code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _A : Optional[int] = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: _A : str = json.load(f) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self , A_ ): '''simple docstring''' return FSMTTokenizer.from_pretrained(__UpperCAmelCase ) def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = FSMTForConditionalGeneration.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def lowercase_ ( self , A_ , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = f'''facebook/wmt19-{pair}''' SCREAMING_SNAKE_CASE__ = self.get_tokenizer(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.get_model(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = bleu_data[pair]['src'] SCREAMING_SNAKE_CASE__ = bleu_data[pair]['tgt'] SCREAMING_SNAKE_CASE__ = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , truncation=__UpperCAmelCase , padding='''longest''' ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = calculate_bleu(__UpperCAmelCase , __UpperCAmelCase ) print(__UpperCAmelCase ) self.assertGreaterEqual(scores['''bleu'''] , __UpperCAmelCase )
100
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : Optional[Any]=1024 ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] =[], [] SCREAMING_SNAKE_CASE_ : int =list(zip(lowerCAmelCase_ ,lowerCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] =sorted_examples[0] def is_too_big(lowerCAmelCase_ : Dict ): return tok(lowerCAmelCase_ ,return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE_ : int =new_src + ' ' + src SCREAMING_SNAKE_CASE_ : str =new_tgt + ' ' + tgt if is_too_big(lowerCAmelCase_ ) or is_too_big(lowerCAmelCase_ ): # cant fit, finalize example finished_src.append(lowerCAmelCase_ ) finished_tgt.append(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any =src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] =cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCAmelCase_ ) finished_tgt.append(lowerCAmelCase_ ) return finished_src, finished_tgt def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : Path ,lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] =Path(lowerCAmelCase_ ) save_path.mkdir(exist_ok=lowerCAmelCase_ ) for split in ["train"]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" SCREAMING_SNAKE_CASE_ : int =[x.rstrip() for x in Path(lowerCAmelCase_ ).open().readlines()] SCREAMING_SNAKE_CASE_ : Dict =[x.rstrip() for x in Path(lowerCAmelCase_ ).open().readlines()] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int =pack_examples(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) print(F"""packed {split} split from {len(lowerCAmelCase_ )} examples -> {len(lowerCAmelCase_ )}.""" ) Path(save_path / F"""{split}.source""" ).open('w' ).write('\n'.join(lowerCAmelCase_ ) ) Path(save_path / F"""{split}.target""" ).open('w' ).write('\n'.join(lowerCAmelCase_ ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] =data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(lowerCAmelCase_ ,save_path / F"""{split}.source""" ) shutil.copyfile(lowerCAmelCase_ ,save_path / F"""{split}.target""" ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =argparse.ArgumentParser() parser.add_argument('--tok_name' ,type=lowerCAmelCase_ ,help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' ,type=lowerCAmelCase_ ,default=128 ) parser.add_argument('--data_dir' ,type=lowerCAmelCase_ ) parser.add_argument('--save_path' ,type=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Dict =parser.parse_args() SCREAMING_SNAKE_CASE_ : Dict =AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowerCAmelCase_ ,Path(args.data_dir ) ,args.max_seq_len ,args.save_path ) if __name__ == "__main__": packer_cli()
220
0
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =torch.load(__UpperCamelCase , map_location='cpu' ) if "model" in sd.keys(): _lowerCAmelCase =torch.load(__UpperCamelCase , map_location='cpu' )['model'] # pop unnecessary weights _lowerCAmelCase =[ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(__UpperCamelCase ) _lowerCAmelCase ={ 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCAmelCase =sd.pop(__UpperCamelCase ) _lowerCAmelCase =list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCAmelCase =sd[key] # We split QKV in separate Q,K,V _lowerCAmelCase =key.replace('.qkv_proj.' , '.q_proj.' ) _lowerCAmelCase =key.replace('.qkv_proj.' , '.k_proj.' ) _lowerCAmelCase =key.replace('.qkv_proj.' , '.v_proj.' ) _lowerCAmelCase =value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase =torch.split(__UpperCamelCase , depth // 3 , dim=0 ) _lowerCAmelCase =q _lowerCAmelCase =k _lowerCAmelCase =v del sd[key] return sd @torch.no_grad() def UpperCamelCase__ ( a__ , a__ , a__=None ): '''simple docstring''' _lowerCAmelCase =load_checkpoint(__UpperCamelCase ) if config is not None: _lowerCAmelCase =OPTConfig.from_pretrained(__UpperCamelCase ) else: _lowerCAmelCase =OPTConfig() _lowerCAmelCase =OPTModel(__UpperCamelCase ).half().eval() model.load_state_dict(__UpperCamelCase ) # Check results Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') lowercase_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
713
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = 'blip_2_vision_model' def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=0.00_001 , __A=0.0 , __A=1E-10 , __A=True , **__A , ) -> int: super().__init__(**__A ) _lowerCAmelCase =hidden_size _lowerCAmelCase =intermediate_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =patch_size _lowerCAmelCase =image_size _lowerCAmelCase =initializer_range _lowerCAmelCase =attention_dropout _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =hidden_act _lowerCAmelCase =qkv_bias @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : int = 'blip_2_qformer' def __init__( self , __A=3_0522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ) -> List[str]: super().__init__(pad_token_id=__A , **__A ) _lowerCAmelCase =vocab_size _lowerCAmelCase =hidden_size _lowerCAmelCase =num_hidden_layers _lowerCAmelCase =num_attention_heads _lowerCAmelCase =hidden_act _lowerCAmelCase =intermediate_size _lowerCAmelCase =hidden_dropout_prob _lowerCAmelCase =attention_probs_dropout_prob _lowerCAmelCase =max_position_embeddings _lowerCAmelCase =initializer_range _lowerCAmelCase =layer_norm_eps _lowerCAmelCase =position_embedding_type _lowerCAmelCase =cross_attention_frequency _lowerCAmelCase =encoder_hidden_size @classmethod def UpperCamelCase__ ( cls , __A , **__A ) -> "PretrainedConfig": cls._set_token_in_kwargs(__A ) _lowerCAmelCase , _lowerCAmelCase =cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": _lowerCAmelCase =config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__A , **__A ) class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Optional[int] = 'blip-2' lowercase : Any = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ) -> int: super().__init__(**__A ) if vision_config is None: _lowerCAmelCase ={} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: _lowerCAmelCase ={} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: _lowerCAmelCase ={} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowerCAmelCase =BlipaVisionConfig(**__A ) _lowerCAmelCase =BlipaQFormerConfig(**__A ) _lowerCAmelCase =text_config['model_type'] if 'model_type' in text_config else 'opt' _lowerCAmelCase =CONFIG_MAPPING[text_model_type](**__A ) _lowerCAmelCase =self.text_config.tie_word_embeddings _lowerCAmelCase =self.text_config.is_encoder_decoder _lowerCAmelCase =num_query_tokens _lowerCAmelCase =self.vision_config.hidden_size _lowerCAmelCase =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowerCAmelCase =1.0 _lowerCAmelCase =0.02 @classmethod def UpperCamelCase__ ( cls , __A , __A , __A , **__A , ) -> Any: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def UpperCamelCase__ ( self ) -> Tuple: _lowerCAmelCase =copy.deepcopy(self.__dict__ ) _lowerCAmelCase =self.vision_config.to_dict() _lowerCAmelCase =self.qformer_config.to_dict() _lowerCAmelCase =self.text_config.to_dict() _lowerCAmelCase =self.__class__.model_type return output
58
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __magic_name__ ( _a): _UpperCAmelCase : torch.FloatTensor class __magic_name__ ( _a , _a): @register_to_config def __init__( self : str ,__SCREAMING_SNAKE_CASE : int = 6_5_5_3_6 ,__SCREAMING_SNAKE_CASE : Optional[int] = None ,__SCREAMING_SNAKE_CASE : int = 2 ,__SCREAMING_SNAKE_CASE : int = 2 ,__SCREAMING_SNAKE_CASE : int = 0 ,__SCREAMING_SNAKE_CASE : str = "fourier" ,__SCREAMING_SNAKE_CASE : bool = True ,__SCREAMING_SNAKE_CASE : bool = False ,__SCREAMING_SNAKE_CASE : float = 0.0 ,__SCREAMING_SNAKE_CASE : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") ,__SCREAMING_SNAKE_CASE : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") ,__SCREAMING_SNAKE_CASE : Tuple[str] = "UNetMidBlock1D" ,__SCREAMING_SNAKE_CASE : str = None ,__SCREAMING_SNAKE_CASE : Tuple[int] = (3_2, 3_2, 6_4) ,__SCREAMING_SNAKE_CASE : str = None ,__SCREAMING_SNAKE_CASE : int = 8 ,__SCREAMING_SNAKE_CASE : int = 1 ,__SCREAMING_SNAKE_CASE : bool = False ,): super().__init__() UpperCAmelCase = sample_size # time if time_embedding_type == "fourier": UpperCAmelCase = GaussianFourierProjection( embedding_size=8 ,set_W_to_weight=__SCREAMING_SNAKE_CASE ,log=__SCREAMING_SNAKE_CASE ,flip_sin_to_cos=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = 2 * block_out_channels[0] elif time_embedding_type == "positional": UpperCAmelCase = Timesteps( block_out_channels[0] ,flip_sin_to_cos=__SCREAMING_SNAKE_CASE ,downscale_freq_shift=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = block_out_channels[0] if use_timestep_embedding: UpperCAmelCase = block_out_channels[0] * 4 UpperCAmelCase = TimestepEmbedding( in_channels=__SCREAMING_SNAKE_CASE ,time_embed_dim=__SCREAMING_SNAKE_CASE ,act_fn=__SCREAMING_SNAKE_CASE ,out_dim=block_out_channels[0] ,) UpperCAmelCase = nn.ModuleList([] ) UpperCAmelCase = None UpperCAmelCase = nn.ModuleList([] ) UpperCAmelCase = None # down UpperCAmelCase = in_channels for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ): UpperCAmelCase = output_channel UpperCAmelCase = block_out_channels[i] if i == 0: input_channel += extra_in_channels UpperCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 UpperCAmelCase = get_down_block( __SCREAMING_SNAKE_CASE ,num_layers=__SCREAMING_SNAKE_CASE ,in_channels=__SCREAMING_SNAKE_CASE ,out_channels=__SCREAMING_SNAKE_CASE ,temb_channels=block_out_channels[0] ,add_downsample=not is_final_block or downsample_each_block ,) self.down_blocks.append(__SCREAMING_SNAKE_CASE ) # mid UpperCAmelCase = get_mid_block( __SCREAMING_SNAKE_CASE ,in_channels=block_out_channels[-1] ,mid_channels=block_out_channels[-1] ,out_channels=block_out_channels[-1] ,embed_dim=block_out_channels[0] ,num_layers=__SCREAMING_SNAKE_CASE ,add_downsample=__SCREAMING_SNAKE_CASE ,) # up UpperCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) ) UpperCAmelCase = reversed_block_out_channels[0] if out_block_type is None: UpperCAmelCase = out_channels else: UpperCAmelCase = block_out_channels[0] for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ): UpperCAmelCase = output_channel UpperCAmelCase = ( reversed_block_out_channels[i + 1] if i < len(__SCREAMING_SNAKE_CASE ) - 1 else final_upsample_channels ) UpperCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1 UpperCAmelCase = get_up_block( __SCREAMING_SNAKE_CASE ,num_layers=__SCREAMING_SNAKE_CASE ,in_channels=__SCREAMING_SNAKE_CASE ,out_channels=__SCREAMING_SNAKE_CASE ,temb_channels=block_out_channels[0] ,add_upsample=not is_final_block ,) self.up_blocks.append(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = output_channel # out UpperCAmelCase = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 ,3_2 ) UpperCAmelCase = get_out_block( out_block_type=__SCREAMING_SNAKE_CASE ,num_groups_out=__SCREAMING_SNAKE_CASE ,embed_dim=block_out_channels[0] ,out_channels=__SCREAMING_SNAKE_CASE ,act_fn=__SCREAMING_SNAKE_CASE ,fc_dim=block_out_channels[-1] // 4 ,) def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : torch.FloatTensor ,__SCREAMING_SNAKE_CASE : Union[torch.Tensor, float, int] ,__SCREAMING_SNAKE_CASE : bool = True ,): UpperCAmelCase = timestep if not torch.is_tensor(__SCREAMING_SNAKE_CASE ): UpperCAmelCase = torch.tensor([timesteps] ,dtype=torch.long ,device=sample.device ) elif torch.is_tensor(__SCREAMING_SNAKE_CASE ) and len(timesteps.shape ) == 0: UpperCAmelCase = timesteps[None].to(sample.device ) UpperCAmelCase = self.time_proj(__SCREAMING_SNAKE_CASE ) if self.config.use_timestep_embedding: UpperCAmelCase = self.time_mlp(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase = timestep_embed[..., None] UpperCAmelCase = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) UpperCAmelCase = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down UpperCAmelCase = () for downsample_block in self.down_blocks: UpperCAmelCase , UpperCAmelCase = downsample_block(hidden_states=__SCREAMING_SNAKE_CASE ,temb=__SCREAMING_SNAKE_CASE ) down_block_res_samples += res_samples # 3. mid if self.mid_block: UpperCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): UpperCAmelCase = down_block_res_samples[-1:] UpperCAmelCase = down_block_res_samples[:-1] UpperCAmelCase = upsample_block(__SCREAMING_SNAKE_CASE ,res_hidden_states_tuple=__SCREAMING_SNAKE_CASE ,temb=__SCREAMING_SNAKE_CASE ) # 5. post-process if self.out_block: UpperCAmelCase = self.out_block(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) if not return_dict: return (sample,) return UNetaDOutput(sample=__SCREAMING_SNAKE_CASE )
333
import os def __UpperCamelCase ( ): """simple docstring""" with open(os.path.dirname(_lowerCAmelCase ) + "/grid.txt" ) as f: UpperCAmelCase = [] # noqa: E741 for _ in range(20 ): l.append([int(_lowerCAmelCase ) for x in f.readline().split()] ) UpperCAmelCase = 0 # right for i in range(20 ): for j in range(17 ): UpperCAmelCase = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: UpperCAmelCase = temp # down for i in range(17 ): for j in range(20 ): UpperCAmelCase = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: UpperCAmelCase = temp # diagonal 1 for i in range(17 ): for j in range(17 ): UpperCAmelCase = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: UpperCAmelCase = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): UpperCAmelCase = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: UpperCAmelCase = temp return maximum if __name__ == "__main__": print(solution())
333
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __A ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __A ={ 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __A ={ 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __A ={ 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase :List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase :Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase :str = ElectraTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) UpperCAmelCase__ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , _lowerCamelCase) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowerCamelCase) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowerCamelCase) != tokenize_chinese_chars ): UpperCAmelCase__ : Union[str, Any] = getattr(_lowerCamelCase , normalizer_state.pop("""type""")) UpperCAmelCase__ : str = do_lower_case UpperCAmelCase__ : Dict = strip_accents UpperCAmelCase__ : Any = tokenize_chinese_chars UpperCAmelCase__ : str = normalizer_class(**_lowerCamelCase) UpperCAmelCase__ : List[Any] = do_lower_case def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=None): UpperCAmelCase__ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): UpperCAmelCase__ : int = [self.sep_token_id] UpperCAmelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): UpperCAmelCase__ : List[Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase) return tuple(_lowerCamelCase)
703
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __A =logging.get_logger(__name__) def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : List[str] = R"""\w+[.]\d+""" UpperCAmelCase__ : List[Any] = re.findall(UpperCamelCase__ , UpperCamelCase__ ) for pat in pats: UpperCAmelCase__ : str = key.replace(UpperCamelCase__ , """_""".join(pat.split(""".""" ) ) ) return key def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : str = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase__ : str = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase__ : Any = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase__ : Any = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase__ : Optional[int] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": UpperCAmelCase__ : Any = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase__ : Optional[Any] = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase__ : Dict = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=4_2 ): # Step 1: Convert pytorch tensor to numpy UpperCAmelCase__ : str = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase__ : str = flax_model.init_weights(PRNGKey(UpperCamelCase__ ) ) UpperCAmelCase__ : Union[str, Any] = flatten_dict(UpperCamelCase__ ) UpperCAmelCase__ : int = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ : str = rename_key(UpperCamelCase__ ) UpperCAmelCase__ : Optional[Any] = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters UpperCAmelCase__ , UpperCAmelCase__ : Tuple = rename_key_and_reshape_tensor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown UpperCAmelCase__ : str = jnp.asarray(UpperCamelCase__ ) return unflatten_dict(UpperCamelCase__ )
113
0
from collections import deque from math import floor from random import random from time import time class _lowerCamelCase : """simple docstring""" def __init__( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Optional[int] = {} def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ) -> str: """simple docstring""" if self.graph.get(__SCREAMING_SNAKE_CASE ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: UpperCamelCase__ : Optional[int] = [[w, v]] if not self.graph.get(__SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Optional[int] = [] def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" return list(self.graph ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if self.graph.get(__SCREAMING_SNAKE_CASE ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=-2 , __SCREAMING_SNAKE_CASE=-1 ) -> Tuple: """simple docstring""" if s == d: return [] UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Any = [] if s == -2: UpperCamelCase__ : Tuple = list(self.graph )[0] stack.append(__SCREAMING_SNAKE_CASE ) visited.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : str = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__SCREAMING_SNAKE_CASE ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__SCREAMING_SNAKE_CASE ) != 0: UpperCamelCase__ : str = stack[len(__SCREAMING_SNAKE_CASE ) - 1] else: UpperCamelCase__ : List[Any] = ss # check if se have reached the starting point if len(__SCREAMING_SNAKE_CASE ) == 0: return visited def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=-1 ) -> Union[str, Any]: """simple docstring""" if c == -1: UpperCamelCase__ : Tuple = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(__SCREAMING_SNAKE_CASE ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): UpperCamelCase__ : int = floor(random() * c ) + 1 if n != i: self.add_pair(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=-2 ) -> Dict: """simple docstring""" UpperCamelCase__ : List[Any] = deque() UpperCamelCase__ : int = [] if s == -2: UpperCamelCase__ : Optional[int] = list(self.graph )[0] d.append(__SCREAMING_SNAKE_CASE ) visited.append(__SCREAMING_SNAKE_CASE ) while d: UpperCamelCase__ : Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase__ : Any = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return len(self.graph[u] ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=-2 ) -> Tuple: """simple docstring""" UpperCamelCase__ : str = [] UpperCamelCase__ : List[str] = [] if s == -2: UpperCamelCase__ : List[Any] = list(self.graph )[0] stack.append(__SCREAMING_SNAKE_CASE ) visited.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = s UpperCamelCase__ : List[str] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : Optional[int] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__SCREAMING_SNAKE_CASE ) != 0: UpperCamelCase__ : int = stack[len(__SCREAMING_SNAKE_CASE ) - 1] else: UpperCamelCase__ : Any = ss # check if se have reached the starting point if len(__SCREAMING_SNAKE_CASE ) == 0: return sorted_nodes def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Optional[Any] = list(self.graph )[0] stack.append(__SCREAMING_SNAKE_CASE ) visited.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = -2 UpperCamelCase__ : int = [] UpperCamelCase__ : Union[str, Any] = s UpperCamelCase__ : Tuple = False UpperCamelCase__ : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase__ : str = len(__SCREAMING_SNAKE_CASE ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase__ : Tuple = True if len(__SCREAMING_SNAKE_CASE ) != 0: UpperCamelCase__ : Any = stack[len(__SCREAMING_SNAKE_CASE ) - 1] else: UpperCamelCase__ : List[str] = False indirect_parents.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = s UpperCamelCase__ : Any = ss # check if se have reached the starting point if len(__SCREAMING_SNAKE_CASE ) == 0: return list(__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : List[str] = list(self.graph )[0] stack.append(__SCREAMING_SNAKE_CASE ) visited.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = -2 UpperCamelCase__ : str = [] UpperCamelCase__ : Optional[int] = s UpperCamelCase__ : Tuple = False UpperCamelCase__ : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase__ : List[Any] = len(__SCREAMING_SNAKE_CASE ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase__ : Dict = True if len(__SCREAMING_SNAKE_CASE ) != 0: UpperCamelCase__ : Union[str, Any] = stack[len(__SCREAMING_SNAKE_CASE ) - 1] else: UpperCamelCase__ : Optional[Any] = False indirect_parents.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = s UpperCamelCase__ : int = ss # check if se have reached the starting point if len(__SCREAMING_SNAKE_CASE ) == 0: return False def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=-2 , __SCREAMING_SNAKE_CASE=-1 ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[int] = time() self.dfs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = time() return end - begin def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=-2 ) -> List[Any]: """simple docstring""" UpperCamelCase__ : str = time() self.bfs(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = time() return end - begin class _lowerCamelCase : """simple docstring""" def __init__( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Any = {} def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ) -> Any: """simple docstring""" if self.graph.get(__SCREAMING_SNAKE_CASE ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist UpperCamelCase__ : List[Any] = [[w, v]] # add the other way if self.graph.get(__SCREAMING_SNAKE_CASE ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist UpperCamelCase__ : Dict = [[w, u]] def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" if self.graph.get(__SCREAMING_SNAKE_CASE ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__SCREAMING_SNAKE_CASE ) # the other way round if self.graph.get(__SCREAMING_SNAKE_CASE ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=-2 , __SCREAMING_SNAKE_CASE=-1 ) -> int: """simple docstring""" if s == d: return [] UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ : int = [] if s == -2: UpperCamelCase__ : int = list(self.graph )[0] stack.append(__SCREAMING_SNAKE_CASE ) visited.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__SCREAMING_SNAKE_CASE ) return visited else: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__SCREAMING_SNAKE_CASE ) != 0: UpperCamelCase__ : int = stack[len(__SCREAMING_SNAKE_CASE ) - 1] else: UpperCamelCase__ : str = ss # check if se have reached the starting point if len(__SCREAMING_SNAKE_CASE ) == 0: return visited def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=-1 ) -> Optional[Any]: """simple docstring""" if c == -1: UpperCamelCase__ : Any = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(__SCREAMING_SNAKE_CASE ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): UpperCamelCase__ : Dict = floor(random() * c ) + 1 if n != i: self.add_pair(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 1 ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=-2 ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : List[Any] = deque() UpperCamelCase__ : Any = [] if s == -2: UpperCamelCase__ : List[str] = list(self.graph )[0] d.append(__SCREAMING_SNAKE_CASE ) visited.append(__SCREAMING_SNAKE_CASE ) while d: UpperCamelCase__ : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return len(self.graph[u] ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ : Any = [] UpperCamelCase__ : Optional[int] = list(self.graph )[0] stack.append(__SCREAMING_SNAKE_CASE ) visited.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = -2 UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : Union[str, Any] = s UpperCamelCase__ : int = False UpperCamelCase__ : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase__ : int = len(__SCREAMING_SNAKE_CASE ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase__ : str = True if len(__SCREAMING_SNAKE_CASE ) != 0: UpperCamelCase__ : List[str] = stack[len(__SCREAMING_SNAKE_CASE ) - 1] else: UpperCamelCase__ : List[Any] = False indirect_parents.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = s UpperCamelCase__ : Optional[int] = ss # check if se have reached the starting point if len(__SCREAMING_SNAKE_CASE ) == 0: return list(__SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : int = [] UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Any = list(self.graph )[0] stack.append(__SCREAMING_SNAKE_CASE ) visited.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = -2 UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : List[Any] = s UpperCamelCase__ : str = False UpperCamelCase__ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: UpperCamelCase__ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): UpperCamelCase__ : Any = len(__SCREAMING_SNAKE_CASE ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) UpperCamelCase__ : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() UpperCamelCase__ : Dict = True if len(__SCREAMING_SNAKE_CASE ) != 0: UpperCamelCase__ : Dict = stack[len(__SCREAMING_SNAKE_CASE ) - 1] else: UpperCamelCase__ : Optional[int] = False indirect_parents.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = s UpperCamelCase__ : List[Any] = ss # check if se have reached the starting point if len(__SCREAMING_SNAKE_CASE ) == 0: return False def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: """simple docstring""" return list(self.graph ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=-2 , __SCREAMING_SNAKE_CASE=-1 ) -> List[str]: """simple docstring""" UpperCamelCase__ : Tuple = time() self.dfs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = time() return end - begin def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=-2 ) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[str] = time() self.bfs(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = time() return end - begin
285
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = DanceDiffusionPipeline SCREAMING_SNAKE_CASE_ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS SCREAMING_SNAKE_CASE_ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } SCREAMING_SNAKE_CASE_ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def __SCREAMING_SNAKE_CASE ( self ) -> Any: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase__ : List[str] = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__SCREAMING_SNAKE_CASE , use_timestep_embedding=__SCREAMING_SNAKE_CASE , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) UpperCamelCase__ : Union[str, Any] = IPNDMScheduler() UpperCamelCase__ : List[str] = { '''unet''': unet, '''scheduler''': scheduler, } return components def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> Any: """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): UpperCamelCase__ : Optional[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase__ : Optional[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 4, } return inputs def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : str = DanceDiffusionPipeline(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = pipe(**__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = output.audios UpperCamelCase__ : Dict = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase__ : List[Any] = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" return super().test_save_load_local() @skip_mps def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" return super().test_save_load_optional_components() @skip_mps def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: """simple docstring""" return super().test_attention_slicing_forward_pass() def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any = torch_device UpperCamelCase__ : Any = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) UpperCamelCase__ : int = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = torch.manual_seed(0 ) UpperCamelCase__ : Optional[Any] = pipe(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase__ : str = output.audios UpperCamelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase__ : Tuple = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Any = torch_device UpperCamelCase__ : Union[str, Any] = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) UpperCamelCase__ : Tuple = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = torch.manual_seed(0 ) UpperCamelCase__ : Union[str, Any] = pipe(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) UpperCamelCase__ : List[Any] = output.audios UpperCamelCase__ : List[Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase__ : Optional[Any] = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
285
1
import random def UpperCamelCase ( __lowercase : int ): '''simple docstring''' A_ : Tuple = num - 1 A_ : Optional[Any] = 0 while s % 2 == 0: A_ : Optional[int] = s // 2 t += 1 for _ in range(5 ): A_ : Optional[int] = random.randrange(2 ,num - 1 ) A_ : Any = pow(__lowercase ,__lowercase ,__lowercase ) if v != 1: A_ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: A_ : Union[str, Any] = i + 1 A_ : Tuple = (v**2) % num return True def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if num < 2: return False A_ : Optional[Any] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__lowercase ) def UpperCamelCase ( __lowercase : int = 10_24 ): '''simple docstring''' while True: A_ : Union[str, Any] = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(__lowercase ): return num if __name__ == "__main__": _UpperCAmelCase = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
70
import numpy as np _UpperCAmelCase = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class UpperCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" A_ : Any = np.array(lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ , A_ : Optional[Any] = np.where(letter == self.SQUARE ) A_ : List[str] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" A_ : int = self.SQUARE[indexa - 1, indexa - 1] return letter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : int = message.lower() A_ : Tuple = message.replace(' ' , '' ) A_ : int = message.replace('j' , 'i' ) A_ : Any = np.empty((2, len(lowercase )) ) for letter_index in range(len(lowercase ) ): A_ : Optional[int] = self.letter_to_numbers(message[letter_index] ) A_ : Union[str, Any] = numbers[0] A_ : Union[str, Any] = numbers[1] A_ : Optional[int] = first_step.reshape(2 * len(lowercase ) ) A_ : int = '' for numbers_index in range(len(lowercase ) ): A_ : str = int(second_step[numbers_index * 2] ) A_ : str = int(second_step[(numbers_index * 2) + 1] ) A_ : Tuple = self.numbers_to_letter(lowercase , lowercase ) A_ : Tuple = encoded_message + letter return encoded_message def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[int] = message.lower() message.replace(' ' , '' ) A_ : Tuple = np.empty(2 * len(lowercase ) ) for letter_index in range(len(lowercase ) ): A_ : Optional[Any] = self.letter_to_numbers(message[letter_index] ) A_ : Optional[int] = numbers[0] A_ : Dict = numbers[1] A_ : Optional[int] = first_step.reshape((2, len(lowercase )) ) A_ : List[str] = '' for numbers_index in range(len(lowercase ) ): A_ : List[Any] = int(second_step[0, numbers_index] ) A_ : Optional[int] = int(second_step[1, numbers_index] ) A_ : Tuple = self.numbers_to_letter(lowercase , lowercase ) A_ : str = decoded_message + letter return decoded_message
70
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "swinv2" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) _lowerCAmelCase = (0, 0, 0, 0)
18
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __a ( lowerCAmelCase__ : Dict ): a__ , a__ : int = image.size a__ , a__ : List[str] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 a__ : Tuple = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) a__ : List[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 a__ : Any = image[None].transpose(0 , 3 , 1 , 2 ) a__ : Dict = torch.from_numpy(lowerCAmelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : VQModel , A__ : UNetaDModel , A__ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> str: '''simple docstring''' super().__init__() self.register_modules(vqvae=A__ , unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self : List[str] , A__ : Union[torch.Tensor, PIL.Image.Image] = None , A__ : Optional[int] = 1 , A__ : Optional[int] = 1_0_0 , A__ : Optional[float] = 0.0 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(A__ , PIL.Image.Image ): a__ : List[Any] = 1 elif isinstance(A__ , torch.Tensor ): a__ : List[str] = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(A__ )}' ) if isinstance(A__ , PIL.Image.Image ): a__ : Union[str, Any] = preprocess(A__ ) a__ , a__ : Dict = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image a__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) a__ : Optional[int] = next(self.unet.parameters() ).dtype a__ : List[str] = randn_tensor(A__ , generator=A__ , device=self.device , dtype=A__ ) a__ : Any = image.to(device=self.device , dtype=A__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(A__ , device=self.device ) a__ : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler a__ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] a__ : Union[str, Any] = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a__ : str = {} if accepts_eta: a__ : Dict = eta for t in self.progress_bar(A__ ): # concat latents and low resolution image in the channel dimension. a__ : str = torch.cat([latents, image] , dim=1 ) a__ : Optional[Any] = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual a__ : Union[str, Any] = self.unet(A__ , A__ ).sample # compute the previous noisy sample x_t -> x_t-1 a__ : Union[str, Any] = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # decode the image latents with the VQVAE a__ : List[Any] = self.vqvae.decode(A__ ).sample a__ : List[Any] = torch.clamp(A__ , -1.0 , 1.0 ) a__ : Optional[Any] = image / 2 + 0.5 a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : Union[str, Any] = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase_ = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def a ( A__ : Tuple , A__ : List[Any] , A__ : Optional[int] , A__ : Dict , A__ : Any=False , A__ : str=True ) -> str: """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) _lowercase , _lowercase , _lowercase , _lowercase =MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: _lowercase =cached_file(A__ , A__ , force_download=not use_cached_models ) _lowercase =config_class.from_json_file(A__ ) _lowercase =True _lowercase =True print(F'''Building TensorFlow model from configuration: {config}''' ) _lowercase =model_class(A__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): _lowercase =cached_file( A__ , A__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: _lowercase =load_pytorch_checkpoint_in_tfa_model(A__ , A__ ) if compare_with_pt_model: _lowercase =tf_model(tf_model.dummy_inputs , training=A__ ) # build the network _lowercase =torch.load(A__ , map_location='cpu' ) _lowercase =pt_model_class.from_pretrained( pretrained_model_name_or_path=A__ , config=A__ , state_dict=A__ ) with torch.no_grad(): _lowercase =pt_model(**pt_model.dummy_inputs ) _lowercase =pto[0].numpy() _lowercase =tfo[0].numpy() _lowercase =np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2e-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(A__ , save_format='h5' ) def a ( A__ : str , A__ : str , A__ : Optional[Any]=None , A__ : Any=None , A__ : Optional[int]=False , A__ : Optional[int]=False , A__ : int=False , A__ : str=False , ) -> List[Any]: """simple docstring""" if args_model_type is None: _lowercase =list(MODEL_CLASSES.keys() ) else: _lowercase =[args_model_type] for j, model_type in enumerate(A__ , start=1 ): print('=' * 100 ) print(F''' Converting model type {j}/{len(A__ )}: {model_type}''' ) print('=' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase =MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: _lowercase =list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: _lowercase =model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(A__ , A__ ) , start=1 ): print('-' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue _lowercase =model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(A__ )}: {model_shortcut_name} - model_type {model_type}''' ) print('-' * 100 ) if config_shortcut_name in aws_config_map: _lowercase =cached_file(A__ , A__ , force_download=not use_cached_models ) else: _lowercase =config_shortcut_name if model_shortcut_name in aws_model_maps: _lowercase =cached_file(A__ , A__ , force_download=not use_cached_models ) else: _lowercase =model_shortcut_name if os.path.isfile(A__ ): _lowercase ='converted_model' convert_pt_checkpoint_to_tf( model_type=A__ , pytorch_checkpoint_path=A__ , config_file=A__ , tf_dump_path=os.path.join(A__ , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=A__ , ) if remove_cached_files: os.remove(A__ ) os.remove(A__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( f"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') lowercase_ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
380
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowercase_ = '<<<<<<< This should probably be modified because it mentions: ' lowercase_ = '=======\n>>>>>>>\n' lowercase_ = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowercase_ = [ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def a ( A__ : Namespace ) -> Any: """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): @staticmethod def A__ ( lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase =parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase ) def __init__( self , lowerCAmelCase , lowerCAmelCase , *lowerCAmelCase ) -> List[Any]: '''simple docstring''' _lowercase =get_logger('datasets-cli/converting' ) _lowercase =tfds_path _lowercase =datasets_directory def A__ ( self ) -> List[str]: '''simple docstring''' if os.path.isdir(self._tfds_path ): _lowercase =os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): _lowercase =os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) _lowercase =os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) _lowercase =[] _lowercase =[] _lowercase ={} if os.path.isdir(self._tfds_path ): _lowercase =os.listdir(lowerCAmelCase ) else: _lowercase =[os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) _lowercase =os.path.join(lowerCAmelCase , lowerCAmelCase ) _lowercase =os.path.join(lowerCAmelCase , lowerCAmelCase ) if not os.path.isfile(lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase , encoding='utf-8' ) as f: _lowercase =f.readlines() _lowercase =[] _lowercase =False _lowercase =False _lowercase =[] for line in lines: _lowercase =line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _lowercase ='import datasets\n' elif "import tensorflow" in out_line: # order is important here _lowercase ='' continue elif "from absl import logging" in out_line: _lowercase ='from datasets import logging\n' elif "getLogger" in out_line: _lowercase =out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): _lowercase =True _lowercase =list(filter(lambda lowerCAmelCase : e in out_line , lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase ) + '\n' ) out_lines.append(lowerCAmelCase ) out_lines.append(lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: _lowercase =re.sub(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _lowercase =re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) _lowercase ='from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _lowercase =True out_lines.append(lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _lowercase =f_name.replace('.py' , '' ) _lowercase =os.path.join(lowerCAmelCase , lowerCAmelCase ) _lowercase =os.path.join(lowerCAmelCase , lowerCAmelCase ) os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase ) if needs_manual_update: with_manual_update.append(lowerCAmelCase ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: _lowercase =os.path.basename(lowerCAmelCase ) _lowercase =imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(lowerCAmelCase , lowerCAmelCase ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
380
1
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCAmelCase : @staticmethod def _a ( *_lowerCamelCase , **_lowerCamelCase ): pass @is_pipeline_test @require_vision class __UpperCAmelCase ( unittest.TestCase ): @require_torch def _a ( self ): lowerCamelCase__ =pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) lowerCamelCase__ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCamelCase__ =image_classifier(_lowerCamelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(_lowerCamelCase ) , [ [{"score": 0.3_3_3, "label": "a"}, {"score": 0.3_3_3, "label": "b"}, {"score": 0.3_3_3, "label": "c"}], [{"score": 0.3_3_3, "label": "a"}, {"score": 0.3_3_3, "label": "c"}, {"score": 0.3_3_3, "label": "b"}], ] , ) lowerCamelCase__ =image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, ], [ {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, ], [ {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, ], [ {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, ], [ {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, ], ] , ) @require_tf def _a ( self ): lowerCamelCase__ =pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) lowerCamelCase__ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCamelCase__ =image_classifier(_lowerCamelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [{"score": 0.3_3_3, "label": "a"}, {"score": 0.3_3_3, "label": "b"}, {"score": 0.3_3_3, "label": "c"}] , ) lowerCamelCase__ =image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, ], [ {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, ], [ {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, ], [ {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, ], [ {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, {"score": 0.3_3_3, "label": ANY(_lowerCamelCase )}, ], ] , ) @slow @require_torch def _a ( self ): lowerCamelCase__ =pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase__ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCamelCase__ =image_classifier(_lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {"score": 0.5_1_1, "label": "remote"}, {"score": 0.4_8_5, "label": "cat"}, {"score": 0.0_0_4, "label": "plane"}, ] , ) lowerCamelCase__ =image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {"score": 0.5_1_1, "label": "remote"}, {"score": 0.4_8_5, "label": "cat"}, {"score": 0.0_0_4, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _a ( self ): lowerCamelCase__ =pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes lowerCamelCase__ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCamelCase__ =image_classifier(_lowerCamelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ {"score": 0.5_1_1, "label": "remote"}, {"score": 0.4_8_5, "label": "cat"}, {"score": 0.0_0_4, "label": "plane"}, ] , ) lowerCamelCase__ =image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(_lowerCamelCase ) , [ [ {"score": 0.5_1_1, "label": "remote"}, {"score": 0.4_8_5, "label": "cat"}, {"score": 0.0_0_4, "label": "plane"}, ], ] * 5 , )
530
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def lowerCamelCase_ ( __lowerCAmelCase ) -> List[Any]: '''simple docstring''' def is_in_circle(__lowerCAmelCase , __lowerCAmelCase ) -> bool: lowerCamelCase__ =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowerCamelCase__ =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowerCAmelCase ) ) # The ratio of the area for circle to square is pi/4. lowerCamelCase__ =proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 , ) -> float: '''simple docstring''' return mean( function_to_integrate(uniform(__lowerCAmelCase , __lowerCAmelCase ) ) for _ in range(__lowerCAmelCase ) ) * (max_value - min_value) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 1.0 ) -> None: '''simple docstring''' def identity_function(__lowerCAmelCase ) -> float: return x lowerCamelCase__ =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ =(max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print("******************" ) def lowerCamelCase_ ( __lowerCAmelCase ) -> None: '''simple docstring''' def function_to_integrate(__lowerCAmelCase ) -> float: return sqrt(4.0 - x * x ) lowerCamelCase__ =area_under_curve_estimator( __lowerCAmelCase , __lowerCAmelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
530
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase : Dict = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
516
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCamelCase : Union[str, Any] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def A__ ( __A : int , __A : Optional[int] , __A : List[Any] , __A : Any , __A : Optional[int] ) ->str: for attribute in key.split('''.''' ): __A =getattr(__A , __A ) if weight_type is not None: __A =getattr(__A , __A ).shape else: __A =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __A =value elif weight_type == "weight_g": __A =value elif weight_type == "weight_v": __A =value elif weight_type == "bias": __A =value elif weight_type == "running_mean": __A =value elif weight_type == "running_var": __A =value elif weight_type == "num_batches_tracked": __A =value elif weight_type == "inv_freq": __A =value else: __A =value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def A__ ( __A : Optional[int] , __A : Union[str, Any] , __A : str ) ->List[str]: __A =[] __A =fairseq_model.state_dict() __A =hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __A =False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) __A =True else: for key, mapped_key in MAPPING.items(): __A ='''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __A =True if "*" in mapped_key: __A =name.split(__A )[0].split('''.''' )[-2] __A =mapped_key.replace('''*''' , __A ) if "pos_bias_u" in name: __A =None elif "pos_bias_v" in name: __A =None elif "weight_g" in name: __A ='''weight_g''' elif "weight_v" in name: __A ='''weight_v''' elif "bias" in name: __A ='''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A ='''weight''' elif "running_mean" in name: __A ='''running_mean''' elif "inv_freq" in name: __A ='''inv_freq''' elif "running_var" in name: __A ='''running_var''' elif "num_batches_tracked" in name: __A ='''num_batches_tracked''' else: __A =None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def A__ ( __A : Dict , __A : Optional[int] , __A : Optional[int] , __A : Union[str, Any] , __A : List[str] ) ->Any: __A =full_name.split('''conv_layers.''' )[-1] __A =name.split('''.''' ) __A =int(items[0] ) __A =int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__A ) @torch.no_grad() def A__ ( __A : Optional[Any] , __A : Optional[Any] , __A : Any=None , __A : Optional[int]=None , __A : Dict=True ) ->Union[str, Any]: if config_path is not None: __A =WavaVecaConformerConfig.from_pretrained(__A , hidden_act='''swish''' ) else: __A =WavaVecaConformerConfig() if "rope" in checkpoint_path: __A ='''rotary''' if is_finetuned: if dict_path: __A =Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __A =target_dict.pad_index __A =target_dict.bos_index __A =target_dict.eos_index __A =len(target_dict.symbols ) __A =os.path.join(__A , '''vocab.json''' ) if not os.path.isdir(__A ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__A ) ) return os.makedirs(__A , exist_ok=__A ) __A =target_dict.indices # fairseq has the <pad> and <s> switched __A =0 __A =1 with open(__A , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__A , __A ) __A =WavaVecaCTCTokenizer( __A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__A , ) __A =True if config.feat_extract_norm == '''layer''' else False __A =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) __A =WavaVecaProcessor(feature_extractor=__A , tokenizer=__A ) processor.save_pretrained(__A ) __A =WavaVecaConformerForCTC(__A ) else: __A =WavaVecaConformerForPreTraining(__A ) if is_finetuned: __A , __A , __A =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __A =argparse.Namespace(task='''audio_pretraining''' ) __A =fairseq.tasks.setup_task(__A ) __A , __A , __A =fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__A ) __A =model[0].eval() recursively_load_weights(__A , __A , not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCamelCase : Tuple = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
516
1
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class a__ ( A__ , A__ ): UpperCAmelCase__ = '''pixel_values''' UpperCAmelCase__ = False UpperCAmelCase__ = TimmBackboneConfig def __init__( self :int , _lowerCamelCase :int , **_lowerCamelCase :Optional[Any] ): '''simple docstring''' requires_backends(self , 'timm' ) super().__init__(_lowerCamelCase ) UpperCamelCase_ : List[str] =config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(f'''backbone {config.backbone} is not supported by timm.''' ) if hasattr(_lowerCamelCase , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) UpperCamelCase_ : List[str] =getattr(_lowerCamelCase , 'use_pretrained_backbone' , _lowerCamelCase ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. UpperCamelCase_ : List[str] =config.out_indices if getattr(_lowerCamelCase , 'out_indices' , _lowerCamelCase ) is not None else (-1,) UpperCamelCase_ : List[Any] =timm.create_model( config.backbone , pretrained=_lowerCamelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=_lowerCamelCase , **_lowerCamelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. UpperCamelCase_ : Optional[Any] =self._backbone.return_layers UpperCamelCase_ : int ={layer['module']: str(_lowerCamelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(_lowerCamelCase ) @classmethod def lowerCamelCase_ ( cls :Dict , _lowerCamelCase :List[str] , *_lowerCamelCase :List[Any] , **_lowerCamelCase :Union[str, Any] ): '''simple docstring''' requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig UpperCamelCase_ : List[str] =kwargs.pop('config' , TimmBackboneConfig() ) UpperCamelCase_ : Union[str, Any] =kwargs.pop('use_timm_backbone' , _lowerCamelCase ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) UpperCamelCase_ : Union[str, Any] =kwargs.pop('num_channels' , config.num_channels ) UpperCamelCase_ : List[str] =kwargs.pop('features_only' , config.features_only ) UpperCamelCase_ : Union[str, Any] =kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) UpperCamelCase_ : Union[str, Any] =kwargs.pop('out_indices' , config.out_indices ) UpperCamelCase_ : Tuple =TimmBackboneConfig( backbone=_lowerCamelCase , num_channels=_lowerCamelCase , features_only=_lowerCamelCase , use_pretrained_backbone=_lowerCamelCase , out_indices=_lowerCamelCase , ) return super()._from_config(_lowerCamelCase , **_lowerCamelCase ) def lowerCamelCase_ ( self :Any , _lowerCamelCase :Dict ): '''simple docstring''' pass def lowerCamelCase_ ( self :Dict , _lowerCamelCase :Tuple , _lowerCamelCase :Tuple=None , _lowerCamelCase :Any=None , _lowerCamelCase :Optional[Any]=None , **_lowerCamelCase :Dict ): '''simple docstring''' UpperCamelCase_ : List[Any] =return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase_ : Dict =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase_ : List[Any] =output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone UpperCamelCase_ : str =self._all_layers UpperCamelCase_ : Optional[int] =self._backbone(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_ : Tuple =self._return_layers UpperCamelCase_ : Optional[Any] =tuple(hidden_states[i] for i in self.out_indices ) else: UpperCamelCase_ : List[str] =self._backbone(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_ : int =None UpperCamelCase_ : Optional[int] =tuple(_lowerCamelCase ) UpperCamelCase_ : Union[str, Any] =tuple(_lowerCamelCase ) if hidden_states is not None else None if not return_dict: UpperCamelCase_ : Dict =(feature_maps,) if output_hidden_states: UpperCamelCase_ : Dict =output + (hidden_states,) return output return BackboneOutput(feature_maps=_lowerCamelCase , hidden_states=_lowerCamelCase , attentions=_lowerCamelCase )
357
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def A_ ( __lowercase , __lowercase , __lowercase = 1 , __lowercase = 1 , __lowercase = 1.0e4 , __lowercase = False , __lowercase = 1.0 , ): assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F'''Embedding dimension {embedding_dim} should be even''' UpperCamelCase_ : Optional[int] =float(embedding_dim // 2 ) UpperCamelCase_ : Optional[Any] =math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCamelCase_ : List[Any] =min_timescale * jnp.exp(jnp.arange(__lowercase , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCamelCase_ : int =jnp.expand_dims(__lowercase , 1 ) * jnp.expand_dims(__lowercase , 0 ) # scale embeddings UpperCamelCase_ : List[str] =scale * emb if flip_sin_to_cos: UpperCamelCase_ : Tuple =jnp.concatenate([jnp.cos(__lowercase ), jnp.sin(__lowercase )] , axis=1 ) else: UpperCamelCase_ : Tuple =jnp.concatenate([jnp.sin(__lowercase ), jnp.cos(__lowercase )] , axis=1 ) UpperCamelCase_ : List[Any] =jnp.reshape(__lowercase , [jnp.shape(__lowercase )[0], embedding_dim] ) return signal class a__ ( nn.Module ): UpperCAmelCase__ = 32 UpperCAmelCase__ = jnp.floataa @nn.compact def __call__( self :Optional[Any] , _lowerCamelCase :List[str] ): '''simple docstring''' UpperCamelCase_ : Dict =nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(_lowerCamelCase ) UpperCamelCase_ : Any =nn.silu(_lowerCamelCase ) UpperCamelCase_ : Tuple =nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(_lowerCamelCase ) return temb class a__ ( nn.Module ): UpperCAmelCase__ = 32 UpperCAmelCase__ = False UpperCAmelCase__ = 1 @nn.compact def __call__( self :Union[str, Any] , _lowerCamelCase :Dict ): '''simple docstring''' return get_sinusoidal_embeddings( _lowerCamelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
357
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
183
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } SCREAMING_SNAKE_CASE_ = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } SCREAMING_SNAKE_CASE_ = { '''ctrl''': 256, } SCREAMING_SNAKE_CASE_ = { '''Pregnancy''': 16_8629, '''Christianity''': 7675, '''Explain''': 10_6423, '''Fitness''': 6_3440, '''Saving''': 6_3163, '''Ask''': 2_7171, '''Ass''': 9_5985, '''Joke''': 16_3509, '''Questions''': 4_5622, '''Thoughts''': 4_9605, '''Retail''': 5_2342, '''Feminism''': 16_4338, '''Writing''': 1_1992, '''Atheism''': 19_2263, '''Netflix''': 4_8616, '''Computing''': 3_9639, '''Opinion''': 4_3213, '''Alone''': 4_4967, '''Funny''': 5_8917, '''Gaming''': 4_0358, '''Human''': 4088, '''India''': 1331, '''Joker''': 7_7138, '''Diet''': 3_6206, '''Legal''': 1_1859, '''Norman''': 4939, '''Tip''': 7_2689, '''Weight''': 5_2343, '''Movies''': 4_6273, '''Running''': 2_3425, '''Science''': 2090, '''Horror''': 3_7793, '''Confession''': 6_0572, '''Finance''': 1_2250, '''Politics''': 1_6360, '''Scary''': 19_1985, '''Support''': 1_2654, '''Technologies''': 3_2516, '''Teenage''': 6_6160, '''Event''': 3_2769, '''Learned''': 6_7460, '''Notion''': 18_2770, '''Wikipedia''': 3_7583, '''Books''': 6665, '''Extract''': 7_6050, '''Confessions''': 10_2701, '''Conspiracy''': 7_5932, '''Links''': 6_3674, '''Narcissus''': 15_0425, '''Relationship''': 5_4766, '''Relationships''': 13_4796, '''Reviews''': 4_1671, '''News''': 4256, '''Translation''': 2_6820, '''multilingual''': 12_8406, } def lowercase__ ( lowerCAmelCase : int ) -> int: """simple docstring""" UpperCAmelCase = set() UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase = char UpperCAmelCase = set(lowerCAmelCase ) return pairs class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = CONTROL_CODES def __init__( self , lowercase_ , lowercase_ , lowercase_="<unk>" , **lowercase_ ) -> Optional[int]: super().__init__(unk_token=lowercase_ , **lowercase_ ) with open(lowercase_ , encoding='utf-8' ) as vocab_handle: UpperCAmelCase = json.load(lowercase_ ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} with open(lowercase_ , encoding='utf-8' ) as merges_handle: UpperCAmelCase = merges_handle.read().split('\n' )[1:-1] UpperCAmelCase = [tuple(merge.split() ) for merge in merges] UpperCAmelCase = dict(zip(lowercase_ , range(len(lowercase_ ) ) ) ) UpperCAmelCase = {} @property def a_ ( self ) -> Union[str, Any]: return len(self.encoder ) def a_ ( self ) -> Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def a_ ( self , lowercase_ ) -> int: if token in self.cache: return self.cache[token] UpperCAmelCase = tuple(lowercase_ ) UpperCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCAmelCase = get_pairs(lowercase_ ) if not pairs: return token while True: UpperCAmelCase = min(lowercase_ , key=lambda lowercase_ : self.bpe_ranks.get(lowercase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase , UpperCAmelCase = bigram UpperCAmelCase = [] UpperCAmelCase = 0 while i < len(lowercase_ ): try: UpperCAmelCase = word.index(lowercase_ , lowercase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase = j if word[i] == first and i < len(lowercase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase = tuple(lowercase_ ) UpperCAmelCase = new_word if len(lowercase_ ) == 1: break else: UpperCAmelCase = get_pairs(lowercase_ ) UpperCAmelCase = '@@ '.join(lowercase_ ) UpperCAmelCase = word[:-4] UpperCAmelCase = word return word def a_ ( self , lowercase_ ) -> List[Any]: UpperCAmelCase = [] UpperCAmelCase = re.findall(R'\S+\n?' , lowercase_ ) for token in words: split_tokens.extend(list(self.bpe(lowercase_ ).split(' ' ) ) ) return split_tokens def a_ ( self , lowercase_ ) -> Tuple: return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token ) ) def a_ ( self , lowercase_ ) -> Optional[Any]: return self.decoder.get(lowercase_ , self.unk_token ) def a_ ( self , lowercase_ ) -> str: UpperCAmelCase = ' '.join(lowercase_ ).replace('@@ ' , '' ).strip() return out_string def a_ ( self , lowercase_ , lowercase_ = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowercase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_ ) + '\n' ) UpperCAmelCase = 0 with open(lowercase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ' Please check that the tokenizer is not corrupted!' ) UpperCAmelCase = token_index writer.write(' '.join(lowercase_ ) + '\n' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
183
1
'''simple docstring''' UpperCAmelCase_ : Optional[int] = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
24
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase : int = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
587
0
from __future__ import annotations import math def A__ ( lowerCamelCase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A__ ( lowerCamelCase ) -> list[int]: UpperCamelCase_: Optional[Any] = str(lowerCamelCase ) UpperCamelCase_: List[str] = [n] for i in range(1 , len(lowerCamelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def A__ ( lowerCamelCase ) -> bool: if len(str(lowerCamelCase ) ) > 3: if not is_prime(int(str(lowerCamelCase )[-3:] ) ) or not is_prime(int(str(lowerCamelCase )[:3] ) ): return False return True def A__ ( lowerCamelCase = 11 ) -> list[int]: UpperCamelCase_: list[int] = [] UpperCamelCase_: Dict = 13 while len(lowerCamelCase ) != count: if validate(lowerCamelCase ): UpperCamelCase_: Dict = list_truncated_nums(lowerCamelCase ) if all(is_prime(lowerCamelCase ) for i in list_nums ): list_truncated_primes.append(lowerCamelCase ) num += 2 return list_truncated_primes def A__ ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
670
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : str = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Optional[Any] = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowerCamelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
670
1
import math from collections.abc import Iterator from itertools import takewhile def __UpperCAmelCase ( a_): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(a_) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase ( ): snake_case_ = 2 while True: if is_prime(a_): yield num num += 1 def __UpperCAmelCase ( a_ = 2_00_00_00): return sum(takewhile(lambda a_: x < n , prime_generator())) if __name__ == "__main__": print(f'{solution() = }')
198
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCAmelCase = Features({'''text''': Value('''string''' )} ) lowerCAmelCase = Features({} ) lowerCAmelCase = "text" @property def _UpperCamelCase ( self ) -> Dict[str, str]: return {self.text_column: "text"}
198
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class a__ ( lowercase__ ): """simple docstring""" def __init__( self , *lowercase , **lowercase ) -> Dict: '''simple docstring''' warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
700
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
626
0
from __future__ import annotations def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = False , ) -> tuple[int, float, str]: lowerCAmelCase__ : Union[str, Any] = cipher_alphabet or [chr(A__ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCAmelCase__ : Optional[int] = { '''a''': 0.08497, '''b''': 0.01492, '''c''': 0.02202, '''d''': 0.04253, '''e''': 0.11162, '''f''': 0.02228, '''g''': 0.02015, '''h''': 0.06094, '''i''': 0.07546, '''j''': 0.00153, '''k''': 0.01292, '''l''': 0.04025, '''m''': 0.02406, '''n''': 0.06749, '''o''': 0.07507, '''p''': 0.01929, '''q''': 0.00095, '''r''': 0.07587, '''s''': 0.06327, '''t''': 0.09356, '''u''': 0.02758, '''v''': 0.00978, '''w''': 0.02560, '''x''': 0.00150, '''y''': 0.01994, '''z''': 0.00077, } else: # Custom frequencies dictionary lowerCAmelCase__ : Union[str, Any] = frequencies_dict if not case_sensitive: lowerCAmelCase__ : Dict = ciphertext.lower() # Chi squared statistic values lowerCAmelCase__ : Optional[int] = {} # cycle through all of the shifts for shift in range(len(A__ ) ): lowerCAmelCase__ : Optional[int] = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCAmelCase__ : Union[str, Any] = (alphabet_letters.index(letter.lower() ) - shift) % len( A__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCAmelCase__ : Dict = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCAmelCase__ : Tuple = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCAmelCase__ : Any = decrypted_with_shift.lower().count(A__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCAmelCase__ : str = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCAmelCase__ : Any = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCAmelCase__ : List[str] = decrypted_with_shift.count(A__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCAmelCase__ : Dict = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCAmelCase__ : Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCAmelCase__ : Union[str, Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(UpperCamelCase ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCAmelCase__ : List[Any] = min( A__ , key=A__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Union[str, Any] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
678
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowercase : Optional[Any] = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowercase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
649
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 class UpperCAmelCase ( snake_case_ ,snake_case_ ): @register_to_config def __init__( self , _lowerCAmelCase = 3 , _lowerCAmelCase = 3 , _lowerCAmelCase = ("DownEncoderBlock2D",) , _lowerCAmelCase = ("UpDecoderBlock2D",) , _lowerCAmelCase = (64,) , _lowerCAmelCase = 1 , _lowerCAmelCase = "silu" , _lowerCAmelCase = 3 , _lowerCAmelCase = 32 , _lowerCAmelCase = 256 , _lowerCAmelCase = 32 , _lowerCAmelCase = None , _lowerCAmelCase = 0.18_215 , _lowerCAmelCase = "group" , ): super().__init__() # pass init params to Encoder _lowerCAmelCase = Encoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , down_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , double_z=_lowerCAmelCase , ) _lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowerCAmelCase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) _lowerCAmelCase = VectorQuantizer(_lowerCAmelCase , _lowerCAmelCase , beta=0.25 , remap=_lowerCAmelCase , sane_index_shape=_lowerCAmelCase ) _lowerCAmelCase = nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) # pass init params to Decoder _lowerCAmelCase = Decoder( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , up_block_types=_lowerCAmelCase , block_out_channels=_lowerCAmelCase , layers_per_block=_lowerCAmelCase , act_fn=_lowerCAmelCase , norm_num_groups=_lowerCAmelCase , norm_type=_lowerCAmelCase , ) @apply_forward_hook def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = True ): _lowerCAmelCase = self.encoder(_lowerCAmelCase ) _lowerCAmelCase = self.quant_conv(_lowerCAmelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_lowerCAmelCase ) @apply_forward_hook def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = True ): # also go through quantization layer if not force_not_quantize: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = self.quantize(_lowerCAmelCase ) else: _lowerCAmelCase = h _lowerCAmelCase = self.post_quant_conv(_lowerCAmelCase ) _lowerCAmelCase = self.decoder(_lowerCAmelCase , quant if self.config.norm_type == '''spatial''' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = True ): _lowerCAmelCase = sample _lowerCAmelCase = self.encode(_lowerCAmelCase ).latents _lowerCAmelCase = self.decode(_lowerCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_lowerCAmelCase )
664
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCAmelCase_ = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase__ ( )->Any: _lowerCAmelCase = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _lowerCAmelCase = get_sagemaker_input() else: _lowerCAmelCase = get_cluster_input() return config def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int=None )->str: if subparsers is not None: _lowerCAmelCase = subparsers.add_parser('''config''' , description=_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = argparse.ArgumentParser('''Accelerate config command''' , description=_SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=_SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict )->str: _lowerCAmelCase = get_user_input() if args.config_file is not None: _lowerCAmelCase = args.config_file else: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(_SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(_SCREAMING_SNAKE_CASE ) print(f'''accelerate configuration saved at {config_file}''' ) def UpperCAmelCase__ ( )->List[Any]: _lowerCAmelCase = config_command_parser() _lowerCAmelCase = parser.parse_args() config_command(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
664
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ ( UpperCAmelCase_ ): '''simple docstring''' __UpperCamelCase = ['''image_processor''', '''tokenizer'''] __UpperCamelCase = '''CLIPImageProcessor''' __UpperCamelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self : Optional[Any] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Tuple=None , **__lowerCamelCase : int ) -> int: '''simple docstring''' __lowercase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __lowerCamelCase , ) __lowercase = kwargs.pop('feature_extractor' ) __lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : Optional[int] , __lowerCamelCase : Dict=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __lowercase = self.tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if images is not None: __lowercase = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None and images is not None: __lowercase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase ) def UpperCAmelCase ( self : Union[str, Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def UpperCAmelCase ( self : int , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' __lowercase = self.tokenizer.model_input_names __lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
375
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class snake_case_ ( UpperCAmelCase_ ): '''simple docstring''' __UpperCamelCase = '''rwkv''' __UpperCamelCase = {'''max_position_embeddings''': '''context_length'''} def __init__( self : List[str] , __lowerCamelCase : Tuple=50_277 , __lowerCamelCase : List[str]=1_024 , __lowerCamelCase : List[Any]=4_096 , __lowerCamelCase : Tuple=32 , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=1E-5 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : int=0 , __lowerCamelCase : Dict=6 , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Tuple=True , **__lowerCamelCase : Optional[int] , ) -> List[Any]: '''simple docstring''' __lowercase = vocab_size __lowercase = context_length __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowercase = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowercase = layer_norm_epsilon __lowercase = rescale_every __lowercase = use_cache __lowercase = bos_token_id __lowercase = eos_token_id super().__init__( tie_word_embeddings=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
375
1
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 32 def UpperCamelCase__ ( _lowercase : Accelerator , _lowercase : int = 1_6 ) -> List[Any]: __UpperCAmelCase: Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __UpperCAmelCase: Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_lowercase : Any ): # max_length=None => use the model max length (it's actually the default) __UpperCAmelCase: Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCAmelCase: List[Any] = datasets.map( _lowercase , batched=_lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCAmelCase: Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowercase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCAmelCase: Union[str, Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCAmelCase: int = 1_6 elif accelerator.mixed_precision != "no": __UpperCAmelCase: Tuple = 8 else: __UpperCAmelCase: str = None return tokenizer.pad( _lowercase , padding="""longest""" , max_length=_lowercase , pad_to_multiple_of=_lowercase , return_tensors="""pt""" , ) # Instantiate dataloaders. __UpperCAmelCase: Optional[int] = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) __UpperCAmelCase: Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE_ = mocked_dataloaders # noqa: F811 def UpperCamelCase__ ( _lowercase : Tuple , _lowercase : Optional[int] ) -> List[Any]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _lowercase ) == "1": __UpperCAmelCase: Dict = 2 # Initialize accelerator __UpperCAmelCase: Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCAmelCase: Any = config["""lr"""] __UpperCAmelCase: List[Any] = int(config["""num_epochs"""] ) __UpperCAmelCase: Dict = int(config["""seed"""] ) __UpperCAmelCase: Any = int(config["""batch_size"""] ) __UpperCAmelCase: Optional[int] = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_lowercase ) def inner_training_loop(_lowercase : Optional[int] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCAmelCase: Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCAmelCase: List[str] = model.to(accelerator.device ) # Instantiate optimizer __UpperCAmelCase: List[Any] = AdamW(params=model.parameters() , lr=_lowercase ) __UpperCAmelCase, __UpperCAmelCase: Any = get_dataloaders(_lowercase , _lowercase ) # Instantiate scheduler __UpperCAmelCase: str = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=1_0_0 , num_training_steps=(len(_lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase: Optional[int] = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Now we train the model for epoch in range(_lowercase ): model.train() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCAmelCase: List[str] = model(**_lowercase ) __UpperCAmelCase: List[Any] = outputs.loss accelerator.backward(_lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCAmelCase: Optional[int] = model(**_lowercase ) __UpperCAmelCase: Union[str, Any] = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase, __UpperCAmelCase: int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowercase , references=_lowercase , ) __UpperCAmelCase: List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowercase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCamelCase__ ( ) -> Tuple: __UpperCAmelCase: Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowercase , default=_lowercase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __UpperCAmelCase: List[str] = parser.parse_args() __UpperCAmelCase: int = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
466
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=18 , snake_case_=30 , snake_case_=400 , snake_case_=True , snake_case_=None , snake_case_=True , ): '''simple docstring''' __UpperCAmelCase: Optional[int] = size if size is not None else {"""height""": 18, """width""": 18} __UpperCAmelCase: Tuple = parent __UpperCAmelCase: Any = batch_size __UpperCAmelCase: str = num_channels __UpperCAmelCase: Any = image_size __UpperCAmelCase: Optional[int] = min_resolution __UpperCAmelCase: Tuple = max_resolution __UpperCAmelCase: Any = do_resize __UpperCAmelCase: Any = size __UpperCAmelCase: Optional[Any] = do_normalize def lowercase_ ( self ): '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class a ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ImageGPTImageProcessor if is_vision_available() else None def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: str = ImageGPTImageProcessingTester(self ) @property def lowercase_ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """clusters""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __UpperCAmelCase: int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: int = self.image_processing_class(**self.image_processor_dict ) __UpperCAmelCase: str = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , obj[key] ) ) else: self.assertEqual(obj[key] , snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase: List[Any] = os.path.join(snake_case_ , """image_processor.json""" ) image_processor_first.to_json_file(snake_case_ ) __UpperCAmelCase: List[str] = self.image_processing_class.from_json_file(snake_case_ ).to_dict() __UpperCAmelCase: str = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(snake_case_ ) __UpperCAmelCase: Any = self.image_processing_class.from_pretrained(snake_case_ ).to_dict() __UpperCAmelCase: str = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def lowercase_ ( self ): '''simple docstring''' pass def UpperCamelCase__ ( ) -> List[str]: __UpperCAmelCase: Any = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) __UpperCAmelCase: List[Any] = Image.open(dataset[4]["""file"""] ) __UpperCAmelCase: Dict = Image.open(dataset[5]["""file"""] ) __UpperCAmelCase: Dict = [imagea, imagea] return images @require_vision @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) __UpperCAmelCase: Dict = prepare_images() # test non-batched __UpperCAmelCase: Tuple = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) __UpperCAmelCase: int = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , snake_case_ ) # test batched __UpperCAmelCase: Union[str, Any] = image_processing(snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) __UpperCAmelCase: Tuple = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , snake_case_ )
466
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCAmelCase : Any = logging.get_logger(__name__) # General docstring _lowerCAmelCase : Union[str, Any] = """RegNetConfig""" # Base docstring _lowerCAmelCase : str = """facebook/regnet-y-040""" _lowerCAmelCase : Dict = [1, 1_0_8_8, 7, 7] # Image classification docstring _lowerCAmelCase : int = """facebook/regnet-y-040""" _lowerCAmelCase : Optional[int] = """tabby, tabby cat""" _lowerCAmelCase : List[Any] = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,a_ ,a_ = 3 ,a_ = 1 ,a_ = 1 ,a_ = "relu" ,**a_ ,): """simple docstring""" super().__init__(**a_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=a_ ,kernel_size=a_ ,strides=a_ ,padding='VALID' ,groups=a_ ,use_bias=a_ ,name='convolution' ,) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='normalization' ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = self.convolution(self.padding(a_ ) ) lowerCAmelCase__ = self.normalization(a_ ) lowerCAmelCase__ = self.activation(a_ ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,a_ ,**a_ ): """simple docstring""" super().__init__(**a_ ) lowerCAmelCase__ = config.num_channels lowerCAmelCase__ = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='embedder' ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = shape_list(a_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCAmelCase__ = tf.transpose(a_ ,perm=(0, 2, 3, 1) ) lowerCAmelCase__ = self.embedder(a_ ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,a_ ,a_ = 2 ,**a_ ): """simple docstring""" super().__init__(**a_ ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=a_ ,kernel_size=1 ,strides=a_ ,use_bias=a_ ,name='convolution' ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='normalization' ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = False ): """simple docstring""" return self.normalization(self.convolution(a_ ) ,training=a_ ) class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,a_ ,a_ ,**a_ ): """simple docstring""" super().__init__(**a_ ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a_ ,name='pooler' ) lowerCAmelCase__ = [ tf.keras.layers.ConvaD(filters=a_ ,kernel_size=1 ,activation='relu' ,name='attention.0' ), tf.keras.layers.ConvaD(filters=a_ ,kernel_size=1 ,activation='sigmoid' ,name='attention.2' ), ] def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] lowerCAmelCase__ = self.pooler(a_ ) for layer_module in self.attention: lowerCAmelCase__ = layer_module(a_ ) lowerCAmelCase__ = hidden_state * pooled return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,a_ ,a_ ,a_ ,a_ = 1 ,**a_ ): """simple docstring""" super().__init__(**a_ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 ,out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(a_ ,stride=a_ ,name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' ,name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCAmelCase__ = [ TFRegNetConvLayer(a_ ,kernel_size=1 ,activation=config.hidden_act ,name='layer.0' ), TFRegNetConvLayer( a_ ,stride=a_ ,groups=a_ ,activation=config.hidden_act ,name='layer.1' ), TFRegNetConvLayer(a_ ,kernel_size=1 ,activation=a_ ,name='layer.2' ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(a_ ) lowerCAmelCase__ = self.shortcut(a_ ) hidden_state += residual lowerCAmelCase__ = self.activation(a_ ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,a_ ,a_ ,a_ ,a_ = 1 ,**a_ ): """simple docstring""" super().__init__(**a_ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 ,out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(a_ ,stride=a_ ,name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' ,name='shortcut' ) ) lowerCAmelCase__ = [ TFRegNetConvLayer(a_ ,kernel_size=1 ,activation=config.hidden_act ,name='layer.0' ), TFRegNetConvLayer( a_ ,stride=a_ ,groups=a_ ,activation=config.hidden_act ,name='layer.1' ), TFRegNetSELayer(a_ ,reduced_channels=int(round(in_channels / 4 ) ) ,name='layer.2' ), TFRegNetConvLayer(a_ ,kernel_size=1 ,activation=a_ ,name='layer.3' ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(a_ ) lowerCAmelCase__ = self.shortcut(a_ ) hidden_state += residual lowerCAmelCase__ = self.activation(a_ ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,a_ ,a_ ,a_ ,a_ = 2 ,a_ = 2 ,**a_ ): """simple docstring""" super().__init__(**a_ ) lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowerCAmelCase__ = [ # downsampling is done in the first layer with stride of 2 layer(a_ ,a_ ,a_ ,stride=a_ ,name='layers.0' ), *[layer(a_ ,a_ ,a_ ,name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" for layer_module in self.layers: lowerCAmelCase__ = layer_module(a_ ) return hidden_state class __snake_case ( tf.keras.layers.Layer ): def __init__( self ,a_ ,**a_ ): """simple docstring""" super().__init__(**a_ ) lowerCAmelCase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( a_ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='stages.0' ,) ) lowerCAmelCase__ = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(a_ ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(a_ ,a_ ,a_ ,depth=a_ ,name=f'stages.{i+1}' ) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = False ,a_ = True ): """simple docstring""" lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(a_ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=a_ ,hidden_states=a_ ) @keras_serializable class __snake_case ( tf.keras.layers.Layer ): SCREAMING_SNAKE_CASE__ = RegNetConfig def __init__( self ,a_ ,**a_ ): """simple docstring""" super().__init__(**a_ ) lowerCAmelCase__ = config lowerCAmelCase__ = TFRegNetEmbeddings(a_ ,name='embedder' ) lowerCAmelCase__ = TFRegNetEncoder(a_ ,name='encoder' ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a_ ,name='pooler' ) @unpack_inputs def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = None ,a_ = None ,a_ = False ,): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(a_ ,training=a_ ) lowerCAmelCase__ = self.encoder( a_ ,output_hidden_states=a_ ,return_dict=a_ ,training=a_ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(a_ ) # Change to NCHW output format have uniformity in the modules lowerCAmelCase__ = tf.transpose(a_ ,perm=(0, 3, 1, 2) ) lowerCAmelCase__ = tf.transpose(a_ ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCAmelCase__ = tuple([tf.transpose(a_ ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a_ ,pooler_output=a_ ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class __snake_case ( __snake_case ): SCREAMING_SNAKE_CASE__ = RegNetConfig SCREAMING_SNAKE_CASE__ = 'regnet' SCREAMING_SNAKE_CASE__ = 'pixel_values' @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) ,dtype=tf.floataa )} _lowerCAmelCase : List[Any] = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ _lowerCAmelCase : str = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , __snake_case , ) class __snake_case ( __snake_case ): def __init__( self ,a_ ,*a_ ,**a_ ): """simple docstring""" super().__init__(a_ ,*a_ ,**a_ ) lowerCAmelCase__ = TFRegNetMainLayer(a_ ,name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=a_ ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ = None ,a_ = None ,a_=False ,): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( pixel_values=a_ ,output_hidden_states=a_ ,return_dict=a_ ,training=a_ ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __snake_case , ) class __snake_case ( __snake_case , __snake_case ): def __init__( self ,a_ ,*a_ ,**a_ ): """simple docstring""" super().__init__(a_ ,*a_ ,**a_ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = TFRegNetMainLayer(a_ ,name='regnet' ) # classification head lowerCAmelCase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(a_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=a_ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def SCREAMING_SNAKE_CASE_ ( self ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_=False ,): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( a_ ,output_hidden_states=a_ ,return_dict=a_ ,training=a_ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier[0](a_ ) lowerCAmelCase__ = self.classifier[1](a_ ) lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=a_ ,logits=a_ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=a_ ,logits=a_ ,hidden_states=outputs.hidden_states )
193
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCamelCase_ : List[str] = logging.get_logger(__name__) class __lowercase ( __snake_case ): def __init__(self : int , *snake_case : Optional[Any] , **snake_case : Optional[Any] ) -> None: warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , snake_case , ) super().__init__(*snake_case , **snake_case )
461
0
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(UpperCamelCase__ , 2 ) - pow(UpperCamelCase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCamelCase__ , 2 ) - pow(UpperCamelCase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCamelCase__ , 2 ) + pow(UpperCamelCase__ , 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( '''The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion''' ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = { '''7B''': 11_008, '''13B''': 13_824, '''30B''': 17_920, '''65B''': 22_016, '''70B''': 28_672, } SCREAMING_SNAKE_CASE_ = { '''7B''': 1, '''7Bf''': 1, '''13B''': 2, '''13Bf''': 2, '''30B''': 4, '''65B''': 8, '''70B''': 8, '''70Bf''': 8, } def lowercase (_lowerCAmelCase , _lowerCAmelCase=1 , _lowerCAmelCase=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase (_lowerCAmelCase ): with open(_lowerCAmelCase , """r""" ) as f: return json.load(_lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): with open(_lowerCAmelCase , """w""" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True ): os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) __lowerCAmelCase = os.path.join(_lowerCAmelCase , """tmp""" ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) __lowerCAmelCase = read_json(os.path.join(_lowerCAmelCase , """params.json""" ) ) __lowerCAmelCase = NUM_SHARDS[model_size] __lowerCAmelCase = params["""n_layers"""] __lowerCAmelCase = params["""n_heads"""] __lowerCAmelCase = n_heads // num_shards __lowerCAmelCase = params["""dim"""] __lowerCAmelCase = dim // n_heads __lowerCAmelCase = 10_000.0 __lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , _lowerCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: __lowerCAmelCase = params["""n_kv_heads"""] # for GQA / MQA __lowerCAmelCase = n_heads_per_shard // num_key_value_heads __lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints __lowerCAmelCase = n_heads __lowerCAmelCase = n_heads_per_shard __lowerCAmelCase = dim # permute for sliced rotary def permute(_lowerCAmelCase , _lowerCAmelCase=n_heads , _lowerCAmelCase=dim , _lowerCAmelCase=dim ): return w.view(_lowerCAmelCase , dima // n_heads // 2 , 2 , _lowerCAmelCase ).transpose(1 , 2 ).reshape(_lowerCAmelCase , _lowerCAmelCase ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) __lowerCAmelCase = torch.load(os.path.join(_lowerCAmelCase , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded __lowerCAmelCase = [ torch.load(os.path.join(_lowerCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location="""cpu""" ) for i in range(_lowerCAmelCase ) ] __lowerCAmelCase = 0 __lowerCAmelCase = {"""weight_map""": {}} for layer_i in range(_lowerCAmelCase ): __lowerCAmelCase = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded __lowerCAmelCase = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. __lowerCAmelCase = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } __lowerCAmelCase = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) ) __lowerCAmelCase = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) __lowerCAmelCase = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(_lowerCAmelCase ) ] , dim=0 , ).reshape(_lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) __lowerCAmelCase = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) __lowerCAmelCase = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ) __lowerCAmelCase = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ) __lowerCAmelCase = inv_freq for k, v in state_dict.items(): __lowerCAmelCase = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) __lowerCAmelCase = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded __lowerCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: __lowerCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_lowerCAmelCase )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_lowerCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): __lowerCAmelCase = filename param_count += v.numel() torch.save(_lowerCAmelCase , os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) # Write configs __lowerCAmelCase = {"""total_size""": param_count * 2} write_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , """pytorch_model.bin.index.json""" ) ) __lowerCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 __lowerCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 __lowerCAmelCase = LlamaConfig( hidden_size=_lowerCAmelCase , intermediate_size=compute_intermediate_size(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=_lowerCAmelCase , ) config.save_pretrained(_lowerCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) __lowerCAmelCase = LlamaForCausalLM.from_pretrained(_lowerCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_lowerCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_lowerCAmelCase , safe_serialization=_lowerCAmelCase ) shutil.rmtree(_lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): # Initialize the tokenizer based on the `spm` model __lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) __lowerCAmelCase = tokenizer_class(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) def lowercase (): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=_lowerCAmelCase , help="""Whether or not to save using `safetensors`.""" ) __lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) __lowerCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , _lowerCAmelCase ) if __name__ == "__main__": main()
573
0
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): UpperCamelCase_ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCamelCase_ = 128022 UpperCamelCase_ = 128028 @require_sentencepiece class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): lowerCamelCase_ = MaMaaaTokenizer lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = True def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' super().setUp() lowercase : List[str] =['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] lowercase : Optional[int] =dict(zip(A_ , range(len(A_ ) ) ) ) lowercase : Dict =Path(self.tmpdirname ) save_json(A_ , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(A_ , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) lowercase : List[Any] =MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Optional[int] , **UpperCAmelCase__ : Union[str, Any] ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **A_ ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : Optional[Any] ): '''simple docstring''' return ( "This is a test", "This is a test", ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : Union[str, Any] ='''</s>''' lowercase : List[Any] =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : Optional[int] =self.get_tokenizer() lowercase : Optional[int] =list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<s>''' ) self.assertEqual(len(A_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : int =self.get_tokenizer() lowercase : List[str] =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) , [2, 3, 4, 5, 6] , ) lowercase : List[Any] =tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(A_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) lowercase : Tuple =tokenizer.convert_tokens_to_string(A_ ) self.assertEqual(A_ , '''This is a test''' ) @slow def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' # fmt: off lowercase : Union[str, Any] ={'''input_ids''': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): lowerCamelCase_ = 'facebook/m2m100_418M' lowerCamelCase_ = [ 'In my opinion, there are two levels of response from the French government.', 'NSA Affair Emphasizes Complete Lack of Debate on Intelligence', ] lowerCamelCase_ = [ 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', ] # fmt: off lowerCamelCase_ = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def lowerCamelCase_ ( cls : List[str] ): '''simple docstring''' lowercase : Any =MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''' ) lowercase : List[str] =1 return cls def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) , 128006 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) , 128022 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) , 128076 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) , 128063 ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Tuple =self.tokenizer.get_vocab() self.assertEqual(len(A_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] , 3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) , A_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : int ='''en''' lowercase : str =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' self.assertIn(A_ , self.tokenizer.all_special_ids ) # fmt: off lowercase : Optional[int] =[FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on lowercase : Dict =self.tokenizer.decode(A_ , skip_special_tokens=A_ ) lowercase : List[str] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A_ ) self.assertEqual(A_ , A_ ) self.assertNotIn(self.tokenizer.eos_token , A_ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : List[str] =tempfile.mkdtemp() lowercase : Optional[Any] =self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(A_ ) lowercase : List[str] =MaMaaaTokenizer.from_pretrained(A_ ) self.assertDictEqual(new_tok.lang_token_to_id , A_ ) @require_torch def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowercase : Any ='''en''' lowercase : List[Any] ='''fr''' lowercase : Optional[int] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A_ , return_tensors='''pt''' ) lowercase : List[str] =shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: lowercase : Tuple =batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Any ='''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) lowercase : Union[str, Any] ='''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : str ='''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) lowercase : Tuple ='''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : List[Any] =self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''' ) self.assertEqual( nested_simplify(A_ ) , { # en_XX, A, test, EOS '''input_ids''': [[128022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 128006, } , )
92
def _UpperCAmelCase ( A ): '''simple docstring''' for i in range(len(A ) - 1 , 0 , -1 ): UpperCAmelCase__ =False for j in range(A , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase__ , UpperCAmelCase__ =unsorted[j - 1], unsorted[j] UpperCAmelCase__ =True for j in range(A ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase__ , UpperCAmelCase__ =unsorted[j + 1], unsorted[j] UpperCAmelCase__ =True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase_ = [int(item) for item in user_input.split(',')] print(f"""{cocktail_shaker_sort(unsorted) = }""")
625
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( lowercase__ , lowercase__ ): UpperCamelCase_ :List[Any] = 'dinat' UpperCamelCase_ :Optional[int] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : str , SCREAMING_SNAKE_CASE_ : str=4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=64 , SCREAMING_SNAKE_CASE_ : List[Any]=[3, 4, 6, 5] , SCREAMING_SNAKE_CASE_ : Dict=[2, 4, 8, 16] , SCREAMING_SNAKE_CASE_ : Optional[Any]=7 , SCREAMING_SNAKE_CASE_ : int=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=3.0 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : Any=0.02 , SCREAMING_SNAKE_CASE_ : Dict=1e-5 , SCREAMING_SNAKE_CASE_ : List[str]=0.0 , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ): super().__init__(**UpperCAmelCase__ ) lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embed_dim lowerCAmelCase__ = depths lowerCAmelCase__ = len(UpperCAmelCase__ ) lowerCAmelCase__ = num_heads lowerCAmelCase__ = kernel_size lowerCAmelCase__ = dilations lowerCAmelCase__ = mlp_ratio lowerCAmelCase__ = qkv_bias lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = drop_path_rate lowerCAmelCase__ = hidden_act lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase__ = int(embed_dim * 2 ** (len(UpperCAmelCase__ ) - 1) ) lowerCAmelCase__ = layer_scale_init_value lowerCAmelCase__ = ['''stem'''] + [f'stage{idx}' for idx in range(1 , len(UpperCAmelCase__ ) + 1 )] lowerCAmelCase__ = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names )
700
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : int = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class lowerCAmelCase_ ( snake_case__ ): UpperCamelCase_ :int = 'codegen' UpperCamelCase_ :int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str=50_400 , SCREAMING_SNAKE_CASE_ : str=2_048 , SCREAMING_SNAKE_CASE_ : int=2_048 , SCREAMING_SNAKE_CASE_ : Any=4_096 , SCREAMING_SNAKE_CASE_ : List[Any]=28 , SCREAMING_SNAKE_CASE_ : str=16 , SCREAMING_SNAKE_CASE_ : str=64 , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Dict="gelu_new" , SCREAMING_SNAKE_CASE_ : str=0.0 , SCREAMING_SNAKE_CASE_ : Any=0.0 , SCREAMING_SNAKE_CASE_ : Any=0.0 , SCREAMING_SNAKE_CASE_ : Any=1e-5 , SCREAMING_SNAKE_CASE_ : Any=0.02 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=50_256 , SCREAMING_SNAKE_CASE_ : Any=50_256 , SCREAMING_SNAKE_CASE_ : List[str]=False , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): lowerCAmelCase__ = vocab_size lowerCAmelCase__ = n_ctx lowerCAmelCase__ = n_positions lowerCAmelCase__ = n_embd lowerCAmelCase__ = n_layer lowerCAmelCase__ = n_head lowerCAmelCase__ = n_inner lowerCAmelCase__ = rotary_dim lowerCAmelCase__ = activation_function lowerCAmelCase__ = resid_pdrop lowerCAmelCase__ = embd_pdrop lowerCAmelCase__ = attn_pdrop lowerCAmelCase__ = layer_norm_epsilon lowerCAmelCase__ = initializer_range lowerCAmelCase__ = use_cache lowerCAmelCase__ = bos_token_id lowerCAmelCase__ = eos_token_id super().__init__( bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , tie_word_embeddings=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class lowerCAmelCase_ ( snake_case__ ): def __init__( self : str , SCREAMING_SNAKE_CASE_ : PretrainedConfig , SCREAMING_SNAKE_CASE_ : str = "default" , SCREAMING_SNAKE_CASE_ : List[PatchingSpec] = None , SCREAMING_SNAKE_CASE_ : bool = False , ): super().__init__(SCREAMING_SNAKE_CASE_ , task=SCREAMING_SNAKE_CASE_ , patching_specs=SCREAMING_SNAKE_CASE_ , use_past=SCREAMING_SNAKE_CASE_ ) if not getattr(self._config , '''pad_token_id''' , SCREAMING_SNAKE_CASE_ ): # TODO: how to do that better? lowerCAmelCase__ = 0 @property def __snake_case ( self : str ): lowerCAmelCase__ = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='''inputs''' ) lowerCAmelCase__ = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowerCAmelCase__ = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __snake_case ( self : Dict ): return self._config.n_layer @property def __snake_case ( self : Union[str, Any] ): return self._config.n_head def __snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : PreTrainedTokenizer , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : int = -1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[TensorType] = None , ): lowerCAmelCase__ = super(SCREAMING_SNAKE_CASE_ , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase__ = seqlen + 2 lowerCAmelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase__ = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] lowerCAmelCase__ = common_inputs['''attention_mask'''] if self.use_past: lowerCAmelCase__ = ordered_inputs['''attention_mask'''].dtype lowerCAmelCase__ = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )] , dim=1 ) return ordered_inputs @property def __snake_case ( self : Optional[int] ): return 13
288
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[Any] ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowercase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase : str = 1 __lowerCamelCase : str = 3 __lowerCamelCase : Dict = (32, 32) __lowerCamelCase : Any = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def _lowercase ( self : Optional[Any] ) -> Any: torch.manual_seed(0 ) __lowerCamelCase : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def _lowercase ( self : Union[str, Any] ) -> str: torch.manual_seed(0 ) __lowerCamelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _lowercase ( self : Optional[Any] ) -> Tuple: torch.manual_seed(0 ) __lowerCamelCase : List[str] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_a ) @property def _lowercase ( self : Tuple ) -> Dict: def extract(*_a : Optional[Any] , **_a : List[Any] ): class lowerCamelCase_ : """simple docstring""" def __init__( self : Any ) -> List[str]: __lowerCamelCase : Any = torch.ones([0] ) def _lowercase ( self : List[str] , _a : Optional[Any] ) -> Dict: self.pixel_values.to(_a ) return self return Out() return extract def _lowercase ( self : Any ) -> Optional[Any]: __lowerCamelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Dict = self.dummy_cond_unet __lowerCamelCase : Tuple = PNDMScheduler(skip_prk_steps=_a ) __lowerCamelCase : Dict = self.dummy_vae __lowerCamelCase : int = self.dummy_text_encoder __lowerCamelCase : Tuple = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) __lowerCamelCase : int = 77 __lowerCamelCase : Optional[int] = self.dummy_image.to(_a ) __lowerCamelCase : Optional[Any] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __lowerCamelCase : Dict = AltDiffusionImgaImgPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) __lowerCamelCase : Optional[int] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_a ) __lowerCamelCase : List[Any] = alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase : List[Any] = 'A painting of a squirrel eating a burger' __lowerCamelCase : List[str] = torch.Generator(device=_a ).manual_seed(0 ) __lowerCamelCase : List[str] = alt_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_a , ) __lowerCamelCase : Optional[Any] = output.images __lowerCamelCase : Dict = torch.Generator(device=_a ).manual_seed(0 ) __lowerCamelCase : Any = alt_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , image=_a , return_dict=_a , )[0] __lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] __lowerCamelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase : str = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _lowercase ( self : Optional[Any] ) -> List[str]: __lowerCamelCase : Tuple = self.dummy_cond_unet __lowerCamelCase : List[str] = PNDMScheduler(skip_prk_steps=_a ) __lowerCamelCase : List[str] = self.dummy_vae __lowerCamelCase : Any = self.dummy_text_encoder __lowerCamelCase : Any = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' ) __lowerCamelCase : int = 77 __lowerCamelCase : Optional[Any] = self.dummy_image.to(_a ) # put models in fp16 __lowerCamelCase : str = unet.half() __lowerCamelCase : Union[str, Any] = vae.half() __lowerCamelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk __lowerCamelCase : Optional[int] = AltDiffusionImgaImgPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) __lowerCamelCase : Optional[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_a ) __lowerCamelCase : Optional[int] = alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) __lowerCamelCase : Optional[Any] = 'A painting of a squirrel eating a burger' __lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) __lowerCamelCase : Dict = alt_pipe( [prompt] , generator=_a , num_inference_steps=2 , output_type='np' , image=_a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _lowercase ( self : Optional[Any] ) -> str: __lowerCamelCase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) # resize to resolution that is divisible by 8 but not 16 or 32 __lowerCamelCase : Union[str, Any] = init_image.resize((760, 504) ) __lowerCamelCase : Union[str, Any] = 'BAAI/AltDiffusion' __lowerCamelCase : int = AltDiffusionImgaImgPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __lowerCamelCase : List[Any] = 'A fantasy landscape, trending on artstation' __lowerCamelCase : List[str] = torch.manual_seed(0 ) __lowerCamelCase : Any = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , generator=_a , output_type='np' , ) __lowerCamelCase : List[Any] = output.images[0] __lowerCamelCase : Dict = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) __lowerCamelCase : List[str] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Optional[int] ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : Tuple ) -> Dict: __lowerCamelCase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) __lowerCamelCase : Optional[int] = init_image.resize((768, 512) ) __lowerCamelCase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy' ) __lowerCamelCase : Any = 'BAAI/AltDiffusion' __lowerCamelCase : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __lowerCamelCase : Union[str, Any] = 'A fantasy landscape, trending on artstation' __lowerCamelCase : Optional[int] = torch.manual_seed(0 ) __lowerCamelCase : Dict = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , generator=_a , output_type='np' , ) __lowerCamelCase : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
459
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowercase = 4 lowercase = 3 class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' pass def __UpperCAmelCase ( a_): for shard in shards: for i in range(a_): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ): snake_case_ = int(os.environ['RANK']) snake_case_ = int(os.environ['WORLD_SIZE']) snake_case_ = ArgumentParser() parser.add_argument('--streaming' , type=a_) parser.add_argument('--local_rank' , type=a_) parser.add_argument('--num_workers' , type=a_ , default=0) snake_case_ = parser.parse_args() snake_case_ = args.streaming snake_case_ = args.num_workers snake_case_ = {'shards': [f'''shard_{shard_idx}''' for shard_idx in range(a_)]} snake_case_ = IterableDataset.from_generator(a_ , gen_kwargs=a_) if not streaming: snake_case_ = Dataset.from_list(list(a_)) snake_case_ = split_dataset_by_node(a_ , rank=a_ , world_size=a_) snake_case_ = torch.utils.data.DataLoader(a_ , num_workers=a_) snake_case_ = NUM_SHARDS * NUM_ITEMS_PER_SHARD snake_case_ = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) snake_case_ = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
198
0
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class snake_case__ : '''simple docstring''' def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=5_12 , a__=16 , a__=2 , a__=0.02 , a__=3 , a__=4 , a__=None , a__=10_00 , ) -> Dict: '''simple docstring''' __snake_case :Any = parent __snake_case :int = batch_size __snake_case :Dict = seq_length __snake_case :Dict = is_training __snake_case :int = use_input_mask __snake_case :int = use_token_type_ids __snake_case :List[Any] = use_labels __snake_case :Dict = vocab_size __snake_case :int = hidden_size __snake_case :Dict = num_hidden_layers __snake_case :List[str] = num_attention_heads __snake_case :List[Any] = intermediate_size __snake_case :List[str] = hidden_act __snake_case :Optional[int] = hidden_dropout_prob __snake_case :Any = attention_probs_dropout_prob __snake_case :int = max_position_embeddings __snake_case :Optional[Any] = type_vocab_size __snake_case :Any = type_sequence_label_size __snake_case :Dict = initializer_range __snake_case :Any = num_labels __snake_case :List[str] = num_choices __snake_case :List[Any] = scope __snake_case :Union[str, Any] = range_bbox def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __snake_case :int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case :int = bbox[i, j, 3] __snake_case :Dict = bbox[i, j, 1] __snake_case :Optional[int] = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case :List[Any] = bbox[i, j, 2] __snake_case :List[str] = bbox[i, j, 0] __snake_case :List[str] = t __snake_case :Optional[Any] = tf.convert_to_tensor(a__ ) __snake_case :Union[str, Any] = None if self.use_input_mask: __snake_case :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case :List[str] = None if self.use_token_type_ids: __snake_case :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case :str = None __snake_case :str = None __snake_case :List[str] = None if self.use_labels: __snake_case :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case :int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case :int = ids_tensor([self.batch_size] , self.num_choices ) __snake_case :Optional[Any] = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> str: '''simple docstring''' __snake_case :List[Any] = TFLayoutLMModel(config=a__ ) __snake_case :Dict = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) __snake_case :Tuple = model(a__ , a__ , token_type_ids=a__ ) __snake_case :Dict = model(a__ , a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> int: '''simple docstring''' __snake_case :int = TFLayoutLMForMaskedLM(config=a__ ) __snake_case :Union[str, Any] = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> List[Any]: '''simple docstring''' __snake_case :Dict = self.num_labels __snake_case :str = TFLayoutLMForSequenceClassification(config=a__ ) __snake_case :int = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> int: '''simple docstring''' __snake_case :Optional[Any] = self.num_labels __snake_case :Union[str, Any] = TFLayoutLMForTokenClassification(config=a__ ) __snake_case :Union[str, Any] = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ ) -> str: '''simple docstring''' __snake_case :Union[str, Any] = TFLayoutLMForQuestionAnswering(config=a__ ) __snake_case :Any = model(a__ , a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) :int = config_and_inputs __snake_case :int = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_tf class snake_case__ ( lowercase_ , lowercase_ , unittest.TestCase): '''simple docstring''' lowerCamelCase : Tuple = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) lowerCamelCase : Any = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase : Dict = False lowerCamelCase : Union[str, Any] = True lowerCamelCase : List[Any] = 10 def __lowercase ( self ) -> int: '''simple docstring''' __snake_case :Tuple = TFLayoutLMModelTester(self ) __snake_case :List[Any] = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __lowercase ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self ) -> Any: '''simple docstring''' __snake_case :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def __lowercase ( self ) -> int: '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case :Dict = TFLayoutLMModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip("""Onnx compliancy broke with TF 2.10""" ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' pass def UpperCamelCase ( ): '''simple docstring''' __snake_case :Optional[Any] = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 __snake_case :Dict = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __snake_case :Tuple = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 __snake_case :Union[str, Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __snake_case :Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class snake_case__ ( unittest.TestCase): '''simple docstring''' @slow def __lowercase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case :List[str] = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""" ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case :str = prepare_layoutlm_batch_inputs() # forward pass __snake_case :str = model(input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) # test the sequence output on [0, :3, :3] __snake_case :str = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1e-3 ) ) # test the pooled output on [1, :3] __snake_case :Optional[Any] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , a__ , atol=1e-3 ) ) @slow def __lowercase ( self ) -> int: '''simple docstring''' __snake_case :List[Any] = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=2 ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case :List[Any] = prepare_layoutlm_batch_inputs() # forward pass __snake_case :int = model( input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __snake_case :Optional[int] = outputs.loss __snake_case :List[Any] = (2,) self.assertEqual(loss.shape , a__ ) # test the shape of the logits __snake_case :List[str] = outputs.logits __snake_case :str = (2, 2) self.assertEqual(logits.shape , a__ ) @slow def __lowercase ( self ) -> Dict: '''simple docstring''' __snake_case :Dict = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=13 ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case :Union[str, Any] = prepare_layoutlm_batch_inputs() # forward pass __snake_case :Dict = model( input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) # test the shape of the logits __snake_case :List[str] = outputs.logits __snake_case :Optional[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , a__ ) @slow def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :int = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""" ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case :str = prepare_layoutlm_batch_inputs() # forward pass __snake_case :List[str] = model(input_ids=a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) # test the shape of the logits __snake_case :str = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , a__ ) self.assertEqual(outputs.end_logits.shape , a__ )
291
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : Tuple = "dandelin/vilt-b32-finetuned-vqa" lowerCamelCase : List[str] = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) lowerCamelCase : Optional[Any] = "image_qa" lowerCamelCase : str = AutoProcessor lowerCamelCase : Union[str, Any] = AutoModelForVisualQuestionAnswering lowerCamelCase : Any = ["image", "text"] lowerCamelCase : Dict = ["text"] def __init__( self , *a__ , **a__ ) -> Any: '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*a__ , **a__ ) def __lowercase ( self , a__ , a__ ) -> int: '''simple docstring''' return self.pre_processor(a__ , a__ , return_tensors="""pt""" ) def __lowercase ( self , a__ ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model(**a__ ).logits def __lowercase ( self , a__ ) -> Tuple: '''simple docstring''' __snake_case :str = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
291
1
def a__ ( A_ ): '''simple docstring''' return 10 - x * x def a__ ( A_, A_ ): '''simple docstring''' if equation(SCREAMING_SNAKE_CASE__ ) * equation(SCREAMING_SNAKE_CASE__ ) >= 0: raise ValueError("""Wrong space!""" ) __magic_name__ = a while (b - a) >= 0.01: # Find middle point __magic_name__ = (a + b) / 2 # Check if middle point is root if equation(SCREAMING_SNAKE_CASE__ ) == 0.0: break # Decide the side to repeat the steps if equation(SCREAMING_SNAKE_CASE__ ) * equation(SCREAMING_SNAKE_CASE__ ) < 0: __magic_name__ = c else: __magic_name__ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
529
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
603
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowercase__ : UpperCamelCase_ = 42 # [batch_size x 3] UpperCamelCase_ = 42 # [batch_size x 3] UpperCamelCase_ = 42 # [batch_size x 3] UpperCamelCase_ = 42 # [batch_size x 3] UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 def __A ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __A ( self : str ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def __A ( self : List[Any] ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = torch.arange(self.height * self.width ) SCREAMING_SNAKE_CASE : List[str] = torch.stack( [ pixel_indices % self.width, torch.div(UpperCamelCase__ , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.shape SCREAMING_SNAKE_CASE : List[str] = int(np.prod(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_coords() SCREAMING_SNAKE_CASE : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) SCREAMING_SNAKE_CASE : List[str] = self.get_camera_rays(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : str = rays.view(UpperCamelCase__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def __A ( self : Dict , UpperCamelCase__ : torch.Tensor ): '''simple docstring''' SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] SCREAMING_SNAKE_CASE : Union[str, Any] = coords.view(UpperCamelCase__ , -1 , 2 ) SCREAMING_SNAKE_CASE : Any = self.resolution() SCREAMING_SNAKE_CASE : str = self.fov() SCREAMING_SNAKE_CASE : str = (flat.float() / (res - 1)) * 2 - 1 SCREAMING_SNAKE_CASE : List[str] = fracs * torch.tan(fov / 2 ) SCREAMING_SNAKE_CASE : int = fracs.view(UpperCamelCase__ , -1 , 2 ) SCREAMING_SNAKE_CASE : Optional[Any] = ( self.z.view(UpperCamelCase__ , 1 , 3 ) + self.x.view(UpperCamelCase__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(UpperCamelCase__ , 1 , 3 ) * fracs[:, :, 1:] ) SCREAMING_SNAKE_CASE : Tuple = directions / directions.norm(dim=-1 , keepdim=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(UpperCamelCase__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(UpperCamelCase__ , *UpperCamelCase__ , 2 , 3 ) def __A ( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=UpperCamelCase__ , height=UpperCamelCase__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def A ( _lowercase ): SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): SCREAMING_SNAKE_CASE : int = np.array([np.sin(_lowercase ), np.cos(_lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) SCREAMING_SNAKE_CASE : Tuple = -z * 4 SCREAMING_SNAKE_CASE : Optional[int] = np.array([np.cos(_lowercase ), -np.sin(_lowercase ), 0.0] ) SCREAMING_SNAKE_CASE : Tuple = np.cross(_lowercase , _lowercase ) origins.append(_lowercase ) xs.append(_lowercase ) ys.append(_lowercase ) zs.append(_lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(_lowercase , axis=0 ) ).float() , width=_lowercase , height=_lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(_lowercase )) , )
34
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def A ( _lowercase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = analyze_text(_lowercase ) SCREAMING_SNAKE_CASE : Any = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. SCREAMING_SNAKE_CASE : Tuple = sum(single_char_strings.values() ) # one length string SCREAMING_SNAKE_CASE : Tuple = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: SCREAMING_SNAKE_CASE : Tuple = single_char_strings[ch] SCREAMING_SNAKE_CASE : List[str] = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string SCREAMING_SNAKE_CASE : Optional[Any] = sum(two_char_strings.values() ) SCREAMING_SNAKE_CASE : List[str] = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: SCREAMING_SNAKE_CASE : Union[str, Any] = cha + cha if sequence in two_char_strings: SCREAMING_SNAKE_CASE : Any = two_char_strings[sequence] SCREAMING_SNAKE_CASE : Dict = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def A ( _lowercase ): SCREAMING_SNAKE_CASE : Tuple = Counter() # type: ignore SCREAMING_SNAKE_CASE : Any = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def A ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
34
1
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __a: Union[str, Any] = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , '''sklearn''' ) return (preds == labels).mean() def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , '''sklearn''' ) lowercase__ : Union[str, Any] = simple_accuracy(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ : Union[str, Any] = fa_score(y_true=lowerCamelCase_ , y_pred=lowerCamelCase_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , '''sklearn''' ) lowercase__ : Tuple = pearsonr(lowerCamelCase_ , lowerCamelCase_ )[0] lowercase__ : int = spearmanr(lowerCamelCase_ , lowerCamelCase_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , '''sklearn''' ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ), F"""Predictions and labels have mismatched lengths {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "mrpc": return acc_and_fa(lowerCamelCase_ , lowerCamelCase_ ) elif task_name == "sts-b": return pearson_and_spearman(lowerCamelCase_ , lowerCamelCase_ ) elif task_name == "qqp": return acc_and_fa(lowerCamelCase_ , lowerCamelCase_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "rte": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} elif task_name == "hans": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} else: raise KeyError(lowerCamelCase_ ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): warnings.warn(lowerCamelCase_ , lowerCamelCase_ ) requires_backends(lowerCamelCase_ , '''sklearn''' ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError(F"""Predictions and labels have mismatched lengths {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )} else: raise KeyError(lowerCamelCase_ )
152
import os from datetime import datetime as dt from github import Github __lowerCamelCase : Optional[int] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowerCamelCase_() -> List[str]: UpperCAmelCase = Github(os.environ["GITHUB_TOKEN"] ) UpperCAmelCase = g.get_repo("huggingface/diffusers" ) UpperCAmelCase = repo.get_issues(state="open" ) for issue in open_issues: UpperCAmelCase = sorted(issue.get_comments() , key=lambda lowerCamelCase_ : i.created_at , reverse=lowerCamelCase_ ) UpperCAmelCase = comments[0] if len(lowerCamelCase_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
323
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {"vocab_file": "spiece.model"} __lowerCAmelCase = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class __SCREAMING_SNAKE_CASE ( lowercase): def __init__( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=False , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[Any]="<s>" , __UpperCamelCase : List[str]="</s>" , __UpperCamelCase : Dict="<unk>" , __UpperCamelCase : List[Any]="<sep>" , __UpperCamelCase : Optional[int]="<pad>" , __UpperCamelCase : Any="<cls>" , __UpperCamelCase : Union[str, Any]="<mask>" , __UpperCamelCase : Any=["<eop>", "<eod>"] , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : Tuple , ): _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) _UpperCAmelCase = 3 _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) _UpperCAmelCase = jieba _UpperCAmelCase = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCAmelCase__ ( self : Optional[Any] ): return len(self.sp_model ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None return state def __setstate__( self : Any , __UpperCamelCase : Any ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Dict ): if self.remove_space: _UpperCAmelCase = " ".join(inputs.strip().split() ) else: _UpperCAmelCase = inputs _UpperCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: _UpperCAmelCase = unicodedata.normalize("NFKD" , __UpperCamelCase ) _UpperCAmelCase = "".join([c for c in outputs if not unicodedata.combining(__UpperCamelCase )] ) if self.do_lower_case: _UpperCAmelCase = outputs.lower() return outputs def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : str ): _UpperCAmelCase = self.preprocess_text(__UpperCamelCase ) _UpperCAmelCase = self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) _UpperCAmelCase = [] for piece in pieces: if len(__UpperCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): _UpperCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCamelCase , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _UpperCAmelCase = cur_pieces[1:] else: _UpperCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCamelCase ) else: new_pieces.append(__UpperCamelCase ) return new_pieces def UpperCAmelCase__ ( self : int , __UpperCamelCase : Tuple ): return self.sp_model.PieceToId(__UpperCamelCase ) def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : str ): return self.sp_model.IdToPiece(__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : str ): _UpperCAmelCase = "".join(__UpperCamelCase ).replace(__UpperCamelCase , " " ).strip() return out_string def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is not None: return ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1, 1] return ([0] * len(__UpperCamelCase )) + [1, 1] def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,) def UpperCAmelCase__ ( self : Optional[int] , *__UpperCamelCase : Tuple , **__UpperCamelCase : str ): _UpperCAmelCase = super()._decode(*__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
129
import re from filelock import FileLock try: import nltk __lowerCAmelCase = True except (ImportError, ModuleNotFoundError): __lowerCAmelCase = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __lowerCamelCase ( _lowerCAmelCase ) -> str: re.sub("<n>" , "" , _lowerCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCAmelCase ) )
129
1
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def snake_case_ ( A_ : list[float] ): '''simple docstring''' _lowerCamelCase : Tuple = [] _lowerCamelCase : List[str] = len(A_ ) for i in range(A_ ): _lowerCamelCase : float = -1 for j in range(i + 1, A_ ): if arr[i] < arr[j]: _lowerCamelCase : int = arr[j] break result.append(A_ ) return result def snake_case_ ( A_ : list[float] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [] for i, outer in enumerate(A_ ): _lowerCamelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: _lowerCamelCase : List[str] = inner break result.append(A_ ) return result def snake_case_ ( A_ : list[float] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = len(A_ ) _lowerCamelCase : list[float] = [] _lowerCamelCase : list[float] = [-1] * arr_size for index in reversed(range(A_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _lowerCamelCase : Any = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase__ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
83
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) def __UpperCAmelCase ( snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Tuple ) -> List[Any]: """simple docstring""" _lowerCAmelCase = original_name.split(""".""" )[0] _lowerCAmelCase = key.split(""".""" ) _lowerCAmelCase = int(key_list[key_list.index(snake_case_ ) - 2] ) _lowerCAmelCase = int(key_list[key_list.index(snake_case_ ) - 1] ) _lowerCAmelCase = orig_block_num - offset _lowerCAmelCase = key.replace(F"""{orig_block_num}.{layer_num}.{original_name}""" , F"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase = OrderedDict() _lowerCAmelCase , _lowerCAmelCase = 0, 0 for key, value in state_dict.items(): if key.startswith("""network""" ): _lowerCAmelCase = key.replace("""network""" , """poolformer.encoder""" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("""bias""" ) and "patch_embed" not in key: patch_emb_offset += 1 _lowerCAmelCase = key[: key.find("""proj""" )] _lowerCAmelCase = key.replace(snake_case_ , F"""patch_embeddings.{total_embed_found}.""" ) _lowerCAmelCase = key.replace("""proj""" , """projection""" ) if key.endswith("""bias""" ): total_embed_found += 1 if "patch_embeddings" in key: _lowerCAmelCase = """poolformer.encoder.""" + key if "mlp.fc1" in key: _lowerCAmelCase = replace_key_with_offset(snake_case_ , snake_case_ , """mlp.fc1""" , """output.conv1""" ) if "mlp.fc2" in key: _lowerCAmelCase = replace_key_with_offset(snake_case_ , snake_case_ , """mlp.fc2""" , """output.conv2""" ) if "norm1" in key: _lowerCAmelCase = replace_key_with_offset(snake_case_ , snake_case_ , """norm1""" , """before_norm""" ) if "norm2" in key: _lowerCAmelCase = replace_key_with_offset(snake_case_ , snake_case_ , """norm2""" , """after_norm""" ) if "layer_scale_1" in key: _lowerCAmelCase = replace_key_with_offset(snake_case_ , snake_case_ , """layer_scale_1""" , """layer_scale_1""" ) if "layer_scale_2" in key: _lowerCAmelCase = replace_key_with_offset(snake_case_ , snake_case_ , """layer_scale_2""" , """layer_scale_2""" ) if "head" in key: _lowerCAmelCase = key.replace("""head""" , """classifier""" ) _lowerCAmelCase = value return new_state_dict def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" _lowerCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : int , snake_case_ : Optional[int] ) -> str: """simple docstring""" _lowerCAmelCase = PoolFormerConfig() # set attributes based on model_name _lowerCAmelCase = """huggingface/label-files""" _lowerCAmelCase = model_name[-3:] _lowerCAmelCase = 1000 _lowerCAmelCase = """imagenet-1k-id2label.json""" _lowerCAmelCase = (1, 1000) # set config attributes _lowerCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} if size == "s12": _lowerCAmelCase = [2, 2, 6, 2] _lowerCAmelCase = [64, 128, 320, 512] _lowerCAmelCase = 4.0 _lowerCAmelCase = 0.9 elif size == "s24": _lowerCAmelCase = [4, 4, 12, 4] _lowerCAmelCase = [64, 128, 320, 512] _lowerCAmelCase = 4.0 _lowerCAmelCase = 0.9 elif size == "s36": _lowerCAmelCase = [6, 6, 18, 6] _lowerCAmelCase = [64, 128, 320, 512] _lowerCAmelCase = 4.0 _lowerCAmelCase = 1e-6 _lowerCAmelCase = 0.9 elif size == "m36": _lowerCAmelCase = [6, 6, 18, 6] _lowerCAmelCase = [96, 192, 384, 768] _lowerCAmelCase = 4.0 _lowerCAmelCase = 1e-6 _lowerCAmelCase = 0.9_5 elif size == "m48": _lowerCAmelCase = [8, 8, 24, 8] _lowerCAmelCase = [96, 192, 384, 768] _lowerCAmelCase = 4.0 _lowerCAmelCase = 1e-6 _lowerCAmelCase = 0.9_5 else: raise ValueError(F"""Size {size} not supported""" ) # load image processor _lowerCAmelCase = PoolFormerImageProcessor(crop_pct=snake_case_ ) # Prepare image _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=snake_case_ , return_tensors="""pt""" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict _lowerCAmelCase = torch.load(snake_case_ , map_location=torch.device("""cpu""" ) ) # rename keys _lowerCAmelCase = rename_keys(snake_case_ ) # create HuggingFace model and load state dict _lowerCAmelCase = PoolFormerForImageClassification(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # Define image processor _lowerCAmelCase = PoolFormerImageProcessor(crop_pct=snake_case_ ) _lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values # forward pass _lowerCAmelCase = model(snake_case_ ) _lowerCAmelCase = outputs.logits # define expected logit slices for different models if size == "s12": _lowerCAmelCase = torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] ) elif size == "s24": _lowerCAmelCase = torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] ) elif size == "s36": _lowerCAmelCase = torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] ) elif size == "m36": _lowerCAmelCase = torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] ) elif size == "m48": _lowerCAmelCase = torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] ) else: raise ValueError(F"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , snake_case_ , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
156
0
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) __lowercase : List[str] = '''''' while len(__UpperCamelCase ) % 3 != 0: __lowercase : Any = '''0''' + bin_string __lowercase : str = [ bin_string[index : index + 3] for index in range(len(__UpperCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __lowercase : Optional[Any] = 0 for index, val in enumerate(__UpperCamelCase ): oct_val += int(2 ** (2 - index) * int(__UpperCamelCase ) ) oct_string += str(__UpperCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
523
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[str]: __lowercase : Union[str, Any] = 10 def _lowerCamelCase ( self ) -> str: __lowercase : List[str] = [1, 2, 3, 4] __lowercase : List[Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __lowercase : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> int: __lowercase : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __lowercase : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[Any]: __lowercase : List[Any] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' __lowercase ,__lowercase : Optional[Any] = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Optional[int] = '''''' __lowercase ,__lowercase : Any = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) self.assertEqual(UpperCamelCase_ , [] ) def _lowerCamelCase ( self ) -> Dict: __lowercase : List[str] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) __lowercase ,__lowercase : int = process_story(UpperCamelCase_ ) __lowercase : Union[str, Any] = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) __lowercase : List[str] = ['''It was the best of times.'''] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Tuple: __lowercase : Union[str, Any] = torch.tensor([1, 2, 3, 4] ) __lowercase : Union[str, Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 0 ).numpy() , expected.numpy() ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : Optional[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __lowercase : Any = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 23 ).numpy() , expected.numpy() ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : Tuple = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __lowercase : str = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 1 ).numpy() , expected.numpy() ) def _lowerCamelCase ( self ) -> Dict: __lowercase : List[Any] = 1_01 __lowercase : Union[str, Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] ) __lowercase : Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __lowercase : Optional[int] = compute_token_type_ids(UpperCamelCase_ , UpperCamelCase_ ) np.testing.assert_array_equal(UpperCamelCase_ , UpperCamelCase_ )
523
1
'''simple docstring''' import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : Any = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''google/mt5-small''' ) UpperCAmelCase__ : List[str] = tokenizer('''Hello there''' ,return_tensors='''np''' ).input_ids UpperCAmelCase__ : List[str] = tokenizer('''Hi I am''' ,return_tensors='''np''' ).input_ids UpperCAmelCase__ : List[str] = shift_tokens_right(lowerCamelCase_ ,model.config.pad_token_id ,model.config.decoder_start_token_id ) UpperCAmelCase__ : Union[str, Any] = model(lowerCamelCase_ ,decoder_input_ids=lowerCamelCase_ ).logits UpperCAmelCase__ : str = optax.softmax_cross_entropy(lowerCamelCase_ ,onehot(lowerCamelCase_ ,logits.shape[-1] ) ).mean() UpperCAmelCase__ : List[str] = -(labels.shape[-1] * loss.item()) UpperCAmelCase__ : Optional[int] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
614
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : str = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Dict = '''camembert''' def __init__( self ,lowerCamelCase_=30522 ,lowerCamelCase_=768 ,lowerCamelCase_=12 ,lowerCamelCase_=12 ,lowerCamelCase_=3072 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=512 ,lowerCamelCase_=2 ,lowerCamelCase_=0.02 ,lowerCamelCase_=1e-12 ,lowerCamelCase_=1 ,lowerCamelCase_=0 ,lowerCamelCase_=2 ,lowerCamelCase_="absolute" ,lowerCamelCase_=True ,lowerCamelCase_=None ,**lowerCamelCase_ ,) -> str: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : List[Any] = hidden_size UpperCAmelCase__ : Tuple = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : List[Any] = hidden_dropout_prob UpperCAmelCase__ : Tuple = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Union[str, Any] = type_vocab_size UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : Optional[Any] = layer_norm_eps UpperCAmelCase__ : Optional[Any] = position_embedding_type UpperCAmelCase__ : str = use_cache UpperCAmelCase__ : List[Any] = classifier_dropout class _lowercase ( lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase__ : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase__ : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
614
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int , lowercase : int ) -> int: while a != 0: _a , _a = b % a, a return b def _lowerCamelCase ( lowercase : int , lowercase : int ) -> int: if gcd(lowercase , lowercase ) != 1: _a = F'mod inverse of {a!r} and {m!r} does not exist' raise ValueError(lowercase ) _a , _a , _a = 1, 0, a _a , _a , _a = 0, 1, m while va != 0: _a = ua // va _a , _a , _a , _a , _a , _a = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
700
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Any , lowercase : str ) -> str: # Return True if there is node that has not iterated. _a = [False] * len(lowercase ) _a = [s] _a = True while queue: _a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase ) _a = True _a = u return visited[t] def _lowerCamelCase ( lowercase : Dict , lowercase : Optional[Any] , lowercase : Dict ) -> Union[str, Any]: _a = [-1] * (len(lowercase )) _a = 0 _a = [] _a = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase , lowercase , lowercase , lowercase ): _a = float("Inf" ) _a = sink while s != source: # Find the minimum value in select path _a = min(lowercase , graph[parent[s]][s] ) _a = parent[s] max_flow += path_flow _a = sink while v != source: _a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _a = parent[v] for i in range(len(lowercase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
521
0
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _a (lowercase__ : Dict , lowercase__ : Any ) -> Any: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __snake_case = flax_key_tuple[:-1] + ('weight',) __snake_case = torch.permute(lowercase__ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowercase__ ): # linear layer __snake_case = flax_key_tuple[:-1] + ('weight',) __snake_case = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __snake_case = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def _a (lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : Optional[int] ) -> List[Any]: """simple docstring""" if "metadata" in layer: __snake_case = layer.split('metadata' ) __snake_case = ''.join(split_layer[0] )[:-1] __snake_case = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: __snake_case = layer.split('kvstore' ) __snake_case = ''.join(split_layer[0] )[:-1] __snake_case = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: __snake_case = layer.split('/' ) __snake_case = '/'.join(split_layer[:-1] ) __snake_case = (split_layer[-1],) if "kvstore/path" in layer: __snake_case = f'{switch_checkpoint_path}/{checkpoint_info[layer]}' elif "kvstore/driver" in layer: __snake_case = 'file' else: __snake_case = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _a (lowercase__ : Optional[int] , lowercase__ : Dict ) -> Any: """simple docstring""" __snake_case = rename_keys(lowercase__ ) __snake_case = {} for k, v in current_block.items(): __snake_case = v __snake_case = new_current_block torch.save(lowercase__ , lowercase__ ) def _a (lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : str = WEIGHTS_NAME ) -> str: """simple docstring""" __snake_case = convert_file_size_to_int(lowercase__ ) __snake_case = [] __snake_case = {} __snake_case = 0 __snake_case = 0 os.makedirs(lowercase__ , exist_ok=lowercase__ ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: __snake_case = serialization.msgpack_restore(fp.read() )['optimizer']['target'] __snake_case = flatten_dict(lowercase__ , sep='/' ) __snake_case = {} for layer in checkpoint_info.keys(): __snake_case , __snake_case , __snake_case = get_key_and_tensorstore_dict( lowercase__ , lowercase__ , lowercase__ ) if curr_real_layer_name in all_layers: __snake_case = content else: __snake_case = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __snake_case = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __snake_case = torch.tensor(lowercase__ ) __snake_case = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __snake_case , __snake_case = rename_base_flax_keys(tuple(key.split('/' ) ) , lowercase__ ) __snake_case = '/'.join(lowercase__ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __snake_case = os.path.join( lowercase__ , weights_name.replace('.bin' , f'-{len(lowercase__ )+1:05d}-of-???.bin' ) ) rename_and_save_block(lowercase__ , lowercase__ ) sharded_state_dicts.append(current_block.keys() ) del current_block __snake_case = {} __snake_case = 0 __snake_case = raw_weights.to(getattr(lowercase__ , lowercase__ ) ) current_block_size += weight_size total_size += weight_size # Add the last block __snake_case = os.path.join(lowercase__ , weights_name.replace('.bin' , f'-{len(lowercase__ )+1:05d}-of-???.bin' ) ) rename_and_save_block(lowercase__ , lowercase__ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowercase__ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __snake_case = {} __snake_case = {} for idx, shard in enumerate(lowercase__ ): __snake_case = weights_name.replace( '.bin' , f'-{idx+1:05d}-of-{len(lowercase__ ):05d}.bin' ) # len(sharded_state_dicts):05d} __snake_case = os.path.join(lowercase__ , weights_name.replace('.bin' , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(lowercase__ , os.path.join(lowercase__ , lowercase__ ) ) __snake_case = shard for key in shard: __snake_case = shard_file # Add the metadata __snake_case = {'total_size': total_size} __snake_case = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(lowercase__ , lowercase__ ) , 'w' , encoding='utf-8' ) as f: __snake_case = json.dumps(lowercase__ , indent=2 , sort_keys=lowercase__ ) + '\n' f.write(lowercase__ ) return metadata, index if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) _a : Optional[int] = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _a () -> Tuple: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __snake_case = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) __snake_case = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) __snake_case = TaTokenizer.from_pretrained('t5-small' ) __snake_case = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' __snake_case = tokenizer(lowercase__ , return_tensors='pt' ).input_ids __snake_case = model.generate(lowercase__ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
56
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : Any = "gpt_neo" lowercase : Optional[int] = ["past_key_values"] lowercase : str = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _A=5_0_2_5_7 , _A=2_0_4_8 , _A=2_0_4_8 , _A=2_4 , _A=[[["global", "local"], 1_2]] , _A=1_6 , _A=None , _A=2_5_6 , _A="gelu_new" , _A=0.0 , _A=0.0 , _A=0.0 , _A=0.1 , _A=1E-5 , _A=0.02 , _A=True , _A=5_0_2_5_6 , _A=5_0_2_5_6 , **_A , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_layers _SCREAMING_SNAKE_CASE =num_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =window_size _SCREAMING_SNAKE_CASE =activation_function _SCREAMING_SNAKE_CASE =resid_dropout _SCREAMING_SNAKE_CASE =embed_dropout _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =classifier_dropout _SCREAMING_SNAKE_CASE =layer_norm_epsilon _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =use_cache _SCREAMING_SNAKE_CASE =bos_token_id _SCREAMING_SNAKE_CASE =eos_token_id _SCREAMING_SNAKE_CASE =attention_types _SCREAMING_SNAKE_CASE =self.expand_attention_types_params(_A ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=_A , eos_token_id=_A , **_A ) @staticmethod def UpperCamelCase_ ( _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =[] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _lowerCAmelCase(a : int , a : Tuple , a : Union[str, Any] , a : Optional[Any] ) -> str: import torch _SCREAMING_SNAKE_CASE =input.size() _SCREAMING_SNAKE_CASE =len(a ) _SCREAMING_SNAKE_CASE =shape[dimension] _SCREAMING_SNAKE_CASE =torch.arange(0 , a , a ) _SCREAMING_SNAKE_CASE =torch.div(sizedim - size , a , rounding_mode='''floor''' ) + 1 _SCREAMING_SNAKE_CASE =torch.arange(a ) + low_indices[:min_length][:, None] _SCREAMING_SNAKE_CASE =[slice(a )] * rank _SCREAMING_SNAKE_CASE =indices _SCREAMING_SNAKE_CASE =input[s] _SCREAMING_SNAKE_CASE =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(a ) def _lowerCAmelCase(a : Optional[Any] , a : Optional[int] ) -> List[str]: import torch _SCREAMING_SNAKE_CASE =torch.arange(1 , a ) _SCREAMING_SNAKE_CASE =torch.remainder(a , a ) _SCREAMING_SNAKE_CASE =remainders == 0 _SCREAMING_SNAKE_CASE =candidates[divisor_indices] _SCREAMING_SNAKE_CASE =torch.max(a ) return largest_divisor, torch.div(a , a , rounding_mode='''floor''' ) class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' @property def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_A , direction='''inputs''' ) _SCREAMING_SNAKE_CASE ={0: '''batch''', 1: '''past_sequence + sequence'''} else: _SCREAMING_SNAKE_CASE ={0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCamelCase_ ( self ): '''simple docstring''' return self._config.num_heads def UpperCamelCase_ ( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =super(_A , self ).generate_dummy_inputs( _A , batch_size=_A , seq_length=_A , is_pair=_A , framework=_A ) # We need to order the input in the way they appears in the forward() _SCREAMING_SNAKE_CASE =OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _SCREAMING_SNAKE_CASE =seqlen + 2 _SCREAMING_SNAKE_CASE =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _SCREAMING_SNAKE_CASE =[ (torch.zeros(_A ), torch.zeros(_A )) for _ in range(self.num_layers ) ] _SCREAMING_SNAKE_CASE =common_inputs['''attention_mask'''] if self.use_past: _SCREAMING_SNAKE_CASE =ordered_inputs['''attention_mask'''].dtype _SCREAMING_SNAKE_CASE =torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_A , _A , dtype=_A )] , dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self ): '''simple docstring''' return 1_3
255
0
"""simple docstring""" from __future__ import annotations from math import gcd def __A ( a_ : int , a_ : int = 2 , a_ : int = 1 , a_ : int = 3 , )-> int | None: '''simple docstring''' if num < 2: raise ValueError('''The input value cannot be less than 2''' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(a_ : int , a_ : int , a_ : int ) -> int: return (pow(a_ , 2 ) + step) % modulus for _ in range(a_ ): # These track the position within the cycle detection logic. SCREAMING_SNAKE_CASE : str = seed SCREAMING_SNAKE_CASE : List[Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. SCREAMING_SNAKE_CASE : Any = rand_fn(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : Dict = rand_fn(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : Optional[int] = rand_fn(a_ , a_ , a_ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. SCREAMING_SNAKE_CASE : str = gcd(hare - tortoise , a_ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. SCREAMING_SNAKE_CASE : List[Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) lowerCamelCase__ : Any = parser.parse_args() lowerCamelCase__ : str = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'''{args.num} is probably prime''') else: lowerCamelCase__ : Any = args.num // divisor print(f'''{args.num} = {divisor} * {quotient}''')
18
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __A ( a_ : float , a_ : float , a_ : bool = False )-> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(a_ ), magnitude * sin(a_ )] return [magnitude * cos(radians(a_ ) ), magnitude * sin(radians(a_ ) )] def __A ( a_ : NDArray[floataa] , a_ : NDArray[floataa] , a_ : float = 10**-1 )-> bool: '''simple docstring''' SCREAMING_SNAKE_CASE : NDArray[floataa] = cross(a_ , a_ ) SCREAMING_SNAKE_CASE : float = sum(a_ ) return abs(a_ ) < eps if __name__ == "__main__": # Test to check if it works lowerCamelCase__ : Optional[Any] = array( [ polar_force(7_1_8.4, 180 - 30), polar_force(8_7_9.5_4, 45), polar_force(100, -90), ] ) lowerCamelCase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCamelCase__ : Union[str, Any] = array( [ polar_force(30 * 9.8_1, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowerCamelCase__ : Any = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCamelCase__ : Union[str, Any] = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) lowerCamelCase__ : Optional[int] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
18
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = filter(lambda _UpperCamelCase : p.requires_grad , model.parameters() ) lowercase_ : Union[str, Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCamelCase__ = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if metric == "rouge2": lowercase_ : int = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": lowercase_ : Dict = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": lowercase_ : int = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) lowercase_ : str = ModelCheckpoint( dirpath=_UpperCamelCase , filename=_UpperCamelCase , monitor=F"""val_{metric}""" , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=_UpperCamelCase , verbose=_UpperCamelCase , ) class _UpperCAmelCase ( pl.Callback ): def lowerCAmelCase__ ( self : Tuple , a : Tuple , a : List[str] ): '''simple docstring''' lowercase_ : Union[str, Any] = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : int , a : Tuple , a : Optional[int] , a : int , a : int=True ): '''simple docstring''' logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) lowercase_ : str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results lowercase_ : str = Path(pl_module.hparams.output_dir ) if type_path == "test": lowercase_ : List[Any] = od / "test_results.txt" lowercase_ : str = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowercase_ : Dict = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" lowercase_ : Tuple = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCamelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCamelCase__ ) with open(lowerCamelCase__ , "a+" ) as writer: for key in sorted(lowerCamelCase__ ): if key in ["log", "progress_bar", "preds"]: continue lowercase_ : Union[str, Any] = metrics[key] if isinstance(lowerCamelCase__ , torch.Tensor ): lowercase_ : Tuple = val.item() lowercase_ : Optional[Any] = f"""{key}: {val:.6f}\n""" writer.write(lowerCamelCase__ ) if not save_generations: return if "preds" in metrics: lowercase_ : Optional[int] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : Tuple , a : Union[str, Any] , a : Any ): '''simple docstring''' try: lowercase_ : Optional[int] = pl_module.model.model.num_parameters() except AttributeError: lowercase_ : Union[str, Any] = pl_module.model.num_parameters() lowercase_ : Optional[int] = count_trainable_parameters(lowerCamelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def lowerCAmelCase__ ( self : Optional[Any] , a : List[str] , a : Any ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCamelCase__ , lowerCamelCase__ , "test" ) @rank_zero_only def lowerCAmelCase__ ( self : List[Any] , a : Any , a : Optional[Any] ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
620
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy a : List[Any] = logging.get_logger(__name__) a : Optional[Any] = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } a : str = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } a : Any = { """jukebox""": 5_1_2, } class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE: Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE: List[Any] = PRETRAINED_LYRIC_TOKENS_SIZES SCREAMING_SNAKE_CASE: Dict = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=["v3", "v2", "v2"] , lowerCamelCase__=512 , lowerCamelCase__=5 , lowerCamelCase__="<|endoftext|>" , **lowerCamelCase__ , ): lowerCAmelCase_: List[str] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token super().__init__( unk_token=lowerCamelCase__ , n_genres=lowerCamelCase__ , version=lowerCamelCase__ , max_n_lyric_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) lowerCAmelCase_: Any = version lowerCAmelCase_: str = max_n_lyric_tokens lowerCAmelCase_: Optional[Any] = n_genres with open(lowerCamelCase__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase_: List[Any] = json.load(lowerCamelCase__ ) with open(lowerCamelCase__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase_: Tuple = json.load(lowerCamelCase__ ) with open(lowerCamelCase__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase_: Tuple = json.load(lowerCamelCase__ ) lowerCAmelCase_: List[str] = R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: lowerCAmelCase_: List[Any] = oov.replace(R"\-'" , R"\-+'" ) lowerCAmelCase_: List[Any] = regex.compile(lowerCamelCase__ ) lowerCAmelCase_: Dict = {v: k for k, v in self.artists_encoder.items()} lowerCAmelCase_: List[str] = {v: k for k, v in self.genres_encoder.items()} lowerCAmelCase_: int = {v: k for k, v in self.lyrics_encoder.items()} @property def _a ( self ): return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def _a ( self ): return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: Union[str, Any] = [self.artists_encoder.get(lowerCamelCase__ , 0 ) for artist in list_artists] for genres in range(len(lowerCamelCase__ ) ): lowerCAmelCase_: Tuple = [self.genres_encoder.get(lowerCamelCase__ , 0 ) for genre in list_genres[genres]] lowerCAmelCase_: Any = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) lowerCAmelCase_: Optional[Any] = [[self.lyrics_encoder.get(lowerCamelCase__ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def _a ( self , lowerCamelCase__ ): return list(lowerCamelCase__ ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: Union[str, Any] = self.prepare_for_tokenization(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_: Any = self._tokenize(lowerCamelCase__ ) return artist, genre, lyrics def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for idx in range(len(self.version ) ): if self.version[idx] == "v3": lowerCAmelCase_: List[Any] = artists[idx].lower() lowerCAmelCase_: Tuple = [genres[idx].lower()] else: lowerCAmelCase_: Optional[Any] = self._normalize(artists[idx] ) + ".v2" lowerCAmelCase_: int = [ self._normalize(lowerCamelCase__ ) + ".v2" for genre in genres[idx].split("_" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": lowerCAmelCase_: List[Any] = regex.compile(R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" ) lowerCAmelCase_: Optional[int] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" lowerCAmelCase_: Union[str, Any] = {vocab[index]: index + 1 for index in range(len(lowerCamelCase__ ) )} lowerCAmelCase_: List[Any] = 0 lowerCAmelCase_: str = len(lowerCamelCase__ ) + 1 lowerCAmelCase_: Union[str, Any] = self.vocab lowerCAmelCase_: List[str] = {v: k for k, v in self.vocab.items()} lowerCAmelCase_: Optional[Any] = "" else: lowerCAmelCase_: Optional[int] = regex.compile(R"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+" ) lowerCAmelCase_: int = self._run_strip_accents(lowerCamelCase__ ) lowerCAmelCase_: Optional[Any] = lyrics.replace("\\" , "\n" ) lowerCAmelCase_: List[str] = self.out_of_vocab.sub("" , lowerCamelCase__ ), [], [] return artists, genres, lyrics def _a ( self , lowerCamelCase__ ): lowerCAmelCase_: int = unicodedata.normalize("NFD" , lowerCamelCase__ ) lowerCAmelCase_: Any = [] for char in text: lowerCAmelCase_: Optional[Any] = unicodedata.category(lowerCamelCase__ ) if cat == "Mn": continue output.append(lowerCamelCase__ ) return "".join(lowerCamelCase__ ) def _a ( self , lowerCamelCase__ ): lowerCAmelCase_: Tuple = ( [chr(lowerCamelCase__ ) for i in range(ord("a" ) , ord("z" ) + 1 )] + [chr(lowerCamelCase__ ) for i in range(ord("A" ) , ord("Z" ) + 1 )] + [chr(lowerCamelCase__ ) for i in range(ord("0" ) , ord("9" ) + 1 )] + ["."] ) lowerCAmelCase_: List[str] = frozenset(lowerCamelCase__ ) lowerCAmelCase_: Any = re.compile(R"_+" ) lowerCAmelCase_: List[Any] = "".join([c if c in accepted else "_" for c in text.lower()] ) lowerCAmelCase_: Union[str, Any] = pattern.sub("_" , lowerCamelCase__ ).strip("_" ) return text def _a ( self , lowerCamelCase__ ): return " ".join(lowerCamelCase__ ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): # Convert to TensorType if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: str = TensorType(lowerCamelCase__ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf lowerCAmelCase_: Optional[int] = tf.constant lowerCAmelCase_: str = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed." ) import torch lowerCAmelCase_: Optional[Any] = torch.tensor lowerCAmelCase_: Optional[Any] = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed." ) import jax.numpy as jnp # noqa: F811 lowerCAmelCase_: Optional[Any] = jnp.array lowerCAmelCase_: List[str] = _is_jax else: lowerCAmelCase_: Optional[int] = np.asarray lowerCAmelCase_: int = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: lowerCAmelCase_: Any = [inputs] if not is_tensor(lowerCamelCase__ ): lowerCAmelCase_: Optional[int] = as_tensor(lowerCamelCase__ ) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="" , lowerCamelCase__="pt" ): lowerCAmelCase_: Any = [0, 0, 0] lowerCAmelCase_: Dict = [artist] * len(self.version ) lowerCAmelCase_: int = [genres] * len(self.version ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: List[str] = self.tokenize(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: str = self._convert_token_to_id(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_: List[Any] = [-INFINITY] * len(full_tokens[-1] ) lowerCAmelCase_: Optional[Any] = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=lowerCamelCase__ ) for i in range(len(self.version ) ) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks} ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_: Dict = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=lowerCamelCase__ ) ) lowerCAmelCase_: Optional[Any] = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=lowerCamelCase__ ) ) lowerCAmelCase_: Dict = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=lowerCamelCase__ ) ) return (artists_file, genres_file, lyrics_file) def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: str = self.artists_decoder.get(lowerCamelCase__ ) lowerCAmelCase_: Optional[int] = [self.genres_decoder.get(lowerCamelCase__ ) for genre in genres_index] lowerCAmelCase_: Optional[int] = [self.lyrics_decoder.get(lowerCamelCase__ ) for character in lyric_index] return artist, genres, lyrics
613
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( _a , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] =MgpstrTokenizer UpperCAmelCase__ : List[Any] =False UpperCAmelCase__ : List[Any] ={} UpperCAmelCase__ : Tuple =False def _lowercase ( self : Optional[Any] ) ->Dict: """simple docstring""" super().setUp() # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on SCREAMING_SNAKE_CASE : List[Any] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case_ ) + """\n""" ) def _lowercase ( self : Union[str, Any] , **UpperCAmelCase__ : str ) ->List[str]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def _lowercase ( self : Tuple , UpperCAmelCase__ : Optional[int] ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = """tester""" SCREAMING_SNAKE_CASE : Optional[int] = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def _lowercase ( self : Optional[int] ) ->Any: """simple docstring""" pass def _lowercase ( self : int ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=snake_case_ ) self.assertEqual(len(snake_case_ ) , 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) self.assertTrue(special_token not in decoded ) def _lowercase ( self : Any ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.get_input_output_texts(snake_case_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize(snake_case_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertNotEqual(len(snake_case_ ) , 0 ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(text_a.replace(""" """ , """""" ) , snake_case_ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def _lowercase ( self : Any ) ->Tuple: """simple docstring""" pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def _lowercase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" pass
720
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class a__ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float =0.0 UpperCAmelCase__ : int =1 UpperCAmelCase__ : int =1 UpperCAmelCase__ : bool =True UpperCAmelCase__ : bool =False UpperCAmelCase__ : bool =False UpperCAmelCase__ : bool =False UpperCAmelCase__ : jnp.dtype =jnp.floataa def _lowercase ( self : Tuple ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Any = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE : List[Any] = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxResnetBlockaD( in_channels=UpperCAmelCase__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = resnets SCREAMING_SNAKE_CASE : Optional[int] = attentions if self.add_downsample: SCREAMING_SNAKE_CASE : Tuple = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str]=True ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = () for resnet, attn in zip(self.resnets , self.attentions ): SCREAMING_SNAKE_CASE : List[str] = resnet(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = attn(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE : int = self.downsamplers_a(UpperCAmelCase__ ) output_states += (hidden_states,) return hidden_states, output_states class a__ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float =0.0 UpperCAmelCase__ : int =1 UpperCAmelCase__ : bool =True UpperCAmelCase__ : jnp.dtype =jnp.floataa def _lowercase ( self : Dict ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxResnetBlockaD( in_channels=UpperCAmelCase__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = resnets if self.add_downsample: SCREAMING_SNAKE_CASE : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any=True ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = () for resnet in self.resnets: SCREAMING_SNAKE_CASE : List[str] = resnet(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE : Dict = self.downsamplers_a(UpperCAmelCase__ ) output_states += (hidden_states,) return hidden_states, output_states class a__ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float =0.0 UpperCAmelCase__ : int =1 UpperCAmelCase__ : int =1 UpperCAmelCase__ : bool =True UpperCAmelCase__ : bool =False UpperCAmelCase__ : bool =False UpperCAmelCase__ : bool =False UpperCAmelCase__ : jnp.dtype =jnp.floataa def _lowercase ( self : int ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE : Any = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE : Any = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE : Tuple = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = resnets SCREAMING_SNAKE_CASE : List[Any] = attentions if self.add_upsample: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict=True ) ->Tuple: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states SCREAMING_SNAKE_CASE : str = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE : Dict = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = resnet(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = attn(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) if self.add_upsample: SCREAMING_SNAKE_CASE : Tuple = self.upsamplers_a(UpperCAmelCase__ ) return hidden_states class a__ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float =0.0 UpperCAmelCase__ : int =1 UpperCAmelCase__ : bool =True UpperCAmelCase__ : jnp.dtype =jnp.floataa def _lowercase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(self.num_layers ): SCREAMING_SNAKE_CASE : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE : str = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE : Optional[int] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = resnets if self.add_upsample: SCREAMING_SNAKE_CASE : int = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=True ) ->Union[str, Any]: """simple docstring""" for resnet in self.resnets: # pop res hidden states SCREAMING_SNAKE_CASE : Dict = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE : Any = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE : Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) SCREAMING_SNAKE_CASE : Optional[int] = resnet(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) if self.add_upsample: SCREAMING_SNAKE_CASE : Optional[int] = self.upsamplers_a(UpperCAmelCase__ ) return hidden_states class a__ ( nn.Module ): """simple docstring""" UpperCAmelCase__ : int UpperCAmelCase__ : float =0.0 UpperCAmelCase__ : int =1 UpperCAmelCase__ : int =1 UpperCAmelCase__ : bool =False UpperCAmelCase__ : bool =False UpperCAmelCase__ : jnp.dtype =jnp.floataa def _lowercase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] SCREAMING_SNAKE_CASE : List[str] = [] for _ in range(self.num_layers ): SCREAMING_SNAKE_CASE : Tuple = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : int = resnets SCREAMING_SNAKE_CASE : Tuple = attentions def __call__( self : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str=True ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.resnets[0](UpperCAmelCase__ , UpperCAmelCase__ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): SCREAMING_SNAKE_CASE : Optional[int] = attn(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = resnet(UpperCAmelCase__ , UpperCAmelCase__ , deterministic=UpperCAmelCase__ ) return hidden_states
446
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = (UniPCMultistepScheduler,) SCREAMING_SNAKE_CASE_ = (("""num_inference_steps""", 25),) def UpperCAmelCase__ ( self :Tuple , **lowerCamelCase_ :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Any ={ 'num_train_timesteps': 1_000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**lowerCamelCase_ ) return config def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :int=0 , **lowerCamelCase_ :Optional[int] ): """simple docstring""" lowerCamelCase__ : List[str] =dict(self.forward_default_kwargs ) lowerCamelCase__ : int =kwargs.pop('num_inference_steps' , lowerCamelCase_ ) lowerCamelCase__ : List[Any] =self.dummy_sample lowerCamelCase__ : Optional[int] =0.1 * sample lowerCamelCase__ : Optional[Any] =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase__ : Any =self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : int =scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals lowerCamelCase__ : Union[str, Any] =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) lowerCamelCase__ : str =scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals lowerCamelCase__ : Optional[Any] =dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase__ , lowerCamelCase__ : Tuple =sample, sample for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1 ): lowerCamelCase__ : List[str] =scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample lowerCamelCase__ : Optional[int] =new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self :Dict , lowerCamelCase_ :List[Any]=0 , **lowerCamelCase_ :str ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =dict(self.forward_default_kwargs ) lowerCamelCase__ : Union[str, Any] =kwargs.pop('num_inference_steps' , lowerCamelCase_ ) lowerCamelCase__ : Tuple =self.dummy_sample lowerCamelCase__ : Any =0.1 * sample lowerCamelCase__ : int =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCamelCase__ : List[Any] =self.get_scheduler_config() lowerCamelCase__ : Optional[Any] =scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) lowerCamelCase__ : Optional[int] =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) lowerCamelCase__ : Optional[Any] =dummy_past_residuals[: new_scheduler.config.solver_order] lowerCamelCase__ : Dict =scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample lowerCamelCase__ : List[Any] =new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :str=None , **lowerCamelCase_ :int ): """simple docstring""" if scheduler is None: lowerCamelCase__ : List[str] =self.scheduler_classes[0] lowerCamelCase__ : str =self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : str =scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : Any =self.scheduler_classes[0] lowerCamelCase__ : Optional[int] =self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =10 lowerCamelCase__ : Union[str, Any] =self.dummy_model() lowerCamelCase__ : Optional[Any] =self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase__ : Dict =model(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample return sample def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] =dict(self.forward_default_kwargs ) lowerCamelCase__ : Any =kwargs.pop('num_inference_steps' , lowerCamelCase_ ) for scheduler_class in self.scheduler_classes: lowerCamelCase__ : Optional[int] =self.get_scheduler_config() lowerCamelCase__ : Any =scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =self.dummy_sample lowerCamelCase__ : Dict =0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_ , 'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase_ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , 'set_timesteps' ): lowerCamelCase__ : Tuple =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCamelCase__ : List[Any] =[residual + 0.2, residual + 0.15, residual + 0.10] lowerCamelCase__ : List[Any] =dummy_past_residuals[: scheduler.config.solver_order] lowerCamelCase__ : Union[str, Any] =scheduler.timesteps[5] lowerCamelCase__ : Dict =scheduler.timesteps[6] lowerCamelCase__ : Optional[int] =scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample lowerCamelCase__ : int =scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" lowerCamelCase__ : Dict =UniPCMultistepScheduler(**self.get_scheduler_config() ) lowerCamelCase__ : Tuple =self.full_loop(scheduler=lowerCamelCase_ ) lowerCamelCase__ : Tuple =torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 lowerCamelCase__ : List[str] =DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCamelCase__ : Optional[int] =DEISMultistepScheduler.from_config(scheduler.config ) lowerCamelCase__ : Optional[int] =DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCamelCase__ : Optional[Any] =UniPCMultistepScheduler.from_config(scheduler.config ) lowerCamelCase__ : Dict =self.full_loop(scheduler=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def UpperCAmelCase__ ( self :Dict ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def UpperCAmelCase__ ( self :str ): """simple docstring""" self.check_over_configs(thresholding=lowerCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , ) def UpperCAmelCase__ ( self :Dict ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def UpperCAmelCase__ ( self :int ): """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , ) lowerCamelCase__ : int =self.full_loop( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , ) assert not torch.isnan(lowerCamelCase_ ).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self :int ): """simple docstring""" self.check_over_configs(lower_order_final=lowerCamelCase_ ) self.check_over_configs(lower_order_final=lowerCamelCase_ ) def UpperCAmelCase__ ( self :str ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0 ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" lowerCamelCase__ : Optional[Any] =self.full_loop() lowerCamelCase__ : List[Any] =torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.24_64 ) < 1e-3 def UpperCAmelCase__ ( self :int ): """simple docstring""" lowerCamelCase__ : Tuple =self.full_loop(prediction_type='v_prediction' ) lowerCamelCase__ : Optional[int] =torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.10_14 ) < 1e-3 def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =self.scheduler_classes[0] lowerCamelCase__ : int =self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0 ) lowerCamelCase__ : Union[str, Any] =scheduler_class(**lowerCamelCase_ ) lowerCamelCase__ : str =10 lowerCamelCase__ : Any =self.dummy_model() lowerCamelCase__ : Optional[int] =self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase__ : Tuple =model(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Any =scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__ ( self :List[Any] , **lowerCamelCase_ :Dict ): """simple docstring""" for scheduler_class in self.scheduler_classes: lowerCamelCase__ : str =self.get_scheduler_config(**lowerCamelCase_ ) lowerCamelCase__ : str =scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
174
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = """gpt_neo""" SCREAMING_SNAKE_CASE_ = ["""past_key_values"""] SCREAMING_SNAKE_CASE_ = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self :Union[str, Any] , lowerCamelCase_ :Any=50_257 , lowerCamelCase_ :Union[str, Any]=2_048 , lowerCamelCase_ :int=2_048 , lowerCamelCase_ :Optional[int]=24 , lowerCamelCase_ :int=[[["global", "local"], 12]] , lowerCamelCase_ :List[str]=16 , lowerCamelCase_ :int=None , lowerCamelCase_ :Tuple=256 , lowerCamelCase_ :Union[str, Any]="gelu_new" , lowerCamelCase_ :Optional[Any]=0.0 , lowerCamelCase_ :Tuple=0.0 , lowerCamelCase_ :Tuple=0.0 , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :int=1e-5 , lowerCamelCase_ :int=0.02 , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Tuple=50_256 , lowerCamelCase_ :Tuple=50_256 , **lowerCamelCase_ :Tuple , ): """simple docstring""" lowerCamelCase__ : str =vocab_size lowerCamelCase__ : str =max_position_embeddings lowerCamelCase__ : Union[str, Any] =hidden_size lowerCamelCase__ : Union[str, Any] =num_layers lowerCamelCase__ : List[str] =num_heads lowerCamelCase__ : List[str] =intermediate_size lowerCamelCase__ : Dict =window_size lowerCamelCase__ : str =activation_function lowerCamelCase__ : str =resid_dropout lowerCamelCase__ : int =embed_dropout lowerCamelCase__ : Optional[Any] =attention_dropout lowerCamelCase__ : Dict =classifier_dropout lowerCamelCase__ : List[str] =layer_norm_epsilon lowerCamelCase__ : Optional[int] =initializer_range lowerCamelCase__ : List[str] =use_cache lowerCamelCase__ : Tuple =bos_token_id lowerCamelCase__ : List[str] =eos_token_id lowerCamelCase__ : List[str] =attention_types lowerCamelCase__ : str =self.expand_attention_types_params(lowerCamelCase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) @staticmethod def UpperCAmelCase__ ( lowerCamelCase_ :Optional[int] ): """simple docstring""" lowerCamelCase__ : str =[] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : str ) ->Any: import torch lowerCamelCase__ : List[str] =input.size() lowerCamelCase__ : Optional[int] =len(snake_case_ ) lowerCamelCase__ : Optional[int] =shape[dimension] lowerCamelCase__ : Tuple =torch.arange(0 , snake_case_ , snake_case_ ) lowerCamelCase__ : List[Any] =torch.div(sizedim - size , snake_case_ , rounding_mode='floor' ) + 1 lowerCamelCase__ : str =torch.arange(snake_case_ ) + low_indices[:min_length][:, None] lowerCamelCase__ : str =[slice(snake_case_ )] * rank lowerCamelCase__ : Tuple =indices lowerCamelCase__ : List[str] =input[s] lowerCamelCase__ : Dict =list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : int ) ->int: import torch lowerCamelCase__ : Optional[int] =torch.arange(1 , snake_case_ ) lowerCamelCase__ : str =torch.remainder(snake_case_ , snake_case_ ) lowerCamelCase__ : List[Any] =remainders == 0 lowerCamelCase__ : Optional[int] =candidates[divisor_indices] lowerCamelCase__ : Any =torch.max(snake_case_ ) return largest_divisor, torch.div(snake_case_ , snake_case_ , rounding_mode='floor' ) class A_ ( A__ ): """simple docstring""" @property def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : int =OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction='inputs' ) lowerCamelCase__ : Dict ={0: 'batch', 1: 'past_sequence + sequence'} else: lowerCamelCase__ : int ={0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" return self._config.num_heads def UpperCAmelCase__ ( self :str , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ): """simple docstring""" lowerCamelCase__ : List[Any] =super(lowerCamelCase_ , self ).generate_dummy_inputs( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ : Optional[int] =OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =common_inputs['input_ids'].shape # Not using the same length for past_key_values lowerCamelCase__ : Optional[Any] =seqlen + 2 lowerCamelCase__ : Dict =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ : Dict =[ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(self.num_layers ) ] lowerCamelCase__ : Optional[int] =common_inputs['attention_mask'] if self.use_past: lowerCamelCase__ : Any =ordered_inputs['attention_mask'].dtype lowerCamelCase__ : Any =torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCamelCase_ , lowerCamelCase_ , dtype=lowerCamelCase_ )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" return 13
174
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = emb.weight.shape SCREAMING_SNAKE_CASE__ = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = emb.weight.data return lin_layer def _lowercase ( UpperCamelCase_ , UpperCamelCase_=None ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} for old_key in state_dict.keys(): SCREAMING_SNAKE_CASE__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: SCREAMING_SNAKE_CASE__ = key.replace('moe_layer.experts.0' , F'ffn.experts.expert_{expert_idx}' ) else: SCREAMING_SNAKE_CASE__ = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: SCREAMING_SNAKE_CASE__ = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: SCREAMING_SNAKE_CASE__ = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: SCREAMING_SNAKE_CASE__ = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: SCREAMING_SNAKE_CASE__ = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: SCREAMING_SNAKE_CASE__ = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: SCREAMING_SNAKE_CASE__ = key.replace('final_layer_norm' , 'ff_layer_norm' ) SCREAMING_SNAKE_CASE__ = state_dict[old_key] return new_dict def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = WEIGHTS_NAME ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) for expert in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = switch_checkpoint_path + F'-rank-{expert}.pt' if os.path.isfile(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase_ )['model'] remove_ignore_keys_(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = rename_fairseq_keys(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = os.path.join( UpperCamelCase_ , weights_name.replace('.bin' , F'-{len(UpperCamelCase_ )+1:05d}-of-???.bin' ) ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(UpperCamelCase_ )[0]].dtype ) # Add the last block SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , weights_name.replace('.bin' , F'-{len(UpperCamelCase_ )+1:05d}-of-???.bin' ) ) SCREAMING_SNAKE_CASE__ = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = rename_fairseq_keys(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(UpperCamelCase_ ) == 1: SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(UpperCamelCase_ , UpperCamelCase_ ) # Otherwise, let's build the index SCREAMING_SNAKE_CASE__ = {} for idx, shard in enumerate(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = weights_name.replace('.bin' , F'-{idx+1:05d}-of-{len(UpperCamelCase_ ):05d}.bin' ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , weights_name.replace('.bin' , F'-{idx+1:05d}-of-???.bin' ) ) os.rename(UpperCamelCase_ , os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) for key in shard: SCREAMING_SNAKE_CASE__ = shard_file # Add the metadata SCREAMING_SNAKE_CASE__ = {'total_size': total_size} SCREAMING_SNAKE_CASE__ = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , 'w' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE__ = json.dumps(UpperCamelCase_ , indent=2 , sort_keys=UpperCamelCase_ ) + '\n' f.write(UpperCamelCase_ ) return metadata, index if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) __snake_case = parser.parse_args() __snake_case ,__snake_case = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) __snake_case = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) __snake_case = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
400
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> list[float]: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = coefficient_matrix.shape SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = constant_matrix.shape if rowsa != colsa: SCREAMING_SNAKE_CASE__ = F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(UpperCamelCase_ ) if colsa != 1: SCREAMING_SNAKE_CASE__ = F'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(UpperCamelCase_ ) if rowsa != rowsa: SCREAMING_SNAKE_CASE__ = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(UpperCamelCase_ ) if len(UpperCamelCase_ ) != rowsa: SCREAMING_SNAKE_CASE__ = ( 'Number of initial values must be equal to number of rows in coefficient ' F'matrix but received {len(UpperCamelCase_ )} and {rowsa}' ) raise ValueError(UpperCamelCase_ ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) SCREAMING_SNAKE_CASE__ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = table.shape strictly_diagonally_dominant(UpperCamelCase_ ) # Iterates the whole matrix for given number of times for _ in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = [] for row in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = 0 for col in range(UpperCamelCase_ ): if col == row: SCREAMING_SNAKE_CASE__ = table[row][col] elif col == cols - 1: SCREAMING_SNAKE_CASE__ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] SCREAMING_SNAKE_CASE__ = (temp + val) / denom new_val.append(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = new_val return [float(UpperCamelCase_ ) for i in new_val] def _lowercase ( UpperCamelCase_ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = table.shape SCREAMING_SNAKE_CASE__ = True for i in range(0 , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
400
1
def __snake_case ( lowerCAmelCase_ ) -> float: SCREAMING_SNAKE_CASE__ = 0 while len(lowerCAmelCase_ ) > 1: SCREAMING_SNAKE_CASE__ = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): SCREAMING_SNAKE_CASE__ = files.index(min(lowerCAmelCase_ ) ) temp += files[min_index] files.pop(lowerCAmelCase_ ) files.append(lowerCAmelCase_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
100
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase__ ( unittest.TestCase ): def __init__( self : int ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any]=13 ,lowerCamelCase__ : List[Any]=3 ,lowerCamelCase__ : Optional[Any]=224 ,lowerCamelCase__ : int=30 ,lowerCamelCase__ : str=400 ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Tuple=[0.5, 0.5, 0.5] ,lowerCamelCase__ : Optional[int]=[0.5, 0.5, 0.5] ,): '''simple docstring''' _UpperCamelCase : Dict = size if size is not None else {'height': 18, 'width': 18} _UpperCamelCase : List[Any] = parent _UpperCamelCase : Union[str, Any] = batch_size _UpperCamelCase : Dict = num_channels _UpperCamelCase : List[str] = image_size _UpperCamelCase : Optional[Any] = min_resolution _UpperCamelCase : Dict = max_resolution _UpperCamelCase : Tuple = do_resize _UpperCamelCase : Optional[int] = size _UpperCamelCase : Tuple = do_normalize _UpperCamelCase : str = image_mean _UpperCamelCase : int = image_std def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = ViTImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Dict = EfficientFormerImageProcessorTester(self ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,'image_mean' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'image_std' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_normalize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'do_resize' ) ) self.assertTrue(hasattr(lowerCamelCase__ ,'size' ) ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : int ): '''simple docstring''' # Initialize image_processor _UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : Optional[Any] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,Image.Image ) # Test not batched input _UpperCamelCase : int = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched _UpperCamelCase : int = image_processor(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' # Initialize image_processor _UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : Optional[int] = prepare_image_inputs(self.image_proc_tester ,equal_resolution=lowerCamelCase__ ,numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,np.ndarray ) # Test not batched input _UpperCamelCase : Union[str, Any] = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched _UpperCamelCase : Optional[Any] = image_processor(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # Initialize image_processor _UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : Any = prepare_image_inputs(self.image_proc_tester ,equal_resolution=lowerCamelCase__ ,torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ ,torch.Tensor ) # Test not batched input _UpperCamelCase : Dict = image_processor(image_inputs[0] ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,) # Test batched _UpperCamelCase : Any = image_processor(lowerCamelCase__ ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) ,)
195
0
import random def lowercase_ (A : List[str] , A : Tuple , A : int ): snake_case__ : List[str] = a[left_index] snake_case__ : Optional[int] = left_index + 1 for j in range(left_index + 1 , A ): if a[j] < pivot: snake_case__ : Union[str, Any] = a[i], a[j] i += 1 snake_case__ : Union[str, Any] = a[i - 1], a[left_index] return i - 1 def lowercase_ (A : Union[str, Any] , A : int , A : Union[str, Any] ): if left < right: snake_case__ : Dict = random.randint(A , right - 1 ) snake_case__ : List[Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound snake_case__ : Any = partition(A , A , A ) quick_sort_random( A , A , A ) # recursive quicksort to the left of the pivot point quick_sort_random( A , pivot_index + 1 , A ) # recursive quicksort to the right of the pivot point def lowercase_ (): snake_case__ : Any = input('Enter numbers separated by a comma:\n' ).strip() snake_case__ : str = [int(A ) for item in user_input.split(',' )] quick_sort_random(A , 0 , len(A ) ) print(A ) if __name__ == "__main__": main()
716
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys a_ :int = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") a_ :str = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode("utf-8").split() ) a_ :int = "|".join(sys.argv[1:]) a_ :int = re.compile(RF"""^({joined_dirs}).*?\.py$""") a_ :str = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
243
0
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'encodec' def __init__( self , __a=[1.5, 3.0, 6.0, 12.0, 24.0] , __a=2_40_00 , __a=1 , __a=False , __a=None , __a=None , __a=1_28 , __a=32 , __a=1 , __a=[8, 5, 4, 2] , __a="weight_norm" , __a=7 , __a=7 , __a=3 , __a=2 , __a=True , __a="reflect" , __a=2 , __a=2 , __a=1.0 , __a=10_24 , __a=None , __a=True , **__a , ) -> int: '''simple docstring''' _UpperCamelCase = target_bandwidths _UpperCamelCase = sampling_rate _UpperCamelCase = audio_channels _UpperCamelCase = normalize _UpperCamelCase = chunk_length_s _UpperCamelCase = overlap _UpperCamelCase = hidden_size _UpperCamelCase = num_filters _UpperCamelCase = num_residual_layers _UpperCamelCase = upsampling_ratios _UpperCamelCase = norm_type _UpperCamelCase = kernel_size _UpperCamelCase = last_kernel_size _UpperCamelCase = residual_kernel_size _UpperCamelCase = dilation_growth_rate _UpperCamelCase = use_causal_conv _UpperCamelCase = pad_mode _UpperCamelCase = compress _UpperCamelCase = num_lstm_layers _UpperCamelCase = trim_right_ratio _UpperCamelCase = codebook_size _UpperCamelCase = codebook_dim if codebook_dim is not None else hidden_size _UpperCamelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''') super().__init__(**__a) @property def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate) @property def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length)) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = np.prod(self.upsampling_ratios) return math.ceil(self.sampling_rate / hop_length) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10))
19
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(""".""") def lowerCAmelCase( __lowerCamelCase ): __a = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f'''{test_file} instead.''' ) __a = components[-1] if not test_fn.endswith('py' ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) __a = components[:-1] + [test_fn.replace('.py' , '' )] __a = '.'.join(__lowerCamelCase ) return test_module_path def lowerCAmelCase( __lowerCamelCase ): __a = get_module_path(__lowerCamelCase ) __a = importlib.import_module(__lowerCamelCase ) return test_module def lowerCAmelCase( __lowerCamelCase ): __a = [] __a = get_test_module(__lowerCamelCase ) for attr in dir(__lowerCamelCase ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(__lowerCamelCase , __lowerCamelCase ) ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase ): __a = [] __a = get_test_module(__lowerCamelCase ) for attr in dir(__lowerCamelCase ): __a = getattr(__lowerCamelCase , __lowerCamelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __a = getattr(__lowerCamelCase , 'all_model_classes' , [] ) if len(__lowerCamelCase ) > 0: test_classes.append(__lowerCamelCase ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase ): __a = get_test_classes(__lowerCamelCase ) __a = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase ): __a = test_class() if hasattr(__lowerCamelCase , 'setUp' ): test.setUp() __a = None if hasattr(__lowerCamelCase , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __a = test.model_tester.__class__ return model_tester def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = get_test_classes(__lowerCamelCase ) __a = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(__lowerCamelCase ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = get_test_classes_for_model(__lowerCamelCase , __lowerCamelCase ) __a = [] for test_class in test_classes: __a = get_model_tester_from_test_class(__lowerCamelCase ) if tester_class is not None: tester_classes.append(__lowerCamelCase ) # sort with class names return sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x.__name__ ) def lowerCAmelCase( __lowerCamelCase ): __a = get_test_classes(__lowerCamelCase ) __a = {test_class: get_model_tester_from_test_class(__lowerCamelCase ) for test_class in test_classes} return test_tester_mapping def lowerCAmelCase( __lowerCamelCase ): __a = get_model_classes(__lowerCamelCase ) __a = { model_class: get_test_classes_for_model(__lowerCamelCase , __lowerCamelCase ) for model_class in model_classes } return model_test_mapping def lowerCAmelCase( __lowerCamelCase ): __a = get_model_classes(__lowerCamelCase ) __a = { model_class: get_tester_classes_for_model(__lowerCamelCase , __lowerCamelCase ) for model_class in model_classes } return model_to_tester_mapping def lowerCAmelCase( __lowerCamelCase ): if isinstance(__lowerCamelCase , __lowerCamelCase ): return o elif isinstance(__lowerCamelCase , __lowerCamelCase ): return o.__name__ elif isinstance(__lowerCamelCase , (list, tuple) ): return [to_json(__lowerCamelCase ) for x in o] elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {to_json(__lowerCamelCase ): to_json(__lowerCamelCase ) for k, v in o.items()} else: return o
559
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def __init__(self , __a , __a=7 , __a=3 , __a=30 , __a=4_00 , __a=True , __a=None , __a=True , __a=[0.5, 0.5, 0.5] , __a=[0.5, 0.5, 0.5] , __a=True , __a=1 / 2_55 , __a=True , ): '''simple docstring''' lowerCamelCase = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = num_channels lowerCamelCase = min_resolution lowerCamelCase = max_resolution lowerCamelCase = do_resize lowerCamelCase = size lowerCamelCase = do_normalize lowerCamelCase = image_mean lowerCamelCase = image_std lowerCamelCase = do_rescale lowerCamelCase = rescale_factor lowerCamelCase = do_pad def _a (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def _a (self , __a , __a=False ): '''simple docstring''' if not batched: lowerCamelCase = image_inputs[0] if isinstance(__a , Image.Image ): lowerCamelCase , lowerCamelCase = image.size else: lowerCamelCase , lowerCamelCase = image.shape[1], image.shape[2] if w < h: lowerCamelCase = int(self.size["shortest_edge"] * h / w ) lowerCamelCase = self.size["shortest_edge"] elif w > h: lowerCamelCase = self.size["shortest_edge"] lowerCamelCase = int(self.size["shortest_edge"] * w / h ) else: lowerCamelCase = self.size["shortest_edge"] lowerCamelCase = self.size["shortest_edge"] else: lowerCamelCase = [] for image in image_inputs: lowerCamelCase , lowerCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase = max(__a , key=lambda __a : item[0] )[0] lowerCamelCase = max(__a , key=lambda __a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase): """simple docstring""" _A = DeformableDetrImageProcessor if is_vision_available() else None def _a (self ): '''simple docstring''' lowerCamelCase = DeformableDetrImageProcessingTester(self ) @property def _a (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "image_mean" ) ) self.assertTrue(hasattr(__a , "image_std" ) ) self.assertTrue(hasattr(__a , "do_normalize" ) ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "do_rescale" ) ) self.assertTrue(hasattr(__a , "do_pad" ) ) self.assertTrue(hasattr(__a , "size" ) ) def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , __a ) lowerCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__a ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , __a ) def _a (self ): '''simple docstring''' pass def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(__a , batched=__a ) lowerCamelCase = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase = image_processing(__a , return_tensors="pt" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _a (self ): '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(__a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase = image_processing(__a , return_tensors="pt" ).pixel_values lowerCamelCase , lowerCamelCase = self.image_processor_tester.get_expected_values(__a , batched=__a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def _a (self ): '''simple docstring''' lowerCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCamelCase = json.loads(f.read() ) lowerCamelCase = {"image_id": 3_97_69, "annotations": target} # encode them lowerCamelCase = DeformableDetrImageProcessor() lowerCamelCase = image_processing(images=__a , annotations=__a , return_tensors="pt" ) # verify pixel values lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , __a ) lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __a , atol=1E-4 ) ) # verify area lowerCamelCase = torch.tensor([5887.9600, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __a ) ) # verify boxes lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __a ) lowerCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __a , atol=1E-3 ) ) # verify image_id lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __a ) ) # verify is_crowd lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __a ) ) # verify class_labels lowerCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __a ) ) # verify orig_size lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __a ) ) # verify size lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __a ) ) @slow def _a (self ): '''simple docstring''' lowerCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCamelCase = json.loads(f.read() ) lowerCamelCase = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} lowerCamelCase = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCamelCase = DeformableDetrImageProcessor(format="coco_panoptic" ) lowerCamelCase = image_processing(images=__a , annotations=__a , masks_path=__a , return_tensors="pt" ) # verify pixel values lowerCamelCase = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , __a ) lowerCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __a , atol=1E-4 ) ) # verify area lowerCamelCase = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __a ) ) # verify boxes lowerCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __a ) lowerCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __a , atol=1E-3 ) ) # verify image_id lowerCamelCase = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __a ) ) # verify is_crowd lowerCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __a ) ) # verify class_labels lowerCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __a ) ) # verify masks lowerCamelCase = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __a ) # verify orig_size lowerCamelCase = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __a ) ) # verify size lowerCamelCase = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __a ) )
700
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = SMALL_MODEL_IDENTIFIER lowerCamelCase = "pt" lowerCamelCase = "tf" def _a (self , __a ): '''simple docstring''' lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def _a (self ): '''simple docstring''' lowerCamelCase = "mock_framework" # Framework provided - return whatever the user provides lowerCamelCase = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def _a (self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): lowerCamelCase = FeaturesManager.determine_framework(__a ) def _a (self ): '''simple docstring''' lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_torch_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch lowerCamelCase = MagicMock(return_value=__a ) lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ), patch( "transformers.onnx.features.is_torch_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error lowerCamelCase = MagicMock(return_value=__a ) lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ), patch( "transformers.onnx.features.is_torch_available" , __a ): with self.assertRaises(__a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
484
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Dict = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class snake_case_ : '''simple docstring''' def __init__( self : int , _UpperCamelCase : Optional[str] = None ) ->Tuple: snake_case_ = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) snake_case_ = Extractor def snake_case__( self : Any , _UpperCamelCase : str ) ->str: from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" snake_case_ = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def snake_case__( self : int , _UpperCamelCase : str , _UpperCamelCase : bool ) ->bool: return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def snake_case__( self : Tuple , _UpperCamelCase : str , _UpperCamelCase : bool = False ) ->str: snake_case_ = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path snake_case_ = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class snake_case_ ( __A ): '''simple docstring''' @classmethod @abstractmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : str ) ->bool: ... @staticmethod @abstractmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: ... class snake_case_ ( __A , __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[bytes] = [] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->List[Any]: with open(_UpperCamelCase , '''rb''' ) as f: return f.read(_UpperCamelCase ) @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if not magic_number: snake_case_ = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: snake_case_ = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class snake_case_ ( __A ): '''simple docstring''' @classmethod def snake_case__( cls : Union[str, Any] , _UpperCamelCase : Union[Path, str] , **_UpperCamelCase : Any ) ->bool: return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def snake_case__( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Dict ) ->List[str]: def resolved(_UpperCamelCase : str ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_UpperCamelCase : str , _UpperCamelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_UpperCamelCase : Tuple , _UpperCamelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link snake_case_ = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) snake_case_ = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [b"\x1F\x8B"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with gzip.open(_UpperCamelCase , '''rb''' ) as gzip_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ b"PK\x03\x04", b"PK\x05\x06", # empty archive b"PK\x07\x08", # spanned archive ] @classmethod def snake_case__( cls : List[str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bytes = b"" ) ->bool: if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , '''rb''' ) as fp: snake_case_ = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: snake_case_ = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: snake_case_ = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , '''r''' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [b"\xFD\x37\x7A\x58\x5A\x00"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"Rar!\x1a\x07\x00", b"Rar!\x1a\x07\x01\x00"] # RAR_ID # RAR5_ID @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) snake_case_ = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [b"\x28\xb5\x2F\xFD"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''' ) import zstandard as zstd snake_case_ = zstd.ZstdDecompressor() with open(_UpperCamelCase , '''rb''' ) as ifh, open(_UpperCamelCase , '''wb''' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [b"\x42\x5A\x68"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: with bza.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x37\x7A\xBC\xAF\x27\x1C"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , '''r''' ) as archive: archive.extractall(_UpperCamelCase ) class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [b"\x04\x22\x4D\x18"] @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] ) ->None: if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''' ) import lza.frame with lza.frame.open(_UpperCamelCase , '''rb''' ) as compressed_file: with open(_UpperCamelCase , '''wb''' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def snake_case__( cls : List[Any] ) ->List[str]: return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def snake_case__( _UpperCamelCase : Union[Path, str] , _UpperCamelCase : int ) ->Tuple: try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def snake_case__( cls : Optional[Any] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : bool = False ) ->bool: warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def snake_case__( cls : int , _UpperCamelCase : Union[Path, str] ) ->str: # <Added version="2.4.0"/> snake_case_ = cls._get_magic_number_max_length() snake_case_ = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def snake_case__( cls : Optional[int] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Union[Path, str] , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[BaseExtractor] = "deprecated" , ) ->None: os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions snake_case_ = str(Path(_UpperCamelCase ).with_suffix('''.lock''' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=_UpperCamelCase , ) snake_case_ = extractor if extractor != '''deprecated''' else extractor_format else: snake_case_ = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
39
0
'''simple docstring''' from math import factorial def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(lowerCAmelCase__ ) // (factorial(lowerCAmelCase__ ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', f'fifty-two card deck is: {combinations(5_2, 5)}\n', ) print( 'If a class of 40 students must be arranged into groups of', f'4 for group projects, there are {combinations(4_0, 4)} ways', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', f'are {combinations(1_0, 3)} ways that first, second and', 'third place can be awarded.', )
340
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = ["pixel_values"] def __init__( self : str , A__ : bool = True , A__ : int = 3_2 , A__ : List[str]=PILImageResampling.BILINEAR , A__ : bool = True , **A__ : Tuple , ) -> None: '''simple docstring''' a__ : Optional[int] = do_resize a__ : List[str] = do_rescale a__ : Optional[int] = size_divisor a__ : Any = resample super().__init__(**A__ ) def __lowerCAmelCase ( self : int , A__ : np.ndarray , A__ : int , A__ : Optional[int] , A__ : Optional[ChannelDimension] = None , **A__ : List[Any] ) -> np.ndarray: '''simple docstring''' a__ , a__ : Optional[int] = get_image_size(A__ ) # Rounds the height and width down to the closest multiple of size_divisor a__ : List[Any] = height // size_divisor * size_divisor a__ : List[str] = width // size_divisor * size_divisor a__ : int = resize(A__ , (new_h, new_w) , resample=A__ , data_format=A__ , **A__ ) return image def __lowerCAmelCase ( self : int , A__ : np.ndarray , A__ : float , A__ : Optional[ChannelDimension] = None , **A__ : Optional[int] ) -> np.ndarray: '''simple docstring''' return rescale(image=A__ , scale=A__ , data_format=A__ , **A__ ) def __lowerCAmelCase ( self : List[str] , A__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , A__ : Optional[bool] = None , A__ : Optional[int] = None , A__ : int=None , A__ : Optional[bool] = None , A__ : Optional[Union[TensorType, str]] = None , A__ : ChannelDimension = ChannelDimension.FIRST , **A__ : str , ) -> BatchFeature: '''simple docstring''' a__ : Tuple = do_resize if do_resize is not None else self.do_resize a__ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale a__ : Tuple = size_divisor if size_divisor is not None else self.size_divisor a__ : int = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) a__ : int = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. a__ : Any = [to_numpy_array(A__ ) for img in images] if do_resize: a__ : Optional[Any] = [self.resize(A__ , size_divisor=A__ , resample=A__ ) for image in images] if do_rescale: a__ : str = [self.rescale(A__ , scale=1 / 2_5_5 ) for image in images] a__ : Dict = [to_channel_dimension_format(A__ , A__ ) for image in images] a__ : List[Any] = {'''pixel_values''': images} return BatchFeature(data=A__ , tensor_type=A__ )
340
1
"""simple docstring""" def _A (__a ) -> str: """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
512
"""simple docstring""" from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["input_features", "attention_mask"] def __init__( self : List[Any] , lowercase_ : Tuple=80 , lowercase_ : Optional[int]=16000 , lowercase_ : str=80 , lowercase_ : Optional[Any]=0.0 , lowercase_ : Optional[int]=True , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=True , **lowercase_ : List[Any] , ): '''simple docstring''' super().__init__(feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Dict = num_mel_bins SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_ceptral_normalize SCREAMING_SNAKE_CASE_ : Dict = normalize_means SCREAMING_SNAKE_CASE_ : Dict = normalize_vars SCREAMING_SNAKE_CASE_ : Dict = True def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : np.ndarray , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = waveform * (2**15) # Kaldi compliance: 16-bit signed integers SCREAMING_SNAKE_CASE_ : Tuple = torch.from_numpy(lowercase_).unsqueeze(0) SCREAMING_SNAKE_CASE_ : Optional[Any] = ta_kaldi.fbank(lowercase_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate) return features.numpy() @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : int , lowercase_ : Optional[bool] = True , lowercase_ : Optional[bool] = True , lowercase_ : float = 0.0 , ): '''simple docstring''' if normalize_means: SCREAMING_SNAKE_CASE_ : Optional[int] = x[:input_length].mean(axis=0) SCREAMING_SNAKE_CASE_ : List[str] = np.subtract(lowercase_ , lowercase_) if normalize_vars: SCREAMING_SNAKE_CASE_ : Optional[Any] = x[:input_length].std(axis=0) SCREAMING_SNAKE_CASE_ : Tuple = np.divide(lowercase_ , lowercase_) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE_ : str = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE_ : Optional[Any] = x.astype(np.floataa) return x def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : List[np.ndarray] , lowercase_ : Optional[np.ndarray] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowercase_ , lowercase_ , self.normalize_means , self.normalize_vars , self.padding_value) for x, n in zip(lowercase_ , lowercase_) ] def __call__( self : Dict , lowercase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase_ : Union[bool, str, PaddingStrategy] = False , lowercase_ : Optional[int] = None , lowercase_ : bool = False , lowercase_ : Optional[int] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[bool] = None , **lowercase_ : List[str] , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.') else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') SCREAMING_SNAKE_CASE_ : str = isinstance(lowercase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}') SCREAMING_SNAKE_CASE_ : List[str] = is_batched_numpy or ( isinstance(lowercase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: SCREAMING_SNAKE_CASE_ : Union[str, Any] = [np.asarray(lowercase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(lowercase_ , np.ndarray): SCREAMING_SNAKE_CASE_ : int = np.asarray(lowercase_ , dtype=np.floataa) elif isinstance(lowercase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): SCREAMING_SNAKE_CASE_ : Optional[Any] = raw_speech.astype(np.floataa) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ : Optional[int] = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE_ : Dict = [self._extract_fbank_features(lowercase_) for waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchFeature({'''input_features''': features}) SCREAMING_SNAKE_CASE_ : Dict = self.pad( lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) # make sure list is in array format SCREAMING_SNAKE_CASE_ : Tuple = padded_inputs.get('''input_features''') if isinstance(input_features[0] , lowercase_): SCREAMING_SNAKE_CASE_ : List[str] = [np.asarray(lowercase_ , dtype=np.floataa) for feature in input_features] SCREAMING_SNAKE_CASE_ : Optional[int] = padded_inputs.get('''attention_mask''') if attention_mask is not None: SCREAMING_SNAKE_CASE_ : Any = [np.asarray(lowercase_ , dtype=np.intaa) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( np.array(lowercase_ , dtype=np.intaa) if self._get_padding_strategies(lowercase_ , max_length=lowercase_) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE_ : Tuple = self.normalize( padded_inputs['''input_features'''] , attention_mask=lowercase_) if return_tensors is not None: SCREAMING_SNAKE_CASE_ : str = padded_inputs.convert_to_tensors(lowercase_) return padded_inputs
512
1
import argparse import json from tqdm import tqdm def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=A__ , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=A__ , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=A__ , help='''where to store parsed gold_data_path file''' , ) UpperCAmelCase = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: UpperCAmelCase = json.load(A__ ) for dpr_record in tqdm(A__ ): UpperCAmelCase = dpr_record['''question'''] UpperCAmelCase = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(A__ ) + '''\n''' ) if __name__ == "__main__": main()
391
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( A__: Optional[int] , A__: List[Any] , A__: str ): '''simple docstring''' UpperCAmelCase = LxmertConfig.from_json_file(A__ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase = LxmertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A__ , A__ , A__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
391
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCamelCase_( unittest.TestCase, A__ ): '''simple docstring''' def snake_case__ ( self ): _lowerCamelCase = load_tool('''text-classification''' ) self.tool.setup() _lowerCamelCase = load_tool('''text-classification''' , remote=lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(lowerCamelCase__ , '''positive''' ) def snake_case__ ( self ): _lowerCamelCase = self.remote_tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(lowerCamelCase__ , '''positive''' ) def snake_case__ ( self ): _lowerCamelCase = self.tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(lowerCamelCase__ , '''positive''' ) def snake_case__ ( self ): _lowerCamelCase = self.remote_tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(lowerCamelCase__ , '''positive''' )
661
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase_( A__, A__, A__ ): '''simple docstring''' lowercase__ : List[Any] = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = 5_0_2_5_7 , lowerCamelCase__ = 1_0_2_4 , lowerCamelCase__ = 7_6_8 , lowerCamelCase__ = 1_2 , lowerCamelCase__ = 1_2 , lowerCamelCase__ = None , lowerCamelCase__ = "gelu_new" , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 1e-5 , lowerCamelCase__ = 0.0_2 , lowerCamelCase__ = True , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = False , ): super().__init__() _lowerCamelCase = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) _lowerCamelCase = prefix_inner_dim _lowerCamelCase = prefix_hidden_dim _lowerCamelCase = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCamelCase = ( nn.Linear(self.prefix_hidden_dim , lowerCamelCase__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCamelCase = GPTaConfig( vocab_size=lowerCamelCase__ , n_positions=lowerCamelCase__ , n_embd=lowerCamelCase__ , n_layer=lowerCamelCase__ , n_head=lowerCamelCase__ , n_inner=lowerCamelCase__ , activation_function=lowerCamelCase__ , resid_pdrop=lowerCamelCase__ , embd_pdrop=lowerCamelCase__ , attn_pdrop=lowerCamelCase__ , layer_norm_epsilon=lowerCamelCase__ , initializer_range=lowerCamelCase__ , scale_attn_weights=lowerCamelCase__ , use_cache=lowerCamelCase__ , scale_attn_by_inverse_layer_idx=lowerCamelCase__ , reorder_and_upcast_attn=lowerCamelCase__ , ) _lowerCamelCase = GPTaLMHeadModel(lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , ): _lowerCamelCase = self.transformer.transformer.wte(lowerCamelCase__ ) _lowerCamelCase = self.encode_prefix(lowerCamelCase__ ) _lowerCamelCase = self.decode_prefix(lowerCamelCase__ ) _lowerCamelCase = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _lowerCamelCase = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _lowerCamelCase = torch.cat((dummy_token, input_ids) , dim=1 ) _lowerCamelCase = self.transformer(inputs_embeds=lowerCamelCase__ , labels=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): return torch.zeros(lowerCamelCase__ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ ): return self.encode_prefix(lowerCamelCase__ ) @torch.no_grad() def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = torch.split(lowerCamelCase__ , 1 , dim=0 ) _lowerCamelCase = [] _lowerCamelCase = [] for feature in features: _lowerCamelCase = self.decode_prefix(feature.to(lowerCamelCase__ ) ) # back to the clip feature # Only support beam search for now _lowerCamelCase , _lowerCamelCase = self.generate_beam( input_embeds=lowerCamelCase__ , device=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _lowerCamelCase = torch.stack(lowerCamelCase__ ) _lowerCamelCase = torch.stack(lowerCamelCase__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case__ ( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = 5 , lowerCamelCase__ = 6_7 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = None , ): _lowerCamelCase = eos_token_id _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = torch.ones(lowerCamelCase__ , device=lowerCamelCase__ , dtype=torch.int ) _lowerCamelCase = torch.zeros(lowerCamelCase__ , device=lowerCamelCase__ , dtype=torch.bool ) if input_embeds is not None: _lowerCamelCase = input_embeds else: _lowerCamelCase = self.transformer.transformer.wte(lowerCamelCase__ ) for i in range(lowerCamelCase__ ): _lowerCamelCase = self.transformer(inputs_embeds=lowerCamelCase__ ) _lowerCamelCase = outputs.logits _lowerCamelCase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _lowerCamelCase = logits.softmax(-1 ).log() if scores is None: _lowerCamelCase , _lowerCamelCase = logits.topk(lowerCamelCase__ , -1 ) _lowerCamelCase = generated.expand(lowerCamelCase__ , *generated.shape[1:] ) _lowerCamelCase , _lowerCamelCase = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _lowerCamelCase = next_tokens else: _lowerCamelCase = tokens.expand(lowerCamelCase__ , *tokens.shape[1:] ) _lowerCamelCase = torch.cat((tokens, next_tokens) , dim=1 ) else: _lowerCamelCase = -float(np.inf ) _lowerCamelCase = 0 _lowerCamelCase = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _lowerCamelCase = scores_sum / seq_lengths[:, None] _lowerCamelCase , _lowerCamelCase = scores_sum_average.view(-1 ).topk(lowerCamelCase__ , -1 ) _lowerCamelCase = next_tokens // scores_sum.shape[1] _lowerCamelCase = seq_lengths[next_tokens_source] _lowerCamelCase = next_tokens % scores_sum.shape[1] _lowerCamelCase = next_tokens.unsqueeze(1 ) _lowerCamelCase = tokens[next_tokens_source] _lowerCamelCase = torch.cat((tokens, next_tokens) , dim=1 ) _lowerCamelCase = generated[next_tokens_source] _lowerCamelCase = scores_sum_average * seq_lengths _lowerCamelCase = is_stopped[next_tokens_source] _lowerCamelCase = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _lowerCamelCase = torch.cat((generated, next_token_embed) , dim=1 ) _lowerCamelCase = is_stopped + next_tokens.eq(lowerCamelCase__ ).squeeze() if is_stopped.all(): break _lowerCamelCase = scores / seq_lengths _lowerCamelCase = scores.argsort(descending=lowerCamelCase__ ) # tokens tensors are already padded to max_seq_length _lowerCamelCase = [tokens[i] for i in order] _lowerCamelCase = torch.stack(lowerCamelCase__ , dim=0 ) _lowerCamelCase = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
661
1
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=2 , snake_case__=99 , snake_case__=0 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=2 , snake_case__=4 , snake_case__="last" , snake_case__=True , snake_case__=None , snake_case__=0 , ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = parent _SCREAMING_SNAKE_CASE : Any = batch_size _SCREAMING_SNAKE_CASE : Any = seq_length _SCREAMING_SNAKE_CASE : str = is_training _SCREAMING_SNAKE_CASE : List[Any] = use_input_lengths _SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids _SCREAMING_SNAKE_CASE : Dict = use_labels _SCREAMING_SNAKE_CASE : List[str] = gelu_activation _SCREAMING_SNAKE_CASE : Any = sinusoidal_embeddings _SCREAMING_SNAKE_CASE : Optional[int] = causal _SCREAMING_SNAKE_CASE : str = asm _SCREAMING_SNAKE_CASE : Optional[Any] = n_langs _SCREAMING_SNAKE_CASE : Dict = vocab_size _SCREAMING_SNAKE_CASE : Tuple = n_special _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : str = num_hidden_layers _SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings _SCREAMING_SNAKE_CASE : int = type_sequence_label_size _SCREAMING_SNAKE_CASE : Optional[int] = initializer_range _SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels _SCREAMING_SNAKE_CASE : Tuple = num_choices _SCREAMING_SNAKE_CASE : Optional[int] = summary_type _SCREAMING_SNAKE_CASE : Dict = use_proj _SCREAMING_SNAKE_CASE : Optional[int] = scope _SCREAMING_SNAKE_CASE : int = bos_token_id def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : List[str] = None if self.use_input_lengths: _SCREAMING_SNAKE_CASE : Any = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _SCREAMING_SNAKE_CASE : Any = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _SCREAMING_SNAKE_CASE : int = None _SCREAMING_SNAKE_CASE : Dict = None _SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: _SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , 2 ).float() _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = XLMModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : Any = model(snake_case__ , lengths=snake_case__ , langs=snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case__ , langs=snake_case__ ) _SCREAMING_SNAKE_CASE : List[str] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = XLMWithLMHeadModel(snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : Any = model(snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = XLMForQuestionAnsweringSimple(snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : List[str] = model(snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ ) _SCREAMING_SNAKE_CASE : Tuple = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = XLMForQuestionAnswering(snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : str = model(snake_case__ ) _SCREAMING_SNAKE_CASE : Tuple = model( snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , cls_index=snake_case__ , is_impossible=snake_case__ , p_mask=snake_case__ , ) _SCREAMING_SNAKE_CASE : List[str] = model( snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , cls_index=snake_case__ , is_impossible=snake_case__ , ) ((_SCREAMING_SNAKE_CASE) , ) : Any = result_with_labels.to_tuple() _SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ ) ((_SCREAMING_SNAKE_CASE) , ) : List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = XLMForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : Optional[int] = model(snake_case__ ) _SCREAMING_SNAKE_CASE : Tuple = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels _SCREAMING_SNAKE_CASE : List[Any] = XLMForTokenClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : str = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = self.num_choices _SCREAMING_SNAKE_CASE : Optional[int] = XLMForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() _SCREAMING_SNAKE_CASE : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : List[Any] = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : Dict = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A__ = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _SCREAMING_SNAKE_CASE : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = XLMModelTester(self ) _SCREAMING_SNAKE_CASE : Any = ConfigTester(self , config_class=snake_case__ , emb_dim=37 ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case__ ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=False , snake_case__=1 ): """simple docstring""" self.assertIsInstance(snake_case__ , snake_case__ ) self.assertListEqual( [isinstance(snake_case__ , snake_case__ ) for iter_attentions in attentions] , [True] * len(snake_case__ ) ) self.assertEqual(len(snake_case__ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case__ ): # adds PAD dummy token _SCREAMING_SNAKE_CASE : Dict = min_length + idx + 1 _SCREAMING_SNAKE_CASE : List[Any] = min_length + idx + 1 _SCREAMING_SNAKE_CASE : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case__ ) ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=False , snake_case__=1 ): """simple docstring""" self.assertIsInstance(snake_case__ , snake_case__ ) self.assertListEqual( [isinstance(snake_case__ , snake_case__ ) for iter_hidden_states in hidden_states] , [True] * len(snake_case__ ) , ) self.assertEqual(len(snake_case__ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case__ ): # adds PAD dummy token _SCREAMING_SNAKE_CASE : Dict = min_length + idx + 1 _SCREAMING_SNAKE_CASE : List[str] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case__ ) , ) pass @slow def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : List[str] = XLMModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[14, 447]] , dtype=torch.long , device=snake_case__ ) # the president _SCREAMING_SNAKE_CASE : List[str] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _SCREAMING_SNAKE_CASE : Any = model.generate(snake_case__ , do_sample=snake_case__ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case__ )
295
"""simple docstring""" from collections.abc import Iterable from typing import Any class UpperCamelCase : def __init__( self , snake_case__ = None ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = value _SCREAMING_SNAKE_CASE : Node | None = None # Added in order to delete a node easier _SCREAMING_SNAKE_CASE : Node | None = None _SCREAMING_SNAKE_CASE : Node | None = None def __repr__( self ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'''{self.value}''': (self.left, self.right)} , indent=1 ) class UpperCamelCase : def __init__( self , snake_case__ = None ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = root def __str__( self ): """simple docstring""" return str(self.root ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" if new_children is not None: # reset its kids _SCREAMING_SNAKE_CASE : Dict = node.parent if node.parent is not None: # reset its parent if self.is_right(snake_case__ ): # If it is the right children _SCREAMING_SNAKE_CASE : Any = new_children else: _SCREAMING_SNAKE_CASE : Union[str, Any] = new_children else: _SCREAMING_SNAKE_CASE : Any = new_children def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" if node.parent and node.parent.right: return node == node.parent.right return False def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return self.root is None def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = Node(snake_case__ ) # create a new Node if self.empty(): # if Tree is empty _SCREAMING_SNAKE_CASE : str = new_node # set its root else: # Tree is not empty _SCREAMING_SNAKE_CASE : Dict = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: _SCREAMING_SNAKE_CASE : Union[str, Any] = new_node # We insert the new node in a leaf break else: _SCREAMING_SNAKE_CASE : int = parent_node.left else: if parent_node.right is None: _SCREAMING_SNAKE_CASE : str = new_node break else: _SCREAMING_SNAKE_CASE : Optional[int] = parent_node.right _SCREAMING_SNAKE_CASE : Any = parent_node def __SCREAMING_SNAKE_CASE ( self , *snake_case__ ): """simple docstring""" for value in values: self.__insert(snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: _SCREAMING_SNAKE_CASE : Optional[int] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: _SCREAMING_SNAKE_CASE : List[Any] = node.left if value < node.value else node.right return node def __SCREAMING_SNAKE_CASE ( self , snake_case__ = None ): """simple docstring""" if node is None: if self.root is None: return None _SCREAMING_SNAKE_CASE : Optional[Any] = self.root if not self.empty(): while node.right is not None: _SCREAMING_SNAKE_CASE : Dict = node.right return node def __SCREAMING_SNAKE_CASE ( self , snake_case__ = None ): """simple docstring""" if node is None: _SCREAMING_SNAKE_CASE : List[Any] = self.root if self.root is None: return None if not self.empty(): _SCREAMING_SNAKE_CASE : Any = self.root while node.left is not None: _SCREAMING_SNAKE_CASE : Optional[int] = node.left return node def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = self.search(snake_case__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(snake_case__ , snake_case__ ) elif node.left is None: # Has only right children self.__reassign_nodes(snake_case__ , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(snake_case__ , node.left ) else: _SCREAMING_SNAKE_CASE : Dict = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore _SCREAMING_SNAKE_CASE : List[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __SCREAMING_SNAKE_CASE ( self , snake_case__=None ): """simple docstring""" if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" if node: self.inorder(snake_case__ , node.left ) arr.append(node.value ) self.inorder(snake_case__ , node.right ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : list[int] = [] self.inorder(snake_case__ , snake_case__ ) # append all values to list using inorder traversal return arr[k - 1] def _lowerCAmelCase ( lowerCamelCase__ : Node | None ) -> list[Node]: _SCREAMING_SNAKE_CASE : Optional[int] = [] if curr_node is not None: _SCREAMING_SNAKE_CASE : int = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _lowerCAmelCase ( ) -> None: _SCREAMING_SNAKE_CASE : Any = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7) _SCREAMING_SNAKE_CASE : List[Any] = BinarySearchTree() for i in testlist: t.insert(lowerCamelCase__ ) # Prints all the elements of the list in order traversal print(lowerCamelCase__ ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: ", t.get_max().value ) # type: ignore print("Min Value: ", t.get_min().value ) # type: ignore for i in testlist: t.remove(lowerCamelCase__ ) print(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
295
1
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __magic_name__ ( unittest.TestCase ): def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Any =torch.nn.Linear(1_0 , 1_0) _UpperCAmelCase : Optional[int] =torch.optim.SGD(model.parameters() , 0.1) _UpperCAmelCase : Tuple =Accelerator() _UpperCAmelCase : int =accelerator.prepare(snake_case) try: pickle.loads(pickle.dumps(snake_case)) except Exception as e: self.fail(f"Accelerated optimizer pickling failed with {e}") AcceleratorState._reset_state()
446
'''simple docstring''' from __future__ import annotations import time import numpy as np lowercase =[8, 5, 9, 7] lowercase =[ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowercase =[ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __magic_name__ : def __init__( self , snake_case , snake_case , snake_case , ) -> None: '''simple docstring''' _UpperCAmelCase : Optional[Any] =claim_vector _UpperCAmelCase : Optional[int] =allocated_resources_table _UpperCAmelCase : int =maximum_claim_table def lowerCAmelCase ( self) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table) for i in range(len(self.__allocated_resources_table[0])) ] def lowerCAmelCase ( self) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector) - np.array( self.__processes_resource_summation()) def lowerCAmelCase ( self) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i]) - np.array(snake_case)) for i, allocated_resource in enumerate(self.__allocated_resources_table) ] def lowerCAmelCase ( self) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(snake_case): i for i in self.__need()} def lowerCAmelCase ( self , **snake_case) -> None: '''simple docstring''' _UpperCAmelCase : Any =self.__need() _UpperCAmelCase : str =self.__allocated_resources_table _UpperCAmelCase : Dict =self.__available_resources() _UpperCAmelCase : Tuple =self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 5_0 + '\n') while need_list: _UpperCAmelCase : Any =False for each_need in need_list: _UpperCAmelCase : Any =True for index, need in enumerate(snake_case): if need > available_resources[index]: _UpperCAmelCase : Optional[int] =False break if execution: _UpperCAmelCase : Union[str, Any] =True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _UpperCAmelCase : List[str] =original_need_index print(f"Process {process_number + 1} is executing.") # remove the process run from stack need_list.remove(snake_case) # update available/freed resources stack _UpperCAmelCase : Any =np.array(snake_case) + np.array( alloc_resources_table[process_number]) print( 'Updated available resource stack for processes: ' + ' '.join([str(snake_case) for x in available_resources])) break if safe: print('The process is in a safe state.\n') else: print('System in unsafe state. Aborting...\n') break def lowerCAmelCase ( self) -> Dict: '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table') for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(snake_case) + 1}" + ' '.join(f"{it:>8}" for it in item) + '\n') print(' ' * 9 + 'System Resource Table') for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(snake_case) + 1}" + ' '.join(f"{it:>8}" for it in item) + '\n') print( 'Current Usage by Active Processes: ' + ' '.join(str(snake_case) for x in self.__claim_vector)) print( 'Initial Available Resources: ' + ' '.join(str(snake_case) for x in self.__available_resources())) time.sleep(1) if __name__ == "__main__": import doctest doctest.testmod()
446
1
from abc import ABC, abstractmethod from typing import List, Optional class snake_case_ (lowercase__ ): """simple docstring""" def __init__( self): """simple docstring""" self.test() def A_ ( self): """simple docstring""" UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Dict = False while not completed: if counter == 1: self.reset() UpperCAmelCase_ : Dict = self.advance() if not self.does_advance(lowercase): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.") UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.update(lowercase) counter += 1 if counter > 10000: raise Exception("update() does not fulfill the constraint.") if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly.") @abstractmethod def A_ ( self): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""") @abstractmethod def A_ ( self ,lowercase): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""") @abstractmethod def A_ ( self ,lowercase): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""") @abstractmethod def A_ ( self): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""") @abstractmethod def A_ ( self): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""") @abstractmethod def A_ ( self ,lowercase=False): """simple docstring""" raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""") class snake_case_ (lowercase__ ): """simple docstring""" def __init__( self ,lowercase): """simple docstring""" super(lowercase ,self).__init__() if not isinstance(lowercase ,lowercase) or len(lowercase) == 0: raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""") if any((not isinstance(lowercase ,lowercase) or token_id < 0) for token_id in token_ids): raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""") UpperCAmelCase_ : str = token_ids UpperCAmelCase_ : Union[str, Any] = len(self.token_ids) UpperCAmelCase_ : str = -1 # the index of the currently fulfilled step UpperCAmelCase_ : str = False def A_ ( self): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def A_ ( self ,lowercase): """simple docstring""" if not isinstance(lowercase ,lowercase): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(lowercase)}""") if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def A_ ( self ,lowercase): """simple docstring""" if not isinstance(lowercase ,lowercase): raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(lowercase)}""") UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Dict = False if self.does_advance(lowercase): self.fulfilled_idx += 1 UpperCAmelCase_ : Union[str, Any] = True if self.fulfilled_idx == (self.seqlen - 1): UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Optional[Any] = completed else: # failed to make progress. UpperCAmelCase_ : Optional[Any] = True self.reset() return stepped, completed, reset def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Optional[int] = 0 def A_ ( self): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def A_ ( self ,lowercase=False): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = PhrasalConstraint(self.token_ids) if stateful: UpperCAmelCase_ : Tuple = self.seqlen UpperCAmelCase_ : Any = self.fulfilled_idx UpperCAmelCase_ : Optional[int] = self.completed return new_constraint class snake_case_ : """simple docstring""" def __init__( self ,lowercase ,lowercase=True): """simple docstring""" UpperCAmelCase_ : Optional[Any] = max([len(lowercase) for one in nested_token_ids]) UpperCAmelCase_ : Tuple = {} for token_ids in nested_token_ids: UpperCAmelCase_ : Optional[int] = root for tidx, token_id in enumerate(lowercase): if token_id not in level: UpperCAmelCase_ : int = {} UpperCAmelCase_ : int = level[token_id] if no_subsets and self.has_subsets(lowercase ,lowercase): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" F""" {nested_token_ids}.""") UpperCAmelCase_ : Optional[int] = root def A_ ( self ,lowercase): """simple docstring""" UpperCAmelCase_ : Tuple = self.trie for current_token in current_seq: UpperCAmelCase_ : Union[str, Any] = start[current_token] UpperCAmelCase_ : str = list(start.keys()) return next_tokens def A_ ( self ,lowercase): """simple docstring""" UpperCAmelCase_ : Any = self.next_tokens(lowercase) return len(lowercase) == 0 def A_ ( self ,lowercase): """simple docstring""" UpperCAmelCase_ : List[Any] = list(root.values()) if len(lowercase) == 0: return 1 else: return sum([self.count_leaves(lowercase) for nn in next_nodes]) def A_ ( self ,lowercase ,lowercase): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.count_leaves(lowercase) return len(lowercase) != leaf_count class snake_case_ (lowercase__ ): """simple docstring""" def __init__( self ,lowercase): """simple docstring""" super(lowercase ,self).__init__() if not isinstance(lowercase ,lowercase) or len(lowercase) == 0: raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""") if any(not isinstance(lowercase ,lowercase) for token_ids in nested_token_ids): raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""") if any( any((not isinstance(lowercase ,lowercase) or token_id < 0) for token_id in token_ids) for token_ids in nested_token_ids): raise ValueError( F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""") UpperCAmelCase_ : Dict = DisjunctiveTrie(lowercase) UpperCAmelCase_ : Tuple = nested_token_ids UpperCAmelCase_ : Optional[int] = self.trie.max_height UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Any = False def A_ ( self): """simple docstring""" UpperCAmelCase_ : int = self.trie.next_tokens(self.current_seq) if len(lowercase) == 0: return None else: return token_list def A_ ( self ,lowercase): """simple docstring""" if not isinstance(lowercase ,lowercase): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowercase)}""") UpperCAmelCase_ : List[str] = self.trie.next_tokens(self.current_seq) return token_id in next_tokens def A_ ( self ,lowercase): """simple docstring""" if not isinstance(lowercase ,lowercase): raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowercase)}""") UpperCAmelCase_ : Optional[int] = False UpperCAmelCase_ : Dict = False UpperCAmelCase_ : List[Any] = False if self.does_advance(lowercase): self.current_seq.append(lowercase) UpperCAmelCase_ : Tuple = True else: UpperCAmelCase_ : Union[str, Any] = True self.reset() UpperCAmelCase_ : Optional[Any] = self.trie.reached_leaf(self.current_seq) UpperCAmelCase_ : List[str] = completed return stepped, completed, reset def A_ ( self): """simple docstring""" UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : List[str] = [] def A_ ( self): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq) def A_ ( self ,lowercase=False): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = DisjunctiveConstraint(self.token_ids) if stateful: UpperCAmelCase_ : int = self.seqlen UpperCAmelCase_ : Optional[int] = self.current_seq UpperCAmelCase_ : List[str] = self.completed return new_constraint class snake_case_ : """simple docstring""" def __init__( self ,lowercase): """simple docstring""" UpperCAmelCase_ : int = constraints # max # of steps required to fulfill a given constraint UpperCAmelCase_ : Union[str, Any] = max([c.seqlen for c in constraints]) UpperCAmelCase_ : Optional[int] = len(lowercase) UpperCAmelCase_ : Optional[Any] = False self.init_state() def A_ ( self): """simple docstring""" UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Any = None UpperCAmelCase_ : Union[str, Any] = [constraint.copy(stateful=lowercase) for constraint in self.constraints] def A_ ( self): """simple docstring""" UpperCAmelCase_ : Dict = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints) * self.max_seqlen) + add def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCAmelCase_ : Dict = constraint.advance() if isinstance(lowercase ,lowercase): token_list.append(lowercase) elif isinstance(lowercase ,lowercase): token_list.extend(lowercase) else: UpperCAmelCase_ : str = self.inprogress_constraint.advance() if isinstance(lowercase ,lowercase): token_list.append(lowercase) elif isinstance(lowercase ,lowercase): token_list.extend(lowercase) if len(lowercase) == 0: return None else: return token_list def A_ ( self ,lowercase): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.add(lowercase) # the entire list of constraints are fulfilled if self.completed: break def A_ ( self ,lowercase): """simple docstring""" if not isinstance(lowercase ,lowercase): raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""") UpperCAmelCase_ , UpperCAmelCase_ : int = False, False if self.completed: UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Optional[int] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.inprogress_constraint.update(lowercase) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowercase)) UpperCAmelCase_ : Any = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint) UpperCAmelCase_ : Optional[int] = None if len(self.pending_constraints) == 0: # we're done! UpperCAmelCase_ : str = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints): if pending_constraint.does_advance(lowercase): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = pending_constraint.update(lowercase) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true.") if complete: self.complete_constraints.append(lowercase) UpperCAmelCase_ : List[str] = None if not complete and stepped: UpperCAmelCase_ : List[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCAmelCase_ : int = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCAmelCase_ : int = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def A_ ( self ,lowercase=True): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = ConstraintListState(self.constraints) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCAmelCase_ : str = [ constraint.copy(stateful=lowercase) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCAmelCase_ : Union[str, Any] = self.inprogress_constraint.copy(stateful=lowercase) UpperCAmelCase_ : Tuple = [constraint.copy() for constraint in self.pending_constraints] return new_state
455
import logging from transformers import PretrainedConfig __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = """bertabs""" def __init__( self ,lowercase=30522 ,lowercase=512 ,lowercase=6 ,lowercase=512 ,lowercase=8 ,lowercase=512 ,lowercase=0.2 ,lowercase=6 ,lowercase=768 ,lowercase=8 ,lowercase=2048 ,lowercase=0.2 ,**lowercase ,): """simple docstring""" super().__init__(**lowercase) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = max_pos UpperCAmelCase_ : List[str] = enc_layers UpperCAmelCase_ : List[str] = enc_hidden_size UpperCAmelCase_ : Any = enc_heads UpperCAmelCase_ : Any = enc_ff_size UpperCAmelCase_ : Optional[int] = enc_dropout UpperCAmelCase_ : List[str] = dec_layers UpperCAmelCase_ : List[Any] = dec_hidden_size UpperCAmelCase_ : List[str] = dec_heads UpperCAmelCase_ : List[Any] = dec_ff_size UpperCAmelCase_ : List[str] = dec_dropout
455
1
"""simple docstring""" def __magic_name__ ( UpperCamelCase : list[int] ) -> list[int]: a__ = len(UpperCamelCase ) for i in range(UpperCamelCase ): for j in range(i + 1 , UpperCamelCase ): if numbers[j] < numbers[i]: a__ , a__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": a : int = input('Enter numbers separated by a comma:\n').strip() a : Dict = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
273
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowercase(_lowercase ): __snake_case: jnp.ndarray __snake_case: jnp.ndarray class lowercase(nn.Module ): __snake_case: int __snake_case: Tuple[int] = (16, 32, 96, 256) __snake_case: jnp.dtype = jnp.floataa def lowercase__ ( self ) -> Dict: """simple docstring""" a__ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a__ = [] for i in range(len(self.block_out_channels ) - 1 ): a__ = self.block_out_channels[i] a__ = self.block_out_channels[i + 1] a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__SCREAMING_SNAKE_CASE ) a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__SCREAMING_SNAKE_CASE ) a__ = blocks a__ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" a__ = self.conv_in(__SCREAMING_SNAKE_CASE ) a__ = nn.silu(__SCREAMING_SNAKE_CASE ) for block in self.blocks: a__ = block(__SCREAMING_SNAKE_CASE ) a__ = nn.silu(__SCREAMING_SNAKE_CASE ) a__ = self.conv_out(__SCREAMING_SNAKE_CASE ) return embedding @flax_register_to_config class lowercase(nn.Module , _lowercase , _lowercase ): __snake_case: int = 32 __snake_case: int = 4 __snake_case: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __snake_case: Union[bool, Tuple[bool]] = False __snake_case: Tuple[int] = (320, 640, 1280, 1280) __snake_case: int = 2 __snake_case: Union[int, Tuple[int]] = 8 __snake_case: Optional[Union[int, Tuple[int]]] = None __snake_case: int = 1280 __snake_case: float = 0.0 __snake_case: bool = False __snake_case: jnp.dtype = jnp.floataa __snake_case: bool = True __snake_case: int = 0 __snake_case: str = "rgb" __snake_case: Tuple[int] = (16, 32, 96, 256) def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> FrozenDict: """simple docstring""" a__ = (1, self.in_channels, self.sample_size, self.sample_size) a__ = jnp.zeros(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) a__ = jnp.ones((1,) , dtype=jnp.intaa ) a__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) a__ = (1, 3, self.sample_size * 8, self.sample_size * 8) a__ = jnp.zeros(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) a__ , a__ = jax.random.split(__SCREAMING_SNAKE_CASE ) a__ = {'params': params_rng, 'dropout': dropout_rng} return self.init(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )["params"] def lowercase__ ( self ) -> str: """simple docstring""" a__ = self.block_out_channels a__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. a__ = self.num_attention_heads or self.attention_head_dim # input a__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time a__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) a__ = FlaxTimestepEmbedding(__SCREAMING_SNAKE_CASE , dtype=self.dtype ) a__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) a__ = self.only_cross_attention if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ = (num_attention_heads,) * len(self.down_block_types ) # down a__ = [] a__ = [] a__ = block_out_channels[0] a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__SCREAMING_SNAKE_CASE ) for i, down_block_type in enumerate(self.down_block_types ): a__ = output_channel a__ = block_out_channels[i] a__ = i == len(__SCREAMING_SNAKE_CASE ) - 1 if down_block_type == "CrossAttnDownBlock2D": a__ = FlaxCrossAttnDownBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: a__ = FlaxDownBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__SCREAMING_SNAKE_CASE ) for _ in range(self.layers_per_block ): a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__SCREAMING_SNAKE_CASE ) if not is_final_block: a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__SCREAMING_SNAKE_CASE ) a__ = down_blocks a__ = controlnet_down_blocks # mid a__ = block_out_channels[-1] a__ = FlaxUNetMidBlockaDCrossAttn( in_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) a__ = nn.Conv( __SCREAMING_SNAKE_CASE , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" a__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": a__ = jnp.flip(__SCREAMING_SNAKE_CASE , axis=1 ) # 1. time if not isinstance(__SCREAMING_SNAKE_CASE , jnp.ndarray ): a__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__SCREAMING_SNAKE_CASE , jnp.ndarray ) and len(timesteps.shape ) == 0: a__ = timesteps.astype(dtype=jnp.floataa ) a__ = jnp.expand_dims(__SCREAMING_SNAKE_CASE , 0 ) a__ = self.time_proj(__SCREAMING_SNAKE_CASE ) a__ = self.time_embedding(__SCREAMING_SNAKE_CASE ) # 2. pre-process a__ = jnp.transpose(__SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) a__ = self.conv_in(__SCREAMING_SNAKE_CASE ) a__ = jnp.transpose(__SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) a__ = self.controlnet_cond_embedding(__SCREAMING_SNAKE_CASE ) sample += controlnet_cond # 3. down a__ = (sample,) for down_block in self.down_blocks: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a__ , a__ = down_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) else: a__ , a__ = down_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) down_block_res_samples += res_samples # 4. mid a__ = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) # 5. contronet blocks a__ = () for down_block_res_sample, controlnet_block in zip(__SCREAMING_SNAKE_CASE , self.controlnet_down_blocks ): a__ = controlnet_block(__SCREAMING_SNAKE_CASE ) controlnet_down_block_res_samples += (down_block_res_sample,) a__ = controlnet_down_block_res_samples a__ = self.controlnet_mid_block(__SCREAMING_SNAKE_CASE ) # 6. scaling a__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__SCREAMING_SNAKE_CASE , mid_block_res_sample=__SCREAMING_SNAKE_CASE )
273
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __lowerCAmelCase : Dict = (720, 1_280) # Height, Width __lowerCAmelCase : int = (0.4, 0.6) # if height or width lower than this scale, drop it. __lowerCAmelCase : str = 1 / 100 __lowerCAmelCase : Optional[Any] = "" __lowerCAmelCase : str = "" __lowerCAmelCase : Optional[int] = "" __lowerCAmelCase : int = 250 def UpperCAmelCase_ ( ) -> None: __lowercase : Tuple = get_dataset(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for index in range(SCREAMING_SNAKE_CASE_ ): __lowercase : str = random.sample(range(len(SCREAMING_SNAKE_CASE_ ) ) , 4 ) __lowercase : Tuple = update_image_and_anno( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , filter_scale=SCREAMING_SNAKE_CASE_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowercase : int = random_chars(32 ) __lowercase : List[str] = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] __lowercase : Optional[int] = F'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(F'{file_root}.jpg' , SCREAMING_SNAKE_CASE_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) __lowercase : List[str] = [] for anno in new_annos: __lowercase : Dict = anno[3] - anno[1] __lowercase : Optional[int] = anno[4] - anno[2] __lowercase : Optional[Any] = anno[1] + width / 2 __lowercase : Tuple = anno[2] + height / 2 __lowercase : int = F'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(SCREAMING_SNAKE_CASE_ ) with open(F'{file_root}.txt' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> tuple[list, list]: __lowercase : int = [] __lowercase : Any = [] for label_file in glob.glob(os.path.join(SCREAMING_SNAKE_CASE_ , '''*.txt''' ) ): __lowercase : List[str] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(SCREAMING_SNAKE_CASE_ ) as in_file: __lowercase : Union[str, Any] = in_file.readlines() __lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE_ , F'{label_name}.jpg' ) __lowercase : int = [] for obj_list in obj_lists: __lowercase : Optional[Any] = obj_list.rstrip('''\n''' ).split(''' ''' ) __lowercase : Tuple = float(obj[1] ) - float(obj[3] ) / 2 __lowercase : List[Any] = float(obj[2] ) - float(obj[4] ) / 2 __lowercase : Any = float(obj[1] ) + float(obj[3] ) / 2 __lowercase : Any = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(SCREAMING_SNAKE_CASE_ ) labels.append(SCREAMING_SNAKE_CASE_ ) return img_paths, labels def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0.0 , ) -> tuple[list, list, str]: __lowercase : Optional[int] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __lowercase : Union[str, Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowercase : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowercase : Any = int(scale_x * output_size[1] ) __lowercase : str = int(scale_y * output_size[0] ) __lowercase : Dict = [] __lowercase : List[str] = [] for i, index in enumerate(SCREAMING_SNAKE_CASE_ ): __lowercase : List[Any] = all_img_list[index] path_list.append(SCREAMING_SNAKE_CASE_ ) __lowercase : Tuple = all_annos[index] __lowercase : int = cva.imread(SCREAMING_SNAKE_CASE_ ) if i == 0: # top-left __lowercase : Optional[Any] = cva.resize(SCREAMING_SNAKE_CASE_ , (divid_point_x, divid_point_y) ) __lowercase : int = img for bbox in img_annos: __lowercase : Union[str, Any] = bbox[1] * scale_x __lowercase : List[str] = bbox[2] * scale_y __lowercase : Union[str, Any] = bbox[3] * scale_x __lowercase : Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __lowercase : Tuple = cva.resize(SCREAMING_SNAKE_CASE_ , (output_size[1] - divid_point_x, divid_point_y) ) __lowercase : Tuple = img for bbox in img_annos: __lowercase : Any = scale_x + bbox[1] * (1 - scale_x) __lowercase : Optional[Any] = bbox[2] * scale_y __lowercase : Optional[int] = scale_x + bbox[3] * (1 - scale_x) __lowercase : Dict = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __lowercase : List[str] = cva.resize(SCREAMING_SNAKE_CASE_ , (divid_point_x, output_size[0] - divid_point_y) ) __lowercase : int = img for bbox in img_annos: __lowercase : Union[str, Any] = bbox[1] * scale_x __lowercase : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) __lowercase : List[Any] = bbox[3] * scale_x __lowercase : Union[str, Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __lowercase : Optional[Any] = cva.resize( SCREAMING_SNAKE_CASE_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __lowercase : int = img for bbox in img_annos: __lowercase : int = scale_x + bbox[1] * (1 - scale_x) __lowercase : List[Any] = scale_y + bbox[2] * (1 - scale_y) __lowercase : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) __lowercase : List[Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __lowercase : Any = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowercase : Tuple = ascii_lowercase + digits return "".join(random.choice(SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": main() print("DONE ✅")
702
from math import factorial __lowerCAmelCase : Dict = {str(d): factorial(d) for d in range(10)} def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(__lowerCAmelCase ) ) def UpperCAmelCase_ ( ) -> int: __lowercase : int = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , __lowerCAmelCase ) if sum_of_digit_factorial(__lowerCAmelCase ) == i ) if __name__ == "__main__": print(F'{solution() = }')
284
0
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A_ : '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self ): return self.get_dummy_input() @property def SCREAMING_SNAKE_CASE__ ( self ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case=True , snake_case=False , snake_case=False , snake_case=False , ): lowercase = 4 lowercase = 32 lowercase = (32, 32) lowercase = torch.manual_seed(0 ) lowercase = torch.device(snake_case ) lowercase = (batch_size, num_channels) + sizes lowercase = randn_tensor(snake_case , generator=snake_case , device=snake_case ) lowercase = {'hidden_states': hidden_states} if include_temb: lowercase = 128 lowercase = randn_tensor((batch_size, temb_channels) , generator=snake_case , device=snake_case ) if include_res_hidden_states_tuple: lowercase = torch.manual_seed(1 ) lowercase = (randn_tensor(snake_case , generator=snake_case , device=snake_case ),) if include_encoder_hidden_states: lowercase = floats_tensor((batch_size, 32, 32) ).to(snake_case ) if include_skip_sample: lowercase = randn_tensor(((batch_size, 3) + sizes) , generator=snake_case , device=snake_case ) return dummy_input def SCREAMING_SNAKE_CASE__ ( self ): lowercase = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 128, } if self.block_type == "up": lowercase = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) lowercase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase , lowercase = self.prepare_init_args_and_inputs_for_common() lowercase = self.block_class(**snake_case ) unet_block.to(snake_case ) unet_block.eval() with torch.no_grad(): lowercase = unet_block(**snake_case ) if isinstance(snake_case , snake_case ): lowercase = output[0] self.assertEqual(output.shape , self.output_shape ) lowercase = output[0, -1, -3:, -3:] lowercase = torch.tensor(snake_case ).to(snake_case ) assert torch_all_close(output_slice.flatten() , snake_case , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.prepare_init_args_and_inputs_for_common() lowercase = self.block_class(**snake_case ) model.to(snake_case ) model.train() lowercase = model(**snake_case ) if isinstance(snake_case , snake_case ): lowercase = output[0] lowercase = torch.device(snake_case ) lowercase = randn_tensor(output.shape , device=snake_case ) lowercase = torch.nn.functional.mse_loss(snake_case , snake_case ) loss.backward()
84
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCAmelCase = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
84
1
'''simple docstring''' from heapq import heappop, heappush import numpy as np def _lowercase ( UpperCamelCase__ : np.ndarray, UpperCamelCase__ : tuple[int, int], UpperCamelCase__ : tuple[int, int], UpperCamelCase__ : bool, ): __A : Optional[Any] = grid.shape __A : List[Any] = [-1, 1, 0, 0] __A : Optional[int] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __A : int = [(0, source)], set() __A : Any = np.full((rows, cols), np.inf ) __A : int = 0 __A : Any = np.empty((rows, cols), dtype=UpperCamelCase__ ) __A : List[Any] = None while queue: (__A) : List[Any] = heappop(UpperCamelCase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __A : Tuple = [] while (x, y) != source: path.append((x, y) ) __A : int = predecessors[x, y] path.append(UpperCamelCase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCamelCase__ ) ): __A : List[Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __A : str = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCamelCase__, (dist + 1, (nx, ny)) ) __A : int = dist + 1 __A : List[str] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' from collections.abc import Sequence def _lowercase ( UpperCamelCase__ : Sequence[float], UpperCamelCase__ : float ): return sum(c * (x**i) for i, c in enumerate(UpperCamelCase__ ) ) def _lowercase ( UpperCamelCase__ : Sequence[float], UpperCamelCase__ : float ): __A : Optional[Any] = 0.0 for coeff in reversed(UpperCamelCase__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : Any = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : Any = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
540
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Any =logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] ={ 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """align_text_model""" def __init__( self , lowerCAmelCase__=3_0_5_2_2 , lowerCAmelCase__=7_6_8 , lowerCAmelCase__=1_2 , lowerCAmelCase__=1_2 , lowerCAmelCase__=3_0_7_2 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Dict = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = hidden_act SCREAMING_SNAKE_CASE_ : int = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE_ : Dict = use_cache SCREAMING_SNAKE_CASE_ : Union[str, Any] = pad_token_id @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": SCREAMING_SNAKE_CASE_ : str = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """align_vision_model""" def __init__( self , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 6_0_0 , lowerCAmelCase__ = 2.0 , lowerCAmelCase__ = 3.1 , lowerCAmelCase__ = 8 , lowerCAmelCase__ = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase__ = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , lowerCAmelCase__ = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , lowerCAmelCase__ = [] , lowerCAmelCase__ = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase__ = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase__ = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase__ = 0.25 , lowerCAmelCase__ = "swish" , lowerCAmelCase__ = 2_5_6_0 , lowerCAmelCase__ = "mean" , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = 0.001 , lowerCAmelCase__ = 0.99 , lowerCAmelCase__ = 0.2 , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : str = num_channels SCREAMING_SNAKE_CASE_ : Dict = image_size SCREAMING_SNAKE_CASE_ : int = width_coefficient SCREAMING_SNAKE_CASE_ : int = depth_coefficient SCREAMING_SNAKE_CASE_ : Optional[int] = depth_divisor SCREAMING_SNAKE_CASE_ : int = kernel_sizes SCREAMING_SNAKE_CASE_ : Optional[int] = in_channels SCREAMING_SNAKE_CASE_ : Dict = out_channels SCREAMING_SNAKE_CASE_ : Optional[Any] = depthwise_padding SCREAMING_SNAKE_CASE_ : List[Any] = strides SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_block_repeats SCREAMING_SNAKE_CASE_ : int = expand_ratios SCREAMING_SNAKE_CASE_ : Union[str, Any] = squeeze_expansion_ratio SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Tuple = hidden_dim SCREAMING_SNAKE_CASE_ : int = pooling_type SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : int = batch_norm_eps SCREAMING_SNAKE_CASE_ : int = batch_norm_momentum SCREAMING_SNAKE_CASE_ : Tuple = drop_connect_rate SCREAMING_SNAKE_CASE_ : List[str] = sum(lowerCAmelCase__ ) * 4 @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": SCREAMING_SNAKE_CASE_ : Optional[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """align""" _UpperCAmelCase = True def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=6_4_0 , lowerCAmelCase__=1.0 , lowerCAmelCase__=0.02 , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) if text_config is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: SCREAMING_SNAKE_CASE_ : List[Any] = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) SCREAMING_SNAKE_CASE_ : Tuple = AlignTextConfig(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = AlignVisionConfig(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = projection_dim SCREAMING_SNAKE_CASE_ : str = temperature_init_value SCREAMING_SNAKE_CASE_ : int = initializer_range @classmethod def UpperCamelCase__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : Any = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ : Optional[int] = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ : Optional[int] = self.__class__.model_type return output
101
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a : Optional[int] = logging.get_logger(__name__) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = R"\w+[.]\d+" UpperCAmelCase : Dict = re.findall(__magic_name__ , __magic_name__ ) for pat in pats: UpperCAmelCase : Tuple = key.replace(__magic_name__ , "_".join(pat.split("." ) ) ) return key def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase : Dict = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase : int = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": UpperCAmelCase : Union[str, Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowercase ( __magic_name__ , __magic_name__ , __magic_name__=42 ): '''simple docstring''' UpperCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase : Tuple = flax_model.init_weights(PRNGKey(__magic_name__ ) ) UpperCAmelCase : Optional[Any] = flatten_dict(__magic_name__ ) UpperCAmelCase : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase : Tuple = rename_key(__magic_name__ ) UpperCAmelCase : List[str] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase : Optional[int] = rename_key_and_reshape_tensor(__magic_name__ , __magic_name__ , __magic_name__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown UpperCAmelCase : Optional[int] = jnp.asarray(__magic_name__ ) return unflatten_dict(__magic_name__ )
679
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=0.0 ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = "geglu" ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = False ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = "layer_norm" ,SCREAMING_SNAKE_CASE_ = False ,): '''simple docstring''' super().__init__() snake_case : Any = only_cross_attention snake_case : Tuple = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" snake_case : str = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" F""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: snake_case : Optional[Any] = AdaLayerNorm(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) elif self.use_ada_layer_norm_zero: snake_case : Tuple = AdaLayerNormZero(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) else: snake_case : Dict = nn.LayerNorm(SCREAMING_SNAKE_CASE_ ,elementwise_affine=SCREAMING_SNAKE_CASE_ ) snake_case : str = Attention( query_dim=SCREAMING_SNAKE_CASE_ ,heads=SCREAMING_SNAKE_CASE_ ,dim_head=SCREAMING_SNAKE_CASE_ ,dropout=SCREAMING_SNAKE_CASE_ ,bias=SCREAMING_SNAKE_CASE_ ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=SCREAMING_SNAKE_CASE_ ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. snake_case : List[str] = ( AdaLayerNorm(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if self.use_ada_layer_norm else nn.LayerNorm(SCREAMING_SNAKE_CASE_ ,elementwise_affine=SCREAMING_SNAKE_CASE_ ) ) snake_case : List[Any] = Attention( query_dim=SCREAMING_SNAKE_CASE_ ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=SCREAMING_SNAKE_CASE_ ,dim_head=SCREAMING_SNAKE_CASE_ ,dropout=SCREAMING_SNAKE_CASE_ ,bias=SCREAMING_SNAKE_CASE_ ,upcast_attention=SCREAMING_SNAKE_CASE_ ,) # is self-attn if encoder_hidden_states is none else: snake_case : Tuple = None snake_case : Union[str, Any] = None # 3. Feed-forward snake_case : Union[str, Any] = nn.LayerNorm(SCREAMING_SNAKE_CASE_ ,elementwise_affine=SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = FeedForward(SCREAMING_SNAKE_CASE_ ,dropout=SCREAMING_SNAKE_CASE_ ,activation_fn=SCREAMING_SNAKE_CASE_ ,final_dropout=SCREAMING_SNAKE_CASE_ ) # let chunk size default to None snake_case : Tuple = None snake_case : Optional[Any] = 0 def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[Any] = chunk_size snake_case : Dict = dim def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,): '''simple docstring''' # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: snake_case : str = self.norma(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) elif self.use_ada_layer_norm_zero: snake_case : List[str] = self.norma( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,hidden_dtype=hidden_states.dtype ) else: snake_case : Union[str, Any] = self.norma(SCREAMING_SNAKE_CASE_ ) snake_case : str = cross_attention_kwargs if cross_attention_kwargs is not None else {} snake_case : Optional[Any] = self.attna( SCREAMING_SNAKE_CASE_ ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ,) if self.use_ada_layer_norm_zero: snake_case : Optional[Any] = gate_msa.unsqueeze(1 ) * attn_output snake_case : Optional[int] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: snake_case : Union[str, Any] = ( self.norma(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if self.use_ada_layer_norm else self.norma(SCREAMING_SNAKE_CASE_ ) ) snake_case : List[str] = self.attna( SCREAMING_SNAKE_CASE_ ,encoder_hidden_states=SCREAMING_SNAKE_CASE_ ,attention_mask=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ,) snake_case : Optional[int] = attn_output + hidden_states # 3. Feed-forward snake_case : Tuple = self.norma(SCREAMING_SNAKE_CASE_ ) if self.use_ada_layer_norm_zero: snake_case : Optional[int] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) snake_case : List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size snake_case : Tuple = torch.cat( [self.ff(SCREAMING_SNAKE_CASE_ ) for hid_slice in norm_hidden_states.chunk(SCREAMING_SNAKE_CASE_ ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: snake_case : List[str] = self.ff(SCREAMING_SNAKE_CASE_ ) if self.use_ada_layer_norm_zero: snake_case : str = gate_mlp.unsqueeze(1 ) * ff_output snake_case : str = ff_output + hidden_states return hidden_states class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = 4 ,SCREAMING_SNAKE_CASE_ = 0.0 ,SCREAMING_SNAKE_CASE_ = "geglu" ,SCREAMING_SNAKE_CASE_ = False ,): '''simple docstring''' super().__init__() snake_case : Optional[int] = int(dim * mult ) snake_case : Union[str, Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": snake_case : Optional[int] = GELU(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if activation_fn == "gelu-approximate": snake_case : Dict = GELU(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,approximate="""tanh""" ) elif activation_fn == "geglu": snake_case : Optional[int] = GEGLU(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) elif activation_fn == "geglu-approximate": snake_case : List[str] = ApproximateGELU(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = nn.ModuleList([] ) # project in self.net.append(SCREAMING_SNAKE_CASE_ ) # project dropout self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE_ ) ) # project out self.net.append(nn.Linear(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' for module in self.net: snake_case : Any = module(SCREAMING_SNAKE_CASE_ ) return hidden_states class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = "none" ): '''simple docstring''' super().__init__() snake_case : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = approximate def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE_ ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[Any] = self.proj(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = self.gelu(SCREAMING_SNAKE_CASE_ ) return hidden_states class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__() snake_case : Tuple = nn.Linear(SCREAMING_SNAKE_CASE_ ,dim_out * 2 ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(SCREAMING_SNAKE_CASE_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[Any] = self.proj(SCREAMING_SNAKE_CASE_ ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(SCREAMING_SNAKE_CASE_ ) class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__() snake_case : int = nn.Linear(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[Any] = self.proj(SCREAMING_SNAKE_CASE_ ) return x * torch.sigmoid(1.7_02 * x ) class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__() snake_case : Optional[int] = nn.Embedding(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : int = nn.SiLU() snake_case : List[Any] = nn.Linear(SCREAMING_SNAKE_CASE_ ,embedding_dim * 2 ) snake_case : int = nn.LayerNorm(SCREAMING_SNAKE_CASE_ ,elementwise_affine=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[str] = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE_ ) ) ) snake_case : Union[str, Any] = torch.chunk(SCREAMING_SNAKE_CASE_ ,2 ) snake_case : Union[str, Any] = self.norm(SCREAMING_SNAKE_CASE_ ) * (1 + scale) + shift return x class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' super().__init__() snake_case : Tuple = CombinedTimestepLabelEmbeddings(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = nn.SiLU() snake_case : Tuple = nn.Linear(SCREAMING_SNAKE_CASE_ ,6 * embedding_dim ,bias=SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = nn.LayerNorm(SCREAMING_SNAKE_CASE_ ,elementwise_affine=SCREAMING_SNAKE_CASE_ ,eps=1E-6 ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' snake_case : int = self.linear(self.silu(self.emb(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,hidden_dtype=SCREAMING_SNAKE_CASE_ ) ) ) snake_case : Any = emb.chunk(6 ,dim=1 ) snake_case : Any = self.norm(SCREAMING_SNAKE_CASE_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _A ( nn.Module ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = 1E-5 ): '''simple docstring''' super().__init__() snake_case : Any = num_groups snake_case : Tuple = eps if act_fn is None: snake_case : int = None else: snake_case : List[str] = get_activation(SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = nn.Linear(SCREAMING_SNAKE_CASE_ ,out_dim * 2 ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if self.act: snake_case : List[Any] = self.act(SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = self.linear(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = emb[:, :, None, None] snake_case : List[Any] = emb.chunk(2 ,dim=1 ) snake_case : Optional[int] = F.group_norm(SCREAMING_SNAKE_CASE_ ,self.num_groups ,eps=self.eps ) snake_case : List[str] = x * (1 + scale) + shift return x
721
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _A ( snake_case , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = TextToVideoSDPipeline __lowerCamelCase : Dict = TEXT_TO_IMAGE_PARAMS __lowerCamelCase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __lowerCamelCase : str = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def snake_case_ ( self ): '''simple docstring''' torch.manual_seed(0 ) snake_case : str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") ,up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") ,cross_attention_dim=32 ,attention_head_dim=4 ,) snake_case : int = DDIMScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule="""scaled_linear""" ,clip_sample=SCREAMING_SNAKE_CASE_ ,set_alpha_to_one=SCREAMING_SNAKE_CASE_ ,) torch.manual_seed(0 ) snake_case : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=128 ,) torch.manual_seed(0 ) snake_case : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,hidden_act="""gelu""" ,projection_dim=512 ,) snake_case : List[str] = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) snake_case : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=0 ): '''simple docstring''' if str(SCREAMING_SNAKE_CASE_ ).startswith("""mps""" ): snake_case : Optional[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: snake_case : int = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) snake_case : str = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def snake_case_ ( self ): '''simple docstring''' snake_case : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components() snake_case : str = TextToVideoSDPipeline(**SCREAMING_SNAKE_CASE_ ) snake_case : str = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[int] = """np""" snake_case : List[str] = sd_pipe(**SCREAMING_SNAKE_CASE_ ).frames snake_case : Dict = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) snake_case : Optional[Any] = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ,expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def snake_case_ ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ ,expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def snake_case_ ( self ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def snake_case_ ( self ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def snake_case_ ( self ): '''simple docstring''' pass def snake_case_ ( self ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _A ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): '''simple docstring''' snake_case : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) snake_case : Optional[int] = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) snake_case : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) snake_case : List[str] = pipe.to("""cuda""" ) snake_case : Optional[Any] = """Spiderman is surfing""" snake_case : str = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : str = pipe(SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,num_inference_steps=25 ,output_type="""pt""" ).frames snake_case : int = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def snake_case_ ( self ): '''simple docstring''' snake_case : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) snake_case : str = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) snake_case : Dict = pipe.to("""cuda""" ) snake_case : Tuple = """Spiderman is surfing""" snake_case : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) snake_case : Any = pipe(SCREAMING_SNAKE_CASE_ ,generator=SCREAMING_SNAKE_CASE_ ,num_inference_steps=2 ,output_type="""pt""" ).frames snake_case : Union[str, Any] = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
315
0
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = (KDPMaDiscreteScheduler,) SCREAMING_SNAKE_CASE_ = 10 def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = { 'num_train_timesteps': 1100, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**SCREAMING_SNAKE_CASE_ ) return config def UpperCamelCase( self ) -> Any: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCamelCase_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ = sample.to(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def UpperCamelCase( self ) -> int: '''simple docstring''' if torch_device == "mps": return lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ = sample.to(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def UpperCamelCase( self ) -> str: '''simple docstring''' if torch_device == "mps": return lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase_ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if str(SCREAMING_SNAKE_CASE_ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
42
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Dict = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) UpperCAmelCase_ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _A (__a ) -> str: """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE_ : List[str] = model_type_to_module_name(__a ) SCREAMING_SNAKE_CASE_ : Dict = importlib.import_module(f'.{module_name}' , '''transformers.models''' ) try: return getattr(__a , __a ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(__a , '''__name__''' , __a ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE_ : Any = importlib.import_module('''transformers''' ) if hasattr(__a , __a ): return getattr(__a , __a ) return None def _A (__a , __a = None , __a = False , __a = False , __a = None , __a = None , __a = None , __a = False , **__a , ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = get_file_from_repo( __a , __a , cache_dir=__a , force_download=__a , resume_download=__a , proxies=__a , use_auth_token=__a , revision=__a , local_files_only=__a , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(__a , encoding='''utf-8''' ) as reader: return json.load(__a ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : int): '''simple docstring''' raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''') @classmethod @replace_list_option_in_docstrings(lowercase_) def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , lowercase_ : List[Any] , **lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop('''config''' , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''trust_remote_code''' , lowercase_) SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = FeatureExtractionMixin.get_feature_extractor_dict(lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = config_dict.get('''feature_extractor_type''' , lowercase_) SCREAMING_SNAKE_CASE_ : str = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {}): SCREAMING_SNAKE_CASE_ : Optional[int] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(lowercase_ , lowercase_): SCREAMING_SNAKE_CASE_ : Any = AutoConfig.from_pretrained(lowercase_ , **lowercase_) # It could be in `config.feature_extractor_type`` SCREAMING_SNAKE_CASE_ : Union[str, Any] = getattr(lowercase_ , '''feature_extractor_type''' , lowercase_) if hasattr(lowercase_ , '''auto_map''') and "AutoFeatureExtractor" in config.auto_map: SCREAMING_SNAKE_CASE_ : Dict = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: SCREAMING_SNAKE_CASE_ : Dict = feature_extractor_class_from_name(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = feature_extractor_auto_map is not None SCREAMING_SNAKE_CASE_ : Dict = feature_extractor_class is not None or type(lowercase_) in FEATURE_EXTRACTOR_MAPPING SCREAMING_SNAKE_CASE_ : Optional[int] = resolve_trust_remote_code( lowercase_ , lowercase_ , lowercase_ , lowercase_) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE_ : Dict = get_class_from_dynamic_module( lowercase_ , lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : Any = kwargs.pop('''code_revision''' , lowercase_) if os.path.isdir(lowercase_): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(lowercase_ , **lowercase_) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(lowercase_ , **lowercase_) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(lowercase_) in FEATURE_EXTRACTOR_MAPPING: SCREAMING_SNAKE_CASE_ : Any = FEATURE_EXTRACTOR_MAPPING[type(lowercase_)] return feature_extractor_class.from_dict(lowercase_ , **lowercase_) raise ValueError( F'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' F'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}') @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : List[Any]): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(lowercase_ , lowercase_)
512
0
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # noqa: E741 while r - l > 1: lowerCAmelCase_ : int =(l + r) // 2 if v[m] >= key: lowerCAmelCase_ : Tuple =m else: lowerCAmelCase_ : Optional[int] =m # noqa: E741 return r def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 lowerCAmelCase_ : Optional[int] =[0] * len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Any =1 lowerCAmelCase_ : Optional[Any] =v[0] for i in range(1 , len(_SCREAMING_SNAKE_CASE ) ): if v[i] < tail[0]: lowerCAmelCase_ : List[Any] =v[i] elif v[i] > tail[length - 1]: lowerCAmelCase_ : List[Any] =v[i] length += 1 else: lowerCAmelCase_ : Tuple =v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
305
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''MobileNetV2FeatureExtractor'''] __lowercase = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
305
1
"""simple docstring""" import argparse import struct import unittest class __snake_case : """simple docstring""" def __init__( self :Optional[Any] , UpperCamelCase__ :bytes ): _a = data # Initialize hash values _a = [ 0X6a_09_e6_67, 0Xbb_67_ae_85, 0X3c_6e_f3_72, 0Xa5_4f_f5_3a, 0X51_0e_52_7f, 0X9b_05_68_8c, 0X1f_83_d9_ab, 0X5b_e0_cd_19, ] # Initialize round constants _a = [ 0X42_8a_2f_98, 0X71_37_44_91, 0Xb5_c0_fb_cf, 0Xe9_b5_db_a5, 0X39_56_c2_5b, 0X59_f1_11_f1, 0X92_3f_82_a4, 0Xab_1c_5e_d5, 0Xd8_07_aa_98, 0X12_83_5b_01, 0X24_31_85_be, 0X55_0c_7d_c3, 0X72_be_5d_74, 0X80_de_b1_fe, 0X9b_dc_06_a7, 0Xc1_9b_f1_74, 0Xe4_9b_69_c1, 0Xef_be_47_86, 0X0f_c1_9d_c6, 0X24_0c_a1_cc, 0X2d_e9_2c_6f, 0X4a_74_84_aa, 0X5c_b0_a9_dc, 0X76_f9_88_da, 0X98_3e_51_52, 0Xa8_31_c6_6d, 0Xb0_03_27_c8, 0Xbf_59_7f_c7, 0Xc6_e0_0b_f3, 0Xd5_a7_91_47, 0X06_ca_63_51, 0X14_29_29_67, 0X27_b7_0a_85, 0X2e_1b_21_38, 0X4d_2c_6d_fc, 0X53_38_0d_13, 0X65_0a_73_54, 0X76_6a_0a_bb, 0X81_c2_c9_2e, 0X92_72_2c_85, 0Xa2_bf_e8_a1, 0Xa8_1a_66_4b, 0Xc2_4b_8b_70, 0Xc7_6c_51_a3, 0Xd1_92_e8_19, 0Xd6_99_06_24, 0Xf4_0e_35_85, 0X10_6a_a0_70, 0X19_a4_c1_16, 0X1e_37_6c_08, 0X27_48_77_4c, 0X34_b0_bc_b5, 0X39_1c_0c_b3, 0X4e_d8_aa_4a, 0X5b_9c_ca_4f, 0X68_2e_6f_f3, 0X74_8f_82_ee, 0X78_a5_63_6f, 0X84_c8_78_14, 0X8c_c7_02_08, 0X90_be_ff_fa, 0Xa4_50_6c_eb, 0Xbe_f9_a3_f7, 0Xc6_71_78_f2, ] _a = self.preprocessing(self.data ) self.final_hash() @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ :bytes ): _a = B"\x80" + (B"\x00" * (63 - (len(UpperCamelCase__ ) + 8) % 64)) _a = struct.pack(">Q" , (len(UpperCamelCase__ ) * 8) ) return data + padding + big_endian_integer def SCREAMING_SNAKE_CASE_ ( self :int ): # Convert into blocks of 64 bytes _a = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers _a = list(struct.unpack(">16L" , UpperCamelCase__ ) ) # add 48 0-ed integers words += [0] * 48 _a , _a , _a , _a , _a , _a , _a , _a = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array _a = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) _a = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) _a = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_00_00_00_00 # Compression _a = self.ror(UpperCamelCase__ , 6 ) ^ self.ror(UpperCamelCase__ , 11 ) ^ self.ror(UpperCamelCase__ , 25 ) _a = (e & f) ^ ((~e & 0Xff_ff_ff_ff) & g) _a = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_00_00_00_00 _a = self.ror(UpperCamelCase__ , 2 ) ^ self.ror(UpperCamelCase__ , 13 ) ^ self.ror(UpperCamelCase__ , 22 ) _a = (a & b) ^ (a & c) ^ (b & c) _a = (sa + maj) % 0X1_00_00_00_00 _a , _a , _a , _a , _a , _a , _a , _a = ( g, f, e, ((d + tempa) % 0X1_00_00_00_00), c, b, a, ((tempa + tempa) % 0X1_00_00_00_00), ) _a = [a, b, c, d, e, f, g, h] # Modify final values _a = [ ((element + mutated_hash_values[index]) % 0X1_00_00_00_00) for index, element in enumerate(self.hashes ) ] _a = "".join([hex(UpperCamelCase__ )[2:].zfill(8 ) for value in self.hashes] ) def SCREAMING_SNAKE_CASE_ ( self :int , UpperCamelCase__ :int , UpperCamelCase__ :int ): return 0Xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :List[str] ): import hashlib _a = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(UpperCamelCase__ ).hash , hashlib.shaaaa(UpperCamelCase__ ).hexdigest() ) def __a ( ): """simple docstring""" import doctest doctest.testmod() _a = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) _a = parser.parse_args() _a = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: _a = f.read() else: _a = bytes(a, "utf-8" ) print(SHAaaa(a ).hash ) if __name__ == "__main__": main()
388
"""simple docstring""" from __future__ import annotations import math def __a ( a, a ): """simple docstring""" _a = u for i in range(1, a ): _a = temp * (u - i) return temp def __a ( ): """simple docstring""" _a = int(input("enter the numbers of values: " ) ) _a = [] for _ in range(a ): y.append([] ) for i in range(a ): for j in range(a ): y[i].append(a ) _a = 0 print("enter the values of parameters in a list: " ) _a = list(map(a, input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(a ): _a = float(input() ) _a = int(input("enter the value to interpolate: " ) ) _a = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1, a ): for j in range(n - i ): _a = y[j + 1][i - 1] - y[j][i - 1] _a = y[0][0] for i in range(1, a ): summ += (ucal(a, a ) * y[0][i]) / math.factorial(a ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
388
1
def _snake_case ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1_0_0_0 - i , -1_0_0_0 - i , -1 ) ) for i in range(1_0_0_0 )] __UpperCAmelCase = generate_large_matrix() __UpperCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _snake_case ( lowercase__ : list[list[int]] ) -> None: '''simple docstring''' assert all(row == sorted(lowercase__ , reverse=lowercase__ ) for row in grid ) assert all(list(lowercase__ ) == sorted(lowercase__ , reverse=lowercase__ ) for col in zip(*lowercase__ ) ) def _snake_case ( lowercase__ : list[int] ) -> int: '''simple docstring''' lowerCAmelCase_ :Optional[int] = 0 lowerCAmelCase_ :str = len(lowercase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ :List[Any] = (left + right) // 2 lowerCAmelCase_ :List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ :Any = mid + 1 else: lowerCAmelCase_ :Any = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase__ ) def _snake_case ( lowercase__ : list[list[int]] ) -> int: '''simple docstring''' lowerCAmelCase_ :List[str] = 0 lowerCAmelCase_ :Optional[Any] = len(grid[0] ) for i in range(len(lowercase__ ) ): lowerCAmelCase_ :str = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase__ ) * len(grid[0] )) - total def _snake_case ( lowercase__ : list[list[int]] ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def _snake_case ( lowercase__ : list[list[int]] ) -> int: '''simple docstring''' lowerCAmelCase_ :List[Any] = 0 for row in grid: for i, number in enumerate(lowercase__ ): if number < 0: total += len(lowercase__ ) - i break return total def _snake_case ( ) -> None: '''simple docstring''' from timeit import timeit print("""Running benchmarks""" ) lowerCAmelCase_ :List[Any] = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ :Any = timeit(f"""{func}(grid=grid)""" , setup=lowercase__ , number=5_0_0 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
716
"""simple docstring""" from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self , __A=None ) -> Tuple: lowerCAmelCase_ :Optional[int] = data lowerCAmelCase_ :List[Any] = None def __repr__( self ) -> Union[str, Any]: lowerCAmelCase_ :int = [] lowerCAmelCase_ :int = self while temp: string_rep.append(f"""{temp.data}""" ) lowerCAmelCase_ :List[str] = temp.next return "->".join(__A ) def _snake_case ( lowercase__ : list ) -> Union[str, Any]: '''simple docstring''' if not elements_list: raise Exception("""The Elements List is empty""" ) lowerCAmelCase_ :int = Node(elements_list[0] ) for i in range(1 , len(lowercase__ ) ): lowerCAmelCase_ :Tuple = Node(elements_list[i] ) lowerCAmelCase_ :Union[str, Any] = current.next return head def _snake_case ( lowercase__ : Node ) -> None: '''simple docstring''' if head_node is not None and isinstance(lowercase__ , lowercase__ ): print_reverse(head_node.next ) print(head_node.data ) def _snake_case ( ) -> Optional[int]: '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase_ :Union[str, Any] = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] ) print("""Linked List:""" ) print(lowercase__ ) print("""Elements in Reverse:""" ) print_reverse(lowercase__ ) if __name__ == "__main__": main()
256
0
from functools import reduce snake_case_ : Any = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __a ( __UpperCAmelCase : Optional[int] = N ) -> int: """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda __UpperCAmelCase , __UpperCAmelCase : str(int(SCREAMING_SNAKE_CASE_ ) * int(SCREAMING_SNAKE_CASE_ ) ) , n[i : i + 13] ) ) for i in range(len(SCREAMING_SNAKE_CASE_ ) - 12 ) ) if __name__ == "__main__": print(f"{solution() = }")
488
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def UpperCamelCase ( ) ->Optional[int]: _lowerCamelCase : int = ArgumentParser('''Diffusers CLI tool''' , usage='''diffusers-cli <command> [<args>]''' ) _lowerCamelCase : Union[str, Any] = parser.add_subparsers(help='''diffusers-cli command helpers''' ) # Register commands EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE_ ) # Let's go _lowerCamelCase : List[Any] = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , '''func''' ): parser.print_help() exit(1 ) # Run _lowerCamelCase : List[str] = args.func(SCREAMING_SNAKE_CASE_ ) service.run() if __name__ == "__main__": main()
434
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a : Union[str, Any] = logging.get_logger(__name__) a : Dict = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class __UpperCamelCase ( _UpperCAmelCase ): lowerCamelCase : Union[str, Any] ="""dpt""" def __init__( self , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=384 , lowerCAmelCase__=16 , lowerCAmelCase__=3 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=[2, 5, 8, 11] , lowerCAmelCase__="project" , lowerCAmelCase__=[4, 2, 1, 0.5] , lowerCAmelCase__=[96, 192, 384, 768] , lowerCAmelCase__=256 , lowerCAmelCase__=-1 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.4 , lowerCAmelCase__=255 , lowerCAmelCase__=0.1 , lowerCAmelCase__=[1, 1024, 24, 24] , lowerCAmelCase__=[0, 1] , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> List[Any]: super().__init__(**lowercase__ ) a : Any = hidden_size a : Union[str, Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) a : Tuple = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } a : Union[str, Any] = BitConfig(**lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): logger.info("Initializing the config with a `BiT` backbone." ) a : Dict = BitConfig(**lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): a : Optional[int] = backbone_config else: raise ValueError( f"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) a : List[Any] = backbone_featmap_shape a : Union[str, Any] = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: a : Optional[Any] = None a : int = None a : List[Any] = [] a : int = num_hidden_layers a : Union[str, Any] = num_attention_heads a : Tuple = intermediate_size a : Optional[int] = hidden_act a : Dict = hidden_dropout_prob a : str = attention_probs_dropout_prob a : str = initializer_range a : List[Any] = layer_norm_eps a : Any = image_size a : Union[str, Any] = patch_size a : Union[str, Any] = num_channels a : Union[str, Any] = qkv_bias a : Optional[Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) a : Any = readout_type a : Optional[Any] = reassemble_factors a : str = neck_hidden_sizes a : Union[str, Any] = fusion_hidden_size a : Any = head_in_index a : str = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) a : List[Any] = use_auxiliary_head a : int = auxiliary_loss_weight a : Union[str, Any] = semantic_loss_ignore_index a : Any = semantic_classifier_dropout def __a ( self ) -> Optional[int]: a : Union[str, Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: a : List[str] = self.backbone_config.to_dict() a : Optional[int] = self.__class__.model_type return output
701
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a : Any = logging.get_logger(__name__) a : Tuple = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class __UpperCamelCase : def __init__( self , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> str: logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) a : Optional[int] = model a : int = kwargs.get("model_save_dir" , lowerCAmelCase__ ) a : Tuple = kwargs.get("latest_model_name" , lowerCAmelCase__ ) def __call__( self , **lowerCAmelCase__ ) -> Dict: a : List[str] = {k: np.array(lowerCAmelCase__ ) for k, v in kwargs.items()} return self.model.run(lowerCAmelCase__ , lowerCAmelCase__ ) @staticmethod def __a ( lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> Union[str, Any]: if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) a : List[str] = "CPUExecutionProvider" return ort.InferenceSession(lowerCAmelCase__ , providers=[provider] , sess_options=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> int: a : List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME a : Optional[int] = self.model_save_dir.joinpath(self.latest_model_name ) a : List[str] = Path(lowerCAmelCase__ ).joinpath(lowerCAmelCase__ ) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) a : str = self.model_save_dir.joinpath(lowerCAmelCase__ ) if src_path.exists(): a : Any = Path(lowerCAmelCase__ ).joinpath(lowerCAmelCase__ ) try: shutil.copyfile(lowerCAmelCase__ , lowerCAmelCase__ ) except shutil.SameFileError: pass def __a ( self , lowerCAmelCase__ , **lowerCAmelCase__ , ) -> str: if os.path.isfile(lowerCAmelCase__ ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # saving model weights/files self._save_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def __a ( cls , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Optional[int]: a : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCAmelCase__ ): a : Tuple = OnnxRuntimeModel.load_model( os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__ ) a : Tuple = Path(lowerCAmelCase__ ) # load model from hub else: # download model a : Optional[Any] = hf_hub_download( repo_id=lowerCAmelCase__ , filename=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , ) a : Optional[int] = Path(lowerCAmelCase__ ).parent a : List[Any] = Path(lowerCAmelCase__ ).name a : int = OnnxRuntimeModel.load_model(lowerCAmelCase__ , provider=lowerCAmelCase__ , sess_options=lowerCAmelCase__ ) return cls(model=lowerCAmelCase__ , **lowerCAmelCase__ ) @classmethod def __a ( cls , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> List[str]: a : Any = None if len(str(lowerCAmelCase__ ).split("@" ) ) == 2: a, a : Tuple = model_id.split("@" ) return cls._from_pretrained( model_id=lowerCAmelCase__ , revision=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , force_download=lowerCAmelCase__ , use_auth_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
31
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class _A ( __lowercase ): lowercase__: Any = '''audio-spectrogram-transformer''' def __init__( self : List[Any] , __magic_name__ : Optional[Any]=7_68 , __magic_name__ : Optional[Any]=12 , __magic_name__ : int=12 , __magic_name__ : Union[str, Any]=30_72 , __magic_name__ : List[str]="gelu" , __magic_name__ : Any=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : Union[str, Any]=1E-12 , __magic_name__ : str=16 , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]=10 , __magic_name__ : Any=10 , __magic_name__ : Tuple=10_24 , __magic_name__ : Optional[int]=1_28 , **__magic_name__ : int , ) -> Dict: """simple docstring""" super().__init__(**__magic_name__ ) __snake_case : Any = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Optional[Any] = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : Any = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : Dict = patch_size __snake_case : Any = qkv_bias __snake_case : List[Any] = frequency_stride __snake_case : int = time_stride __snake_case : Tuple = max_length __snake_case : int = num_mel_bins
26
'''simple docstring''' import argparse import os import re import packaging.version __UpperCamelCase = "examples/" __UpperCamelCase = { "examples": (re.compile(R"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(R"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(R"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), R"\1version=\"VERSION\","), "doc": (re.compile(R"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __UpperCamelCase = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __UpperCamelCase = "README.md" def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : Union[str, Any] = f.read() __snake_case , __snake_case : List[Any] = REPLACE_PATTERNS[pattern] __snake_case : Optional[Any] = replace.replace("""VERSION""" , _lowerCamelCase ) __snake_case : Optional[Any] = re_pattern.sub(_lowerCamelCase , _lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_lowerCamelCase ) def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_lowerCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , pattern="""examples""" ) def _a ( _lowerCamelCase , _lowerCamelCase=False ) -> str: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if not patch: update_version_in_examples(_lowerCamelCase ) def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : str = """🤗 Transformers currently provides the following architectures""" __snake_case : List[Any] = """1. Want to contribute a new model?""" with open(_lowerCamelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: __snake_case : List[str] = f.readlines() # Find the start of the list. __snake_case : Optional[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __snake_case : int = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): __snake_case : Optional[Any] = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: __snake_case : List[Any] = f.read() __snake_case : str = REPLACE_PATTERNS["""init"""][0].search(_lowerCamelCase ).groups()[0] return packaging.version.parse(_lowerCamelCase ) def _a ( _lowerCamelCase=False ) -> int: """simple docstring""" __snake_case : List[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: __snake_case : str = default_version.base_version elif patch: __snake_case : Optional[int] = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __snake_case : Dict = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __snake_case : Dict = input(F'''Which version are you releasing? [{default_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Any = default_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase , patch=_lowerCamelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def _a ( ) -> Tuple: """simple docstring""" __snake_case : Optional[Any] = get_version() __snake_case : Tuple = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __snake_case : Union[str, Any] = current_version.base_version # Check with the user we got that right. __snake_case : int = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(_lowerCamelCase ) == 0: __snake_case : Optional[int] = dev_version print(F'''Updating version to {version}.''' ) global_version_update(_lowerCamelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
26
1
"""simple docstring""" def snake_case__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : float , ): """simple docstring""" lowerCamelCase__ : Optional[int] =[redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: lowerCamelCase__ : Optional[Any] =1 - (matter_density + radiation_density + dark_energy) lowerCamelCase__ : Any =( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) lowerCamelCase__ : Union[str, Any] =hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _lowercase : int = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
625
"""simple docstring""" import colorsys from PIL import Image # type: ignore def snake_case__ ( __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : int ): """simple docstring""" lowerCamelCase__ : Optional[Any] =x lowerCamelCase__ : Any =y for step in range(__lowerCamelCase ): # noqa: B007 lowerCamelCase__ : List[Any] =a * a - b * b + x lowerCamelCase__ : Optional[int] =2 * a * b + y lowerCamelCase__ : Union[str, Any] =a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def snake_case__ ( __lowerCamelCase : float ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def snake_case__ ( __lowerCamelCase : float ): """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(__lowerCamelCase , 1 , 1 ) ) def snake_case__ ( __lowerCamelCase : int = 800 , __lowerCamelCase : int = 600 , __lowerCamelCase : float = -0.6 , __lowerCamelCase : float = 0 , __lowerCamelCase : float = 3.2 , __lowerCamelCase : int = 50 , __lowerCamelCase : bool = True , ): """simple docstring""" lowerCamelCase__ : Optional[Any] =Image.new('''RGB''' , (image_width, image_height) ) lowerCamelCase__ : Optional[int] =img.load() # loop through the image-coordinates for image_x in range(__lowerCamelCase ): for image_y in range(__lowerCamelCase ): # determine the figure-coordinates based on the image-coordinates lowerCamelCase__ : Optional[Any] =figure_width / image_width * image_height lowerCamelCase__ : Dict =figure_center_x + (image_x / image_width - 0.5) * figure_width lowerCamelCase__ : Optional[int] =figure_center_y + (image_y / image_height - 0.5) * figure_height lowerCamelCase__ : Any =get_distance(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: lowerCamelCase__ : int =get_color_coded_rgb(__lowerCamelCase ) else: lowerCamelCase__ : Optional[int] =get_black_and_white_rgb(__lowerCamelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _lowercase : Optional[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
625
1
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __snake_case ( __A : Union[str, Any] , __A : Any , __A : Tuple , __A : Union[str, Any] , __A : List[Any] ) -> Dict: '''simple docstring''' # load base model SCREAMING_SNAKE_CASE : int = StableDiffusionPipeline.from_pretrained(__A , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors SCREAMING_SNAKE_CASE : List[Any] = load_file(__A ) SCREAMING_SNAKE_CASE : int = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: SCREAMING_SNAKE_CASE : str = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline.text_encoder else: SCREAMING_SNAKE_CASE : Tuple = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : Dict = pipeline.unet # find the target layer SCREAMING_SNAKE_CASE : List[str] = layer_infos.pop(0 ) while len(__A ) > -1: try: SCREAMING_SNAKE_CASE : List[str] = curr_layer.__getattr__(__A ) if len(__A ) > 0: SCREAMING_SNAKE_CASE : List[Any] = layer_infos.pop(0 ) elif len(__A ) == 0: break except Exception: if len(__A ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: SCREAMING_SNAKE_CASE : Dict = layer_infos.pop(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(__A ) else: pair_keys.append(__A ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) SCREAMING_SNAKE_CASE : int = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__A , __A ).unsqueeze(2 ).unsqueeze(3 ) else: SCREAMING_SNAKE_CASE : Optional[int] = state_dict[pair_keys[0]].to(torch.floataa ) SCREAMING_SNAKE_CASE : Optional[int] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(__A , __A ) # update visited list for item in pair_keys: visited.append(__A ) return pipeline if __name__ == "__main__": A_ : str = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') A_ : Dict = parser.parse_args() A_ : Optional[int] = args.base_model_path A_ : str = args.checkpoint_path A_ : List[Any] = args.dump_path A_ : Union[str, Any] = args.lora_prefix_unet A_ : Tuple = args.lora_prefix_text_encoder A_ : Union[str, Any] = args.alpha A_ : Optional[int] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) A_ : Tuple = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
265
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] = None , _SCREAMING_SNAKE_CASE : int = 50_257 , _SCREAMING_SNAKE_CASE : int = 1_024 , _SCREAMING_SNAKE_CASE : int = 768 , _SCREAMING_SNAKE_CASE : int = 12 , _SCREAMING_SNAKE_CASE : int = 12 , _SCREAMING_SNAKE_CASE : Optional[int] = None , _SCREAMING_SNAKE_CASE : str = "gelu_new" , _SCREAMING_SNAKE_CASE : float = 0.1 , _SCREAMING_SNAKE_CASE : float = 0.1 , _SCREAMING_SNAKE_CASE : float = 0.1 , _SCREAMING_SNAKE_CASE : float = 1E-5 , _SCREAMING_SNAKE_CASE : float = 0.0_2 , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : bool = False , ) -> Tuple: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""" ) SCREAMING_SNAKE_CASE : int = prefix_inner_dim SCREAMING_SNAKE_CASE : Dict = prefix_hidden_dim SCREAMING_SNAKE_CASE : int = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : List[Any] = ( nn.Linear(self.prefix_hidden_dim , _SCREAMING_SNAKE_CASE ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : Optional[Any] = GPTaConfig( vocab_size=_SCREAMING_SNAKE_CASE , n_positions=_SCREAMING_SNAKE_CASE , n_embd=_SCREAMING_SNAKE_CASE , n_layer=_SCREAMING_SNAKE_CASE , n_head=_SCREAMING_SNAKE_CASE , n_inner=_SCREAMING_SNAKE_CASE , activation_function=_SCREAMING_SNAKE_CASE , resid_pdrop=_SCREAMING_SNAKE_CASE , embd_pdrop=_SCREAMING_SNAKE_CASE , attn_pdrop=_SCREAMING_SNAKE_CASE , layer_norm_epsilon=_SCREAMING_SNAKE_CASE , initializer_range=_SCREAMING_SNAKE_CASE , scale_attn_weights=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE , scale_attn_by_inverse_layer_idx=_SCREAMING_SNAKE_CASE , reorder_and_upcast_attn=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaLMHeadModel(_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Any , _SCREAMING_SNAKE_CASE : torch.Tensor , _SCREAMING_SNAKE_CASE : torch.Tensor , _SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , _SCREAMING_SNAKE_CASE : Optional[torch.Tensor] = None , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.transformer.transformer.wte(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : str = self.encode_prefix(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = self.decode_prefix(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: SCREAMING_SNAKE_CASE : Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat((dummy_token, input_ids) , dim=1 ) SCREAMING_SNAKE_CASE : List[Any] = self.transformer(inputs_embeds=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def _lowerCAmelCase ( self : List[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : torch.device ) -> torch.Tensor: """simple docstring""" return torch.zeros(_SCREAMING_SNAKE_CASE , self.prefix_length , dtype=torch.intaa , device=_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: """simple docstring""" return self.encode_prefix(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def _lowerCAmelCase ( self : Dict , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = torch.split(_SCREAMING_SNAKE_CASE , 1 , dim=0 ) SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : str = [] for feature in features: SCREAMING_SNAKE_CASE : Optional[Any] = self.decode_prefix(feature.to(_SCREAMING_SNAKE_CASE ) ) # back to the clip feature # Only support beam search for now SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.generate_beam( input_embeds=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) SCREAMING_SNAKE_CASE : List[str] = torch.stack(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = torch.stack(_SCREAMING_SNAKE_CASE ) return generated_tokens, generated_seq_lengths @torch.no_grad() def _lowerCAmelCase ( self : List[str] , _SCREAMING_SNAKE_CASE : int=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : List[Any]=None , _SCREAMING_SNAKE_CASE : int = 5 , _SCREAMING_SNAKE_CASE : int = 67 , _SCREAMING_SNAKE_CASE : float = 1.0 , _SCREAMING_SNAKE_CASE : Optional[int] = None , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = eos_token_id SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Optional[Any] = torch.ones(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=torch.int ) SCREAMING_SNAKE_CASE : Dict = torch.zeros(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=torch.bool ) if input_embeds is not None: SCREAMING_SNAKE_CASE : List[Any] = input_embeds else: SCREAMING_SNAKE_CASE : Optional[Any] = self.transformer.transformer.wte(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Tuple = self.transformer(inputs_embeds=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = outputs.logits SCREAMING_SNAKE_CASE : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) SCREAMING_SNAKE_CASE : Optional[Any] = logits.softmax(-1 ).log() if scores is None: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = logits.topk(_SCREAMING_SNAKE_CASE , -1 ) SCREAMING_SNAKE_CASE : Optional[Any] = generated.expand(_SCREAMING_SNAKE_CASE , *generated.shape[1:] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: SCREAMING_SNAKE_CASE : Optional[Any] = next_tokens else: SCREAMING_SNAKE_CASE : List[Any] = tokens.expand(_SCREAMING_SNAKE_CASE , *tokens.shape[1:] ) SCREAMING_SNAKE_CASE : List[str] = torch.cat((tokens, next_tokens) , dim=1 ) else: SCREAMING_SNAKE_CASE : List[str] = -float(np.inf ) SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Tuple = scores[:, None] + logits seq_lengths[~is_stopped] += 1 SCREAMING_SNAKE_CASE : Any = scores_sum / seq_lengths[:, None] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = scores_sum_average.view(-1 ).topk(_SCREAMING_SNAKE_CASE , -1 ) SCREAMING_SNAKE_CASE : Optional[Any] = next_tokens // scores_sum.shape[1] SCREAMING_SNAKE_CASE : Dict = seq_lengths[next_tokens_source] SCREAMING_SNAKE_CASE : List[str] = next_tokens % scores_sum.shape[1] SCREAMING_SNAKE_CASE : int = next_tokens.unsqueeze(1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokens[next_tokens_source] SCREAMING_SNAKE_CASE : List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) SCREAMING_SNAKE_CASE : Any = generated[next_tokens_source] SCREAMING_SNAKE_CASE : Any = scores_sum_average * seq_lengths SCREAMING_SNAKE_CASE : Tuple = is_stopped[next_tokens_source] SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) SCREAMING_SNAKE_CASE : Tuple = torch.cat((generated, next_token_embed) , dim=1 ) SCREAMING_SNAKE_CASE : str = is_stopped + next_tokens.eq(_SCREAMING_SNAKE_CASE ).squeeze() if is_stopped.all(): break SCREAMING_SNAKE_CASE : Tuple = scores / seq_lengths SCREAMING_SNAKE_CASE : Tuple = scores.argsort(descending=_SCREAMING_SNAKE_CASE ) # tokens tensors are already padded to max_seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = [tokens[i] for i in order] SCREAMING_SNAKE_CASE : List[str] = torch.stack(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE : int = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
265
1
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example snake_case = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example snake_case = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : List[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): lowerCAmelCase__ : Optional[int] = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours lowerCAmelCase__ : Optional[int] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE_ ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE_ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. lowerCAmelCase__ : Dict = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE_ ) return next_generation def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Optional[int] = [] for _ in range(SCREAMING_SNAKE_CASE_ ): # Create output image lowerCAmelCase__ : Any = Image.new("RGB" , (len(cells[0] ), len(SCREAMING_SNAKE_CASE_ )) ) lowerCAmelCase__ : str = img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE_ ) ): for y in range(len(cells[0] ) ): lowerCAmelCase__ : Optional[int] = 2_5_5 - cells[y][x] * 2_5_5 lowerCAmelCase__ : Optional[int] = (colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = new_generation(SCREAMING_SNAKE_CASE_ ) return images if __name__ == "__main__": snake_case = generate_images(GLIDER, 16) images[0].save("""out.gif""", save_all=True, append_images=images[1:])
703
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm snake_case = 20_48 snake_case = 40_96 snake_case = 42 snake_case = os.environ.pop("""PROCESS_TRAIN""", """false""") snake_case = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" def choose_first(lowerCamelCase_ , lowerCamelCase_=False ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) if len(lowerCamelCase_ ) == 1: lowerCAmelCase__ : Union[str, Any] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: lowerCAmelCase__ : str = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a lowerCAmelCase__ : Dict = {"id": example["id"]} lowerCAmelCase__ : Optional[int] = example["annotations"] lowerCAmelCase__ : Dict = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: lowerCAmelCase__ : str = ["yes"] if 1 in yes_no_answer else ["no"] lowerCAmelCase__ : int = [] lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : List[str] = ["<cls>"] else: lowerCAmelCase__ : Optional[Any] = ["short"] lowerCAmelCase__ : Tuple = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available lowerCAmelCase__ : str = ["long"] lowerCAmelCase__ : Tuple = choose_first(annotation["long_answer"] , is_long_answer=lowerCamelCase_ ) lowerCAmelCase__ : Any = [] answer.update(lowerCamelCase_ ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: lowerCAmelCase__ : Any = True else: lowerCAmelCase__ : Dict = False lowerCAmelCase__ : Tuple = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , lowerCamelCase_ ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_=False ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = _get_single_answer(lowerCamelCase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCAmelCase__ : Dict = example["document"]["tokens"] lowerCAmelCase__ : Union[str, Any] = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(lowerCamelCase_ ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples lowerCAmelCase__ : List[Any] = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 lowerCAmelCase__ : List[str] = example["document"]["tokens"] lowerCAmelCase__ : Union[str, Any] = answer["start_token"] lowerCAmelCase__ : str = answer["end_token"] lowerCAmelCase__ : str = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 lowerCAmelCase__ : str = " ".join(context[start_token:end_token] ) # checking above code if assertion: lowerCAmelCase__ : str = doc["is_html"][answer["start_token"] : answer["end_token"]] lowerCAmelCase__ : str = doc["token"][answer["start_token"] : answer["end_token"]] lowerCAmelCase__ : Optional[int] = " ".join([old[i] for i in range(len(lowerCamelCase_ ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , lowerCamelCase_ , end="\n" ) print("Old:" , lowerCamelCase_ , end="\n\n" ) return { "context": " ".join(lowerCamelCase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=2_0_4_8 , lowerCamelCase_=4_0_9_6 , lowerCamelCase_=True ): """simple docstring""" lowerCAmelCase__ : Optional[int] = get_context_and_ans(lowerCamelCase_ , assertion=lowerCamelCase_ ) lowerCAmelCase__ : int = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } lowerCAmelCase__ : int = tokenizer(example["question"]["text"] , out["context"] ).input_ids lowerCAmelCase__ : List[str] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Optional[Any] = input_ids[:q_len] lowerCAmelCase__ : List[str] = range(lowerCamelCase_ , len(lowerCamelCase_ ) , max_length - doc_stride ) for i in doc_start_indices: lowerCAmelCase__ : int = i + max_length - q_len lowerCAmelCase__ : List[Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(lowerCamelCase_ ), "end_token": [-1_0_0] * len(lowerCamelCase_ ), "category": category, }, } lowerCAmelCase__ : Optional[Any] = out["context"].split() lowerCAmelCase__ : Dict = splitted_context[answer["end_token"]] lowerCAmelCase__ : Union[str, Any] = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=lowerCamelCase_ , ).input_ids ) lowerCAmelCase__ : List[str] = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=lowerCamelCase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token lowerCAmelCase__ : Optional[Any] = len(tokenizer(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 lowerCAmelCase__ : str = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive lowerCAmelCase__ : str = answer["start_token"] lowerCAmelCase__ : Union[str, Any] = answer["end_token"] if assertion: lowerCAmelCase__ : Union[str, Any] = tokenizer.decode(lowerCamelCase_ ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , lowerCamelCase_ , end="\n\n" ) if len(lowerCamelCase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } lowerCAmelCase__ : int = input_ids[:q_len] lowerCAmelCase__ : List[str] = range(lowerCamelCase_ , len(lowerCamelCase_ ) , max_length - doc_stride ) lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : Optional[int] = [] # null, yes, no, long, short for i in doc_start_indices: lowerCAmelCase__ : Optional[Any] = i + max_length - q_len lowerCAmelCase__ : List[Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: lowerCAmelCase__ : Any = start_token - i + q_len lowerCAmelCase__ : Optional[Any] = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: lowerCAmelCase__ : Union[str, Any] = -1_0_0 lowerCAmelCase__ : Optional[Any] = -1_0_0 answers_category.append("null" ) lowerCAmelCase__ : Any = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowerCamelCase_ ) answers_end_token.append(lowerCamelCase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(lowerCamelCase_ ) ) print("Old:" , tokenizer.decode(lowerCamelCase_ ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=2_0_4_8 , lowerCamelCase_=4_0_9_6 , lowerCamelCase_=False ): """simple docstring""" lowerCAmelCase__ : Any = get_strided_contexts_and_ans( lowerCamelCase_ , lowerCamelCase_ , doc_stride=lowerCamelCase_ , max_length=lowerCamelCase_ , assertion=lowerCamelCase_ , ) return example def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" with jsonlines.open(lowerCamelCase_ , "a" ) as writer: for example in tqdm(lowerCamelCase_ , total=len(lowerCamelCase_ ) , desc="Saving samples ... " ): lowerCAmelCase__ : List[str] = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer snake_case = load_dataset("""natural_questions""") snake_case = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") snake_case = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] snake_case = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } snake_case = data.map(prepare_inputs, fn_kwargs=fn_kwargs) snake_case = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) snake_case = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
568
0
import os from collections import deque import torch from torch.utils.data import Dataset class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Optional[Any]="" , SCREAMING_SNAKE_CASE : Union[str, Any]="train" ): assert os.path.isdir(SCREAMING_SNAKE_CASE ) lowercase__ : str = [] lowercase__ : List[Any] = os.listdir(SCREAMING_SNAKE_CASE ) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowercase__ : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not os.path.isfile(SCREAMING_SNAKE_CASE ): continue self.documents.append(SCREAMING_SNAKE_CASE ) def __len__( self : List[Any] ): return len(self.documents ) def __getitem__( self : Any , SCREAMING_SNAKE_CASE : int ): lowercase__ : Union[str, Any] = self.documents[idx] lowercase__ : Tuple = document_path.split("/" )[-1] with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as source: lowercase__ : Dict = source.read() lowercase__ , lowercase__ : List[Any] = process_story(SCREAMING_SNAKE_CASE ) return document_name, story_lines, summary_lines def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Tuple = list(filter(lambda lowerCamelCase__ : len(lowerCamelCase__ ) != 0 , [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it lowercase__ : Any = [_add_missing_period(lowerCamelCase__ ) for line in nonempty_lines] # gather article lines lowercase__ : List[str] = [] lowercase__ : Tuple = deque(lowerCamelCase__ ) while True: try: lowercase__ : int = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(lowerCamelCase__ ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowercase__ : List[str] = list(filter(lambda lowerCamelCase__ : not t.startswith("@highlight" ) , lowerCamelCase__ ) ) return story_lines, summary_lines def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if len(lowerCamelCase__ ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(lowerCamelCase__ )) ) return sequence def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : List[Any] = torch.ones_like(lowerCamelCase__ ) lowercase__ : Optional[int] = sequence == pad_token_id lowercase__ : Tuple = 0 return mask def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = [tokenizer.encode(lowerCamelCase__ ) for line in story_lines] lowercase__ : List[Any] = [token for sentence in story_lines_token_ids for token in sentence] lowercase__ : str = [tokenizer.encode(lowerCamelCase__ ) for line in summary_lines] lowercase__ : List[str] = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Dict = [] for sequence in batch: lowercase__ : Optional[int] = -1 lowercase__ : int = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(lowerCamelCase__ ) return torch.tensor(lowerCamelCase__ )
496
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ , lowercase__ : str = emb.weight.shape lowercase__ : List[str] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) lowercase__ : List[Any] = emb.weight.data return lin_layer def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__="facebook/mbart-large-en-ro" , lowerCamelCase__=False , lowerCamelCase__=False ): """simple docstring""" lowercase__ : int = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] remove_ignore_keys_(lowerCamelCase__ ) lowercase__ : Tuple = state_dict["encoder.embed_tokens.weight"].shape[0] lowercase__ : Optional[Any] = MBartConfig.from_pretrained(lowerCamelCase__ , vocab_size=lowerCamelCase__ ) if mbart_aa and finetuned: lowercase__ : str = "relu" lowercase__ : Optional[int] = state_dict["decoder.embed_tokens.weight"] lowercase__ : Optional[Any] = MBartForConditionalGeneration(lowerCamelCase__ ) model.model.load_state_dict(lowerCamelCase__ ) if finetuned: lowercase__ : Optional[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
496
1
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def UpperCAmelCase ( A : Optional[int] , A : List[Any] , A : Optional[int] , A : Union[str, Any] ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = np.full((len(_SCREAMING_SNAKE_CASE ), sequence_length, 2) , _SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = np.full((len(_SCREAMING_SNAKE_CASE ), sequence_length) , _SCREAMING_SNAKE_CASE ) for i, tensor in enumerate(_SCREAMING_SNAKE_CASE ): if padding_side == "right": if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = tensor[:sequence_length] else: _UpperCAmelCase = tensor[:sequence_length] else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = tensor[:sequence_length] else: _UpperCAmelCase = tensor[:sequence_length] return out_tensor.tolist() def UpperCAmelCase ( A : Any ): '''simple docstring''' _UpperCAmelCase = ord(_SCREAMING_SNAKE_CASE ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True _UpperCAmelCase = unicodedata.category(_SCREAMING_SNAKE_CASE ) if cat.startswith('P' ): return True return False @dataclass class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = 42 _UpperCAmelCase = True _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = -1_00 _UpperCAmelCase = "pt" def lowerCamelCase_ ( self , snake_case ) -> str: import torch _UpperCAmelCase = 'label' if 'label' in features[0].keys() else 'labels' _UpperCAmelCase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _UpperCAmelCase = self.tokenizer.pad( snake_case , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , ) if labels is None: return batch _UpperCAmelCase = torch.tensor(batch['entity_ids'] ).shape[1] _UpperCAmelCase = self.tokenizer.padding_side if padding_side == "right": _UpperCAmelCase = [ list(snake_case ) + [self.label_pad_token_id] * (sequence_length - len(snake_case )) for label in labels ] else: _UpperCAmelCase = [ [self.label_pad_token_id] * (sequence_length - len(snake_case )) + list(snake_case ) for label in labels ] _UpperCAmelCase = [feature['ner_tags'] for feature in features] _UpperCAmelCase = padding_tensor(snake_case , -1 , snake_case , snake_case ) _UpperCAmelCase = [feature['original_entity_spans'] for feature in features] _UpperCAmelCase = padding_tensor(snake_case , (-1, -1) , snake_case , snake_case ) _UpperCAmelCase = {k: torch.tensor(snake_case , dtype=torch.intaa ) for k, v in batch.items()} return batch
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
"""simple docstring""" class snake_case_ : """simple docstring""" def __init__( self , __a ): """simple docstring""" A__ = n A__ = [None] * self.n A__ = 0 # index of the first element A__ = 0 A__ = 0 def __len__( self ): """simple docstring""" return self.size def _UpperCAmelCase ( self ): """simple docstring""" return self.size == 0 def _UpperCAmelCase ( self ): """simple docstring""" return False if self.is_empty() else self.array[self.front] def _UpperCAmelCase ( self , __a ): """simple docstring""" if self.size >= self.n: raise Exception('QUEUE IS FULL' ) A__ = data A__ = (self.rear + 1) % self.n self.size += 1 return self def _UpperCAmelCase ( self ): """simple docstring""" if self.size == 0: raise Exception('UNDERFLOW' ) A__ = self.array[self.front] A__ = None A__ = (self.front + 1) % self.n self.size -= 1 return temp
260
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class snake_case_ ( _lowerCamelCase ): """simple docstring""" def _UpperCAmelCase ( self , __a ): """simple docstring""" if isinstance(__a , __a ): A__ = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self , __a , __a , __a ): """simple docstring""" if len(__a ) == 0 or len(__a ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(__a ) ) if isinstance(__a , __a ): A__ = [sequences] A__ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(_lowerCamelCase ) class snake_case_ ( _lowerCamelCase ): """simple docstring""" def __init__( self , __a=ZeroShotClassificationArgumentHandler() , *__a , **__a ): """simple docstring""" A__ = args_parser super().__init__(*__a , **__a ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def _UpperCAmelCase ( self ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def _UpperCAmelCase ( self , __a , __a=True , __a=True , __a=TruncationStrategy.ONLY_FIRST , **__a ): """simple docstring""" A__ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) A__ = self.tokenizer.eos_token try: A__ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. A__ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _UpperCAmelCase ( self , **__a ): """simple docstring""" if kwargs.get('multi_class' , __a ) is not None: A__ = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) A__ = {} if "candidate_labels" in kwargs: A__ = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: A__ = kwargs['hypothesis_template'] A__ = {} if "multi_label" in kwargs: A__ = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , __a , *__a , **__a , ): """simple docstring""" if len(__a ) == 0: pass elif len(__a ) == 1 and "candidate_labels" not in kwargs: A__ = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(__a , **__a ) def _UpperCAmelCase ( self , __a , __a=None , __a="This example is {}." ): """simple docstring""" A__ , A__ = self._args_parser(__a , __a , __a ) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a ) ): A__ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a ) - 1, **model_input, } def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = inputs['candidate_label'] A__ = inputs['sequence'] A__ = {k: inputs[k] for k in self.tokenizer.model_input_names} A__ = self.model(**__a ) A__ = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def _UpperCAmelCase ( self , __a , __a=False ): """simple docstring""" A__ = [outputs['candidate_label'] for outputs in model_outputs] A__ = [outputs['sequence'] for outputs in model_outputs] A__ = np.concatenate([output['logits'].numpy() for output in model_outputs] ) A__ = logits.shape[0] A__ = len(__a ) A__ = N // n A__ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__a ) == 1: # softmax over the entailment vs. contradiction dim for each label independently A__ = self.entailment_id A__ = -1 if entailment_id == 0 else 0 A__ = reshaped_outputs[..., [contradiction_id, entailment_id]] A__ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) A__ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels A__ = reshaped_outputs[..., self.entailment_id] A__ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) A__ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
260
1
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _lowerCamelCase : Tuple = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class lowerCamelCase__ ( __snake_case ): def __init__( self , **lowerCAmelCase__ ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: """simple docstring""" return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def _UpperCamelCase ( self , **lowerCAmelCase__ ) -> List[str]: """simple docstring""" _UpperCamelCase :Union[str, Any] ={} if "candidate_labels" in kwargs: _UpperCamelCase :Any =kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _UpperCamelCase :Dict =kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__="This is a photo of {}." ) -> Dict: """simple docstring""" _UpperCamelCase :Union[str, Any] =load_image(lowerCAmelCase__ ) _UpperCamelCase :Tuple =self.image_processor(images=[image] , return_tensors=self.framework ) _UpperCamelCase :Tuple =candidate_labels _UpperCamelCase :Dict =[hypothesis_template.format(lowerCAmelCase__ ) for x in candidate_labels] _UpperCamelCase :Optional[Any] =self.tokenizer(lowerCAmelCase__ , return_tensors=self.framework , padding=lowerCAmelCase__ ) _UpperCamelCase :List[str] =[text_inputs] return inputs def _UpperCamelCase ( self , lowerCAmelCase__ ) -> Tuple: """simple docstring""" _UpperCamelCase :int =model_inputs.pop("""candidate_labels""" ) _UpperCamelCase :Optional[int] =model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , lowerCAmelCase__ ): _UpperCamelCase :Optional[Any] =text_inputs[0] else: # Batching case. _UpperCamelCase :Union[str, Any] =text_inputs[0][0] _UpperCamelCase :List[str] =self.model(**lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase :Union[str, Any] ={ """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def _UpperCamelCase ( self , lowerCAmelCase__ ) -> Any: """simple docstring""" _UpperCamelCase :Dict =model_outputs.pop("""candidate_labels""" ) _UpperCamelCase :Dict =model_outputs["""logits"""][0] if self.framework == "pt": _UpperCamelCase :Any =logits.softmax(dim=-1 ).squeeze(-1 ) _UpperCamelCase :Any =probs.tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase :Any =[scores] elif self.framework == "tf": _UpperCamelCase :Any =stable_softmax(lowerCAmelCase__ , axis=-1 ) _UpperCamelCase :List[Any] =probs.numpy().tolist() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) _UpperCamelCase :str =[ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , key=lambda lowerCAmelCase__ : -x[0] ) ] return result
512
'''simple docstring''' from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata _lowerCamelCase : str = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class lowerCamelCase__ ( tr.AbstractTransform ): def __init__( self , lowerCAmelCase__ = " " ) -> Optional[int]: """simple docstring""" _UpperCamelCase :Dict =sentence_delimiter def _UpperCamelCase ( self , lowerCAmelCase__ ) -> Dict: """simple docstring""" return list(lowerCAmelCase__ ) def _UpperCamelCase ( self , lowerCAmelCase__ ) -> Optional[int]: """simple docstring""" _UpperCamelCase :int =[] for sent_idx, sentence in enumerate(lowerCAmelCase__ ): chars.extend(self.process_string(lowerCAmelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCAmelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars _lowerCamelCase : Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _lowerCamelCase : str = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _lowerCamelCase : int = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ _lowerCamelCase : Tuple = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ _lowerCamelCase : Optional[int] = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Optional[int]: """simple docstring""" if concatenate_texts: return jiwer.compute_measures( lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , )["wer"] _UpperCamelCase :str =0 _UpperCamelCase :Tuple =0 for prediction, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase :Optional[int] =jiwer.compute_measures( lowerCAmelCase__ , lowerCAmelCase__ , truth_transform=lowerCAmelCase__ , hypothesis_transform=lowerCAmelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
512
1
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): def a ( self : int , _lowercase : int , _lowercase : int ): __UpperCAmelCase = jnp.ones((batch_size, length) ) / length return scores def a ( self : str ): __UpperCAmelCase = None __UpperCAmelCase = 20 __UpperCAmelCase = self._get_uniform_logits(batch_size=2 , length=_lowercase ) # tweak scores to not be uniform anymore __UpperCAmelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch __UpperCAmelCase = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax __UpperCAmelCase = jax.nn.softmax(_lowercase , axis=-1 ) __UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) __UpperCAmelCase = jax.nn.softmax(temp_dist_warper_sharper(_lowercase , scores.copy() , cur_len=_lowercase ) , axis=-1 ) __UpperCAmelCase = jax.nn.softmax(temp_dist_warper_smoother(_lowercase , scores.copy() , cur_len=_lowercase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def a ( self : List[Any] ): __UpperCAmelCase = None __UpperCAmelCase = 10 __UpperCAmelCase = 2 # create ramp distribution __UpperCAmelCase = np.broadcast_to(np.arange(_lowercase )[None, :] , (batch_size, vocab_size) ).copy() __UpperCAmelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size __UpperCAmelCase = FlaxTopKLogitsWarper(3 ) __UpperCAmelCase = top_k_warp(_lowercase , _lowercase , cur_len=_lowercase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case __UpperCAmelCase = 5 __UpperCAmelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) __UpperCAmelCase = np.broadcast_to(np.arange(_lowercase )[None, :] , (batch_size, length) ).copy() __UpperCAmelCase = top_k_warp_safety_check(_lowercase , _lowercase , cur_len=_lowercase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def a ( self : str ): __UpperCAmelCase = None __UpperCAmelCase = 10 __UpperCAmelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) __UpperCAmelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) __UpperCAmelCase = FlaxTopPLogitsWarper(0.8 ) __UpperCAmelCase = np.exp(top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 __UpperCAmelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # check edge cases with negative and extreme logits __UpperCAmelCase = np.broadcast_to(np.arange(_lowercase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme __UpperCAmelCase = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept __UpperCAmelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) __UpperCAmelCase = top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def a ( self : List[str] ): __UpperCAmelCase = 20 __UpperCAmelCase = 4 __UpperCAmelCase = 0 __UpperCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowercase ) # check that min length is applied at length 5 __UpperCAmelCase = ids_tensor((batch_size, 20) , vocab_size=20 ) __UpperCAmelCase = 5 __UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) __UpperCAmelCase = min_dist_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 __UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) __UpperCAmelCase = 15 __UpperCAmelCase = min_dist_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def a ( self : List[Any] ): __UpperCAmelCase = 20 __UpperCAmelCase = 4 __UpperCAmelCase = 0 __UpperCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) # check that all scores are -inf except the bos_token_id score __UpperCAmelCase = ids_tensor((batch_size, 1) , vocab_size=20 ) __UpperCAmelCase = 1 __UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) __UpperCAmelCase = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 __UpperCAmelCase = 3 __UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) __UpperCAmelCase = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def a ( self : Optional[int] ): __UpperCAmelCase = 20 __UpperCAmelCase = 4 __UpperCAmelCase = 0 __UpperCAmelCase = 5 __UpperCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase , eos_token_id=_lowercase ) # check that all scores are -inf except the eos_token_id when max_length is reached __UpperCAmelCase = ids_tensor((batch_size, 4) , vocab_size=20 ) __UpperCAmelCase = 4 __UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) __UpperCAmelCase = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached __UpperCAmelCase = 3 __UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) __UpperCAmelCase = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def a ( self : Any ): __UpperCAmelCase = 4 __UpperCAmelCase = 10 __UpperCAmelCase = 15 __UpperCAmelCase = 2 __UpperCAmelCase = 1 __UpperCAmelCase = 15 # dummy input_ids and scores __UpperCAmelCase = ids_tensor((batch_size, sequence_length) , _lowercase ) __UpperCAmelCase = input_ids.copy() __UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) __UpperCAmelCase = scores.copy() # instantiate all dist processors __UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __UpperCAmelCase = FlaxTopKLogitsWarper(3 ) __UpperCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __UpperCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowercase ) __UpperCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) __UpperCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase , eos_token_id=_lowercase ) __UpperCAmelCase = 10 # no processor list __UpperCAmelCase = temp_dist_warp(_lowercase , _lowercase , cur_len=_lowercase ) __UpperCAmelCase = top_k_warp(_lowercase , _lowercase , cur_len=_lowercase ) __UpperCAmelCase = top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) __UpperCAmelCase = min_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) __UpperCAmelCase = bos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) __UpperCAmelCase = eos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) # with processor list __UpperCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __UpperCAmelCase = processor(_lowercase , _lowercase , cur_len=_lowercase ) # scores should be equal self.assertTrue(jnp.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def a ( self : int ): __UpperCAmelCase = 4 __UpperCAmelCase = 10 __UpperCAmelCase = 15 __UpperCAmelCase = 2 __UpperCAmelCase = 1 __UpperCAmelCase = 15 # dummy input_ids and scores __UpperCAmelCase = ids_tensor((batch_size, sequence_length) , _lowercase ) __UpperCAmelCase = input_ids.copy() __UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) __UpperCAmelCase = scores.copy() # instantiate all dist processors __UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) __UpperCAmelCase = FlaxTopKLogitsWarper(3 ) __UpperCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors __UpperCAmelCase = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_lowercase ) __UpperCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) __UpperCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase , eos_token_id=_lowercase ) __UpperCAmelCase = 10 # no processor list def run_no_processor_list(_lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : List[Any] ): __UpperCAmelCase = temp_dist_warp(_lowercase , _lowercase , cur_len=_lowercase ) __UpperCAmelCase = top_k_warp(_lowercase , _lowercase , cur_len=_lowercase ) __UpperCAmelCase = top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) __UpperCAmelCase = min_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) __UpperCAmelCase = bos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) __UpperCAmelCase = eos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) return scores # with processor list def run_processor_list(_lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : int ): __UpperCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) __UpperCAmelCase = processor(_lowercase , _lowercase , cur_len=_lowercase ) return scores __UpperCAmelCase = jax.jit(_lowercase ) __UpperCAmelCase = jax.jit(_lowercase ) __UpperCAmelCase = jitted_run_no_processor_list(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = jitted_run_processor_list(_lowercase , _lowercase , _lowercase ) # scores should be equal self.assertTrue(jnp.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
49
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : Any = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] = ['PoolFormerFeatureExtractor'] _lowercase : Any = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
49
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class lowerCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' _lowerCamelCase: Optional[Any] = '''van''' def __init__( self : Union[str, Any] ,A_ : Dict=224 ,A_ : Tuple=3 ,A_ : Optional[int]=[7, 3, 3, 3] ,A_ : Optional[Any]=[4, 2, 2, 2] ,A_ : Dict=[64, 128, 320, 512] ,A_ : Tuple=[3, 3, 12, 3] ,A_ : Optional[Any]=[8, 8, 4, 4] ,A_ : Any="gelu" ,A_ : Any=0.02 ,A_ : List[Any]=1e-6 ,A_ : Optional[int]=1e-2 ,A_ : str=0.0 ,A_ : str=0.0 ,**A_ : List[Any] ,) -> List[Any]: super().__init__(**__A ) A = image_size A = num_channels A = patch_sizes A = strides A = hidden_sizes A = depths A = mlp_ratios A = hidden_act A = initializer_range A = layer_norm_eps A = layer_scale_init_value A = drop_path_rate A = dropout_rate
702
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: List[str] = '''yolos''' def __init__( self : Dict ,A_ : Optional[Any]=768 ,A_ : int=12 ,A_ : List[str]=12 ,A_ : str=3072 ,A_ : Tuple="gelu" ,A_ : Dict=0.0 ,A_ : List[Any]=0.0 ,A_ : Any=0.02 ,A_ : str=1e-12 ,A_ : List[Any]=[512, 864] ,A_ : Union[str, Any]=16 ,A_ : List[str]=3 ,A_ : Optional[int]=True ,A_ : Tuple=100 ,A_ : str=True ,A_ : Optional[Any]=False ,A_ : Any=1 ,A_ : Optional[Any]=5 ,A_ : Optional[Any]=2 ,A_ : Optional[int]=5 ,A_ : List[Any]=2 ,A_ : Union[str, Any]=0.1 ,**A_ : Tuple ,) -> Any: super().__init__(**A_ ) A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = image_size A = patch_size A = num_channels A = qkv_bias A = num_detection_tokens A = use_mid_position_embeddings A = auxiliary_loss # Hungarian matcher A = class_cost A = bbox_cost A = giou_cost # Loss coefficients A = bbox_loss_coefficient A = giou_loss_coefficient A = eos_coefficient class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Any = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Any ) -> float: return 1e-4 @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return 12
22
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowercase__ ( A__ ): a_ ="Wav2Vec2FeatureExtractor" a_ ="AutoTokenizer" def __init__( self , __UpperCAmelCase , __UpperCAmelCase )-> Optional[int]: '''simple docstring''' super().__init__(__lowercase , __lowercase ) lowerCAmelCase__ = self.feature_extractor lowerCAmelCase__ = False @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase )-> List[str]: '''simple docstring''' try: return super().from_pretrained(__lowercase , **__lowercase ) except OSError: warnings.warn( F"Loading a tokenizer inside {cls.__name__} from a config that does not" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , __lowercase , ) lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained(__lowercase , **__lowercase ) lowerCAmelCase__ = WavaVecaCTCTokenizer.from_pretrained(__lowercase , **__lowercase ) return cls(feature_extractor=__lowercase , tokenizer=__lowercase ) def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Optional[Any]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__lowercase , **__lowercase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCAmelCase__ = kwargs.pop("raw_speech" ) else: lowerCAmelCase__ = kwargs.pop("audio" , __lowercase ) lowerCAmelCase__ = kwargs.pop("sampling_rate" , __lowercase ) lowerCAmelCase__ = kwargs.pop("text" , __lowercase ) if len(__lowercase ) > 0: lowerCAmelCase__ = args[0] lowerCAmelCase__ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCAmelCase__ = self.feature_extractor(__lowercase , *__lowercase , sampling_rate=__lowercase , **__lowercase ) if text is not None: lowerCAmelCase__ = self.tokenizer(__lowercase , **__lowercase ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase__ = encodings["""input_ids"""] return inputs def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Tuple: '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*__lowercase , **__lowercase ) lowerCAmelCase__ = kwargs.pop("input_features" , __lowercase ) lowerCAmelCase__ = kwargs.pop("labels" , __lowercase ) if len(__lowercase ) > 0: lowerCAmelCase__ = args[0] lowerCAmelCase__ = args[1:] if input_features is not None: lowerCAmelCase__ = self.feature_extractor.pad(__lowercase , *__lowercase , **__lowercase ) if labels is not None: lowerCAmelCase__ = self.tokenizer.pad(__lowercase , **__lowercase ) if labels is None: return input_features elif input_features is None: return labels else: lowerCAmelCase__ = labels["""input_ids"""] return input_features def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase )-> List[Any]: '''simple docstring''' return self.tokenizer.decode(*__lowercase , **__lowercase ) @contextmanager def UpperCAmelCase ( self )-> Union[str, Any]: '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCAmelCase__ = True lowerCAmelCase__ = self.tokenizer yield lowerCAmelCase__ = self.feature_extractor lowerCAmelCase__ = False
339
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowercase : Dict ={"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] =[ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _lowercase : int =_LazyModule(__name__, globals()["__file__"], _import_structure)
136
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters UpperCAmelCase = (720, 1280) # Height, Width UpperCAmelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. UpperCAmelCase = 1 / 100 UpperCAmelCase = '''''' UpperCAmelCase = '''''' UpperCAmelCase = '''''' UpperCAmelCase = 250 def UpperCAmelCase_ ( ): lowercase , lowercase = get_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for index in range(__SCREAMING_SNAKE_CASE ): lowercase = random.sample(range(len(__SCREAMING_SNAKE_CASE ) ) , 4 ) lowercase , lowercase , lowercase = update_image_and_anno( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , filter_scale=__SCREAMING_SNAKE_CASE , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowercase = random_chars(32 ) lowercase = path.split(os.sep )[-1].rsplit('.' , 1 )[0] lowercase = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , __SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) lowercase = [] for anno in new_annos: lowercase = anno[3] - anno[1] lowercase = anno[4] - anno[2] lowercase = anno[1] + width / 2 lowercase = anno[2] + height / 2 lowercase = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(__SCREAMING_SNAKE_CASE ) with open(F'''{file_root}.txt''' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = [] lowercase = [] for label_file in glob.glob(os.path.join(__SCREAMING_SNAKE_CASE , '*.txt' ) ): lowercase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__SCREAMING_SNAKE_CASE ) as in_file: lowercase = in_file.readlines() lowercase = os.path.join(__SCREAMING_SNAKE_CASE , F'''{label_name}.jpg''' ) lowercase = [] for obj_list in obj_lists: lowercase = obj_list.rstrip('\n' ).split(' ' ) lowercase = float(obj[1] ) - float(obj[3] ) / 2 lowercase = float(obj[2] ) - float(obj[4] ) / 2 lowercase = float(obj[1] ) + float(obj[3] ) / 2 lowercase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__SCREAMING_SNAKE_CASE ) labels.append(__SCREAMING_SNAKE_CASE ) return img_paths, labels def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 , ): lowercase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowercase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowercase = int(scale_x * output_size[1] ) lowercase = int(scale_y * output_size[0] ) lowercase = [] lowercase = [] for i, index in enumerate(__SCREAMING_SNAKE_CASE ): lowercase = all_img_list[index] path_list.append(__SCREAMING_SNAKE_CASE ) lowercase = all_annos[index] lowercase = cva.imread(__SCREAMING_SNAKE_CASE ) if i == 0: # top-left lowercase = cva.resize(__SCREAMING_SNAKE_CASE , (divid_point_x, divid_point_y) ) lowercase = img for bbox in img_annos: lowercase = bbox[1] * scale_x lowercase = bbox[2] * scale_y lowercase = bbox[3] * scale_x lowercase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowercase = cva.resize(__SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, divid_point_y) ) lowercase = img for bbox in img_annos: lowercase = scale_x + bbox[1] * (1 - scale_x) lowercase = bbox[2] * scale_y lowercase = scale_x + bbox[3] * (1 - scale_x) lowercase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowercase = cva.resize(__SCREAMING_SNAKE_CASE , (divid_point_x, output_size[0] - divid_point_y) ) lowercase = img for bbox in img_annos: lowercase = bbox[1] * scale_x lowercase = scale_y + bbox[2] * (1 - scale_y) lowercase = bbox[3] * scale_x lowercase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowercase = cva.resize( __SCREAMING_SNAKE_CASE , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowercase = img for bbox in img_annos: lowercase = scale_x + bbox[1] * (1 - scale_x) lowercase = scale_y + bbox[2] * (1 - scale_y) lowercase = scale_x + bbox[3] * (1 - scale_x) lowercase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowercase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): assert number_char > 1, "The number of character should greater than 1" lowercase = ascii_lowercase + digits return "".join(random.choice(__SCREAMING_SNAKE_CASE ) for _ in range(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print('''DONE ✅''')
565
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase = set() return any( node not in visited and depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for node in graph ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): visited.add(__SCREAMING_SNAKE_CASE ) rec_stk.add(__SCREAMING_SNAKE_CASE ) for node in graph[vertex]: if node not in visited: if depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__SCREAMING_SNAKE_CASE ) return False if __name__ == "__main__": from doctest import testmod testmod()
565
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" __magic_name__ : Any = False if num < 0: __magic_name__ : str = True __magic_name__ : Optional[Any] = -num __magic_name__ : Any = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__UpperCAmelCase ) for e in binary ) return "0b" + "".join(str(__UpperCAmelCase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
561
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal a_ : Any = logging.get_logger(__name__) a_ : str = TypeVar('DatasetType', Dataset, IterableDataset) def __a ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(__UpperCAmelCase ): if not isinstance(__UpperCAmelCase , (Dataset, IterableDataset) ): if isinstance(__UpperCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCAmelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCAmelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCAmelCase ).__name__}." ) if i == 0: a__ , a__ = ( (Dataset, IterableDataset) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , info=__UpperCAmelCase , split=__UpperCAmelCase , stopping_strategy=__UpperCAmelCase ) else: return _interleave_iterable_datasets( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , info=__UpperCAmelCase , split=__UpperCAmelCase , stopping_strategy=__UpperCAmelCase ) def __a ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(__UpperCAmelCase ): if not isinstance(__UpperCAmelCase , (Dataset, IterableDataset) ): if isinstance(__UpperCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCAmelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCAmelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCAmelCase ).__name__}." ) if i == 0: a__ , a__ = ( (Dataset, IterableDataset) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCAmelCase , info=__UpperCAmelCase , split=__UpperCAmelCase , axis=__UpperCAmelCase ) else: return _concatenate_iterable_datasets(__UpperCAmelCase , info=__UpperCAmelCase , split=__UpperCAmelCase , axis=__UpperCAmelCase )
194
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase (UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = StableDiffusionInstructPixaPixPipeline _snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} _snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS _snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case : int = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) snake_case : Any = PNDMScheduler(skip_prk_steps=A ) torch.manual_seed(0 ) snake_case : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) snake_case : int = CLIPTextModel(A ) snake_case : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case : List[str] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase ( self , A , A=0 ) -> Optional[int]: snake_case : Union[str, Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A ) ).to(A ) snake_case : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case : Any = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ) if str(A ).startswith("""mps""" ): snake_case : Any = torch.manual_seed(A ) else: snake_case : List[Any] = torch.Generator(device=A ).manual_seed(A ) snake_case : Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ) -> Tuple: snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : List[Any] = self.get_dummy_components() snake_case : Optional[int] = StableDiffusionInstructPixaPixPipeline(**A ) snake_case : Union[str, Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Optional[Any] = self.get_dummy_inputs(A ) snake_case : str = sd_pipe(**A ).images snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case : Dict = np.array([0.75_26, 0.37_50, 0.45_47, 0.61_17, 0.58_66, 0.50_16, 0.43_27, 0.56_42, 0.48_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : Union[str, Any] = self.get_dummy_components() snake_case : Union[str, Any] = StableDiffusionInstructPixaPixPipeline(**A ) snake_case : Dict = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Optional[Any] = self.get_dummy_inputs(A ) snake_case : Dict = """french fries""" snake_case : Optional[Any] = sd_pipe(**A , negative_prompt=A ) snake_case : Dict = output.images snake_case : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) snake_case : List[Any] = np.array([0.75_11, 0.36_42, 0.45_53, 0.62_36, 0.57_97, 0.50_13, 0.43_43, 0.56_11, 0.48_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> List[Any]: snake_case : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components() snake_case : Dict = StableDiffusionInstructPixaPixPipeline(**A ) snake_case : List[Any] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Dict = self.get_dummy_inputs(A ) snake_case : Dict = [inputs["""prompt"""]] * 2 snake_case : int = np.array(inputs["""image"""] ).astype(np.floataa ) / 2_55.0 snake_case : str = torch.from_numpy(A ).unsqueeze(0 ).to(A ) snake_case : Union[str, Any] = image / 2 + 0.5 snake_case : int = image.permute(0 , 3 , 1 , 2 ) snake_case : Optional[Any] = image.repeat(2 , 1 , 1 , 1 ) snake_case : Dict = sd_pipe(**A ).images snake_case : str = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) snake_case : List[str] = np.array([0.58_12, 0.57_48, 0.52_22, 0.59_08, 0.56_95, 0.71_74, 0.68_04, 0.55_23, 0.55_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> List[Any]: snake_case : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case : str = self.get_dummy_components() snake_case : Any = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" ) snake_case : Dict = StableDiffusionInstructPixaPixPipeline(**A ) snake_case : List[str] = sd_pipe.to(A ) sd_pipe.set_progress_bar_config(disable=A ) snake_case : Optional[int] = self.get_dummy_inputs(A ) snake_case : List[str] = sd_pipe(**A ).images snake_case : Dict = image[0, -3:, -3:, -1] snake_case : int = [round(A , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(A ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) snake_case : Tuple = np.array([0.74_17, 0.38_42, 0.47_32, 0.57_76, 0.58_91, 0.51_39, 0.40_52, 0.56_73, 0.49_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Optional[Any] = self.get_dummy_components() snake_case : Optional[int] = StableDiffusionInstructPixaPixPipeline(**A ) snake_case : Tuple = VaeImageProcessor(do_resize=A , do_normalize=A ) snake_case : Union[str, Any] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) snake_case : Optional[Any] = pipe(**self.get_dummy_inputs_by_type(A , input_image_type="""pt""" ) )[0] snake_case : Dict = components["""vae"""] snake_case : Optional[Any] = self.get_dummy_inputs_by_type(A , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): snake_case : Any = vae.encode(inputs[image_param] ).latent_dist.mode() snake_case : Tuple = pipe(**A )[0] snake_case : str = np.abs(out - out_latents_inputs ).max() self.assertLess(A , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , A=0 ) -> Optional[Any]: snake_case : List[str] = torch.manual_seed(A ) snake_case : int = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) snake_case : Union[str, Any] = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase ( self ) -> Tuple: snake_case : Any = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : Dict = self.get_inputs() snake_case : Optional[Any] = pipe(**A ).images snake_case : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case : Union[str, Any] = np.array([0.59_02, 0.60_15, 0.60_27, 0.59_83, 0.60_92, 0.60_61, 0.57_65, 0.57_85, 0.55_55] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> Optional[int]: snake_case : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=A ) snake_case : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : List[str] = self.get_inputs() snake_case : List[Any] = pipe(**A ).images snake_case : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case : str = np.array([0.65_78, 0.68_17, 0.69_72, 0.67_61, 0.68_56, 0.69_16, 0.64_28, 0.65_16, 0.63_01] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> str: snake_case : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=A ) snake_case : Dict = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : Union[str, Any] = self.get_inputs() snake_case : str = pipe(**A ).images snake_case : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) snake_case : List[Any] = np.array([0.38_28, 0.38_34, 0.38_18, 0.37_92, 0.38_65, 0.37_52, 0.37_92, 0.38_47, 0.37_53] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase ( self ) -> str: snake_case : Any = 0 def callback_fn(A , A , A ) -> None: snake_case : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case : str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case : Union[str, Any] = latents[0, -3:, -3:, -1] snake_case : int = np.array([-0.24_63, -0.46_44, -0.97_56, 1.51_76, 1.44_14, 0.78_66, 0.98_97, 0.85_21, 0.79_83] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) snake_case : List[str] = latents[0, -3:, -3:, -1] snake_case : Tuple = np.array([-0.26_44, -0.46_26, -0.96_53, 1.51_76, 1.45_51, 0.76_86, 0.98_05, 0.84_52, 0.81_15] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case : Optional[Any] = False snake_case : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=A , torch_dtype=torch.floataa ) snake_case : Any = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : str = self.get_inputs() pipe(**A , callback=A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase ( self ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=A , torch_dtype=torch.floataa ) snake_case : List[str] = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case : Optional[int] = self.get_inputs() snake_case : Dict = pipe(**A ) snake_case : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def UpperCAmelCase ( self ) -> Any: snake_case : List[str] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 snake_case : List[str] = inputs["""image"""].resize((5_0_4, 5_0_4) ) snake_case : Optional[Any] = """timbrooks/instruct-pix2pix""" snake_case : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( A , safety_checker=A , ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) pipe.enable_attention_slicing() snake_case : int = pipe(**A ) snake_case : Dict = output.images[0] snake_case : Any = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) snake_case : Tuple = np.array([0.27_26, 0.25_29, 0.26_64, 0.26_55, 0.26_41, 0.26_42, 0.25_91, 0.26_49, 0.25_90] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
684
import os def SCREAMING_SNAKE_CASE__ ( ) -> Dict: with open(os.path.dirname(lowercase ) + """/grid.txt""" ) as f: snake_case : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(lowercase ) for x in f.readline().split()] ) snake_case : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): snake_case : List[Any] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: snake_case : Tuple = temp # down for i in range(17 ): for j in range(20 ): snake_case : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: snake_case : str = temp # diagonal 1 for i in range(17 ): for j in range(17 ): snake_case : int = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: snake_case : int = temp # diagonal 2 for i in range(17 ): for j in range(3 ,20 ): snake_case : Any = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: snake_case : Any = temp return maximum if __name__ == "__main__": print(solution())
684
1
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class a ( lowercase ): UpperCamelCase : "DiagonalGaussianDistribution" class a ( lowercase , lowercase ): UpperCamelCase : Tuple = True @register_to_config def __init__( self , UpperCamelCase_ = 3 , UpperCamelCase_ = 3 , UpperCamelCase_ = ("DownEncoderBlock2D",) , UpperCamelCase_ = ("UpDecoderBlock2D",) , UpperCamelCase_ = (64,) , UpperCamelCase_ = 1 , UpperCamelCase_ = "silu" , UpperCamelCase_ = 4 , UpperCamelCase_ = 32 , UpperCamelCase_ = 32 , UpperCamelCase_ = 0.18215 , ): super().__init__() # pass init params to Encoder UpperCAmelCase__ : Dict = Encoder( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , down_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , act_fn=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , double_z=UpperCamelCase_ , ) # pass init params to Decoder UpperCAmelCase__ : Union[str, Any] = Decoder( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , up_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , act_fn=UpperCamelCase_ , ) UpperCAmelCase__ : Tuple = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase__ : Dict = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , 1 ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[Any] = False # only relevant if vae tiling is enabled UpperCAmelCase__ : Optional[Any] = self.config.sample_size UpperCAmelCase__ : Optional[Any] = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase__ : Optional[Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase__ : Optional[int] = 0.25 def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=False ): if isinstance(UpperCamelCase_ , (Encoder, Decoder) ): UpperCAmelCase__ : int = value def __snake_case ( self , UpperCamelCase_ = True ): UpperCAmelCase__ : str = use_tiling def __snake_case ( self ): self.enable_tiling(UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = True def __snake_case ( self ): UpperCAmelCase__ : Dict = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __snake_case ( self ): UpperCAmelCase__ : Dict = {} def fn_recursive_add_processors(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if hasattr(UpperCamelCase_ , 'set_processor' ): UpperCAmelCase__ : Dict = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , UpperCamelCase_ , UpperCamelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return processors def __snake_case ( self , UpperCamelCase_ ): UpperCAmelCase__ : Any = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(UpperCamelCase_ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if hasattr(UpperCamelCase_ , 'set_processor' ): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): module.set_processor(UpperCamelCase_ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , UpperCamelCase_ , UpperCamelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __snake_case ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(UpperCamelCase_ , return_dict=UpperCamelCase_ ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase__ : Optional[Any] = [self.encoder(UpperCamelCase_ ) for x_slice in x.split(1 )] UpperCAmelCase__ : Union[str, Any] = torch.cat(UpperCamelCase_ ) else: UpperCAmelCase__ : Optional[Any] = self.encoder(UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = self.quant_conv(UpperCamelCase_ ) UpperCAmelCase__ : int = DiagonalGaussianDistribution(UpperCamelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(UpperCamelCase_ , return_dict=UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = self.post_quant_conv(UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = self.decoder(UpperCamelCase_ ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ ) @apply_forward_hook def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = True ): if self.use_slicing and z.shape[0] > 1: UpperCAmelCase__ : Dict = [self._decode(UpperCamelCase_ ).sample for z_slice in z.split(1 )] UpperCAmelCase__ : str = torch.cat(UpperCamelCase_ ) else: UpperCAmelCase__ : str = self._decode(UpperCamelCase_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : Optional[int] = min(a.shape[2] , b.shape[2] , UpperCamelCase_ ) for y in range(UpperCamelCase_ ): UpperCAmelCase__ : Optional[int] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : List[str] = min(a.shape[3] , b.shape[3] , UpperCamelCase_ ) for x in range(UpperCamelCase_ ): UpperCAmelCase__ : List[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = True ): UpperCAmelCase__ : Dict = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase__ : Union[str, Any] = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase__ : Dict = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase__ : Optional[int] = [] for i in range(0 , x.shape[2] , UpperCamelCase_ ): UpperCAmelCase__ : Optional[int] = [] for j in range(0 , x.shape[3] , UpperCamelCase_ ): UpperCAmelCase__ : Dict = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase__ : Any = self.encoder(UpperCamelCase_ ) UpperCAmelCase__ : Any = self.quant_conv(UpperCamelCase_ ) row.append(UpperCamelCase_ ) rows.append(UpperCamelCase_ ) UpperCAmelCase__ : Optional[int] = [] for i, row in enumerate(UpperCamelCase_ ): UpperCAmelCase__ : int = [] for j, tile in enumerate(UpperCamelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase__ : Tuple = self.blend_v(rows[i - 1][j] , UpperCamelCase_ , UpperCamelCase_ ) if j > 0: UpperCAmelCase__ : Optional[Any] = self.blend_h(row[j - 1] , UpperCamelCase_ , UpperCamelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase_ , dim=3 ) ) UpperCAmelCase__ : Any = torch.cat(UpperCamelCase_ , dim=2 ) UpperCAmelCase__ : int = DiagonalGaussianDistribution(UpperCamelCase_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = True ): UpperCAmelCase__ : Union[str, Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase__ : str = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase__ : Tuple = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase__ : List[str] = [] for i in range(0 , z.shape[2] , UpperCamelCase_ ): UpperCAmelCase__ : Any = [] for j in range(0 , z.shape[3] , UpperCamelCase_ ): UpperCAmelCase__ : Optional[Any] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase__ : List[Any] = self.post_quant_conv(UpperCamelCase_ ) UpperCAmelCase__ : int = self.decoder(UpperCamelCase_ ) row.append(UpperCamelCase_ ) rows.append(UpperCamelCase_ ) UpperCAmelCase__ : Any = [] for i, row in enumerate(UpperCamelCase_ ): UpperCAmelCase__ : Dict = [] for j, tile in enumerate(UpperCamelCase_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase__ : str = self.blend_v(rows[i - 1][j] , UpperCamelCase_ , UpperCamelCase_ ) if j > 0: UpperCAmelCase__ : Tuple = self.blend_h(row[j - 1] , UpperCamelCase_ , UpperCamelCase_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase_ , dim=3 ) ) UpperCAmelCase__ : Tuple = torch.cat(UpperCamelCase_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ = False , UpperCamelCase_ = True , UpperCamelCase_ = None , ): UpperCAmelCase__ : Optional[int] = sample UpperCAmelCase__ : Optional[Any] = self.encode(UpperCamelCase_ ).latent_dist if sample_posterior: UpperCAmelCase__ : List[Any] = posterior.sample(generator=UpperCamelCase_ ) else: UpperCAmelCase__ : Union[str, Any] = posterior.mode() UpperCAmelCase__ : List[str] = self.decode(UpperCamelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ )
110
"""simple docstring""" from itertools import permutations def lowerCamelCase ( _snake_case ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False UpperCAmelCase__ : List[str] = [7, 11, 13, 17] for i, test in enumerate(_snake_case ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCamelCase ( _snake_case = 10 ): return sum( int(''.join(map(_snake_case ,_snake_case ) ) ) for num in permutations(range(_snake_case ) ) if is_substring_divisible(_snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
110
1
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _UpperCamelCase: Optional[Any] =logging.get_logger(__name__) class __lowercase( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : Optional[int] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : bool = True , _lowerCAmelCase : Dict[str, int] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 255 , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_lowerCAmelCase : List[Any] , ) -> None: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {'shortest_edge': 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name='crop_size' ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE_ ( self : int , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Optional[Any] , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase = int((256 / 224) * size['shortest_edge'] ) _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowerCAmelCase , size=(size_dict['height'], size_dict['width']) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Dict[str, int] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : str , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size['height'], size['width']) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[int, float] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : Union[str, Any] , ) -> np.ndarray: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Union[float, List[float]] , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : str , ) -> np.ndarray: return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : Dict , _lowerCAmelCase : ImageInput , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Dict[str, int]] = None , _lowerCAmelCase : PILImageResampling = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Dict[str, int]] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[float] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = None , _lowerCAmelCase : Optional[Union[float, Iterable[float]]] = None , _lowerCAmelCase : Optional[TensorType] = None , _lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_lowerCAmelCase : str , ) -> BatchFeature: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name='crop_size' ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
701
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCamelCase: Optional[int] =TypeVar('T') class __lowercase( Generic[T] ): """simple docstring""" def __init__( self : str , _lowerCAmelCase : T ) -> Optional[int]: _lowerCAmelCase = data _lowerCAmelCase = None def __str__( self : Union[str, Any] ) -> str: return F'''{self.data}''' class __lowercase( Generic[T] ): """simple docstring""" def __init__( self : Any ) -> None: _lowerCAmelCase = None def __iter__( self : Dict ) -> Iterator[T]: _lowerCAmelCase = self.top while node: yield node.data _lowerCAmelCase = node.next def __str__( self : str ) -> str: return "->".join([str(_lowerCAmelCase ) for item in self] ) def __len__( self : Dict ) -> int: return len(tuple(iter(self ) ) ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> bool: return self.top is None def SCREAMING_SNAKE_CASE_ ( self : Tuple , _lowerCAmelCase : T ) -> None: _lowerCAmelCase = Node(_lowerCAmelCase ) if not self.is_empty(): _lowerCAmelCase = self.top _lowerCAmelCase = node def SCREAMING_SNAKE_CASE_ ( self : Any ) -> T: if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _lowerCAmelCase ) _lowerCAmelCase = self.top _lowerCAmelCase = self.top.next return pop_node.data def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> T: if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> None: _lowerCAmelCase = None if __name__ == "__main__": from doctest import testmod testmod()
585
0
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef a__ : int = ( 'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' ) def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Dict: """simple docstring""" warnings.warn(a_ , a_ ) requires_backends(a_ , '''sklearn''' ) return (preds == labels).mean() def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: """simple docstring""" warnings.warn(a_ , a_ ) requires_backends(a_ , '''sklearn''' ) UpperCAmelCase = simple_accuracy(a_ , a_ ) UpperCAmelCase = fa_score(y_true=a_ , y_pred=a_ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict ) -> str: """simple docstring""" warnings.warn(a_ , a_ ) requires_backends(a_ , '''sklearn''' ) UpperCAmelCase = pearsonr(a_ , a_ )[0] UpperCAmelCase = spearmanr(a_ , a_ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __snake_case ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: """simple docstring""" warnings.warn(a_ , a_ ) requires_backends(a_ , '''sklearn''' ) assert len(a_ ) == len(a_ ), f"Predictions and labels have mismatched lengths {len(a_ )} and {len(a_ )}" if task_name == "cola": return {"mcc": matthews_corrcoef(a_ , a_ )} elif task_name == "sst-2": return {"acc": simple_accuracy(a_ , a_ )} elif task_name == "mrpc": return acc_and_fa(a_ , a_ ) elif task_name == "sts-b": return pearson_and_spearman(a_ , a_ ) elif task_name == "qqp": return acc_and_fa(a_ , a_ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(a_ , a_ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(a_ , a_ )} elif task_name == "qnli": return {"acc": simple_accuracy(a_ , a_ )} elif task_name == "rte": return {"acc": simple_accuracy(a_ , a_ )} elif task_name == "wnli": return {"acc": simple_accuracy(a_ , a_ )} elif task_name == "hans": return {"acc": simple_accuracy(a_ , a_ )} else: raise KeyError(a_ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> int: """simple docstring""" warnings.warn(a_ , a_ ) requires_backends(a_ , '''sklearn''' ) if len(a_ ) != len(a_ ): raise ValueError(f"Predictions and labels have mismatched lengths {len(a_ )} and {len(a_ )}" ) if task_name == "xnli": return {"acc": simple_accuracy(a_ , a_ )} else: raise KeyError(a_ )
51
def lowerCamelCase ( a_ ) -> list: lowerCAmelCase_ = len(a_ ) for _ in range(a_ ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowerCAmelCase_ , lowerCAmelCase_ = arr[i + 1], arr[i] return arr if __name__ == "__main__": lowerCamelCase_ = list(range(1_0, 0, -1)) print(f'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
318
0
def lowerCamelCase_ ( lowerCAmelCase: str )-> int: _snake_case : Any = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) _snake_case : str = hex_num[0] == '-' if is_negative: _snake_case : List[str] = hex_num[1:] try: _snake_case : Union[str, Any] = int(lowerCAmelCase , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) _snake_case : Dict = '' while int_num > 0: _snake_case : Optional[int] = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
720
from functools import reduce lowerCAmelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( lowerCAmelCase: str = N )-> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase , lowerCAmelCase : str(int(lowerCAmelCase ) * int(lowerCAmelCase ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase ) - 12 ) ) if __name__ == "__main__": print(F"""{solution() = }""")
669
0
"""simple docstring""" from collections import Counter from timeit import timeit def A ( __snake_case: Optional[int] = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def A ( __snake_case: Optional[Any] = "" ) -> bool: """simple docstring""" if len(_a ) == 0: return True __magic_name__ = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string __magic_name__ = {} for character in lower_case_input_str: __magic_name__ = character_freq_dict.get(_a , 0 ) + 1 __magic_name__ = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def A ( __snake_case: List[Any] = "" ) -> None: """simple docstring""" print('\nFor string = ' , _a , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(_a ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(_a ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": snake_case : Union[str, Any] = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) snake_case : List[Any] = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
545
def lowercase ( ) -> int: return [ a * b * (1000 - a - b) for a in range(1 ,999 ) for b in range(_a ,999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F"""{solution() = }""")
137
0
import re def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" if len(re.findall("[ATCG]" , lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
587
from __future__ import annotations import math def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , ) ) def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : str = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] _lowerCAmelCase : Dict = math.log(len(lowerCAmelCase__ ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
587
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' lowerCamelCase_ = VideoMAEConfig() set_architecture_configs(lowercase , lowercase ) if "finetuned" not in model_name: lowerCamelCase_ = False if "finetuned" in model_name: lowerCamelCase_ = 'huggingface/label-files' if "kinetics" in model_name: lowerCamelCase_ = 4_00 lowerCamelCase_ = 'kinetics400-id2label.json' elif "ssv2" in model_name: lowerCamelCase_ = 1_74 lowerCamelCase_ = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) lowerCamelCase_ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='dataset' ) , 'r' ) ) lowerCamelCase_ = {int(lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] , lowercase : Optional[Any] ): '''simple docstring''' if "small" in model_name: lowerCamelCase_ = 3_84 lowerCamelCase_ = 15_36 lowerCamelCase_ = 12 lowerCamelCase_ = 16 lowerCamelCase_ = 12 lowerCamelCase_ = 3 lowerCamelCase_ = 1_92 lowerCamelCase_ = 7_68 elif "large" in model_name: lowerCamelCase_ = 10_24 lowerCamelCase_ = 40_96 lowerCamelCase_ = 24 lowerCamelCase_ = 16 lowerCamelCase_ = 12 lowerCamelCase_ = 8 lowerCamelCase_ = 5_12 lowerCamelCase_ = 20_48 elif "huge" in model_name: lowerCamelCase_ = 12_80 lowerCamelCase_ = 51_20 lowerCamelCase_ = 32 lowerCamelCase_ = 16 lowerCamelCase_ = 12 lowerCamelCase_ = 8 lowerCamelCase_ = 6_40 lowerCamelCase_ = 25_60 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def _SCREAMING_SNAKE_CASE ( lowercase : int ): '''simple docstring''' if "encoder." in name: lowerCamelCase_ = name.replace('encoder.' , '' ) if "cls_token" in name: lowerCamelCase_ = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: lowerCamelCase_ = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase_ = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCamelCase_ = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: lowerCamelCase_ = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: lowerCamelCase_ = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: lowerCamelCase_ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: lowerCamelCase_ = name.replace('attn' , 'attention.self' ) if "attn" in name: lowerCamelCase_ = name.replace('attn' , 'attention.attention' ) if "norm1" in name: lowerCamelCase_ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCamelCase_ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: lowerCamelCase_ = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: lowerCamelCase_ = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: lowerCamelCase_ = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowerCamelCase_ = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowerCamelCase_ = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: lowerCamelCase_ = name.replace('head' , 'classifier' ) return name def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : str ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowercase ) if key.startswith('encoder.' ): lowerCamelCase_ = key.replace('encoder.' , '' ) if "qkv" in key: lowerCamelCase_ = key.split('.' ) if key.startswith('decoder.blocks' ): lowerCamelCase_ = config.decoder_hidden_size lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = 'decoder.decoder_layers.' if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = config.hidden_size lowerCamelCase_ = int(key_split[1] ) lowerCamelCase_ = 'videomae.encoder.layer.' if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[dim : dim * 2, :] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowerCamelCase_ = np.load(lowercase ) return list(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : str ): '''simple docstring''' lowerCamelCase_ = get_videomae_config(lowercase ) if "finetuned" in model_name: lowerCamelCase_ = VideoMAEForVideoClassification(lowercase ) else: lowerCamelCase_ = VideoMAEForPreTraining(lowercase ) # download original checkpoint, hosted on Google Drive lowerCamelCase_ = 'pytorch_model.bin' gdown.cached_download(lowercase , lowercase , quiet=lowercase ) lowerCamelCase_ = torch.load(lowercase , map_location='cpu' ) if "model" in files: lowerCamelCase_ = files['model'] else: lowerCamelCase_ = files['module'] lowerCamelCase_ = convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() # verify model on basic input lowerCamelCase_ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowerCamelCase_ = prepare_video() lowerCamelCase_ = image_processor(lowercase , return_tensors='pt' ) if "finetuned" not in model_name: lowerCamelCase_ = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) lowerCamelCase_ = torch.load(lowercase ) lowerCamelCase_ = model(**lowercase ) lowerCamelCase_ = outputs.logits lowerCamelCase_ = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowerCamelCase_ = torch.Size([1, 4_00] ) lowerCamelCase_ = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": lowerCamelCase_ = torch.Size([1, 1_74] ) lowerCamelCase_ = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": lowerCamelCase_ = torch.Size([1, 14_08, 15_36] ) lowerCamelCase_ = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": lowerCamelCase_ = torch.Size([1, 14_08, 15_36] ) lowerCamelCase_ = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one lowerCamelCase_ = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": lowerCamelCase_ = torch.Size([1, 14_08, 15_36] ) lowerCamelCase_ = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": lowerCamelCase_ = torch.Size([1, 4_00] ) lowerCamelCase_ = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": lowerCamelCase_ = torch.Size([1, 4_00] ) lowerCamelCase_ = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowerCamelCase_ = torch.Size([1, 4_00] ) lowerCamelCase_ = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": lowerCamelCase_ = torch.Size([1, 4_00] ) lowerCamelCase_ = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": lowerCamelCase_ = torch.Size([1, 14_08, 15_36] ) lowerCamelCase_ = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowerCamelCase_ = torch.Size([1, 1_74] ) lowerCamelCase_ = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": lowerCamelCase_ = torch.Size([1, 14_08, 15_36] ) lowerCamelCase_ = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": lowerCamelCase_ = torch.Size([1, 1_74] ) lowerCamelCase_ = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(f"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": lowerCamelCase_ = outputs.loss assert torch.allclose(lowercase , lowercase , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowercase ) model.save_pretrained(lowercase ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(lowercase , organization='nielsr' ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="/Users/nielsrogge/Documents/VideoMAE/Test", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase : List[str] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
70
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowercase__ :List[Any] = Lock() def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCAmelCase_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __UpperCAmelCase : str = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __UpperCAmelCase : List[Any] = min(UpperCAmelCase_ , UpperCAmelCase_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCAmelCase_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __UpperCAmelCase : Union[str, Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __UpperCAmelCase : Union[str, Any] = max(UpperCAmelCase_ , UpperCAmelCase_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ ) ->Optional[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __UpperCAmelCase : Optional[int] = Pipe() __UpperCAmelCase : str = Pipe() process_array_.append( Process( target=UpperCAmelCase_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __UpperCAmelCase : Optional[int] = temp_rs __UpperCAmelCase : Any = temp_rr for i in range(1 , len(UpperCAmelCase_ ) - 1 ): __UpperCAmelCase : List[Any] = Pipe() __UpperCAmelCase : List[Any] = Pipe() process_array_.append( Process( target=UpperCAmelCase_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __UpperCAmelCase : int = temp_rs __UpperCAmelCase : Optional[Any] = temp_rr process_array_.append( Process( target=UpperCAmelCase_ , args=( len(UpperCAmelCase_ ) - 1, arr[len(UpperCAmelCase_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCAmelCase_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCAmelCase_ ) ): __UpperCAmelCase : str = result_pipe[p][0].recv() process_array_[p].join() return arr def lowerCamelCase_ ( ) ->Optional[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*UpperCAmelCase_ ) __UpperCAmelCase : int = odd_even_transposition(UpperCAmelCase_ ) print('''Sorted List\n''' ) print(*UpperCAmelCase_ ) if __name__ == "__main__": main()
522
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) SCREAMING_SNAKE_CASE : str = 'xvjiarui/stable-diffusion-2-inpainting' SCREAMING_SNAKE_CASE : Optional[int] = FlaxStableDiffusionInpaintPipeline.from_pretrained(lowercase__ , safety_checker=lowercase__ ) SCREAMING_SNAKE_CASE : str = 'Face of a yellow cat, high resolution, sitting on a park bench' SCREAMING_SNAKE_CASE : List[str] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Any = 50 SCREAMING_SNAKE_CASE : Union[str, Any] = jax.device_count() SCREAMING_SNAKE_CASE : Any = num_samples * [prompt] SCREAMING_SNAKE_CASE : List[Any] = num_samples * [init_image] SCREAMING_SNAKE_CASE : Dict = num_samples * [mask_image] SCREAMING_SNAKE_CASE : Any = pipeline.prepare_inputs(lowercase__ , lowercase__ , lowercase__ ) # shard inputs and rng SCREAMING_SNAKE_CASE : Union[str, Any] = replicate(lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = jax.random.split(lowercase__ , jax.device_count() ) SCREAMING_SNAKE_CASE : Union[str, Any] = shard(lowercase__ ) SCREAMING_SNAKE_CASE : str = shard(lowercase__ ) SCREAMING_SNAKE_CASE : int = shard(lowercase__ ) SCREAMING_SNAKE_CASE : Any = pipeline( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , jit=lowercase__ ) SCREAMING_SNAKE_CASE : str = output.images.reshape(lowercase__ , 512 , 512 , 3 ) SCREAMING_SNAKE_CASE : int = images[0, 253:256, 253:256, -1] SCREAMING_SNAKE_CASE : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) SCREAMING_SNAKE_CASE : Any = jnp.array( [0.3_6_1_1_3_0_7, 0.3_7_6_4_9_7_3_6, 0.3_7_5_7_4_0_8, 0.3_8_2_1_3_9_5_3, 0.3_9_2_9_5_1_6_7, 0.3_8_4_1_6_3_1, 0.4_1_5_5_4_9_7_8, 0.4_1_3_7_4_7_5, 0.4_2_1_7_0_8_4] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
701
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=99 , lowercase__=64 , lowercase__=5 , lowercase__=4 , lowercase__=64 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> int: SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Any = use_input_mask SCREAMING_SNAKE_CASE : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def _UpperCamelCase ( self ) -> Union[str, Any]: return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : str = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ) -> Tuple: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = MPNetModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = MPNetForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model( lowercase__ , attention_mask=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MPNetForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE : Any = MPNetForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = model( lowercase__ , attention_mask=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = MPNetForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : str = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Optional[int] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) snake_case__ : Optional[int] = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : int = True def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : int = MPNetModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def _UpperCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase__ ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Tuple = MPNetModel.from_pretrained('microsoft/mpnet-base' ) SCREAMING_SNAKE_CASE : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowercase__ )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase__ ) SCREAMING_SNAKE_CASE : str = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1E-4 ) )
179
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __lowerCAmelCase ( A_ : int ) -> List[str]: # initialize config if "resnet-50" in model_name: __UpperCAmelCase = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: __UpperCAmelCase = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) __UpperCAmelCase = DetrConfig(use_timm_backbone=A_ , backbone_config=A_ ) # set label attributes __UpperCAmelCase = "panoptic" in model_name if is_panoptic: __UpperCAmelCase = 2_50 else: __UpperCAmelCase = 91 __UpperCAmelCase = "huggingface/label-files" __UpperCAmelCase = "coco-detection-id2label.json" __UpperCAmelCase = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) __UpperCAmelCase = {int(A_ ): v for k, v in idalabel.items()} __UpperCAmelCase = idalabel __UpperCAmelCase = {v: k for k, v in idalabel.items()} return config, is_panoptic def __lowerCAmelCase ( A_ : str ) -> Optional[Any]: # here we list all keys to be renamed (original name on the left, our name on the right) __UpperCAmelCase = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def __lowerCAmelCase ( A_ : Any , A_ : int , A_ : Any ) -> Optional[Any]: __UpperCAmelCase = state_dict.pop(A_ ) __UpperCAmelCase = val def __lowerCAmelCase ( A_ : Tuple , A_ : Tuple=False ) -> Dict: __UpperCAmelCase = "" if is_panoptic: __UpperCAmelCase = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __UpperCAmelCase = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __UpperCAmelCase = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase = in_proj_weight[:2_56, :] __UpperCAmelCase = in_proj_bias[:2_56] __UpperCAmelCase = in_proj_weight[2_56:5_12, :] __UpperCAmelCase = in_proj_bias[2_56:5_12] __UpperCAmelCase = in_proj_weight[-2_56:, :] __UpperCAmelCase = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __UpperCAmelCase = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase = in_proj_weight[:2_56, :] __UpperCAmelCase = in_proj_bias[:2_56] __UpperCAmelCase = in_proj_weight[2_56:5_12, :] __UpperCAmelCase = in_proj_bias[2_56:5_12] __UpperCAmelCase = in_proj_weight[-2_56:, :] __UpperCAmelCase = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention __UpperCAmelCase = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) __UpperCAmelCase = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict __UpperCAmelCase = in_proj_weight_cross_attn[:2_56, :] __UpperCAmelCase = in_proj_bias_cross_attn[:2_56] __UpperCAmelCase = in_proj_weight_cross_attn[2_56:5_12, :] __UpperCAmelCase = in_proj_bias_cross_attn[2_56:5_12] __UpperCAmelCase = in_proj_weight_cross_attn[-2_56:, :] __UpperCAmelCase = in_proj_bias_cross_attn[-2_56:] def __lowerCAmelCase ( ) -> Tuple: __UpperCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase = Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( A_ : List[Any] , A_ : Dict=None , A_ : Union[str, Any]=False ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase = get_detr_config(A_ ) # load original model from torch hub __UpperCAmelCase = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) __UpperCAmelCase = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=A_ ).eval() __UpperCAmelCase = detr.state_dict() # rename keys for src, dest in create_rename_keys(A_ ): if is_panoptic: __UpperCAmelCase = "detr." + src rename_key(A_ , A_ , A_ ) # query, key and value matrices need special treatment read_in_q_k_v(A_ , is_panoptic=A_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __UpperCAmelCase = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): __UpperCAmelCase = state_dict.pop(A_ ) __UpperCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __UpperCAmelCase = state_dict.pop(A_ ) __UpperCAmelCase = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: __UpperCAmelCase = state_dict.pop(A_ ) __UpperCAmelCase = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): __UpperCAmelCase = state_dict.pop(A_ ) __UpperCAmelCase = val # finally, create HuggingFace model and load state dict __UpperCAmelCase = DetrForSegmentation(A_ ) if is_panoptic else DetrForObjectDetection(A_ ) model.load_state_dict(A_ ) model.eval() # verify our conversion on an image __UpperCAmelCase = "coco_panoptic" if is_panoptic else "coco_detection" __UpperCAmelCase = DetrImageProcessor(format=A_ ) __UpperCAmelCase = processor(images=prepare_img() , return_tensors="pt" ) __UpperCAmelCase = encoding["pixel_values"] __UpperCAmelCase = detr(A_ ) __UpperCAmelCase = model(A_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(A_ ).mkdir(exist_ok=A_ ) model.save_pretrained(A_ ) processor.save_pretrained(A_ ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") a_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
221
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node a_ = 4 a_ = 3 class UpperCAmelCase__ ( snake_case ): """simple docstring""" pass def __lowerCAmelCase ( A_ : List[str] ) -> List[Any]: for shard in shards: for i in range(A_ ): yield {"i": i, "shard": shard} def __lowerCAmelCase ( ) -> List[str]: __UpperCAmelCase = int(os.environ["RANK"] ) __UpperCAmelCase = int(os.environ["WORLD_SIZE"] ) __UpperCAmelCase = ArgumentParser() parser.add_argument("--streaming" , type=A_ ) parser.add_argument("--local_rank" , type=A_ ) parser.add_argument("--num_workers" , type=A_ , default=0 ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.streaming __UpperCAmelCase = args.num_workers __UpperCAmelCase = {"shards": [F'''shard_{shard_idx}''' for shard_idx in range(A_ )]} __UpperCAmelCase = IterableDataset.from_generator(A_ , gen_kwargs=A_ ) if not streaming: __UpperCAmelCase = Dataset.from_list(list(A_ ) ) __UpperCAmelCase = split_dataset_by_node(A_ , rank=A_ , world_size=A_ ) __UpperCAmelCase = torch.utils.data.DataLoader(A_ , num_workers=A_ ) __UpperCAmelCase = NUM_SHARDS * NUM_ITEMS_PER_SHARD __UpperCAmelCase = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __UpperCAmelCase = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
221
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Tuple = ['''pixel_values'''] def __init__(self : List[str] , A__ : bool = True , A__ : Dict[str, int] = None , A__ : float = None , A__ : PILImageResampling = PILImageResampling.BILINEAR , A__ : bool = True , A__ : Union[int, float] = 1 / 2_5_5 , A__ : bool = True , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , **A__ : Union[str, Any] , ) -> None: super().__init__(**A__ ) lowercase = size if size is not None else {"shortest_edge": 3_8_4} lowercase = get_size_dict(A__ , default_to_square=A__ ) lowercase = do_resize lowercase = size # Default value set here for backwards compatibility where the value in config is None lowercase = crop_pct if crop_pct is not None else 2_2_4 / 2_5_6 lowercase = resample lowercase = do_rescale lowercase = rescale_factor lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__ (self : Optional[Any] , A__ : np.ndarray , A__ : Dict[str, int] , A__ : float , A__ : PILImageResampling = PILImageResampling.BICUBIC , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Optional[int] , ) -> np.ndarray: lowercase = get_size_dict(A__ , default_to_square=A__ ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) lowercase = size["shortest_edge"] if shortest_edge < 3_8_4: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowercase = int(shortest_edge / crop_pct ) lowercase = get_resize_output_image_size(A__ , size=A__ , default_to_square=A__ ) lowercase = resize(image=A__ , size=A__ , resample=A__ , data_format=A__ , **A__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=A__ , size=(shortest_edge, shortest_edge) , data_format=A__ , **A__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( A__ , size=(shortest_edge, shortest_edge) , resample=A__ , data_format=A__ , **A__ ) def UpperCAmelCase__ (self : Tuple , A__ : np.ndarray , A__ : Union[int, float] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : List[str] , ) -> Union[str, Any]: return rescale(A__ , scale=A__ , data_format=A__ , **A__ ) def UpperCAmelCase__ (self : int , A__ : np.ndarray , A__ : Union[float, List[float]] , A__ : Union[float, List[float]] , A__ : Optional[Union[str, ChannelDimension]] = None , **A__ : Dict , ) -> np.ndarray: return normalize(A__ , mean=A__ , std=A__ , data_format=A__ , **A__ ) def UpperCAmelCase__ (self : Dict , A__ : ImageInput , A__ : bool = None , A__ : Dict[str, int] = None , A__ : float = None , A__ : PILImageResampling = None , A__ : bool = None , A__ : float = None , A__ : bool = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[float, List[float]]] = None , A__ : Optional[Union[str, TensorType]] = None , A__ : ChannelDimension = ChannelDimension.FIRST , **A__ : Tuple , ) -> PIL.Image.Image: lowercase = do_resize if do_resize is not None else self.do_resize lowercase = crop_pct if crop_pct is not None else self.crop_pct lowercase = resample if resample is not None else self.resample lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = size if size is not None else self.size lowercase = get_size_dict(A__ , default_to_square=A__ ) lowercase = make_list_of_images(A__ ) if not valid_images(A__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 3_8_4 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(A__ ) for image in images] if do_resize: lowercase = [self.resize(image=A__ , size=A__ , crop_pct=A__ , resample=A__ ) for image in images] if do_rescale: lowercase = [self.rescale(image=A__ , scale=A__ ) for image in images] if do_normalize: lowercase = [self.normalize(image=A__ , mean=A__ , std=A__ ) for image in images] lowercase = [to_channel_dimension_format(A__ , A__ ) for image in images] lowercase = {"pixel_values": images} return BatchFeature(data=A__ , tensor_type=A__ )
459
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __lowerCamelCase : Any = open # noqa: we just need to have a builtin inside this module to test it properly
459
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): for attribute in key.split(""".""" ): lowercase__ = getattr(_lowercase , _lowercase ) if weight_type is not None: lowercase__ = getattr(_lowercase , _lowercase ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == """group""" , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): lowercase__ = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(_lowercase )[0].split(""".""" )[-2] lowercase__ = mapped_key.replace("""*""" , _lowercase ) if "weight_g" in name: lowercase__ = """weight_g""" elif "weight_v" in name: lowercase__ = """weight_v""" elif "weight" in name: lowercase__ = """weight""" elif "bias" in name: lowercase__ = """bias""" else: lowercase__ = None set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) continue if not is_used: unused_weights.append(_lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): lowercase__ = full_name.split("""conv_layers.""" )[-1] lowercase__ = name.split(""".""" ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) def _A ( lowercase__ , lowercase__ ): lowercase__ = SEWConfig() if is_finetuned: lowercase__ = model.wav_encoder.wav_model.cfg else: lowercase__ = model.cfg lowercase__ = fs_config.conv_bias lowercase__ = eval(fs_config.conv_feature_layers ) lowercase__ = [x[0] for x in conv_layers] lowercase__ = [x[1] for x in conv_layers] lowercase__ = [x[2] for x in conv_layers] lowercase__ = """gelu""" lowercase__ = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" lowercase__ = 0.0 lowercase__ = fs_config.activation_fn.name lowercase__ = fs_config.encoder_embed_dim lowercase__ = 0.0_2 lowercase__ = fs_config.encoder_ffn_embed_dim lowercase__ = 1e-5 lowercase__ = fs_config.encoder_layerdrop lowercase__ = fs_config.encoder_attention_heads lowercase__ = fs_config.conv_pos_groups lowercase__ = fs_config.conv_pos lowercase__ = len(_lowercase ) lowercase__ = fs_config.encoder_layers lowercase__ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase__ = model.cfg lowercase__ = fs_config.final_dropout lowercase__ = fs_config.layerdrop lowercase__ = fs_config.activation_dropout lowercase__ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase__ = fs_config.attention_dropout lowercase__ = fs_config.dropout_input lowercase__ = fs_config.dropout lowercase__ = fs_config.mask_channel_length lowercase__ = fs_config.mask_channel_prob lowercase__ = fs_config.mask_length lowercase__ = fs_config.mask_prob lowercase__ = """Wav2Vec2FeatureExtractor""" lowercase__ = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _A ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=True ): if is_finetuned: lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase__ = SEWConfig.from_pretrained(_lowercase ) else: lowercase__ = convert_config(model[0] , _lowercase ) lowercase__ = model[0].eval() lowercase__ = True if config.feat_extract_norm == """layer""" else False lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) if is_finetuned: if dict_path: lowercase__ = Dictionary.load(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.pad_index lowercase__ = target_dict.bos_index lowercase__ = target_dict.eos_index lowercase__ = len(target_dict.symbols ) lowercase__ = os.path.join(_lowercase , """vocab.json""" ) if not os.path.isdir(_lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowercase ) ) return os.makedirs(_lowercase , exist_ok=_lowercase ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowercase ) lowercase__ = WavaVecaCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowercase , ) lowercase__ = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) lowercase__ = SEWForCTC(_lowercase ) else: lowercase__ = SEWModel(_lowercase ) feature_extractor.save_pretrained(_lowercase ) recursively_load_weights(_lowercase , _lowercase , _lowercase ) hf_model.save_pretrained(_lowercase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __A = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
325
def _A ( _lowercase = 1_00 ) -> int: """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
1
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCamelCase :Optional[Any] = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def a ( lowerCamelCase__ ): '''simple docstring''' if isinstance(lowerCamelCase__ , torch.Tensor ): return image elif isinstance(lowerCamelCase__ , PIL.Image.Image ): A_ : int = [image] A_ : int = [trans(img.convert("""RGB""" ) ) for img in image] A_ : Dict = torch.stack(lowerCamelCase__ ) return image class _lowerCAmelCase ( snake_case__ ): def __init__(self , lowercase , lowercase ): super().__init__() # make sure scheduler can always be converted to DDIM A_ : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_A , scheduler=_A ) def _a (self , lowercase ): if strength < 0 or strength > 1: raise ValueError(F'The value of strength should in [0.0, 1.0] but is {strength}' ) def _a (self , lowercase , lowercase , lowercase ): # get the original timestep using init_timestep A_ : Optional[int] = min(int(num_inference_steps * strength ) , _A ) A_ : str = max(num_inference_steps - init_timestep , 0 ) A_ : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase=None ): if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}' ) A_ : Union[str, Any] = image.to(device=_A , dtype=_A ) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(_A )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) A_ : Dict = init_latents.shape A_ : Optional[int] = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents print("""add noise to latents at timestep""" , _A ) A_ : List[Any] = self.scheduler.add_noise(_A , _A , _A ) A_ : Optional[int] = init_latents return latents @torch.no_grad() def __call__(self , lowercase = None , lowercase = 0.8 , lowercase = 1 , lowercase = None , lowercase = 0.0 , lowercase = 50 , lowercase = None , lowercase = "pil" , lowercase = True , ): self.check_inputs(_A ) # 2. Preprocess image A_ : int = preprocess(_A ) # 3. set timesteps self.scheduler.set_timesteps(_A , device=self.device ) A_ : Tuple = self.get_timesteps(_A , _A , self.device ) A_ : int = timesteps[:1].repeat(_A ) # 4. Prepare latent variables A_ : Dict = self.prepare_latents(_A , _A , _A , self.unet.dtype , self.device , _A ) A_ : List[Any] = latents # 5. Denoising loop for t in self.progress_bar(_A ): # 1. predict noise model_output A_ : Optional[Any] = self.unet(_A , _A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 A_ : List[Any] = self.scheduler.step( _A , _A , _A , eta=_A , use_clipped_model_output=_A , generator=_A , ).prev_sample A_ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) A_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A_ : Optional[int] = self.numpy_to_pil(_A ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_A )
711
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowerCamelCase :int = logging.get_logger('''transformers.models.encodec''') lowerCamelCase :int = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowerCamelCase :List[str] = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowerCamelCase :Union[str, Any] = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowerCamelCase :Dict = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowerCamelCase :int = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowerCamelCase :str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowerCamelCase :List[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowerCamelCase :Tuple = [] lowerCamelCase :Dict = [] def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for attribute in key.split(""".""" ): A_ : Optional[Any] = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: A_ : Optional[int] = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: A_ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A_ : Optional[int] = value elif weight_type == "weight_g": A_ : Optional[int] = value elif weight_type == "weight_v": A_ : Dict = value elif weight_type == "bias": A_ : Dict = value elif weight_type == "running_mean": A_ : Optional[Any] = value elif weight_type == "running_var": A_ : int = value elif weight_type == "num_batches_tracked": A_ : Optional[Any] = value elif weight_type == "weight_ih_l0": A_ : Optional[int] = value elif weight_type == "weight_hh_l0": A_ : Union[str, Any] = value elif weight_type == "bias_ih_l0": A_ : Optional[int] = value elif weight_type == "bias_hh_l0": A_ : Tuple = value elif weight_type == "weight_ih_l1": A_ : Optional[int] = value elif weight_type == "weight_hh_l1": A_ : Dict = value elif weight_type == "bias_ih_l1": A_ : Optional[int] = value elif weight_type == "bias_hh_l1": A_ : Tuple = value else: A_ : Any = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: A_, A_ : List[str] = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": A_ : List[str] = MAPPING_24K elif model_name == "encodec_48khz": A_ : str = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(lowerCamelCase__ , lowerCamelCase__ ): logger.info(f'{name} was ignored' ) continue A_ : str = False for key, mapped_key in MAPPING.items(): if "*" in key: A_, A_ : List[Any] = key.split(""".*.""" ) if prefix in name and suffix in name: A_ : Optional[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue A_ : Union[str, Any] = True if "*" in mapped_key: A_ : int = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] A_ : Optional[Any] = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: A_ : Any = """weight_g""" elif "weight_v" in name: A_ : Tuple = """weight_v""" elif "weight_ih_l0" in name: A_ : Union[str, Any] = """weight_ih_l0""" elif "weight_hh_l0" in name: A_ : Tuple = """weight_hh_l0""" elif "bias_ih_l0" in name: A_ : str = """bias_ih_l0""" elif "bias_hh_l0" in name: A_ : List[Any] = """bias_hh_l0""" elif "weight_ih_l1" in name: A_ : Dict = """weight_ih_l1""" elif "weight_hh_l1" in name: A_ : Any = """weight_hh_l1""" elif "bias_ih_l1" in name: A_ : Optional[int] = """bias_ih_l1""" elif "bias_hh_l1" in name: A_ : List[Any] = """bias_hh_l1""" elif "bias" in name: A_ : List[str] = """bias""" elif "weight" in name: A_ : Optional[int] = """weight""" elif "running_mean" in name: A_ : Union[str, Any] = """running_mean""" elif "running_var" in name: A_ : Optional[int] = """running_var""" elif "num_batches_tracked" in name: A_ : List[Any] = """num_batches_tracked""" else: A_ : str = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , ): '''simple docstring''' if config_path is not None: A_ : Any = EncodecConfig.from_pretrained(lowerCamelCase__ ) else: A_ : Optional[int] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": A_ : Dict = [8, 5, 4, 4] A_ : Optional[Any] = [2.2] A_ : Tuple = 64 A_ : Tuple = 3_20_00 A_ : List[Any] = 20_48 A_ : Optional[Any] = False A_ : str = False A_ : Optional[int] = False elif model_name == "encodec_48khz": A_ : Dict = [8, 5, 4, 2] A_ : Tuple = [3.0, 6.0, 12.0, 24.0] A_ : List[Any] = 4_80_00 A_ : Dict = 2 A_ : Dict = False A_ : Dict = """time_group_norm""" A_ : Optional[Any] = True A_ : str = 1.0 A_ : Any = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) A_ : Dict = EncodecModel(lowerCamelCase__ ) A_ : Any = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCamelCase__ ) A_ : int = torch.load(lowerCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights A_ : Tuple = original_checkpoint["""best_state"""] recursively_load_weights(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(lowerCamelCase__ ) model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :Any = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowerCamelCase :Dict = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
686
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase_ : List[str] = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[int] = ["""DPTFeatureExtractor"""] lowerCAmelCase_ : List[str] = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys lowerCAmelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
435
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A ( UpperCAmelCase_ ): __UpperCAmelCase : Any = ['image_processor', 'tokenizer'] __UpperCAmelCase : List[str] = 'FlavaImageProcessor' __UpperCAmelCase : Dict = ('BertTokenizer', 'BertTokenizerFast') def __init__(self : int , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) UpperCAmelCase__ = kwargs.pop("feature_extractor" ) UpperCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.image_processor def __call__(self : Optional[int] , __UpperCAmelCase : Optional[ImageInput] = None , __UpperCAmelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , __UpperCAmelCase : Union[bool, str, TruncationStrategy] = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : int = 0 , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , **__UpperCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCAmelCase__ = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) if images is not None: UpperCAmelCase__ = self.image_processor( __UpperCAmelCase , return_image_mask=__UpperCAmelCase , return_codebook_pixels=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) if text is not None and images is not None: encoding.update(__UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : int , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def lowercase_ (self : Tuple ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.tokenizer.model_input_names UpperCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase_ (self : Any ) -> Optional[int]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def lowercase_ (self : str ) -> Tuple: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
486
0
import operator as op def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: Optional[int] = [] UpperCamelCase_: Optional[int] = lambda lowerCamelCase , lowerCamelCase : int(x / y ) # noqa: E731 integer division operation UpperCamelCase_: Any = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(lowerCamelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowerCamelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(lowerCamelCase ) , sep=""" | """ ) else: UpperCamelCase_: Optional[int] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(lowerCamelCase ) , sep=""" | """ ) UpperCamelCase_: Optional[Any] = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(lowerCamelCase ) , sep=""" | """ ) stack.append( str(opr[x](int(lowerCamelCase ) , int(lowerCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(lowerCamelCase ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": lowerCamelCase_ : Dict = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
704
import random def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False ) -> dict: UpperCamelCase_: dict = {i: [] for i in range(lowerCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase ): for j in range(i + 1 , lowerCamelCase ): if random.random() < probability: graph[i].append(lowerCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase ) return graph def A__ ( lowerCamelCase ) -> dict: return { i: [j for j in range(lowerCamelCase ) if i != j] for i in range(lowerCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
670
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __magic_name__ : str = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __magic_name__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
281
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model') __magic_name__ : int = get_tests_dir('fixtures/test_sentencepiece_bpe.model') __magic_name__ : Any = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class __snake_case (lowerCamelCase , unittest.TestCase ): __a = CamembertTokenizer __a = CamembertTokenizerFast __a = True __a = True def __a ( self: List[Any] ): super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = CamembertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self: Union[str, Any] ): __lowerCamelCase = """<pad>""" __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __a ( self: Any ): __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A_ ) , 10_04 ) def __a ( self: Any ): self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def __a ( self: Optional[Any] ): __lowerCamelCase = CamembertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) __lowerCamelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __lowerCamelCase = """I was born in 92000, and this is falsé.""" __lowerCamelCase = tokenizer.encode(A_ ) __lowerCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) __lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) __lowerCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __lowerCamelCase = tokenizer.convert_ids_to_tokens(A_ ) __lowerCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) def __a ( self: List[str] ): if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = """I was born in 92000, and this is falsé.""" __lowerCamelCase = tokenizer.tokenize(A_ ) __lowerCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) __lowerCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) __lowerCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(A_ ) __lowerCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) @slow def __a ( self: Optional[Any] ): # fmt: off __lowerCamelCase = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __lowerCamelCase = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=A_ , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=A_ , )
281
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _snake_case (_snake_case : int = 3) -> qiskit.result.counts.Counts: if isinstance(_snake_case , _snake_case): raise TypeError('number of qubits must be a integer.') if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.') if math.floor(_snake_case) != number_of_qubits: raise ValueError('number of qubits must be exact integer.') if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).') _lowercase =QuantumRegister(_snake_case , 'qr') _lowercase =ClassicalRegister(_snake_case , 'cr') _lowercase =QuantumCircuit(_snake_case , _snake_case) _lowercase =number_of_qubits for i in range(_snake_case): quantum_circuit.h(number_of_qubits - i - 1) counter -= 1 for j in range(_snake_case): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case) for k in range(number_of_qubits // 2): quantum_circuit.swap(_snake_case , number_of_qubits - k - 1) # measure all the qubits quantum_circuit.measure(_snake_case , _snake_case) # simulate with 10000 shots _lowercase =Aer.get_backend('qasm_simulator') _lowercase =execute(_snake_case , _snake_case , shots=1_0000) return job.result().get_counts(_snake_case) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
557
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :Tuple, snake_case :Tuple=False, snake_case :Optional[int]=False, snake_case :Optional[Any]=6.0, snake_case :Optional[Any]=None, snake_case :Optional[Any]=False, snake_case :List[str]=False, snake_case :Optional[int]=None, snake_case :List[Any]="fp4", snake_case :Dict=False, **snake_case :Optional[int], ): """simple docstring""" _lowercase =load_in_abit _lowercase =load_in_abit _lowercase =llm_inta_threshold _lowercase =llm_inta_skip_modules _lowercase =llm_inta_enable_fpaa_cpu_offload _lowercase =llm_inta_has_fpaa_weight _lowercase =bnb_abit_quant_type _lowercase =bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _lowercase =torch.floataa elif isinstance(snake_case, snake_case): _lowercase =getattr(snake_case, snake_case) elif isinstance(snake_case, torch.dtype): _lowercase =bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype') self.post_init() def UpperCamelCase__ ( self :int): """simple docstring""" if not isinstance(self.llm_inta_threshold, snake_case): raise ValueError('llm_int8_threshold must be a float') if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules, snake_case): raise ValueError('llm_int8_skip_modules must be a list of strings') if not isinstance(self.llm_inta_enable_fpaa_cpu_offload, snake_case): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean') if not isinstance(self.llm_inta_has_fpaa_weight, snake_case): raise ValueError('llm_int8_has_fp16_weight must be a boolean') if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype, torch.dtype): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype') if not isinstance(self.bnb_abit_quant_type, snake_case): raise ValueError('bnb_4bit_quant_type must be a string') if not isinstance(self.bnb_abit_use_double_quant, snake_case): raise ValueError('bnb_4bit_use_double_quant must be a boolean') if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes')) >= version.parse( '0.39.0'): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version') def UpperCamelCase__ ( self :int): """simple docstring""" return self.load_in_abit or self.load_in_abit def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCamelCase__ ( cls :Optional[int], snake_case :List[Any], snake_case :List[Any], **snake_case :Tuple): """simple docstring""" _lowercase =cls(**snake_case) _lowercase =[] for key, value in kwargs.items(): if hasattr(snake_case, snake_case): setattr(snake_case, snake_case, snake_case) to_remove.append(snake_case) for key in to_remove: kwargs.pop(snake_case, snake_case) if return_unused_kwargs: return config, kwargs else: return config def UpperCamelCase__ ( self :Any, snake_case :Union[str, os.PathLike]): """simple docstring""" with open(snake_case, 'w', encoding='utf-8') as writer: _lowercase =self.to_dict() _lowercase =json.dumps(snake_case, indent=2, sort_keys=snake_case) + '\n' writer.write(snake_case) def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase =copy.deepcopy(self.__dict__) _lowercase =str(output['bnb_4bit_compute_dtype']).split('.')[1] return output def __repr__( self :List[Any]): """simple docstring""" return f'''{self.__class__.__name__} {self.to_json_string()}''' def UpperCamelCase__ ( self :Dict, snake_case :bool = True): """simple docstring""" if use_diff is True: _lowercase =self.to_diff_dict() else: _lowercase =self.to_dict() return json.dumps(snake_case, indent=2, sort_keys=snake_case) + "\n" def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =self.to_dict() # get the default config dict _lowercase =BitsAndBytesConfig().to_dict() _lowercase ={} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _lowercase =value return serializable_config_dict
557
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class A__ ( _UpperCamelCase ): def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , '''num_attention_heads''' ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , '''num_encoder_blocks''' ) ) class A__ : def __init__( self : int , _a : Union[str, Any] , _a : Union[str, Any]=13 , _a : Tuple=64 , _a : Optional[int]=3 , _a : Union[str, Any]=4 , _a : Dict=[2, 2, 2, 2] , _a : Union[str, Any]=[8, 4, 2, 1] , _a : Tuple=[16, 32, 64, 128] , _a : Optional[int]=[1, 4, 8, 16] , _a : Any=[1, 2, 4, 8] , _a : Union[str, Any]=True , _a : str=True , _a : Dict="gelu" , _a : str=0.1 , _a : List[Any]=0.1 , _a : List[str]=0.02 , _a : int=3 , _a : Optional[Any]=None , ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =num_encoder_blocks _SCREAMING_SNAKE_CASE =sr_ratios _SCREAMING_SNAKE_CASE =depths _SCREAMING_SNAKE_CASE =hidden_sizes _SCREAMING_SNAKE_CASE =downsampling_rates _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =scope def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Dict , _a : Dict , _a : Optional[int] , _a : int ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =SegformerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _SCREAMING_SNAKE_CASE =model(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def __UpperCamelCase ( self : str , _a : Dict , _a : Optional[int] , _a : Optional[Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =SegformerForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _SCREAMING_SNAKE_CASE =model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) _SCREAMING_SNAKE_CASE =model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def __UpperCamelCase ( self : int , _a : int , _a : Optional[Any] , _a : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =SegformerForSemanticSegmentation(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _SCREAMING_SNAKE_CASE =torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertGreater(result.loss , 0.0 ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE =config_and_inputs _SCREAMING_SNAKE_CASE ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): UpperCAmelCase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCAmelCase = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =SegformerModelTester(self ) _SCREAMING_SNAKE_CASE =SegformerConfigTester(self , config_class=UpperCamelCase__ ) def __UpperCamelCase ( self : str ) -> int: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCamelCase__ ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*UpperCamelCase__ ) @unittest.skip('''SegFormer does not use inputs_embeds''' ) def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''' ) def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" pass def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] _SCREAMING_SNAKE_CASE =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __UpperCamelCase ( self : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) _SCREAMING_SNAKE_CASE =outputs.attentions _SCREAMING_SNAKE_CASE =sum(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) _SCREAMING_SNAKE_CASE =outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first attentions (first block, first layer) _SCREAMING_SNAKE_CASE =(self.model_tester.image_size // 4) ** 2 _SCREAMING_SNAKE_CASE =(self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) _SCREAMING_SNAKE_CASE =(self.model_tester.image_size // 32) ** 2 _SCREAMING_SNAKE_CASE =(self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) _SCREAMING_SNAKE_CASE =len(UpperCamelCase__ ) # Check attention is always last and order is fine _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) ) _SCREAMING_SNAKE_CASE =outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first attentions (first block, first layer) _SCREAMING_SNAKE_CASE =(self.model_tester.image_size // 4) ** 2 _SCREAMING_SNAKE_CASE =(self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __UpperCamelCase ( self : List[Any] ) -> str: """simple docstring""" def check_hidden_states_output(_a : Optional[Any] , _a : Any , _a : Tuple ): _SCREAMING_SNAKE_CASE =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) _SCREAMING_SNAKE_CASE =outputs.hidden_states _SCREAMING_SNAKE_CASE =self.model_tester.num_encoder_blocks self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE =True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" if not self.model_tester.is_training: return _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ): continue _SCREAMING_SNAKE_CASE =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() _SCREAMING_SNAKE_CASE =self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =model(**UpperCamelCase__ ).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" pass @slow def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =SegformerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch class A__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ) _SCREAMING_SNAKE_CASE =encoded_inputs.pixel_values.to(UpperCamelCase__ ) with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''' ).to(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ) _SCREAMING_SNAKE_CASE =encoded_inputs.pixel_values.to(UpperCamelCase__ ) with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1E-1 ) ) @slow def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''' ).to( UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ) _SCREAMING_SNAKE_CASE =encoded_inputs.pixel_values.to(UpperCamelCase__ ) with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =outputs.logits.detach().cpu() _SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(500, 300)] ) _SCREAMING_SNAKE_CASE =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) _SCREAMING_SNAKE_CASE =torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
691
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __A : Optional[Any] = logging.get_logger(__name__) # General docstring __A : str = "PoolFormerConfig" # Base docstring __A : Optional[Any] = "sail/poolformer_s12" __A : List[Any] = [1, 512, 7, 7] # Image classification docstring __A : List[str] = "sail/poolformer_s12" __A : Tuple = "tabby, tabby cat" __A : Tuple = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowercase ( UpperCamelCase : Any , UpperCamelCase : float = 0.0 , UpperCamelCase : bool = False ): """simple docstring""" if drop_prob == 0.0 or not training: return input A__ : Tuple =1 - drop_prob A__ : List[str] =(input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets A__ : Any =keep_prob + torch.rand(UpperCamelCase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize A__ : Optional[int] =input.div(UpperCamelCase ) * random_tensor return output class __lowerCAmelCase ( nn.Module): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : Optional[float] = None ): super().__init__() A__ : Optional[int] =drop_prob def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : torch.Tensor ): return drop_path(UpperCamelCase__ , self.drop_prob , self.training ) def _UpperCAmelCase ( self : List[str] ): return "p={}".format(self.drop_prob ) class __lowerCAmelCase ( nn.Module): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int=None ): super().__init__() A__ : Optional[int] =patch_size if isinstance(UpperCamelCase__ , collections.abc.Iterable ) else (patch_size, patch_size) A__ : Optional[int] =stride if isinstance(UpperCamelCase__ , collections.abc.Iterable ) else (stride, stride) A__ : int =padding if isinstance(UpperCamelCase__ , collections.abc.Iterable ) else (padding, padding) A__ : Any =nn.Convad(UpperCamelCase__ , UpperCamelCase__ , kernel_size=UpperCamelCase__ , stride=UpperCamelCase__ , padding=UpperCamelCase__ ) A__ : Any =norm_layer(UpperCamelCase__ ) if norm_layer else nn.Identity() def _UpperCAmelCase ( self : Tuple , UpperCamelCase__ : str ): A__ : List[str] =self.projection(UpperCamelCase__ ) A__ : Any =self.norm(UpperCamelCase__ ) return embeddings class __lowerCAmelCase ( nn.GroupNorm): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Dict , **UpperCamelCase__ : Union[str, Any] ): super().__init__(1 , UpperCamelCase__ , **UpperCamelCase__ ) class __lowerCAmelCase ( nn.Module): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Optional[int] ): super().__init__() A__ : Any =nn.AvgPoolad(UpperCamelCase__ , stride=1 , padding=pool_size // 2 , count_include_pad=UpperCamelCase__ ) def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : List[str] ): return self.pool(UpperCamelCase__ ) - hidden_states class __lowerCAmelCase ( nn.Module): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] ): super().__init__() A__ : List[Any] =nn.Convad(UpperCamelCase__ , UpperCamelCase__ , 1 ) A__ : Union[str, Any] =nn.Convad(UpperCamelCase__ , UpperCamelCase__ , 1 ) A__ : Dict =PoolFormerDropPath(UpperCamelCase__ ) if isinstance(config.hidden_act , UpperCamelCase__ ): A__ : Tuple =ACTaFN[config.hidden_act] else: A__ : Optional[Any] =config.hidden_act def _UpperCAmelCase ( self : Tuple , UpperCamelCase__ : Dict ): A__ : Optional[Any] =self.conva(UpperCamelCase__ ) A__ : List[str] =self.act_fn(UpperCamelCase__ ) A__ : List[str] =self.drop(UpperCamelCase__ ) A__ : Optional[int] =self.conva(UpperCamelCase__ ) A__ : Optional[Any] =self.drop(UpperCamelCase__ ) return hidden_states class __lowerCAmelCase ( nn.Module): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Any ): super().__init__() A__ : Optional[int] =PoolFormerPooling(UpperCamelCase__ ) A__ : List[str] =PoolFormerOutput(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ : int =PoolFormerGroupNorm(UpperCamelCase__ ) A__ : int =PoolFormerGroupNorm(UpperCamelCase__ ) # Useful for training neural nets A__ : Tuple =PoolFormerDropPath(UpperCamelCase__ ) if drop_path > 0.0 else nn.Identity() A__ : Optional[Any] =config.use_layer_scale if config.use_layer_scale: A__ : List[str] =nn.Parameter( config.layer_scale_init_value * torch.ones((UpperCamelCase__) ) , requires_grad=UpperCamelCase__ ) A__ : List[Any] =nn.Parameter( config.layer_scale_init_value * torch.ones((UpperCamelCase__) ) , requires_grad=UpperCamelCase__ ) def _UpperCAmelCase ( self : Any , UpperCamelCase__ : Optional[int] ): if self.use_layer_scale: A__ : Optional[int] =self.pooling(self.before_norm(UpperCamelCase__ ) ) A__ : Union[str, Any] =self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection A__ : Union[str, Any] =hidden_states + self.drop_path(UpperCamelCase__ ) A__ : Tuple =() A__ : List[str] =self.output(self.after_norm(UpperCamelCase__ ) ) A__ : Optional[Any] =self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection A__ : str =hidden_states + self.drop_path(UpperCamelCase__ ) A__ : List[Any] =(output,) + outputs return outputs else: A__ : Tuple =self.drop_path(self.pooling(self.before_norm(UpperCamelCase__ ) ) ) # First residual connection A__ : Optional[Any] =pooling_output + hidden_states A__ : Tuple =() # Second residual connection inside the PoolFormerOutput block A__ : List[str] =self.drop_path(self.output(self.after_norm(UpperCamelCase__ ) ) ) A__ : Any =hidden_states + layer_output A__ : Tuple =(output,) + outputs return outputs class __lowerCAmelCase ( nn.Module): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : List[str] ): super().__init__() A__ : Tuple =config # stochastic depth decay rule A__ : Dict =[x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings A__ : Tuple =[] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) A__ : List[str] =nn.ModuleList(UpperCamelCase__ ) # Transformer blocks A__ : Union[str, Any] =[] A__ : Any =0 for i in range(config.num_encoder_blocks ): # each block consists of layers A__ : Union[str, Any] =[] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( UpperCamelCase__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(UpperCamelCase__ ) ) A__ : str =nn.ModuleList(UpperCamelCase__ ) def _UpperCAmelCase ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Optional[int]=True ): A__ : Union[str, Any] =() if output_hidden_states else None A__ : Dict =pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): A__ , A__ : List[Any] =layers # Get patch embeddings from hidden_states A__ : Any =embedding_layer(UpperCamelCase__ ) # Send the embeddings through the blocks for _, blk in enumerate(UpperCamelCase__ ): A__ : List[str] =blk(UpperCamelCase__ ) A__ : Tuple =layer_outputs[0] if output_hidden_states: A__ : List[Any] =all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=UpperCamelCase__ , hidden_states=UpperCamelCase__ ) class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : List[str] = PoolFormerConfig __magic_name__ : int = """poolformer""" __magic_name__ : Any = """pixel_values""" __magic_name__ : Any = True def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : str ): if isinstance(UpperCamelCase__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCamelCase__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _UpperCAmelCase ( self : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]=False ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[Any] =value __A : Optional[int] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __A : Dict = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n" @add_start_docstrings( """The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : Dict ): super().__init__(UpperCamelCase__ ) A__ : List[Any] =config A__ : Optional[Any] =PoolFormerEncoder(UpperCamelCase__ ) # Initialize weights and apply final processing self.post_init() def _UpperCAmelCase ( self : Tuple ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(UpperCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCamelCase__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _UpperCAmelCase ( self : str , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , ): A__ : int =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A__ : Optional[int] =return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) A__ : List[Any] =self.encoder( UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , return_dict=UpperCamelCase__ , ) A__ : int =encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=UpperCamelCase__ , hidden_states=encoder_outputs.hidden_states , ) class __lowerCAmelCase ( nn.Module): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Optional[Any] ): super().__init__() A__ : List[str] =nn.Linear(config.hidden_size , config.hidden_size ) def _UpperCAmelCase ( self : Optional[Any] , UpperCamelCase__ : List[Any] ): A__ : int =self.dense(UpperCamelCase__ ) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """ , _UpperCamelCase , ) class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : str ): super().__init__(UpperCamelCase__ ) A__ : List[str] =config.num_labels A__ : Optional[int] =PoolFormerModel(UpperCamelCase__ ) # Final norm A__ : Dict =PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head A__ : Dict =( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCamelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _UpperCAmelCase ( self : Optional[int] , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , ): A__ : Tuple =return_dict if return_dict is not None else self.config.use_return_dict A__ : List[str] =self.poolformer( UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , return_dict=UpperCamelCase__ , ) A__ : str =outputs[0] A__ : List[Any] =self.classifier(self.norm(UpperCamelCase__ ).mean([-2, -1] ) ) A__ : Optional[Any] =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A__ : int ="regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A__ : Tuple ="single_label_classification" else: A__ : Optional[int] ="multi_label_classification" if self.config.problem_type == "regression": A__ : Dict =MSELoss() if self.num_labels == 1: A__ : Optional[Any] =loss_fct(logits.squeeze() , labels.squeeze() ) else: A__ : List[str] =loss_fct(UpperCamelCase__ , UpperCamelCase__ ) elif self.config.problem_type == "single_label_classification": A__ : Tuple =CrossEntropyLoss() A__ : int =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A__ : List[Any] =BCEWithLogitsLoss() A__ : str =loss_fct(UpperCamelCase__ , UpperCamelCase__ ) if not return_dict: A__ : Optional[int] =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCamelCase__ , logits=UpperCamelCase__ , hidden_states=outputs.hidden_states )
656
0
import os from pathlib import Path def A__ ( ): from torch.utils.cpp_extension import load SCREAMING_SNAKE_CASE__: int= Path(snake_case_ ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' SCREAMING_SNAKE_CASE__: Any= [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , snake_case_ , with_cuda=snake_case_ , extra_include_paths=[str(snake_case_ )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
107
lowercase_ : Optional[int] = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
107
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable a : Union[str, Any] = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys a : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
from math import factorial def UpperCamelCase ( snake_case__ , snake_case__): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k") return factorial(snake_case__) // (factorial(snake_case__) * factorial(n - k)) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', f"fifty-two card deck is: {combinations(52, 5)}\n", ) print( '''If a class of 40 students must be arranged into groups of''', f"4 for group projects, there are {combinations(40, 4)} ways", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', f"are {combinations(10, 3)} ways that first, second and", '''third place can be awarded.''', )
659
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : Any = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase_ : Any = True for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase_ ,lowercase_ : int = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : List[Any] = False for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase_ ,lowercase_ : List[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : Tuple = False return input_list if __name__ == "__main__": print('Enter list to be sorted') _A = [int(x) for x in input().split()] # inputing elements of the list in one line _A = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
438
'''simple docstring''' import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__ ( _snake_case , unittest.TestCase ): """simple docstring""" A : str = TransfoXLTokenizer A : Optional[int] = False A : List[str] = False def _lowerCamelCase (self ) -> List[Any]: super().setUp() lowercase_ : Any = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] lowercase_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def _lowerCamelCase (self , **_a ) -> Union[str, Any]: lowercase_ : str = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_a ) def _lowerCamelCase (self , _a ) -> Union[str, Any]: lowercase_ : int = '<unk> UNwanted , running' lowercase_ : int = '<unk> unwanted, running' return input_text, output_text def _lowerCamelCase (self ) -> Tuple: lowercase_ : Any = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_a ) lowercase_ : Optional[Any] = tokenizer.tokenize('<unk> UNwanted , running' ) self.assertListEqual(_a , ['<unk>', 'unwanted', ',', 'running'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [0, 4, 8, 7] ) def _lowerCamelCase (self ) -> Union[str, Any]: lowercase_ : List[str] = TransfoXLTokenizer(lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) def _lowerCamelCase (self ) -> int: lowercase_ : Dict = TransfoXLTokenizer(lower_case=_a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _lowerCamelCase (self ) -> Optional[Any]: lowercase_ : Dict = TransfoXLTokenizer(lower_case=_a ) lowercase_ : int = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' lowercase_ : List[str] = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) self.assertEqual(tokenizer.convert_tokens_to_string(_a ) , _a ) def _lowerCamelCase (self ) -> Any: lowercase_ : Optional[int] = self.get_tokenizer() lowercase_ : str = len(_a ) tokenizer.add_tokens(['new1', 'new2'] ) tokenizer.move_added_token('new1' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(_a ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , 'new1' )
438
1
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __UpperCAmelCase = logging.getLogger(__name__) @dataclass class __lowercase ( __lowerCamelCase ): snake_case_ = field( default=0.0 , metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) snake_case_ = field(default=__lowerCamelCase , metadata={"""help""": """Whether to SortishSamler or not."""} ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) snake_case_ = field(default=__lowerCamelCase , metadata={"""help""": """whether to use adafactor"""} ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) snake_case_ = field(default=__lowerCamelCase , metadata={"""help""": """Dropout probability. Goes into model.config."""} ) snake_case_ = field( default=__lowerCamelCase , metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) snake_case_ = field( default="""linear""" , metadata={"""help""": F"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
65
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int ) -> None: '''simple docstring''' _UpperCAmelCase = generate_pascal_triangle(__lowercase ) for row_idx in range(__lowercase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def UpperCAmelCase_ ( __lowercase : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _UpperCAmelCase = [] for current_row_idx in range(__lowercase ): _UpperCAmelCase = populate_current_row(__lowercase , __lowercase ) triangle.append(__lowercase ) return triangle def UpperCAmelCase_ ( __lowercase : list[list[int]] , __lowercase : int ) -> list[int]: '''simple docstring''' _UpperCAmelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _UpperCAmelCase , _UpperCAmelCase = 1, 1 for current_col_idx in range(1 , __lowercase ): calculate_current_element( __lowercase , __lowercase , __lowercase , __lowercase ) return current_row def UpperCAmelCase_ ( __lowercase : list[list[int]] , __lowercase : list[int] , __lowercase : int , __lowercase : int , ) -> None: '''simple docstring''' _UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx - 1] _UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx] _UpperCAmelCase = above_to_left_elt + above_to_right_elt def UpperCAmelCase_ ( __lowercase : int ) -> list[list[int]]: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _UpperCAmelCase = [[1]] for row_index in range(1 , __lowercase ): _UpperCAmelCase = [0] + result[-1] + [0] _UpperCAmelCase = row_index + 1 # Calculate the number of distinct elements in a row _UpperCAmelCase = sum(divmod(__lowercase , 2 ) ) _UpperCAmelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] _UpperCAmelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _UpperCAmelCase = row_first_half + row_second_half result.append(__lowercase ) return result def UpperCAmelCase_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowercase : Callable , __lowercase : int ) -> None: _UpperCAmelCase = f'{func.__name__}({value})' _UpperCAmelCase = timeit(f'__main__.{call}' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__lowercase , __lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
236
0
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if num <= 0: raise ValueError("""Input must be a positive integer""" ) snake_case_ : List[str] = [True] * (num + 1) snake_case_ : str = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , lowerCamelCase_ ): snake_case_ : str = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[Any] = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
267
'''simple docstring''' # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :List[Any]=0 ): '''simple docstring''' # Format the message. if name is None: snake_case_ : Tuple = None else: snake_case_ : Optional[Any] = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" snake_case_ : Optional[Any] = fmt.format(lowerCamelCase_ ) # Print and recurse (if needed). if isinstance(lowerCamelCase_ , lowerCamelCase_ ): if msg is not None: print(lowerCamelCase_ ) for k in val.keys(): recursive_print(lowerCamelCase_ , val[k] , spaces + 2 ) elif isinstance(lowerCamelCase_ , torch.Tensor ): print(lowerCamelCase_ , """:""" , val.size() ) else: print(lowerCamelCase_ , """:""" , lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] , lowerCamelCase_ :int ): '''simple docstring''' # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. snake_case_ : Any = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] snake_case_ : List[str] = (num_heads, hidden_size, num_splits) + input_shape[1:] snake_case_ : List[Any] = param.view(*lowerCamelCase_ ) snake_case_ : Tuple = param.transpose(0 , 2 ) snake_case_ : List[str] = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] snake_case_ : Tuple = (num_heads, num_splits, hidden_size) + input_shape[1:] snake_case_ : int = param.view(*lowerCamelCase_ ) snake_case_ : str = param.transpose(0 , 1 ).contiguous() snake_case_ : int = param.view(*lowerCamelCase_ ) return param def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Tuple ): '''simple docstring''' # The converted output model. snake_case_ : Tuple = {} # old versions did not store training args snake_case_ : Optional[Any] = input_state_dict.get("""args""" , lowerCamelCase_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) snake_case_ : Optional[int] = ds_args.padded_vocab_size snake_case_ : str = ds_args.max_position_embeddings snake_case_ : Tuple = ds_args.hidden_size snake_case_ : List[str] = ds_args.num_layers snake_case_ : Union[str, Any] = ds_args.num_attention_heads snake_case_ : Tuple = ds_args.ffn_hidden_size # pprint(config) # The number of heads. snake_case_ : int = config.n_head # The hidden_size per head. snake_case_ : Any = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): snake_case_ : Tuple = input_state_dict["""checkpoint_version"""] else: snake_case_ : Dict = 0.0 # The model. snake_case_ : Optional[Any] = input_state_dict["""model"""] # The language model. snake_case_ : Optional[Any] = model["""language_model"""] # The embeddings. snake_case_ : int = lm["""embedding"""] # The word embeddings. snake_case_ : Any = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. snake_case_ : Any = word_embeddings[: config.vocab_size, :] snake_case_ : Union[str, Any] = word_embeddings # The position embeddings. snake_case_ : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] snake_case_ : List[str] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. snake_case_ : List[str] = pos_embeddings # The transformer. snake_case_ : str = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. snake_case_ : Union[str, Any] = re.compile(R"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. snake_case_ : Tuple = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. snake_case_ : List[Any] = layer_re.match(lowerCamelCase_ ) # Stop if that's not a layer if m is None: break # The index of the layer. snake_case_ : Any = int(m.group(1 ) ) # The name of the operation. snake_case_ : Any = m.group(2 ) # Is it a weight or a bias? snake_case_ : List[str] = m.group(3 ) # The name of the layer. snake_case_ : List[Any] = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): snake_case_ : str = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" snake_case_ : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. snake_case_ : int = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowerCamelCase_ , lowerCamelCase_ ) snake_case_ : Any = causal_mask # Insert a "dummy" tensor for masked_bias. snake_case_ : List[str] = torch.tensor(-1E4 , dtype=torch.floataa ) snake_case_ : Optional[Any] = masked_bias snake_case_ : Optional[Any] = fix_query_key_value_ordering(lowerCamelCase_ , lowerCamelCase_ , 3 , lowerCamelCase_ , lowerCamelCase_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. snake_case_ : Any = out_val.transpose(0 , 1 ).contiguous() # Store. snake_case_ : int = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": snake_case_ : Dict = fix_query_key_value_ordering(lowerCamelCase_ , lowerCamelCase_ , 3 , lowerCamelCase_ , lowerCamelCase_ ) # Store. No change of shape. snake_case_ : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": snake_case_ : str = megatron_to_transformers[op_name] snake_case_ : Union[str, Any] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": snake_case_ : str = megatron_to_transformers[op_name] snake_case_ : List[str] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. snake_case_ : str = transformer["""final_layernorm.weight"""] snake_case_ : int = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. snake_case_ : Optional[int] = word_embeddings # It should be done! return output_state_dict def UpperCAmelCase ( ): '''simple docstring''' # Create the argument parser. snake_case_ : str = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=lowerCamelCase_ , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=lowerCamelCase_ , help="""An optional config json file describing the pre-trained model.""" , ) snake_case_ : Tuple = parser.parse_args() # Extract the basename. snake_case_ : List[str] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: snake_case_ : Dict = torch.load(lowerCamelCase_ , map_location="""cpu""" ) else: snake_case_ : Optional[Any] = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) snake_case_ : Optional[int] = input_state_dict.get("""args""" , lowerCamelCase_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: snake_case_ : Tuple = """gelu_fast""" elif ds_args.openai_gelu: snake_case_ : int = """gelu_new""" else: snake_case_ : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" snake_case_ : int = """gelu_new""" # Spell out all parameters in case the defaults change. snake_case_ : int = GPTaConfig( vocab_size=5_02_57 , n_positions=10_24 , n_embd=10_24 , n_layer=24 , n_head=16 , n_inner=40_96 , activation_function=lowerCamelCase_ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=lowerCamelCase_ , summary_activation=lowerCamelCase_ , summary_proj_to_labels=lowerCamelCase_ , summary_first_dropout=0.1 , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , bos_token_id=5_02_56 , eos_token_id=5_02_56 , ) else: snake_case_ : int = GPTaConfig.from_json_file(args.config_file ) snake_case_ : Optional[int] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) snake_case_ : Optional[Any] = convert_megatron_checkpoint(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowerCamelCase_ , lowerCamelCase_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: snake_case_ : str = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": snake_case_ : List[str] = """gpt2""" elif tokenizer_type == "PretrainedFromHF": snake_case_ : str = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: snake_case_ : List[str] = """gpt2""" snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase_ ) snake_case_ : int = type(lowerCamelCase_ ).__name__ snake_case_ : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(lowerCamelCase_ ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(lowerCamelCase_ ) # Store the state_dict to file. snake_case_ : Optional[Any] = os.path.join(lowerCamelCase_ , """pytorch_model.bin""" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(lowerCamelCase_ , lowerCamelCase_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
267
1