercase__ : Any , lowercase__ : Any , ) -> None:
'''simple docstring'''
_validate_dict(lowercase__ , '''initial_probabilities''' , lowercase__ )
_validate_nested_dict(lowercase__ , '''transition_probabilities''' )
_validate_nested_dict(lowercase__ , '''emission_probabilities''' )
def lowerCAmelCase_ (lowercase__ : Any , lowercase__ : str ) -> None:
'''simple docstring'''
_validate_dict(_object , lowercase__ , lowercase__ )
for x in _object.values():
_validate_dict(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
def lowerCAmelCase_ (lowercase__ : Any , lowercase__ : str , lowercase__ : type , lowercase__ : bool = False ) -> None:
'''simple docstring'''
if not isinstance(_object , lowercase__ ):
lowerCAmelCase__ = f'{var_name} must be a dict'
raise ValueError(lowercase__ )
if not all(isinstance(lowercase__ , lowercase__ ) for x in _object ):
lowerCAmelCase__ = f'{var_name} all keys must be strings'
raise ValueError(lowercase__ )
if not all(isinstance(lowercase__ , lowercase__ ) for x in _object.values() ):
lowerCAmelCase__ = '''nested dictionary ''' if nested else ''''''
lowerCAmelCase__ = f'{var_name} {nested_text}all values must be {value_type.__name__}'
raise ValueError(lowercase__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 668
| 1
|
'''simple docstring'''
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
a_ =LxmertConfig.from_json_file(lowercase__ )
print(F"""Building PyTorch model from configuration: {config}""" )
a_ =LxmertForPreTraining(lowercase__ )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , lowercase__ )
if __name__ == "__main__":
lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
lowercase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 41
|
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowercase = logging.get_logger(__name__)
lowercase = {
'''b0''': efficientnet.EfficientNetBa,
'''b1''': efficientnet.EfficientNetBa,
'''b2''': efficientnet.EfficientNetBa,
'''b3''': efficientnet.EfficientNetBa,
'''b4''': efficientnet.EfficientNetBa,
'''b5''': efficientnet.EfficientNetBa,
'''b6''': efficientnet.EfficientNetBa,
'''b7''': efficientnet.EfficientNetBa,
}
lowercase = {
'''b0''': {
'''hidden_dim''': 1_280,
'''width_coef''': 1.0,
'''depth_coef''': 1.0,
'''image_size''': 224,
'''dropout_rate''': 0.2,
'''dw_padding''': [],
},
'''b1''': {
'''hidden_dim''': 1_280,
'''width_coef''': 1.0,
'''depth_coef''': 1.1,
'''image_size''': 240,
'''dropout_rate''': 0.2,
'''dw_padding''': [16],
},
'''b2''': {
'''hidden_dim''': 1_408,
'''width_coef''': 1.1,
'''depth_coef''': 1.2,
'''image_size''': 260,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 8, 16],
},
'''b3''': {
'''hidden_dim''': 1_536,
'''width_coef''': 1.2,
'''depth_coef''': 1.4,
'''image_size''': 300,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 18],
},
'''b4''': {
'''hidden_dim''': 1_792,
'''width_coef''': 1.4,
'''depth_coef''': 1.8,
'''image_size''': 380,
'''dropout_rate''': 0.4,
'''dw_padding''': [6],
},
'''b5''': {
'''hidden_dim''': 2_048,
'''width_coef''': 1.6,
'''depth_coef''': 2.2,
'''image_size''': 456,
'''dropout_rate''': 0.4,
'''dw_padding''': [13, 27],
},
'''b6''': {
'''hidden_dim''': 2_304,
'''width_coef''': 1.8,
'''depth_coef''': 2.6,
'''image_size''': 528,
'''dropout_rate''': 0.5,
'''dw_padding''': [31],
},
'''b7''': {
'''hidden_dim''': 2_560,
'''width_coef''': 2.0,
'''depth_coef''': 3.1,
'''image_size''': 600,
'''dropout_rate''': 0.5,
'''dw_padding''': [18],
},
}
def UpperCAmelCase_ ( lowercase__ ):
'''simple docstring'''
a_ =EfficientNetConfig()
a_ =CONFIG_MAP[model_name]["hidden_dim"]
a_ =CONFIG_MAP[model_name]["width_coef"]
a_ =CONFIG_MAP[model_name]["depth_coef"]
a_ =CONFIG_MAP[model_name]["image_size"]
a_ =CONFIG_MAP[model_name]["dropout_rate"]
a_ =CONFIG_MAP[model_name]["dw_padding"]
a_ ="huggingface/label-files"
a_ ="imagenet-1k-id2label.json"
a_ =1_0_0_0
a_ =json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset" ) , "r" ) )
a_ ={int(lowercase__ ): v for k, v in idalabel.items()}
a_ =idalabel
a_ ={v: k for k, v in idalabel.items()}
return config
def UpperCAmelCase_ ( ):
'''simple docstring'''
a_ ="http://images.cocodataset.org/val2017/000000039769.jpg"
a_ =Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
def UpperCAmelCase_ ( lowercase__ ):
'''simple docstring'''
a_ =CONFIG_MAP[model_name]["image_size"]
a_ =EfficientNetImageProcessor(
size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowercase__ , )
return preprocessor
def UpperCAmelCase_ ( lowercase__ ):
'''simple docstring'''
a_ =[v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )]
a_ =sorted(set(lowercase__ ) )
a_ =len(lowercase__ )
a_ ={b: str(lowercase__ ) for b, i in zip(lowercase__ , range(lowercase__ ) )}
a_ =[]
rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") )
rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") )
rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") )
rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") )
rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") )
for b in block_names:
a_ =block_name_mapping[b]
rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") )
rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") )
rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") )
rename_keys.append(
(F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") )
rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") )
rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") )
rename_keys.append(
(F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") )
rename_keys.append(
(F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") )
rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") )
rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") )
rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") )
rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") )
rename_keys.append(
(F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") )
rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") )
rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") )
rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") )
rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") )
rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") )
rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") )
rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") )
a_ ={}
for item in rename_keys:
if item[0] in original_param_names:
a_ ="efficientnet." + item[1]
a_ ="classifier.weight"
a_ ="classifier.bias"
return key_mapping
def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
for key, value in tf_params.items():
if "normalization" in key:
continue
a_ =key_mapping[key]
if "_conv" in key and "kernel" in key:
a_ =torch.from_numpy(lowercase__ ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
a_ =torch.from_numpy(lowercase__ ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
a_ =torch.from_numpy(np.transpose(lowercase__ ) )
else:
a_ =torch.from_numpy(lowercase__ )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(lowercase__ )
@torch.no_grad()
def UpperCAmelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
a_ =model_classes[model_name](
include_top=lowercase__ , weights="imagenet" , input_tensor=lowercase__ , input_shape=lowercase__ , pooling=lowercase__ , classes=1_0_0_0 , classifier_activation="softmax" , )
a_ =original_model.trainable_variables
a_ =original_model.non_trainable_variables
a_ ={param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
a_ =param.numpy()
a_ =list(tf_params.keys() )
# Load HuggingFace model
a_ =get_efficientnet_config(lowercase__ )
a_ =EfficientNetForImageClassification(lowercase__ ).eval()
a_ =hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print("Converting parameters..." )
a_ =rename_keys(lowercase__ )
replace_params(lowercase__ , lowercase__ , lowercase__ )
# Initialize preprocessor and preprocess input image
a_ =convert_image_processor(lowercase__ )
a_ =preprocessor(images=prepare_img() , return_tensors="pt" )
# HF model inference
hf_model.eval()
with torch.no_grad():
a_ =hf_model(**lowercase__ )
a_ =outputs.logits.detach().numpy()
# Original model inference
a_ =False
a_ =CONFIG_MAP[model_name]["image_size"]
a_ =prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
a_ =image.img_to_array(lowercase__ )
a_ =np.expand_dims(lowercase__ , axis=0 )
a_ =original_model.predict(lowercase__ )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(lowercase__ , lowercase__ , atol=1E-3 ), "The predicted logits are not the same."
print("Model outputs match!" )
if save_model:
# Create folder to save model
if not os.path.isdir(lowercase__ ):
os.mkdir(lowercase__ )
# Save converted model and image processor
hf_model.save_pretrained(lowercase__ )
preprocessor.save_pretrained(lowercase__ )
if push_to_hub:
# Push model and image processor to hub
print(F"""Pushing converted {model_name} to the hub...""" )
a_ =F"""efficientnet-{model_name}"""
preprocessor.push_to_hub(lowercase__ )
hf_model.push_to_hub(lowercase__ )
if __name__ == "__main__":
lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''b0''',
type=str,
help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''hf_model''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''')
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''')
lowercase = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 41
| 1
|
import gc
import unittest
from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class __A ( unittest.TestCase ):
def A__ ( self :Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
def A__ ( self :Union[str, Any] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Union[str, Any] =FlaxControlNetModel.from_pretrained(
"""lllyasviel/sd-controlnet-canny""" , from_pt=__snake_case , dtype=jnp.bfloataa )
__magic_name__ , __magic_name__ : Union[str, Any] =FlaxStableDiffusionControlNetPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , controlnet=__snake_case , from_pt=__snake_case , dtype=jnp.bfloataa )
__magic_name__ : Union[str, Any] =controlnet_params
__magic_name__ : int ="""bird"""
__magic_name__ : Optional[int] =jax.device_count()
__magic_name__ : Optional[int] =pipe.prepare_text_inputs([prompts] * num_samples )
__magic_name__ : List[str] =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" )
__magic_name__ : Union[str, Any] =pipe.prepare_image_inputs([canny_image] * num_samples )
__magic_name__ : Union[str, Any] =jax.random.PRNGKey(0 )
__magic_name__ : List[Any] =jax.random.split(__snake_case , jax.device_count() )
__magic_name__ : Dict =replicate(__snake_case )
__magic_name__ : Tuple =shard(__snake_case )
__magic_name__ : int =shard(__snake_case )
__magic_name__ : Optional[Any] =pipe(
prompt_ids=__snake_case , image=__snake_case , params=__snake_case , prng_seed=__snake_case , num_inference_steps=50 , jit=__snake_case , ).images
assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3)
__magic_name__ : Any =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__magic_name__ : List[Any] =images[0, 2_53:2_56, 2_53:2_56, -1]
__magic_name__ : Dict =jnp.asarray(jax.device_get(image_slice.flatten() ) )
__magic_name__ : Optional[int] =jnp.array(
[0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] )
print(f"output_slice: {output_slice}" )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
def A__ ( self :Optional[int] ):
'''simple docstring'''
__magic_name__ , __magic_name__ : Optional[int] =FlaxControlNetModel.from_pretrained(
"""lllyasviel/sd-controlnet-openpose""" , from_pt=__snake_case , dtype=jnp.bfloataa )
__magic_name__ , __magic_name__ : Tuple =FlaxStableDiffusionControlNetPipeline.from_pretrained(
"""runwayml/stable-diffusion-v1-5""" , controlnet=__snake_case , from_pt=__snake_case , dtype=jnp.bfloataa )
__magic_name__ : List[Any] =controlnet_params
__magic_name__ : Optional[int] ="""Chef in the kitchen"""
__magic_name__ : Dict =jax.device_count()
__magic_name__ : Optional[int] =pipe.prepare_text_inputs([prompts] * num_samples )
__magic_name__ : Union[str, Any] =load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png""" )
__magic_name__ : Optional[Any] =pipe.prepare_image_inputs([pose_image] * num_samples )
__magic_name__ : Any =jax.random.PRNGKey(0 )
__magic_name__ : Optional[Any] =jax.random.split(__snake_case , jax.device_count() )
__magic_name__ : str =replicate(__snake_case )
__magic_name__ : Optional[int] =shard(__snake_case )
__magic_name__ : List[str] =shard(__snake_case )
__magic_name__ : List[str] =pipe(
prompt_ids=__snake_case , image=__snake_case , params=__snake_case , prng_seed=__snake_case , num_inference_steps=50 , jit=__snake_case , ).images
assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3)
__magic_name__ : Union[str, Any] =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
__magic_name__ : Dict =images[0, 2_53:2_56, 2_53:2_56, -1]
__magic_name__ : Union[str, Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) )
__magic_name__ : str =jnp.array(
[[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] )
print(f"output_slice: {output_slice}" )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 21
|
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Any = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """segformer"""
def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ):
'''simple docstring'''
super().__init__(**__snake_case )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , )
__magic_name__ : Dict =num_channels
__magic_name__ : str =num_encoder_blocks
__magic_name__ : List[Any] =depths
__magic_name__ : Optional[Any] =sr_ratios
__magic_name__ : List[str] =hidden_sizes
__magic_name__ : List[str] =patch_sizes
__magic_name__ : Any =strides
__magic_name__ : Optional[Any] =mlp_ratios
__magic_name__ : str =num_attention_heads
__magic_name__ : int =hidden_act
__magic_name__ : List[Any] =hidden_dropout_prob
__magic_name__ : Optional[Any] =attention_probs_dropout_prob
__magic_name__ : Optional[Any] =classifier_dropout_prob
__magic_name__ : List[str] =initializer_range
__magic_name__ : List[str] =drop_path_rate
__magic_name__ : List[Any] =layer_norm_eps
__magic_name__ : List[str] =decoder_hidden_size
__magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case )
__magic_name__ : Dict =semantic_loss_ignore_index
class __A ( UpperCamelCase__ ):
UpperCamelCase = version.parse("""1.11""" )
@property
def A__ ( self :List[str] ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def A__ ( self :Any ):
'''simple docstring'''
return 1E-4
@property
def A__ ( self :int ):
'''simple docstring'''
return 12
| 21
| 1
|
'''simple docstring'''
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class __lowercase ( _lowercase ):
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(A , '''hidden_sizes''' ) )
self.parent.assertTrue(hasattr(A , '''num_attention_heads''' ) )
self.parent.assertTrue(hasattr(A , '''num_encoder_blocks''' ) )
class __lowercase :
def __init__(self , A , A=1_3 , A=6_4 , A=3 , A=4 , A=[2, 2, 2, 2] , A=[8, 4, 2, 1] , A=[1_6, 3_2, 6_4, 1_2_8] , A=[1, 4, 8, 1_6] , A=[1, 2, 4, 8] , A=True , A=True , A="gelu" , A=0.1 , A=0.1 , A=0.02 , A=3 , A=None , ):
lowerCamelCase_ : Any = parent
lowerCamelCase_ : Optional[int] = batch_size
lowerCamelCase_ : str = image_size
lowerCamelCase_ : int = num_channels
lowerCamelCase_ : Tuple = num_encoder_blocks
lowerCamelCase_ : int = sr_ratios
lowerCamelCase_ : List[str] = depths
lowerCamelCase_ : Union[str, Any] = hidden_sizes
lowerCamelCase_ : List[str] = downsampling_rates
lowerCamelCase_ : Any = num_attention_heads
lowerCamelCase_ : Union[str, Any] = is_training
lowerCamelCase_ : Dict = use_labels
lowerCamelCase_ : Optional[Any] = hidden_act
lowerCamelCase_ : Tuple = hidden_dropout_prob
lowerCamelCase_ : List[Any] = attention_probs_dropout_prob
lowerCamelCase_ : int = initializer_range
lowerCamelCase_ : Tuple = num_labels
lowerCamelCase_ : str = scope
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase_ : Optional[Any] = None
if self.use_labels:
lowerCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
lowerCamelCase_ : List[str] = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase__ (self ):
return SegformerConfig(
image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def UpperCAmelCase__ (self , A , A , A ):
lowerCamelCase_ : Tuple = SegformerModel(config=A )
model.to(A )
model.eval()
lowerCamelCase_ : str = model(A )
lowerCamelCase_ : Optional[Any] = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) )
def UpperCAmelCase__ (self , A , A , A ):
lowerCamelCase_ : Union[str, Any] = self.num_labels
lowerCamelCase_ : Tuple = SegformerForSemanticSegmentation(A )
model.to(A )
model.eval()
lowerCamelCase_ : str = model(A )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
lowerCamelCase_ : Optional[int] = model(A , labels=A )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
self.parent.assertGreater(result.loss , 0.0 )
def UpperCAmelCase__ (self , A , A , A ):
lowerCamelCase_ : int = 1
lowerCamelCase_ : str = SegformerForSemanticSegmentation(config=A )
model.to(A )
model.eval()
lowerCamelCase_ : List[str] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(A )
lowerCamelCase_ : int = model(A , labels=A )
self.parent.assertGreater(result.loss , 0.0 )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.prepare_config_and_inputs()
lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ : int = config_and_inputs
lowerCamelCase_ : List[Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowercase ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase : Tuple = (
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase : Union[str, Any] = (
{
"feature-extraction": SegformerModel,
"image-classification": SegformerForImageClassification,
"image-segmentation": SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCamelCase : Optional[Any] = True
lowerCamelCase : Tuple = False
lowerCamelCase : Any = False
lowerCamelCase : Optional[int] = False
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = SegformerModelTester(self )
lowerCamelCase_ : List[Any] = SegformerConfigTester(self , config_class=A )
def UpperCAmelCase__ (self ):
self.config_tester.run_common_tests()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*A )
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*A )
@unittest.skip('''SegFormer does not use inputs_embeds''' )
def UpperCAmelCase__ (self ):
pass
@unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' )
def UpperCAmelCase__ (self ):
pass
def UpperCAmelCase__ (self ):
lowerCamelCase_, lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ : str = model_class(A )
lowerCamelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase_ : List[Any] = [*signature.parameters.keys()]
lowerCamelCase_ : Tuple = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , A )
def UpperCAmelCase__ (self ):
lowerCamelCase_, lowerCamelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase_ : str = True
for model_class in self.all_model_classes:
lowerCamelCase_ : int = True
lowerCamelCase_ : Tuple = False
lowerCamelCase_ : List[str] = True
lowerCamelCase_ : Optional[Any] = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
lowerCamelCase_ : Optional[int] = model(**self._prepare_for_class(A , A ) )
lowerCamelCase_ : Any = outputs.attentions
lowerCamelCase_ : Dict = sum(self.model_tester.depths )
self.assertEqual(len(A ) , A )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowerCamelCase_ : Any = True
lowerCamelCase_ : Dict = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
lowerCamelCase_ : Tuple = model(**self._prepare_for_class(A , A ) )
lowerCamelCase_ : Any = outputs.attentions
self.assertEqual(len(A ) , A )
# verify the first attentions (first block, first layer)
lowerCamelCase_ : Dict = (self.model_tester.image_size // 4) ** 2
lowerCamelCase_ : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
# verify the last attentions (last block, last layer)
lowerCamelCase_ : int = (self.model_tester.image_size // 3_2) ** 2
lowerCamelCase_ : List[Any] = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , )
lowerCamelCase_ : Union[str, Any] = len(A )
# Check attention is always last and order is fine
lowerCamelCase_ : Optional[int] = True
lowerCamelCase_ : Tuple = True
lowerCamelCase_ : Dict = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
lowerCamelCase_ : List[Any] = model(**self._prepare_for_class(A , A ) )
self.assertEqual(out_len + 1 , len(A ) )
lowerCamelCase_ : List[Any] = outputs.attentions
self.assertEqual(len(A ) , A )
# verify the first attentions (first block, first layer)
lowerCamelCase_ : List[str] = (self.model_tester.image_size // 4) ** 2
lowerCamelCase_ : Tuple = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
def UpperCAmelCase__ (self ):
def check_hidden_states_output(A , A , A ):
lowerCamelCase_ : Dict = model_class(A )
model.to(A )
model.eval()
with torch.no_grad():
lowerCamelCase_ : int = model(**self._prepare_for_class(A , A ) )
lowerCamelCase_ : int = outputs.hidden_states
lowerCamelCase_ : Optional[int] = self.model_tester.num_encoder_blocks
self.assertEqual(len(A ) , A )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
lowerCamelCase_, lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ : Any = True
check_hidden_states_output(A , A , A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase_ : Tuple = True
check_hidden_states_output(A , A , A )
def UpperCAmelCase__ (self ):
if not self.model_tester.is_training:
return
lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase_ : Optional[int] = True
for model_class in self.all_model_classes:
if model_class in get_values(A ):
continue
lowerCamelCase_ : int = model_class(A )
model.to(A )
model.train()
lowerCamelCase_ : Dict = self._prepare_for_class(A , A , return_labels=A )
lowerCamelCase_ : str = model(**A ).loss
loss.backward()
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def UpperCAmelCase__ (self ):
pass
@slow
def UpperCAmelCase__ (self ):
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ : Tuple = SegformerModel.from_pretrained(A )
self.assertIsNotNone(A )
def lowercase_ ( ) -> Optional[int]:
'''simple docstring'''
lowerCamelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
class __lowercase ( unittest.TestCase ):
@slow
def UpperCAmelCase__ (self ):
# only resize + normalize
lowerCamelCase_ : Dict = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A )
lowerCamelCase_ : Optional[int] = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to(
A )
lowerCamelCase_ : Optional[Any] = prepare_img()
lowerCamelCase_ : Any = image_processor(images=A , return_tensors='''pt''' )
lowerCamelCase_ : List[str] = encoded_inputs.pixel_values.to(A )
with torch.no_grad():
lowerCamelCase_ : Any = model(A )
lowerCamelCase_ : List[str] = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) )
self.assertEqual(outputs.logits.shape , A )
lowerCamelCase_ : List[Any] = torch.tensor(
[
[[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]],
[[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]],
[[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]],
] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A , atol=1E-4 ) )
@slow
def UpperCAmelCase__ (self ):
# only resize + normalize
lowerCamelCase_ : Dict = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A )
lowerCamelCase_ : List[Any] = SegformerForSemanticSegmentation.from_pretrained(
'''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(A )
lowerCamelCase_ : Optional[int] = prepare_img()
lowerCamelCase_ : Union[str, Any] = image_processor(images=A , return_tensors='''pt''' )
lowerCamelCase_ : Optional[int] = encoded_inputs.pixel_values.to(A )
with torch.no_grad():
lowerCamelCase_ : Dict = model(A )
lowerCamelCase_ : List[str] = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) )
self.assertEqual(outputs.logits.shape , A )
lowerCamelCase_ : Optional[int] = torch.tensor(
[
[[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]],
[[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]],
[[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]],
] ).to(A )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , A , atol=1E-1 ) )
@slow
def UpperCAmelCase__ (self ):
# only resize + normalize
lowerCamelCase_ : Optional[int] = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) , keep_ratio=A , align=A , do_random_crop=A )
lowerCamelCase_ : List[Any] = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to(
A )
lowerCamelCase_ : List[Any] = prepare_img()
lowerCamelCase_ : Optional[int] = image_processor(images=A , return_tensors='''pt''' )
lowerCamelCase_ : Tuple = encoded_inputs.pixel_values.to(A )
with torch.no_grad():
lowerCamelCase_ : Union[str, Any] = model(A )
lowerCamelCase_ : List[str] = outputs.logits.detach().cpu()
lowerCamelCase_ : Dict = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(5_0_0, 3_0_0)] )
lowerCamelCase_ : Optional[int] = torch.Size((5_0_0, 3_0_0) )
self.assertEqual(segmentation[0].shape , A )
lowerCamelCase_ : str = image_processor.post_process_semantic_segmentation(outputs=A )
lowerCamelCase_ : int = torch.Size((1_2_8, 1_2_8) )
self.assertEqual(segmentation[0].shape , A )
| 357
|
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowercase ( _lowercase , unittest.TestCase ):
lowerCamelCase : Optional[Any] = KandinskyVaaInpaintPipeline
lowerCamelCase : Tuple = ["image_embeds", "negative_image_embeds", "image", "mask_image"]
lowerCamelCase : List[str] = [
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
lowerCamelCase : Optional[int] = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
lowerCamelCase : List[Any] = False
@property
def UpperCAmelCase__ (self ):
return 3_2
@property
def UpperCAmelCase__ (self ):
return 3_2
@property
def UpperCAmelCase__ (self ):
return self.time_input_dim
@property
def UpperCAmelCase__ (self ):
return self.time_input_dim * 4
@property
def UpperCAmelCase__ (self ):
return 1_0_0
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = {
'''in_channels''': 9,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
lowerCamelCase_ : str = UNetaDConditionModel(**A )
return model
@property
def UpperCAmelCase__ (self ):
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def UpperCAmelCase__ (self ):
torch.manual_seed(0 )
lowerCamelCase_ : Optional[Any] = VQModel(**self.dummy_movq_kwargs )
return model
def UpperCAmelCase__ (self ):
lowerCamelCase_ : List[str] = self.dummy_unet
lowerCamelCase_ : Optional[int] = self.dummy_movq
lowerCamelCase_ : Union[str, Any] = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=A , set_alpha_to_one=A , steps_offset=1 , prediction_type='''epsilon''' , thresholding=A , )
lowerCamelCase_ : Dict = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def UpperCAmelCase__ (self , A , A=0 ):
lowerCamelCase_ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A ) ).to(A )
lowerCamelCase_ : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
A )
# create init_image
lowerCamelCase_ : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(A ) ).to(A )
lowerCamelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase_ : Any = Image.fromarray(np.uinta(A ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) )
# create mask
lowerCamelCase_ : List[str] = np.ones((6_4, 6_4) , dtype=np.floataa )
lowerCamelCase_ : Union[str, Any] = 0
if str(A ).startswith('''mps''' ):
lowerCamelCase_ : int = torch.manual_seed(A )
else:
lowerCamelCase_ : Union[str, Any] = torch.Generator(device=A ).manual_seed(A )
lowerCamelCase_ : Optional[Any] = {
'''image''': init_image,
'''mask_image''': mask,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 6_4,
'''width''': 6_4,
'''num_inference_steps''': 2,
'''guidance_scale''': 4.0,
'''output_type''': '''np''',
}
return inputs
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Optional[Any] = '''cpu'''
lowerCamelCase_ : str = self.get_dummy_components()
lowerCamelCase_ : Tuple = self.pipeline_class(**A )
lowerCamelCase_ : Union[str, Any] = pipe.to(A )
pipe.set_progress_bar_config(disable=A )
lowerCamelCase_ : str = pipe(**self.get_dummy_inputs(A ) )
lowerCamelCase_ : Any = output.images
lowerCamelCase_ : Union[str, Any] = pipe(
**self.get_dummy_inputs(A ) , return_dict=A , )[0]
lowerCamelCase_ : List[Any] = image[0, -3:, -3:, -1]
lowerCamelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1]
print(F"""image.shape {image.shape}""" )
assert image.shape == (1, 6_4, 6_4, 3)
lowerCamelCase_ : Any = np.array(
[0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}"""
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"""
def UpperCAmelCase__ (self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCAmelCase__ (self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ (self ):
lowerCamelCase_ : Tuple = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' )
lowerCamelCase_ : Optional[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
lowerCamelCase_ : List[str] = np.ones((7_6_8, 7_6_8) , dtype=np.floataa )
lowerCamelCase_ : int = 0
lowerCamelCase_ : Union[str, Any] = '''a hat'''
lowerCamelCase_ : Optional[int] = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(A )
lowerCamelCase_ : Any = KandinskyVaaInpaintPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa )
lowerCamelCase_ : Any = pipeline.to(A )
pipeline.set_progress_bar_config(disable=A )
lowerCamelCase_ : Any = torch.Generator(device='''cpu''' ).manual_seed(0 )
lowerCamelCase_, lowerCamelCase_ : Tuple = pipe_prior(
A , generator=A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
lowerCamelCase_ : Union[str, Any] = pipeline(
image=A , mask_image=A , image_embeds=A , negative_image_embeds=A , generator=A , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , )
lowerCamelCase_ : List[str] = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(A , A )
| 357
| 1
|
"""simple docstring"""
import unittest
import numpy as np
from transformers import RobertaConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.roberta.modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
)
class snake_case_ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , lowerCamelCase_ , lowerCamelCase_=1_3 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=9_9 , lowerCamelCase_=3_2 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=3_7 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=1_6 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> List[Any]:
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = seq_length
UpperCamelCase = is_training
UpperCamelCase = use_attention_mask
UpperCamelCase = use_token_type_ids
UpperCamelCase = use_labels
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_act
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = type_sequence_label_size
UpperCamelCase = initializer_range
UpperCamelCase = num_choices
def UpperCAmelCase__ ( self) -> List[str]:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
UpperCamelCase = None
if self.use_attention_mask:
UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length])
UpperCamelCase = None
if self.use_token_type_ids:
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
UpperCamelCase = RobertaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCAmelCase__ ( self) -> Any:
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def UpperCAmelCase__ ( self) -> str:
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs
UpperCamelCase = True
UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2)
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class snake_case_ ( lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
A_ = True
A_ = (
(
FlaxRobertaModel,
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCAmelCase__ ( self) -> Optional[int]:
UpperCamelCase = FlaxRobertaModelTester(self)
@slow
def UpperCAmelCase__ ( self) -> Dict:
for model_class_name in self.all_model_classes:
UpperCamelCase = model_class_name.from_pretrained('''roberta-base''' , from_pt=lowerCamelCase_)
UpperCamelCase = model(np.ones((1, 1)))
self.assertIsNotNone(lowerCamelCase_)
| 34
|
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase__ (lowerCAmelCase__ ):
'''simple docstring'''
lowerCamelCase_ : Optional[Any] = (KDPMaDiscreteScheduler,)
lowerCamelCase_ : str = 1_0
def _lowercase ( self , **UpperCamelCase__ ) -> int:
lowerCamelCase : Optional[Any] = {
"num_train_timesteps": 1100,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**UpperCamelCase__ )
return config
def _lowercase ( self ) -> List[Any]:
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=UpperCamelCase__ )
def _lowercase ( self ) -> Dict:
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ )
def _lowercase ( self ) -> str:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=UpperCamelCase__ )
def _lowercase ( self ) -> Any:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCamelCase__ )
def _lowercase ( self ) -> str:
lowerCamelCase : Optional[Any] = self.scheduler_classes[0]
lowerCamelCase : Union[str, Any] = self.get_scheduler_config(prediction_type="v_prediction" )
lowerCamelCase : Optional[Any] = scheduler_class(**UpperCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
lowerCamelCase : Tuple = self.dummy_model()
lowerCamelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma
lowerCamelCase : Union[str, Any] = sample.to(UpperCamelCase__ )
for i, t in enumerate(scheduler.timesteps ):
lowerCamelCase : List[str] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : List[str] = model(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : Optional[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : Optional[int] = output.prev_sample
lowerCamelCase : Tuple = torch.sum(torch.abs(UpperCamelCase__ ) )
lowerCamelCase : Optional[Any] = torch.mean(torch.abs(UpperCamelCase__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2
assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2
assert abs(result_mean.item() - 0.0002 ) < 1e-3
def _lowercase ( self ) -> str:
if torch_device == "mps":
return
lowerCamelCase : Any = self.scheduler_classes[0]
lowerCamelCase : Union[str, Any] = self.get_scheduler_config()
lowerCamelCase : Optional[int] = scheduler_class(**UpperCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
lowerCamelCase : Optional[Any] = self.dummy_model()
lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
lowerCamelCase : int = sample.to(UpperCamelCase__ )
for i, t in enumerate(scheduler.timesteps ):
lowerCamelCase : Union[str, Any] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : Tuple = model(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : int = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : Optional[Any] = output.prev_sample
lowerCamelCase : Tuple = torch.sum(torch.abs(UpperCamelCase__ ) )
lowerCamelCase : Dict = torch.mean(torch.abs(UpperCamelCase__ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
def _lowercase ( self ) -> Optional[int]:
if torch_device == "mps":
return
lowerCamelCase : Any = self.scheduler_classes[0]
lowerCamelCase : Any = self.get_scheduler_config()
lowerCamelCase : str = scheduler_class(**UpperCamelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ )
lowerCamelCase : List[Any] = self.dummy_model()
lowerCamelCase : List[str] = self.dummy_sample_deter.to(UpperCamelCase__ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
lowerCamelCase : Union[str, Any] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : Dict = model(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : Tuple = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : Tuple = output.prev_sample
lowerCamelCase : Dict = torch.sum(torch.abs(UpperCamelCase__ ) )
lowerCamelCase : Dict = torch.mean(torch.abs(UpperCamelCase__ ) )
if str(UpperCamelCase__ ).startswith("cpu" ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1e-2
assert abs(result_mean.item() - 0.0266 ) < 1e-3
| 311
| 0
|
'''simple docstring'''
from __future__ import annotations
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> float:
'''simple docstring'''
if days_between_payments <= 0:
raise ValueError('''days_between_payments must be > 0''' )
if daily_interest_rate < 0:
raise ValueError('''daily_interest_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * daily_interest_rate * days_between_payments
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, ) -> float:
'''simple docstring'''
if number_of_compounding_periods <= 0:
raise ValueError('''number_of_compounding_periods must be > 0''' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, ) -> float:
'''simple docstring'''
if number_of_years <= 0:
raise ValueError('''number_of_years must be > 0''' )
if nominal_annual_percentage_rate < 0:
raise ValueError('''nominal_annual_percentage_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return compound_interest(
__UpperCAmelCase, nominal_annual_percentage_rate / 365, number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 593
|
'''simple docstring'''
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
a : Optional[int] = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class a ( _lowerCamelCase ):
def __init__( self : List[str] , *lowercase_ : Optional[int] , lowercase_ : Dict=None , lowercase_ : Union[str, Any]=None , lowercase_ : Optional[Any]=None , **lowercase_ : Dict ):
super().__init__(*lowercase_ , **lowercase_ )
snake_case_ = eval_examples
snake_case_ = post_process_function
snake_case_ = quant_trainer_args
snake_case_ = 128 # default number of calibration samples
def A_ ( self : int , lowercase_ : Tuple=None ):
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('''Trainer: calibration requires an calib_dataset.''' )
snake_case_ = calib_dataset if calib_dataset is not None else self.calib_dataset
snake_case_ = self._remove_unused_columns(lowercase_ , description='''Calibration''' )
return DataLoader(
lowercase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=lowercase_ , )
def A_ ( self : Dict , lowercase_ : str=None ):
snake_case_ = self.train_dataset if calib_dataset is None else calib_dataset
snake_case_ = self.get_calib_dataloader(lowercase_ )
snake_case_ = self.model
quant_trainer.configure_model(lowercase_ , self.quant_trainer_args , calib=lowercase_ )
model.eval()
quant_trainer.enable_calibration(lowercase_ )
logger.info('''***** Running calibration *****''' )
logger.info(F" Num examples = {self.calib_num}" )
logger.info(F" Batch size = {calib_dataloader.batch_size}" )
for step, inputs in enumerate(lowercase_ ):
# Prediction step
snake_case_ ,snake_case_ ,snake_case_ = self.prediction_step(lowercase_ , lowercase_ , prediction_loss_only=lowercase_ )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(lowercase_ , self.quant_trainer_args )
snake_case_ = model
def A_ ( self : Optional[int] , lowercase_ : Any=None , lowercase_ : Any=None , lowercase_ : Optional[int]=None , lowercase_ : str = "eval" ):
snake_case_ = self.eval_dataset if eval_dataset is None else eval_dataset
snake_case_ = self.get_eval_dataloader(lowercase_ )
snake_case_ = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
snake_case_ = self.compute_metrics
snake_case_ = None
snake_case_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
snake_case_ = eval_loop(
lowercase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , )
finally:
snake_case_ = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
snake_case_ = self.post_process_function(lowercase_ , lowercase_ , output.predictions )
snake_case_ = self.compute_metrics(lowercase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"{metric_key_prefix}_" ):
snake_case_ = metrics.pop(lowercase_ )
self.log(lowercase_ )
else:
snake_case_ = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
snake_case_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowercase_ )
return metrics
def A_ ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Dict=None , lowercase_ : str = "test" ):
snake_case_ = self.get_test_dataloader(lowercase_ )
# Temporarily disable metric computation, we will do it in the loop here.
snake_case_ = self.compute_metrics
snake_case_ = None
snake_case_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
snake_case_ = eval_loop(
lowercase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowercase_ , )
finally:
snake_case_ = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
snake_case_ = self.post_process_function(lowercase_ , lowercase_ , output.predictions , '''predict''' )
snake_case_ = self.compute_metrics(lowercase_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F"{metric_key_prefix}_" ):
snake_case_ = metrics.pop(lowercase_ )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowercase_ )
def A_ ( self : Any , lowercase_ : List[Any]="./" ):
snake_case_ = self.eval_dataset
snake_case_ = self.get_eval_dataloader(lowercase_ )
snake_case_ = next(iter(lowercase_ ) )
# saving device - to make it consistent
snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
# convert to tuple
snake_case_ = tuple(v.to(lowercase_ ) for k, v in batch.items() )
logger.info('''Converting model to be onnx compatible''' )
from pytorch_quantization.nn import TensorQuantizer
snake_case_ = True
snake_case_ = self.model.to(lowercase_ )
model.eval()
model.float()
snake_case_ = model.module if hasattr(lowercase_ , '''module''' ) else model
quant_trainer.configure_model(lowercase_ , self.quant_trainer_args )
snake_case_ = os.path.join(lowercase_ , '''model.onnx''' )
logger.info(F"exporting model to {output_model_file}" )
snake_case_ = {0: '''batch_size''', 1: '''seq_len'''}
torch.onnx.export(
lowercase_ , lowercase_ , lowercase_ , export_params=lowercase_ , opset_version=13 , do_constant_folding=lowercase_ , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={
'''input_ids''': axes,
'''attention_mask''': axes,
'''token_type_ids''': axes,
'''output_start_logits''': axes,
'''output_end_logits''': axes,
} , verbose=lowercase_ , )
logger.info('''onnx export finished''' )
| 593
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.