code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ) -> str: __lowerCAmelCase: int = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=__SCREAMING_SNAKE_CASE , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=__SCREAMING_SNAKE_CASE , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=__SCREAMING_SNAKE_CASE ) return parser.parse_args() def a__ ( ) -> List[Any]: __lowerCAmelCase: int = parse_args() # Import training_script as a module. __lowerCAmelCase: Any = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase: str = script_fpath.stem __lowerCAmelCase: List[Any] = importlib.import_module(__SCREAMING_SNAKE_CASE ) # Patch sys.argv __lowerCAmelCase: Any = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
346
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __A = data_utils.TransfoXLTokenizer __A = data_utils.TransfoXLCorpus __A = data_utils __A = data_utils def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__SCREAMING_SNAKE_CASE , "rb" ) as fp: __lowerCAmelCase: Union[str, Any] = pickle.load(__SCREAMING_SNAKE_CASE , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCAmelCase: Optional[Any] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F"Save vocabulary to {pytorch_vocab_dump_path}" ) __lowerCAmelCase: Optional[Any] = corpus.vocab.__dict__ torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[Any] = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F"Save dataset to {pytorch_dataset_dump_path}" ) torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCAmelCase: Optional[Any] = os.path.abspath(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Union[str, Any] = os.path.abspath(__SCREAMING_SNAKE_CASE ) print(F"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}." ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCAmelCase: str = TransfoXLConfig() else: __lowerCAmelCase: List[str] = TransfoXLConfig.from_json_file(__SCREAMING_SNAKE_CASE ) print(F"Building PyTorch model from configuration: {config}" ) __lowerCAmelCase: int = TransfoXLLMHeadModel(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = load_tf_weights_in_transfo_xl(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model __lowerCAmelCase: List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F"Save PyTorch model to {os.path.abspath(__SCREAMING_SNAKE_CASE )}" ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(F"Save configuration file to {os.path.abspath(__SCREAMING_SNAKE_CASE )}" ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) __A = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
346
1
from __future__ import annotations def lowerCAmelCase ( snake_case__ : float , snake_case__ : float , snake_case__ : float , )-> tuple[str, float]: if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
715
import math def lowerCAmelCase ( snake_case__ : float , snake_case__ : float )-> float: return math.pow(snake_case__ , 2 ) - a def lowerCAmelCase ( snake_case__ : float )-> float: return 2 * x def lowerCAmelCase ( snake_case__ : float )-> float: A_ = 2.0 while start <= a: A_ = math.pow(snake_case__ , 2 ) return start def lowerCAmelCase ( snake_case__ : float , snake_case__ : int = 9999 , snake_case__ : float = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 )-> float: if a < 0: raise ValueError("math domain error" ) A_ = get_initial_point(snake_case__ ) for _ in range(snake_case__ ): A_ = value A_ = value - fx(snake_case__ , snake_case__ ) / fx_derivative(snake_case__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
608
0
"""simple docstring""" def __A ( )-> int: '''simple docstring''' return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(_lowerCAmelCase , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
698
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def _A ( _lowerCAmelCase = "isbn/0140328726" ): """simple docstring""" __lowercase =olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: __lowercase =f"""{olid} is not a valid Open Library olid""" raise ValueError(_lowerCAmelCase ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase ={ 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } __lowercase ={better_key: ol_book_data[key] for key, better_key in desired_keys.items()} __lowercase =[ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] __lowercase =data['First sentence']['value'] for key, value in data.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __lowercase =', '.join(_lowerCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCamelCase = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(f"\nSearching Open Library for ISBN: {isbn}...\n") try: lowerCamelCase = summarize_book(get_openlibrary_data(f"isbn/{isbn}")) print("""\n""".join(f"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f"Sorry, there are no results for ISBN: {isbn}.")
474
0
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() a__ = logging.get_logger('''transformers.models.speecht5''') def snake_case__ ( a , a , a ) -> Tuple: '''simple docstring''' hf_model.apply_weight_norm() snake_case__ = checkpoint["""input_conv.weight_g"""] snake_case__ = checkpoint["""input_conv.weight_v"""] snake_case__ = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): snake_case__ = checkpoint[F"""upsamples.{i}.1.weight_g"""] snake_case__ = checkpoint[F"""upsamples.{i}.1.weight_v"""] snake_case__ = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): snake_case__ = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] snake_case__ = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] snake_case__ = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] snake_case__ = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] snake_case__ = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] snake_case__ = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] snake_case__ = checkpoint["""output_conv.1.weight_g"""] snake_case__ = checkpoint["""output_conv.1.weight_v"""] snake_case__ = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def snake_case__ ( a , a , a , a=None , a=None , ) -> Optional[Any]: '''simple docstring''' if config_path is not None: snake_case__ = SpeechTaHifiGanConfig.from_pretrained(a ) else: snake_case__ = SpeechTaHifiGanConfig() snake_case__ = SpeechTaHifiGan(a ) snake_case__ = torch.load(a ) load_weights(orig_checkpoint["""model"""]["""generator"""] , a , a ) snake_case__ = np.load(a ) snake_case__ = stats[0].reshape(-1 ) snake_case__ = stats[1].reshape(-1 ) snake_case__ = torch.from_numpy(a ).float() snake_case__ = torch.from_numpy(a ).float() model.save_pretrained(a ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) a__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
706
'''simple docstring''' from __future__ import annotations class __magic_name__: def __init__( self : Dict , __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' snake_case__ , snake_case__ = text, pattern snake_case__ , snake_case__ = len(__UpperCamelCase ), len(__UpperCamelCase ) def __lowerCAmelCase( self : Dict , __UpperCamelCase : str ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __lowerCAmelCase( self : Any , __UpperCamelCase : int ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __lowerCAmelCase( self : str ): '''simple docstring''' snake_case__ = [] for i in range(self.textLen - self.patLen + 1 ): snake_case__ = self.mismatch_in_text(__UpperCamelCase ) if mismatch_index == -1: positions.append(__UpperCamelCase ) else: snake_case__ = self.match_in_pattern(self.text[mismatch_index] ) snake_case__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions a__ = '''ABAABA''' a__ = '''AB''' a__ = BoyerMooreSearch(text, pattern) a__ = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
566
0
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __magic_name__ : str = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class SCREAMING_SNAKE_CASE__ (UpperCAmelCase__ ): def __init__( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : int=None , __lowerCamelCase : Optional[Any]=1 ): """simple docstring""" lowerCAmelCase__ = tokenizer lowerCAmelCase__ = dataset lowerCAmelCase__ = len(lowerCamelCase__ ) if n_tasks is None else n_tasks lowerCAmelCase__ = n_copies def __iter__( self : Dict ): """simple docstring""" lowerCAmelCase__ = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) lowerCAmelCase__ = self.tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class SCREAMING_SNAKE_CASE__ (UpperCAmelCase__ ): def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): """simple docstring""" lowerCAmelCase__ = start_length lowerCAmelCase__ = eof_strings lowerCAmelCase__ = tokenizer def __call__( self : int , __lowerCamelCase : int , __lowerCamelCase : int , **__lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) lowerCAmelCase__ = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(lowerCamelCase__ ) def a_ ( __lowerCAmelCase ): lowerCAmelCase__ = re.split('''(%s)''' % '''|'''.join(__lowerCAmelCase ) , __lowerCAmelCase ) # last string should be "" return "".join(string_list[:-2] ) def a_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=20 , **__lowerCAmelCase ): lowerCAmelCase__ = defaultdict(__lowerCAmelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__lowerCAmelCase ) ): with torch.no_grad(): lowerCAmelCase__ = batch["ids"].shape[-1] lowerCAmelCase__ = accelerator.unwrap_model(__lowerCAmelCase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__lowerCAmelCase , **__lowerCAmelCase ) # each task is generated batch_size times lowerCAmelCase__ = batch["task_id"].repeat(__lowerCAmelCase ) lowerCAmelCase__ = accelerator.pad_across_processes( __lowerCAmelCase , dim=1 , pad_index=tokenizer.pad_token_id ) lowerCAmelCase__ = accelerator.gather((generated_tokens, generated_tasks) ) lowerCAmelCase__ = generated_tokens.cpu().numpy() lowerCAmelCase__ = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__lowerCAmelCase , __lowerCAmelCase ): gen_token_dict[task].append(__lowerCAmelCase ) lowerCAmelCase__ = [[] for _ in range(__lowerCAmelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: lowerCAmelCase__ = tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) code_gens[task].append(remove_last_block(__lowerCAmelCase ) ) return code_gens def a_ ( ): # Setup configuration lowerCAmelCase__ = HfArgumentParser(__lowerCAmelCase ) lowerCAmelCase__ = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric lowerCAmelCase__ = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing lowerCAmelCase__ = "false" if args.num_workers is None: lowerCAmelCase__ = multiprocessing.cpu_count() # Use dataset load to feed to accelerate lowerCAmelCase__ = Accelerator() set_seed(args.seed , device_specific=__lowerCAmelCase ) # Load model and tokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) lowerCAmelCase__ = tokenizer.eos_token lowerCAmelCase__ = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings lowerCAmelCase__ = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , __lowerCAmelCase , __lowerCAmelCase )] ), } # Load evaluation dataset and metric lowerCAmelCase__ = load_dataset('''openai_humaneval''' ) lowerCAmelCase__ = load_metric('''code_eval''' ) lowerCAmelCase__ = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) lowerCAmelCase__ = args.n_samples // args.batch_size lowerCAmelCase__ = TokenizedDataset(__lowerCAmelCase , human_eval['''test'''] , n_copies=__lowerCAmelCase , n_tasks=__lowerCAmelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences lowerCAmelCase__ = DataLoader(__lowerCAmelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: lowerCAmelCase__ = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`''' ''' flag to enable code evaluation.''' ) raise exception lowerCAmelCase__ = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase__ = complete_code( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , n_tasks=__lowerCAmelCase , batch_size=args.batch_size , **__lowerCAmelCase , ) if accelerator.is_main_process: lowerCAmelCase__ = [] for task in tqdm(range(__lowerCAmelCase ) ): lowerCAmelCase__ = human_eval["test"][task]["test"] lowerCAmelCase__ = F"""check({human_eval['test'][task]['entry_point']})""" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric lowerCAmelCase__ = code_eval_metric.compute( references=__lowerCAmelCase , predictions=__lowerCAmelCase , num_workers=args.num_workers ) print(F"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
615
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : int = { """configuration_bridgetower""": [ """BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BridgeTowerConfig""", """BridgeTowerTextConfig""", """BridgeTowerVisionConfig""", ], """processing_bridgetower""": ["""BridgeTowerProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ["""BridgeTowerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ """BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""", """BridgeTowerForContrastiveLearning""", """BridgeTowerForImageAndTextRetrieval""", """BridgeTowerForMaskedLM""", """BridgeTowerModel""", """BridgeTowerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
613
0
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class a ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=4 , ) -> Any: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_choices def __A ( self ) -> Any: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_attention_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __A ( self ) -> Union[str, Any]: _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class a ( _UpperCAmelCase, unittest.TestCase ): """simple docstring""" A__ : List[str] = True A__ : List[str] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __A ( self ) -> List[str]: _UpperCAmelCase = FlaxRoFormerModelTester(self ) @slow def __A ( self ) -> List[Any]: for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained("junnyu/roformer_chinese_small" , from_pt=A_ ) _UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(A_ ) @require_flax class a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> List[str]: _UpperCAmelCase = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) _UpperCAmelCase = jnp.array([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = model(A_ )[0] _UpperCAmelCase = 50000 _UpperCAmelCase = (1, 6, vocab_size) self.assertEqual(output.shape , A_ ) _UpperCAmelCase = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , A_ , atol=1e-4 ) )
705
"""simple docstring""" def A__ ( A__ ) -> str: '''simple docstring''' _UpperCAmelCase = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def A__ ( A__ ) -> dict[str, str]: '''simple docstring''' _UpperCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _UpperCAmelCase = remove_duplicates(key.upper() ) _UpperCAmelCase = len(A__ ) # First fill cipher with key characters _UpperCAmelCase = {alphabet[i]: char for i, char in enumerate(A__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A__ ) , 26 ): _UpperCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _UpperCAmelCase = alphabet[i - offset] _UpperCAmelCase = char return cipher_alphabet def A__ ( A__ , A__ ) -> str: '''simple docstring''' return "".join(cipher_map.get(A__ , A__ ) for ch in message.upper() ) def A__ ( A__ , A__ ) -> str: '''simple docstring''' _UpperCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A__ , A__ ) for ch in message.upper() ) def A__ ( ) -> None: '''simple docstring''' _UpperCAmelCase = input("Enter message to encode or decode: " ).strip() _UpperCAmelCase = input("Enter keyword: " ).strip() _UpperCAmelCase = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: _UpperCAmelCase = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) _UpperCAmelCase = create_cipher_map(A__ ) print(func(A__ , A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
579
0
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _a ( _lowerCAmelCase ): """simple docstring""" A_ = ['''vqvae'''] def __init__( self : str , lowercase_ : AutoencoderKL , lowercase_ : UNetaDConditionModel , lowercase_ : Mel , lowercase_ : Union[DDIMScheduler, DDPMScheduler] , ): '''simple docstring''' super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_ , mel=lowercase_ , vqvae=lowercase_ ) def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' return 50 if isinstance(self.scheduler , lowercase_ ) else 1_000 @torch.no_grad() def __call__( self : Union[str, Any] , lowercase_ : int = 1 , lowercase_ : str = None , lowercase_ : np.ndarray = None , lowercase_ : int = 0 , lowercase_ : int = 0 , lowercase_ : int = None , lowercase_ : torch.Generator = None , lowercase_ : float = 0 , lowercase_ : float = 0 , lowercase_ : torch.Generator = None , lowercase_ : float = 0 , lowercase_ : torch.Tensor = None , lowercase_ : torch.Tensor = None , lowercase_ : Optional[int]=True , ): '''simple docstring''' lowercase_ = steps or self.get_default_steps() self.scheduler.set_timesteps(lowercase_ ) lowercase_ = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowercase_ = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowercase_ = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowercase_ , device=self.device , ) lowercase_ = noise lowercase_ = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowercase_ , lowercase_ ) lowercase_ = self.mel.audio_slice_to_image(lowercase_ ) lowercase_ = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) lowercase_ = (input_image / 255) * 2 - 1 lowercase_ = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowercase_ = self.vqvae.encode(torch.unsqueeze(lowercase_ , 0 ) ).latent_dist.sample( generator=lowercase_ )[0] lowercase_ = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowercase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , self.scheduler.timesteps[start_step - 1] ) lowercase_ = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowercase_ = int(mask_start_secs * pixels_per_second ) lowercase_ = int(mask_end_secs * pixels_per_second ) lowercase_ = self.scheduler.add_noise(lowercase_ , lowercase_ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowercase_ ): lowercase_ = self.unet(lowercase_ , lowercase_ , lowercase_ )["sample"] else: lowercase_ = self.unet(lowercase_ , lowercase_ )["sample"] if isinstance(self.scheduler , lowercase_ ): lowercase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , eta=lowercase_ , generator=lowercase_ , )["prev_sample"] else: lowercase_ = self.scheduler.step( model_output=lowercase_ , timestep=lowercase_ , sample=lowercase_ , generator=lowercase_ , )["prev_sample"] if mask is not None: if mask_start > 0: lowercase_ = mask[:, step, :, :mask_start] if mask_end > 0: lowercase_ = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowercase_ = 1 / self.vqvae.config.scaling_factor * images lowercase_ = self.vqvae.decode(lowercase_ )["sample"] lowercase_ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowercase_ = (images * 255).round().astype("""uint8""" ) lowercase_ = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowercase_ , mode="""RGB""" ).convert("""L""" ) for _ in images) ) lowercase_ = [self.mel.image_to_audio(lowercase_ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowercase_ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowercase_ ) ) @torch.no_grad() def lowerCamelCase__ ( self : Dict , lowercase_ : List[Image.Image] , lowercase_ : int = 50 ): '''simple docstring''' assert isinstance(self.scheduler , lowercase_ ) self.scheduler.set_timesteps(lowercase_ ) lowercase_ = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) lowercase_ = (sample / 255) * 2 - 1 lowercase_ = torch.Tensor(lowercase_ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowercase_ = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowercase_ = self.scheduler.alphas_cumprod[t] lowercase_ = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowercase_ = 1 - alpha_prod_t lowercase_ = self.unet(lowercase_ , lowercase_ )["sample"] lowercase_ = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowercase_ = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowercase_ = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def lowerCamelCase__ ( lowercase_ : torch.Tensor , lowercase_ : torch.Tensor , lowercase_ : float ): '''simple docstring''' lowercase_ = acos(torch.dot(torch.flatten(lowercase_ ) , torch.flatten(lowercase_ ) ) / torch.norm(lowercase_ ) / torch.norm(lowercase_ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowercase_ ) + sin(alpha * theta ) * xa / sin(lowercase_ )
451
'''simple docstring''' from typing import List import numpy as np def UpperCAmelCase_ ( __lowerCamelCase : dict ): lowercase_ :Dict = {key: len(__lowerCamelCase ) for key, value in gen_kwargs.items() if isinstance(__lowerCamelCase ,__lowerCamelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) lowercase_ :Any = max(lists_lengths.values() ,default=0 ) return max(1 ,__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : int ): lowercase_ :Tuple = [] for group_idx in range(__lowerCamelCase ): lowercase_ :Any = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowercase_ :Optional[Any] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowercase_ :List[str] = range(__lowerCamelCase ,start + num_shards_to_add ) shards_indices_per_group.append(__lowerCamelCase ) return shards_indices_per_group def UpperCAmelCase_ ( __lowerCamelCase : dict ,__lowerCamelCase : int ): lowercase_ :Dict = _number_of_shards_in_gen_kwargs(__lowerCamelCase ) if num_shards == 1: return [dict(__lowerCamelCase )] else: lowercase_ :Optional[Any] = _distribute_shards(num_shards=__lowerCamelCase ,max_num_jobs=__lowerCamelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__lowerCamelCase ,__lowerCamelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__lowerCamelCase ) ) ] def UpperCAmelCase_ ( __lowerCamelCase : List[dict] ): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] ,__lowerCamelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def UpperCAmelCase_ ( __lowerCamelCase : np.random.Generator ,__lowerCamelCase : dict ): lowercase_ :Tuple = {len(__lowerCamelCase ) for value in gen_kwargs.values() if isinstance(__lowerCamelCase ,__lowerCamelCase )} lowercase_ :Optional[Any] = {} for size in list_sizes: lowercase_ :int = list(range(__lowerCamelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowercase_ :List[Any] = dict(__lowerCamelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__lowerCamelCase ,__lowerCamelCase ): lowercase_ :List[str] = [value[i] for i in indices_per_size[len(__lowerCamelCase )]] return shuffled_kwargs
172
0
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[Any] = GPTSwaTokenizer __magic_name__ :Union[str, Any] = False __magic_name__ :Dict = True __magic_name__ :List[Any] = False def snake_case ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ :List[Any] = GPTSwaTokenizer(__UpperCAmelCase , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = 'This is a test' lowerCAmelCase__ :int = 'This is a test' return input_text, output_text def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = '<s>' lowerCAmelCase__ :int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(__UpperCAmelCase ) , 2_0_0_0 ) def snake_case ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = GPTSwaTokenizer(__UpperCAmelCase ) lowerCAmelCase__ :int = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) lowerCAmelCase__ :Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( __UpperCAmelCase , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on lowerCAmelCase__ :Optional[int] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) lowerCAmelCase__ :List[str] = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) # fmt: off self.assertListEqual( __UpperCAmelCase , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = GPTSwaTokenizer(__UpperCAmelCase ) lowerCAmelCase__ :Any = ['This is a test', 'I was born in 92000, and this is falsé.'] lowerCAmelCase__ :Optional[int] = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertListEqual(tokenizer.encode_fast(__UpperCAmelCase ) , __UpperCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(tokenizer.decode_fast(__UpperCAmelCase ) , __UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off lowerCAmelCase__ :Tuple = {'input_ids': [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='AI-Sweden/gpt-sw3-126m' , sequences=__UpperCAmelCase , )
560
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[Any] = AudioLDMPipeline __magic_name__ :Union[str, Any] = TEXT_TO_AUDIO_PARAMS __magic_name__ :Tuple = TEXT_TO_AUDIO_BATCH_PARAMS __magic_name__ :Dict = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=__UpperCAmelCase , ) lowerCAmelCase__ :Tuple = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) lowerCAmelCase__ :Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase__ :Dict = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) lowerCAmelCase__ :int = ClapTextModelWithProjection(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) lowerCAmelCase__ :Dict = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__UpperCAmelCase , ) lowerCAmelCase__ :str = SpeechTaHifiGan(__UpperCAmelCase ) lowerCAmelCase__ :str = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): lowerCAmelCase__ :Tuple = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ :Optional[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ :Optional[int] = self.get_dummy_components() lowerCAmelCase__ :List[str] = AudioLDMPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :Any = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :int = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :int = audioldm_pipe(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = output.audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) == 2_5_6 lowerCAmelCase__ :int = audio[:1_0] lowerCAmelCase__ :Optional[Any] = np.array( [-0.00_50, 0.00_50, -0.00_60, 0.00_33, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_33] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ :int = AudioLDMPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = audioldm_pipe.to(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = 3 * [inputs['prompt']] # forward lowerCAmelCase__ :Dict = audioldm_pipe(**__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = output.audios[0] lowerCAmelCase__ :str = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = 3 * [inputs.pop('prompt' )] lowerCAmelCase__ :Union[str, Any] = audioldm_pipe.tokenizer( __UpperCAmelCase , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors='pt' , ) lowerCAmelCase__ :Union[str, Any] = text_inputs['input_ids'].to(__UpperCAmelCase ) lowerCAmelCase__ :Dict = audioldm_pipe.text_encoder( __UpperCAmelCase , ) lowerCAmelCase__ :Any = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCAmelCase__ :List[Any] = F.normalize(__UpperCAmelCase , dim=-1 ) lowerCAmelCase__ :int = prompt_embeds # forward lowerCAmelCase__ :str = audioldm_pipe(**__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self.get_dummy_components() lowerCAmelCase__ :str = AudioLDMPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = audioldm_pipe.to(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = 3 * ['this is a negative prompt'] lowerCAmelCase__ :str = negative_prompt lowerCAmelCase__ :List[Any] = 3 * [inputs['prompt']] # forward lowerCAmelCase__ :Any = audioldm_pipe(**__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = output.audios[0] lowerCAmelCase__ :List[str] = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = 3 * [inputs.pop('prompt' )] lowerCAmelCase__ :str = [] for p in [prompt, negative_prompt]: lowerCAmelCase__ :Optional[Any] = audioldm_pipe.tokenizer( __UpperCAmelCase , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors='pt' , ) lowerCAmelCase__ :List[Any] = text_inputs['input_ids'].to(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = audioldm_pipe.text_encoder( __UpperCAmelCase , ) lowerCAmelCase__ :Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCAmelCase__ :Dict = F.normalize(__UpperCAmelCase , dim=-1 ) embeds.append(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ :Tuple = embeds # forward lowerCAmelCase__ :Dict = audioldm_pipe(**__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ :Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ :Tuple = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = AudioLDMPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :str = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :str = 'egg cracking' lowerCAmelCase__ :Optional[int] = audioldm_pipe(**__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = output.audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) == 2_5_6 lowerCAmelCase__ :List[Any] = audio[:1_0] lowerCAmelCase__ :Any = np.array( [-0.00_51, 0.00_50, -0.00_60, 0.00_34, -0.00_26, 0.00_33, -0.00_27, 0.00_33, -0.00_28, 0.00_32] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ :Tuple = self.get_dummy_components() lowerCAmelCase__ :Optional[int] = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = AudioLDMPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :Tuple = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) lowerCAmelCase__ :Tuple = audioldm_pipe(__UpperCAmelCase , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowerCAmelCase__ :str = 2 lowerCAmelCase__ :Dict = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt lowerCAmelCase__ :Any = 2 lowerCAmelCase__ :Union[str, Any] = audioldm_pipe(__UpperCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=__UpperCAmelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts lowerCAmelCase__ :List[str] = 2 lowerCAmelCase__ :List[str] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__UpperCAmelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ :Dict = self.get_dummy_components() lowerCAmelCase__ :Dict = AudioLDMPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :str = audioldm_pipe.vocoder.config.sampling_rate lowerCAmelCase__ :Tuple = self.get_dummy_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = audioldm_pipe(audio_length_in_s=0.0_16 , **__UpperCAmelCase ) lowerCAmelCase__ :int = output.audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) / vocoder_sampling_rate == 0.0_16 lowerCAmelCase__ :List[Any] = audioldm_pipe(audio_length_in_s=0.0_32 , **__UpperCAmelCase ) lowerCAmelCase__ :str = output.audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) / vocoder_sampling_rate == 0.0_32 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ :Optional[int] = AudioLDMPipeline(**__UpperCAmelCase ) lowerCAmelCase__ :str = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = ['hey'] lowerCAmelCase__ :Any = audioldm_pipe(__UpperCAmelCase , num_inference_steps=1 ) lowerCAmelCase__ :List[Any] = output.audios.shape assert audio_shape == (1, 2_5_6) lowerCAmelCase__ :List[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowerCAmelCase__ :Tuple = SpeechTaHifiGan(__UpperCAmelCase ).to(__UpperCAmelCase ) lowerCAmelCase__ :Any = audioldm_pipe(__UpperCAmelCase , num_inference_steps=1 ) lowerCAmelCase__ :Any = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def snake_case ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=__UpperCAmelCase ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def snake_case ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCAmelCase ) @slow class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :str = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 8, 1_2_8, 1_6) ) lowerCAmelCase__ :Any = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) lowerCAmelCase__ :List[str] = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) lowerCAmelCase__ :Optional[Any] = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = self.get_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Dict = 2_5 lowerCAmelCase__ :List[Any] = audioldm_pipe(**__UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) == 8_1_9_2_0 lowerCAmelCase__ :Optional[Any] = audio[7_7_2_3_0:7_7_2_4_0] lowerCAmelCase__ :Dict = np.array( [-0.48_84, -0.46_07, 0.00_23, 0.50_07, 0.58_96, 0.51_51, 0.38_13, -0.02_08, -0.36_87, -0.43_15] ) lowerCAmelCase__ :int = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) lowerCAmelCase__ :int = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowerCAmelCase__ :Union[str, Any] = audioldm_pipe.to(__UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = self.get_inputs(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = audioldm_pipe(**__UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(__UpperCAmelCase ) == 8_1_9_2_0 lowerCAmelCase__ :Tuple = audio[2_7_7_8_0:2_7_7_9_0] lowerCAmelCase__ :Union[str, Any] = np.array([-0.21_31, -0.08_73, -0.01_24, -0.01_89, 0.05_69, 0.13_73, 0.18_83, 0.28_86, 0.32_97, 0.22_12] ) lowerCAmelCase__ :Any = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
560
1
from manim import * class a ( UpperCAmelCase_ ): def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Any = Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _UpperCAmelCase : List[str] = [mem.copy() for i in range(6 )] _UpperCAmelCase : str = [mem.copy() for i in range(6 )] _UpperCAmelCase : List[Any] = VGroup(*a__ ).arrange(a__ , buff=0 ) _UpperCAmelCase : Optional[int] = VGroup(*a__ ).arrange(a__ , buff=0 ) _UpperCAmelCase : Dict = VGroup(a__ , a__ ).arrange(a__ , buff=0 ) _UpperCAmelCase : Optional[int] = Text("CPU" , font_size=24 ) _UpperCAmelCase : Dict = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a__ ) _UpperCAmelCase : List[Any] = [mem.copy() for i in range(4 )] _UpperCAmelCase : Any = VGroup(*a__ ).arrange(a__ , buff=0 ) _UpperCAmelCase : Any = Text("GPU" , font_size=24 ) _UpperCAmelCase : Any = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) gpu.move_to([-1, -1, 0] ) self.add(a__ ) _UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*a__ ).arrange(a__ , buff=0 ) _UpperCAmelCase : Optional[Any] = Text("Model" , font_size=24 ) _UpperCAmelCase : Optional[Any] = Group(a__ , a__ ).arrange(a__ , buff=0.5 , aligned_edge=a__ ) model.move_to([3, -1.0, 0] ) self.add(a__ ) _UpperCAmelCase : Optional[Any] = [] for i, rect in enumerate(a__ ): rect.set_stroke(a__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) _UpperCAmelCase : Any = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=a__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=a__ , buff=0.0 ) self.add(a__ ) cpu_targs.append(a__ ) _UpperCAmelCase : int = [mem.copy() for i in range(6 )] _UpperCAmelCase : Dict = VGroup(*a__ ).arrange(a__ , buff=0 ) _UpperCAmelCase : Tuple = Text("Loaded Checkpoint" , font_size=24 ) _UpperCAmelCase : Optional[Any] = Group(a__ , a__ ).arrange(a__ , aligned_edge=a__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) _UpperCAmelCase : Dict = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase : Dict = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a__ , a__ ) _UpperCAmelCase : Any = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(a__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) _UpperCAmelCase : str = MarkupText( f'Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a__ ) , Write(a__ ) ) self.play(Write(a__ , run_time=1 ) , Create(a__ , run_time=1 ) ) _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : List[str] = [] for i, rect in enumerate(a__ ): _UpperCAmelCase : Dict = fill.copy().set_fill(a__ , opacity=0.7 ) target.move_to(a__ ) first_animations.append(GrowFromCenter(a__ , run_time=1 ) ) _UpperCAmelCase : Union[str, Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(a__ , run_time=1.5 ) ) self.play(*a__ ) self.play(*a__ ) self.wait()
300
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json a__ : List[Any] = 'sshleifer/mar_enro_6_3_student' class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __snake_case ( self : Dict ): super().setUp() UpperCAmelCase = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=a__ , ) UpperCAmelCase = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __snake_case ( self : Optional[int] ): MarianMTModel.from_pretrained(a__ ) @slow @require_torch_gpu def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = { '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script UpperCAmelCase = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") UpperCAmelCase = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future UpperCAmelCase = ['''finetune.py'''] + bash_script.split() + args with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationModule.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __snake_case ( self : Any ): UpperCAmelCase = f"{self.test_file_dir_str}/test_data/wmt_en_ro" UpperCAmelCase = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script UpperCAmelCase = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) UpperCAmelCase = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) UpperCAmelCase = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): UpperCAmelCase = bash_script.replace(a__ , str(a__ ) ) UpperCAmelCase = self.get_auto_remove_tmp_dir() UpperCAmelCase = bash_script.replace('''--fp16''' , '''''' ) UpperCAmelCase = 6 UpperCAmelCase = ( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(a__ , '''argv''' , a__ ): UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = pl.Trainer.add_argparse_args(a__ ) UpperCAmelCase = SummarizationDistiller.add_model_specific_args(a__ , os.getcwd() ) UpperCAmelCase = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu UpperCAmelCase = distill_main(a__ ) # Check metrics UpperCAmelCase = load_json(model.metrics_save_path ) UpperCAmelCase = metrics['''val'''][0] UpperCAmelCase = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , a__ ) # check lightning ckpt can be loaded and has a reasonable statedict UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = [x for x in contents if x.endswith('''.ckpt''' )][0] UpperCAmelCase = os.path.join(args.output_dir , a__ ) UpperCAmelCase = torch.load(a__ , map_location='''cpu''' ) UpperCAmelCase = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: UpperCAmelCase = {os.path.basename(a__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
51
0
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Any: print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: UpperCamelCase = [[float("""inf""" ) for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): UpperCamelCase = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_lowerCamelCase ): # looping through rows of graph array for i in range(_lowerCamelCase ): # looping through columns of graph array for j in range(_lowerCamelCase ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): UpperCamelCase = dist[i][k] + dist[k][j] _print_dist(_lowerCamelCase , _lowerCamelCase ) return dist, v if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = int(input('Enter number of vertices: ')) SCREAMING_SNAKE_CASE__ = int(input('Enter number of edges: ')) SCREAMING_SNAKE_CASE__ = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): SCREAMING_SNAKE_CASE__ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) SCREAMING_SNAKE_CASE__ = int(input('Enter source:')) SCREAMING_SNAKE_CASE__ = int(input('Enter destination:')) SCREAMING_SNAKE_CASE__ = float(input('Enter weight:')) SCREAMING_SNAKE_CASE__ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
717
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def lowercase__ ( __UpperCamelCase=None )-> Union[str, Any]: if subparsers is not None: UpperCamelCase = subparsers.add_parser("""env""" ) else: UpperCamelCase = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" , default=__UpperCamelCase , help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def lowercase__ ( __UpperCamelCase )-> List[str]: UpperCamelCase = torch.__version__ UpperCamelCase = torch.cuda.is_available() UpperCamelCase = is_xpu_available() UpperCamelCase = is_npu_available() UpperCamelCase = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(__UpperCamelCase ): UpperCamelCase = load_config_from_file(args.config_file ).to_dict() UpperCamelCase = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """PyTorch XPU available""": str(__UpperCamelCase ), """PyTorch NPU available""": str(__UpperCamelCase ), """System RAM""": F"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: UpperCamelCase = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([F"- {prop}: {val}" for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) UpperCamelCase = ( """\n""".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else F"\t{accelerate_config}" ) print(__UpperCamelCase ) UpperCamelCase = accelerate_config return info def lowercase__ ( )-> int: UpperCamelCase = env_command_parser() UpperCamelCase = parser.parse_args() env_command(__UpperCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
35
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[Any] = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'deta' __magic_name__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __snake_case=None , __snake_case=9_0_0 , __snake_case=2_0_4_8 , __snake_case=6 , __snake_case=2_0_4_8 , __snake_case=8 , __snake_case=6 , __snake_case=1_0_2_4 , __snake_case=8 , __snake_case=0.0 , __snake_case=True , __snake_case="relu" , __snake_case=2_5_6 , __snake_case=0.1 , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1.0 , __snake_case=True , __snake_case=False , __snake_case="sine" , __snake_case=5 , __snake_case=4 , __snake_case=4 , __snake_case=True , __snake_case=3_0_0 , __snake_case=True , __snake_case=True , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=1 , __snake_case=1 , __snake_case=5 , __snake_case=2 , __snake_case=0.1 , __snake_case=0.25 , **__snake_case , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) snake_case = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(__snake_case , __snake_case ): snake_case = backbone_config.pop('''model_type''' ) snake_case = CONFIG_MAPPING[backbone_model_type] snake_case = config_class.from_dict(__snake_case ) snake_case = backbone_config snake_case = num_queries snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = init_xavier_std snake_case = encoder_layerdrop snake_case = auxiliary_loss snake_case = position_embedding_type # deformable attributes snake_case = num_feature_levels snake_case = encoder_n_points snake_case = decoder_n_points snake_case = two_stage snake_case = two_stage_num_proposals snake_case = with_box_refine snake_case = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher snake_case = class_cost snake_case = bbox_cost snake_case = giou_cost # Loss coefficients snake_case = mask_loss_coefficient snake_case = dice_loss_coefficient snake_case = bbox_loss_coefficient snake_case = giou_loss_coefficient snake_case = eos_coefficient snake_case = focal_alpha super().__init__(is_encoder_decoder=__snake_case , **__snake_case ) @property def a_ ( self ): return self.encoder_attention_heads @property def a_ ( self ): return self.d_model def a_ ( self ): snake_case = copy.deepcopy(self.__dict__ ) snake_case = self.backbone_config.to_dict() snake_case = self.__class__.model_type return output
550
def UpperCAmelCase__ (UpperCamelCase_ = 10_00 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 ,n + 1 ) ) if __name__ == "__main__": print(solution())
550
1
"""simple docstring""" def lowercase__ ( ) -> Tuple: """simple docstring""" _UpperCamelCase : Tuple = 0 for i in range(1 ,1_001 ): total += i**i return str(_lowercase )[-10:] if __name__ == "__main__": print(solution())
712
"""simple docstring""" def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : Union[str, Any] = set() # edges = list of graph's edges _UpperCamelCase : Union[str, Any] = get_edges(lowercase_ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _UpperCamelCase, _UpperCamelCase : str = edges.pop() chosen_vertices.add(lowercase_ ) chosen_vertices.add(lowercase_ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(lowercase_ ) return chosen_vertices def lowercase__ ( lowercase_ ) -> set: """simple docstring""" _UpperCamelCase : List[str] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
51
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase :int = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCamelCase :str = 2_5_6_0_4_7 lowerCamelCase :List[str] = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = NllbTokenizer __SCREAMING_SNAKE_CASE : Dict = NllbTokenizerFast __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : int = True __SCREAMING_SNAKE_CASE : int = {} def _a (self ): super().setUp() # We have a SentencePiece fixture for testing A_ : str = NllbTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def _a (self ): A_ : Union[str, Any] = NllbTokenizer(__a , keep_accents=__a ) A_ : Optional[int] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A_ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A_ : Any = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _a (self ): A_ : Optional[int] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) A_ : Optional[int] = self.tokenizer_class.from_pretrained(__a , **__a ) A_ : List[Any] = tempfile.mkdtemp() A_ : Union[str, Any] = tokenizer_r.save_pretrained(__a ) A_ : Any = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) A_ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way A_ : Optional[Any] = tokenizer_r.from_pretrained(__a ) A_ : str = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=True A_ : Union[str, Any] = tempfile.mkdtemp() A_ : List[str] = tokenizer_r.save_pretrained(__a , legacy_format=__a ) A_ : Optional[Any] = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way A_ : List[Any] = tokenizer_r.from_pretrained(__a ) A_ : Optional[int] = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=False A_ : List[Any] = tempfile.mkdtemp() A_ : Tuple = tokenizer_r.save_pretrained(__a , legacy_format=__a ) A_ : Dict = tokenizer_p.save_pretrained(__a ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A_ : List[Any] = tokenizer_r.from_pretrained(__a ) A_ : Dict = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) @require_torch def _a (self ): if not self.test_seqaseq: return A_ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. A_ : List[Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] A_ : Optional[int] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: A_ : Optional[int] = tokenizer.prepare_seqaseq_batch( src_texts=__a , tgt_texts=__a , max_length=3 , max_target_length=10 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified A_ : Dict = tokenizer.prepare_seqaseq_batch( __a , tgt_texts=__a , max_length=3 , return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) A_ : List[Any] = tokenizer.prepare_seqaseq_batch( src_texts=__a , max_length=3 , max_target_length=10 , return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("""decoder_input_ids""" , __a ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def _a (self ): pass def _a (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A_ : Tuple = [AddedToken("""<special>""" , lstrip=__a )] A_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , **__a ) A_ : Tuple = tokenizer_r.encode("""Hey this is a <special> token""" ) A_ : Tuple = tokenizer_r.encode("""<special>""" , add_special_tokens=__a )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: A_ : Dict = self.rust_tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , **__a , ) A_ : Dict = self.tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , **__a ) A_ : Any = tokenizer_p.encode("""Hey this is a <special> token""" ) A_ : List[Any] = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(__a , __a ) self.assertEqual(__a , __a ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = 'facebook/nllb-200-distilled-600M' __SCREAMING_SNAKE_CASE : Optional[int] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __SCREAMING_SNAKE_CASE : str = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __SCREAMING_SNAKE_CASE : Any = [ 256_047, 16_297, 134_408, 8_165, 248_066, 14_734, 950, 1_135, 105_721, 3_573, 83, 27_352, 108, 49_486, 2, ] @classmethod def _a (cls ): A_ : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" ) A_ : List[Any] = 1 return cls def _a (self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 256057 ) def _a (self ): A_ : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def _a (self ): self.assertIn(__a , self.tokenizer.all_special_ids ) # fmt: off A_ : Tuple = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on A_ : Union[str, Any] = self.tokenizer.decode(__a , skip_special_tokens=__a ) A_ : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def _a (self ): A_ : List[str] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , __a ) A_ : Any = 10 A_ : Optional[Any] = self.tokenizer(__a , max_length=__a , truncation=__a ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __a ) self.assertEqual(len(__a ) , __a ) def _a (self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [256203, 3] ) def _a (self ): A_ : str = tempfile.mkdtemp() A_ : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a ) A_ : Dict = NllbTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __a ) @require_torch def _a (self ): A_ : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__a , truncation=__a , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A_ : str = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) A_ : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __a ) self.assertEqual(__a , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _a (self ): A_ : str = self.tokenizer(self.src_text , padding=__a , truncation=__a , max_length=3 , return_tensors="""pt""" ) A_ : Union[str, Any] = self.tokenizer( text_target=self.tgt_text , padding=__a , truncation=__a , max_length=10 , return_tensors="""pt""" ) A_ : str = targets["input_ids"] A_ : Any = shift_tokens_right( __a , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _a (self ): A_ : Any = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(__a ) , { # A, test, EOS, en_XX """input_ids""": [[256047, 70, 7356, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 256057, } , ) @require_torch def _a (self ): A_ : Union[str, Any] = True A_ : str = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) A_ : List[Any] = False A_ : Any = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
667
import math def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [True] * n _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : Tuple = False _lowerCAmelCase : Optional[Any] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): _lowerCAmelCase : Union[str, Any] = i * 2 while index < n: _lowerCAmelCase : int = False _lowerCAmelCase : Optional[Any] = index + i _lowerCAmelCase : str = [2] for i in range(3 , _lowerCamelCase , 2 ): if is_prime[i]: primes.append(_lowerCamelCase ) return primes def A ( _lowerCamelCase = 999_966_663_333 ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = math.floor(math.sqrt(_lowerCamelCase ) ) + 100 _lowerCAmelCase : str = prime_sieve(_lowerCamelCase ) _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Optional[int] = primes[prime_index] while (last_prime**2) <= limit: _lowerCAmelCase : int = primes[prime_index + 1] _lowerCAmelCase : Dict = last_prime**2 _lowerCAmelCase : Optional[Any] = next_prime**2 # Get numbers divisible by lps(current) _lowerCAmelCase : List[Any] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _lowerCAmelCase : Any = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _lowerCAmelCase : List[str] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _lowerCAmelCase : Optional[int] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
500
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCAmelCase__ : List[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class __snake_case ( datasets.BuilderConfig ): __lowerCamelCase = None __lowerCamelCase = """utf-8""" __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = True # deprecated __lowerCamelCase = None # deprecated __lowerCamelCase = 10 << 20 # 10MB __lowerCamelCase = None class __snake_case ( datasets.ArrowBasedBuilder ): __lowerCamelCase = JsonConfig def __a ( self ) -> Optional[Any]: '''simple docstring''' if self.config.block_size is not None: logger.warning('The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead' ) snake_case__ : str = self.config.block_size if self.config.use_threads is not True: logger.warning( 'The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.' ) if self.config.newlines_in_values is not None: raise ValueError('The JSON loader parameter `newlines_in_values` is no longer supported' ) return datasets.DatasetInfo(features=self.config.features ) def __a ( self , __UpperCamelCase ) -> Dict: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) snake_case__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCamelCase , (str, list, tuple) ): snake_case__ : Any = data_files if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : Optional[Any] = [files] snake_case__ : List[str] = [dl_manager.iter_files(__UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] snake_case__ : List[Any] = [] for split_name, files in data_files.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): snake_case__ : List[Any] = [files] snake_case__ : Any = [dl_manager.iter_files(__UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__UpperCamelCase , gen_kwargs={'files': files} ) ) return splits def __a ( self , __UpperCamelCase ) -> pa.Table: '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): snake_case__ : List[Any] = self.config.features.arrow_schema.field(__UpperCamelCase ).type snake_case__ : List[str] = pa_table.append_column(__UpperCamelCase , pa.array([None] * len(__UpperCamelCase ) , type=__UpperCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example snake_case__ : List[str] = table_cast(__UpperCamelCase , self.config.features.arrow_schema ) return pa_table def __a ( self , __UpperCamelCase ) -> int: '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Union[str, Any] = json.load(__UpperCamelCase ) # We keep only the field we are interested in snake_case__ : Tuple = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__UpperCamelCase , (list, tuple) ): snake_case__ : List[Any] = set().union(*[row.keys() for row in dataset] ) snake_case__ : List[Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} else: snake_case__ : List[Any] = dataset snake_case__ : Dict = pa.Table.from_pydict(__UpperCamelCase ) yield file_idx, self._cast_table(__UpperCamelCase ) # If the file has one json object per line else: with open(__UpperCamelCase , 'rb' ) as f: snake_case__ : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small snake_case__ : Tuple = max(self.config.chunksize // 32 , 16 << 10 ) snake_case__ : Optional[Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: snake_case__ : Optional[int] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__UpperCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": snake_case__ : int = batch.decode(self.config.encoding , errors=__UpperCamelCase ).encode('utf-8' ) try: while True: try: snake_case__ : List[str] = paj.read_json( io.BytesIO(__UpperCamelCase ) , read_options=paj.ReadOptions(block_size=__UpperCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__UpperCamelCase , pa.ArrowInvalid ) and "straddling" not in str(__UpperCamelCase ) or block_size > len(__UpperCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__UpperCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __UpperCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: snake_case__ : Tuple = json.load(__UpperCamelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__UpperCamelCase , __UpperCamelCase ): # list is the only sequence type supported in JSON try: snake_case__ : str = set().union(*[row.keys() for row in dataset] ) snake_case__ : Union[str, Any] = {col: [row.get(__UpperCamelCase ) for row in dataset] for col in keys} snake_case__ : List[str] = pa.Table.from_pydict(__UpperCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__UpperCamelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__UpperCamelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__UpperCamelCase ) batch_idx += 1
711
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
699
0
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ) -> list[int]: """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _UpperCAmelCase = i + 1 else: _UpperCAmelCase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
32
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _SCREAMING_SNAKE_CASE = HfArgumentParser(InitializationArguments) _SCREAMING_SNAKE_CASE = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _SCREAMING_SNAKE_CASE = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) _SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
401
0
import copy import random from transformers import CLIPTokenizer class lowerCAmelCase_ ( lowercase_ ): def __init__( self : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int ) -> Optional[Any]: '''simple docstring''' super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) _UpperCAmelCase : str = {} def a_ ( self : str , UpperCAmelCase_ : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[int] = super().add_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) if num_added_tokens == 0: raise ValueError( F'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ''' `placeholder_token` that is not already in the tokenizer.''' ) def a_ ( self : int , UpperCAmelCase_ : Dict , *UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=1 , **UpperCAmelCase_ : List[Any] ) -> int: '''simple docstring''' _UpperCAmelCase : Tuple = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) output.append(UpperCAmelCase_ ) else: _UpperCAmelCase : int = [] for i in range(UpperCAmelCase_ ): _UpperCAmelCase : Optional[int] = placeholder_token + F'''_{i}''' self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) output.append(UpperCAmelCase_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'''The tokenizer already has placeholder token {token} that can get confused with''' F''' {placeholder_token}keep placeholder tokens independent''' ) _UpperCAmelCase : Optional[int] = output def a_ ( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Any=1.0 ) -> Dict: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCAmelCase : Optional[int] = [] for i in range(len(UpperCAmelCase_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCAmelCase_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: _UpperCAmelCase : Any = self.token_map[placeholder_token] _UpperCAmelCase : Dict = tokens[: 1 + int(len(UpperCAmelCase_ ) * prop_tokens_to_load )] if vector_shuffle: _UpperCAmelCase : Optional[int] = copy.copy(UpperCAmelCase_ ) random.shuffle(UpperCAmelCase_ ) _UpperCAmelCase : str = text.replace(UpperCAmelCase_ , ''' '''.join(UpperCAmelCase_ ) ) return text def __call__( self : List[str] , UpperCAmelCase_ : str , *UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Optional[int]=1.0 , **UpperCAmelCase_ : Optional[int] ) -> Any: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_ ) , *UpperCAmelCase_ , **UpperCAmelCase_ , ) def a_ ( self : Tuple , UpperCAmelCase_ : str , *UpperCAmelCase_ : str , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : List[str]=1.0 , **UpperCAmelCase_ : List[str] ) -> Optional[int]: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_ ) , *UpperCAmelCase_ , **UpperCAmelCase_ , )
416
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : Optional[int] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( lowercase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = AlbertTokenizer SCREAMING_SNAKE_CASE_ : Dict = AlbertTokenizerFast SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : int = True def a_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : int = AlbertTokenizer(UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def a_ ( self : Union[str, Any] , UpperCAmelCase_ : List[str] ) -> Any: '''simple docstring''' _UpperCAmelCase : List[Any] = '''this is a test''' _UpperCAmelCase : Union[str, Any] = '''this is a test''' return input_text, output_text def a_ ( self : Tuple ) -> Dict: '''simple docstring''' _UpperCAmelCase : Any = '''<pad>''' _UpperCAmelCase : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def a_ ( self : int ) -> Dict: '''simple docstring''' _UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(UpperCAmelCase_ ) , 30000 ) def a_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def a_ ( self : Any ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCAmelCase : List[Any] = self.get_tokenizer() _UpperCAmelCase : int = self.get_rust_tokenizer() _UpperCAmelCase : Dict = '''I was born in 92000, and this is falsé.''' _UpperCAmelCase : Tuple = tokenizer.tokenize(UpperCAmelCase_ ) _UpperCAmelCase : Tuple = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Dict = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) _UpperCAmelCase : str = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() _UpperCAmelCase : Any = tokenizer.encode(UpperCAmelCase_ ) _UpperCAmelCase : List[str] = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def a_ ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = AlbertTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) _UpperCAmelCase : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCAmelCase_ , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [48, 25, 21, 1289] ) _UpperCAmelCase : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase_ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) _UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def a_ ( self : Any ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AlbertTokenizer(UpperCAmelCase_ ) _UpperCAmelCase : Optional[int] = tokenizer.encode('''sequence builders''' ) _UpperCAmelCase : Optional[Any] = tokenizer.encode('''multi-sequence build''' ) _UpperCAmelCase : int = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def a_ ( self : List[str] ) -> str: '''simple docstring''' _UpperCAmelCase : Optional[int] = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
416
1
from __future__ import annotations def _lowercase ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase = 2 UpperCamelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_UpperCAmelCase ) if n > 1: factors.append(_UpperCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
386
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a_ : Any = 'true' def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=16): set_seed(42) SCREAMING_SNAKE_CASE = RegressionModel() SCREAMING_SNAKE_CASE = deepcopy(_UpperCAmelCase) SCREAMING_SNAKE_CASE = RegressionDataset(length=_UpperCAmelCase) SCREAMING_SNAKE_CASE = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase) model.to(accelerator.device) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase) return model, ddp_model, dataloader def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=False): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased') SCREAMING_SNAKE_CASE = load_dataset('glue' , 'mrpc' , split='validation') def tokenize_function(_UpperCAmelCase): SCREAMING_SNAKE_CASE = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE = dataset.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(_UpperCAmelCase): if use_longest: return tokenizer.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt') return tokenizer.pad(_UpperCAmelCase , padding='max_length' , max_length=128 , return_tensors='pt') return DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=16) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = Accelerator(dispatch_batches=_UpperCAmelCase , split_batches=_UpperCAmelCase) SCREAMING_SNAKE_CASE = get_dataloader(_UpperCAmelCase , not dispatch_batches) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(_UpperCAmelCase , _UpperCAmelCase) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = [] for batch in dataloader: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((logit, target)) logits_and_targets.append((logit, target)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], [] for logit, targ in logits_and_targets: logits.append(_UpperCAmelCase) targs.append(_UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.cat(_UpperCAmelCase), torch.cat(_UpperCAmelCase) return logits, targs def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=82 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=16): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_basic_setup(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_predictions(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) assert ( len(_UpperCAmelCase) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_UpperCAmelCase)}''' def lowerCamelCase__ (_UpperCAmelCase = False , _UpperCAmelCase = False): SCREAMING_SNAKE_CASE = evaluate.load('glue' , 'mrpc') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_mrpc_setup(_UpperCAmelCase , _UpperCAmelCase) # First do baseline SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['no'] model.to(_UpperCAmelCase) model.eval() for batch in dataloader: batch.to(_UpperCAmelCase) with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1) metric.add_batch(predictions=_UpperCAmelCase , references=batch['labels']) SCREAMING_SNAKE_CASE = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1) SCREAMING_SNAKE_CASE = batch['labels'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((preds, references)) metric.add_batch(predictions=_UpperCAmelCase , references=_UpperCAmelCase) SCREAMING_SNAKE_CASE = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key]), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**') for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''') test_mrpc(_UpperCAmelCase , _UpperCAmelCase) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**') for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE = Accelerator(split_batches=_UpperCAmelCase , dispatch_batches=_UpperCAmelCase) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''') test_torch_metrics(_UpperCAmelCase , 99) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**') SCREAMING_SNAKE_CASE = Accelerator() test_torch_metrics(_UpperCAmelCase , 512) accelerator.state._reset_state() def lowerCamelCase__ (_UpperCAmelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
73
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" lowerCAmelCase__ : Tuple = """roformer""" def __init__( self: Optional[int] , __lowerCAmelCase: Union[str, Any]=50_000 , __lowerCAmelCase: Tuple=None , __lowerCAmelCase: Union[str, Any]=768 , __lowerCAmelCase: Union[str, Any]=12 , __lowerCAmelCase: Any=12 , __lowerCAmelCase: int=3_072 , __lowerCAmelCase: Tuple="gelu" , __lowerCAmelCase: Optional[int]=0.1 , __lowerCAmelCase: List[Any]=0.1 , __lowerCAmelCase: Union[str, Any]=1_536 , __lowerCAmelCase: List[Any]=2 , __lowerCAmelCase: Optional[int]=0.02 , __lowerCAmelCase: List[Any]=1E-12 , __lowerCAmelCase: int=0 , __lowerCAmelCase: List[Any]=False , __lowerCAmelCase: Any=True , **__lowerCAmelCase: Dict , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=__lowercase , **__lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size if embedding_size is None else embedding_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = rotary_value __UpperCAmelCase = use_cache class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" @property def _UpperCAmelCase ( self: Dict ) -> Union[str, Any]: '''simple docstring''' if self.task == "multiple-choice": __UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase = {0: "batch", 1: "sequence"} __UpperCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
715
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( A_ : int , A_ : Optional[Any] , A_ : Tuple ) -> List[str]: return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def __lowerCAmelCase ( A_ : Optional[int] , A_ : Dict , A_ : Dict , A_ : Optional[int]="attention" ) -> Optional[int]: __UpperCAmelCase = __UpperCAmelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) __UpperCAmelCase = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __UpperCAmelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) __UpperCAmelCase = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __UpperCAmelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) __UpperCAmelCase = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __UpperCAmelCase = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) __UpperCAmelCase = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowerCAmelCase ( A_ : Dict , A_ : Union[str, Any] , A_ : Optional[Any] , A_ : int=False ) -> List[Any]: if split_mlp_wi: __UpperCAmelCase = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] __UpperCAmelCase = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] __UpperCAmelCase = (wi_a, wi_a) else: __UpperCAmelCase = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] __UpperCAmelCase = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def __lowerCAmelCase ( A_ : Union[str, Any] , A_ : int , A_ : Optional[Any] , A_ : Optional[Any] ) -> Tuple: return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def __lowerCAmelCase ( A_ : dict , *, A_ : int , A_ : bool , A_ : bool = False ) -> List[str]: __UpperCAmelCase = traverse_util.flatten_dict(variables["target"] ) __UpperCAmelCase = {"/".join(A_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCAmelCase = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , A_ ) __UpperCAmelCase = collections.OrderedDict() # Shared embeddings. __UpperCAmelCase = old["token_embedder/embedding"] # Encoder. for i in range(A_ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase = tax_layer_norm_lookup(A_ , A_ , "encoder" , "pre_attention_layer_norm" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = tax_attention_lookup(A_ , A_ , "encoder" , "attention" ) __UpperCAmelCase = layer_norm __UpperCAmelCase = k.T __UpperCAmelCase = o.T __UpperCAmelCase = q.T __UpperCAmelCase = v.T # Block i, layer 1 (MLP). __UpperCAmelCase = tax_layer_norm_lookup(A_ , A_ , "encoder" , "pre_mlp_layer_norm" ) __UpperCAmelCase , __UpperCAmelCase = tax_mlp_lookup(A_ , A_ , "encoder" , A_ ) __UpperCAmelCase = layer_norm if split_mlp_wi: __UpperCAmelCase = wi[0].T __UpperCAmelCase = wi[1].T else: __UpperCAmelCase = wi.T __UpperCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase = tax_relpos_bias_lookup( A_ , A_ , "encoder" ).T __UpperCAmelCase = old["encoder/encoder_norm/scale"] if not scalable_attention: __UpperCAmelCase = tax_relpos_bias_lookup( A_ , 0 , "encoder" ).T __UpperCAmelCase = tax_relpos_bias_lookup( A_ , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(A_ ): # Block i, layer 0 (Self Attention). __UpperCAmelCase = tax_layer_norm_lookup(A_ , A_ , "decoder" , "pre_self_attention_layer_norm" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = tax_attention_lookup(A_ , A_ , "decoder" , "self_attention" ) __UpperCAmelCase = layer_norm __UpperCAmelCase = k.T __UpperCAmelCase = o.T __UpperCAmelCase = q.T __UpperCAmelCase = v.T # Block i, layer 1 (Cross Attention). __UpperCAmelCase = tax_layer_norm_lookup(A_ , A_ , "decoder" , "pre_cross_attention_layer_norm" ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = tax_attention_lookup(A_ , A_ , "decoder" , "encoder_decoder_attention" ) __UpperCAmelCase = layer_norm __UpperCAmelCase = k.T __UpperCAmelCase = o.T __UpperCAmelCase = q.T __UpperCAmelCase = v.T # Block i, layer 2 (MLP). __UpperCAmelCase = tax_layer_norm_lookup(A_ , A_ , "decoder" , "pre_mlp_layer_norm" ) __UpperCAmelCase , __UpperCAmelCase = tax_mlp_lookup(A_ , A_ , "decoder" , A_ ) __UpperCAmelCase = layer_norm if split_mlp_wi: __UpperCAmelCase = wi[0].T __UpperCAmelCase = wi[1].T else: __UpperCAmelCase = wi.T __UpperCAmelCase = wo.T if scalable_attention: # convert the rel_embedding of each layer __UpperCAmelCase = tax_relpos_bias_lookup(A_ , A_ , "decoder" ).T __UpperCAmelCase = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCAmelCase = old["decoder/logits_dense/kernel"].T return new def __lowerCAmelCase ( A_ : Tuple , A_ : bool ) -> List[Any]: __UpperCAmelCase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCAmelCase = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __UpperCAmelCase = state_dict["shared.weight"] return state_dict def __lowerCAmelCase ( A_ : Optional[Any] , A_ : int , A_ : List[Any] , A_ : List[Any] , A_ : List[Any] ) -> Optional[int]: __UpperCAmelCase = checkpoints.load_tax_checkpoint(A_ ) __UpperCAmelCase = convert_tax_to_pytorch( A_ , num_layers=config.num_layers , is_encoder_only=A_ , scalable_attention=A_ ) __UpperCAmelCase = make_state_dict(A_ , A_ ) model.load_state_dict(A_ , strict=A_ ) def __lowerCAmelCase ( A_ : List[str] , A_ : List[Any] , A_ : List[str] , A_ : bool = False , A_ : bool = False , ) -> Optional[int]: __UpperCAmelCase = MTaConfig.from_json_file(A_ ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCAmelCase = UMTaEncoderModel(A_ ) else: __UpperCAmelCase = UMTaForConditionalGeneration(A_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(A_ , A_ , A_ , A_ , A_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(A_ ) # Verify that we can load the checkpoint. model.from_pretrained(A_ ) print("Done" ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) a_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
286
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin snake_case__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case__ = 25_60_47 snake_case__ = 25_61_45 @require_sentencepiece @require_tokenizers class UpperCAmelCase ( __lowerCamelCase , unittest.TestCase ): a__: Any = NllbTokenizer a__: List[str] = NllbTokenizerFast a__: Dict = True a__: int = True a__: str = {} def _lowerCAmelCase ( self : Dict ): super().setUp() # We have a SentencePiece fixture for testing lowercase : Dict = NllbTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self : str ): lowercase : List[Any] = NllbTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) lowercase : str = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : List[str] = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase : Tuple = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _lowerCAmelCase ( self : Optional[int] ): lowercase : List[Any] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) lowercase : int = self.tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) lowercase : int = tempfile.mkdtemp() lowercase : int = tokenizer_r.save_pretrained(lowerCAmelCase ) lowercase : List[str] = tokenizer_p.save_pretrained(lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowercase : str = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase , lowerCAmelCase ) # Checks everything loads correctly in the same way lowercase : Optional[Any] = tokenizer_r.from_pretrained(lowerCAmelCase ) lowercase : Tuple = tokenizer_p.from_pretrained(lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase , lowerCAmelCase ) ) shutil.rmtree(lowerCAmelCase ) # Save tokenizer rust, legacy_format=True lowercase : Any = tempfile.mkdtemp() lowercase : Optional[Any] = tokenizer_r.save_pretrained(lowerCAmelCase , legacy_format=lowerCAmelCase ) lowercase : Dict = tokenizer_p.save_pretrained(lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase , lowerCAmelCase ) # Checks everything loads correctly in the same way lowercase : str = tokenizer_r.from_pretrained(lowerCAmelCase ) lowercase : Any = tokenizer_p.from_pretrained(lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase , lowerCAmelCase ) ) shutil.rmtree(lowerCAmelCase ) # Save tokenizer rust, legacy_format=False lowercase : str = tempfile.mkdtemp() lowercase : Dict = tokenizer_r.save_pretrained(lowerCAmelCase , legacy_format=lowerCAmelCase ) lowercase : Any = tokenizer_p.save_pretrained(lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase : Optional[int] = tokenizer_r.from_pretrained(lowerCAmelCase ) lowercase : int = tokenizer_p.from_pretrained(lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase , lowerCAmelCase ) ) shutil.rmtree(lowerCAmelCase ) @require_torch def _lowerCAmelCase ( self : List[str] ): if not self.test_seqaseq: return lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. lowercase : str = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] lowercase : List[str] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: lowercase : str = tokenizer.prepare_seqaseq_batch( src_texts=lowerCAmelCase , tgt_texts=lowerCAmelCase , max_length=3 , max_target_length=10 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified lowercase : str = tokenizer.prepare_seqaseq_batch( lowerCAmelCase , tgt_texts=lowerCAmelCase , max_length=3 , return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) lowercase : Dict = tokenizer.prepare_seqaseq_batch( src_texts=lowerCAmelCase , max_length=3 , max_target_length=10 , return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('''decoder_input_ids''' , lowerCAmelCase ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def _lowerCAmelCase ( self : Union[str, Any] ): pass def _lowerCAmelCase ( self : List[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase : Union[str, Any] = [AddedToken('''<special>''' , lstrip=lowerCAmelCase )] lowercase : Any = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase ) lowercase : Dict = tokenizer_r.encode('''Hey this is a <special> token''' ) lowercase : int = tokenizer_r.encode('''<special>''' , add_special_tokens=lowerCAmelCase )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: lowercase : List[Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase , ) lowercase : Optional[int] = self.tokenizer_class.from_pretrained( lowerCAmelCase , additional_special_tokens=lowerCAmelCase , **lowerCAmelCase ) lowercase : Union[str, Any] = tokenizer_p.encode('''Hey this is a <special> token''' ) lowercase : Optional[int] = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): a__: Optional[Any] = """facebook/nllb-200-distilled-600M""" a__: Optional[int] = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] a__: Optional[int] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] a__: Optional[int] = [ 25_60_47, 1_62_97, 13_44_08, 81_65, 24_80_66, 1_47_34, 9_50, 11_35, 10_57_21, 35_73, 83, 2_73_52, 1_08, 4_94_86, 2, ] @classmethod def _lowerCAmelCase ( cls : int ): lowercase : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' ) lowercase : Union[str, Any] = 1 return cls def _lowerCAmelCase ( self : List[Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 25_6001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 25_6002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 25_6057 ) def _lowerCAmelCase ( self : str ): lowercase : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase ) def _lowerCAmelCase ( self : Optional[int] ): self.assertIn(lowerCAmelCase , self.tokenizer.all_special_ids ) # fmt: off lowercase : Any = [RO_CODE, 4254, 9_8068, 11_2923, 3_9072, 3909, 713, 10_2767, 26, 1_7314, 3_5642, 1_4683, 3_3118, 2022, 6_6987, 2, 25_6047] # fmt: on lowercase : Tuple = self.tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) lowercase : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase ) def _lowerCAmelCase ( self : Optional[Any] ): lowercase : Dict = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase ) lowercase : str = 10 lowercase : List[Any] = self.tokenizer(lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , lowerCAmelCase ) self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) def _lowerCAmelCase ( self : List[str] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_6203, 3] ) def _lowerCAmelCase ( self : List[Any] ): lowercase : str = tempfile.mkdtemp() lowercase : Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase ) lowercase : List[Any] = NllbTokenizer.from_pretrained(lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase ) @require_torch def _lowerCAmelCase ( self : Tuple ): lowercase : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowercase : Tuple = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) lowercase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _lowerCAmelCase ( self : Union[str, Any] ): lowercase : Optional[Any] = self.tokenizer(self.src_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=3 , return_tensors='''pt''' ) lowercase : int = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=10 , return_tensors='''pt''' ) lowercase : Optional[int] = targets['''input_ids'''] lowercase : Optional[int] = shift_tokens_right( lowerCAmelCase , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowerCAmelCase ( self : Any ): lowercase : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { # A, test, EOS, en_XX '''input_ids''': [[25_6047, 70, 7356, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_6057, } , ) @require_torch def _lowerCAmelCase ( self : List[Any] ): lowercase : Dict = True lowercase : int = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2, 25_6047] ) lowercase : Union[str, Any] = False lowercase : Optional[int] = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [25_6047, 1_6297, 13_4408, 2_5653, 6370, 248, 254, 10_3929, 9_4995, 108, 4_9486, 2] )
583
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCAmelCase ( __lowerCamelCase ): def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any] ): warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
583
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCAmelCase ( lowercase__ : int ): '''simple docstring''' a__ = int(number**0.5 ) return number == sq * sq def UpperCAmelCase ( lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int ): '''simple docstring''' a__ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den a__ = x_den * y_den * z_den a__ = gcd(lowercase__ , lowercase__ ) top //= hcf bottom //= hcf return top, bottom def UpperCAmelCase ( lowercase__ : int = 35 ): '''simple docstring''' a__ = set() a__ = 42 a__ = Fraction(0 ) a__ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 a__ = x_num * y_den + x_den * y_num a__ = x_den * y_den a__ = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a__ = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) # n=2 a__ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) a__ = x_den * x_den * y_den * y_den if is_sq(lowercase__ ) and is_sq(lowercase__ ): a__ = int(sqrt(lowercase__ ) ) a__ = int(sqrt(lowercase__ ) ) a__ = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a__ = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) # n=-1 a__ = x_num * y_num a__ = x_den * y_num + x_num * y_den a__ = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a__ = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) # n=2 a__ = x_num * x_num * y_num * y_num a__ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowercase__ ) and is_sq(lowercase__ ): a__ = int(sqrt(lowercase__ ) ) a__ = int(sqrt(lowercase__ ) ) a__ = gcd(lowercase__ , lowercase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a__ = add_three( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) unique_s.add(lowercase__ ) for num, den in unique_s: total += Fraction(lowercase__ , lowercase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
412
import operator as op def UpperCAmelCase ( lowercase__ : str ): '''simple docstring''' a__ = [] a__ = lambda lowercase__ , lowercase__ : int(x / y ) # noqa: E731 integer division operation a__ = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(lowercase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(lowercase__ ) , sep=""" | """ ) else: a__ = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(lowercase__ ) , sep=""" | """ ) a__ = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(lowercase__ ) , sep=""" | """ ) stack.append( str(opr[x](int(lowercase__ ) , int(lowercase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(lowercase__ ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": _lowercase : int =input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
412
1
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : int ): """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(__UpperCamelCase ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
86
class _a : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Dict ): A_ = None A_ = None A_ = graph self._normalize_graph(UpperCAmelCase , UpperCAmelCase ) A_ = len(UpperCAmelCase ) A_ = None def __A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple ): if sources is int: A_ = [sources] if sinks is int: A_ = [sinks] if len(UpperCAmelCase ) == 0 or len(UpperCAmelCase ) == 0: return A_ = sources[0] A_ = sinks[0] # make fake vertex if there are more # than one source or sink if len(UpperCAmelCase ) > 1 or len(UpperCAmelCase ) > 1: A_ = 0 for i in sources: max_input_flow += sum(self.graph[i] ) A_ = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: A_ = max_input_flow A_ = 0 A_ = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: A_ = max_input_flow A_ = size - 1 def __A ( self : str ): if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __A ( self : Tuple , UpperCAmelCase : List[Any] ): A_ = algorithm(self ) class _a : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : List[str] ): A_ = flow_network A_ = flow_network.verticesCount A_ = flow_network.sourceIndex A_ = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that A_ = flow_network.graph A_ = False def __A ( self : Optional[int] ): if not self.executed: self._algorithm() A_ = True def __A ( self : Dict ): pass class _a ( snake_case_ ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : List[Any] ): super().__init__(UpperCAmelCase ) # use this to save your result A_ = -1 def __A ( self : Tuple ): if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Union[str, Any] ): super().__init__(UpperCAmelCase ) A_ = [[0] * self.verticies_count for i in range(self.verticies_count )] A_ = [0] * self.verticies_count A_ = [0] * self.verticies_count def __A ( self : List[str] ): A_ = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule A_ = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list A_ = 0 while i < len(UpperCAmelCase ): A_ = vertices_list[i] A_ = self.heights[vertex_index] self.process_vertex(UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(UpperCAmelCase ) ) A_ = 0 else: i += 1 A_ = sum(self.preflow[self.source_index] ) def __A ( self : List[str] , UpperCAmelCase : Dict ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(UpperCAmelCase , UpperCAmelCase ) self.relabel(UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __A ( self : Optional[Any] , UpperCAmelCase : List[Any] ): A_ = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): A_ = self.heights[to_index] if min_height is not None: A_ = min_height + 1 if __name__ == "__main__": __a :Tuple = [0] __a :Tuple = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __a :List[str] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __a :List[str] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __a :List[Any] = flow_network.find_maximum_flow() print(F"maximum flow is {maximum_flow}")
86
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging A__: Optional[Any] = logging.get_logger(__name__) A__: List[Any] = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Optional[Any] = "marian" __UpperCamelCase : Optional[Any] = ["past_key_values"] __UpperCamelCase : List[str] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self :Optional[Any] , SCREAMING_SNAKE_CASE :List[Any]=5_8_1_0_1 , SCREAMING_SNAKE_CASE :Any=None , SCREAMING_SNAKE_CASE :List[Any]=1_0_2_4 , SCREAMING_SNAKE_CASE :int=1_2 , SCREAMING_SNAKE_CASE :List[Any]=4_0_9_6 , SCREAMING_SNAKE_CASE :Optional[Any]=1_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_2 , SCREAMING_SNAKE_CASE :Any=4_0_9_6 , SCREAMING_SNAKE_CASE :Optional[int]=1_6 , SCREAMING_SNAKE_CASE :Optional[Any]=0.0 , SCREAMING_SNAKE_CASE :Dict=0.0 , SCREAMING_SNAKE_CASE :Union[str, Any]=True , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :Dict="gelu" , SCREAMING_SNAKE_CASE :List[str]=1_0_2_4 , SCREAMING_SNAKE_CASE :List[str]=0.1 , SCREAMING_SNAKE_CASE :Optional[int]=0.0 , SCREAMING_SNAKE_CASE :Optional[Any]=0.0 , SCREAMING_SNAKE_CASE :Optional[Any]=0.02 , SCREAMING_SNAKE_CASE :Optional[int]=5_8_1_0_0 , SCREAMING_SNAKE_CASE :Tuple=False , SCREAMING_SNAKE_CASE :int=5_8_1_0_0 , SCREAMING_SNAKE_CASE :Union[str, Any]=0 , SCREAMING_SNAKE_CASE :List[Any]=0 , SCREAMING_SNAKE_CASE :Union[str, Any]=True , **SCREAMING_SNAKE_CASE :Union[str, Any] , ) -> Dict: '''simple docstring''' _a : Tuple =vocab_size _a : List[Any] =decoder_vocab_size or vocab_size _a : Optional[Any] =max_position_embeddings _a : List[str] =d_model _a : Tuple =encoder_ffn_dim _a : List[Any] =encoder_layers _a : Optional[Any] =encoder_attention_heads _a : Tuple =decoder_ffn_dim _a : Optional[Any] =decoder_layers _a : Any =decoder_attention_heads _a : int =dropout _a : str =attention_dropout _a : List[str] =activation_dropout _a : int =activation_function _a : Dict =init_std _a : int =encoder_layerdrop _a : Tuple =decoder_layerdrop _a : List[Any] =use_cache _a : Union[str, Any] =encoder_layers _a : List[str] =scale_embedding # scale factor will be sqrt(d_model) if True _a : Union[str, Any] =share_encoder_decoder_embeddings super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , forced_eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) class A__ ( UpperCAmelCase__ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCAmelCase ( self :Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _a : Union[str, Any] =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _a : List[Any] ={0: """batch"""} _a : Union[str, Any] ={0: """batch""", 1: """past_decoder_sequence + sequence"""} else: _a : int ={0: """batch""", 1: """decoder_sequence"""} _a : List[str] ={0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. _a : Union[str, Any] =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: _a , _a : Dict =self.num_layers for i in range(SCREAMING_SNAKE_CASE ): _a : Dict ={0: """batch""", 2: """past_sequence + sequence"""} _a : Dict ={0: """batch""", 2: """past_sequence + sequence"""} else: _a : List[Any] =OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCAmelCase ( self :str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _a : Optional[int] =super().outputs else: _a : Tuple =super(SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: _a , _a : Tuple =self.num_layers for i in range(SCREAMING_SNAKE_CASE ): _a : Tuple ={0: """batch""", 2: """past_sequence + sequence"""} _a : Optional[int] ={0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :PreTrainedTokenizer , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _a : str =self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Generate decoder inputs _a : List[Any] =seq_length if not self.use_past else 1 _a : Union[str, Any] =self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : Dict ={f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} _a : str =dict(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _a , _a : Tuple =common_inputs["""input_ids"""].shape _a : Dict =common_inputs["""decoder_input_ids"""].shape[1] _a , _a : int =self.num_attention_heads _a : int =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a : Union[str, Any] =decoder_seq_length + 3 _a : List[str] =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a : Dict =torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] , dim=1 ) _a : str =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a : int =self.num_layers _a : Optional[Any] =min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _a : int =max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - min_num_layers _a : Any ="""encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. _a : List[Any] =encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) ) return common_inputs def __UpperCAmelCase ( self :int , SCREAMING_SNAKE_CASE :PreTrainedTokenizer , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _a : Any =self._generate_dummy_inputs_for_encoder_and_decoder( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _a , _a : Optional[Any] =common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _a : str =seqlen + 2 _a , _a : Any =self.num_layers _a , _a : Tuple =self.num_attention_heads _a : str =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a : Dict =common_inputs["""attention_mask"""].dtype _a : Optional[int] =torch.cat( [common_inputs["""attention_mask"""], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )] , dim=1 ) _a : Optional[int] =[ (torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) for _ in range(SCREAMING_SNAKE_CASE ) ] return common_inputs def __UpperCAmelCase ( self :Any , SCREAMING_SNAKE_CASE :PreTrainedTokenizer , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a : Optional[int] =compute_effective_axis_dimension( SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a : int =tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE ) _a : Optional[Any] =compute_effective_axis_dimension( SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence _a : int =[""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size _a : str =dict(tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE ) ) return common_inputs def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :PreTrainedTokenizer , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :int = -1 , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _a : Union[str, Any] =self._generate_dummy_inputs_for_default_and_seqaseq_lm( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) else: _a : List[str] =self._generate_dummy_inputs_for_causal_lm( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) return common_inputs def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Dict ) -> int: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _a : Any =super()._flatten_past_key_values_(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: _a : List[Any] =super(SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property def __UpperCAmelCase ( self :Union[str, Any] ) -> float: '''simple docstring''' return 1e-4
506
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": A__: List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : Any ) -> List[Any]: if string == "True": return True elif string == "False": return False else: raise ValueError(F"could not parse string as bool {string}" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) A__: Any = parser.parse_args() A__: Union[str, Any] = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
506
1
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: # Recurse if needed if "." in tensor_name: snake_case__ : Union[str, Any] = tensor_name.split(""".""" ) for split in splits[:-1]: snake_case__ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if new_module is None: raise ValueError(f"{module} has no attribute {split}." ) snake_case__ : Dict = new_module snake_case__ : Any = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}." ) snake_case__ : List[str] = tensor_name in module._buffers snake_case__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}." ) snake_case__ : str = False snake_case__ : Dict = False if is_buffer or not is_bitsandbytes_available(): snake_case__ : List[str] = False snake_case__ : Union[str, Any] = False else: snake_case__ : Any = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) snake_case__ : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: snake_case__ : Dict = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: snake_case__ : List[str] = old_value.to(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , torch.Tensor ): snake_case__ : int = value.to("""cpu""" ) if value.dtype == torch.inta: snake_case__ : Optional[Any] = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: snake_case__ : Optional[Any] = torch.tensor(_lowerCAmelCase , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _lowerCAmelCase ) and fpaa_statistics is None: snake_case__ : int = new_value.T snake_case__ : List[Any] = old_value.__dict__ if is_abit: snake_case__ : int = bnb.nn.IntaParams(_lowerCAmelCase , requires_grad=_lowerCAmelCase , **_lowerCAmelCase ).to(_lowerCAmelCase ) elif is_abit: snake_case__ : Any = bnb.nn.Paramsabit(_lowerCAmelCase , requires_grad=_lowerCAmelCase , **_lowerCAmelCase ).to(_lowerCAmelCase ) snake_case__ : Optional[int] = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(_lowerCAmelCase ) ) else: if value is None: snake_case__ : Optional[int] = old_value.to(_lowerCAmelCase ) elif isinstance(_lowerCAmelCase , torch.Tensor ): snake_case__ : Tuple = value.to(_lowerCAmelCase ) else: snake_case__ : List[Any] = torch.tensor(_lowerCAmelCase , device=_lowerCAmelCase ) if is_buffer: snake_case__ : Any = new_value else: snake_case__ : Tuple = nn.Parameter(_lowerCAmelCase , requires_grad=old_value.requires_grad ) snake_case__ : List[str] = new_value def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=False ) -> Union[str, Any]: for name, module in model.named_children(): if current_key_name is None: snake_case__ : Optional[int] = [] current_key_name.append(_lowerCAmelCase ) if (isinstance(_lowerCAmelCase , nn.Linear ) or isinstance(_lowerCAmelCase , _lowerCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(_lowerCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ , snake_case__ : Optional[Any] = module.weight.shape else: snake_case__ : Union[str, Any] = module.in_features snake_case__ : Optional[int] = module.out_features if quantization_config.quantization_method() == "llm_int8": snake_case__ : str = bnb.nn.LinearabitLt( _lowerCAmelCase , _lowerCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) snake_case__ : int = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: snake_case__ : Tuple = bnb.nn.Linearabit( _lowerCAmelCase , _lowerCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) snake_case__ : List[Any] = True # Store the module class in case we need to transpose the weight later snake_case__ : int = type(_lowerCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_lowerCAmelCase ) if len(list(module.children() ) ) > 0: snake_case__ , snake_case__ : Optional[int] = _replace_with_bnb_linear( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , has_been_replaced=_lowerCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __snake_case( _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> int: snake_case__ : Dict = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert snake_case__ , snake_case__ : Any = _replace_with_bnb_linear( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def __snake_case( *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , _lowerCAmelCase , ) return replace_with_bnb_linear(*_lowerCAmelCase , **_lowerCAmelCase ) def __snake_case( *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , _lowerCAmelCase , ) return set_module_quantized_tensor_to_device(*_lowerCAmelCase , **_lowerCAmelCase ) def __snake_case( _lowerCAmelCase ) -> List[Any]: snake_case__ : Dict = deepcopy(_lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() snake_case__ : str = find_tied_parameters(_lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case__ : Optional[Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: snake_case__ : Tuple = sum(_lowerCAmelCase , [] ) snake_case__ : Tuple = len(_lowerCAmelCase ) > 0 # Check if it is a base model snake_case__ : Tuple = not hasattr(_lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head snake_case__ : Tuple = list(model.named_children() ) snake_case__ : Optional[int] = [list_modules[-1][0]] # add last module together with tied weights snake_case__ : Any = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) snake_case__ : List[Any] = list(set(_lowerCAmelCase ) ) + list(_lowerCAmelCase ) # remove ".weight" from the keys snake_case__ : Any = [""".weight""", """.bias"""] snake_case__ : Union[str, Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: snake_case__ : Union[str, Any] = name.replace(_lowerCAmelCase , """""" ) filtered_module_names.append(_lowerCAmelCase ) return filtered_module_names
374
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __a = logging.getLogger(__name__) __a = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : """simple docstring""" lowercase = field( default=_a , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) lowercase = field( default=_a , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_a )} , ) lowercase = field( default=_a , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase = field( default=_a , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowercase = field( default=_a , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowercase = field( default=_a , metadata={"help": "The input training data file (a text file)."} ) lowercase = field( default=_a , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) lowercase = field( default=_a , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowercase = field( default=_a , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) lowercase = field( default=_a , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) lowercase = field( default=_a , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) lowercase = field( default=_a , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) lowercase = field(default=_a , metadata={"help": "Whether ot not to use whole word mask."} ) lowercase = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) lowercase = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) lowercase = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) lowercase = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) lowercase = field( default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Tuple: def _dataset(_lowerCAmelCase , _lowerCAmelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=_lowerCAmelCase , file_path=_lowerCAmelCase , block_size=args.block_size , ref_path=_lowerCAmelCase , ) return LineByLineTextDataset(tokenizer=_lowerCAmelCase , file_path=_lowerCAmelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=_lowerCAmelCase , file_path=_lowerCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_lowerCAmelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_lowerCAmelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __snake_case( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case__ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case__ , snake_case__ , snake_case__ : int = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , _lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: snake_case__ : Any = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: snake_case__ : Any = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: snake_case__ : Tuple = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: snake_case__ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: snake_case__ : str = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: snake_case__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_lowerCAmelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) snake_case__ : List[Any] = AutoModelWithLMHead.from_config(_lowerCAmelCase ) model.resize_token_embeddings(len(_lowerCAmelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: snake_case__ : List[Any] = tokenizer.max_len # Our input block size will be the max possible for the model else: snake_case__ : List[str] = min(data_args.block_size , tokenizer.max_len ) # Get datasets snake_case__ : int = ( get_dataset(_lowerCAmelCase , tokenizer=_lowerCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) snake_case__ : Any = ( get_dataset(_lowerCAmelCase , tokenizer=_lowerCAmelCase , evaluate=_lowerCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": snake_case__ : str = DataCollatorForPermutationLanguageModeling( tokenizer=_lowerCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: snake_case__ : List[str] = DataCollatorForWholeWordMask( tokenizer=_lowerCAmelCase , mlm_probability=data_args.mlm_probability ) else: snake_case__ : Optional[int] = DataCollatorForLanguageModeling( tokenizer=_lowerCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer snake_case__ : Optional[Any] = Trainer( model=_lowerCAmelCase , args=_lowerCAmelCase , data_collator=_lowerCAmelCase , train_dataset=_lowerCAmelCase , eval_dataset=_lowerCAmelCase , prediction_loss_only=_lowerCAmelCase , ) # Training if training_args.do_train: snake_case__ : Any = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_lowerCAmelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case__ : Union[str, Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) snake_case__ : Dict = trainer.evaluate() snake_case__ : Dict = math.exp(eval_output["""eval_loss"""] ) snake_case__ : str = {"""perplexity""": perplexity} snake_case__ : Any = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(_lowerCAmelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , _lowerCAmelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(_lowerCAmelCase ) return results def __snake_case( _lowerCAmelCase ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
374
1
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowerCAmelCase__ ( A_ ): def __init__( self : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple=None , _lowerCamelCase : str=True , _lowerCamelCase : Dict=None , **_lowerCamelCase : Any ): _snake_case = parent _snake_case = config_class _snake_case = has_text_modality _snake_case = kwargs _snake_case = common_properties def lowercase ( self : int ): _snake_case = self.config_class(**self.inputs_dict ) _snake_case = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=f'''`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: _snake_case = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=f'''`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def lowercase ( self : List[Any] ): _snake_case = self.config_class(**self.inputs_dict ) _snake_case = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def lowercase ( self : str ): _snake_case = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(_lowerCamelCase , '''config.json''' ) config_first.to_json_file(_lowerCamelCase ) _snake_case = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase ( self : Union[str, Any] ): _snake_case = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) _snake_case = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase ( self : Any ): _snake_case = self.config_class(**self.inputs_dict ) _snake_case = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) _snake_case = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase ( self : str ): _snake_case = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _snake_case = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def lowercase ( self : Optional[int] ): if self.config_class.is_composition: return _snake_case = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def lowercase ( self : Union[str, Any] ): _snake_case = copy.deepcopy(_lowerCamelCase ) _snake_case = self.config_class(**_lowerCamelCase ) _snake_case = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: _snake_case = '''\n'''.join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def lowercase ( self : List[Any] ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
430
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : int ) -> str: _snake_case = int(__lowerCamelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(__lowerCamelCase ) _snake_case , _snake_case = divmod(__lowerCamelCase , 2 ) return binary_recursive(__lowerCamelCase ) + str(__lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : str ) -> str: _snake_case = str(__lowerCamelCase ).strip() if not number: raise ValueError('''No input value was provided''' ) _snake_case = '''-''' if number.startswith('''-''' ) else '''''' _snake_case = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f'''{negative}0b{binary_recursive(int(__lowerCamelCase ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
430
1
from __future__ import annotations import math class A__ : def __init__( self , __magic_name__ ): lowerCamelCase : str = size # approximate the overall size of segment tree with given value lowerCamelCase : Dict = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowerCamelCase : Dict = [0 for i in range(0 , 4 * size )] lowerCamelCase : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def UpperCamelCase__ ( self , __magic_name__ ): return idx * 2 def UpperCamelCase__ ( self , __magic_name__ ): return idx * 2 + 1 def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if left_element == right_element: lowerCamelCase : Optional[int] = a[left_element - 1] else: lowerCamelCase : Tuple = (left_element + right_element) // 2 self.build(self.left(__magic_name__ ) , __magic_name__ , __magic_name__ , __magic_name__ ) self.build(self.right(__magic_name__ ) , mid + 1 , __magic_name__ , __magic_name__ ) lowerCamelCase : Dict = max( self.segment_tree[self.left(__magic_name__ )] , self.segment_tree[self.right(__magic_name__ )] ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if self.flag[idx] is True: lowerCamelCase : Union[str, Any] = self.lazy[idx] lowerCamelCase : str = False if left_element != right_element: lowerCamelCase : List[str] = self.lazy[idx] lowerCamelCase : Optional[int] = self.lazy[idx] lowerCamelCase : str = True lowerCamelCase : Tuple = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowerCamelCase : int = val if left_element != right_element: lowerCamelCase : Union[str, Any] = val lowerCamelCase : List[Any] = val lowerCamelCase : List[str] = True lowerCamelCase : Optional[int] = True return True lowerCamelCase : Any = (left_element + right_element) // 2 self.update(self.left(__magic_name__ ) , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) self.update(self.right(__magic_name__ ) , mid + 1 , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowerCamelCase : List[str] = max( self.segment_tree[self.left(__magic_name__ )] , self.segment_tree[self.right(__magic_name__ )] ) return True def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): if self.flag[idx] is True: lowerCamelCase : str = self.lazy[idx] lowerCamelCase : List[Any] = False if left_element != right_element: lowerCamelCase : Any = self.lazy[idx] lowerCamelCase : Any = self.lazy[idx] lowerCamelCase : Union[str, Any] = True lowerCamelCase : Tuple = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowerCamelCase : List[str] = (left_element + right_element) // 2 lowerCamelCase : Union[str, Any] = self.query(self.left(__magic_name__ ) , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowerCamelCase : Optional[int] = self.query(self.right(__magic_name__ ) , mid + 1 , __magic_name__ , __magic_name__ , __magic_name__ ) return max(__magic_name__ , __magic_name__ ) def __str__( self ): return str([self.query(1 , 1 , self.size , __magic_name__ , __magic_name__ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _lowerCamelCase =[1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] _lowerCamelCase =1_5 _lowerCamelCase =SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
681
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def _a ( lowerCamelCase ): # vision encoder if "img_encoder.pos_embed" in name: lowerCamelCase : Tuple = name.replace("""img_encoder.pos_embed""", """vision_model.embeddings.position_embeddings""" ) if "img_encoder.patch_embed.proj" in name: lowerCamelCase : Union[str, Any] = name.replace("""img_encoder.patch_embed.proj""", """vision_model.embeddings.patch_embeddings.projection""" ) if "img_encoder.patch_embed.norm" in name: lowerCamelCase : Optional[int] = name.replace("""img_encoder.patch_embed.norm""", """vision_model.embeddings.layernorm""" ) if "img_encoder.layers" in name: lowerCamelCase : List[str] = name.replace("""img_encoder.layers""", """vision_model.encoder.stages""" ) if "blocks" in name and "res" not in name: lowerCamelCase : List[Any] = name.replace("""blocks""", """layers""" ) if "attn" in name and "pre_assign" not in name: lowerCamelCase : Optional[int] = name.replace("""attn""", """self_attn""" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCamelCase : Optional[int] = name.replace("""proj""", """out_proj""" ) if "pre_assign_attn.attn.proj" in name: lowerCamelCase : Any = name.replace("""pre_assign_attn.attn.proj""", """pre_assign_attn.attn.out_proj""" ) if "norm1" in name: lowerCamelCase : Optional[Any] = name.replace("""norm1""", """layer_norm1""" ) if "norm2" in name and "pre_assign" not in name: lowerCamelCase : Union[str, Any] = name.replace("""norm2""", """layer_norm2""" ) if "img_encoder.norm" in name: lowerCamelCase : Optional[int] = name.replace("""img_encoder.norm""", """vision_model.layernorm""" ) # text encoder if "text_encoder.token_embedding" in name: lowerCamelCase : int = name.replace("""text_encoder.token_embedding""", """text_model.embeddings.token_embedding""" ) if "text_encoder.positional_embedding" in name: lowerCamelCase : Optional[Any] = name.replace("""text_encoder.positional_embedding""", """text_model.embeddings.position_embedding.weight""" ) if "text_encoder.transformer.resblocks." in name: lowerCamelCase : Optional[Any] = name.replace("""text_encoder.transformer.resblocks.""", """text_model.encoder.layers.""" ) if "ln_1" in name: lowerCamelCase : Optional[Any] = name.replace("""ln_1""", """layer_norm1""" ) if "ln_2" in name: lowerCamelCase : str = name.replace("""ln_2""", """layer_norm2""" ) if "c_fc" in name: lowerCamelCase : Any = name.replace("""c_fc""", """fc1""" ) if "c_proj" in name: lowerCamelCase : Tuple = name.replace("""c_proj""", """fc2""" ) if "text_encoder" in name: lowerCamelCase : List[str] = name.replace("""text_encoder""", """text_model""" ) if "ln_final" in name: lowerCamelCase : Tuple = name.replace("""ln_final""", """final_layer_norm""" ) # projection layers if "img_projector.linear_hidden." in name: lowerCamelCase : Optional[int] = name.replace("""img_projector.linear_hidden.""", """visual_projection.""" ) if "img_projector.linear_out." in name: lowerCamelCase : Tuple = name.replace("""img_projector.linear_out.""", """visual_projection.3.""" ) if "text_projector.linear_hidden" in name: lowerCamelCase : Tuple = name.replace("""text_projector.linear_hidden""", """text_projection""" ) if "text_projector.linear_out" in name: lowerCamelCase : Tuple = name.replace("""text_projector.linear_out""", """text_projection.3""" ) return name def _a ( lowerCamelCase, lowerCamelCase ): for key in orig_state_dict.copy().keys(): lowerCamelCase : Tuple = orig_state_dict.pop(lowerCamelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase : Any = key.split(""".""" ) lowerCamelCase , lowerCamelCase : Optional[Any] = int(key_split[2] ), int(key_split[4] ) lowerCamelCase : List[Any] = config.vision_config.hidden_size if "weight" in key: lowerCamelCase : int = val[:dim, :] lowerCamelCase : List[str] = val[dim : dim * 2, :] lowerCamelCase : Dict = val[-dim:, :] else: lowerCamelCase : List[Any] = val[:dim] lowerCamelCase : List[Any] = val[dim : dim * 2] lowerCamelCase : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase : str = key.split(""".""" ) lowerCamelCase : Optional[int] = int(key_split[3] ) lowerCamelCase : List[str] = config.text_config.hidden_size if "weight" in key: lowerCamelCase : Optional[int] = val[:dim, :] lowerCamelCase : Any = val[ dim : dim * 2, : ] lowerCamelCase : Optional[Any] = val[-dim:, :] else: lowerCamelCase : Union[str, Any] = val[:dim] lowerCamelCase : Optional[int] = val[dim : dim * 2] lowerCamelCase : Union[str, Any] = val[-dim:] else: lowerCamelCase : List[Any] = rename_key(lowerCamelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCamelCase : Any = val.squeeze_() else: lowerCamelCase : Union[str, Any] = val return orig_state_dict def _a ( ): lowerCamelCase : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase : List[str] = Image.open(requests.get(lowerCamelCase, stream=lowerCamelCase ).raw ) return im @torch.no_grad() def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase="groupvit-gcc-yfcc", lowerCamelCase=False ): lowerCamelCase : int = GroupViTConfig() lowerCamelCase : Dict = GroupViTModel(lowerCamelCase ).eval() lowerCamelCase : Optional[int] = torch.load(lowerCamelCase, map_location="""cpu""" )["""model"""] lowerCamelCase : Tuple = convert_state_dict(lowerCamelCase, lowerCamelCase ) lowerCamelCase , lowerCamelCase : Tuple = model.load_state_dict(lowerCamelCase, strict=lowerCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowerCamelCase ) == 0) # verify result lowerCamelCase : int = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) lowerCamelCase : int = prepare_img() lowerCamelCase : int = processor(text=["""a photo of a cat""", """a photo of a dog"""], images=lowerCamelCase, padding=lowerCamelCase, return_tensors="""pt""" ) with torch.no_grad(): lowerCamelCase : int = model(**lowerCamelCase ) if model_name == "groupvit-gcc-yfcc": lowerCamelCase : Any = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": lowerCamelCase : Any = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image, lowerCamelCase, atol=1e-3 ) processor.save_pretrained(lowerCamelCase ) model.save_pretrained(lowerCamelCase ) print("""Successfully saved processor and model to""", lowerCamelCase ) if push_to_hub: print("""Pushing to the hub...""" ) processor.push_to_hub(lowerCamelCase, organization="""nielsr""" ) model.push_to_hub(lowerCamelCase, organization="""nielsr""" ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model.""" ) parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""") parser.add_argument( """--model_name""", default="""groupvit-gccy-fcc""", type=str, help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""", ) _lowerCamelCase =parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
681
1
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : List[str] =logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] ={ '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class __A ( snake_case__ ): __A = '''conditional_detr''' __A = ['''past_key_values'''] __A = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , UpperCAmelCase_=True , UpperCAmelCase_=None , UpperCAmelCase_=3 , UpperCAmelCase_=300 , UpperCAmelCase_=6 , UpperCAmelCase_=2048 , UpperCAmelCase_=8 , UpperCAmelCase_=6 , UpperCAmelCase_=2048 , UpperCAmelCase_=8 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=True , UpperCAmelCase_="relu" , UpperCAmelCase_=256 , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0_2 , UpperCAmelCase_=1.0 , UpperCAmelCase_=False , UpperCAmelCase_="sine" , UpperCAmelCase_="resnet50" , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_=2 , UpperCAmelCase_=5 , UpperCAmelCase_=2 , UpperCAmelCase_=1 , UpperCAmelCase_=1 , UpperCAmelCase_=2 , UpperCAmelCase_=5 , UpperCAmelCase_=2 , UpperCAmelCase_=0.2_5 , **UpperCAmelCase_ , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can\'t specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCamelCase =CONFIG_MAPPING['resnet'](out_features=["""stage4"""] ) elif isinstance(_A , _A ): lowerCamelCase =backbone_config.get("""model_type""" ) lowerCamelCase =CONFIG_MAPPING[backbone_model_type] lowerCamelCase =config_class.from_dict(_A ) lowerCamelCase =use_timm_backbone lowerCamelCase =backbone_config lowerCamelCase =num_channels lowerCamelCase =num_queries lowerCamelCase =d_model lowerCamelCase =encoder_ffn_dim lowerCamelCase =encoder_layers lowerCamelCase =encoder_attention_heads lowerCamelCase =decoder_ffn_dim lowerCamelCase =decoder_layers lowerCamelCase =decoder_attention_heads lowerCamelCase =dropout lowerCamelCase =attention_dropout lowerCamelCase =activation_dropout lowerCamelCase =activation_function lowerCamelCase =init_std lowerCamelCase =init_xavier_std lowerCamelCase =encoder_layerdrop lowerCamelCase =decoder_layerdrop lowerCamelCase =encoder_layers lowerCamelCase =auxiliary_loss lowerCamelCase =position_embedding_type lowerCamelCase =backbone lowerCamelCase =use_pretrained_backbone lowerCamelCase =dilation # Hungarian matcher lowerCamelCase =class_cost lowerCamelCase =bbox_cost lowerCamelCase =giou_cost # Loss coefficients lowerCamelCase =mask_loss_coefficient lowerCamelCase =dice_loss_coefficient lowerCamelCase =cls_loss_coefficient lowerCamelCase =bbox_loss_coefficient lowerCamelCase =giou_loss_coefficient lowerCamelCase =focal_alpha super().__init__(is_encoder_decoder=_A , **_A ) @property def _snake_case ( self ): return self.encoder_attention_heads @property def _snake_case ( self ): return self.d_model def _snake_case ( self ): lowerCamelCase =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCamelCase =self.backbone_config.to_dict() lowerCamelCase =self.__class__.model_type return output class __A ( snake_case__ ): __A = version.parse("""1.11""" ) @property def _snake_case ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ): return 1E-5 @property def _snake_case ( self ): return 12
711
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCAmelCase__ : int =logging.get_logger(__name__) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: lowerCamelCase =UniSpeechSatForSequenceClassification.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase ) lowerCamelCase =downstream_dict["""projector.weight"""] lowerCamelCase =downstream_dict["""projector.bias"""] lowerCamelCase =downstream_dict["""model.post_net.linear.weight"""] lowerCamelCase =downstream_dict["""model.post_net.linear.bias"""] return model def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: lowerCamelCase =UniSpeechSatForAudioFrameClassification.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase ) lowerCamelCase =downstream_dict["""model.linear.weight"""] lowerCamelCase =downstream_dict["""model.linear.bias"""] return model def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: lowerCamelCase =UniSpeechSatForXVector.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase ) lowerCamelCase =downstream_dict["""connector.weight"""] lowerCamelCase =downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowerCamelCase =downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] lowerCamelCase =downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] lowerCamelCase =downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] lowerCamelCase =downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] lowerCamelCase =downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] lowerCamelCase =downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] lowerCamelCase =downstream_dict["""objective.W"""] return model @torch.no_grad() def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: lowerCamelCase =torch.load(_UpperCAmelCase , map_location="""cpu""" ) lowerCamelCase =checkpoint["""Downstream"""] lowerCamelCase =UniSpeechSatConfig.from_pretrained(_UpperCAmelCase ) lowerCamelCase =WavaVecaFeatureExtractor.from_pretrained( _UpperCAmelCase , return_attention_mask=_UpperCAmelCase , do_normalize=_UpperCAmelCase ) lowerCamelCase =hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): lowerCamelCase =convert_classification(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) elif arch.endswith("""ForAudioFrameClassification""" ): lowerCamelCase =convert_diarization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) elif arch.endswith("""ForXVector""" ): lowerCamelCase =convert_xvector(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: lowerCamelCase =checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(_UpperCAmelCase ) hf_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ : Dict =argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') UpperCAmelCase__ : List[Any] =parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
269
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
80
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase : Tuple = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCamelCase : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase : List[Any] = re.compile(r"\[(.+?)\]\((https://huggingface\.co/.+?)\)") lowerCamelCase : str = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =None # source code of `config_class` _SCREAMING_SNAKE_CASE =inspect.getsource(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =_re_checkpoint.findall(_UpperCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): _SCREAMING_SNAKE_CASE =ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _SCREAMING_SNAKE_CASE =f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: _SCREAMING_SNAKE_CASE =ckpt_name break return checkpoint def _lowerCAmelCase ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _SCREAMING_SNAKE_CASE =get_checkpoint_from_config_class(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: _SCREAMING_SNAKE_CASE ='\n'.join(sorted(_UpperCamelCase ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
405
0
import os import sys __SCREAMING_SNAKE_CASE : int = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> Union[str, Any]: '''simple docstring''' return AutoConfig.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> str: '''simple docstring''' return AutoTokenizer.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModel.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> List[str]: '''simple docstring''' return AutoModel.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> int: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> str: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> Any: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def snake_case (*__lowercase , **__lowercase ) -> Tuple: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*__lowercase , **__lowercase )
580
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def snake_case (__lowercase , __lowercase=False ) -> List[Any]: '''simple docstring''' try: _snake_case : str = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: _snake_case : Optional[Any] = strtobool(__lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __SCREAMING_SNAKE_CASE : List[str] = parse_flag_from_env('RUN_SLOW', default=False) def snake_case (__lowercase ) -> Union[str, Any]: '''simple docstring''' return unittest.skip("Test was skipped" )(__lowercase ) def snake_case (__lowercase ) -> Tuple: '''simple docstring''' return unittest.skipUnless(_run_slow_tests , "test is slow" )(__lowercase ) def snake_case (__lowercase ) -> str: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(__lowercase ) def snake_case (__lowercase ) -> Any: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(__lowercase ) def snake_case (__lowercase ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(__lowercase ) def snake_case (__lowercase ) -> int: '''simple docstring''' return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(__lowercase ) def snake_case (__lowercase ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(__lowercase ) def snake_case (__lowercase ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(__lowercase ) def snake_case (__lowercase ) -> str: '''simple docstring''' return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(__lowercase ) def snake_case (__lowercase ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(__lowercase ) def snake_case (__lowercase ) -> int: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(__lowercase ) def snake_case (__lowercase ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(__lowercase ) def snake_case (__lowercase ) -> List[str]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(__lowercase ) def snake_case (__lowercase ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(__lowercase ) def snake_case (__lowercase ) -> Optional[int]: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(__lowercase ) def snake_case (__lowercase ) -> List[str]: '''simple docstring''' return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(__lowercase ) def snake_case (__lowercase=None , __lowercase=None ) -> int: '''simple docstring''' if test_case is None: return partial(__lowercase , version=__lowercase ) return unittest.skipUnless(is_torch_version(">=" , __lowercase ) , F"""test requires torch version >= {version}""" )(__lowercase ) def snake_case (__lowercase ) -> List[Any]: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(__lowercase ) def snake_case (__lowercase ) -> Any: '''simple docstring''' return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(__lowercase ) def snake_case (__lowercase ) -> Dict: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(__lowercase ) __SCREAMING_SNAKE_CASE : Any = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def snake_case (__lowercase ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(__lowercase ) class lowercase_ ( unittest.TestCase ): _lowerCamelCase = True @classmethod def UpperCamelCase ( cls ): _snake_case : List[str] = tempfile.mkdtemp() @classmethod def UpperCamelCase ( cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def UpperCamelCase ( self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowercase_ ) class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self , lowercase_ ): _snake_case : int = mocks if isinstance(lowercase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def snake_case (__lowercase ) -> List[Any]: '''simple docstring''' _snake_case : Tuple = AcceleratorState() _snake_case : str = tensor[None].clone().to(state.device ) _snake_case : List[str] = gather(__lowercase ).cpu() _snake_case : Union[str, Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __lowercase ): return False return True class lowercase_ : def __init__( self , lowercase_ , lowercase_ , lowercase_ ): _snake_case : Any = returncode _snake_case : List[str] = stdout _snake_case : Tuple = stderr async def snake_case (__lowercase , __lowercase ) -> Tuple: '''simple docstring''' while True: _snake_case : Any = await stream.readline() if line: callback(__lowercase ) else: break async def snake_case (__lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=False , __lowercase=False ) -> _RunOutput: '''simple docstring''' if echo: print("\nRunning: " , " ".join(__lowercase ) ) _snake_case : List[str] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__lowercase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__lowercase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _snake_case : int = [] _snake_case : List[str] = [] def tee(__lowercase , __lowercase , __lowercase , __lowercase="" ): _snake_case : Union[str, Any] = line.decode("utf-8" ).rstrip() sink.append(__lowercase ) if not quiet: print(__lowercase , __lowercase , file=__lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __lowercase : tee(__lowercase , __lowercase , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __lowercase : tee(__lowercase , __lowercase , sys.stderr , label="stderr:" ) ) ), ] , timeout=__lowercase , ) return _RunOutput(await p.wait() , __lowercase , __lowercase ) def snake_case (__lowercase , __lowercase=None , __lowercase=None , __lowercase=180 , __lowercase=False , __lowercase=True ) -> _RunOutput: '''simple docstring''' _snake_case : str = asyncio.get_event_loop() _snake_case : Any = loop.run_until_complete( _stream_subprocess(__lowercase , env=__lowercase , stdin=__lowercase , timeout=__lowercase , quiet=__lowercase , echo=__lowercase ) ) _snake_case : Tuple = " ".join(__lowercase ) if result.returncode > 0: _snake_case : List[Any] = "\n".join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class lowercase_ ( __snake_case ): pass def snake_case (__lowercase , __lowercase=False ) -> int: '''simple docstring''' try: _snake_case : int = subprocess.check_output(__lowercase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__lowercase , "decode" ): _snake_case : Dict = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{' '.join(__lowercase )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
580
1
"""simple docstring""" def lowercase ( __UpperCamelCase = 50 ) -> int: __magic_name__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
490
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = ['''pixel_values'''] def __init__( self , A = True , A = None , A = None , A = PILImageResampling.BILINEAR , A = True , A = 1 / 255 , A = True , A = None , A = None , **A , ) -> None: super().__init__(**A ) _SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 384} _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size # Default value set here for backwards compatibility where the value in config is None _SCREAMING_SNAKE_CASE = crop_pct if crop_pct is not None else 224 / 256 _SCREAMING_SNAKE_CASE = resample _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case_( self , A , A , A , A = PILImageResampling.BICUBIC , A = None , **A , ) -> np.ndarray: _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) if "shortest_edge" not in size: raise ValueError(f'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) _SCREAMING_SNAKE_CASE = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _SCREAMING_SNAKE_CASE = int(shortest_edge / crop_pct ) _SCREAMING_SNAKE_CASE = get_resize_output_image_size(A , size=A , default_to_square=A ) _SCREAMING_SNAKE_CASE = resize(image=A , size=A , resample=A , data_format=A , **A ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=A , size=(shortest_edge, shortest_edge) , data_format=A , **A ) else: # warping (no cropping) when evaluated at 384 or larger return resize( A , size=(shortest_edge, shortest_edge) , resample=A , data_format=A , **A ) def snake_case_( self , A , A , A = None , **A , ) -> List[str]: return rescale(A , scale=A , data_format=A , **A ) def snake_case_( self , A , A , A , A = None , **A , ) -> np.ndarray: return normalize(A , mean=A , std=A , data_format=A , **A ) def snake_case_( self , A , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = None , A = ChannelDimension.FIRST , **A , ) -> PIL.Image.Image: _SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize _SCREAMING_SNAKE_CASE = crop_pct if crop_pct is not None else self.crop_pct _SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample _SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale _SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor _SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize _SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean _SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std _SCREAMING_SNAKE_CASE = size if size is not None else self.size _SCREAMING_SNAKE_CASE = get_size_dict(A , default_to_square=A ) _SCREAMING_SNAKE_CASE = make_list_of_images(A ) if not valid_images(A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _SCREAMING_SNAKE_CASE = [to_numpy_array(A ) for image in images] if do_resize: _SCREAMING_SNAKE_CASE = [self.resize(image=A , size=A , crop_pct=A , resample=A ) for image in images] if do_rescale: _SCREAMING_SNAKE_CASE = [self.rescale(image=A , scale=A ) for image in images] if do_normalize: _SCREAMING_SNAKE_CASE = [self.normalize(image=A , mean=A , std=A ) for image in images] _SCREAMING_SNAKE_CASE = [to_channel_dimension_format(A , A ) for image in images] _SCREAMING_SNAKE_CASE = {"""pixel_values""": images} return BatchFeature(data=A , tensor_type=A )
314
0
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu snake_case_ : Union[str, Any] = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: snake_case_ : List[str] = json.load(f) @require_torch class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : int , _a : Tuple ) -> Tuple: """simple docstring""" return FSMTTokenizer.from_pretrained(_a ) def __UpperCamelCase ( self : int , _a : Dict ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =FSMTForConditionalGeneration.from_pretrained(_a ).to(_a ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['''en-ru''', 26.0], ['''ru-en''', 22.0], ['''en-de''', 22.0], ['''de-en''', 29.0], ] ) @slow def __UpperCamelCase ( self : Tuple , _a : Any , _a : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =f"facebook/wmt19-{pair}" _SCREAMING_SNAKE_CASE =self.get_tokenizer(_a ) _SCREAMING_SNAKE_CASE =self.get_model(_a ) _SCREAMING_SNAKE_CASE =bleu_data[pair]['''src'''] _SCREAMING_SNAKE_CASE =bleu_data[pair]['''tgt'''] _SCREAMING_SNAKE_CASE =tokenizer(_a , return_tensors='''pt''' , truncation=_a , padding='''longest''' ).to(_a ) _SCREAMING_SNAKE_CASE =model.generate( input_ids=batch.input_ids , num_beams=8 , ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) _SCREAMING_SNAKE_CASE =calculate_bleu(_a , _a ) print(_a ) self.assertGreaterEqual(scores['''bleu'''] , _a )
191
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = LxmertTokenizer UpperCAmelCase = LxmertTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" super().setUp() _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCamelCase ( self : List[str] , _a : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''UNwant\u00E9d,running''' _SCREAMING_SNAKE_CASE ='''unwanted, running''' return input_text, output_text def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE =tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 10, 8, 9] ) def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE ='''I was born in 92000, and this is falsé.''' _SCREAMING_SNAKE_CASE =tokenizer.tokenize(_a ) _SCREAMING_SNAKE_CASE =rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _SCREAMING_SNAKE_CASE =tokenizer.encode(_a , add_special_tokens=_a ) _SCREAMING_SNAKE_CASE =rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE =tokenizer.encode(_a ) _SCREAMING_SNAKE_CASE =rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
191
1
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ArgumentParser('Transformers CLI tool' ,usage='transformers-cli <command> [<args>]' ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.add_subparsers(help='transformers-cli command helpers' ) # Register commands ConvertCommand.register_subcommand(__UpperCamelCase ) DownloadCommand.register_subcommand(__UpperCamelCase ) EnvironmentCommand.register_subcommand(__UpperCamelCase ) RunCommand.register_subcommand(__UpperCamelCase ) ServeCommand.register_subcommand(__UpperCamelCase ) UserCommands.register_subcommand(__UpperCamelCase ) AddNewModelCommand.register_subcommand(__UpperCamelCase ) AddNewModelLikeCommand.register_subcommand(__UpperCamelCase ) LfsCommands.register_subcommand(__UpperCamelCase ) PTtoTFCommand.register_subcommand(__UpperCamelCase ) # Let's go SCREAMING_SNAKE_CASE : int = parser.parse_args() if not hasattr(__UpperCamelCase ,'func' ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE : List[str] = args.func(__UpperCamelCase ) service.run() if __name__ == "__main__": main()
28
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 UpperCamelCase_ = get_tests_dir("fixtures") class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = mock.Mock() SCREAMING_SNAKE_CASE : List[Any] = 500 SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : Any = HTTPError SCREAMING_SNAKE_CASE : Any = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=A ) as mock_head: SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def UpperCamelCase_ ( self ): '''simple docstring''' with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder SCREAMING_SNAKE_CASE : str = AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants', subfolder='feature_extractor' ) self.assertIsNotNone(A ) @is_staging_test class _a ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TOKEN HfFolder.save_token(A ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-image-processor' ) except HTTPError: pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : int = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='test-image-processor', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor.from_pretrained(F"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('valid_org/test-image-processor', use_auth_token=self._token ) SCREAMING_SNAKE_CASE : str = ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A, repo_id='valid_org/test-image-processor-org', push_to_hub=A, use_auth_token=self._token ) SCREAMING_SNAKE_CASE : Dict = ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A, getattr(A, A ) ) def UpperCamelCase_ ( self ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() SCREAMING_SNAKE_CASE : Tuple = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub('test-dynamic-image-processor', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map, {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'}, ) SCREAMING_SNAKE_CASE : Optional[int] = AutoImageProcessor.from_pretrained( F"{USER}/test-dynamic-image-processor", trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__, 'CustomImageProcessor' )
28
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( _a ): UpperCAmelCase__ : Optional[Any] = (PNDMScheduler,) UpperCAmelCase__ : Optional[int] = (("""num_inference_steps""", 50),) def UpperCAmelCase(self : str , **_A : Dict ) -> Optional[int]: snake_case = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**snake_case_ ) return config def UpperCAmelCase(self : str , _A : Optional[Any]=0 , **_A : Optional[Any] ) -> int: snake_case = dict(self.forward_default_kwargs ) snake_case = kwargs.pop("num_inference_steps" , snake_case_ ) snake_case = self.dummy_sample snake_case = 0.1 * sample snake_case = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case = self.get_scheduler_config(**snake_case_ ) snake_case = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals snake_case = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) snake_case = scheduler_class.from_pretrained(snake_case_ ) new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals snake_case = dummy_past_residuals[:] snake_case = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample snake_case = new_scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case = scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample snake_case = new_scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase(self : List[str] ) -> Optional[Any]: pass def UpperCAmelCase(self : Union[str, Any] , _A : int=0 , **_A : Union[str, Any] ) -> List[str]: snake_case = dict(self.forward_default_kwargs ) snake_case = kwargs.pop("num_inference_steps" , snake_case_ ) snake_case = self.dummy_sample snake_case = 0.1 * sample snake_case = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case = self.get_scheduler_config() snake_case = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals (must be after setting timesteps) snake_case = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) snake_case = scheduler_class.from_pretrained(snake_case_ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residual (must be after setting timesteps) snake_case = dummy_past_residuals[:] snake_case = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample snake_case = new_scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" snake_case = scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample snake_case = new_scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCAmelCase(self : Tuple , **_A : Optional[int] ) -> Union[str, Any]: snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config(**snake_case_ ) snake_case = scheduler_class(**snake_case_ ) snake_case = 1_0 snake_case = self.dummy_model() snake_case = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.prk_timesteps ): snake_case = model(snake_case_ , snake_case_ ) snake_case = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): snake_case = model(snake_case_ , snake_case_ ) snake_case = scheduler.step_plms(snake_case_ , snake_case_ , snake_case_ ).prev_sample return sample def UpperCAmelCase(self : Tuple ) -> Union[str, Any]: snake_case = dict(self.forward_default_kwargs ) snake_case = kwargs.pop("num_inference_steps" , snake_case_ ) for scheduler_class in self.scheduler_classes: snake_case = self.get_scheduler_config() snake_case = scheduler_class(**snake_case_ ) snake_case = self.dummy_sample snake_case = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case_ , "set_timesteps" ): scheduler.set_timesteps(snake_case_ ) elif num_inference_steps is not None and not hasattr(snake_case_ , "set_timesteps" ): snake_case = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case = dummy_past_residuals[:] snake_case = scheduler.step_prk(snake_case_ , 0 , snake_case_ , **snake_case_ ).prev_sample snake_case = scheduler.step_prk(snake_case_ , 1 , snake_case_ , **snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) snake_case = scheduler.step_plms(snake_case_ , 0 , snake_case_ , **snake_case_ ).prev_sample snake_case = scheduler.step_plms(snake_case_ , 1 , snake_case_ , **snake_case_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase(self : str ) -> Dict: for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def UpperCAmelCase(self : Dict ) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=snake_case_ ) snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config(steps_offset=1 ) snake_case = scheduler_class(**snake_case_ ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def UpperCAmelCase(self : Tuple ) -> Optional[Any]: for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def UpperCAmelCase(self : str ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case_ ) def UpperCAmelCase(self : List[str] ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def UpperCAmelCase(self : Dict ) -> Union[str, Any]: for t in [1, 5, 1_0]: self.check_over_forward(time_step=snake_case_ ) def UpperCAmelCase(self : str ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=snake_case_ ) def UpperCAmelCase(self : Any ) -> Optional[int]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 snake_case = 2_7 for scheduler_class in self.scheduler_classes: snake_case = self.dummy_sample snake_case = 0.1 * sample snake_case = self.get_scheduler_config() snake_case = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): snake_case = scheduler.step_prk(snake_case_ , snake_case_ , snake_case_ ).prev_sample def UpperCAmelCase(self : str ) -> List[str]: with self.assertRaises(snake_case_ ): snake_case = self.scheduler_classes[0] snake_case = self.get_scheduler_config() snake_case = scheduler_class(**snake_case_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCAmelCase(self : Union[str, Any] ) -> Dict: snake_case = self.full_loop() snake_case = torch.sum(torch.abs(snake_case_ ) ) snake_case = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCAmelCase(self : Tuple ) -> Optional[Any]: snake_case = self.full_loop(prediction_type="v_prediction" ) snake_case = torch.sum(torch.abs(snake_case_ ) ) snake_case = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCAmelCase(self : Union[str, Any] ) -> List[str]: # We specify different beta, so that the first alpha is 0.99 snake_case = self.full_loop(set_alpha_to_one=snake_case_ , beta_start=0.01 ) snake_case = torch.sum(torch.abs(snake_case_ ) ) snake_case = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCAmelCase(self : Tuple ) -> Union[str, Any]: # We specify different beta, so that the first alpha is 0.99 snake_case = self.full_loop(set_alpha_to_one=snake_case_ , beta_start=0.01 ) snake_case = torch.sum(torch.abs(snake_case_ ) ) snake_case = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
720
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( A_ , unittest.TestCase ): UpperCAmelCase__ : str = PhobertTokenizer UpperCAmelCase__ : List[Any] = False def UpperCAmelCase(self : Union[str, Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case = ["T@@", "i", "I", "R@@", "r", "e@@"] snake_case = dict(zip(_A , range(len(_A ) ) ) ) snake_case = ["#version: 0.2", "l à</w>"] snake_case = {"unk_token": "<unk>"} snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_A ) ) def UpperCAmelCase(self : Optional[int] , **_A : Optional[int] ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase(self : Tuple , _A : Optional[Any] ) -> str: snake_case = "Tôi là VinAI Research" snake_case = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCAmelCase(self : Any ) -> Union[str, Any]: snake_case = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case = "Tôi là VinAI Research" snake_case = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() snake_case = tokenizer.tokenize(_A ) print(_A ) self.assertListEqual(_A , _A ) snake_case = tokens + [tokenizer.unk_token] snake_case = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
294
0
"""simple docstring""" from math import isclose, sqrt def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = point_y / 4 / point_x _UpperCAmelCase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _UpperCAmelCase = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _UpperCAmelCase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _UpperCAmelCase = outgoing_gradient**2 + 4 _UpperCAmelCase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _UpperCAmelCase = (point_y - outgoing_gradient * point_x) ** 2 - 1_00 _UpperCAmelCase = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _UpperCAmelCase = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _UpperCAmelCase = x_minus if isclose(lowercase ,lowercase ) else x_plus _UpperCAmelCase = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __UpperCAmelCase ( lowercase = 1.4 ,lowercase = -9.6 ): """simple docstring""" _UpperCAmelCase = 0 _UpperCAmelCase = first_x_coord _UpperCAmelCase = first_y_coord _UpperCAmelCase = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = next_point(lowercase ,lowercase ,lowercase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F'''{solution() = }''')
277
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class a ( lowerCAmelCase_ ): _snake_case : Dict = CustomTokenizer pass
277
1
'''simple docstring''' def __lowercase (_SCREAMING_SNAKE_CASE :list ): def merge(_SCREAMING_SNAKE_CASE :list , _SCREAMING_SNAKE_CASE :list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_SCREAMING_SNAKE_CASE ) <= 1: return collection SCREAMING_SNAKE_CASE : Optional[Any] = len(_SCREAMING_SNAKE_CASE ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ = input("""Enter numbers separated by a comma:\n""").strip() snake_case_ = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
355
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __lowercase (_SCREAMING_SNAKE_CASE :List[Any] ): return x + 2 class a__ ( unittest.TestCase ): def lowercase__ (self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = '''x = 3''' SCREAMING_SNAKE_CASE : Dict = {} SCREAMING_SNAKE_CASE : Any = evaluate(__UpperCAmelCase, {}, state=__UpperCAmelCase ) assert result == 3 self.assertDictEqual(__UpperCAmelCase, {'''x''': 3} ) SCREAMING_SNAKE_CASE : str = '''x = y''' SCREAMING_SNAKE_CASE : int = {'''y''': 5} SCREAMING_SNAKE_CASE : Optional[int] = evaluate(__UpperCAmelCase, {}, state=__UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__UpperCAmelCase, {'''x''': 5, '''y''': 5} ) def lowercase__ (self : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : int = '''y = add_two(x)''' SCREAMING_SNAKE_CASE : Optional[Any] = {'''x''': 3} SCREAMING_SNAKE_CASE : str = evaluate(__UpperCAmelCase, {'''add_two''': add_two}, state=__UpperCAmelCase ) assert result == 5 self.assertDictEqual(__UpperCAmelCase, {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE : Tuple = evaluate(__UpperCAmelCase, {}, state=__UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ (self : Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = '''x = 3''' SCREAMING_SNAKE_CASE : Any = {} SCREAMING_SNAKE_CASE : str = evaluate(__UpperCAmelCase, {}, state=__UpperCAmelCase ) assert result == 3 self.assertDictEqual(__UpperCAmelCase, {'''x''': 3} ) def lowercase__ (self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' SCREAMING_SNAKE_CASE : Tuple = {'''x''': 3} SCREAMING_SNAKE_CASE : List[Any] = evaluate(__UpperCAmelCase, {'''add_two''': add_two}, state=__UpperCAmelCase ) self.assertDictEqual(__UpperCAmelCase, {'''x''': 3, '''y''': 5} ) self.assertDictEqual(__UpperCAmelCase, {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def lowercase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = '''x = 3\ny = 5''' SCREAMING_SNAKE_CASE : Tuple = {} SCREAMING_SNAKE_CASE : Optional[Any] = evaluate(__UpperCAmelCase, {}, state=__UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__UpperCAmelCase, {'''x''': 3, '''y''': 5} ) def lowercase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = '''text = f\'This is x: {x}.\'''' SCREAMING_SNAKE_CASE : List[str] = {'''x''': 3} SCREAMING_SNAKE_CASE : Dict = evaluate(__UpperCAmelCase, {}, state=__UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(__UpperCAmelCase, {'''x''': 3, '''text''': '''This is x: 3.'''} ) def lowercase__ (self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = '''if x <= 3:\n y = 2\nelse:\n y = 5''' SCREAMING_SNAKE_CASE : int = {'''x''': 3} SCREAMING_SNAKE_CASE : List[str] = evaluate(__UpperCAmelCase, {}, state=__UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(__UpperCAmelCase, {'''x''': 3, '''y''': 2} ) SCREAMING_SNAKE_CASE : Any = {'''x''': 8} SCREAMING_SNAKE_CASE : int = evaluate(__UpperCAmelCase, {}, state=__UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(__UpperCAmelCase, {'''x''': 8, '''y''': 5} ) def lowercase__ (self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Any = '''test_list = [x, add_two(x)]''' SCREAMING_SNAKE_CASE : List[str] = {'''x''': 3} SCREAMING_SNAKE_CASE : Tuple = evaluate(__UpperCAmelCase, {'''add_two''': add_two}, state=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase, [3, 5] ) self.assertDictEqual(__UpperCAmelCase, {'''x''': 3, '''test_list''': [3, 5]} ) def lowercase__ (self : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = '''y = x''' SCREAMING_SNAKE_CASE : Tuple = {'''x''': 3} SCREAMING_SNAKE_CASE : str = evaluate(__UpperCAmelCase, {}, state=__UpperCAmelCase ) assert result == 3 self.assertDictEqual(__UpperCAmelCase, {'''x''': 3, '''y''': 3} ) def lowercase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = '''test_list = [x, add_two(x)]\ntest_list[1]''' SCREAMING_SNAKE_CASE : int = {'''x''': 3} SCREAMING_SNAKE_CASE : Optional[int] = evaluate(__UpperCAmelCase, {'''add_two''': add_two}, state=__UpperCAmelCase ) assert result == 5 self.assertDictEqual(__UpperCAmelCase, {'''x''': 3, '''test_list''': [3, 5]} ) SCREAMING_SNAKE_CASE : Dict = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' SCREAMING_SNAKE_CASE : Tuple = {'''x''': 3} SCREAMING_SNAKE_CASE : Optional[Any] = evaluate(__UpperCAmelCase, {'''add_two''': add_two}, state=__UpperCAmelCase ) assert result == 5 self.assertDictEqual(__UpperCAmelCase, {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def lowercase__ (self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = '''x = 0\nfor i in range(3):\n x = i''' SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : List[str] = evaluate(__UpperCAmelCase, {'''range''': range}, state=__UpperCAmelCase ) assert result == 2 self.assertDictEqual(__UpperCAmelCase, {'''x''': 2, '''i''': 2} )
355
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCAmelCase__ ( _a : str , _a : List[str] , _a : int ): snake_case_ : Optional[int] = 1.5 snake_case_ : Optional[int] = int(factor * num_class_images ) snake_case_ : int = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=_a , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=_a ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: snake_case_ : str = client.query(text=_a ) if len(_a ) >= factor * num_class_images or num_images > 1E4: break else: snake_case_ : str = int(factor * num_images ) snake_case_ : int = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=_a , aesthetic_weight=0.1 , ) snake_case_ : Optional[int] = 0 snake_case_ : Any = 0 snake_case_ : Tuple = tqdm(desc="downloading real regularization images" , total=_a ) with open(F'''{class_data_dir}/caption.txt''' , "w" ) as fa, open(F'''{class_data_dir}/urls.txt''' , "w" ) as fa, open( F'''{class_data_dir}/images.txt''' , "w" ) as fa: while total < num_class_images: snake_case_ : int = class_images[count] count += 1 try: snake_case_ : Dict = requests.get(images["url"] ) if img.status_code == 2_00: snake_case_ : Optional[Any] = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCAmelCase__ ( ): snake_case_ : Optional[Any] = argparse.ArgumentParser("" , add_help=_a ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=_a , type=_a ) parser.add_argument("--class_data_dir" , help="path to save images" , required=_a , type=_a ) parser.add_argument("--num_class_images" , help="number of images to download" , default=2_00 , type=_a ) return parser.parse_args() if __name__ == "__main__": lowercase : Union[str, Any] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
568
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowercase : str = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') lowercase : Optional[Any] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) lowercase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def lowerCAmelCase__ ( _a : str ): with open(_a , "rb" ) as f: snake_case_ : Tuple = Image.open(_a ) return im.convert("RGB" ) @dataclass class UpperCAmelCase_ : '''simple docstring''' A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' } , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A folder containing the training data.'} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'A folder containing the validation data.'} ) A : Optional[float] = field( default=0.15 , metadata={'help': 'Percent to split off of train for validation.'} ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def _lowerCAmelCase ( self ) -> Tuple: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class UpperCAmelCase_ : '''simple docstring''' A : str = field( default='google/vit-base-patch16-224-in21k' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(SCREAMING_SNAKE_CASE__ )} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) A : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A : str = field(default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Name or path of preprocessor config.'} ) A : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCAmelCase__ ( _a : Tuple ): snake_case_ : List[str] = torch.stack([example["pixel_values"] for example in examples] ) snake_case_ : Optional[Any] = torch.tensor([example["labels"] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def lowerCAmelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ , snake_case_ , snake_case_ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ , snake_case_ , snake_case_ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_image_classification" , _a , _a ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() snake_case_ : Tuple = training_args.get_process_log_level() logger.setLevel(_a ) transformers.utils.logging.set_verbosity(_a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. snake_case_ : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: snake_case_ : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: snake_case_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task="image-classification" , use_auth_token=True if model_args.use_auth_token else None , ) else: snake_case_ : Dict = {} if data_args.train_dir is not None: snake_case_ : int = os.path.join(data_args.train_dir , "**" ) if data_args.validation_dir is not None: snake_case_ : List[str] = os.path.join(data_args.validation_dir , "**" ) snake_case_ : int = load_dataset( "imagefolder" , data_files=_a , cache_dir=model_args.cache_dir , task="image-classification" , ) # If we don't have a validation split, split off a percentage of train as validation. snake_case_ : Optional[int] = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _a ) and data_args.train_val_split > 0.0: snake_case_ : Union[str, Any] = dataset["train"].train_test_split(data_args.train_val_split ) snake_case_ : str = split["train"] snake_case_ : Optional[int] = split["test"] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. snake_case_ : Union[str, Any] = dataset["train"].features["labels"].names snake_case_ , snake_case_ : Optional[Any] = {}, {} for i, label in enumerate(_a ): snake_case_ : Optional[int] = str(_a ) snake_case_ : Optional[int] = label # Load the accuracy metric from the datasets package snake_case_ : Union[str, Any] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_a : Optional[int] ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) snake_case_ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(_a ) , labelaid=_a , idalabel=_a , finetuning_task="image-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) snake_case_ : Union[str, Any] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) snake_case_ : Dict = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: snake_case_ : Optional[Any] = image_processor.size["shortest_edge"] else: snake_case_ : str = (image_processor.size["height"], image_processor.size["width"]) snake_case_ : Optional[Any] = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) snake_case_ : Union[str, Any] = Compose( [ RandomResizedCrop(_a ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) snake_case_ : List[Any] = Compose( [ Resize(_a ), CenterCrop(_a ), ToTensor(), normalize, ] ) def train_transforms(_a : Optional[int] ): snake_case_ : List[str] = [ _train_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"] ] return example_batch def val_transforms(_a : List[Any] ): snake_case_ : int = [_val_transforms(pil_img.convert("RGB" ) ) for pil_img in example_batch["image"]] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset" ) if data_args.max_train_samples is not None: snake_case_ : str = ( dataset["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(_a ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset" ) if data_args.max_eval_samples is not None: snake_case_ : List[str] = ( dataset["validation"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(_a ) # Initalize our trainer snake_case_ : Optional[Any] = Trainer( model=_a , args=_a , train_dataset=dataset["train"] if training_args.do_train else None , eval_dataset=dataset["validation"] if training_args.do_eval else None , compute_metrics=_a , tokenizer=_a , data_collator=_a , ) # Training if training_args.do_train: snake_case_ : Tuple = None if training_args.resume_from_checkpoint is not None: snake_case_ : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: snake_case_ : str = last_checkpoint snake_case_ : Tuple = trainer.train(resume_from_checkpoint=_a ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: snake_case_ : Union[str, Any] = trainer.evaluate() trainer.log_metrics("eval" , _a ) trainer.save_metrics("eval" , _a ) # Write model card and (optionally) push to hub snake_case_ : Union[str, Any] = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "vision"], } if training_args.push_to_hub: trainer.push_to_hub(**_a ) else: trainer.create_model_card(**_a ) if __name__ == "__main__": main()
568
1
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): A_ : Optional[Any] = DanceDiffusionPipeline A_ : Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS A_ : Any = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } A_ : Optional[Any] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS A_ : List[str] = False A_ : str = False def _A ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowerCAmelCase_ , use_timestep_embedding=lowerCAmelCase_ , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) lowerCAmelCase__ : Dict = IPNDMScheduler() lowerCAmelCase__ : Union[str, Any] = { "unet": unet, "scheduler": scheduler, } return components def _A ( self : Optional[int] , a__ : Dict , a__ : List[Any]=0 ): '''simple docstring''' if str(lowerCAmelCase_ ).startswith("mps" ): lowerCAmelCase__ : Dict = torch.manual_seed(lowerCAmelCase_ ) else: lowerCAmelCase__ : str = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) lowerCAmelCase__ : int = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def _A ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : str = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : List[Any] = self.get_dummy_components() lowerCAmelCase__ : List[Any] = DanceDiffusionPipeline(**lowerCAmelCase_ ) lowerCAmelCase__ : Optional[int] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) lowerCAmelCase__ : Any = self.get_dummy_inputs(lowerCAmelCase_ ) lowerCAmelCase__ : Optional[int] = pipe(**lowerCAmelCase_ ) lowerCAmelCase__ : Any = output.audios lowerCAmelCase__ : List[str] = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase__ : Any = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _A ( self : str ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _A ( self : int ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def _A ( self : List[str] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def _A ( self : int ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def _A ( self : int ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def _A ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = torch_device lowerCAmelCase__ : int = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) lowerCAmelCase__ : List[Any] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) lowerCAmelCase__ : int = torch.manual_seed(0 ) lowerCAmelCase__ : str = pipe(generator=lowerCAmelCase_ , num_inference_steps=100 , audio_length_in_s=4.096 ) lowerCAmelCase__ : Tuple = output.audios lowerCAmelCase__ : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : int = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def _A ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Any = torch_device lowerCAmelCase__ : Dict = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) lowerCAmelCase__ : Optional[Any] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) lowerCAmelCase__ : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = pipe(generator=lowerCAmelCase_ , num_inference_steps=100 , audio_length_in_s=4.096 ) lowerCAmelCase__ : Optional[Any] = output.audios lowerCAmelCase__ : Dict = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase__ : str = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
712
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def UpperCAmelCase_ ( lowerCamelCase_ = 2_0_0_0_0_0_0 ): """simple docstring""" lowerCAmelCase__ : list[int] = [0] lowerCAmelCase__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowerCAmelCase__ : int = 0 # the area corresponding to the grid that gives the product closest to target lowerCAmelCase__ : int = 0 # an estimate of b, using the quadratic formula lowerCAmelCase__ : float # the largest integer less than b_estimate lowerCAmelCase__ : int # the largest integer less than b_estimate lowerCAmelCase__ : int # the triangle number corresponding to b_floor lowerCAmelCase__ : int # the triangle number corresponding to b_ceil lowerCAmelCase__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): lowerCAmelCase__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowerCAmelCase__ : Optional[int] = floor(lowerCamelCase_ ) lowerCAmelCase__ : Any = ceil(lowerCamelCase_ ) lowerCAmelCase__ : Optional[Any] = triangle_numbers[b_floor] lowerCAmelCase__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase__ : Tuple = triangle_b_first_guess * triangle_a lowerCAmelCase__ : List[str] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase__ : Dict = triangle_b_second_guess * triangle_a lowerCAmelCase__ : Dict = idx_a * b_ceil return area if __name__ == "__main__": print(f'{solution() = }')
568
0
def __lowercase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: a__ = mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: a__ = max( mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , mf_knapsack(i - 1 , __lowerCAmelCase , __lowerCAmelCase , j - wt[i - 1] ) + val[i - 1] , ) a__ = val return f[i][j] def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] ): a__ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: a__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: a__ = dp[i - 1][w_] return dp[n][w_], dp def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : list , __lowerCAmelCase : list ): if not (isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(__lowerCAmelCase , (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) a__ = len(__lowerCAmelCase ) if num_items != len(__lowerCAmelCase ): a__ = ( 'The number of weights must be the same as the number of values.\n' F'But got {num_items} weights and {len(__lowerCAmelCase )} values' ) raise ValueError(__lowerCAmelCase ) for i in range(__lowerCAmelCase ): if not isinstance(wt[i] , __lowerCAmelCase ): a__ = ( 'All weights must be integers but got weight of ' F'type {type(wt[i] )} at index {i}' ) raise TypeError(__lowerCAmelCase ) a__ , a__ = knapsack(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) a__ = set() _construct_solution(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return optimal_val, example_optional_set def __lowercase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : set ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__lowerCAmelCase , __lowerCAmelCase , i - 1 , __lowerCAmelCase , __lowerCAmelCase ) else: optimal_set.add(__lowerCAmelCase ) _construct_solution(__lowerCAmelCase , __lowerCAmelCase , i - 1 , j - wt[i - 1] , __lowerCAmelCase ) if __name__ == "__main__": snake_case : List[Any] = [3, 2, 4, 4] snake_case : str = [4, 3, 2, 3] snake_case : Tuple = 4 snake_case : Optional[Any] = 6 snake_case : List[Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] snake_case , snake_case : Optional[int] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 snake_case , snake_case : Optional[Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('''optimal_value = ''', optimal_solution) print('''An optimal subset corresponding to the optimal value''', optimal_subset)
335
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : Dict = logging.get_logger(__name__) snake_case : List[str] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[int] = '''lxmert''' UpperCAmelCase__ : Any = {} def __init__( self :Dict ,__snake_case :Optional[Any]=3_05_22 ,__snake_case :int=7_68 ,__snake_case :int=12 ,__snake_case :Any=95_00 ,__snake_case :Union[str, Any]=16_00 ,__snake_case :str=4_00 ,__snake_case :Optional[Any]=30_72 ,__snake_case :List[str]="gelu" ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Union[str, Any]=0.1 ,__snake_case :Dict=5_12 ,__snake_case :str=2 ,__snake_case :List[str]=0.02 ,__snake_case :Optional[int]=1E-12 ,__snake_case :Any=9 ,__snake_case :List[str]=5 ,__snake_case :Optional[Any]=5 ,__snake_case :str=20_48 ,__snake_case :Optional[Any]=4 ,__snake_case :str=6.67 ,__snake_case :Union[str, Any]=True ,__snake_case :str=True ,__snake_case :int=True ,__snake_case :List[str]=True ,__snake_case :List[Any]=True ,__snake_case :str=True ,__snake_case :List[str]=True ,**__snake_case :Optional[Any] ,) -> str: a__ = vocab_size a__ = hidden_size a__ = num_attention_heads a__ = hidden_act a__ = intermediate_size a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = initializer_range a__ = layer_norm_eps a__ = num_qa_labels a__ = num_object_labels a__ = num_attr_labels a__ = l_layers a__ = x_layers a__ = r_layers a__ = visual_feat_dim a__ = visual_pos_dim a__ = visual_loss_normalizer a__ = task_matched a__ = task_mask_lm a__ = task_obj_predict a__ = task_qa a__ = visual_obj_loss a__ = visual_attr_loss a__ = visual_feat_loss a__ = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**__snake_case )
335
1
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: _lowerCAmelCase = None try: import msvcrt except ImportError: _lowerCAmelCase = None try: import fcntl except ImportError: _lowerCAmelCase = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _lowerCAmelCase = OSError # Data # ------------------------------------------------ _lowerCAmelCase = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] _lowerCAmelCase = "3.0.12" _lowerCAmelCase = None def _lowerCAmelCase ( ) ->str: """simple docstring""" global _logger lowercase__ = _logger or logging.getLogger(__name__ ) return _logger class __A ( __lowerCAmelCase ): """simple docstring""" def __init__( self , _lowerCamelCase )-> int: lowercase__ = lock_file return None def __str__( self )-> Union[str, Any]: lowercase__ = f'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class __A : """simple docstring""" def __init__( self , _lowerCamelCase )-> Optional[int]: lowercase__ = lock return None def __enter__( self )-> str: return self.lock def __exit__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> Any: self.lock.release() return None class __A : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=-1 , _lowerCamelCase=None )-> Optional[Any]: lowercase__ = max_filename_length if max_filename_length is not None else 2_5_5 # Hash the filename if it's too long lowercase__ = self.hash_filename_if_too_long(lowerCamelCase__ , lowerCamelCase__ ) # The path to the lock file. lowercase__ = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowercase__ = None # The default timeout value. lowercase__ = timeout # We use this lock primarily for the lock counter. lowercase__ = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowercase__ = 0 return None @property def snake_case_( self )-> Optional[int]: return self._lock_file @property def snake_case_( self )-> Optional[int]: return self._timeout @timeout.setter def snake_case_( self , _lowerCamelCase )-> List[str]: lowercase__ = float(lowerCamelCase__ ) return None def snake_case_( self )-> Optional[Any]: raise NotImplementedError() def snake_case_( self )-> Dict: raise NotImplementedError() @property def snake_case_( self )-> Dict: return self._lock_file_fd is not None def snake_case_( self , _lowerCamelCase=None , _lowerCamelCase=0.0_5 )-> int: if timeout is None: lowercase__ = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowercase__ = id(self ) lowercase__ = self._lock_file lowercase__ = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(f'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( f'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(lowerCamelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowercase__ = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def snake_case_( self , _lowerCamelCase=False )-> Any: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowercase__ = id(self ) lowercase__ = self._lock_file logger().debug(f'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() lowercase__ = 0 logger().debug(f'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self )-> Tuple: self.acquire() return self def __exit__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> Optional[Any]: self.release() return None def __del__( self )-> List[str]: self.release(force=lowerCamelCase__ ) return None def snake_case_( self , _lowerCamelCase , _lowerCamelCase )-> str: lowercase__ = os.path.basename(lowerCamelCase__ ) if len(lowerCamelCase__ ) > max_length and max_length > 0: lowercase__ = os.path.dirname(lowerCamelCase__ ) lowercase__ = str(hash(lowerCamelCase__ ) ) lowercase__ = filename[: max_length - len(lowerCamelCase__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowerCamelCase__ , lowerCamelCase__ ) else: return path class __A ( __lowerCAmelCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=-1 , _lowerCamelCase=None )-> Optional[int]: from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) lowercase__ = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def snake_case_( self )-> Union[str, Any]: lowercase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowercase__ = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase__ ) else: lowercase__ = fd return None def snake_case_( self )-> Optional[Any]: lowercase__ = self._lock_file_fd lowercase__ = None msvcrt.locking(lowerCamelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __A ( __lowerCAmelCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=-1 , _lowerCamelCase=None )-> Tuple: lowercase__ = os.statvfs(os.path.dirname(lowerCamelCase__ ) ).f_namemax super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) def snake_case_( self )-> Optional[int]: lowercase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowercase__ = os.open(self._lock_file , lowerCamelCase__ ) try: fcntl.flock(lowerCamelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase__ ) else: lowercase__ = fd return None def snake_case_( self )-> Any: lowercase__ = self._lock_file_fd lowercase__ = None fcntl.flock(lowerCamelCase__ , fcntl.LOCK_UN ) os.close(lowerCamelCase__ ) return None class __A ( __lowerCAmelCase ): """simple docstring""" def snake_case_( self )-> List[Any]: lowercase__ = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowercase__ = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: lowercase__ = fd return None def snake_case_( self )-> Optional[Any]: os.close(self._lock_file_fd ) lowercase__ = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _lowerCAmelCase = None if msvcrt: _lowerCAmelCase = WindowsFileLock elif fcntl: _lowerCAmelCase = UnixFileLock else: _lowerCAmelCase = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
718
'''simple docstring''' def _lowerCAmelCase ( lowercase : int ) ->int: """simple docstring""" if not isinstance(lowercase , lowercase ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) lowercase__ = 0 lowercase__ = str(lowercase ) while len(lowercase ) != 1: lowercase__ = [int(lowercase ) for i in num_string] lowercase__ = 1 for i in range(0 , len(lowercase ) ): total *= numbers[i] lowercase__ = str(lowercase ) steps += 1 return steps def _lowerCAmelCase ( lowercase : int ) ->int: """simple docstring""" if not isinstance(lowercase , lowercase ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) lowercase__ = 0 lowercase__ = str(lowercase ) while len(lowercase ) != 1: lowercase__ = [int(lowercase ) for i in num_string] lowercase__ = 0 for i in range(0 , len(lowercase ) ): total += numbers[i] lowercase__ = str(lowercase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
318
0
"""simple docstring""" import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def __snake_case ( SCREAMING_SNAKE_CASE__ : np.ndarray ) -> np.ndarray: '''simple docstring''' return input_array.reshape((input_array.size, 1) ) def __snake_case ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : int = np.nan for i in range(SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : Union[str, Any] = features[:, labels == i] _UpperCAmelCase : str = data.mean(1 ) # Centralize the data of class i _UpperCAmelCase : str = data - column_reshape(SCREAMING_SNAKE_CASE__ ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(SCREAMING_SNAKE_CASE__ , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) _UpperCAmelCase : int = np.dot(SCREAMING_SNAKE_CASE__ , centered_data.T ) return covariance_sum / features.shape[1] def __snake_case ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : Any = features.mean(1 ) _UpperCAmelCase : str = np.nan for i in range(SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : str = features[:, labels == i] _UpperCAmelCase : List[str] = data.shape[1] _UpperCAmelCase : Optional[int] = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ ) , (column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) _UpperCAmelCase : Dict = device_data * np.dot( column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ ) , (column_reshape(SCREAMING_SNAKE_CASE__ ) - column_reshape(SCREAMING_SNAKE_CASE__ )).T , ) return covariance_sum / features.shape[1] def __snake_case ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int ) -> np.ndarray: '''simple docstring''' if features.any(): _UpperCAmelCase : Dict = features.mean(1 ) # Center the dataset _UpperCAmelCase : Union[str, Any] = features - np.reshape(SCREAMING_SNAKE_CASE__ , (data_mean.size, 1) ) _UpperCAmelCase : List[Any] = np.dot(SCREAMING_SNAKE_CASE__ , centered_data.T ) / features.shape[1] _UpperCAmelCase , _UpperCAmelCase : List[str] = np.linalg.eigh(SCREAMING_SNAKE_CASE__ ) # Take all the columns in the reverse order (-1), and then takes only the first _UpperCAmelCase : Optional[int] = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space _UpperCAmelCase : Union[str, Any] = np.dot(filtered_eigenvectors.T , SCREAMING_SNAKE_CASE__ ) logging.info("Principal Component Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=SCREAMING_SNAKE_CASE__ ) logging.error("Dataset empty" ) raise AssertionError def __snake_case ( SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : np.ndarray , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> np.ndarray: '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = eigh( covariance_between_classes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , covariance_within_classes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , ) _UpperCAmelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = np.linalg.svd(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : str = svd_matrix[:, 0:dimensions] _UpperCAmelCase : Optional[Any] = np.dot(filtered_svd_matrix.T , SCREAMING_SNAKE_CASE__ ) logging.info("Linear Discriminant Analysis computed" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=SCREAMING_SNAKE_CASE__ ) logging.error("Dataset empty" ) raise AssertionError def __snake_case ( ) -> None: '''simple docstring''' _UpperCAmelCase : Any = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) _UpperCAmelCase : int = np.array([0, 0, 0, 1, 1] ) _UpperCAmelCase : Any = 2 _UpperCAmelCase : str = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(SCREAMING_SNAKE_CASE__ ) as error_info: _UpperCAmelCase : Dict = linear_discriminant_analysis( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): raise AssertionError( "Did not raise AssertionError for dimensions > classes" ) assert error_info.type is AssertionError def __snake_case ( ) -> None: '''simple docstring''' _UpperCAmelCase : Tuple = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) _UpperCAmelCase : Optional[Any] = 2 _UpperCAmelCase : Tuple = np.array([[6.92_820_323, 8.66_025_404, 10.39_230_485], [3.0, 3.0, 3.0]] ) with pytest.raises(SCREAMING_SNAKE_CASE__ ) as error_info: _UpperCAmelCase : str = principal_component_analysis(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
289
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " f'{test_file} instead.' ) _UpperCAmelCase : int = components[-1] if not test_fn.endswith("py" ): raise ValueError(f'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( f'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) _UpperCAmelCase : Any = components[:-1] + [test_fn.replace(".py" , "" )] _UpperCAmelCase : List[str] = ".".join(SCREAMING_SNAKE_CASE__ ) return test_module_path def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = get_module_path(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = importlib.import_module(SCREAMING_SNAKE_CASE__ ) return test_module def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : str = get_test_module(SCREAMING_SNAKE_CASE__ ) for attr in dir(SCREAMING_SNAKE_CASE__ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def __snake_case ( SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Tuple = get_test_module(SCREAMING_SNAKE_CASE__ ) for attr in dir(SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCAmelCase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , "all_model_classes" , [] ) if len(SCREAMING_SNAKE_CASE__ ) > 0: test_classes.append(SCREAMING_SNAKE_CASE__ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def __snake_case ( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = get_test_classes(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Tuple = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: '''simple docstring''' _UpperCAmelCase : Optional[Any] = test_class() if hasattr(SCREAMING_SNAKE_CASE__ , "setUp" ): test.setUp() _UpperCAmelCase : int = None if hasattr(SCREAMING_SNAKE_CASE__ , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCAmelCase : List[str] = test.model_tester.__class__ return model_tester def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : str = get_test_classes(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Optional[int] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(SCREAMING_SNAKE_CASE__ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : str = get_test_classes_for_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = [] for test_class in test_classes: _UpperCAmelCase : Optional[Any] = get_model_tester_from_test_class(SCREAMING_SNAKE_CASE__ ) if tester_class is not None: tester_classes.append(SCREAMING_SNAKE_CASE__ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def __snake_case ( SCREAMING_SNAKE_CASE__ : Any ) -> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = get_test_classes(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : List[Any] = {test_class: get_model_tester_from_test_class(SCREAMING_SNAKE_CASE__ ) for test_class in test_classes} return test_tester_mapping def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = get_model_classes(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : int = { model_class: get_test_classes_for_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for model_class in model_classes } return model_test_mapping def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = get_model_classes(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Union[str, Any] = { model_class: get_tester_classes_for_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for model_class in model_classes } return model_to_tester_mapping def __snake_case ( SCREAMING_SNAKE_CASE__ : str ) -> List[str]: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return o elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return o.__name__ elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): return [to_json(SCREAMING_SNAKE_CASE__ ) for x in o] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return {to_json(SCREAMING_SNAKE_CASE__ ): to_json(SCREAMING_SNAKE_CASE__ ) for k, v in o.items()} else: return o
289
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCAmelCase: """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=3 , lowerCamelCase=7 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=99 , lowerCamelCase=32 , lowerCamelCase=5 , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=16 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=4 , lowerCamelCase=None , ) -> Dict: """simple docstring""" lowercase__ : Tuple = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Optional[int] = seq_length lowercase__ : Any = is_training lowercase__ : Any = use_input_mask lowercase__ : Union[str, Any] = use_token_type_ids lowercase__ : Any = use_labels lowercase__ : Optional[Any] = vocab_size lowercase__ : Union[str, Any] = hidden_size lowercase__ : Tuple = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : str = hidden_act lowercase__ : Tuple = hidden_dropout_prob lowercase__ : Any = attention_probs_dropout_prob lowercase__ : Tuple = max_position_embeddings lowercase__ : List[Any] = type_vocab_size lowercase__ : int = type_sequence_label_size lowercase__ : Tuple = initializer_range lowercase__ : Optional[int] = num_labels lowercase__ : List[Any] = num_choices lowercase__ : Any = scope def __a ( self ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ : str = None if self.use_input_mask: lowercase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ : List[str] = None lowercase__ : Any = None lowercase__ : Union[str, Any] = None lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self ) -> Optional[int]: """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowerCamelCase , ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Tuple: """simple docstring""" lowercase__ : int = FalconModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : int = model(lowerCamelCase , attention_mask=lowerCamelCase ) lowercase__ : int = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> str: """simple docstring""" lowercase__ : Optional[Any] = True lowercase__ : Dict = FalconModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : Optional[int] = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , ) lowercase__ : List[Any] = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , ) lowercase__ : Union[str, Any] = model(lowerCamelCase , attention_mask=lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = FalconForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : str = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) -> Tuple: """simple docstring""" lowercase__ : Dict = True lowercase__ : int = True lowercase__ : Optional[Any] = FalconForCausalLM(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() # first forward pass lowercase__ : Tuple = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , use_cache=lowerCamelCase , ) lowercase__ : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__ : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase__ : str = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase__ : Optional[int] = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] lowercase__ : Optional[int] = model( lowerCamelCase , attention_mask=lowerCamelCase , encoder_hidden_states=lowerCamelCase , encoder_attention_mask=lowerCamelCase , past_key_values=lowerCamelCase , output_hidden_states=lowerCamelCase , )["hidden_states"][0] # select random slice lowercase__ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : int = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Optional[Any] = config_and_inputs lowercase__ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCAmelCase( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" a : Dict = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) a : Union[str, Any] = (FalconForCausalLM,) if is_torch_available() else () a : Dict = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) a : Optional[int] = False a : Optional[Any] = False def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = FalconModelTester(self ) lowercase__ : List[Any] = ConfigTester(self , config_class=lowerCamelCase , hidden_size=37 ) def __a ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def __a ( self ) -> int: """simple docstring""" lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ , *lowercase__ : str = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowercase__ : Tuple = alibi self.model_tester.create_and_check_model(lowerCamelCase , *lowerCamelCase ) def __a ( self ) -> int: """simple docstring""" lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[Any] = 3 lowercase__ : str = input_dict["input_ids"] lowercase__ : Dict = input_ids.ne(1 ).to(lowerCamelCase ) lowercase__ : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase__ : str = FalconForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : Union[str, Any] = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __a ( self ) -> int: """simple docstring""" lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Any = 3 lowercase__ : Union[str, Any] = "single_label_classification" lowercase__ : str = input_dict["input_ids"] lowercase__ : Optional[Any] = input_ids.ne(1 ).to(lowerCamelCase ) lowercase__ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase__ : Union[str, Any] = FalconForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : Any = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[int] = input_dict["input_ids"] lowercase__ : List[Any] = FalconForCausalLM(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : Union[str, Any] = model(lowerCamelCase , use_cache=lowerCamelCase ) lowercase__ : str = input_ids.shape[0] lowercase__ : List[Any] = model._convert_to_rw_cache(result.past_key_values ) lowercase__ : Union[str, Any] = model._convert_cache_to_standard_format(lowerCamelCase , lowerCamelCase ) for layer in range(len(lowerCamelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Optional[int] = 3 lowercase__ : Optional[Any] = "multi_label_classification" lowercase__ : Dict = input_dict["input_ids"] lowercase__ : List[str] = input_ids.ne(1 ).to(lowerCamelCase ) lowercase__ : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase__ : List[Any] = FalconForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ : int = model(lowerCamelCase , attention_mask=lowerCamelCase , labels=lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __a ( self ) -> Optional[Any]: """simple docstring""" for model_class in self.all_generative_model_classes: lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowerCamelCase , "use_cache" ): return lowercase__ : str = model_class(lowerCamelCase ).to(lowerCamelCase ) if "use_cache" not in inputs: lowercase__ : Dict = True lowercase__ : Dict = model(**lowerCamelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowercase__ : Tuple = ( getattr(lowerCamelCase , "decoder_layers" , lowerCamelCase ) or getattr(lowerCamelCase , "num_decoder_layers" , lowerCamelCase ) or config.num_hidden_layers ) lowercase__ : int = getattr(lowerCamelCase , "num_kv_heads" , config.num_attention_heads ) lowercase__ : Optional[int] = getattr(lowerCamelCase , "d_model" , config.hidden_size ) lowercase__ : List[Any] = embed_dim // num_attention_heads lowercase__ : Any = outputs["past_key_values"] self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) lowercase__ , lowercase__ : List[str] = inputs["input_ids"].shape for i in range(lowerCamelCase ): if config.new_decoder_architecture: lowercase__ : Any = config.num_attention_heads elif config.multi_query: lowercase__ : str = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class UpperCAmelCase( unittest.TestCase ): """simple docstring""" @slow def __a ( self ) -> int: """simple docstring""" lowercase__ : List[Any] = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) lowercase__ : List[Any] = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(lowerCamelCase ) lowercase__ : str = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCamelCase ) lowercase__ : Optional[int] = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) lowercase__ : Optional[int] = model.generate(**lowerCamelCase , do_sample=lowerCamelCase , max_new_tokens=19 ) lowercase__ : Dict = tokenizer.batch_decode(lowerCamelCase )[0] self.assertEqual(lowerCamelCase , lowerCamelCase ) @slow def __a ( self ) -> Tuple: """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowercase__ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCamelCase ) lowercase__ : str = FalconForCausalLM.from_pretrained(lowerCamelCase ) model.eval() model.to(lowerCamelCase ) lowercase__ : Dict = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCamelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowerCamelCase , do_sample=lowerCamelCase , max_new_tokens=4 ) model.generate(**lowerCamelCase , do_sample=lowerCamelCase , max_new_tokens=4 ) model.generate(**lowerCamelCase , num_beams=2 , max_new_tokens=4 ) @slow def __a ( self ) -> str: """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCamelCase ) lowercase__ : List[Any] = FalconForCausalLM.from_pretrained(lowerCamelCase ) model.eval() model.to(device=lowerCamelCase ) lowercase__ : Any = tokenizer("My favorite food is" , return_tensors="pt" ).to(lowerCamelCase ) # Test results are the same with and without cache lowercase__ : List[Any] = model.generate(**lowerCamelCase , do_sample=lowerCamelCase , max_new_tokens=20 , use_cache=lowerCamelCase ) lowercase__ : str = model.generate(**lowerCamelCase , do_sample=lowerCamelCase , max_new_tokens=20 , use_cache=lowerCamelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
298
from __future__ import annotations def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> list[int]: lowercase__ : List[str] = [True] * limit lowercase__ : Union[str, Any] = False lowercase__ : List[str] = False lowercase__ : List[str] = True for i in range(3 ,int(limit**0.5 + 1 ) ,2 ): lowercase__ : Dict = i * 2 while index < limit: lowercase__ : Union[str, Any] = False lowercase__ : str = index + i lowercase__ : Union[str, Any] = [2] for i in range(3 ,SCREAMING_SNAKE_CASE_ ,2 ): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE_ ) return primes def snake_case_ ( SCREAMING_SNAKE_CASE_ = 1_00_00_00 ) -> int: lowercase__ : Any = prime_sieve(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = 0 lowercase__ : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in range(i + length ,len(SCREAMING_SNAKE_CASE_ ) ): lowercase__ : Optional[Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase__ : Dict = j - i lowercase__ : Any = sol return largest if __name__ == "__main__": print(f'{solution() = }')
298
1
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") __SCREAMING_SNAKE_CASE ="https://www.google.com/search?q=" + " ".join(sys.argv[1:]) __SCREAMING_SNAKE_CASE =requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) __SCREAMING_SNAKE_CASE =BeautifulSoup(res.text, "html.parser") __SCREAMING_SNAKE_CASE =list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(F"https://google.com{link.get('href')}")
425
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
425
1
"""simple docstring""" from collections import defaultdict def A_ ( UpperCAmelCase__ ) -> int: a : Any = 1 a : Optional[Any] = True for v in tree[start]: if v not in visited: ret += dfs(UpperCAmelCase__ ) if ret % 2 == 0: cuts.append(UpperCAmelCase__ ) return ret def A_ ( ) -> List[str]: dfs(1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = 10, 9 SCREAMING_SNAKE_CASE__ : int = defaultdict(list) SCREAMING_SNAKE_CASE__ : dict[int, bool] = {} SCREAMING_SNAKE_CASE__ : list[int] = [] SCREAMING_SNAKE_CASE__ : Tuple = 0 SCREAMING_SNAKE_CASE__ : Optional[int] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
509
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A_ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() def lowercase_ ( self ) -> Any: a , a : str = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) a : List[Any] = 'A painting of a squirrel eating a burger' a : Union[str, Any] = jax.device_count() a : Optional[int] = num_samples * [prompt] a : Tuple = sd_pipe.prepare_inputs(__UpperCAmelCase ) a : Dict = replicate(__UpperCAmelCase ) a : int = shard(__UpperCAmelCase ) a : str = jax.random.PRNGKey(0 ) a : List[Any] = jax.random.split(__UpperCAmelCase , jax.device_count() ) a : Optional[int] = sd_pipe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_inference_steps=25 , jit=__UpperCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) a : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a : Optional[Any] = images[0, 2_53:2_56, 2_53:2_56, -1] a : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a : str = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def lowercase_ ( self ) -> Union[str, Any]: a : str = 'stabilityai/stable-diffusion-2' a , a : Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(__UpperCAmelCase , subfolder='scheduler' ) a , a : Any = FlaxStableDiffusionPipeline.from_pretrained( __UpperCAmelCase , scheduler=__UpperCAmelCase , revision='bf16' , dtype=jnp.bfloataa , ) a : Union[str, Any] = scheduler_params a : Any = 'A painting of a squirrel eating a burger' a : Any = jax.device_count() a : str = num_samples * [prompt] a : Optional[Any] = sd_pipe.prepare_inputs(__UpperCAmelCase ) a : Optional[Any] = replicate(__UpperCAmelCase ) a : Union[str, Any] = shard(__UpperCAmelCase ) a : Optional[int] = jax.random.PRNGKey(0 ) a : str = jax.random.split(__UpperCAmelCase , jax.device_count() ) a : Tuple = sd_pipe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_inference_steps=25 , jit=__UpperCAmelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) a : Optional[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) a : List[str] = images[0, 2_53:2_56, 2_53:2_56, -1] a : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) a : Tuple = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
509
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
286
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class snake_case__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): A__ = BertTokenizer A__ = BertTokenizerFast A__ = True A__ = True A__ = filter_non_english def A_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' super().setUp() __snake_case : List[Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def A_ ( self : Dict , __a : Optional[int] ) -> int: '''simple docstring''' __snake_case : List[Any] = 'UNwant\u00E9d,running' __snake_case : Tuple = 'unwanted, running' return input_text, output_text def A_ ( self : Tuple ) -> Dict: '''simple docstring''' __snake_case : Any = self.tokenizer_class(self.vocab_file ) __snake_case : Tuple = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__a , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] ) def A_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case : int = self.get_tokenizer() __snake_case : Optional[Any] = self.get_rust_tokenizer() __snake_case : int = 'UNwant\u00E9d,running' __snake_case : Any = tokenizer.tokenize(__a ) __snake_case : Dict = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __snake_case : Optional[int] = tokenizer.encode(__a , add_special_tokens=__a ) __snake_case : Optional[int] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) __snake_case : str = self.get_rust_tokenizer() __snake_case : Tuple = tokenizer.encode(__a ) __snake_case : Tuple = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) # With lower casing __snake_case : Union[str, Any] = self.get_tokenizer(do_lower_case=__a ) __snake_case : Any = self.get_rust_tokenizer(do_lower_case=__a ) __snake_case : Optional[int] = 'UNwant\u00E9d,running' __snake_case : List[Any] = tokenizer.tokenize(__a ) __snake_case : List[str] = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __snake_case : List[str] = tokenizer.encode(__a , add_special_tokens=__a ) __snake_case : Union[str, Any] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) __snake_case : Union[str, Any] = self.get_rust_tokenizer() __snake_case : Dict = tokenizer.encode(__a ) __snake_case : str = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def A_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def A_ ( self : List[str] ) -> Any: '''simple docstring''' __snake_case : Optional[Any] = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : str ) -> int: '''simple docstring''' __snake_case : Dict = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def A_ ( self : List[str] ) -> Tuple: '''simple docstring''' __snake_case : str = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : str ) -> str: '''simple docstring''' __snake_case : Tuple = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def A_ ( self : str ) -> Optional[Any]: '''simple docstring''' __snake_case : int = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Dict ) -> List[str]: '''simple docstring''' __snake_case : Any = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[Any] = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def A_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' __snake_case : List[str] = BasicTokenizer(do_lower_case=__a , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def A_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' __snake_case : int = BasicTokenizer() __snake_case : List[str] = 'a\n\'ll !!to?\'d of, can\'t.' __snake_case : str = ['a', '\'', 'll', '!', '!', 'to', '?', '\'', 'd', 'of', ',', 'can', '\'', 't', '.'] self.assertListEqual(tokenizer.tokenize(__a ) , __a ) def A_ ( self : List[Any] ) -> Tuple: '''simple docstring''' __snake_case : str = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __snake_case : Dict = {} for i, token in enumerate(__a ): __snake_case : str = i __snake_case : List[str] = WordpieceTokenizer(vocab=__a , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def A_ ( self : Dict ) -> List[str]: '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def A_ ( self : List[str] ) -> List[Any]: '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def A_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def A_ ( self : List[Any] ) -> Tuple: '''simple docstring''' __snake_case : str = self.get_tokenizer() __snake_case : int = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) @slow def A_ ( self : List[str] ) -> List[Any]: '''simple docstring''' __snake_case : Dict = self.tokenizer_class.from_pretrained('bert-base-uncased' ) __snake_case : Dict = tokenizer.encode('sequence builders' , add_special_tokens=__a ) __snake_case : int = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) __snake_case : int = tokenizer.build_inputs_with_special_tokens(__a ) __snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def A_ ( self : Optional[int] ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __snake_case : Optional[Any] = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __snake_case : Tuple = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) __snake_case : Optional[Any] = tokenizer_r.do_lower_case if hasattr(__a , 'do_lower_case' ) else False __snake_case : Any = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def A_ ( self : Any ) -> List[Any]: '''simple docstring''' __snake_case : Any = ['的', '人', '有'] __snake_case : List[Any] = ''.join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case : List[Any] = True __snake_case : int = self.tokenizer_class.from_pretrained(__a , **__a ) __snake_case : Tuple = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __snake_case : Union[str, Any] = tokenizer_p.encode(__a , add_special_tokens=__a ) __snake_case : Optional[Any] = tokenizer_r.encode(__a , add_special_tokens=__a ) __snake_case : Dict = tokenizer_r.convert_ids_to_tokens(__a ) __snake_case : str = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) __snake_case : Any = False __snake_case : Tuple = self.rust_tokenizer_class.from_pretrained(__a , **__a ) __snake_case : int = self.tokenizer_class.from_pretrained(__a , **__a ) __snake_case : int = tokenizer_r.encode(__a , add_special_tokens=__a ) __snake_case : str = tokenizer_p.encode(__a , add_special_tokens=__a ) __snake_case : Optional[Any] = tokenizer_r.convert_ids_to_tokens(__a ) __snake_case : Optional[Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". __snake_case : Dict = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a )
286
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : List[Any] = (UniPCMultistepScheduler,) A__ : Any = (('''num_inference_steps''', 2_5),) def snake_case_ ( self : Dict , **_snake_case : Union[str, Any] ): __lowercase : List[str] = { '''num_train_timesteps''': 1000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**_snake_case ) return config def snake_case_ ( self : str , _snake_case : List[str]=0 , **_snake_case : str ): __lowercase : Tuple = dict(self.forward_default_kwargs ) __lowercase : Dict = kwargs.pop('''num_inference_steps''' , _snake_case ) __lowercase : int = self.dummy_sample __lowercase : int = 0.1 * sample __lowercase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowercase : List[Any] = self.get_scheduler_config(**_snake_case ) __lowercase : Tuple = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals __lowercase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) __lowercase : List[Any] = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals __lowercase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowercase , __lowercase : Dict = sample, sample for t in range(_snake_case , time_step + scheduler.config.solver_order + 1 ): __lowercase : int = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample __lowercase : int = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case_ ( self : Dict , _snake_case : Optional[int]=0 , **_snake_case : Dict ): __lowercase : Any = dict(self.forward_default_kwargs ) __lowercase : List[Any] = kwargs.pop('''num_inference_steps''' , _snake_case ) __lowercase : int = self.dummy_sample __lowercase : Optional[Any] = 0.1 * sample __lowercase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowercase : Any = self.get_scheduler_config() __lowercase : Union[str, Any] = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) __lowercase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) __lowercase : Tuple = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) __lowercase : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] __lowercase : str = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample __lowercase : Union[str, Any] = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case_ ( self : Tuple , _snake_case : Dict=None , **_snake_case : List[str] ): if scheduler is None: __lowercase : List[str] = self.scheduler_classes[0] __lowercase : List[Any] = self.get_scheduler_config(**_snake_case ) __lowercase : Union[str, Any] = scheduler_class(**_snake_case ) __lowercase : str = self.scheduler_classes[0] __lowercase : int = self.get_scheduler_config(**_snake_case ) __lowercase : Any = scheduler_class(**_snake_case ) __lowercase : Optional[Any] = 10 __lowercase : Union[str, Any] = self.dummy_model() __lowercase : Any = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): __lowercase : List[str] = model(_snake_case , _snake_case ) __lowercase : int = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample return sample def snake_case_ ( self : Dict ): __lowercase : List[Any] = dict(self.forward_default_kwargs ) __lowercase : str = kwargs.pop('''num_inference_steps''' , _snake_case ) for scheduler_class in self.scheduler_classes: __lowercase : List[Any] = self.get_scheduler_config() __lowercase : List[Any] = scheduler_class(**_snake_case ) __lowercase : str = self.dummy_sample __lowercase : Any = 0.1 * sample if num_inference_steps is not None and hasattr(_snake_case , '''set_timesteps''' ): scheduler.set_timesteps(_snake_case ) elif num_inference_steps is not None and not hasattr(_snake_case , '''set_timesteps''' ): __lowercase : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowercase : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] __lowercase : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] __lowercase : Optional[int] = scheduler.timesteps[5] __lowercase : List[str] = scheduler.timesteps[6] __lowercase : Any = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample __lowercase : List[Any] = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self : List[Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults __lowercase : Any = UniPCMultistepScheduler(**self.get_scheduler_config() ) __lowercase : Union[str, Any] = self.full_loop(scheduler=_snake_case ) __lowercase : Union[str, Any] = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 __lowercase : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowercase : List[Any] = DEISMultistepScheduler.from_config(scheduler.config ) __lowercase : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowercase : Tuple = UniPCMultistepScheduler.from_config(scheduler.config ) __lowercase : Dict = self.full_loop(scheduler=_snake_case ) __lowercase : Optional[Any] = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def snake_case_ ( self : int ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_snake_case ) def snake_case_ ( self : List[str] ): self.check_over_configs(thresholding=_snake_case ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_snake_case , prediction_type=_snake_case , sample_max_value=_snake_case , solver_order=_snake_case , solver_type=_snake_case , ) def snake_case_ ( self : Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def snake_case_ ( self : List[str] ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , ) __lowercase : str = self.full_loop( solver_order=_snake_case , solver_type=_snake_case , prediction_type=_snake_case , ) assert not torch.isnan(_snake_case ).any(), "Samples have nan numbers" def snake_case_ ( self : Any ): self.check_over_configs(lower_order_final=_snake_case ) self.check_over_configs(lower_order_final=_snake_case ) def snake_case_ ( self : Dict ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_snake_case , time_step=0 ) def snake_case_ ( self : Tuple ): __lowercase : int = self.full_loop() __lowercase : Union[str, Any] = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.24_64 ) < 1E-3 def snake_case_ ( self : Tuple ): __lowercase : Dict = self.full_loop(prediction_type='''v_prediction''' ) __lowercase : Dict = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 0.10_14 ) < 1E-3 def snake_case_ ( self : int ): __lowercase : List[str] = self.scheduler_classes[0] __lowercase : Dict = self.get_scheduler_config(thresholding=_snake_case , dynamic_thresholding_ratio=0 ) __lowercase : str = scheduler_class(**_snake_case ) __lowercase : Any = 10 __lowercase : Optional[int] = self.dummy_model() __lowercase : Optional[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): __lowercase : Union[str, Any] = model(_snake_case , _snake_case ) __lowercase : Union[str, Any] = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample assert sample.dtype == torch.floataa def snake_case_ ( self : Optional[Any] , **_snake_case : List[str] ): for scheduler_class in self.scheduler_classes: __lowercase : int = self.get_scheduler_config(**_snake_case ) __lowercase : Optional[Any] = scheduler_class(**_snake_case ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
284
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase : Tuple = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCAmelCase : Dict = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __lowerCAmelCase : Optional[int] = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: def remove_articles(__lowerCAmelCase ): __lowercase : int = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(__lowerCAmelCase , ''' ''' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase ): __lowercase : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: __lowercase : Union[str, Any] = [any(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for ref in refs ) for pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase )] return (sum(__lowerCAmelCase ) / len(__lowerCAmelCase )) * 100 def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: __lowercase : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams] __lowercase : Dict = Counter(__lowerCAmelCase ) __lowercase : Union[str, Any] = Counter(__lowerCAmelCase ) __lowercase : str = Counter() for sgram, scount in sgramcounter.items(): __lowercase : List[Any] = scount * numref __lowercase : Optional[Any] = Counter(__lowerCAmelCase ) __lowercase : Union[str, Any] = Counter() for cgram, ccount in cgramcounter.items(): __lowercase : Union[str, Any] = ccount * numref # KEEP __lowercase : Optional[Any] = sgramcounter_rep & cgramcounter_rep __lowercase : Dict = keepgramcounter_rep & rgramcounter __lowercase : str = sgramcounter_rep & rgramcounter __lowercase : Tuple = 0 __lowercase : int = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowercase : Any = 1 __lowercase : Union[str, Any] = 1 if len(__lowerCAmelCase ) > 0: __lowercase : List[str] = keeptmpscorea / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __lowercase : Dict = keeptmpscorea / sum(keepgramcounterall_rep.values() ) __lowercase : Dict = 0 if keepscore_precision > 0 or keepscore_recall > 0: __lowercase : str = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __lowercase : Tuple = sgramcounter_rep - cgramcounter_rep __lowercase : str = delgramcounter_rep - rgramcounter __lowercase : int = sgramcounter_rep - rgramcounter __lowercase : Dict = 0 __lowercase : List[str] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowercase : Union[str, Any] = 1 if len(__lowerCAmelCase ) > 0: __lowercase : Union[str, Any] = deltmpscorea / len(__lowerCAmelCase ) # ADDITION __lowercase : int = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) __lowercase : Tuple = set(__lowerCAmelCase ) & set(__lowerCAmelCase ) __lowercase : Any = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) __lowercase : Tuple = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowercase : int = 1 __lowercase : Any = 1 if len(__lowerCAmelCase ) > 0: __lowercase : Any = addtmpscore / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: __lowercase : str = addtmpscore / len(__lowerCAmelCase ) __lowercase : int = 0 if addscore_precision > 0 or addscore_recall > 0: __lowercase : Any = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: __lowercase : Tuple = len(__lowerCAmelCase ) __lowercase : str = ssent.split(''' ''' ) __lowercase : List[str] = csent.split(''' ''' ) __lowercase : Tuple = [] __lowercase : Any = [] __lowercase : Optional[Any] = [] __lowercase : Optional[int] = [] __lowercase : Dict = [] __lowercase : Optional[int] = [] __lowercase : Dict = [] __lowercase : str = [] __lowercase : Dict = [] __lowercase : List[Any] = [] for rsent in rsents: __lowercase : Any = rsent.split(''' ''' ) __lowercase : Optional[int] = [] __lowercase : List[Any] = [] __lowercase : Tuple = [] ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: __lowercase : List[str] = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: __lowercase : Union[str, Any] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: __lowercase : int = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: __lowercase : Dict = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: __lowercase : int = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: __lowercase : str = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: __lowercase : int = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: __lowercase : Any = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: __lowercase : Optional[int] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(__lowerCAmelCase ) ((__lowercase) , (__lowercase) , (__lowercase)) : List[str] = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((__lowercase) , (__lowercase) , (__lowercase)) : Optional[int] = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((__lowercase) , (__lowercase) , (__lowercase)) : Optional[Any] = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((__lowercase) , (__lowercase) , (__lowercase)) : Any = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowercase : List[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __lowercase : Any = sum([delascore, delascore, delascore, delascore] ) / 4 __lowercase : int = sum([addascore, addascore, addascore, addascore] ) / 4 __lowercase : str = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = "13a" , __lowerCAmelCase = True ) -> List[str]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: __lowercase : List[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __lowercase : Union[str, Any] = sacrebleu.metrics.bleu._get_tokenizer(__lowerCAmelCase )()(__lowerCAmelCase ) else: __lowercase : str = sacrebleu.TOKENIZERS[tokenizer]()(__lowerCAmelCase ) elif tokenizer == "moses": __lowercase : Tuple = sacremoses.MosesTokenizer().tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase , escape=__lowerCAmelCase ) elif tokenizer == "penn": __lowercase : str = sacremoses.MosesTokenizer().penn_tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase ) else: __lowercase : int = sentence if not return_str: __lowercase : List[Any] = normalized_sent.split() return normalized_sent def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: if not (len(__lowerCAmelCase ) == len(__lowerCAmelCase ) == len(__lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) __lowercase : str = 0 for src, pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): sari_score += SARIsent(normalize(__lowerCAmelCase ) , normalize(__lowerCAmelCase ) , [normalize(__lowerCAmelCase ) for sent in refs] ) __lowercase : int = sari_score / len(__lowerCAmelCase ) return 100 * sari_score def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="exp" , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , ) -> str: __lowercase : List[Any] = len(references[0] ) if any(len(__lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __lowercase : int = [[refs[i] for refs in references] for i in range(__lowerCAmelCase )] __lowercase : List[str] = sacrebleu.corpus_bleu( __lowerCAmelCase , __lowerCAmelCase , smooth_method=__lowerCAmelCase , smooth_value=__lowerCAmelCase , force=__lowerCAmelCase , lowercase=__lowerCAmelCase , use_effective_order=__lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case_ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def snake_case_ ( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : List[Any] ): __lowercase : List[Any] = {} result.update({'''sari''': compute_sari(sources=_snake_case , predictions=_snake_case , references=_snake_case )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_snake_case , references=_snake_case )} ) result.update({'''exact''': compute_em(predictions=_snake_case , references=_snake_case )} ) return result
284
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class UpperCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self , UpperCamelCase_=None , UpperCamelCase_=None , *UpperCamelCase_ , **UpperCamelCase_ ): super().__init__(*__UpperCamelCase , **__UpperCamelCase ) if config is None: assert isinstance(self.model , __UpperCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f" {self.model.__class__}" ) lowercase_ :str = self.model.config else: lowercase_ :Union[str, Any] = config lowercase_ :Any = data_args lowercase_ :Tuple = self.config.tgt_vocab_size if isinstance(self.config , __UpperCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for" ''' padding..''' ) if self.args.label_smoothing == 0: lowercase_ :Tuple = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase_ :Union[str, Any] = label_smoothed_nll_loss def UpperCamelCase ( self , UpperCamelCase_ ): if self.optimizer is None: lowercase_ :int = ['''bias''', '''LayerNorm.weight'''] lowercase_ :str = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase_ :Any = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase_ :Optional[int] = Adafactor lowercase_ :str = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase_ :List[str] = AdamW lowercase_ :Union[str, Any] = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase_ :Optional[Any] = self.args.learning_rate if self.sharded_ddp: lowercase_ :int = OSS( params=__UpperCamelCase , optim=__UpperCamelCase , **__UpperCamelCase , ) else: lowercase_ :Tuple = optimizer_cls(__UpperCamelCase , **__UpperCamelCase ) if self.lr_scheduler is None: lowercase_ :Union[str, Any] = self._get_lr_scheduler(__UpperCamelCase ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Any = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase_ :Tuple = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase_ :Any = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowercase_ :Optional[Any] = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__UpperCamelCase ) return scheduler def UpperCamelCase ( self ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase_ :List[str] = model(**__UpperCamelCase , use_cache=__UpperCamelCase )[0] lowercase_ :int = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowercase_ , lowercase_ :List[Any] = model(**__UpperCamelCase , labels=__UpperCamelCase , use_cache=__UpperCamelCase )[:2] else: # compute label smoothed loss lowercase_ :Dict = model(**__UpperCamelCase , use_cache=__UpperCamelCase )[0] lowercase_ :List[Any] = torch.nn.functional.log_softmax(__UpperCamelCase , dim=-1 ) lowercase_ , lowercase_ :List[str] = self.loss_fn(__UpperCamelCase , __UpperCamelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Optional[Any] = inputs.pop('''labels''' ) lowercase_ , lowercase_ :Dict = self._compute_loss(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return loss def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , ): lowercase_ :Dict = self._prepare_inputs(__UpperCamelCase ) lowercase_ :Tuple = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase_ :List[Any] = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **__UpperCamelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase_ :int = self._pad_tensors_to_max_len(__UpperCamelCase , gen_kwargs['''max_length'''] ) lowercase_ :List[str] = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase_ , lowercase_ :Union[str, Any] = self._compute_loss(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowercase_ :List[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase_ :Tuple = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase_ :Optional[Any] = self._pad_tensors_to_max_len(__UpperCamelCase , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): # If PAD token is not defined at least EOS token has to be defined lowercase_ :List[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f" padded to `max_length`={max_length}" ) lowercase_ :Optional[Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowercase_ :Optional[int] = tensor return padded_tensor
257
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["projector.weight"] _UpperCAmelCase = downstream_dict["projector.bias"] _UpperCAmelCase = downstream_dict["model.post_net.linear.weight"] _UpperCAmelCase = downstream_dict["model.post_net.linear.bias"] return model def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["model.linear.weight"] _UpperCAmelCase = downstream_dict["model.linear.bias"] return model def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = WavaVecaForXVector.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["connector.weight"] _UpperCAmelCase = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _UpperCAmelCase = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _UpperCAmelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] _UpperCAmelCase = downstream_dict["objective.W"] return model @torch.no_grad() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = torch.load(_lowerCAmelCase , map_location="cpu" ) _UpperCAmelCase = checkpoint["Downstream"] _UpperCAmelCase = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , do_normalize=_lowerCAmelCase ) _UpperCAmelCase = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): _UpperCAmelCase = convert_classification(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForAudioFrameClassification" ): _UpperCAmelCase = convert_diarization(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForXVector" ): _UpperCAmelCase = convert_xvector(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _UpperCAmelCase = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_lowerCAmelCase ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
684
0
"""simple docstring""" from __future__ import annotations a_ = list[list[int]] # assigning initial values to the grid a_ = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a_ = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __UpperCAmelCase ( __UpperCamelCase ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __UpperCAmelCase ( __UpperCamelCase ): if location := find_empty_location(lowerCAmelCase__ ): __lowercase ,__lowercase : Any = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase : List[str] = digit if sudoku(lowerCAmelCase__ ) is not None: return grid __lowercase : Union[str, Any] = 0 return None def __UpperCAmelCase ( __UpperCamelCase ): for row in grid: for cell in row: print(lowerCAmelCase__ , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 2_0) print_solution(example_grid) print('\nExample grid solution:') a_ = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
714
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : List[Any] = len(__UpperCamelCase ) for i in range(length - 1 ): __lowercase : Optional[Any] = i for k in range(i + 1 , __UpperCamelCase ): if collection[k] < collection[least]: __lowercase : int = k if least != i: __lowercase ,__lowercase : Any = (collection[i], collection[least]) return collection if __name__ == "__main__": a_ = input('Enter numbers separated by a comma:\n').strip() a_ = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
523
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=13 , lowerCamelCase : Any=32 , lowerCamelCase : List[str]=3 , lowerCamelCase : Any=4 , lowerCamelCase : Tuple=[10, 20, 30, 40] , lowerCamelCase : Dict=[2, 2, 3, 2] , lowerCamelCase : List[Any]=True , lowerCamelCase : List[Any]=True , lowerCamelCase : Dict=37 , lowerCamelCase : Optional[Any]="gelu" , lowerCamelCase : List[Any]=10 , lowerCamelCase : Any=0.02 , lowerCamelCase : Dict=["stage2", "stage3", "stage4"] , lowerCamelCase : str=3 , lowerCamelCase : str=None , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_stages _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = out_features _UpperCAmelCase = num_labels _UpperCAmelCase = scope _UpperCAmelCase = num_stages def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowerCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowerCamelCase ( self : Any , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase = UperNetForSemanticSegmentation(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() _UpperCAmelCase = model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = (UperNetForSemanticSegmentation,) if is_torch_available() else () _lowerCamelCase = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def lowerCamelCase ( self : Tuple ) -> Tuple: """simple docstring""" _UpperCAmelCase = UperNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def lowerCamelCase ( self : Any ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self : Tuple ) -> Any: """simple docstring""" return def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(lowerCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowerCamelCase ( self : int ) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowerCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCamelCase ( self : str ) -> Dict: """simple docstring""" pass def lowerCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : str ): _UpperCAmelCase = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) _UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(lowerCamelCase ) _UpperCAmelCase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowerCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass @slow def lowerCamelCase ( self : str ) -> Optional[int]: """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = UperNetForSemanticSegmentation.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: _UpperCAmelCase = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _UpperCAmelCase = Image.open(__snake_case ).convert("""RGB""" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : str ) -> List[str]: """simple docstring""" _UpperCAmelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _UpperCAmelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(lowerCamelCase ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) with torch.no_grad(): _UpperCAmelCase = model(**lowerCamelCase ) _UpperCAmelCase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase , atol=1E-4 ) ) def lowerCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _UpperCAmelCase = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(lowerCamelCase ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) with torch.no_grad(): _UpperCAmelCase = model(**lowerCamelCase ) _UpperCAmelCase = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) _UpperCAmelCase = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase , atol=1E-4 ) )
108
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : Optional[int] = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __UpperCamelCase (_UpperCAmelCase ): __A = '''trocr''' __A = ['''past_key_values'''] __A = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _lowerCAmelCase=5_0265 , _lowerCAmelCase=1024 , _lowerCAmelCase=12 , _lowerCAmelCase=16 , _lowerCAmelCase=4096 , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> List[Any]: '''simple docstring''' lowercase = vocab_size lowercase = d_model lowercase = decoder_layers lowercase = decoder_attention_heads lowercase = decoder_ffn_dim lowercase = activation_function lowercase = max_position_embeddings lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = init_std lowercase = decoder_layerdrop lowercase = use_cache lowercase = scale_embedding lowercase = use_learned_position_embeddings lowercase = layernorm_embedding super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
588
0
'''simple docstring''' from __future__ import annotations class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase__ ) -> Tuple: SCREAMING_SNAKE_CASE : Dict = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.' ) if len(lowercase__ ) != 0: SCREAMING_SNAKE_CASE : int = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowercase__ ) != cols: raise error for value in row: if not isinstance(lowercase__ , (int, float) ): raise error SCREAMING_SNAKE_CASE : Tuple = rows else: SCREAMING_SNAKE_CASE : Tuple = [] def _UpperCamelCase ( self ) -> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _UpperCamelCase ( self ) -> int: return len(self.rows ) @property def _UpperCamelCase ( self ) -> int: return len(self.rows[0] ) @property def _UpperCamelCase ( self ) -> tuple[int, int]: return (self.num_rows, self.num_columns) @property def _UpperCamelCase ( self ) -> bool: return self.order[0] == self.order[1] def _UpperCamelCase ( self ) -> Matrix: SCREAMING_SNAKE_CASE : List[Any] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowercase__ ) def _UpperCamelCase ( self ) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _UpperCamelCase ( self ) -> bool: return bool(self.determinant() ) def _UpperCamelCase ( self , lowercase__ , lowercase__ ) -> int: SCREAMING_SNAKE_CASE : Union[str, Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowercase__ ).determinant() def _UpperCamelCase ( self , lowercase__ , lowercase__ ) -> int: if (row + column) % 2 == 0: return self.get_minor(lowercase__ , lowercase__ ) return -1 * self.get_minor(lowercase__ , lowercase__ ) def _UpperCamelCase ( self ) -> Matrix: return Matrix( [ [self.get_minor(lowercase__ , lowercase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _UpperCamelCase ( self ) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _UpperCamelCase ( self ) -> Matrix: SCREAMING_SNAKE_CASE : Any = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowercase__ ) def _UpperCamelCase ( self ) -> Matrix: SCREAMING_SNAKE_CASE : Optional[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse' ) return self.adjugate() * (1 / determinant) def __repr__( self ) -> str: return str(self.rows ) def __str__( self ) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(lowercase__ ) for value in row] ) + '.]' for row in self.rows ] ) + "]" ) def _UpperCamelCase ( self , lowercase__ , lowercase__ = None ) -> None: SCREAMING_SNAKE_CASE : str = TypeError('Row must be a list containing all ints and/or floats' ) if not isinstance(lowercase__ , lowercase__ ): raise type_error for value in row: if not isinstance(lowercase__ , (int, float) ): raise type_error if len(lowercase__ ) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix' ) if position is None: self.rows.append(lowercase__ ) else: SCREAMING_SNAKE_CASE : Optional[Any] = self.rows[0:position] + [row] + self.rows[position:] def _UpperCamelCase ( self , lowercase__ , lowercase__ = None ) -> None: SCREAMING_SNAKE_CASE : Tuple = TypeError( 'Column must be a list containing all ints and/or floats' ) if not isinstance(lowercase__ , lowercase__ ): raise type_error for value in column: if not isinstance(lowercase__ , (int, float) ): raise type_error if len(lowercase__ ) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix' ) if position is None: SCREAMING_SNAKE_CASE : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: SCREAMING_SNAKE_CASE : Optional[int] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , lowercase__ ) -> bool: if not isinstance(lowercase__ , lowercase__ ): return NotImplemented return self.rows == other.rows def __ne__( self , lowercase__ ) -> bool: return not self == other def __neg__( self ) -> Matrix: return self * -1 def __add__( self , lowercase__ ) -> Matrix: if self.order != other.order: raise ValueError('Addition requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , lowercase__ ) -> Matrix: if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , lowercase__ ) -> Matrix: if isinstance(lowercase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowercase__ , lowercase__ ): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second' ) return Matrix( [ [Matrix.dot_product(lowercase__ , lowercase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix' ) def __pow__( self , lowercase__ ) -> Matrix: if not isinstance(lowercase__ , lowercase__ ): raise TypeError('A Matrix can only be raised to the power of an int' ) if not self.is_square: raise ValueError('Only square matrices can be raised to a power' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power' ) SCREAMING_SNAKE_CASE : Union[str, Any] = self for _ in range(other - 1 ): result *= self return result @classmethod def _UpperCamelCase ( cls , lowercase__ , lowercase__ ) -> int: return sum(row[i] * column[i] for i in range(len(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
179
'''simple docstring''' from __future__ import annotations def __lowerCAmelCase ( a_ , a_ = None ) -> list[list[str]]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = word_bank or [] # create a table SCREAMING_SNAKE_CASE : int = len(a_ ) + 1 SCREAMING_SNAKE_CASE : list[list[list[str]]] = [] for _ in range(a_ ): table.append([] ) # seed value SCREAMING_SNAKE_CASE : List[Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(a_ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(a_ )] == word: SCREAMING_SNAKE_CASE : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(a_ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(a_ )]: combination.reverse() return table[len(a_ )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
179
1
from ....configuration_utils import PretrainedConfig from ....utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Any = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class a ( lowercase__ ): """simple docstring""" a : Optional[Any] = 'van' def __init__( self : Union[str, Any] , __lowercase : int=224 , __lowercase : List[Any]=3 , __lowercase : List[str]=[7, 3, 3, 3] , __lowercase : Tuple=[4, 2, 2, 2] , __lowercase : Any=[64, 128, 320, 512] , __lowercase : str=[3, 3, 12, 3] , __lowercase : Tuple=[8, 8, 4, 4] , __lowercase : Union[str, Any]="gelu" , __lowercase : Optional[int]=0.02 , __lowercase : Union[str, Any]=1e-6 , __lowercase : Tuple=1e-2 , __lowercase : int=0.0 , __lowercase : Any=0.0 , **__lowercase : Any , ) -> List[str]: super().__init__(**__lowercase ) __UpperCAmelCase : Dict = image_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : List[str] = patch_sizes __UpperCAmelCase : Tuple = strides __UpperCAmelCase : List[Any] = hidden_sizes __UpperCAmelCase : Tuple = depths __UpperCAmelCase : Optional[int] = mlp_ratios __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Dict = layer_norm_eps __UpperCAmelCase : Union[str, Any] = layer_scale_init_value __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : Optional[int] = dropout_rate
63
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
63
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 A_ : List[Any] = get_tests_dir("fixtures") class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # A mock response for an HTTP head request to emulate server down snake_case__ : Optional[Any] = mock.Mock() snake_case__ : Optional[Any] = 5_0_0 snake_case__ : Optional[Any] = {} snake_case__ : Dict = HTTPError snake_case__ : int = {} # Download this model to make sure it's in the cache. snake_case__ : Dict = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__SCREAMING_SNAKE_CASE ) as mock_head: snake_case__ : List[Any] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self ): # This test is for deprecated behavior and can be removed in v5 snake_case__ : Optional[Any] = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def __UpperCamelCase ( self ): with self.assertRaises(__SCREAMING_SNAKE_CASE ): # config is in subfolder, the following should not work without specifying the subfolder snake_case__ : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) snake_case__ : Optional[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @is_staging_test class __snake_case ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCamelCase ( cls ): snake_case__ : str = TOKEN HfFolder.save_token(__SCREAMING_SNAKE_CASE ) @classmethod def __UpperCamelCase ( cls ): try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def __UpperCamelCase ( self ): snake_case__ : Dict = ViTImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) snake_case__ : Optional[int] = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id="""test-image-processor""" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token ) snake_case__ : List[str] = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = ViTImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) snake_case__ : List[str] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __SCREAMING_SNAKE_CASE , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token ) snake_case__ : Any = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def __UpperCamelCase ( self ): CustomImageProcessor.register_for_auto_class() snake_case__ : List[str] = CustomImageProcessor.from_pretrained(__SCREAMING_SNAKE_CASE ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) snake_case__ : List[Any] = AutoImageProcessor.from_pretrained( f"{USER}/test-dynamic-image-processor" , trust_remote_code=__SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
718
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer A_ : Any = logging.get_logger(__name__) A_ : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A_ : int = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } A_ : Optional[Any] = {"mobilebert-uncased": 512} A_ : Optional[Any] = {} class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = MobileBertTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("""strip_accents""" , __SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): snake_case__ : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop("""type""" ) ) snake_case__ : List[str] = do_lower_case snake_case__ : List[Any] = strip_accents snake_case__ : Any = tokenize_chinese_chars snake_case__ : List[Any] = normalizer_class(**__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = do_lower_case def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): snake_case__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : int = [self.sep_token_id] snake_case__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : Optional[int] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
419
0
class a : """simple docstring""" def __init__( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = {} def UpperCAmelCase ( self : str ) -> None: print(self.vertex ) for i in self.vertex: print(__lowercase , """ -> """ , """ -> """.join([str(__lowercase ) for j in self.vertex[i]] ) ) def UpperCAmelCase ( self : Tuple , __lowercase : int , __lowercase : int ) -> None: # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(__lowercase ) else: # else make a new vertex __UpperCAmelCase : Optional[int] = [to_vertex] def UpperCAmelCase ( self : int ) -> None: # visited array for storing already visited nodes __UpperCAmelCase : Union[str, Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(__lowercase , __lowercase ) def UpperCAmelCase ( self : List[str] , __lowercase : int , __lowercase : list ) -> None: # mark start vertex as visited __UpperCAmelCase : Optional[Any] = True print(__lowercase , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(__lowercase , __lowercase ) if __name__ == "__main__": a : Optional[Any] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
63
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Optional[int] ) -> Dict: """simple docstring""" A__ = tempfile.mkdtemp() # fmt: off A__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A__ = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) A__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A__ = {"""unk_token""": """<unk>"""} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowerCAmelCase ) ) A__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } A__ = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : str , **__lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : Dict , **__lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : List[Any] , **__lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a_ ( self : int ) -> Tuple: """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def a_ ( self : int ) -> Any: """simple docstring""" A__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) A__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def a_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__lowerCAmelCase , return_tensors="""np""" ) A__ = processor(images=__lowerCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = processor(text=__lowerCAmelCase ) A__ = tokenizer(__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self : str ) -> Optional[Any]: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def a_ ( self : Optional[int] ) -> Tuple: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(__lowerCAmelCase ) A__ = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Dict ) -> str: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
176
0
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCamelCase : """simple docstring""" @staticmethod def lowerCamelCase__ ( *UpperCAmelCase_ ,**UpperCAmelCase_ ): pass def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = np.array(snake_case_ ) _lowercase : int = npimg.shape return {"hash": hashimage(snake_case_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE_ : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = MaskGenerationPipeline(model=_a ,image_processor=_a ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def lowerCamelCase__ ( self ): pass @slow @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = pipeline("""mask-generation""" ,model="""facebook/sam-vit-huge""" ) _lowercase : Any = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" ,points_per_batch=2_56 ) # Shortening by hashing _lowercase : int = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(_a ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (4_80, 6_40)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (4_80, 6_40)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (4_80, 6_40)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (4_80, 6_40)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (4_80, 6_40)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (4_80, 6_40)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (4_80, 6_40)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (4_80, 6_40)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (4_80, 6_40)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (4_80, 6_40)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (4_80, 6_40)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (4_80, 6_40)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (4_80, 6_40)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (4_80, 6_40)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (4_80, 6_40)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (4_80, 6_40)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (4_80, 6_40)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (4_80, 6_40)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (4_80, 6_40)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (4_80, 6_40)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (4_80, 6_40)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (4_80, 6_40)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (4_80, 6_40)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (4_80, 6_40)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (4_80, 6_40)}, """scores""": 0.8871} ] ,) # fmt: on @require_torch @slow def lowerCamelCase__ ( self ): _lowercase : Dict = """facebook/sam-vit-huge""" _lowercase : List[Any] = pipeline("""mask-generation""" ,model=_a ) _lowercase : Dict = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" ,pred_iou_thresh=1 ,points_per_batch=2_56 ) # Shortening by hashing _lowercase : Optional[int] = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(_a ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_a ,decimals=4 ) ,[ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_80, 6_40)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_80, 6_40)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_80, 6_40)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_80, 6_40)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_80, 6_40)}, """scores""": 1.0053}, ] ,)
710
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCAmelCase: List[Any] = logging.get_logger(__name__) class UpperCamelCase ( enum.Enum ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : str = 1 @add_end_docstrings(snake_case ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "generated" def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): super().__init__(*UpperCAmelCase_ ,**UpperCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowerCamelCase__ ( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,**UpperCAmelCase_ ,): _lowercase : str = {} if truncation is not None: _lowercase : Dict = truncation _lowercase : Any = generate_kwargs _lowercase : Optional[Any] = {} if return_tensors is not None and return_type is None: _lowercase : str = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: _lowercase : Tuple = return_type if clean_up_tokenization_spaces is not None: _lowercase : Optional[Any] = clean_up_tokenization_spaces if stop_sequence is not None: _lowercase : Optional[Any] = self.tokenizer.encode(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) _lowercase : List[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): return True def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] ,UpperCAmelCase_ ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) _lowercase : int = ([prefix + arg for arg in args[0]],) _lowercase : Any = True elif isinstance(args[0] ,UpperCAmelCase_ ): _lowercase : Optional[int] = (prefix + args[0],) _lowercase : List[Any] = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) _lowercase : List[Any] = self.tokenizer(*UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Union[str, Any] = super().__call__(*UpperCAmelCase_ ,**UpperCAmelCase_ ) if ( isinstance(args[0] ,UpperCAmelCase_ ) and all(isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) for el in args[0] ) and all(len(UpperCAmelCase_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=TruncationStrategy.DO_NOT_TRUNCATE ,**UpperCAmelCase_ ): _lowercase : List[str] = self._parse_and_tokenize(UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,**UpperCAmelCase_ ) return inputs def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if self.framework == "pt": _lowercase , _lowercase : List[str] = model_inputs["""input_ids"""].shape elif self.framework == "tf": _lowercase , _lowercase : Tuple = tf.shape(model_inputs["""input_ids"""] ).numpy() _lowercase : List[str] = generate_kwargs.get("""min_length""" ,self.model.config.min_length ) _lowercase : Any = generate_kwargs.get("""max_length""" ,self.model.config.max_length ) self.check_inputs(UpperCAmelCase_ ,generate_kwargs["""min_length"""] ,generate_kwargs["""max_length"""] ) _lowercase : List[str] = self.model.generate(**UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : str = output_ids.shape[0] if self.framework == "pt": _lowercase : List[str] = output_ids.reshape(UpperCAmelCase_ ,out_b // in_b ,*output_ids.shape[1:] ) elif self.framework == "tf": _lowercase : Tuple = tf.reshape(UpperCAmelCase_ ,(in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=ReturnType.TEXT ,UpperCAmelCase_=False ): _lowercase : List[str] = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: _lowercase : List[str] = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: _lowercase : Dict = { f"""{self.return_name}_text""": self.tokenizer.decode( UpperCAmelCase_ ,skip_special_tokens=UpperCAmelCase_ ,clean_up_tokenization_spaces=UpperCAmelCase_ ,) } records.append(UpperCAmelCase_ ) return records @add_end_docstrings(snake_case ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "summary" def __call__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return super().__call__(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(snake_case ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "translation" def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,UpperCAmelCase_=TruncationStrategy.DO_NOT_TRUNCATE ,UpperCAmelCase_=None ,UpperCAmelCase_=None ): if getattr(self.tokenizer ,"""_build_translation_inputs""" ,UpperCAmelCase_ ): return self.tokenizer._build_translation_inputs( *UpperCAmelCase_ ,return_tensors=self.framework ,truncation=UpperCAmelCase_ ,src_lang=UpperCAmelCase_ ,tgt_lang=UpperCAmelCase_ ) else: return super()._parse_and_tokenize(*UpperCAmelCase_ ,truncation=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,**UpperCAmelCase_ ): _lowercase , _lowercase , _lowercase : Any = super()._sanitize_parameters(**UpperCAmelCase_ ) if src_lang is not None: _lowercase : List[Any] = src_lang if tgt_lang is not None: _lowercase : List[str] = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. _lowercase : Optional[int] = kwargs.get("""task""" ,self.task ) _lowercase : Union[str, Any] = task.split("""_""" ) if task and len(UpperCAmelCase_ ) == 4: # translation, XX, to YY _lowercase : Optional[Any] = items[1] _lowercase : str = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return super().__call__(*UpperCAmelCase_ ,**UpperCAmelCase_ )
600
0
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( snake_case : Any , snake_case : str , snake_case : Optional[int] )-> int: '''simple docstring''' UpperCAmelCase__ : Tuple = AlbertConfig.from_json_file(UpperCamelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) UpperCAmelCase__ : Optional[Any] = AlbertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowerCAmelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
438
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = '▁' a_ = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } a_ = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } a_ = { 'facebook/m2m100_418M': 1_0_2_4, } # fmt: off a_ = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = ["""input_ids""", """attention_mask"""] snake_case_ = [] snake_case_ = [] def __init__( self : Dict , __lowercase : str , __lowercase : Any , __lowercase : Optional[Any]=None , __lowercase : int=None , __lowercase : Any="<s>" , __lowercase : str="</s>" , __lowercase : List[str]="</s>" , __lowercase : Union[str, Any]="<pad>" , __lowercase : Union[str, Any]="<unk>" , __lowercase : Dict="m2m100" , __lowercase : Optional[Dict[str, Any]] = None , __lowercase : Optional[Any]=8 , **__lowercase : List[str] , ) -> None: SCREAMING_SNAKE_CASE__ : Optional[Any] ={} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE__ : Any =language_codes SCREAMING_SNAKE_CASE__ : Optional[int] =FAIRSEQ_LANGUAGE_CODES[language_codes] SCREAMING_SNAKE_CASE__ : Union[str, Any] ={lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} SCREAMING_SNAKE_CASE__ : str =kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowercase , tgt_lang=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , language_codes=__lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__lowercase , **__lowercase , ) SCREAMING_SNAKE_CASE__ : Optional[int] =vocab_file SCREAMING_SNAKE_CASE__ : Optional[Any] =load_json(__lowercase ) SCREAMING_SNAKE_CASE__ : List[str] ={v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ : List[str] =spm_file SCREAMING_SNAKE_CASE__ : Optional[Any] =load_spm(__lowercase , self.sp_model_kwargs ) SCREAMING_SNAKE_CASE__ : Optional[Any] =len(self.encoder ) SCREAMING_SNAKE_CASE__ : int ={ self.get_lang_token(__lowercase ): self.encoder_size + i for i, lang_code in enumerate(__lowercase ) } SCREAMING_SNAKE_CASE__ : Optional[int] ={lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowercase )} SCREAMING_SNAKE_CASE__ : Optional[Any] ={v: k for k, v in self.lang_token_to_id.items()} SCREAMING_SNAKE_CASE__ : List[Any] =src_lang if src_lang is not None else '''en''' SCREAMING_SNAKE_CASE__ : Optional[Any] =tgt_lang SCREAMING_SNAKE_CASE__ : str =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) SCREAMING_SNAKE_CASE__ : Optional[Any] =num_madeup_words @property def __magic_name__ ( self : str ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def __magic_name__ ( self : Dict ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self : Optional[int] , __lowercase : str ) -> None: SCREAMING_SNAKE_CASE__ : Union[str, Any] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self : Any , __lowercase : str ) -> List[str]: return self.sp_model.encode(__lowercase , out_type=__lowercase ) def __magic_name__ ( self : Any , __lowercase : int ) -> List[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowercase , self.encoder[self.unk_token] ) def __magic_name__ ( self : List[str] , __lowercase : int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowercase , self.unk_token ) def __magic_name__ ( self : Any , __lowercase : int ) -> Dict: SCREAMING_SNAKE_CASE__ : int =[] SCREAMING_SNAKE_CASE__ : Union[str, Any] ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowercase ) + token SCREAMING_SNAKE_CASE__ : int =[] else: current_sub_tokens.append(__lowercase ) out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def __magic_name__ ( self : Union[str, Any] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None , __lowercase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =[1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ : Optional[Any] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowercase )) + suffix_ones return prefix_ones + ([0] * len(__lowercase )) + ([0] * len(__lowercase )) + suffix_ones def __magic_name__ ( self : Any , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict ={self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict =self.__dict__.copy() SCREAMING_SNAKE_CASE__ : Dict =None return state def __setstate__( self : Tuple , __lowercase : Dict ) -> None: SCREAMING_SNAKE_CASE__ : int =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE__ : Optional[int] ={} SCREAMING_SNAKE_CASE__ : Union[str, Any] =load_spm(self.spm_file , self.sp_model_kwargs ) def __magic_name__ ( self : Optional[int] , __lowercase : str , __lowercase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ : List[Any] =Path(__lowercase ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) SCREAMING_SNAKE_CASE__ : Any =save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : Any =save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowercase ) elif not os.path.isfile(self.spm_file ): with open(__lowercase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE__ : List[str] =self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (str(__lowercase ), str(__lowercase )) def __magic_name__ ( self : Optional[int] , __lowercase : List[str] , __lowercase : str = "en" , __lowercase : Optional[List[str]] = None , __lowercase : str = "ro" , **__lowercase : Any , ) -> BatchEncoding: SCREAMING_SNAKE_CASE__ : Union[str, Any] =src_lang SCREAMING_SNAKE_CASE__ : List[str] =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowercase , __lowercase , **__lowercase ) def __magic_name__ ( self : str , __lowercase : Optional[Any] , __lowercase : Optional[str] , __lowercase : Optional[str] , **__lowercase : List[Any] ) -> int: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE__ : Any =src_lang SCREAMING_SNAKE_CASE__ : List[Any] =self(__lowercase , add_special_tokens=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =self.get_lang_id(__lowercase ) SCREAMING_SNAKE_CASE__ : str =tgt_lang_id return inputs def __magic_name__ ( self : Any ) -> Tuple: self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self : Any ) -> Any: self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self : Optional[Any] , __lowercase : str ) -> None: SCREAMING_SNAKE_CASE__ : Dict =self.get_lang_token(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =self.lang_token_to_id[lang_token] SCREAMING_SNAKE_CASE__ : Optional[Any] =[self.cur_lang_id] SCREAMING_SNAKE_CASE__ : Optional[int] =[self.eos_token_id] def __magic_name__ ( self : Union[str, Any] , __lowercase : str ) -> None: SCREAMING_SNAKE_CASE__ : List[Any] =self.get_lang_token(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =self.lang_token_to_id[lang_token] SCREAMING_SNAKE_CASE__ : str =[self.cur_lang_id] SCREAMING_SNAKE_CASE__ : Optional[Any] =[self.eos_token_id] def __magic_name__ ( self : Union[str, Any] , __lowercase : str ) -> str: return self.lang_code_to_token[lang] def __magic_name__ ( self : Any , __lowercase : str ) -> int: SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.get_lang_token(__lowercase ) return self.lang_token_to_id[lang_token] def _a( UpperCamelCase__ : str, UpperCamelCase__ : Dict[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] =sentencepiece.SentencePieceProcessor(**UpperCamelCase__ ) spm.Load(str(UpperCamelCase__ ) ) return spm def _a( UpperCamelCase__ : str ): '''simple docstring''' with open(UpperCamelCase__, '''r''' ) as f: return json.load(UpperCamelCase__ ) def _a( UpperCamelCase__ : Optional[Any], UpperCamelCase__ : str ): '''simple docstring''' with open(UpperCamelCase__, '''w''' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__, indent=2 )
296
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A = 16 __A = 32 def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple = 16 ) -> Dict: """simple docstring""" __lowerCamelCase = AutoTokenizer.from_pretrained('bert-base-cased' ) __lowerCamelCase = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCamelCase__ : Any ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase = 8 else: __lowerCamelCase = None return tokenizer.pad( __lowerCAmelCase , padding='longest' , max_length=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) __lowerCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A = mocked_dataloaders # noqa: F811 def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] ) -> Dict: """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , __lowerCAmelCase ) == "1": __lowerCamelCase = 2 # Initialize accelerator __lowerCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['lr'] __lowerCamelCase = int(config['num_epochs'] ) __lowerCamelCase = int(config['seed'] ) __lowerCamelCase = int(config['batch_size'] ) __lowerCamelCase = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation __lowerCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCamelCase = batch_size // MAX_GPU_BATCH_SIZE __lowerCamelCase = MAX_GPU_BATCH_SIZE set_seed(__lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = get_dataloaders(__lowerCAmelCase , __lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase = AdamW(params=model.parameters() , lr=__lowerCAmelCase ) # Instantiate scheduler __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = accelerator.prepare( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Now we train the model for epoch in range(__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase = model(**__lowerCAmelCase ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __lowerCamelCase = 0 for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase = model(**__lowerCAmelCase ) __lowerCamelCase = outputs.logits.argmax(dim=-1 ) __lowerCamelCase , __lowerCamelCase = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__lowerCAmelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __lowerCamelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__lowerCAmelCase , references=__lowerCAmelCase , ) __lowerCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __lowerCAmelCase ) def lowerCamelCase_ ( ) -> Any: """simple docstring""" __lowerCamelCase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__lowerCAmelCase , default=__lowerCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": main()
712
from __future__ import annotations import numpy as np def lowerCamelCase_ ( UpperCamelCase__ : np.ndarray ) -> tuple[np.ndarray, np.ndarray]: """simple docstring""" __lowerCamelCase , __lowerCamelCase = np.shape(UpperCamelCase__ ) if rows != columns: __lowerCamelCase = ( '\'table\' has to be of square shaped array but got a ' F"""{rows}x{columns} array:\n{table}""" ) raise ValueError(UpperCamelCase__ ) __lowerCamelCase = np.zeros((rows, columns) ) __lowerCamelCase = np.zeros((rows, columns) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __lowerCamelCase = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) if upper[j][j] == 0: raise ArithmeticError('No LU decomposition exists' ) __lowerCamelCase = (table[i][j] - total) / upper[j][j] __lowerCamelCase = 1 for j in range(UpperCamelCase__ , UpperCamelCase__ ): __lowerCamelCase = sum(lower[i][k] * upper[k][j] for k in range(UpperCamelCase__ ) ) __lowerCamelCase = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
167
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a_ ( UpperCAmelCase_ ): UpperCamelCase_ : Optional[Any] = (EulerDiscreteScheduler,) UpperCamelCase_ : Union[str, Any] = 10 def _SCREAMING_SNAKE_CASE ( self : str , **snake_case__ : Tuple ): lowerCAmelCase__ = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**a__ ) return config def _SCREAMING_SNAKE_CASE ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a__ ) def _SCREAMING_SNAKE_CASE ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ = scheduler.scale_model_input(a__ , a__ ) lowerCAmelCase__ = model(a__ , a__ ) lowerCAmelCase__ = scheduler.step(a__ , a__ , a__ , generator=a__ ) lowerCAmelCase__ = output.prev_sample lowerCAmelCase__ = torch.sum(torch.abs(a__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(prediction_type="""v_prediction""" ) lowerCAmelCase__ = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase__ = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase__ = scheduler.scale_model_input(a__ , a__ ) lowerCAmelCase__ = model(a__ , a__ ) lowerCAmelCase__ = scheduler.step(a__ , a__ , a__ , generator=a__ ) lowerCAmelCase__ = output.prev_sample lowerCAmelCase__ = torch.sum(torch.abs(a__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2_676E-06 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase__ = sample.to(a__ ) for t in scheduler.timesteps: lowerCAmelCase__ = scheduler.scale_model_input(a__ , a__ ) lowerCAmelCase__ = model(a__ , a__ ) lowerCAmelCase__ = scheduler.step(a__ , a__ , a__ , generator=a__ ) lowerCAmelCase__ = output.prev_sample lowerCAmelCase__ = torch.sum(torch.abs(a__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**a__ , use_karras_sigmas=a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCAmelCase__ = sample.to(a__ ) for t in scheduler.timesteps: lowerCAmelCase__ = scheduler.scale_model_input(a__ , a__ ) lowerCAmelCase__ = model(a__ , a__ ) lowerCAmelCase__ = scheduler.step(a__ , a__ , a__ , generator=a__ ) lowerCAmelCase__ = output.prev_sample lowerCAmelCase__ = torch.sum(torch.abs(a__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
644
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def __snake_case ( *a__ : List[Any] , **a__ : Optional[int] ): pass def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> str: """simple docstring""" UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __snake_case ( SCREAMING_SNAKE_CASE_ : Image ) -> Dict: """simple docstring""" UpperCAmelCase = np.array(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = npimg.shape return {"hash": hashimage(SCREAMING_SNAKE_CASE_ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase =dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _lowerCamelCase =dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __snake_case ( self : Union[str, Any] , a__ : Optional[int] , a__ : Dict , a__ : int ): UpperCAmelCase = MaskGenerationPipeline(model=a__ , image_processor=a__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __snake_case ( self : int , a__ : Dict , a__ : Tuple ): pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def __snake_case ( self : str ): pass @slow @require_torch def __snake_case ( self : Optional[Any] ): UpperCAmelCase = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) UpperCAmelCase = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9_967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9_909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9_879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9_834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9_716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9_612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9_599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9_552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9_532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9_516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9_499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9_483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9_464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9_408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9_335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9_326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9_262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8_999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8_986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8_984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8_873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8_871} ] , ) # fmt: on @require_torch @slow def __snake_case ( self : Dict ): UpperCAmelCase = '''facebook/sam-vit-huge''' UpperCAmelCase = pipeline('''mask-generation''' , model=a__ ) UpperCAmelCase = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing UpperCAmelCase = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(a__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0_444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0_210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0_167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0_132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0_053}, ] , )
51
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : int = 4_000_000 ) -> int: """simple docstring""" a : List[Any] = [] a , a : Tuple = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case ) a , a : str = b, a + b return sum(snake_case ) if __name__ == "__main__": print(f'''{solution() = }''')
610
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCamelCase : int = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ UpperCamelCase : List[str] = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ UpperCamelCase : Tuple = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[Any] ) -> Dict: """simple docstring""" return float((preds == labels).mean() ) def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Union[str, Any] ) -> Tuple: """simple docstring""" a : Optional[Any] = simple_accuracy(snake_case , snake_case ) a : Dict = float(fa_score(y_true=snake_case , y_pred=snake_case ) ) return { "accuracy": acc, "f1": fa, } def SCREAMING_SNAKE_CASE__ ( snake_case : Dict , snake_case : int ) -> Optional[int]: """simple docstring""" a : Union[str, Any] = np.array(snake_case ) a : Any = np.array(snake_case ) a : Tuple = en_sentvecs.shape[0] # mean centering a : Tuple = en_sentvecs - np.mean(snake_case , axis=0 ) a : Optional[Any] = in_sentvecs - np.mean(snake_case , axis=0 ) a : Optional[int] = cdist(snake_case , snake_case , 'cosine' ) a : List[Any] = np.array(range(snake_case ) ) a : str = sim.argsort(axis=1 )[:, :10] a : int = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : str): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), 'references': datasets.Value('int64') if self.config_name != 'cvit-mkb-clsr' else datasets.Sequence(datasets.Value('float32')), }) , codebase_urls=[] , reference_urls=[] , format='numpy' if self.config_name != 'cvit-mkb-clsr' else None , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(UpperCAmelCase_ , UpperCAmelCase_)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_)} else: raise KeyError( 'You should supply a configuration name selected in ' '["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ' '"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ' '"wiki-ner"]')
610
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A( a , unittest.TestCase ): snake_case_ = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 ) -> List[Any]: '''simple docstring''' __a = floats_tensor((1, 3, 128, 128) , rng=random.Random(__lowerCamelCase ) ) __a = np.random.RandomState(__lowerCamelCase ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_dummy_inputs() __a = pipe(**__lowerCamelCase ).images __a = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __a = np.array([0.6_9643, 0.5_8484, 0.5_0314, 0.5_8760, 0.5_5368, 0.5_9643, 0.5_1529, 0.4_1217, 0.4_9087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_dummy_inputs() __a = pipe(**__lowerCamelCase ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a = np.array([0.6_1737, 0.5_4642, 0.5_3183, 0.5_4465, 0.5_2742, 0.6_0525, 0.4_9969, 0.4_0655, 0.4_8154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) # warmup pass to apply optimizations __a = pipe(**self.get_dummy_inputs() ) __a = self.get_dummy_inputs() __a = pipe(**__lowerCamelCase ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a = np.array([0.5_2761, 0.5_9977, 0.4_9033, 0.4_9619, 0.5_4282, 0.5_0311, 0.4_7600, 0.4_0918, 0.4_5203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_dummy_inputs() __a = pipe(**__lowerCamelCase ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_dummy_inputs() __a = pipe(**__lowerCamelCase ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = self.get_dummy_inputs() __a = pipe(**__lowerCamelCase ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a = np.array([0.6_5331, 0.5_8277, 0.4_8204, 0.5_6059, 0.5_3665, 0.5_6235, 0.5_0969, 0.4_0009, 0.4_6552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class __A( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = ort.SessionOptions() __a = False return options def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a = init_image.resize((768, 512) ) # using the PNDM scheduler by default __a = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = '''A fantasy landscape, trending on artstation''' __a = np.random.RandomState(0 ) __a = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__lowerCamelCase , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a = init_image.resize((768, 512) ) __a = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __a = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __a = '''A fantasy landscape, trending on artstation''' __a = np.random.RandomState(0 ) __a = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__lowerCamelCase , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
219
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase_ : """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str=3 , __lowerCamelCase : List[Any]=3_2 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : str=1_0 , __lowerCamelCase : Union[str, Any]=[8, 1_6, 3_2, 6_4] , __lowerCamelCase : Union[str, Any]=[1, 1, 2, 1] , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str="relu" , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=["stage2", "stage3", "stage4"] , __lowerCamelCase : List[Any]=[2, 3, 4] , __lowerCamelCase : int=1 , ): """simple docstring""" _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = embeddings_size _SCREAMING_SNAKE_CASE = hidden_sizes _SCREAMING_SNAKE_CASE = depths _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = out_features _SCREAMING_SNAKE_CASE = out_indices _SCREAMING_SNAKE_CASE = num_groups def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) _SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): """simple docstring""" _SCREAMING_SNAKE_CASE = BitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCAmelCase_ ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = BitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = BitBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = BitBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = config_and_inputs _SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase_ ( A , A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCamelCase_ = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def lowerCAmelCase_ ( self : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = BitModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def lowerCAmelCase_ ( self : int ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self : int ): """simple docstring""" return @unittest.skip(reason="Bit does not output attentions" ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def lowerCAmelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" pass def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase_ ( self : int ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(config=__lowerCamelCase ) for name, module in model.named_modules(): if isinstance(__lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" def check_hidden_states_output(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : int ): _SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _SCREAMING_SNAKE_CASE = layer_type _SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = BitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( ) -> Any: _SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.default_image_processor _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits _SCREAMING_SNAKE_CASE = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class lowercase_ ( A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = (BitBackbone,) if is_torch_available() else () lowerCamelCase_ = BitConfig lowerCamelCase_ = False def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = BitModelTester(self )
418
0
'''simple docstring''' import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets A = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' A = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' A = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __snake_case ( datasets.Metric): def UpperCAmelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ), homepage='https://github.com/hendrycks/math', codebase_urls=['https://github.com/hendrycks/math'], ) def UpperCAmelCase_ ( self, A, A ): """simple docstring""" lowerCamelCase : List[str] = 0.0 for i, j in zip(A, A ): n_correct += 1.0 if math_equivalence.is_equiv(A, A ) else 0.0 lowerCamelCase : str = n_correct / len(A ) return { "accuracy": accuracy, }
449
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency A = { 'E': 12.70, 'T': 9.06, 'A': 8.17, 'O': 7.51, 'I': 6.97, 'N': 6.75, 'S': 6.33, 'H': 6.09, 'R': 5.99, 'D': 4.25, 'L': 4.03, 'C': 2.78, 'U': 2.76, 'M': 2.41, 'W': 2.36, 'F': 2.23, 'G': 2.02, 'Y': 1.97, 'P': 1.93, 'B': 1.29, 'V': 0.98, 'K': 0.77, 'J': 0.15, 'X': 0.15, 'Q': 0.10, 'Z': 0.07, } A = 'ETAOINSHRDLCUMWFGYPBVKJXQZ' A = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : Optional[Any] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCAmelCase ( UpperCAmelCase__ : tuple): return x[0] def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : Optional[Any] = get_letter_count(UpperCAmelCase__) lowerCamelCase : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(UpperCAmelCase__) lowerCamelCase : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=UpperCAmelCase__) lowerCamelCase : int = ''.join(freq_to_letter[freq]) lowerCamelCase : Any = list(freq_to_letter_str.items()) freq_pairs.sort(key=UpperCAmelCase__ , reverse=UpperCAmelCase__) lowerCamelCase : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(UpperCAmelCase__) def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : Optional[Any] = get_frequency_order(UpperCAmelCase__) lowerCamelCase : Optional[Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
449
1
"""simple docstring""" from __future__ import annotations import numpy as np def a ( __snake_case : list[float] ): '''simple docstring''' return np.maximum(0, __snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
608
"""simple docstring""" __lowerCamelCase = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def a ( __snake_case : dict, __snake_case : str, __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ :List[Any] = set() # keep track of all the paths to be checked UpperCAmelCase_ :Any = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCAmelCase_ :Tuple = queue.pop(0 ) # get the last node from the path UpperCAmelCase_ :str = path[-1] if node not in explored: UpperCAmelCase_ :Any = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCAmelCase_ :Union[str, Any] = list(__snake_case ) new_path.append(__snake_case ) queue.append(__snake_case ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__snake_case ) # in case there's no path between the 2 nodes return [] def a ( __snake_case : dict, __snake_case : int, __snake_case : str ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCAmelCase_ :Optional[Any] = [start] UpperCAmelCase_ :str = set(__snake_case ) # Keep tab on distances from `start` node. UpperCAmelCase_ :Optional[Any] = {start: 0, target: -1} while queue: UpperCAmelCase_ :Optional[Any] = queue.pop(0 ) if node == target: UpperCAmelCase_ :str = ( dist[node] if dist[target] == -1 else min(dist[target], dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__snake_case ) queue.append(__snake_case ) UpperCAmelCase_ :Optional[int] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
608
1
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class UpperCamelCase_ ( __SCREAMING_SNAKE_CASE): """simple docstring""" snake_case__ : str = "EncodecFeatureExtractor" snake_case__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] ) -> Dict: super().__init__(__snake_case , __snake_case ) __SCREAMING_SNAKE_CASE = self.feature_extractor __SCREAMING_SNAKE_CASE = False def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[Any]=True ) -> List[Any]: return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : int , *UpperCAmelCase__ : Optional[int] , **UpperCAmelCase__ : int ) -> Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) __SCREAMING_SNAKE_CASE = kwargs.pop("audio" , __snake_case ) __SCREAMING_SNAKE_CASE = kwargs.pop("sampling_rate" , __snake_case ) __SCREAMING_SNAKE_CASE = kwargs.pop("text" , __snake_case ) if len(__snake_case ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer(__snake_case , **__snake_case ) if audio is not None: __SCREAMING_SNAKE_CASE = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if audio is None: return inputs elif text is None: return audio_inputs else: __SCREAMING_SNAKE_CASE = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __SCREAMING_SNAKE_CASE = audio_inputs['''padding_mask'''] return inputs def UpperCAmelCase_ ( self : Tuple , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = kwargs.pop("audio" , __snake_case ) __SCREAMING_SNAKE_CASE = kwargs.pop("padding_mask" , __snake_case ) if len(__snake_case ) > 0: __SCREAMING_SNAKE_CASE = args[0] __SCREAMING_SNAKE_CASE = args[1:] if audio_values is not None: return self._decode_audio(__snake_case , padding_mask=__snake_case ) else: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def UpperCAmelCase_ ( self : str , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : int ) -> Dict: return self.tokenizer.decode(*__snake_case , **__snake_case ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional = None ) -> int: __SCREAMING_SNAKE_CASE = to_numpy(__snake_case ) __SCREAMING_SNAKE_CASE = audio_values.shape if padding_mask is None: return list(__snake_case ) __SCREAMING_SNAKE_CASE = to_numpy(__snake_case ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __SCREAMING_SNAKE_CASE = seq_len - padding_mask.shape[-1] __SCREAMING_SNAKE_CASE = 1 - self.feature_extractor.padding_value __SCREAMING_SNAKE_CASE = np.pad(__snake_case , ((0, 0), (0, difference)) , "constant" , constant_values=__snake_case ) __SCREAMING_SNAKE_CASE = audio_values.tolist() for i in range(__snake_case ): __SCREAMING_SNAKE_CASE = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __SCREAMING_SNAKE_CASE = sliced_audio.reshape(__snake_case , -1 ) return audio_values
705
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a__ : Dict = logging.get_logger(__name__) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' def constraint_to_multiple_of(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=0 , lowerCAmelCase_=None ): __SCREAMING_SNAKE_CASE = round(val / multiple ) * multiple if max_val is not None and x > max_val: __SCREAMING_SNAKE_CASE = math.floor(val / multiple ) * multiple if x < min_val: __SCREAMING_SNAKE_CASE = math.ceil(val / multiple ) * multiple return x __SCREAMING_SNAKE_CASE = (output_size, output_size) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else output_size __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_image_size(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = output_size # determine new height and width __SCREAMING_SNAKE_CASE = output_height / input_height __SCREAMING_SNAKE_CASE = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __SCREAMING_SNAKE_CASE = scale_width else: # fit height __SCREAMING_SNAKE_CASE = scale_height __SCREAMING_SNAKE_CASE = constraint_to_multiple_of(scale_height * input_height , multiple=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = constraint_to_multiple_of(scale_width * input_width , multiple=lowerCAmelCase_ ) return (new_height, new_width) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : List[Any] = ["pixel_values"] def __init__( self : int , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase__ : Optional[Any] , ) -> None: super().__init__(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = size if size is not None else {"height": 3_8_4, "width": 3_8_4} __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = keep_aspect_ratio __SCREAMING_SNAKE_CASE = ensure_multiple_of __SCREAMING_SNAKE_CASE = resample __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Dict , ) -> np.ndarray: __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE = get_resize_output_image_size( UpperCAmelCase__ , output_size=(size["height"], size["width"]) , keep_aspect_ratio=UpperCAmelCase__ , multiple=UpperCAmelCase__ , ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> Any: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[Any] , ) -> np.ndarray: return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : int = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : int = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> PIL.Image.Image: __SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE = size if size is not None else self.size __SCREAMING_SNAKE_CASE = get_size_dict(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __SCREAMING_SNAKE_CASE = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Tuple] = None ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = target_sizes.numpy() __SCREAMING_SNAKE_CASE = [] for idx in range(len(UpperCAmelCase__ ) ): __SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = logits.argmax(dim=1 ) __SCREAMING_SNAKE_CASE = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
553
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a_ ) class __SCREAMING_SNAKE_CASE( a_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _UpperCAmelCase = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) _UpperCAmelCase = Features({"text": Value("string" )} ) _UpperCAmelCase = Features({"summary": Value("string" )} ) _UpperCAmelCase = "text" _UpperCAmelCase = "summary" @property def lowerCAmelCase_ ( self: Optional[int] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
328
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "char" _UpperCAmelCase = "bpe" _UpperCAmelCase = "wp" __UpperCamelCase : Optional[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["image_processor", "char_tokenizer"] _UpperCAmelCase = "ViTImageProcessor" _UpperCAmelCase = "MgpstrTokenizer" def __init__( self: Optional[int] , UpperCamelCase: Dict=None , UpperCamelCase: Any=None , **UpperCamelCase: Any ) -> str: snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) snake_case__ = kwargs.pop('feature_extractor' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) snake_case__ = tokenizer snake_case__ = AutoTokenizer.from_pretrained('gpt2' ) snake_case__ = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self: str , UpperCamelCase: List[str]=None , UpperCamelCase: Any=None , UpperCamelCase: Optional[Any]=None , **UpperCamelCase: Optional[int] ) -> List[str]: if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: snake_case__ = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None: snake_case__ = self.char_tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['input_ids'] return inputs def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[str] ) -> int: snake_case__ , snake_case__ , snake_case__ = sequences snake_case__ = char_preds.size(0 ) snake_case__ , snake_case__ = self._decode_helper(UpperCamelCase , 'char' ) snake_case__ , snake_case__ = self._decode_helper(UpperCamelCase , 'bpe' ) snake_case__ , snake_case__ = self._decode_helper(UpperCamelCase , 'wp' ) snake_case__ = [] snake_case__ = [] for i in range(UpperCamelCase ): snake_case__ = [char_scores[i], bpe_scores[i], wp_scores[i]] snake_case__ = [char_strs[i], bpe_strs[i], wp_strs[i]] snake_case__ = scores.index(max(UpperCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case__ = {} snake_case__ = final_strs snake_case__ = final_scores snake_case__ = char_strs snake_case__ = bpe_strs snake_case__ = wp_strs return out def lowerCAmelCase_ ( self: str , UpperCamelCase: str , UpperCamelCase: Tuple ) -> Optional[int]: if format == DecodeType.CHARACTER: snake_case__ = self.char_decode snake_case__ = 1 snake_case__ = '[s]' elif format == DecodeType.BPE: snake_case__ = self.bpe_decode snake_case__ = 2 snake_case__ = '#' elif format == DecodeType.WORDPIECE: snake_case__ = self.wp_decode snake_case__ = 1_02 snake_case__ = '[SEP]' else: raise ValueError(F'''Format {format} is not supported.''' ) snake_case__ , snake_case__ = [], [] snake_case__ = pred_logits.size(0 ) snake_case__ = pred_logits.size(1 ) snake_case__ , snake_case__ = pred_logits.topk(1 , dim=-1 , largest=UpperCamelCase , sorted=UpperCamelCase ) snake_case__ = preds_index.view(-1 , UpperCamelCase )[:, 1:] snake_case__ = decoder(UpperCamelCase ) snake_case__ , snake_case__ = torch.nn.functional.softmax(UpperCamelCase , dim=2 ).max(dim=2 ) snake_case__ = preds_max_prob[:, 1:] for index in range(UpperCamelCase ): snake_case__ = preds_str[index].find(UpperCamelCase ) snake_case__ = preds_str[index][:pred_eos] snake_case__ = preds_index[index].cpu().tolist() snake_case__ = pred_index.index(UpperCamelCase ) if eos_token in pred_index else -1 snake_case__ = preds_max_prob[index][: pred_eos_index + 1] snake_case__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCamelCase ) conf_scores.append(UpperCamelCase ) return dec_strs, conf_scores def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: str ) -> int: snake_case__ = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase )] return decode_strs def lowerCAmelCase_ ( self: int , UpperCamelCase: Optional[int] ) -> Dict: return self.bpe_tokenizer.batch_decode(UpperCamelCase ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: str ) -> Union[str, Any]: snake_case__ = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase )] return decode_strs
328
1
import logging from transformers.configuration_utils import PretrainedConfig lowercase : str = logging.getLogger(__name__) class a__ ( lowerCAmelCase__ ): _A = "masked_bert" def __init__( self : Any , A_ : int=3_05_22 , A_ : Union[str, Any]=7_68 , A_ : Union[str, Any]=12 , A_ : Optional[int]=12 , A_ : str=30_72 , A_ : Optional[int]="gelu" , A_ : Dict=0.1 , A_ : Union[str, Any]=0.1 , A_ : List[str]=5_12 , A_ : str=2 , A_ : Dict=0.02 , A_ : Union[str, Any]=1e-12 , A_ : Optional[int]=0 , A_ : Dict="topK" , A_ : List[Any]="constant" , A_ : List[str]=0.0 , **A_ : Union[str, Any] , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase_: List[Any] = vocab_size lowerCamelCase_: Union[str, Any] = hidden_size lowerCamelCase_: Optional[Any] = num_hidden_layers lowerCamelCase_: Dict = num_attention_heads lowerCamelCase_: int = hidden_act lowerCamelCase_: int = intermediate_size lowerCamelCase_: List[Any] = hidden_dropout_prob lowerCamelCase_: Tuple = attention_probs_dropout_prob lowerCamelCase_: str = max_position_embeddings lowerCamelCase_: Dict = type_vocab_size lowerCamelCase_: Union[str, Any] = initializer_range lowerCamelCase_: List[Any] = layer_norm_eps lowerCamelCase_: Any = pruning_method lowerCamelCase_: Optional[int] = mask_init lowerCamelCase_: Optional[int] = mask_scale
712
from collections import defaultdict from math import ceil, sqrt def UpperCAmelCase_ ( _UpperCAmelCase = 1_0_0_0_0_0_0 , _UpperCAmelCase = 1_0 ): lowerCamelCase_: defaultdict = defaultdict(_UpperCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCamelCase_: Dict = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCamelCase_: List[str] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_UpperCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(F"{solution() = }")
584
0
import tensorflow as tf from ...tf_utils import shape_list class A__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , lowercase , lowercase , lowercase , lowercase , lowercase=1 , lowercase=False , **lowercase) -> Tuple: '''simple docstring''' super().__init__(**A_) a__ : Tuple = vocab_size a__ : Optional[Any] = d_embed a__ : Optional[Any] = d_proj a__ : Tuple = cutoffs + [vocab_size] a__ : List[Any] = [0] + self.cutoffs a__ : Optional[int] = div_val a__ : Any = self.cutoffs[0] a__ : Dict = len(self.cutoffs) - 1 a__ : List[Any] = self.shortlist_size + self.n_clusters a__ : Optional[int] = keep_order a__ : Optional[int] = [] a__ : Tuple = [] def __lowercase ( self , lowercase) -> Optional[Any]: '''simple docstring''' if self.n_clusters > 0: a__ : List[Any] = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='zeros' , trainable=A_ , name='cluster_weight') a__ : Optional[int] = self.add_weight( shape=(self.n_clusters,) , initializer='zeros' , trainable=A_ , name='cluster_bias') if self.div_val == 1: for i in range(len(self.cutoffs)): if self.d_proj != self.d_embed: a__ : Optional[Any] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='zeros' , trainable=A_ , name=F'out_projs_._{i}' , ) self.out_projs.append(A_) else: self.out_projs.append(A_) a__ : List[str] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='zeros' , trainable=A_ , name=F'out_layers_._{i}_._weight' , ) a__ : Dict = self.add_weight( shape=(self.vocab_size,) , initializer='zeros' , trainable=A_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias)) else: for i in range(len(self.cutoffs)): a__ : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] a__ : Any = self.d_embed // (self.div_val**i) a__ : Any = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='zeros' , trainable=A_ , name=F'out_projs_._{i}') self.out_projs.append(A_) a__ : Optional[int] = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='zeros' , trainable=A_ , name=F'out_layers_._{i}_._weight' , ) a__ : Tuple = self.add_weight( shape=(r_idx - l_idx,) , initializer='zeros' , trainable=A_ , name=F'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias)) super().build(A_) @staticmethod def __lowercase ( lowercase , lowercase , lowercase , lowercase=None) -> str: '''simple docstring''' a__ : List[Any] = x if proj is not None: a__ : Any = tf.einsum('ibd,ed->ibe' , A_ , A_) return tf.einsum('ibd,nd->ibn' , A_ , A_) + b @staticmethod def __lowercase ( lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__ : Optional[Any] = shape_list(A_) a__ : List[str] = tf.range(lp_size[0] , dtype=target.dtype) a__ : Tuple = tf.stack([r, target] , 1) return tf.gather_nd(A_ , A_) def __lowercase ( self , lowercase , lowercase , lowercase=True , lowercase=False) -> Union[str, Any]: '''simple docstring''' a__ : Dict = 0 if self.n_clusters == 0: a__ : List[Any] = self._logit(A_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0]) if target is not None: a__ : Any = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=A_ , logits=A_) a__ : Dict = tf.nn.log_softmax(A_ , axis=-1) else: a__ : List[str] = shape_list(A_) a__ : Optional[int] = [] a__ : int = tf.zeros(hidden_sizes[:2]) for i in range(len(self.cutoffs)): a__ : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: a__ : Any = (target >= l_idx) & (target < r_idx) a__ : Tuple = tf.where(A_) a__ : Any = tf.boolean_mask(A_ , A_) - l_idx if self.div_val == 1: a__ : Tuple = self.out_layers[0][0][l_idx:r_idx] a__ : List[Any] = self.out_layers[0][1][l_idx:r_idx] else: a__ : int = self.out_layers[i][0] a__ : Any = self.out_layers[i][1] if i == 0: a__ : Optional[int] = tf.concat([cur_W, self.cluster_weight] , 0) a__ : Optional[int] = tf.concat([cur_b, self.cluster_bias] , 0) a__ : Tuple = self._logit(A_ , A_ , A_ , self.out_projs[0]) a__ : Optional[int] = tf.nn.log_softmax(A_) out.append(head_logprob[..., : self.cutoffs[0]]) if target is not None: a__ : List[str] = tf.boolean_mask(A_ , A_) a__ : Dict = self._gather_logprob(A_ , A_) else: a__ : Tuple = self._logit(A_ , A_ , A_ , self.out_projs[i]) a__ : Union[str, Any] = tf.nn.log_softmax(A_) a__ : int = self.cutoffs[0] + i - 1 # No probability for the head cluster a__ : Optional[Any] = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(A_) if target is not None: a__ : Tuple = tf.boolean_mask(A_ , A_) a__ : List[Any] = tf.boolean_mask(A_ , A_) a__ : Optional[int] = self._gather_logprob(A_ , A_) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(A_ , -cur_logprob , shape_list(A_)) a__ : List[str] = tf.concat(A_ , axis=-1) if target is not None: if return_mean: a__ : List[str] = tf.reduce_mean(A_) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(A_) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(A_ , name=self.name , aggregation='mean' if return_mean else '') return out
302
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch SCREAMING_SNAKE_CASE_ = random.Random() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Dict=1.0 , lowerCAmelCase: Any=None , lowerCAmelCase: Any=None ) -> Optional[int]: if rng is None: _UpperCAmelCase : int = global_rng _UpperCAmelCase : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class a ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ): '''simple docstring''' _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : List[str] = min_seq_length _UpperCAmelCase : Any = max_seq_length _UpperCAmelCase : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase : Optional[Any] = padding_value _UpperCAmelCase : Optional[int] = sampling_rate _UpperCAmelCase : Tuple = return_attention_mask _UpperCAmelCase : Any = do_normalize _UpperCAmelCase : Optional[Any] = feature_size _UpperCAmelCase : int = chunk_length _UpperCAmelCase : str = hop_length def _UpperCAmelCase ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCAmelCase ( self , A_=False , A_=False ): '''simple docstring''' def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: _UpperCAmelCase : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase : List[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase : Union[str, Any] = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a ( UpperCAmelCase , unittest.TestCase ): _lowercase = WhisperFeatureExtractor if is_speech_available() else None def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = WhisperFeatureExtractionTester(self ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Tuple = feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) _UpperCAmelCase : Any = self.feature_extraction_class.from_pretrained(A_ ) _UpperCAmelCase : Union[str, Any] = feat_extract_first.to_dict() _UpperCAmelCase : List[str] = feat_extract_second.to_dict() _UpperCAmelCase : Optional[int] = feat_extract_first.mel_filters _UpperCAmelCase : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : int = os.path.join(A_ , "feat_extract.json" ) feat_extract_first.to_json_file(A_ ) _UpperCAmelCase : List[str] = self.feature_extraction_class.from_json_file(A_ ) _UpperCAmelCase : List[str] = feat_extract_first.to_dict() _UpperCAmelCase : Any = feat_extract_second.to_dict() _UpperCAmelCase : Any = feat_extract_first.mel_filters _UpperCAmelCase : List[str] = feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase : Tuple = [np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase : str = feature_extractor(A_ , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase : str = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _UpperCAmelCase : str = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test batched _UpperCAmelCase : Tuple = feature_extractor(A_ , return_tensors="np" ).input_features _UpperCAmelCase : List[str] = feature_extractor(A_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase : Optional[int] = np.asarray(A_ ) _UpperCAmelCase : List[Any] = feature_extractor(A_ , return_tensors="np" ).input_features _UpperCAmelCase : Union[str, Any] = feature_extractor(A_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test truncation required _UpperCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase : Tuple = [np.asarray(A_ ) for speech_input in speech_inputs] _UpperCAmelCase : int = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase : Optional[int] = [np.asarray(A_ ) for speech_input in speech_inputs_truncated] _UpperCAmelCase : int = feature_extractor(A_ , return_tensors="np" ).input_features _UpperCAmelCase : str = feature_extractor(A_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) def _UpperCAmelCase ( self ): '''simple docstring''' import torch _UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : int = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase : Tuple = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase : str = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase : Optional[Any] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase : Union[str, Any] = ds.sort("id" ).select(range(A_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on _UpperCAmelCase : Union[str, Any] = self._load_datasamples(1 ) _UpperCAmelCase : Optional[int] = WhisperFeatureExtractor() _UpperCAmelCase : Any = feature_extractor(A_ , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1e-4 ) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : Optional[Any] = self._load_datasamples(1 )[0] _UpperCAmelCase : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue _UpperCAmelCase : List[str] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1e-3 ) )
300
0
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _A : Optional[int] = CLIPTokenizer _A : Dict = CLIPTokenizerFast _A : int = True _A : Union[str, Any] = {} _A : Optional[int] = False def lowerCamelCase(self ): super().setUp() # fmt: off A_ : Dict = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A_ : Tuple = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A_ : Tuple = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] A_ : Dict = {"""unk_token""": """<unk>"""} A_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) def lowerCamelCase(self , **lowerCAmelCase_ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCamelCase(self , **lowerCAmelCase_ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCamelCase(self , lowerCAmelCase_ ): A_ : Union[str, Any] = """lower newer""" A_ : Tuple = """lower newer""" return input_text, output_text def lowerCamelCase(self ): A_ : List[Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A_ : int = """lower newer""" A_ : List[str] = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] A_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) A_ : List[str] = tokens + [tokenizer.unk_token] A_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ ) @require_ftfy def lowerCamelCase(self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A_ : int = self.tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A_ : str = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) A_ : List[str] = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" A_ : Dict = tokenizer_s.tokenize(lowerCAmelCase_ ) A_ : Optional[Any] = tokenizer_r.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways A_ : Dict = """xa\u0303y""" + """ """ + """x\xe3y""" A_ : Optional[Any] = tokenizer_s.tokenize(lowerCAmelCase_ ) A_ : Tuple = tokenizer_r.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Test that the tokenization is identical on unicode of space type A_ : Optional[int] = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: A_ : Any = tokenizer_s.tokenize(lowerCAmelCase_ ) A_ : str = tokenizer_r.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Test that the tokenization is identical on unicode of line break type A_ : Union[str, Any] = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: A_ : int = tokenizer_s.tokenize(lowerCAmelCase_ ) A_ : Optional[Any] = tokenizer_r.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCamelCase(self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): A_ : Dict = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` A_ : Dict = f"""{text_of_1_token} {text_of_1_token}""" A_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , ) A_ : Any = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase_ ) + 1, len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) A_ : Any = f""" {text}""" A_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase_ , use_fast=lowerCAmelCase_ , ) A_ : str = tokenizer_r(lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase_ ) + 1, 1 + len(lowerCAmelCase_ ) + 1 + len(lowerCAmelCase_ )) , ) def lowerCamelCase(self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCAmelCase_ ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def lowerCamelCase(self ): super().test_tokenization_python_rust_equals() def lowerCamelCase(self ): # CLIP always lower cases letters pass
480
"""simple docstring""" import unittest import torch from torch import nn from diffusers.models.activations import get_activation class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def lowerCamelCase(self ): A_ : Optional[int] = get_activation("""swish""" ) self.assertIsInstance(lowerCAmelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase(self ): A_ : Dict = get_activation("""silu""" ) self.assertIsInstance(lowerCAmelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase(self ): A_ : Optional[Any] = get_activation("""mish""" ) self.assertIsInstance(lowerCAmelCase_ , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase(self ): A_ : int = get_activation("""gelu""" ) self.assertIsInstance(lowerCAmelCase_ , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
480
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _snake_case : List[str] = logging.get_logger(__name__) _snake_case : Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : Optional[Any] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _snake_case : Union[str, Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } _snake_case : Dict = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } _snake_case : Tuple = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } _snake_case : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } _snake_case : Dict = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } _snake_case : Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } _snake_case : int = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } _snake_case : Tuple = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ = DPRContextEncoderTokenizer class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP a_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION a_ = DPRQuestionEncoderTokenizer _snake_case : Tuple = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) _snake_case : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) _snake_case : Any = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(_UpperCamelCase ) class _UpperCAmelCase : """simple docstring""" def __call__( self : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Union[bool, str] = False , lowerCAmelCase_ : Union[bool, str] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Optional[bool] = None , **lowerCAmelCase_ : Optional[Any] , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) elif titles is None or texts is None: __lowerCAmelCase = titles if texts is None else texts return super().__call__( lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = titles if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [titles] __lowerCAmelCase = texts if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [texts] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = questions if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else [questions] * n_passages assert len(lowerCAmelCase_ ) == len( lowerCAmelCase_ ), f"""There should be as many titles than texts but got {len(lowerCAmelCase_ )} titles and {len(lowerCAmelCase_ )} texts.""" __lowerCAmelCase = super().__call__(lowerCAmelCase_ , lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )['input_ids'] __lowerCAmelCase = super().__call__(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ )['input_ids'] __lowerCAmelCase = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase_ , lowerCAmelCase_ ) ] } if return_attention_mask is not False: __lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __lowerCAmelCase = attention_mask return self.pad(lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : BatchEncoding , lowerCAmelCase_ : DPRReaderOutput , lowerCAmelCase_ : int = 1_6 , lowerCAmelCase_ : int = 6_4 , lowerCAmelCase_ : int = 4 , ) -> List[DPRSpanPrediction]: __lowerCAmelCase = reader_input['input_ids'] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = reader_output[:3] __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = sorted(range(lowerCAmelCase_ ) , reverse=lowerCAmelCase_ , key=relevance_logits.__getitem__ ) __lowerCAmelCase = [] for doc_id in sorted_docs: __lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase_ , top_spans=lowerCAmelCase_ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase_ , start_index=lowerCAmelCase_ , end_index=lowerCAmelCase_ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase_ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowercase ( self : Any , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , ) -> List[DPRSpanPrediction]: __lowerCAmelCase = [] for start_index, start_score in enumerate(lowerCAmelCase_ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __lowerCAmelCase = sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x[1] , reverse=lowerCAmelCase_ ) __lowerCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f"""Wrong span indices: [{start_index}:{end_index}]""" __lowerCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, f"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase_ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(_UpperCamelCase ) class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = READER_PRETRAINED_VOCAB_FILES_MAP a_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = READER_PRETRAINED_INIT_CONFIGURATION a_ = ["""input_ids""", """attention_mask"""] a_ = DPRReaderTokenizer
53
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging A = logging.get_logger(__name__) def __UpperCAmelCase ( __A ) -> List[int]: '''simple docstring''' if isinstance(lowerCamelCase__ , np.ndarray ): return list(tensor.shape ) UpperCAmelCase__ = tf.shape(lowerCamelCase__ ) if tensor.shape == tf.TensorShape(lowerCamelCase__ ): return dynamic UpperCAmelCase__ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(lowerCamelCase__ )] def __UpperCAmelCase ( __A , __A = None , __A = None ) -> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1E-9 , axis=lowerCamelCase__ , name=lowerCamelCase__ ) def __UpperCAmelCase ( __A , __A , __A , __A=1E-5 , __A=-1 ) -> str: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." ) # Get mean and variance on the axis to be normalized UpperCAmelCase__ = tf.nn.moments(lowerCamelCase__ , axes=[axis] , keepdims=lowerCamelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis UpperCAmelCase__ = [1] * inputs.shape.rank UpperCAmelCase__ = shape_list(lowerCamelCase__ )[axis] UpperCAmelCase__ = tf.reshape(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__ = tf.reshape(lowerCamelCase__ , lowerCamelCase__ ) # Compute layer normalization using the batch_normalization # function. UpperCAmelCase__ = tf.nn.batch_normalization( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , offset=lowerCamelCase__ , scale=lowerCamelCase__ , variance_epsilon=lowerCamelCase__ , ) return outputs def __UpperCAmelCase ( __A , __A=0 , __A=-1 ) -> str: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input UpperCAmelCase__ = tf.shape(lowerCamelCase__ ) UpperCAmelCase__ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) UpperCAmelCase__ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(lowerCamelCase__ , lowerCamelCase__ ) def __UpperCAmelCase ( __A ) -> tf.Tensor: '''simple docstring''' if not isinstance(lowerCamelCase__ , tf.Tensor ): UpperCAmelCase__ = tf.convert_to_tensor(lowerCamelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: UpperCAmelCase__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: UpperCAmelCase__ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) UpperCAmelCase__ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __UpperCAmelCase ( __A , __A , __A = "input_ids" ) -> None: '''simple docstring''' tf.debugging.assert_less( lowerCamelCase__ , tf.cast(lowerCamelCase__ , dtype=tensor.dtype ) , message=( F"""The maximum value of {tensor_name} ({tf.math.reduce_max(lowerCamelCase__ )}) must be smaller than the embedding """ F"""layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time.""" ) , ) def __UpperCAmelCase ( __A , __A , __A ) -> str: '''simple docstring''' UpperCAmelCase__ = 6_4_5_1_2 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. UpperCAmelCase__ = [x for x in data if len(lowerCamelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( "The following attributes cannot be saved to HDF5 file because " F"""they are larger than {HDF5_OBJECT_HEADER_LIMIT} """ F"""bytes: {bad_attributes}""" ) UpperCAmelCase__ = np.asarray(lowerCamelCase__ ) UpperCAmelCase__ = 1 UpperCAmelCase__ = np.array_split(lowerCamelCase__ , lowerCamelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 UpperCAmelCase__ = np.array_split(lowerCamelCase__ , lowerCamelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(lowerCamelCase__ ): UpperCAmelCase__ = chunk_data else: UpperCAmelCase__ = data def __UpperCAmelCase ( __A , __A ) -> Union[str, Any]: '''simple docstring''' if name in group.attrs: UpperCAmelCase__ = [n.decode("utf8" ) if hasattr(lowerCamelCase__ , "decode" ) else n for n in group.attrs[name]] else: UpperCAmelCase__ = [] UpperCAmelCase__ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("utf8" ) if hasattr(lowerCamelCase__ , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] ) chunk_id += 1 return data def __UpperCAmelCase ( __A ) -> List[Any]: '''simple docstring''' def _expand_single_ad_tensor(__A ): if isinstance(lowerCamelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(lowerCamelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , lowerCamelCase__ )
710
from __future__ import annotations class lowercase__ : def __init__( self : int , _lowercase : list[list[int]] ): """simple docstring""" UpperCAmelCase__ = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(_lowercase ) != 0: UpperCAmelCase__ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_lowercase ) != cols: raise error for value in row: if not isinstance(_lowercase , (int, float) ): raise error UpperCAmelCase__ = rows else: UpperCAmelCase__ = [] def _UpperCAmelCase ( self : Dict ): """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _UpperCAmelCase ( self : str ): """simple docstring""" return len(self.rows ) @property def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" return len(self.rows[0] ) @property def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" return (self.num_rows, self.num_columns) @property def _UpperCAmelCase ( self : Tuple ): """simple docstring""" return self.order[0] == self.order[1] def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_lowercase ) def _UpperCAmelCase ( self : Tuple ): """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _UpperCAmelCase ( self : Any ): """simple docstring""" return bool(self.determinant() ) def _UpperCAmelCase ( self : Optional[Any] , _lowercase : int , _lowercase : int ): """simple docstring""" UpperCAmelCase__ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_lowercase ).determinant() def _UpperCAmelCase ( self : str , _lowercase : int , _lowercase : int ): """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(_lowercase , _lowercase ) return -1 * self.get_minor(_lowercase , _lowercase ) def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" return Matrix( [ [self.get_minor(_lowercase , _lowercase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _UpperCAmelCase ( self : str ): """simple docstring""" UpperCAmelCase__ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_lowercase ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self : Dict ): """simple docstring""" return str(self.rows ) def __str__( self : Tuple ): """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(_lowercase ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def _UpperCAmelCase ( self : Any , _lowercase : list[int] , _lowercase : int | None = None ): """simple docstring""" UpperCAmelCase__ = TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(_lowercase , _lowercase ): raise type_error for value in row: if not isinstance(_lowercase , (int, float) ): raise type_error if len(_lowercase ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(_lowercase ) else: UpperCAmelCase__ = self.rows[0:position] + [row] + self.rows[position:] def _UpperCAmelCase ( self : Optional[Any] , _lowercase : list[int] , _lowercase : int | None = None ): """simple docstring""" UpperCAmelCase__ = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(_lowercase , _lowercase ): raise type_error for value in column: if not isinstance(_lowercase , (int, float) ): raise type_error if len(_lowercase ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: UpperCAmelCase__ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: UpperCAmelCase__ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Dict , _lowercase : object ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): return NotImplemented return self.rows == other.rows def __ne__( self : List[Any] , _lowercase : object ): """simple docstring""" return not self == other def __neg__( self : int ): """simple docstring""" return self * -1 def __add__( self : List[Any] , _lowercase : Matrix ): """simple docstring""" if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Optional[int] , _lowercase : Matrix ): """simple docstring""" if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : int , _lowercase : Matrix | int | float ): """simple docstring""" if isinstance(_lowercase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_lowercase , _lowercase ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(_lowercase , _lowercase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self : Optional[Any] , _lowercase : int ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) UpperCAmelCase__ = self for _ in range(other - 1 ): result *= self return result @classmethod def _UpperCAmelCase ( cls : List[Any] , _lowercase : list[int] , _lowercase : list[int] ): """simple docstring""" return sum(row[i] * column[i] for i in range(len(_lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
277
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( __A, unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : List[str] = MgpstrTokenizer lowerCAmelCase__ : str = False lowerCAmelCase__ : Optional[Any] = {} lowerCAmelCase__ : Optional[Any] = False def A ( self ) -> Union[str, Any]: super().setUp() # fmt: off a_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on a_ : List[str] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) a_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + "\n" ) def A ( self , **_SCREAMING_SNAKE_CASE ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def A ( self , _SCREAMING_SNAKE_CASE ) -> int: a_ : Dict = "tester" a_ : Optional[int] = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def A ( self ) -> Dict: pass def A ( self ) -> Optional[Any]: a_ : Any = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a_ : Optional[Any] = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) a_ : int = tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 1 ) a_ : Dict = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertTrue(special_token not in decoded ) def A ( self ) -> str: a_ : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a_ , a_ : Any = self.get_input_output_texts(UpperCamelCase__ ) a_ : Dict = tokenizer.tokenize(UpperCamelCase__ ) a_ : Any = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) a_ : Dict = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) a_ : Tuple = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertNotEqual(len(UpperCamelCase__ ) , 0 ) a_ : Union[str, Any] = tokenizer.decode(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(text_a.replace(" " , "" ) , UpperCamelCase__ ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def A ( self ) -> Union[str, Any]: pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def A ( self ) -> List[str]: pass
473
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowerCAmelCase = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __UpperCamelCase ( lowercase_ : Dict ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase_ ) def __UpperCamelCase ( lowercase_ : List[Any] ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main a_ = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(lowercase_ , id=lowercase_ )
536
0
'''simple docstring''' import math import sys import cva import numpy as np def _UpperCAmelCase ( _UpperCamelCase : np.ndarray, _UpperCamelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. A_ = math.sqrt(_UpperCamelCase ) A_ = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def _UpperCAmelCase ( _UpperCamelCase : np.ndarray, _UpperCamelCase : int, _UpperCamelCase : int, _UpperCamelCase : int ) -> np.ndarray: A_ = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. A_ = np.zeros((kernel_size, kernel_size) ) for i in range(0, _UpperCamelCase ): for j in range(0, _UpperCamelCase ): A_ = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCamelCase, _UpperCamelCase ) def _UpperCAmelCase ( _UpperCamelCase : np.ndarray, _UpperCamelCase : float, _UpperCamelCase : float, _UpperCamelCase : int, ) -> np.ndarray: A_ = np.zeros(img.shape ) A_ = get_gauss_kernel(_UpperCamelCase, _UpperCamelCase ) A_ ,A_ = img.shape for i in range(kernel_size // 2, size_x - kernel_size // 2 ): for j in range(kernel_size // 2, size_y - kernel_size // 2 ): A_ = get_slice(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) A_ = img_s - img_s[kernel_size // 2, kernel_size // 2] A_ = vec_gaussian(_UpperCamelCase, _UpperCamelCase ) A_ = np.multiply(_UpperCamelCase, _UpperCamelCase ) A_ = np.multiply(_UpperCamelCase, _UpperCamelCase ) A_ = np.sum(_UpperCamelCase ) / np.sum(_UpperCamelCase ) A_ = val return imga def _UpperCAmelCase ( _UpperCamelCase : list ) -> tuple: A_ = args[1] if args[1:] else '''../image_data/lena.jpg''' A_ = float(args[2] ) if args[2:] else 1.0 A_ = float(args[3] ) if args[3:] else 1.0 if args[4:]: A_ = int(args[4] ) A_ = kernel_size + abs(kernel_size % 2 - 1 ) else: A_ = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": __snake_case , __snake_case , __snake_case , __snake_case : str = parse_args(sys.argv) __snake_case : Any = cva.imread(filename, 0) cva.imshow('input image', img) __snake_case : Dict = img / 255 __snake_case : List[str] = out.astype('float32') __snake_case : List[str] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) __snake_case : Dict = out * 255 __snake_case : int = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
174
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __snake_case : Optional[Any] = 'pt' elif is_tf_available(): __snake_case : List[Any] = 'tf' else: __snake_case : Tuple = 'jax' class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[Any] = PerceiverTokenizer __lowercase : str = False def __A ( self ) -> List[str]: super().setUp() A_ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __A ( self ) -> Optional[int]: return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def __A ( self , **_SCREAMING_SNAKE_CASE ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. A_ = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): try: A_ = tokenizer.decode([i] , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) except UnicodeDecodeError: pass toks.append((i, tok) ) A_ = list(filter(lambda _SCREAMING_SNAKE_CASE : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , _SCREAMING_SNAKE_CASE ) ) A_ = list(filter(lambda _SCREAMING_SNAKE_CASE : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) if max_length is not None and len(_SCREAMING_SNAKE_CASE ) > max_length: A_ = toks[:max_length] if min_length is not None and len(_SCREAMING_SNAKE_CASE ) < min_length and len(_SCREAMING_SNAKE_CASE ) > 0: while len(_SCREAMING_SNAKE_CASE ) < min_length: A_ = toks + toks # toks_str = [t[1] for t in toks] A_ = [t[0] for t in toks] # Ensure consistency A_ = tokenizer.decode(_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) if " " not in output_txt and len(_SCREAMING_SNAKE_CASE ) > 1: A_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) ) if with_prefix_space: A_ = ''' ''' + output_txt A_ = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) return output_txt, output_ids def __A ( self ) -> int: A_ = self.perceiver_tokenizer A_ = '''Unicode €.''' A_ = tokenizer(_SCREAMING_SNAKE_CASE ) A_ = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['''input_ids'''] , _SCREAMING_SNAKE_CASE ) # decoding A_ = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , '''[CLS]Unicode €.[SEP]''' ) A_ = tokenizer('''e è é ê ë''' ) A_ = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['''input_ids'''] , _SCREAMING_SNAKE_CASE ) # decoding A_ = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def __A ( self ) -> str: A_ = self.perceiver_tokenizer A_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off A_ = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on A_ = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if FRAMEWORK != "jax": A_ = list(batch.input_ids.numpy()[0] ) else: A_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def __A ( self ) -> Any: A_ = self.perceiver_tokenizer A_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] A_ = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , _SCREAMING_SNAKE_CASE ) self.assertIn('''attention_mask''' , _SCREAMING_SNAKE_CASE ) self.assertNotIn('''decoder_input_ids''' , _SCREAMING_SNAKE_CASE ) self.assertNotIn('''decoder_attention_mask''' , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> int: A_ = self.perceiver_tokenizer A_ = [ '''Summary of the text.''', '''Another summary.''', ] A_ = tokenizer( text_target=_SCREAMING_SNAKE_CASE , max_length=32 , padding='''max_length''' , truncation=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def __A ( self ) -> Tuple: # safety check on max_len default value so we are sure the test works A_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test A_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc A_ = tempfile.mkdtemp() A_ = ''' He is very happy, UNwant\u00E9d,running''' A_ = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = tokenizer.__class__.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = after_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) shutil.rmtree(_SCREAMING_SNAKE_CASE ) A_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc A_ = tempfile.mkdtemp() A_ = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) A_ = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) A_ = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) A_ = tokenizer.__class__.from_pretrained(_SCREAMING_SNAKE_CASE ) A_ = after_tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) A_ = tokenizer.__class__.from_pretrained(_SCREAMING_SNAKE_CASE , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: A_ = json.load(_SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: A_ = json.load(_SCREAMING_SNAKE_CASE ) A_ = [F'''<extra_id_{i}>''' for i in range(125 )] A_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] A_ = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(_SCREAMING_SNAKE_CASE , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(os.path.join(_SCREAMING_SNAKE_CASE , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files A_ = tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained A_ = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=_SCREAMING_SNAKE_CASE )] A_ = tokenizer_class.from_pretrained( _SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def __A ( self ) -> Tuple: A_ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '''�''' ) def __A ( self ) -> str: pass def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Optional[Any]: pass def __A ( self ) -> List[str]: pass def __A ( self ) -> List[Any]: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens A_ = self.get_tokenizers(fast=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): A_ = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] A_ = tokenizer.convert_tokens_to_string(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
174
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
300
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int ) -> list[list[int]]: _UpperCAmelCase : list[list[int]] = [] create_all_state(1 , lowerCAmelCase , lowerCAmelCase , [] , lowerCAmelCase ) return result def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: list[int] , lowerCAmelCase: list[list[int]] , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(lowerCAmelCase , total_number - level + 2 ): current_list.append(lowerCAmelCase ) create_all_state(i + 1 , lowerCAmelCase , level - 1 , lowerCAmelCase , lowerCAmelCase ) current_list.pop() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[list[int]] ) -> None: for i in total_list: print(*lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = generate_all_combinations(n, k) print_all_state(total_list)
300
1
from itertools import product def lowerCamelCase ( UpperCamelCase : int , UpperCamelCase : int ) -> list[int]: _lowerCamelCase = sides_number _lowerCamelCase = max_face_number * dice_number _lowerCamelCase = [0] * (max_total + 1) _lowerCamelCase = 1 _lowerCamelCase = range(UpperCamelCase , max_face_number + 1 ) for dice_numbers in product(UpperCamelCase , repeat=UpperCamelCase ): _lowerCamelCase = sum(UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase ( ) -> float: _lowerCamelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _lowerCamelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _lowerCamelCase = 0 _lowerCamelCase = 9 _lowerCamelCase = 4 * 9 _lowerCamelCase = 6 for peter_total in range(UpperCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _lowerCamelCase = (4**9) * (6**6) _lowerCamelCase = peter_wins_count / total_games_number _lowerCamelCase = round(UpperCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
234
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase ( ) -> tuple[list[int], int]: _lowerCamelCase = [randint(-10_00 , 10_00 ) for i in range(10 )] _lowerCamelCase = randint(-50_00 , 50_00 ) return (arr, r) A = make_dataset() def lowerCamelCase ( UpperCamelCase : list[int] , UpperCamelCase : int ) -> tuple[int, ...]: for triplet in permutations(UpperCamelCase , 3 ): if sum(UpperCamelCase ) == target: return tuple(sorted(UpperCamelCase ) ) return (0, 0, 0) def lowerCamelCase ( UpperCamelCase : list[int] , UpperCamelCase : int ) -> tuple[int, int, int]: arr.sort() _lowerCamelCase = len(UpperCamelCase ) for i in range(n - 1 ): _lowerCamelCase , _lowerCamelCase = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase ( ) -> tuple[float, float]: _lowerCamelCase = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' _lowerCamelCase = '\ntriplet_sum1(*dataset)\n' _lowerCamelCase = '\ntriplet_sum2(*dataset)\n' _lowerCamelCase = repeat(setup=UpperCamelCase , stmt=UpperCamelCase , repeat=5 , number=1_00_00 ) _lowerCamelCase = repeat(setup=UpperCamelCase , stmt=UpperCamelCase , repeat=5 , number=1_00_00 ) return (min(UpperCamelCase ), min(UpperCamelCase )) if __name__ == "__main__": from doctest import testmod testmod() A = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
234
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ ( __snake_case ): def __a ( self ): _lowercase : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_lowerCAmelCase , 'width_multiplier' ) ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=6_4 , _lowerCAmelCase=2 , _lowerCAmelCase=3 , _lowerCAmelCase="swish" , _lowerCAmelCase=3 , _lowerCAmelCase=3_2 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=1_0 , _lowerCAmelCase=None , _lowerCAmelCase=0.25 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , ): _lowercase : List[Any] = parent _lowercase : str = batch_size _lowercase : Tuple = image_size _lowercase : int = patch_size _lowercase : Optional[int] = num_channels _lowercase : int = make_divisible(5_1_2 * width_multiplier , divisor=8 ) _lowercase : Optional[Any] = hidden_act _lowercase : Any = conv_kernel_size _lowercase : List[str] = output_stride _lowercase : Tuple = classifier_dropout_prob _lowercase : Union[str, Any] = use_labels _lowercase : Optional[int] = is_training _lowercase : Optional[int] = num_labels _lowercase : Optional[Any] = initializer_range _lowercase : Any = scope _lowercase : List[str] = width_multiplier _lowercase : int = ffn_dropout _lowercase : List[Any] = attn_dropout def __a ( self ): _lowercase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Union[str, Any] = None _lowercase : int = None if self.use_labels: _lowercase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) _lowercase : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __a ( self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[int] = MobileViTVaModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : str = model(_lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : List[str] = self.num_labels _lowercase : List[Any] = MobileViTVaForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : Optional[int] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Dict = self.num_labels _lowercase : Optional[int] = MobileViTVaForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowercase : List[Any] = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _lowercase : Optional[int] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __a ( self ): _lowercase : Dict = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : List[str] = config_and_inputs _lowercase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : List[str] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Any = False def __a ( self ): _lowercase : Optional[int] = MobileViTVaModelTester(self ) _lowercase : Optional[int] = MobileViTVaConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def __a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def __a ( self ): pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def __a ( self ): pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def __a ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def __a ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __a ( self ): pass def __a ( self ): _lowercase , _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Any = model_class(_lowerCAmelCase ) _lowercase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : List[str] = [*signature.parameters.keys()] _lowercase : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def __a ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : int = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase : Any = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) _lowercase : Union[str, Any] = outputs.hidden_states _lowercase : Optional[Any] = 5 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowercase : Optional[Any] = 2 for i in range(len(_lowerCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Union[str, Any] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Union[str, Any] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Any = MobileViTVaModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __magic_name__ ( ) -> List[str]: _lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __a ( self ): return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def __a ( self ): _lowercase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( _lowerCAmelCase ) _lowercase : Dict = self.default_image_processor _lowercase : Dict = prepare_img() _lowercase : Dict = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): _lowercase : Dict = model(**_lowerCAmelCase ) # verify the logits _lowercase : Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) _lowercase : int = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __a ( self ): _lowercase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowercase : Optional[Any] = model.to(_lowerCAmelCase ) _lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowercase : List[Any] = prepare_img() _lowercase : List[Any] = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): _lowercase : str = model(**_lowerCAmelCase ) _lowercase : Dict = outputs.logits # verify the logits _lowercase : Dict = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , _lowerCAmelCase ) _lowercase : str = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __a ( self ): _lowercase : int = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowercase : Optional[Any] = model.to(_lowerCAmelCase ) _lowercase : Tuple = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) _lowercase : str = prepare_img() _lowercase : Dict = image_processor(images=_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): _lowercase : int = model(**_lowerCAmelCase ) _lowercase : int = outputs.logits.detach().cpu() _lowercase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase , target_sizes=[(5_0, 6_0)] ) _lowercase : Optional[Any] = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase ) _lowercase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ) _lowercase : List[str] = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
66
import random def lowerCamelCase_ ( UpperCamelCase__ : list, UpperCamelCase__ : List[Any] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = [], [], [] for element in data: if element < pivot: less.append(UpperCamelCase__ ) elif element > pivot: greater.append(UpperCamelCase__ ) else: equal.append(UpperCamelCase__ ) return less, equal, greater def lowerCamelCase_ ( UpperCamelCase__ : list, UpperCamelCase__ : int ): '''simple docstring''' if index >= len(UpperCamelCase__ ) or index < 0: return None UpperCamelCase__ = items[random.randint(0, len(UpperCamelCase__ ) - 1 )] UpperCamelCase__ = 0 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = _partition(UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase__ = len(UpperCamelCase__ ) UpperCamelCase__ = len(UpperCamelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(UpperCamelCase__, UpperCamelCase__ ) # must be in larger else: return quick_select(UpperCamelCase__, index - (m + count) )
240
0
"""simple docstring""" def lowercase__ ( lowerCAmelCase__ : int = 1_0_0_0_0_0_0 ) -> int: '''simple docstring''' a__ : Optional[Any] = set(range(3 , lowerCAmelCase__ , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase__ , lowerCAmelCase__ ) ) ) a__ : Dict = [float(lowerCAmelCase__ ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase__ , limit + 1 , lowerCAmelCase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f"{solution() = }")
714
"""simple docstring""" import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): __lowerCamelCase : Optional[Any] = WavaVecaPhonemeCTCTokenizer __lowerCamelCase : int = False def UpperCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' super().setUp() a__ : str = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " "əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ " "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" " ) a__ : Any = dict(zip(a_ , range(len(a_ ) ) ) ) a__ : int = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) def UpperCAmelCase ( self : Optional[int] , a_ : Union[str, Any] , a_ : Tuple=False , a_ : Optional[Any]=20 , a_ : List[Any]=5 ) -> Tuple[str, list]: '''simple docstring''' a__ : Dict = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=a_ )) for i in range(len(a_ ) )] a__ : List[str] = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=a_ ) , a_ ) ) if max_length is not None and len(a_ ) > max_length: a__ : int = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: a__ : str = toks + toks # toks_str = [t[1] for t in toks] a__ : int = [t[0] for t in toks] # Ensure consistency a__ : List[Any] = tokenizer.decode(a_ , clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: a__ : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a_ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: a__ : Union[str, Any] = " " + output_txt a__ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) return output_txt, output_ids def UpperCAmelCase ( self : Optional[int] , **a_ : Tuple ) -> int: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' a__ : str = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) # check adding a single token tokenizer.add_tokens("xxx" ) a__ : int = tokenizer("m xxx ɪ" , do_phonemize=a_ ).input_ids self.assertEqual(a_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"] ) a__ : Union[str, Any] = tokenizer("m aaa ɪ ccc" , do_phonemize=a_ ).input_ids self.assertEqual(a_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa a__ : Tuple = tokenizer("maɪ c" , do_phonemize=a_ ).input_ids self.assertEqual(a_ , [3, 2_00] ) # mai should be <unk> (=3) def UpperCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' a__ : Dict = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) a__ : Union[str, Any] = "Hello how are you" a__ : List[Any] = tokenizer.phonemize(a_ , phonemizer_lang="en-us" ) self.assertEqual(a_ , "h ə l oʊ h aʊ ɑːɹ j uː" ) def UpperCAmelCase ( self : str ) -> Any: '''simple docstring''' a__ : Dict = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) a__ : Optional[int] = "Hello how are you" a__ : Optional[int] = tokenizer.phonemize(a_ , phonemizer_lang="en-us" ) self.assertEqual(tokenizer(a_ ).input_ids , tokenizer(a_ , do_phonemize=a_ ).input_ids ) def UpperCAmelCase ( self : Any ) -> Tuple: '''simple docstring''' a__ : List[Any] = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) a__ : Any = "Hello how are you" a__ : Optional[int] = tokenizer.phonemize(a_ , phonemizer_lang="en-us" ) a__ : Optional[int] = tokenizer.decode(tokenizer(a_ ).input_ids ) self.assertEqual(a_ , a_ ) def UpperCAmelCase ( self : int ) -> int: '''simple docstring''' a__ : List[Any] = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) a__ : Union[str, Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] a__ : Union[str, Any] = tokenizer.decode(sample_ids[0] ) a__ : Tuple = tokenizer.batch_decode(a_ ) self.assertEqual(a_ , batch_tokens[0] ) self.assertEqual(a_ , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) def UpperCAmelCase ( self : Dict ) -> Any: '''simple docstring''' a__ : str = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) a__ : List[Any] = "Hello how are you" a__ : Union[str, Any] = tokenizer.phonemize(a_ , phonemizer_lang="en-us" ) self.assertEqual(a_ , "h ə l oʊ | h aʊ | ɑːɹ | j uː |" ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' a__ : Dict = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) a__ : Any = "Hello how are you" a__ : Optional[int] = tokenizer.phonemize(a_ , phonemizer_lang="en-us" ) self.assertEqual(tokenizer(a_ ).input_ids , tokenizer(a_ , do_phonemize=a_ ).input_ids ) def UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' a__ : List[str] = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off a__ : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter a__ : List[Any] = tokenizer.decode(sample_ids[0] ) a__ : Tuple = tokenizer.batch_decode(a_ ) self.assertEqual(a_ , batch_tokens[0] ) self.assertEqual(a_ , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) # decode with no word_del_token filter a__ : List[Any] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=a_ ) a__ : Dict = tokenizer.batch_decode(a_ , filter_word_delimiter_token=a_ ) self.assertEqual(a_ , batch_tokens[0] ) self.assertEqual(a_ , ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"] ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' a__ : int = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) a__ : Optional[Any] = "Hello how are you" a__ : Union[str, Any] = tokenizer.phonemize(a_ , phonemizer_lang="en-us" ) a__ : str = tokenizer.decode(tokenizer(a_ ).input_ids , filter_word_delimiter_token=a_ ) self.assertEqual(a_ , a_ ) def UpperCAmelCase ( self : Tuple ) -> str: '''simple docstring''' a__ : int = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) a__ : Optional[int] = "Hello how are you" a__ : str = tokenizer.phonemize(a_ , phonemizer_lang="en-us" ) a__ : Dict = tokenizer.decode(tokenizer(a_ ).input_ids , filter_word_delimiter_token=a_ ) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |" )] ).strip() , a_ ) def UpperCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' a__ : str = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token=a_ ) a__ : List[str] = "Hello how are you" a__ : Tuple = tokenizer(a_ , phonemizer_lang="en-us" ).input_ids a__ : Tuple = tokenizer(a_ , phonemizer_lang="fr-fr" ).input_ids self.assertNotEqual(a_ , a_ ) a__ : int = tokenizer.decode(a_ ) a__ : Tuple = tokenizer.decode(a_ ) self.assertEqual(a_ , "h ə l oʊ h aʊ ɑːɹ j uː" ) self.assertEqual(a_ , "ɛ l o h aʊ a ʁ j u" ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) a__ : Tuple = "Hello how Are you" a__ : List[Any] = "hello how are you" a__ : Optional[Any] = tokenizer(a_ ).input_ids a__ : int = tokenizer(a_ ).input_ids self.assertEqual(a_ , a_ ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : str = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) tokenizer.add_tokens(["!", "?"] ) tokenizer.add_special_tokens({"cls_token": "$$$"} ) # fmt: off a__ : Dict = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on a__ : Any = tokenizer.batch_decode(a_ ) self.assertEqual(a_ , ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"] ) @staticmethod def UpperCAmelCase ( a_ : Optional[Any] , a_ : List[str] ) -> Any: '''simple docstring''' a__ : Optional[Any] = [d[key] for d in offsets] return retrieved_list def UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' a__ : List[str] = self.get_tokenizer(word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" a__ : Tuple = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on a__ : str = tokenizer.decode(a_ , output_char_offsets=a_ , filter_word_delimiter_token=a_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("text" in outputs ) self.assertTrue("char_offsets" in outputs ) self.assertTrue(isinstance(a_ , a_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"] , "char" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "char" ) , ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "start_offset" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "end_offset" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' a__ : List[str] = self.get_tokenizer(word_delimiter_token="|" ) def check_list_tuples_equal(a_ : Optional[Any] , a_ : Union[str, Any] ): self.assertTrue(isinstance(a_ , a_ ) ) self.assertTrue(isinstance(outputs_list[0] , a_ ) ) # transform list to ModelOutput a__ : List[str] = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["text"] , outputs_batch_a["text"] ) def recursive_check(a_ : int , a_ : str ): if isinstance(a_ , a_ ): [recursive_check(a_ , a_ ) for la, la in zip(a_ , a_ )] self.assertEqual(a_ , a_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"] , outputs_batch_a["char_offsets"] ) # fmt: off a__ : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char a__ : Union[str, Any] = tokenizer.batch_decode(a_ , output_char_offsets=a_ ) a__ : List[Any] = [tokenizer.decode(a_ , output_char_offsets=a_ ) for ids in sample_ids] check_list_tuples_equal(a_ , a_ ) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes" ) def UpperCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes" ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: '''simple docstring''' pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency" ) def UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing" ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' a__ : List[str] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): a__ : Optional[int] = tokenizer.vocab_size a__ : List[Any] = len(a_ ) self.assertNotEqual(a_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a__ : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] a__ : List[str] = tokenizer.add_tokens(a_ ) a__ : Tuple = tokenizer.vocab_size a__ : Dict = len(a_ ) self.assertNotEqual(a_ , 0 ) self.assertEqual(a_ , a_ ) self.assertEqual(a_ , len(a_ ) ) self.assertEqual(a_ , all_size + len(a_ ) ) a__ : List[str] = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) a__ : Tuple = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} a__ : List[Any] = tokenizer.add_special_tokens(a_ ) a__ : List[str] = tokenizer.vocab_size a__ : List[Any] = len(a_ ) self.assertNotEqual(a_ , 0 ) self.assertEqual(a_ , a_ ) self.assertEqual(a_ , len(a_ ) ) self.assertEqual(a_ , all_size_a + len(a_ ) ) a__ : List[str] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def UpperCAmelCase ( self : Tuple ) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] = self.get_tokenizers(fast=a_ , do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): a__ : Union[str, Any] = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] a__ : List[Any] = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(output["text"] , a_ )
251
0
def lowerCamelCase__ ( _lowercase = 10 , _lowercase = 22 ): '''simple docstring''' UpperCAmelCase_ : Tuple = range(1 , _lowercase ) UpperCAmelCase_ : Optional[int] = range(1 , _lowercase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
30
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowerCamelCase = logging.get_logger(__name__) class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = ["""pixel_values"""] def __init__( self : List[str] , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[int, float] = 1 / 2_5_5 , _lowerCAmelCase : bool = True , _lowerCAmelCase : int = 8 , **_lowerCAmelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**_lowerCAmelCase) __lowercase =do_rescale __lowercase =rescale_factor __lowercase =do_pad __lowercase =pad_size def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : float , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase : str): '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : int , _lowerCAmelCase : np.ndarray , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None): '''simple docstring''' __lowercase , __lowercase =get_image_size(_lowerCAmelCase) __lowercase =(old_height // size + 1) * size - old_height __lowercase =(old_width // size + 1) * size - old_width return pad(_lowerCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=_lowerCAmelCase) def __lowerCamelCase ( self : int , _lowerCAmelCase : ImageInput , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[float] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , _lowerCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase : Dict , ): '''simple docstring''' __lowercase =do_rescale if do_rescale is not None else self.do_rescale __lowercase =rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase =do_pad if do_pad is not None else self.do_pad __lowercase =pad_size if pad_size is not None else self.pad_size __lowercase =make_list_of_images(_lowerCAmelCase) if not valid_images(_lowerCAmelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') # All transformations expect numpy arrays. __lowercase =[to_numpy_array(_lowerCAmelCase) for image in images] if do_rescale: __lowercase =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase) for image in images] if do_pad: __lowercase =[self.pad(_lowerCAmelCase , size=_lowerCAmelCase) for image in images] __lowercase =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase) for image in images] __lowercase ={'pixel_values': images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase)
474
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCamelCase_ ( datasets.BeamBasedBuilder ): def lowerCAmelCase ( self ) -> Dict: return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=lowerCAmelCase_ , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase_ ) class UpperCamelCase_ ( datasets.BeamBasedBuilder ): def lowerCAmelCase ( self ) -> Union[str, Any]: return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=lowerCAmelCase_ , ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase_ ) def lowerCamelCase__ ( ) -> Any: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class UpperCamelCase_ ( _lowerCamelCase ): @require_beam def lowerCAmelCase ( self ) -> str: _snake_case = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _snake_case = DummyBeamDataset(cache_dir=lowerCAmelCase_ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase_ , builder.name , 'default' , '0.0.0' , F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) _snake_case = builder.as_dataset() self.assertEqual(dset['train'].num_rows , lowerCAmelCase_ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , lowerCAmelCase_ ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase_ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def lowerCAmelCase ( self ) -> Optional[Any]: import apache_beam as beam _snake_case = beam.io.parquetio.WriteToParquet _snake_case = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _snake_case = DummyBeamDataset(cache_dir=lowerCAmelCase_ , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: _snake_case = partial(lowerCAmelCase_ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase_ , builder.name , 'default' , '0.0.0' , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase_ , builder.name , 'default' , '0.0.0' , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) _snake_case = builder.as_dataset() self.assertEqual(dset['train'].num_rows , lowerCAmelCase_ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , lowerCAmelCase_ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase_ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def lowerCAmelCase ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmp_cache_dir: _snake_case = DummyBeamDataset(cache_dir=lowerCAmelCase_ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def lowerCAmelCase ( self ) -> Any: _snake_case = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _snake_case = NestedBeamDataset(cache_dir=lowerCAmelCase_ , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase_ , builder.name , 'default' , '0.0.0' , F'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) _snake_case = builder.as_dataset() self.assertEqual(dset['train'].num_rows , lowerCAmelCase_ ) self.assertEqual(dset['train'].info.splits['train'].num_examples , lowerCAmelCase_ ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase_ , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
541
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL UpperCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase__ ( UpperCamelCase__ : Tuple ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCamelCase__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCamelCase__ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = ['''pixel_values'''] def __init__( self , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = True , lowerCAmelCase_ = 1 / 255 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = None , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> None: super().__init__(**lowerCAmelCase_ ) _snake_case = size if size is not None else {'shortest_edge': 256} _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _snake_case = crop_size if crop_size is not None else {'height': 224, 'width': 224} _snake_case = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) _snake_case = do_resize _snake_case = size _snake_case = do_center_crop _snake_case = crop_size _snake_case = resample _snake_case = do_rescale _snake_case = rescale_factor _snake_case = offset _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = PILImageResampling.BILINEAR , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" in size: _snake_case = get_resize_output_image_size(lowerCAmelCase_ , size['shortest_edge'] , default_to_square=lowerCAmelCase_ ) elif "height" in size and "width" in size: _snake_case = (size['height'], size['width']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: _snake_case = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = True , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> int: _snake_case = image.astype(np.floataa ) if offset: _snake_case = image - (scale / 2) return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. _snake_case = to_numpy_array(lowerCAmelCase_ ) if do_resize: _snake_case = self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) if do_center_crop: _snake_case = self.center_crop(lowerCAmelCase_ , size=lowerCAmelCase_ ) if do_rescale: _snake_case = self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ , offset=lowerCAmelCase_ ) if do_normalize: _snake_case = self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) _snake_case = to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) return image def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = ChannelDimension.FIRST , **lowerCAmelCase_ , ) -> PIL.Image.Image: _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = offset if offset is not None else self.offset _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) _snake_case = make_batched(lowerCAmelCase_ ) _snake_case = [ [ self._preprocess_image( image=lowerCAmelCase_ , do_resize=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , do_center_crop=lowerCAmelCase_ , crop_size=lowerCAmelCase_ , do_rescale=lowerCAmelCase_ , rescale_factor=lowerCAmelCase_ , offset=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ , image_mean=lowerCAmelCase_ , image_std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , ) for img in video ] for video in videos ] _snake_case = {'pixel_values': videos} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
541
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE__ : Union[str, Any] = 16 SCREAMING_SNAKE_CASE__ : List[Any] = 32 def __magic_name__ ( __lowerCAmelCase : str ) -> Union[str, Any]: return int(x / 2**20 ) class lowerCAmelCase__ : def __enter__( self : str ) -> List[Any]: gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __lowerCamelCase = torch.cuda.memory_allocated() return self def __exit__( self : Optional[Any] , *SCREAMING_SNAKE_CASE__ : int ) -> str: gc.collect() torch.cuda.empty_cache() __lowerCamelCase = torch.cuda.memory_allocated() __lowerCamelCase = torch.cuda.max_memory_allocated() __lowerCamelCase = bamb(self.end - self.begin ) __lowerCamelCase = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : List[Any] = 16 , __lowerCAmelCase : Any = "bert-base-cased" , __lowerCAmelCase : str = 320 , __lowerCAmelCase : List[str] = 160 , ) -> Union[str, Any]: __lowerCamelCase = AutoTokenizer.from_pretrained(_A ) __lowerCamelCase = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': f'''train[:{n_train}]''', '''validation''': f'''validation[:{n_val}]'''} ) def tokenize_function(__lowerCAmelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_A , max_length=_A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase = datasets.map( _A , batched=_A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=_A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCAmelCase : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_A , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(_A , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __lowerCamelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=_A , collate_fn=_A , batch_size=_A ) __lowerCamelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=_A , collate_fn=_A , batch_size=_A ) return train_dataloader, eval_dataloader def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] ) -> int: __lowerCamelCase = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase = config['''lr'''] __lowerCamelCase = int(config['''num_epochs'''] ) __lowerCamelCase = int(config['''seed'''] ) __lowerCamelCase = int(config['''batch_size'''] ) __lowerCamelCase = args.model_name_or_path set_seed(_A ) __lowerCamelCase , __lowerCamelCase = get_dataloaders(_A , _A , _A , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase = AutoModelForSequenceClassification.from_pretrained(_A , return_dict=_A ) # Instantiate optimizer __lowerCamelCase = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase = optimizer_cls(params=model.parameters() , lr=_A ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __lowerCamelCase = 1 __lowerCamelCase = (len(_A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase = get_linear_schedule_with_warmup( optimizer=_A , num_warmup_steps=0 , num_training_steps=_A , ) else: __lowerCamelCase = DummyScheduler(_A , total_num_steps=_A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = accelerator.prepare( _A , _A , _A , _A , _A ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase = 0 # Now we train the model __lowerCamelCase = {} for epoch in range(_A , _A ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_A ): __lowerCamelCase = model(**_A ) __lowerCamelCase = outputs.loss __lowerCamelCase = loss / gradient_accumulation_steps accelerator.backward(_A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __lowerCamelCase = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(_A , _A ) def __magic_name__ ( ) -> Tuple: __lowerCamelCase = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=_A , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_A , ) parser.add_argument( '''--output_dir''' , type=_A , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=_A , default=_A , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=_A , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=_A , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=_A , default=1 , help='''Number of train epochs.''' , ) __lowerCamelCase = parser.parse_args() __lowerCamelCase = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(_A , _A ) if __name__ == "__main__": main()
298
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration A_: Union[str, Any] = 5_0000 A_: str = 5000 A_ , A_: int = os.path.split(__file__) A_: str = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def __lowerCAmelCase ( _A ,_A ): """simple docstring""" for i in range(_A ): _lowercase = dataset[i] @get_duration def __lowerCAmelCase ( _A ,_A ,_A ): """simple docstring""" for i in range(0 ,len(_A ) ,_A ): _lowercase = dataset[i : i + batch_size] @get_duration def __lowerCAmelCase ( _A ,_A ,_A ): """simple docstring""" with dataset.formatted_as(type=_A ): for i in range(_A ): _lowercase = dataset[i] @get_duration def __lowerCAmelCase ( _A ,_A ,_A ,_A ): """simple docstring""" with dataset.formatted_as(type=_A ): for i in range(0 ,_A ,_A ): _lowercase = dataset[i : i + batch_size] def __lowerCAmelCase ( ): """simple docstring""" _lowercase = {"""num examples""": SPEED_TEST_N_EXAMPLES} _lowercase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}), ] _lowercase = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) _lowercase = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) _lowercase = generate_example_dataset( os.path.join(_A ,"""dataset.arrow""" ) ,_A ,num_examples=_A ,seq_shapes={"""list""": (100,)} ,) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ ,str(_A ) ) _lowercase = func(_A ,**_A ) print("""shuffling dataset""" ) _lowercase = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ ,func.__name__ ,str(_A ) ) _lowercase = func( _A ,**_A ) with open(_A ,"""wb""" ) as f: f.write(json.dumps(_A ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
398
0
"""simple docstring""" # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def _a ( *_snake_case ): """simple docstring""" with open(_snake_case , """r""" ) as fh: fcntl.flock(_snake_case , fcntl.LOCK_EX ) try: print(*_snake_case ) finally: fcntl.flock(_snake_case , fcntl.LOCK_UN ) _UpperCamelCase = int(os.environ["""LOCAL_RANK"""]) torch.cuda.set_device(local_rank) _UpperCamelCase = torch.device("""cuda""", local_rank) _UpperCamelCase = socket.gethostname() _UpperCamelCase = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group("""nccl""") dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank _UpperCamelCase = dist.get_rank() _UpperCamelCase = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
74
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCamelCase__ : def __init__( self ,A ,): UpperCAmelCase = parent UpperCAmelCase = 13 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = 2 UpperCAmelCase = 99 UpperCAmelCase = 0 UpperCAmelCase = 32 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 512 UpperCAmelCase = 16 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = """last""" UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = 0 def _UpperCamelCase ( self ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) UpperCAmelCase = None if self.use_input_lengths: UpperCAmelCase = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = TFFlaubertModel(config=A ) UpperCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCAmelCase = model(A ) UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = TFFlaubertWithLMHeadModel(A ) UpperCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = TFFlaubertForQuestionAnsweringSimple(A ) UpperCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCAmelCase = model(A ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = TFFlaubertForSequenceClassification(A ) UpperCAmelCase = {"""input_ids""": input_ids, """lengths""": input_lengths} UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = self.num_labels UpperCAmelCase = TFFlaubertForTokenClassification(config=A ) UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ,A ,A ,A ,A ,A ,A ,A ,A ,A ,): UpperCAmelCase = self.num_choices UpperCAmelCase = TFFlaubertForMultipleChoice(config=A ) UpperCAmelCase = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(A ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } UpperCAmelCase = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _UpperCamelCase ( self ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class lowerCamelCase__ ( snake_case , snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _UpperCamelCase ( self ,A ,A ,A ,A ,A ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _UpperCamelCase ( self ): UpperCAmelCase = TFFlaubertModelTester(self ) UpperCAmelCase = ConfigTester(self ,config_class=A ,emb_dim=37 ) def _UpperCamelCase ( self ): self.config_tester.run_common_tests() def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A ) @slow def _UpperCamelCase ( self ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFFlaubertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): @slow def _UpperCamelCase ( self ): UpperCAmelCase = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) UpperCAmelCase = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" UpperCAmelCase = model(A )[0] UpperCAmelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,A ) # compare the actual values for a slice. UpperCAmelCase = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
74
1
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase__ = logging.get_logger(__name__) class a__ : def __init__( self : Union[str, Any] ,a__ : Tuple ,a__ : Optional[Any]) -> int: """simple docstring""" _lowerCAmelCase:Optional[Any] = question_encoder _lowerCAmelCase:int = generator _lowerCAmelCase:Optional[Any] = self.question_encoder def __UpperCamelCase ( self : Any ,a__ : Tuple) -> Optional[int]: """simple docstring""" if os.path.isfile(a__): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file') os.makedirs(a__ ,exist_ok=a__) _lowerCAmelCase:Tuple = os.path.join(a__ ,'''question_encoder_tokenizer''') _lowerCAmelCase:Tuple = os.path.join(a__ ,'''generator_tokenizer''') self.question_encoder.save_pretrained(a__) self.generator.save_pretrained(a__) @classmethod def __UpperCamelCase ( cls : Tuple ,a__ : Any ,**a__ : List[str]) -> str: """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase:List[Any] = kwargs.pop('''config''' ,a__) if config is None: _lowerCAmelCase:List[str] = RagConfig.from_pretrained(a__) _lowerCAmelCase:List[Any] = AutoTokenizer.from_pretrained( a__ ,config=config.question_encoder ,subfolder='''question_encoder_tokenizer''') _lowerCAmelCase:int = AutoTokenizer.from_pretrained( a__ ,config=config.generator ,subfolder='''generator_tokenizer''') return cls(question_encoder=a__ ,generator=a__) def __call__( self : str ,*a__ : int ,**a__ : Any) -> Union[str, Any]: """simple docstring""" return self.current_tokenizer(*a__ ,**a__) def __UpperCamelCase ( self : str ,*a__ : Tuple ,**a__ : str) -> Tuple: """simple docstring""" return self.generator.batch_decode(*a__ ,**a__) def __UpperCamelCase ( self : List[str] ,*a__ : str ,**a__ : List[str]) -> Dict: """simple docstring""" return self.generator.decode(*a__ ,**a__) def __UpperCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" _lowerCAmelCase:Any = self.question_encoder def __UpperCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _lowerCAmelCase:Dict = self.generator def __UpperCamelCase ( self : Union[str, Any] ,a__ : List[str] ,a__ : Optional[List[str]] = None ,a__ : Optional[int] = None ,a__ : Optional[int] = None ,a__ : str = "longest" ,a__ : str = None ,a__ : bool = True ,**a__ : List[Any] ,) -> BatchEncoding: """simple docstring""" warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' ,a__ ,) if max_length is None: _lowerCAmelCase:Any = self.current_tokenizer.model_max_length _lowerCAmelCase:str = self( a__ ,add_special_tokens=a__ ,return_tensors=a__ ,max_length=a__ ,padding=a__ ,truncation=a__ ,**a__ ,) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase:List[str] = self.current_tokenizer.model_max_length _lowerCAmelCase:Optional[Any] = self( text_target=a__ ,add_special_tokens=a__ ,return_tensors=a__ ,padding=a__ ,max_length=a__ ,truncation=a__ ,**a__ ,) _lowerCAmelCase:str = labels['''input_ids'''] return model_inputs
227
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets UpperCamelCase__ = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' UpperCamelCase__ = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' UpperCamelCase__ = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __UpperCamelCase ( self : Dict) -> Tuple: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Value('''string''' ,id='''sequence'''), '''references''': datasets.Value('''string''' ,id='''sequence'''), }) ,codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] ,reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] ,) def __UpperCamelCase ( self : Any ,a__ : List[str] ,a__ : Union[str, Any] ,a__ : Optional[int]=None ,a__ : int=True ,a__ : List[str]=False) -> Tuple: """simple docstring""" if rouge_types is None: _lowerCAmelCase:str = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] _lowerCAmelCase:Dict = rouge_scorer.RougeScorer(rouge_types=a__ ,use_stemmer=a__) if use_aggregator: _lowerCAmelCase:Tuple = scoring.BootstrapAggregator() else: _lowerCAmelCase:Optional[int] = [] for ref, pred in zip(a__ ,a__): _lowerCAmelCase:Any = scorer.score(a__ ,a__) if use_aggregator: aggregator.add_scores(a__) else: scores.append(a__) if use_aggregator: _lowerCAmelCase:Optional[int] = aggregator.aggregate() else: _lowerCAmelCase:Optional[Any] = {} for key in scores[0]: _lowerCAmelCase:Tuple = [score[key] for score in scores] return result
227
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Dict=13 , __lowerCamelCase : int=7 , __lowerCamelCase : Any=9 , __lowerCamelCase : Dict=True , __lowerCamelCase : int=True , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=32 , __lowerCamelCase : Dict=5 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[Any]=37 , __lowerCamelCase : Union[str, Any]=8 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : str=0.0_0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=None , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Union[str, Any] = batch_size lowerCamelCase__ : Any = encoder_seq_length lowerCamelCase__ : str = decoder_seq_length # For common tests lowerCamelCase__ : Optional[int] = self.decoder_seq_length lowerCamelCase__ : Optional[Any] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Union[str, Any] = use_labels lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Optional[int] = hidden_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Union[str, Any] = num_attention_heads lowerCamelCase__ : Any = d_ff lowerCamelCase__ : Any = relative_attention_num_buckets lowerCamelCase__ : Optional[Any] = dropout_rate lowerCamelCase__ : int = initializer_factor lowerCamelCase__ : Optional[Any] = eos_token_id lowerCamelCase__ : Dict = pad_token_id lowerCamelCase__ : Optional[Any] = decoder_start_token_id lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : List[str] = decoder_layers def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return TaConfig.from_pretrained("google/umt5-base" ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[Any]=None , ): '''simple docstring''' if attention_mask is None: lowerCamelCase__ : Union[str, Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : List[Any] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase__ ) if decoder_head_mask is None: lowerCamelCase__ : Tuple = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase__ ) if cross_attn_head_mask is None: lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : List[str] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : str = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : List[Any] = self.prepare_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, input_dict def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Dict ): '''simple docstring''' return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowerCAmelCase ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , ): '''simple docstring''' lowerCamelCase__ : str = UMTaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCamelCase__ : str = model( input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , ) lowerCamelCase__ : int = model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ) lowerCamelCase__ : int = result.last_hidden_state lowerCamelCase__ : Dict = result.past_key_values lowerCamelCase__ : Dict = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowerCAmelCase ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , ): '''simple docstring''' lowerCamelCase__ : int = UMTaModel(config=UpperCAmelCase__ ).get_decoder().to(UpperCAmelCase__ ).eval() # first forward pass lowerCamelCase__ : List[Any] = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase__ ) lowerCamelCase__ : Any = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) self.parent.assertTrue(len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) ) self.parent.assertTrue(len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) + 1 ) lowerCamelCase__ : List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : Any = model(UpperCAmelCase__ )['''last_hidden_state'''] lowerCamelCase__ : Optional[Any] = model(UpperCAmelCase__ , past_key_values=UpperCAmelCase__ )['''last_hidden_state'''] # select random slice lowerCamelCase__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : Tuple = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , ): '''simple docstring''' lowerCamelCase__ : int = UMTaModel(config=UpperCAmelCase__ ).to(UpperCAmelCase__ ).half().eval() lowerCamelCase__ : str = model(**UpperCAmelCase__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(UpperCAmelCase__ ).any().item() ) @require_torch class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A__ = (UMTaForConditionalGeneration,) if is_torch_available() else () A__ = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A__ = True A__ = False A__ = False A__ = True A__ = True # The small UMT5 model needs higher percentages for CPU/MP tests A__ = [0.8, 0.9] def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=UpperCAmelCase__ , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase__ ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : int = config_and_inputs[0] lowerCamelCase__ : Union[str, Any] = UMTaForConditionalGeneration(UpperCAmelCase__ ).eval() model.to(UpperCAmelCase__ ) lowerCamelCase__ : str = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__ ), } for attn_name, (name, mask) in zip(UpperCAmelCase__ , head_masking.items() ): lowerCamelCase__ : int = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : List[str] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__ ) lowerCamelCase__ : Union[str, Any] = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , **UpperCAmelCase__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def lowerCAmelCase ( self : Any ): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase): """simple docstring""" @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=UpperCAmelCase__ ).to(UpperCAmelCase__ ) lowerCamelCase__ : int = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=UpperCAmelCase__ , legacy=UpperCAmelCase__ ) lowerCamelCase__ : List[str] = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] lowerCamelCase__ : Dict = tokenizer(UpperCAmelCase__ , return_tensors="pt" , padding=UpperCAmelCase__ ).input_ids # fmt: off lowerCamelCase__ : Optional[Any] = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase__ : List[Any] = model.generate(input_ids.to(UpperCAmelCase__ ) ) lowerCamelCase__ : int = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] lowerCamelCase__ : Tuple = tokenizer.batch_decode(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
717
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : """simple docstring""" def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ): '''simple docstring''' lowerCamelCase__ : Tuple = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : Any = use_token_type_ids lowerCamelCase__ : Union[str, Any] = use_labels lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Optional[Any] = scope lowerCamelCase__ : List[Any] = self.vocab_size - 1 def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Any = None lowerCamelCase__ : str = None lowerCamelCase__ : str = None if self.use_labels: lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Any = config_and_inputs lowerCamelCase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A__ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ): '''simple docstring''' lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Tuple = inputs_dict["labels"] lowerCamelCase__ : Any = inputs_dict["labels"] lowerCamelCase__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def lowerCAmelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(__lowerCamelCase ) lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is lowerCamelCase__ : Union[str, Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
5
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device lowercase_ : Optional[Any] = False class _lowerCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: Union[str, Any]= VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= '''A painting of a squirrel eating a burger ''' SCREAMING_SNAKE_CASE__: List[str]= torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: List[Any]= pipe( prompt=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= generator.manual_seed(0 ) SCREAMING_SNAKE_CASE__: List[str]= pipe( prompt=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: Tuple= VersatileDiffusionTextToImagePipeline.from_pretrained( '''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= '''A painting of a squirrel eating a burger ''' SCREAMING_SNAKE_CASE__: Union[str, Any]= torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__: str= pipe( prompt=lowerCAmelCase , generator=lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE__: Any= image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__: List[Any]= np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
64
'''simple docstring''' from functools import reduce __lowerCamelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def a__ ( UpperCamelCase_ : str = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda UpperCamelCase_, UpperCamelCase_ : str(int(UpperCamelCase_ ) * int(UpperCamelCase_ ) ), n[i : i + 13] ) ) for i in range(len(UpperCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
467
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase_ : List[Any] = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def __magic_name__( _A , _A , _A=8 ): '''simple docstring''' UpperCamelCase__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __magic_name__( _A , _A=512 , _A=512 ): '''simple docstring''' UpperCamelCase__ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) UpperCamelCase__ = np.array(pil_image.convert("""RGB""" ) ) UpperCamelCase__ = arr.astype(np.floataa ) / 127.5 - 1 UpperCamelCase__ = np.transpose(_A , [2, 0, 1] ) UpperCamelCase__ = torch.from_numpy(_A ).unsqueeze(0 ) return image class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Tuple , lowercase : UNetaDConditionModel , lowercase : DDPMScheduler , lowercase : VQModel , ) -> Dict: '''simple docstring''' super().__init__() self.register_modules( unet=lowercase , scheduler=lowercase , movq=lowercase , ) UpperCamelCase__ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A ( self : List[Any] , lowercase : List[Any] , lowercase : List[str] , lowercase : Dict ) -> Any: '''simple docstring''' UpperCamelCase__ = min(int(num_inference_steps * strength ) , lowercase ) UpperCamelCase__ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def A ( self : List[str] , lowercase : List[Any] , lowercase : List[str] , lowercase : Dict , lowercase : Union[str, Any] , lowercase : str , lowercase : Optional[int] , lowercase : Tuple=None ) -> List[str]: '''simple docstring''' if not isinstance(lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase )}" ) UpperCamelCase__ = image.to(device=lowercase , dtype=lowercase ) UpperCamelCase__ = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCamelCase__ = image else: if isinstance(lowercase , lowercase ) and len(lowercase ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(lowercase )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(lowercase , lowercase ): UpperCamelCase__ = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase ) ] UpperCamelCase__ = torch.cat(lowercase , dim=0 ) else: UpperCamelCase__ = self.movq.encode(lowercase ).latent_dist.sample(lowercase ) UpperCamelCase__ = self.movq.config.scaling_factor * init_latents UpperCamelCase__ = torch.cat([init_latents] , dim=0 ) UpperCamelCase__ = init_latents.shape UpperCamelCase__ = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) # get latents UpperCamelCase__ = self.scheduler.add_noise(lowercase , lowercase , lowercase ) UpperCamelCase__ = init_latents return latents def A ( self : Tuple , lowercase : Union[str, Any]=0 ) -> Union[str, Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCamelCase__ = torch.device(f"cuda:{gpu_id}" ) UpperCamelCase__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) def A ( self : Any , lowercase : Optional[Any]=0 ) -> List[str]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) UpperCamelCase__ = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase__ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase__ , UpperCamelCase__ = cpu_offload_with_hook(lowercase , lowercase , prev_module_hook=lowercase ) # We'll offload the last model manually. UpperCamelCase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A ( self : str ) -> Optional[int]: '''simple docstring''' if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self : int , lowercase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , lowercase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowercase : int = 5_1_2 , lowercase : int = 5_1_2 , lowercase : int = 1_0_0 , lowercase : float = 4.0 , lowercase : float = 0.3 , lowercase : int = 1 , lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase : Optional[str] = "pil" , lowercase : bool = True , ) -> str: '''simple docstring''' UpperCamelCase__ = self._execution_device UpperCamelCase__ = guidance_scale > 1.0 if isinstance(lowercase , lowercase ): UpperCamelCase__ = torch.cat(lowercase , dim=0 ) UpperCamelCase__ = image_embeds.shape[0] if isinstance(lowercase , lowercase ): UpperCamelCase__ = torch.cat(lowercase , dim=0 ) if do_classifier_free_guidance: UpperCamelCase__ = image_embeds.repeat_interleave(lowercase , dim=0 ) UpperCamelCase__ = negative_image_embeds.repeat_interleave(lowercase , dim=0 ) UpperCamelCase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) if not isinstance(lowercase , lowercase ): UpperCamelCase__ = [image] if not all(isinstance(lowercase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"Input is in incorrect format: {[type(lowercase ) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) UpperCamelCase__ = torch.cat([prepare_image(lowercase , lowercase , lowercase ) for i in image] , dim=0 ) UpperCamelCase__ = image.to(dtype=image_embeds.dtype , device=lowercase ) UpperCamelCase__ = self.movq.encode(lowercase )["""latents"""] UpperCamelCase__ = latents.repeat_interleave(lowercase , dim=0 ) self.scheduler.set_timesteps(lowercase , device=lowercase ) UpperCamelCase__ , UpperCamelCase__ = self.get_timesteps(lowercase , lowercase , lowercase ) UpperCamelCase__ = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCamelCase__ , UpperCamelCase__ = downscale_height_and_width(lowercase , lowercase , self.movq_scale_factor ) UpperCamelCase__ = self.prepare_latents( lowercase , lowercase , lowercase , lowercase , image_embeds.dtype , lowercase , lowercase ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ = {"""image_embeds""": image_embeds} UpperCamelCase__ = self.unet( sample=lowercase , timestep=lowercase , encoder_hidden_states=lowercase , added_cond_kwargs=lowercase , return_dict=lowercase , )[0] if do_classifier_free_guidance: UpperCamelCase__ , UpperCamelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase__ , UpperCamelCase__ = noise_pred.chunk(2 ) UpperCamelCase__ , UpperCamelCase__ = variance_pred.chunk(2 ) UpperCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase__ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase__ , UpperCamelCase__ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step( lowercase , lowercase , lowercase , generator=lowercase , )[0] # post-processing UpperCamelCase__ = self.movq.decode(lowercase , force_not_quantize=lowercase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCamelCase__ = image * 0.5 + 0.5 UpperCamelCase__ = image.clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase )
708
'''simple docstring''' import argparse import collections import json import os import re import string import sys import numpy as np lowerCamelCase_ : Union[str, Any] = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) lowerCamelCase_ : int = None def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=_A , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=_A , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCamelCase__ = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def __magic_name__( _A ): '''simple docstring''' def remove_articles(_A ): return ARTICLES_REGEX.sub(""" """ , _A ) def white_space_fix(_A ): return " ".join(text.split() ) def remove_punc(_A ): UpperCamelCase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def __magic_name__( _A ): '''simple docstring''' if not s: return [] return normalize_answer(_A ).split() def __magic_name__( _A , _A ): '''simple docstring''' return int(normalize_answer(_A ) == normalize_answer(_A ) ) def __magic_name__( _A , _A ): '''simple docstring''' UpperCamelCase__ = get_tokens(_A ) UpperCamelCase__ = get_tokens(_A ) UpperCamelCase__ = collections.Counter(_A ) & collections.Counter(_A ) UpperCamelCase__ = sum(common.values() ) if len(_A ) == 0 or len(_A ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 UpperCamelCase__ = 1.0 * num_same / len(_A ) UpperCamelCase__ = 1.0 * num_same / len(_A ) UpperCamelCase__ = (2 * precision * recall) / (precision + recall) return fa def __magic_name__( _A , _A ): '''simple docstring''' UpperCamelCase__ = {} UpperCamelCase__ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: UpperCamelCase__ = qa["""id"""] UpperCamelCase__ = [t for t in qa["""answers"""]["""text"""] if normalize_answer(_A )] if not gold_answers: # For unanswerable questions, only correct answer is empty string UpperCamelCase__ = [""""""] if qid not in preds: print(f"Missing prediction for {qid}" ) continue UpperCamelCase__ = preds[qid] # Take max over all gold answers UpperCamelCase__ = max(compute_exact(_A , _A ) for a in gold_answers ) UpperCamelCase__ = max(compute_fa(_A , _A ) for a in gold_answers ) return exact_scores, fa_scores def __magic_name__( _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = {} for qid, s in scores.items(): UpperCamelCase__ = na_probs[qid] > na_prob_thresh if pred_na: UpperCamelCase__ = float(not qid_to_has_ans[qid] ) else: UpperCamelCase__ = s return new_scores def __magic_name__( _A , _A , _A=None ): '''simple docstring''' if not qid_list: UpperCamelCase__ = len(_A ) return collections.OrderedDict( [ ("""exact""", 1_0_0.0 * sum(exact_scores.values() ) / total), ("""f1""", 1_0_0.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: UpperCamelCase__ = len(_A ) return collections.OrderedDict( [ ("""exact""", 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def __magic_name__( _A , _A , _A ): '''simple docstring''' for k in new_eval: UpperCamelCase__ = new_eval[k] def __magic_name__( _A , _A , _A , _A ): '''simple docstring''' plt.step(_A , _A , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(_A , _A , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(_A ) plt.savefig(_A ) plt.clf() def __magic_name__( _A , _A , _A , _A , _A=None , _A=None ): '''simple docstring''' UpperCamelCase__ = sorted(_A , key=lambda _A : na_probs[k] ) UpperCamelCase__ = 0.0 UpperCamelCase__ = 1.0 UpperCamelCase__ = 0.0 UpperCamelCase__ = [1.0] UpperCamelCase__ = [0.0] UpperCamelCase__ = 0.0 for i, qid in enumerate(_A ): if qid_to_has_ans[qid]: true_pos += scores[qid] UpperCamelCase__ = true_pos / float(i + 1 ) UpperCamelCase__ = true_pos / float(_A ) if i == len(_A ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_A ) recalls.append(_A ) if out_image: plot_pr_curve(_A , _A , _A , _A ) return {"ap": 1_0_0.0 * avg_prec} def __magic_name__( _A , _A , _A , _A , _A , _A ): '''simple docstring''' if out_image_dir and not os.path.exists(_A ): os.makedirs(_A ) UpperCamelCase__ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return UpperCamelCase__ = make_precision_recall_eval( _A , _A , _A , _A , out_image=os.path.join(_A , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) UpperCamelCase__ = make_precision_recall_eval( _A , _A , _A , _A , out_image=os.path.join(_A , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) UpperCamelCase__ = {k: float(_A ) for k, v in qid_to_has_ans.items()} UpperCamelCase__ = make_precision_recall_eval( _A , _A , _A , _A , out_image=os.path.join(_A , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(_A , _A , """pr_exact""" ) merge_eval(_A , _A , """pr_f1""" ) merge_eval(_A , _A , """pr_oracle""" ) def __magic_name__( _A , _A , _A , _A ): '''simple docstring''' if not qid_list: return UpperCamelCase__ = [na_probs[k] for k in qid_list] UpperCamelCase__ = np.ones_like(_A ) / float(len(_A ) ) plt.hist(_A , weights=_A , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(f"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(_A , f"na_prob_hist_{name}.png" ) ) plt.clf() def __magic_name__( _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) UpperCamelCase__ = num_no_ans UpperCamelCase__ = cur_score UpperCamelCase__ = 0.0 UpperCamelCase__ = sorted(_A , key=lambda _A : na_probs[k] ) for i, qid in enumerate(_A ): if qid not in scores: continue if qid_to_has_ans[qid]: UpperCamelCase__ = scores[qid] else: if preds[qid]: UpperCamelCase__ = -1 else: UpperCamelCase__ = 0 cur_score += diff if cur_score > best_score: UpperCamelCase__ = cur_score UpperCamelCase__ = na_probs[qid] return 1_0_0.0 * best_score / len(_A ), best_thresh def __magic_name__( _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = find_best_thresh(_A , _A , _A , _A ) UpperCamelCase__ , UpperCamelCase__ = find_best_thresh(_A , _A , _A , _A ) UpperCamelCase__ = best_exact UpperCamelCase__ = exact_thresh UpperCamelCase__ = best_fa UpperCamelCase__ = fa_thresh def __magic_name__( ): '''simple docstring''' with open(OPTS.data_file ) as f: UpperCamelCase__ = json.load(_A ) UpperCamelCase__ = dataset_json["""data"""] with open(OPTS.pred_file ) as f: UpperCamelCase__ = json.load(_A ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: UpperCamelCase__ = json.load(_A ) else: UpperCamelCase__ = {k: 0.0 for k in preds} UpperCamelCase__ = make_qid_to_has_ans(_A ) # maps qid to True/False UpperCamelCase__ = [k for k, v in qid_to_has_ans.items() if v] UpperCamelCase__ = [k for k, v in qid_to_has_ans.items() if not v] UpperCamelCase__ , UpperCamelCase__ = get_raw_scores(_A , _A ) UpperCamelCase__ = apply_no_ans_threshold(_A , _A , _A , OPTS.na_prob_thresh ) UpperCamelCase__ = apply_no_ans_threshold(_A , _A , _A , OPTS.na_prob_thresh ) UpperCamelCase__ = make_eval_dict(_A , _A ) if has_ans_qids: UpperCamelCase__ = make_eval_dict(_A , _A , qid_list=_A ) merge_eval(_A , _A , """HasAns""" ) if no_ans_qids: UpperCamelCase__ = make_eval_dict(_A , _A , qid_list=_A ) merge_eval(_A , _A , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(_A , _A , _A , _A , _A , _A ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_A , _A , _A , _A , _A , OPTS.out_image_dir ) histogram_na_prob(_A , _A , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(_A , _A , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(_A , _A ) else: print(json.dumps(_A , indent=2 ) ) if __name__ == "__main__": lowerCamelCase_ : str = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
265
0
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : List[Any] ): lowerCAmelCase = int(__UpperCAmelCase ) assert noofclusters < len(__UpperCAmelCase ) # Find out the dimensionality lowerCAmelCase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowerCAmelCase = list(range(len(__UpperCAmelCase ) ) ) shuffle(__UpperCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowerCAmelCase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowerCAmelCase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowerCAmelCase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__UpperCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowerCAmelCase = tf.placeholder('float64' , [dim] ) lowerCAmelCase = [] for centroid in centroids: cent_assigns.append(tf.assign(__UpperCAmelCase , __UpperCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowerCAmelCase = [tf.Variable(0 ) for i in range(len(__UpperCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowerCAmelCase = tf.placeholder('int32' ) lowerCAmelCase = [] for assignment in assignments: cluster_assigns.append(tf.assign(__UpperCAmelCase , __UpperCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowerCAmelCase = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowerCAmelCase = tf.reduce_mean(__UpperCAmelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowerCAmelCase = tf.placeholder('float' , [dim] ) lowerCAmelCase = tf.placeholder('float' , [dim] ) lowerCAmelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__UpperCAmelCase , __UpperCAmelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowerCAmelCase = tf.placeholder('float' , [noofclusters] ) lowerCAmelCase = tf.argmin(__UpperCAmelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowerCAmelCase = tf.initialize_all_variables() # Initialize all variables sess.run(__UpperCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowerCAmelCase = 100 for _ in range(__UpperCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__UpperCAmelCase ) ): lowerCAmelCase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowerCAmelCase = [ sess.run(__UpperCAmelCase , feed_dict={va: vect, va: sess.run(__UpperCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowerCAmelCase = sess.run( __UpperCAmelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__UpperCAmelCase ): # Collect all the vectors assigned to this cluster lowerCAmelCase = [ vectors[i] for i in range(len(__UpperCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowerCAmelCase = sess.run( __UpperCAmelCase , feed_dict={mean_input: array(__UpperCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowerCAmelCase = sess.run(__UpperCAmelCase ) lowerCAmelCase = sess.run(__UpperCAmelCase ) return centroids, assignments
4
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ : Optional[int] = ["""a""", """b""", """c"""] # Defaults to last layer if both are None lowerCAmelCase__ , lowerCAmelCase__ : str = get_aligned_output_features_output_indices(UpperCamelCase , UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , ["""c"""] ) self.assertEqual(UpperCamelCase , [2] ) # Out indices set to match out features lowerCAmelCase__ , lowerCAmelCase__ : int = get_aligned_output_features_output_indices(["""a""", """c"""] , UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , ["""a""", """c"""] ) self.assertEqual(UpperCamelCase , [0, 2] ) # Out features set to match out indices lowerCAmelCase__ , lowerCAmelCase__ : int = get_aligned_output_features_output_indices(UpperCamelCase , [0, 2] , UpperCamelCase ) self.assertEqual(UpperCamelCase , ["""a""", """c"""] ) self.assertEqual(UpperCamelCase , [0, 2] ) # Out features selected from negative indices lowerCAmelCase__ , lowerCAmelCase__ : Tuple = get_aligned_output_features_output_indices(UpperCamelCase , [-3, -1] , UpperCamelCase ) self.assertEqual(UpperCamelCase , ["""a""", """c"""] ) self.assertEqual(UpperCamelCase , [-3, -1] ) def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" # Stage names must be set with self.assertRaises(UpperCamelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , UpperCamelCase ) # Out features must be a list with self.assertRaises(UpperCamelCase ): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] ) # Out features must be a subset of stage names with self.assertRaises(UpperCamelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] ) # Out indices must be a list or tuple with self.assertRaises(UpperCamelCase ): verify_out_features_out_indices(UpperCamelCase , 0 , ["""a""", """b"""] ) # Out indices must be a subset of stage names with self.assertRaises(UpperCamelCase ): verify_out_features_out_indices(UpperCamelCase , (0, 1) , ["""a"""] ) # Out features and out indices must be the same length with self.assertRaises(UpperCamelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] ) # Out features should match out indices with self.assertRaises(UpperCamelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] ) # Out features and out indices should be in order with self.assertRaises(UpperCamelCase ): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] ) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : str = BackboneMixin() lowerCAmelCase__ : str = ["""a""", """b""", """c"""] lowerCAmelCase__ : List[str] = ["""a""", """c"""] lowerCAmelCase__ : Union[str, Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowerCAmelCase__ : List[str] = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowerCAmelCase__ : int = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [-3, -1] )
299
0
from __future__ import annotations class UpperCamelCase: def __init__( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: '''simple docstring''' __snake_case , __snake_case = text, pattern __snake_case , __snake_case = len(SCREAMING_SNAKE_CASE ), len(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE : str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> list[int]: '''simple docstring''' __snake_case = [] for i in range(self.textLen - self.patLen + 1 ): __snake_case = self.mismatch_in_text(SCREAMING_SNAKE_CASE ) if mismatch_index == -1: positions.append(SCREAMING_SNAKE_CASE ) else: __snake_case = self.match_in_pattern(self.text[mismatch_index] ) __snake_case = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A : str = 'ABAABA' A : int = 'AB' A : Tuple = BoyerMooreSearch(text, pattern) A : str = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
473
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : Tuple = logging.get_logger(__name__) A : int = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class UpperCamelCase( _a ): snake_case_ : str = """blenderbot-small""" snake_case_ : List[Any] = ["""past_key_values"""] snake_case_ : Any = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=5_0_2_6_5 , SCREAMING_SNAKE_CASE : Optional[int]=5_1_2 , SCREAMING_SNAKE_CASE : Any=8 , SCREAMING_SNAKE_CASE : int=2_0_4_8 , SCREAMING_SNAKE_CASE : Any=1_6 , SCREAMING_SNAKE_CASE : Tuple=8 , SCREAMING_SNAKE_CASE : List[Any]=2_0_4_8 , SCREAMING_SNAKE_CASE : Optional[int]=1_6 , SCREAMING_SNAKE_CASE : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE : str=0.0 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE : Dict=5_1_2 , SCREAMING_SNAKE_CASE : Any=0.1 , SCREAMING_SNAKE_CASE : Dict=0.0 , SCREAMING_SNAKE_CASE : Any=0.0 , SCREAMING_SNAKE_CASE : int=0.02 , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Union[str, Any]=0 , SCREAMING_SNAKE_CASE : str=1 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : Any=2 , **SCREAMING_SNAKE_CASE : Dict , ) -> Optional[int]: '''simple docstring''' __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , is_encoder_decoder=SCREAMING_SNAKE_CASE , decoder_start_token_id=SCREAMING_SNAKE_CASE , forced_eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) class UpperCamelCase( _a ): @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __snake_case = {0: "batch"} __snake_case = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __snake_case = {0: "batch", 1: "decoder_sequence"} __snake_case = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __snake_case = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(SCREAMING_SNAKE_CASE ): __snake_case = {0: "batch", 2: "past_sequence + sequence"} __snake_case = {0: "batch", 2: "past_sequence + sequence"} else: __snake_case = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = super().outputs else: __snake_case = super(SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(SCREAMING_SNAKE_CASE ): __snake_case = {0: "batch", 2: "past_sequence + sequence"} __snake_case = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE : PreTrainedTokenizer , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Generate decoder inputs __snake_case = seq_length if not self.use_past else 1 __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __snake_case = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} __snake_case = dict(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __snake_case , __snake_case = common_inputs["input_ids"].shape __snake_case = common_inputs["decoder_input_ids"].shape[1] __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = decoder_seq_length + 3 __snake_case = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __snake_case = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] , dim=1 ) __snake_case = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __snake_case , __snake_case = self.num_layers __snake_case = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __snake_case = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - min_num_layers __snake_case = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. __snake_case = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : PreTrainedTokenizer , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __snake_case , __snake_case = common_inputs["input_ids"].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case , __snake_case = self.num_layers __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = common_inputs["attention_mask"].dtype __snake_case = torch.cat( [common_inputs["attention_mask"], torch.ones(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )] , dim=1 ) __snake_case = [ (torch.zeros(SCREAMING_SNAKE_CASE ), torch.zeros(SCREAMING_SNAKE_CASE )) for _ in range(SCREAMING_SNAKE_CASE ) ] return common_inputs def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE : PreTrainedTokenizer , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' __snake_case = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __snake_case = tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE ) __snake_case = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence __snake_case = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __snake_case = dict(tokenizer(SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE ) ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE : PreTrainedTokenizer , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) elif self.task == "causal-lm": __snake_case = self._generate_dummy_inputs_for_causal_lm( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) else: __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE ) return common_inputs def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: __snake_case = super()._flatten_past_key_values_(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: __snake_case = super(SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
473
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case__ : '''simple docstring''' def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=True , a__=False , a__=False , a__=False , a__=2 , a__=99 , a__=0 , a__=32 , a__=5 , a__=4 , a__=0.1 , a__=0.1 , a__=5_12 , a__=2 , a__=0.02 , a__=2 , a__=4 , a__="last" , a__=True , a__=None , a__=0 , ) -> List[str]: '''simple docstring''' __snake_case :Any = parent __snake_case :int = batch_size __snake_case :Any = seq_length __snake_case :Optional[Any] = is_training __snake_case :Union[str, Any] = use_input_lengths __snake_case :Optional[Any] = use_token_type_ids __snake_case :Tuple = use_labels __snake_case :str = gelu_activation __snake_case :Optional[int] = sinusoidal_embeddings __snake_case :Optional[int] = causal __snake_case :List[str] = asm __snake_case :List[Any] = n_langs __snake_case :int = vocab_size __snake_case :Union[str, Any] = n_special __snake_case :Tuple = hidden_size __snake_case :Tuple = num_hidden_layers __snake_case :Tuple = num_attention_heads __snake_case :str = hidden_dropout_prob __snake_case :Union[str, Any] = attention_probs_dropout_prob __snake_case :str = max_position_embeddings __snake_case :Any = type_sequence_label_size __snake_case :List[Any] = initializer_range __snake_case :List[Any] = num_labels __snake_case :int = num_choices __snake_case :Optional[Any] = summary_type __snake_case :List[str] = use_proj __snake_case :List[str] = scope __snake_case :List[str] = bos_token_id def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case :str = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case :List[str] = None if self.use_input_lengths: __snake_case :int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __snake_case :int = None if self.use_token_type_ids: __snake_case :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __snake_case :Dict = None __snake_case :Union[str, Any] = None __snake_case :Tuple = None if self.use_labels: __snake_case :Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case :Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __snake_case :Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case :Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowercase ( self ) -> Dict: '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> Optional[Any]: '''simple docstring''' __snake_case :Optional[Any] = XLMModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __snake_case :int = model(lowerCamelCase_ , lengths=lowerCamelCase_ , langs=lowerCamelCase_ ) __snake_case :Optional[int] = model(lowerCamelCase_ , langs=lowerCamelCase_ ) __snake_case :Optional[int] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> Optional[Any]: '''simple docstring''' __snake_case :int = XLMWithLMHeadModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __snake_case :Tuple = model(lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> Dict: '''simple docstring''' __snake_case :Optional[Any] = XLMForQuestionAnsweringSimple(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __snake_case :Optional[int] = model(lowerCamelCase_ ) __snake_case :Tuple = model(lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ ) __snake_case :Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> str: '''simple docstring''' __snake_case :List[str] = XLMForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __snake_case :Union[str, Any] = model(lowerCamelCase_ ) __snake_case :Dict = model( lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , cls_index=lowerCamelCase_ , is_impossible=lowerCamelCase_ , p_mask=lowerCamelCase_ , ) __snake_case :Tuple = model( lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , cls_index=lowerCamelCase_ , is_impossible=lowerCamelCase_ , ) ((__snake_case ) , ) :int = result_with_labels.to_tuple() __snake_case :List[Any] = model(lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ ) ((__snake_case ) , ) :List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> Optional[int]: '''simple docstring''' __snake_case :int = XLMForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __snake_case :Union[str, Any] = model(lowerCamelCase_ ) __snake_case :str = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> List[str]: '''simple docstring''' __snake_case :Dict = self.num_labels __snake_case :str = XLMForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __snake_case :Tuple = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) -> List[str]: '''simple docstring''' __snake_case :Any = self.num_choices __snake_case :Optional[Any] = XLMForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __snake_case :Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case :str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case :Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case :Optional[int] = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :str = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) :Union[str, Any] = config_and_inputs __snake_case :Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class snake_case__ ( a__ , a__ , a__ , unittest.TestCase): '''simple docstring''' lowerCamelCase : List[Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase : int = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCamelCase : Tuple = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ ) -> List[Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowercase ( self , a__ , a__ , a__=False ) -> List[str]: '''simple docstring''' __snake_case :Union[str, Any] = super()._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __snake_case :str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) __snake_case :Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) return inputs_dict def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Optional[Any] = XLMModelTester(self ) __snake_case :str = ConfigTester(self , config_class=lowerCamelCase_ , emb_dim=37 ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self ) -> Tuple: '''simple docstring''' __snake_case :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCamelCase_ ) def __lowercase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase_ ) def __lowercase ( self ) -> str: '''simple docstring''' __snake_case :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase_ ) def __lowercase ( self ) -> Optional[int]: '''simple docstring''' __snake_case :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCamelCase_ ) def __lowercase ( self ) -> List[Any]: '''simple docstring''' __snake_case :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase_ ) def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase_ ) def __lowercase ( self ) -> List[str]: '''simple docstring''' __snake_case :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase_ ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__=False , a__=1 ) -> Optional[int]: '''simple docstring''' self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual( [isinstance(lowerCamelCase_ , lowerCamelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCamelCase_ ) ) self.assertEqual(len(lowerCamelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCamelCase_ ): # adds PAD dummy token __snake_case :Tuple = min_length + idx + 1 __snake_case :int = min_length + idx + 1 __snake_case :Optional[Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCamelCase_ ) ) def __lowercase ( self , a__ , a__ , a__ , a__ , a__ , a__=False , a__=1 ) -> int: '''simple docstring''' self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertListEqual( [isinstance(lowerCamelCase_ , lowerCamelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCamelCase_ ) , ) self.assertEqual(len(lowerCamelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCamelCase_ ): # adds PAD dummy token __snake_case :Optional[Any] = min_length + idx + 1 __snake_case :Union[str, Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCamelCase_ ) , ) pass @slow def __lowercase ( self ) -> str: '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case :Optional[Any] = XLMModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_torch class snake_case__ ( unittest.TestCase): '''simple docstring''' @slow def __lowercase ( self ) -> int: '''simple docstring''' __snake_case :Optional[Any] = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(lowerCamelCase_ ) __snake_case :List[Any] = torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCamelCase_ ) # the president __snake_case :Union[str, Any] = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __snake_case :Tuple = model.generate(lowerCamelCase_ , do_sample=lowerCamelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCamelCase_ )
455
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.txt'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } __UpperCAmelCase = { '''facebook/esm2_t6_8M_UR50D''': 1_024, '''facebook/esm2_t12_35M_UR50D''': 1_024, } def _snake_case ( A ) -> Optional[Any]: with open(A , '''r''' ) as f: lowerCAmelCase__ = f.read().splitlines() return [l.strip() for l in lines] class a__ ( a__ ): '''simple docstring''' lowercase__ : Optional[Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<mask>" , lowerCamelCase_="<eos>" , **lowerCamelCase_ , ) -> Tuple: super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ = load_vocab_file(lowerCamelCase_ ) lowerCAmelCase__ = dict(enumerate(self.all_tokens ) ) lowerCAmelCase__ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowerCAmelCase__ = unk_token lowerCAmelCase__ = cls_token lowerCAmelCase__ = pad_token lowerCAmelCase__ = mask_token lowerCAmelCase__ = eos_token lowerCAmelCase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> str: return self._id_to_token.get(lowerCamelCase_ , self.unk_token ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: return self._token_to_id.get(lowerCamelCase_ , self._token_to_id.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , **lowerCamelCase_ ) -> Union[str, Any]: return text.split() def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=False ) -> Dict: return len(self._id_to_token ) def __SCREAMING_SNAKE_CASE ( self ) -> int: return {token: i for i, token in enumerate(self.all_tokens )} def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: return self._token_to_id.get(lowerCamelCase_ , self._token_to_id.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> str: return self._id_to_token.get(lowerCamelCase_ , self.unk_token ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowerCAmelCase__ = [1] + ([0] * len(lowerCamelCase_ )) + [1] if token_ids_a is not None: mask += [0] * len(lowerCamelCase_ ) + [1] return mask def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: lowerCAmelCase__ = os.path.join(lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __SCREAMING_SNAKE_CASE ( self ) -> int: return self.get_vocab_size(with_added_tokens=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = False ) -> int: return super()._add_tokens(lowerCamelCase_ , special_tokens=lowerCamelCase_ )
90
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( a : list ) ->list: if len(a ) == 0: return [] snake_case , snake_case = min(a ), max(a ) snake_case = int(max_value - min_value ) + 1 snake_case = [[] for _ in range(a )] for i in my_list: buckets[int(i - min_value )].append(a ) return [v for bucket in buckets for v in sorted(a )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
44
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def __UpperCamelCase ( a : Dict , a : Optional[int] , a : Dict , a : Dict ) ->Union[str, Any]: snake_case = original_name.split('''.''' )[0] snake_case = key.split('''.''' ) snake_case = int(key_list[key_list.index(a ) - 2] ) snake_case = int(key_list[key_list.index(a ) - 1] ) snake_case = orig_block_num - offset snake_case = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def __UpperCamelCase ( a : Tuple ) ->Dict: snake_case = OrderedDict() snake_case , snake_case = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): snake_case = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 snake_case = key[: key.find('''proj''' )] snake_case = key.replace(a , f"""patch_embeddings.{total_embed_found}.""" ) snake_case = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: snake_case = '''poolformer.encoder.''' + key if "mlp.fc1" in key: snake_case = replace_key_with_offset(a , a , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: snake_case = replace_key_with_offset(a , a , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: snake_case = replace_key_with_offset(a , a , '''norm1''' , '''before_norm''' ) if "norm2" in key: snake_case = replace_key_with_offset(a , a , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: snake_case = replace_key_with_offset(a , a , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: snake_case = replace_key_with_offset(a , a , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: snake_case = key.replace('''head''' , '''classifier''' ) snake_case = value return new_state_dict def __UpperCamelCase ( ) ->Optional[int]: snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case = Image.open(requests.get(a , stream=a ).raw ) return image @torch.no_grad() def __UpperCamelCase ( a : Dict , a : Optional[Any] , a : Tuple ) ->List[str]: snake_case = PoolFormerConfig() # set attributes based on model_name snake_case = '''huggingface/label-files''' snake_case = model_name[-3:] snake_case = 1000 snake_case = '''imagenet-1k-id2label.json''' snake_case = (1, 1000) # set config attributes snake_case = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) snake_case = {int(a ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} if size == "s12": snake_case = [2, 2, 6, 2] snake_case = [64, 128, 320, 512] snake_case = 4.0 snake_case = 0.9 elif size == "s24": snake_case = [4, 4, 12, 4] snake_case = [64, 128, 320, 512] snake_case = 4.0 snake_case = 0.9 elif size == "s36": snake_case = [6, 6, 18, 6] snake_case = [64, 128, 320, 512] snake_case = 4.0 snake_case = 1e-6 snake_case = 0.9 elif size == "m36": snake_case = [6, 6, 18, 6] snake_case = [96, 192, 384, 768] snake_case = 4.0 snake_case = 1e-6 snake_case = 0.95 elif size == "m48": snake_case = [8, 8, 24, 8] snake_case = [96, 192, 384, 768] snake_case = 4.0 snake_case = 1e-6 snake_case = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor snake_case = PoolFormerImageProcessor(crop_pct=a ) # Prepare image snake_case = prepare_img() snake_case = image_processor(images=a , return_tensors='''pt''' ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict snake_case = torch.load(a , map_location=torch.device('''cpu''' ) ) # rename keys snake_case = rename_keys(a ) # create HuggingFace model and load state dict snake_case = PoolFormerForImageClassification(a ) model.load_state_dict(a ) model.eval() # Define image processor snake_case = PoolFormerImageProcessor(crop_pct=a ) snake_case = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass snake_case = model(a ) snake_case = outputs.logits # define expected logit slices for different models if size == "s12": snake_case = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": snake_case = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": snake_case = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": snake_case = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": snake_case = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a , atol=1e-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _lowercase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Union[str, Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=13 , lowercase=32 , lowercase=3 , lowercase=4 , lowercase=[10, 20, 30, 40] , lowercase=[2, 2, 3, 2] , lowercase=True , lowercase=True , lowercase=37 , lowercase="gelu" , lowercase=10 , lowercase=0.0_2 , lowercase=["stage2", "stage3", "stage4"] , lowercase=[2, 3, 4] , lowercase=None , ) -> Any: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = num_stages lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = initializer_range lowerCamelCase_ = out_features lowerCamelCase_ = out_indices lowerCamelCase_ = scope def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE_( self ) -> Dict: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowercase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> Tuple: lowerCamelCase_ = ConvNextModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> str: lowerCamelCase_ = ConvNextForImageClassification(lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase ) -> str: lowerCamelCase_ = ConvNextBackbone(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase_ = None lowerCamelCase_ = ConvNextBackbone(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model(lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = ConvNextModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: pass def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(lowercase ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: def check_hidden_states_output(lowercase , lowercase , lowercase ): lowerCamelCase_ = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(lowercase , lowercase ) ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(lowercase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(lowercase , lowercase , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = ConvNextModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def lowerCamelCase_ ( ): lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(lowercase ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=lowercase , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): lowerCamelCase_ = model(**lowercase ) # verify the logits lowerCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowercase ) lowerCamelCase_ = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) ) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase , snake_case_ ): lowerCAmelCase__ = (ConvNextBackbone,) if is_torch_available() else () lowerCAmelCase__ = ConvNextConfig lowerCAmelCase__ = False def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = ConvNextModelTester(self )
463
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__ ( snake_case ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = (DDPMScheduler,) def _UpperCAmelCase ( self: Dict , **__lowerCAmelCase: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _UpperCAmelCase ( self: Union[str, Any] ) -> Any: '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[int] ) -> str: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase , beta_end=__lowerCAmelCase ) def _UpperCAmelCase ( self: int ) -> Optional[Any]: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[Any] ) -> Any: '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[int] ) -> str: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _UpperCAmelCase ( self: str ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase , prediction_type=__lowerCAmelCase , sample_max_value=__lowerCAmelCase , ) def _UpperCAmelCase ( self: Any ) -> Tuple: '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _UpperCAmelCase ( self: List[Any] ) -> Union[str, Any]: '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=__lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[Any] ) -> List[str]: '''simple docstring''' __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def _UpperCAmelCase ( self: int ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**__lowerCAmelCase ) __UpperCAmelCase = len(__lowerCAmelCase ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(__lowerCAmelCase ) ): # 1. predict noise residual __UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __UpperCAmelCase = pred_prev_sample __UpperCAmelCase = torch.sum(torch.abs(__lowerCAmelCase ) ) __UpperCAmelCase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def _UpperCAmelCase ( self: Any ) -> List[str]: '''simple docstring''' __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config(prediction_type="v_prediction" ) __UpperCAmelCase = scheduler_class(**__lowerCAmelCase ) __UpperCAmelCase = len(__lowerCAmelCase ) __UpperCAmelCase = self.dummy_model() __UpperCAmelCase = self.dummy_sample_deter __UpperCAmelCase = torch.manual_seed(0 ) for t in reversed(range(__lowerCAmelCase ) ): # 1. predict noise residual __UpperCAmelCase = model(__lowerCAmelCase , __lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __UpperCAmelCase = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __UpperCAmelCase = pred_prev_sample __UpperCAmelCase = torch.sum(torch.abs(__lowerCAmelCase ) ) __UpperCAmelCase = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def _UpperCAmelCase ( self: List[str] ) -> str: '''simple docstring''' __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**__lowerCAmelCase ) __UpperCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__lowerCAmelCase ) __UpperCAmelCase = scheduler.timesteps for i, timestep in enumerate(__lowerCAmelCase ): if i == len(__lowerCAmelCase ) - 1: __UpperCAmelCase = -1 else: __UpperCAmelCase = timesteps[i + 1] __UpperCAmelCase = scheduler.previous_timestep(__lowerCAmelCase ) __UpperCAmelCase = prev_t.item() self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Tuple: '''simple docstring''' __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**__lowerCAmelCase ) __UpperCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(__lowerCAmelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__lowerCAmelCase ) def _UpperCAmelCase ( self: Any ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**__lowerCAmelCase ) __UpperCAmelCase = [100, 87, 50, 1, 0] __UpperCAmelCase = len(__lowerCAmelCase ) with self.assertRaises(__lowerCAmelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=__lowerCAmelCase , timesteps=__lowerCAmelCase ) def _UpperCAmelCase ( self: Any ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.scheduler_classes[0] __UpperCAmelCase = self.get_scheduler_config() __UpperCAmelCase = scheduler_class(**__lowerCAmelCase ) __UpperCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __lowerCAmelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__lowerCAmelCase )
286
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = AlbertTokenizer lowerCAmelCase__ : int = AlbertTokenizerFast lowerCAmelCase__ : str = True lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : int = True def _UpperCAmelCase ( self: Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = AlbertTokenizer(__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self: Any , __lowerCAmelCase: Tuple ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase = "this is a test" __UpperCAmelCase = "this is a test" return input_text, output_text def _UpperCAmelCase ( self: Dict ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = "<pad>" __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def _UpperCAmelCase ( self: str ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(__lowerCAmelCase ) , 30_000 ) def _UpperCAmelCase ( self: Union[str, Any] ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def _UpperCAmelCase ( self: str ) -> int: '''simple docstring''' if not self.test_rust_tokenizer: return __UpperCAmelCase = self.get_tokenizer() __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = "I was born in 92000, and this is falsé." __UpperCAmelCase = tokenizer.tokenize(__lowerCAmelCase ) __UpperCAmelCase = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) __UpperCAmelCase = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = self.get_rust_tokenizer() __UpperCAmelCase = tokenizer.encode(__lowerCAmelCase ) __UpperCAmelCase = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[Any] ) -> Any: '''simple docstring''' __UpperCAmelCase = AlbertTokenizer(__lowerCAmelCase , keep_accents=__lowerCAmelCase ) __UpperCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCAmelCase , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [48, 25, 21, 1_289] ) __UpperCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def _UpperCAmelCase ( self: str ) -> Dict: '''simple docstring''' __UpperCAmelCase = AlbertTokenizer(__lowerCAmelCase ) __UpperCAmelCase = tokenizer.encode("sequence builders" ) __UpperCAmelCase = tokenizer.encode("multi-sequence build" ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__lowerCAmelCase , __lowerCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _UpperCAmelCase ( self: Optional[int] ) -> str: '''simple docstring''' __UpperCAmelCase = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
286
1
from __future__ import annotations from typing import TypedDict class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : str __lowerCAmelCase : int def UpperCamelCase ( lowercase_ ) -> list[str]: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(lowercase_ ) )] def UpperCamelCase ( lowercase_ ) -> BWTTransformDict: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) lowercase__ : List[str] = all_rotations(lowercase_ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation lowercase__ : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(lowercase_ ), } return response def UpperCamelCase ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: lowercase__ : Optional[Any] = int(lowercase_ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(lowercase_ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) lowercase__ : str = [""""""] * len(lowercase_ ) for _ in range(len(lowercase_ ) ): for i in range(len(lowercase_ ) ): lowercase__ : List[Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Tuple = """Provide a string that I will generate its BWT transform: """ lowerCamelCase__ : Dict = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result["bwt_string"]}\'''' ) lowerCamelCase__ : List[str] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( f'''Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ''' f'''we get original string \'{original_string}\'''' )
12
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __magic_name__ : str ={ 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __magic_name__ : Tuple ={ 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def __snake_case ( lowerCamelCase_ : Optional[Any] ): '''simple docstring''' __magic_name__ = (images / 2 + 0.5).clamp(0 , 1 ) __magic_name__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __magic_name__ = numpy_to_pil(lowerCamelCase_ ) return images def __snake_case ( lowerCamelCase_ : Optional[Any] ): '''simple docstring''' if images.ndim == 3: __magic_name__ = images[None, ...] __magic_name__ = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __magic_name__ = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: __magic_name__ = [Image.fromarray(lowerCamelCase_ ) for image in images] return pil_images
664
0
from ..utils import DummyObject, requires_backends class lowerCamelCase (metaclass=__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = ["torch", "torchsde"] def __init__( self : Optional[int], *_UpperCAmelCase : Optional[Any], **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" requires_backends(self, ["torch", "torchsde"] ) @classmethod def A_ ( cls : Any, *_UpperCAmelCase : str, **_UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" requires_backends(cls, ["torch", "torchsde"] ) @classmethod def A_ ( cls : int, *_UpperCAmelCase : List[str], **_UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" requires_backends(cls, ["torch", "torchsde"] )
157
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Union[str, Any] = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
157
1
'''simple docstring''' from __future__ import annotations UpperCamelCase : Optional[int] = 10 def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = 1 lowerCamelCase__ = max(__lowerCAmelCase ) while placement <= max_digit: # declare and initialize empty buckets lowerCamelCase__ = [[] for _ in range(__lowerCAmelCase )] # split list_of_ints between the buckets for i in list_of_ints: lowerCamelCase__ = int((i / placement) % RADIX ) buckets[tmp].append(__lowerCAmelCase ) # put each buckets' contents into list_of_ints lowerCamelCase__ = 0 for b in range(__lowerCAmelCase ): for i in buckets[b]: lowerCamelCase__ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
50
from abc import ABC, abstractmethod from typing import List, Optional class snake_case_ (lowerCamelCase_ ): def __init__( self :Optional[Any] ) -> Dict: # test for the above condition self.test() def lowerCamelCase__( self :Tuple ) -> int: a__ = 0 a__ = False while not completed: if counter == 1: self.reset() a__ = self.advance() if not self.does_advance(__snake_case ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) a__ , a__ , a__ = self.update(__snake_case ) counter += 1 if counter > 1_00_00: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def lowerCamelCase__( self :int ) -> str: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :Tuple ,__snake_case :int ) -> Dict: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :int ,__snake_case :int ) -> List[Any]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :int ) -> Optional[Any]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :Optional[Any] ) -> Optional[Any]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase__( self :Union[str, Any] ,__snake_case :str=False ) -> List[Any]: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class snake_case_ (lowerCamelCase_ ): def __init__( self :Optional[Any] ,__snake_case :List[int] ) -> Optional[Any]: super(__snake_case ,self ).__init__() if not isinstance(__snake_case ,__snake_case ) or len(__snake_case ) == 0: raise ValueError(F'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(__snake_case ,__snake_case ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) a__ = token_ids a__ = len(self.token_ids ) a__ = -1 # the index of the currently fulfilled step a__ = False def lowerCamelCase__( self :int ) -> str: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__( self :Dict ,__snake_case :int ) -> Optional[Any]: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(__snake_case )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__( self :List[Any] ,__snake_case :int ) -> Optional[Any]: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(__snake_case )}' ) a__ = False a__ = False a__ = False if self.does_advance(__snake_case ): self.fulfilled_idx += 1 a__ = True if self.fulfilled_idx == (self.seqlen - 1): a__ = True a__ = completed else: # failed to make progress. a__ = True self.reset() return stepped, completed, reset def lowerCamelCase__( self :Optional[int] ) -> Tuple: a__ = False a__ = 0 def lowerCamelCase__( self :str ) -> Optional[Any]: return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[int]=False ) -> Tuple: a__ = PhrasalConstraint(self.token_ids ) if stateful: a__ = self.seqlen a__ = self.fulfilled_idx a__ = self.completed return new_constraint class snake_case_ : def __init__( self :List[str] ,__snake_case :List[List[int]] ,__snake_case :Union[str, Any]=True ) -> int: a__ = max([len(__snake_case ) for one in nested_token_ids] ) a__ = {} for token_ids in nested_token_ids: a__ = root for tidx, token_id in enumerate(__snake_case ): if token_id not in level: a__ = {} a__ = level[token_id] if no_subsets and self.has_subsets(__snake_case ,__snake_case ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F' {nested_token_ids}.' ) a__ = root def lowerCamelCase__( self :Dict ,__snake_case :Any ) -> Optional[int]: a__ = self.trie for current_token in current_seq: a__ = start[current_token] a__ = list(start.keys() ) return next_tokens def lowerCamelCase__( self :Optional[int] ,__snake_case :int ) -> List[Any]: a__ = self.next_tokens(__snake_case ) return len(__snake_case ) == 0 def lowerCamelCase__( self :int ,__snake_case :Optional[int] ) -> List[str]: a__ = list(root.values() ) if len(__snake_case ) == 0: return 1 else: return sum([self.count_leaves(__snake_case ) for nn in next_nodes] ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :Any ,__snake_case :Union[str, Any] ) -> Any: a__ = self.count_leaves(__snake_case ) return len(__snake_case ) != leaf_count class snake_case_ (lowerCamelCase_ ): def __init__( self :Optional[int] ,__snake_case :List[List[int]] ) -> Optional[int]: super(__snake_case ,self ).__init__() if not isinstance(__snake_case ,__snake_case ) or len(__snake_case ) == 0: raise ValueError(F'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(__snake_case ,__snake_case ) for token_ids in nested_token_ids ): raise ValueError(F'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(__snake_case ,__snake_case ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) a__ = DisjunctiveTrie(__snake_case ) a__ = nested_token_ids a__ = self.trie.max_height a__ = [] a__ = False def lowerCamelCase__( self :Tuple ) -> Any: a__ = self.trie.next_tokens(self.current_seq ) if len(__snake_case ) == 0: return None else: return token_list def lowerCamelCase__( self :Union[str, Any] ,__snake_case :int ) -> Dict: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(__snake_case )}' ) a__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase__( self :List[Any] ,__snake_case :int ) -> Optional[Any]: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(__snake_case )}' ) a__ = False a__ = False a__ = False if self.does_advance(__snake_case ): self.current_seq.append(__snake_case ) a__ = True else: a__ = True self.reset() a__ = self.trie.reached_leaf(self.current_seq ) a__ = completed return stepped, completed, reset def lowerCamelCase__( self :Any ) -> Optional[Any]: a__ = False a__ = [] def lowerCamelCase__( self :int ) -> Dict: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase__( self :str ,__snake_case :Any=False ) -> Tuple: a__ = DisjunctiveConstraint(self.token_ids ) if stateful: a__ = self.seqlen a__ = self.current_seq a__ = self.completed return new_constraint class snake_case_ : def __init__( self :Tuple ,__snake_case :List[Constraint] ) -> int: a__ = constraints # max # of steps required to fulfill a given constraint a__ = max([c.seqlen for c in constraints] ) a__ = len(__snake_case ) a__ = False self.init_state() def lowerCamelCase__( self :Dict ) -> Optional[int]: a__ = [] a__ = None a__ = [constraint.copy(stateful=__snake_case ) for constraint in self.constraints] def lowerCamelCase__( self :Dict ) -> int: a__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase__( self :Dict ) -> str: a__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" a__ = constraint.advance() if isinstance(__snake_case ,__snake_case ): token_list.append(__snake_case ) elif isinstance(__snake_case ,__snake_case ): token_list.extend(__snake_case ) else: a__ = self.inprogress_constraint.advance() if isinstance(__snake_case ,__snake_case ): token_list.append(__snake_case ) elif isinstance(__snake_case ,__snake_case ): token_list.extend(__snake_case ) if len(__snake_case ) == 0: return None else: return token_list def lowerCamelCase__( self :Optional[Any] ,__snake_case :Optional[List[int]] ) -> Tuple: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint a__ , a__ = self.add(__snake_case ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase__( self :List[Any] ,__snake_case :int ) -> List[Any]: if not isinstance(__snake_case ,__snake_case ): raise ValueError(F'`token_id` should be an `int`, but is `{token_id}`.' ) a__ , a__ = False, False if self.completed: a__ = True a__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state a__ , a__ , a__ = self.inprogress_constraint.update(__snake_case ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__snake_case ) ) a__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) a__ = None if len(self.pending_constraints ) == 0: # we're done! a__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__snake_case ): a__ , a__ , a__ = pending_constraint.update(__snake_case ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(__snake_case ) a__ = None if not complete and stepped: a__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". a__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. a__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase__( self :int ,__snake_case :Optional[int]=True ) -> Dict: a__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: a__ = [ constraint.copy(stateful=__snake_case ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: a__ = self.inprogress_constraint.copy(stateful=__snake_case ) a__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
335
0
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = ["""image_processor"""] lowerCAmelCase__ = """SamImageProcessor""" def __init__( self , a__ ): super().__init__(a__ ) _UpperCAmelCase = self.image_processor _UpperCAmelCase = -10 _UpperCAmelCase = self.image_processor.size['longest_edge'] def __call__( self , a__=None , a__=None , a__=None , a__=None , a__ = None , **a__ , ): _UpperCAmelCase = self.image_processor( a__ , return_tensors=a__ , **a__ , ) # pop arguments that are not used in the foward but used nevertheless _UpperCAmelCase = encoding_image_processor['original_sizes'] if hasattr(a__ , 'numpy' ): # Checks if Torch or TF tensor _UpperCAmelCase = original_sizes.numpy() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self._check_and_preprocess_points( input_points=a__ , input_labels=a__ , input_boxes=a__ , ) _UpperCAmelCase = self._normalize_and_convert( a__ , a__ , input_points=a__ , input_labels=a__ , input_boxes=a__ , return_tensors=a__ , ) return encoding_image_processor def __A ( self , a__ , a__ , a__=None , a__=None , a__=None , a__="pt" , ): if input_points is not None: if len(a__ ) != len(a__ ): _UpperCAmelCase = [ self._normalize_coordinates(self.target_size , a__ , original_sizes[0] ) for point in input_points ] else: _UpperCAmelCase = [ self._normalize_coordinates(self.target_size , a__ , a__ ) for point, original_size in zip(a__ , a__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _UpperCAmelCase , _UpperCAmelCase = self._pad_points_and_labels(a__ , a__ ) _UpperCAmelCase = np.array(a__ ) if input_labels is not None: _UpperCAmelCase = np.array(a__ ) if input_boxes is not None: if len(a__ ) != len(a__ ): _UpperCAmelCase = [ self._normalize_coordinates(self.target_size , a__ , original_sizes[0] , is_bounding_box=a__ ) for box in input_boxes ] else: _UpperCAmelCase = [ self._normalize_coordinates(self.target_size , a__ , a__ , is_bounding_box=a__ ) for box, original_size in zip(a__ , a__ ) ] _UpperCAmelCase = np.array(a__ ) if input_boxes is not None: if return_tensors == "pt": _UpperCAmelCase = torch.from_numpy(a__ ) # boxes batch size of 1 by default _UpperCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _UpperCAmelCase = tf.convert_to_tensor(a__ ) # boxes batch size of 1 by default _UpperCAmelCase = tf.expand_dims(a__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": _UpperCAmelCase = torch.from_numpy(a__ ) # point batch size of 1 by default _UpperCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _UpperCAmelCase = tf.convert_to_tensor(a__ ) # point batch size of 1 by default _UpperCAmelCase = tf.expand_dims(a__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": _UpperCAmelCase = torch.from_numpy(a__ ) # point batch size of 1 by default _UpperCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _UpperCAmelCase = tf.convert_to_tensor(a__ ) # point batch size of 1 by default _UpperCAmelCase = tf.expand_dims(a__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def __A ( self , a__ , a__ ): _UpperCAmelCase = max([point.shape[0] for point in input_points] ) _UpperCAmelCase = [] for i, point in enumerate(a__ ): if point.shape[0] != expected_nb_points: _UpperCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _UpperCAmelCase = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(a__ ) _UpperCAmelCase = processed_input_points return input_points, input_labels def __A ( self , a__ , a__ , a__ , a__=False ): _UpperCAmelCase , _UpperCAmelCase = original_size _UpperCAmelCase , _UpperCAmelCase = self.image_processor._get_preprocess_shape(a__ , longest_edge=a__ ) _UpperCAmelCase = deepcopy(a__ ).astype(a__ ) if is_bounding_box: _UpperCAmelCase = coords.reshape(-1 , 2 , 2 ) _UpperCAmelCase = coords[..., 0] * (new_w / old_w) _UpperCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: _UpperCAmelCase = coords.reshape(-1 , 4 ) return coords def __A ( self , a__=None , a__=None , a__=None , ): if input_points is not None: if hasattr(a__ , 'numpy' ): # Checks for TF or Torch tensor _UpperCAmelCase = input_points.numpy().tolist() if not isinstance(a__ , a__ ) or not isinstance(input_points[0] , a__ ): raise ValueError('Input points must be a list of list of floating points.' ) _UpperCAmelCase = [np.array(a__ ) for input_point in input_points] else: _UpperCAmelCase = None if input_labels is not None: if hasattr(a__ , 'numpy' ): _UpperCAmelCase = input_labels.numpy().tolist() if not isinstance(a__ , a__ ) or not isinstance(input_labels[0] , a__ ): raise ValueError('Input labels must be a list of list integers.' ) _UpperCAmelCase = [np.array(a__ ) for label in input_labels] else: _UpperCAmelCase = None if input_boxes is not None: if hasattr(a__ , 'numpy' ): _UpperCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(a__ , a__ ) or not isinstance(input_boxes[0] , a__ ) or not isinstance(input_boxes[0][0] , a__ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) _UpperCAmelCase = [np.array(a__ ).astype(np.floataa ) for box in input_boxes] else: _UpperCAmelCase = None return input_points, input_labels, input_boxes @property def __A ( self ): _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(a__ ) ) def __A ( self , *a__ , **a__ ): return self.image_processor.post_process_masks(*a__ , **a__ )
494
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = """trocr""" lowerCAmelCase__ = ["""past_key_values"""] lowerCAmelCase__ = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self , a__=5_02_65 , a__=10_24 , a__=12 , a__=16 , a__=40_96 , a__="gelu" , a__=5_12 , a__=0.1 , a__=0.0 , a__=0.0 , a__=2 , a__=0.02 , a__=0.0 , a__=True , a__=False , a__=True , a__=True , a__=1 , a__=0 , a__=2 , **a__ , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = d_model _UpperCAmelCase = decoder_layers _UpperCAmelCase = decoder_attention_heads _UpperCAmelCase = decoder_ffn_dim _UpperCAmelCase = activation_function _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = init_std _UpperCAmelCase = decoder_layerdrop _UpperCAmelCase = use_cache _UpperCAmelCase = scale_embedding _UpperCAmelCase = use_learned_position_embeddings _UpperCAmelCase = layernorm_embedding super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , decoder_start_token_id=a__ , **a__ , )
494
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class UpperCAmelCase_ ( snake_case ): def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> List[Any]: super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) __lowercase : Dict = {} def _lowerCamelCase ( self , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) -> Dict: __lowercase : List[Any] = super().add_tokens(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ''' `placeholder_token` that is not already in the tokenizer.''' ) def _lowerCamelCase ( self , UpperCamelCase_ , *UpperCamelCase_ , UpperCamelCase_=1 , **UpperCamelCase_ ) -> Union[str, Any]: __lowercase : Optional[int] = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) output.append(UpperCamelCase_ ) else: __lowercase : Optional[int] = [] for i in range(UpperCamelCase_ ): __lowercase : List[Any] = placeholder_token + F"""_{i}""" self.try_adding_tokens(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) output.append(UpperCamelCase_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) __lowercase : Optional[int] = output def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_=1.0 ) -> Optional[int]: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowercase : Tuple = [] for i in range(len(UpperCamelCase_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCamelCase_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __lowercase : List[Any] = self.token_map[placeholder_token] __lowercase : List[str] = tokens[: 1 + int(len(UpperCamelCase_ ) * prop_tokens_to_load )] if vector_shuffle: __lowercase : Optional[Any] = copy.copy(UpperCamelCase_ ) random.shuffle(UpperCamelCase_ ) __lowercase : Union[str, Any] = text.replace(UpperCamelCase_ , ''' '''.join(UpperCamelCase_ ) ) return text def __call__( self , UpperCamelCase_ , *UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_=1.0 , **UpperCamelCase_ ) -> Optional[int]: return super().__call__( self.replace_placeholder_tokens_in_text( UpperCamelCase_ , vector_shuffle=UpperCamelCase_ , prop_tokens_to_load=UpperCamelCase_ ) , *UpperCamelCase_ , **UpperCamelCase_ , ) def _lowerCamelCase ( self , UpperCamelCase_ , *UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_=1.0 , **UpperCamelCase_ ) -> Dict: return super().encode( self.replace_placeholder_tokens_in_text( UpperCamelCase_ , vector_shuffle=UpperCamelCase_ , prop_tokens_to_load=UpperCamelCase_ ) , *UpperCamelCase_ , **UpperCamelCase_ , )
76
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase : """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any]=13 , SCREAMING_SNAKE_CASE : Any=7 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : str=99 , SCREAMING_SNAKE_CASE : Tuple=32 , SCREAMING_SNAKE_CASE : Dict=5 , SCREAMING_SNAKE_CASE : Optional[int]=4 , SCREAMING_SNAKE_CASE : int=37 , SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE : Tuple=0.1 , SCREAMING_SNAKE_CASE : List[str]=512 , SCREAMING_SNAKE_CASE : Optional[int]=16 , SCREAMING_SNAKE_CASE : str=2 , SCREAMING_SNAKE_CASE : str=0.02 , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : Dict=4 , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): _A : Optional[int] = parent _A : List[Any] = batch_size _A : int = seq_length _A : List[str] = is_training _A : str = use_input_mask _A : Any = use_token_type_ids _A : List[str] = use_labels _A : Optional[Any] = vocab_size _A : Tuple = hidden_size _A : Dict = num_hidden_layers _A : int = num_attention_heads _A : Union[str, Any] = intermediate_size _A : str = hidden_act _A : Tuple = hidden_dropout_prob _A : Tuple = attention_probs_dropout_prob _A : Tuple = max_position_embeddings _A : Any = type_vocab_size _A : Optional[int] = type_sequence_label_size _A : Any = initializer_range _A : Tuple = num_labels _A : List[str] = num_choices _A : Any = scope def A ( self : Union[str, Any]): _A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _A : Optional[Any] = None if self.use_input_mask: _A : str = random_attention_mask([self.batch_size, self.seq_length]) _A : Dict = None if self.use_token_type_ids: _A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _A : Optional[int] = None _A : Tuple = None _A : Optional[int] = None if self.use_labels: _A : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _A : int = ids_tensor([self.batch_size] , self.num_choices) _A : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : List[Any]): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def A ( self : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int): _A : str = BioGptModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE) _A : Optional[int] = model(SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A ( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , ): _A : int = BioGptForCausalLM(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[int] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , *SCREAMING_SNAKE_CASE : List[Any]): _A : int = BioGptModel(config=SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() # create attention mask _A : Any = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE) _A : List[Any] = self.seq_length // 2 _A : Any = 0 # first forward pass _A , _A : Union[str, Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE).to_tuple() # create hypothetical next token and extent to next_input_ids _A : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids _A : Any = ids_tensor((1,) , SCREAMING_SNAKE_CASE).item() + 1 _A : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) _A : int = random_other_next_tokens # append to next input_ids and attn_mask _A : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1) _A : Dict = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=SCREAMING_SNAKE_CASE)] , dim=1 , ) # get two different outputs _A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE)['last_hidden_state'] _A : List[Any] = model(SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE)['last_hidden_state'] # select random slice _A : List[Any] = ids_tensor((1,) , output_from_past.shape[-1]).item() _A : str = output_from_no_past[:, -1, random_slice_idx].detach() _A : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3)) def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , *SCREAMING_SNAKE_CASE : List[Any]): _A : int = BioGptModel(config=SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE).eval() _A : Any = torch.ones(input_ids.shape , dtype=torch.long , device=SCREAMING_SNAKE_CASE) # first forward pass _A : Tuple = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , use_cache=SCREAMING_SNAKE_CASE) _A , _A : str = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _A : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) _A : List[str] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and _A : Any = torch.cat([input_ids, next_tokens] , dim=-1) _A : Tuple = torch.cat([attention_mask, next_attn_mask] , dim=-1) _A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE)['last_hidden_state'] _A : List[Any] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , past_key_values=SCREAMING_SNAKE_CASE)[ 'last_hidden_state' ] # select random slice _A : Dict = ids_tensor((1,) , output_from_past.shape[-1]).item() _A : int = output_from_no_past[:, -3:, random_slice_idx].detach() _A : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3)) def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , *SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=False): _A : List[str] = BioGptForCausalLM(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) if gradient_checkpointing: model.gradient_checkpointing_enable() _A : Dict = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A ( self : List[Any] , SCREAMING_SNAKE_CASE : Any , *SCREAMING_SNAKE_CASE : List[Any]): _A : Optional[Any] = BioGptModel(SCREAMING_SNAKE_CASE) _A : List[str] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.01) def A ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , *SCREAMING_SNAKE_CASE : Optional[Any]): _A : List[Any] = self.num_labels _A : List[str] = BioGptForTokenClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Optional[int] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , token_type_ids=SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A ( self : Dict): _A : str = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : int = config_and_inputs _A : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" a = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) a = (BioGptForCausalLM,) if is_torch_available() else () a = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) a = False def A ( self : Dict): _A : Optional[int] = BioGptModelTester(self) _A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37) def A ( self : Dict): self.config_tester.run_common_tests() def A ( self : str): _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def A ( self : List[Any]): _A : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A : Dict = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE) def A ( self : str): _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*SCREAMING_SNAKE_CASE , gradient_checkpointing=SCREAMING_SNAKE_CASE) def A ( self : Optional[int]): _A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*SCREAMING_SNAKE_CASE) def A ( self : List[Any]): _A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*SCREAMING_SNAKE_CASE) @slow def A ( self : List[Any]): _A : int = BioGptForCausalLM.from_pretrained('microsoft/biogpt') model.to(SCREAMING_SNAKE_CASE) _A : Tuple = BioGptTokenizer.from_pretrained('microsoft/biogpt') _A : Optional[Any] = 'left' # Define PAD Token = EOS Token = 50256 _A : Tuple = tokenizer.eos_token _A : str = model.config.eos_token_id # use different length sentences to test batching _A : Dict = [ 'Hello, my dog is a little', 'Today, I', ] _A : int = tokenizer(SCREAMING_SNAKE_CASE , return_tensors='pt' , padding=SCREAMING_SNAKE_CASE) _A : List[str] = inputs['input_ids'].to(SCREAMING_SNAKE_CASE) _A : Dict = model.generate( input_ids=SCREAMING_SNAKE_CASE , attention_mask=inputs['attention_mask'].to(SCREAMING_SNAKE_CASE) , ) _A : Tuple = tokenizer(sentences[0] , return_tensors='pt').input_ids.to(SCREAMING_SNAKE_CASE) _A : Dict = model.generate(input_ids=SCREAMING_SNAKE_CASE) _A : List[str] = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() _A : Any = tokenizer(sentences[1] , return_tensors='pt').input_ids.to(SCREAMING_SNAKE_CASE) _A : Union[str, Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE , max_length=model.config.max_length - num_paddings) _A : Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE) _A : str = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE) _A : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE) _A : List[str] = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) self.assertListEqual(SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence]) @slow def A ( self : int): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Union[str, Any] = BioGptModel.from_pretrained(SCREAMING_SNAKE_CASE) self.assertIsNotNone(SCREAMING_SNAKE_CASE) def A ( self : Optional[Any]): _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() _A : int = 3 _A : Dict = input_dict['input_ids'] _A : Dict = input_ids.ne(1).to(SCREAMING_SNAKE_CASE) _A : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) _A : List[Any] = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : List[str] = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A ( self : Any): _A , _A : Dict = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = 3 _A : Optional[int] = 'multi_label_classification' _A : str = input_dict['input_ids'] _A : int = input_ids.ne(1).to(SCREAMING_SNAKE_CASE) _A : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) _A : Optional[int] = BioGptForSequenceClassification(SCREAMING_SNAKE_CASE) model.to(SCREAMING_SNAKE_CASE) model.eval() _A : Tuple = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A ( self : str): _A : List[Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt') _A : Dict = torch.tensor([[2, 4805, 9, 656, 21]]) _A : Optional[Any] = model(SCREAMING_SNAKE_CASE)[0] _A : Optional[Any] = 42384 _A : int = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE) _A : str = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4)) @slow def A ( self : Optional[int]): _A : Dict = BioGptTokenizer.from_pretrained('microsoft/biogpt') _A : Any = BioGptForCausalLM.from_pretrained('microsoft/biogpt') model.to(SCREAMING_SNAKE_CASE) torch.manual_seed(0) _A : List[Any] = tokenizer('COVID-19 is' , return_tensors='pt').to(SCREAMING_SNAKE_CASE) _A : Optional[int] = model.generate( **SCREAMING_SNAKE_CASE , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=SCREAMING_SNAKE_CASE , ) _A : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE) _A : List[str] = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
128
0
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowercase_ ( ) -> int: lowerCAmelCase__ : Optional[int] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" lowerCAmelCase__ : Any = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert("""RGB""" ) return image def lowercase_ ( __UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Any = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.weight""", f"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm1.bias""", f"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.weight""", f"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.norm2.bias""", f"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.qkv.weight""", f"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.weight""", f"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((f"""visual_encoder.blocks.{i}.attn.proj.bias""", f"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc1.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.weight""", f"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((f"""visual_encoder.blocks.{i}.mlp.fc2.bias""", f"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : str = dct.pop(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = val def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCAmelCase__ : Any = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowerCAmelCase__ : Dict = state_dict.pop(f"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowerCAmelCase__ : Tuple = torch.cat((q_bias, torch.zeros_like(__UpperCAmelCase , requires_grad=__UpperCAmelCase ), v_bias) ) lowerCAmelCase__ : Dict = qkv_bias def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : Tuple = 364 if """coco""" in model_name else 224 lowerCAmelCase__ : Optional[int] = BlipaVisionConfig(image_size=__UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCAmelCase__ : Optional[Any] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=__UpperCAmelCase ).to_dict() elif "opt-6.7b" in model_name: lowerCAmelCase__ : Any = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=__UpperCAmelCase ).to_dict() elif "t5-xl" in model_name: lowerCAmelCase__ : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCAmelCase__ : Tuple = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() lowerCAmelCase__ : Union[str, Any] = BlipaConfig(vision_config=__UpperCAmelCase , text_config=__UpperCAmelCase ) return config, image_size @torch.no_grad() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> List[str]: lowerCAmelCase__ : Optional[int] = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) lowerCAmelCase__ : str = tokenizer("""\n""" , add_special_tokens=__UpperCAmelCase ).input_ids[0] lowerCAmelCase__ : List[str] = get_blipa_config(__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) lowerCAmelCase__ : Tuple = BlipaForConditionalGeneration(__UpperCAmelCase ).eval() lowerCAmelCase__ : str = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } lowerCAmelCase__ : Dict = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) lowerCAmelCase__ : List[Any] = """cuda""" if torch.cuda.is_available() else """cpu""" lowerCAmelCase__ : Optional[Any] = load_model_and_preprocess( name=__UpperCAmelCase , model_type=__UpperCAmelCase , is_eval=__UpperCAmelCase , device=__UpperCAmelCase ) original_model.eval() print("""Done!""" ) # update state dict keys lowerCAmelCase__ : str = original_model.state_dict() lowerCAmelCase__ : Optional[Any] = create_rename_keys(__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCAmelCase__ : int = state_dict.pop(__UpperCAmelCase ) if key.startswith("""Qformer.bert""" ): lowerCAmelCase__ : Dict = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: lowerCAmelCase__ : Tuple = key.replace("""self""" , """attention""" ) if "opt_proj" in key: lowerCAmelCase__ : List[Any] = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: lowerCAmelCase__ : Union[str, Any] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): lowerCAmelCase__ : int = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): lowerCAmelCase__ : str = key.replace("""t5""" , """language""" ) lowerCAmelCase__ : Any = val # read in qv biases read_in_q_v_bias(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Dict = hf_model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert len(__UpperCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCAmelCase__ : str = load_demo_image() lowerCAmelCase__ : str = vis_processors["""eval"""](__UpperCAmelCase ).unsqueeze(0 ).to(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(__UpperCAmelCase ) # create processor lowerCAmelCase__ : Optional[Any] = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase ) lowerCAmelCase__ : Any = BlipaProcessor(image_processor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) lowerCAmelCase__ : Dict = processor(images=__UpperCAmelCase , return_tensors="""pt""" ).pixel_values.to(__UpperCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) original_model.to(__UpperCAmelCase ) hf_model.to(__UpperCAmelCase ) with torch.no_grad(): if "opt" in model_name: lowerCAmelCase__ : List[Any] = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits lowerCAmelCase__ : Dict = hf_model(__UpperCAmelCase , __UpperCAmelCase ).logits else: lowerCAmelCase__ : List[Any] = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits lowerCAmelCase__ : Union[str, Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowerCAmelCase__ : Optional[int] = hf_model(__UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCAmelCase__ : Any = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=__UpperCAmelCase ) assert torch.allclose(logits[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCAmelCase__ : str = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=__UpperCAmelCase ) else: # cast to same type lowerCAmelCase__ : List[Any] = logits.dtype assert torch.allclose(original_logits.to(__UpperCAmelCase ) , __UpperCAmelCase , atol=1E-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) lowerCAmelCase__ : List[str] = """""" lowerCAmelCase__ : List[Any] = tokenizer(__UpperCAmelCase , return_tensors="""pt""" ).input_ids.to(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = original_model.generate({"""image""": original_pixel_values} ) lowerCAmelCase__ : List[str] = hf_model.generate( __UpperCAmelCase , __UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , __UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = input_ids.shape[1] lowerCAmelCase__ : Dict = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = [text.strip() for text in output_text] print("""HF generation:""" , __UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCAmelCase ) hf_model.save_pretrained(__UpperCAmelCase ) if push_to_hub: processor.push_to_hub(f"""nielsr/{model_name}""" ) hf_model.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() _A = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) _A = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
701
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _lowerCamelCase ( a_ , unittest.TestCase ): _lowerCamelCase :Dict = FlaxAutoencoderKL @property def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = 4 lowerCAmelCase__ : Tuple = 3 lowerCAmelCase__ : Union[str, Any] = (32, 32) lowerCAmelCase__ : Dict = jax.random.PRNGKey(0 ) lowerCAmelCase__ : Optional[int] = jax.random.uniform(UpperCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" lowerCAmelCase__ : Dict = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } lowerCAmelCase__ : List[Any] = self.dummy_input return init_dict, inputs_dict
507
0
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency A_ = { """E""": 1_2.7_0, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } A_ = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" A_ = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def UpperCAmelCase ( UpperCAmelCase )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCAmelCase ( UpperCAmelCase )-> int: '''simple docstring''' return x[0] def UpperCAmelCase ( UpperCAmelCase )-> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = get_letter_count(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find ,reverse=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = ''''''.join(freq_to_letter[freq] ) SCREAMING_SNAKE_CASE_ = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__UpperCAmelCase ,reverse=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = get_frequency_order(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
393
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCAmelCase__ ( _lowerCAmelCase ,unittest.TestCase ): A = WavaVecaPhonemeCTCTokenizer A = False def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" super().setUp() lowerCamelCase_ : Dict = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) lowerCamelCase_ : Union[str, Any] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) lowerCamelCase_ : List[Any] = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} lowerCamelCase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : str=20 , UpperCamelCase_ : str=5 ) -> Tuple[str, list]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ )) for i in range(len(UpperCamelCase_ ) )] lowerCamelCase_ : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: lowerCamelCase_ : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: lowerCamelCase_ : str = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase_ : List[str] = [t[0] for t in toks] # Ensure consistency lowerCamelCase_ : List[str] = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: lowerCamelCase_ : Dict = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: lowerCamelCase_ : Optional[int] = ''' ''' + output_txt lowerCamelCase_ : Dict = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCamelCase ( self : Tuple , **UpperCamelCase_ : str ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ : str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) lowerCamelCase_ : Union[str, Any] = tokenizer('''m xxx ɪ''' , do_phonemize=UpperCamelCase_ ).input_ids self.assertEqual(UpperCamelCase_ , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) lowerCamelCase_ : Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=UpperCamelCase_ ).input_ids self.assertEqual(UpperCamelCase_ , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa lowerCamelCase_ : Union[str, Any] = tokenizer('''maɪ c''' , do_phonemize=UpperCamelCase_ ).input_ids self.assertEqual(UpperCamelCase_ , [3, 200] ) # mai should be <unk> (=3) def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[str] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCamelCase_ : Union[str, Any] = '''Hello how are you''' lowerCamelCase_ : Optional[int] = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) self.assertEqual(UpperCamelCase_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCamelCase_ : Dict = '''Hello how are you''' lowerCamelCase_ : int = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(UpperCamelCase_ ).input_ids , tokenizer(UpperCamelCase_ , do_phonemize=UpperCamelCase_ ).input_ids ) def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ : Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCamelCase_ : str = '''Hello how are you''' lowerCamelCase_ : Tuple = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) lowerCamelCase_ : Any = tokenizer.decode(tokenizer(UpperCamelCase_ ).input_ids ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Tuple = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCamelCase_ : Any = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCamelCase_ : Dict = tokenizer.decode(sample_ids[0] ) lowerCamelCase_ : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch_tokens[0] ) self.assertEqual(UpperCamelCase_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" lowerCamelCase_ : Tuple = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCamelCase_ : Dict = '''Hello how are you''' lowerCamelCase_ : Union[str, Any] = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) self.assertEqual(UpperCamelCase_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCamelCase_ : Optional[int] = '''Hello how are you''' lowerCamelCase_ : List[Any] = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(UpperCamelCase_ ).input_ids , tokenizer(UpperCamelCase_ , do_phonemize=UpperCamelCase_ ).input_ids ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : str = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off lowerCamelCase_ : Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCamelCase_ : Dict = tokenizer.decode(sample_ids[0] ) lowerCamelCase_ : Optional[int] = tokenizer.batch_decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch_tokens[0] ) self.assertEqual(UpperCamelCase_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter lowerCamelCase_ : Any = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=UpperCamelCase_ ) lowerCamelCase_ : Tuple = tokenizer.batch_decode(UpperCamelCase_ , filter_word_delimiter_token=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch_tokens[0] ) self.assertEqual(UpperCamelCase_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Any = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCamelCase_ : Optional[Any] = '''Hello how are you''' lowerCamelCase_ : Optional[Any] = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) lowerCamelCase_ : Any = tokenizer.decode(tokenizer(UpperCamelCase_ ).input_ids , filter_word_delimiter_token=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ : Tuple = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) lowerCamelCase_ : int = '''Hello how are you''' lowerCamelCase_ : Union[str, Any] = tokenizer.phonemize(UpperCamelCase_ , phonemizer_lang='''en-us''' ) lowerCamelCase_ : Optional[Any] = tokenizer.decode(tokenizer(UpperCamelCase_ ).input_ids , filter_word_delimiter_token=UpperCamelCase_ ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Any = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=UpperCamelCase_ ) lowerCamelCase_ : Any = '''Hello how are you''' lowerCamelCase_ : Any = tokenizer(UpperCamelCase_ , phonemizer_lang='''en-us''' ).input_ids lowerCamelCase_ : Dict = tokenizer(UpperCamelCase_ , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : int = tokenizer.decode(UpperCamelCase_ ) lowerCamelCase_ : Any = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(UpperCamelCase_ , '''ɛ l o h aʊ a ʁ j u''' ) def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) lowerCamelCase_ : Optional[int] = '''Hello how Are you''' lowerCamelCase_ : Dict = '''hello how are you''' lowerCamelCase_ : List[str] = tokenizer(UpperCamelCase_ ).input_ids lowerCamelCase_ : List[Any] = tokenizer(UpperCamelCase_ ).input_ids self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off lowerCamelCase_ : Optional[int] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on lowerCamelCase_ : Optional[int] = tokenizer.batch_decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def __UpperCamelCase ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = [d[key] for d in offsets] return retrieved_list def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ : Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCamelCase_ : List[Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCamelCase_ : Union[str, Any] = tokenizer.decode(UpperCamelCase_ , output_char_offsets=UpperCamelCase_ , filter_word_delimiter_token=UpperCamelCase_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(UpperCamelCase_ , UpperCamelCase_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def __UpperCamelCase ( self : int ) -> int: """simple docstring""" lowerCamelCase_ : int = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(UpperCamelCase_ : str , UpperCamelCase_ : int ): self.assertTrue(isinstance(UpperCamelCase_ , UpperCamelCase_ ) ) self.assertTrue(isinstance(outputs_list[0] , UpperCamelCase_ ) ) # transform list to ModelOutput lowerCamelCase_ : Optional[Any] = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): [recursive_check(UpperCamelCase_ , UpperCamelCase_ ) for la, la in zip(UpperCamelCase_ , UpperCamelCase_ )] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off lowerCamelCase_ : int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCamelCase_ : Tuple = tokenizer.batch_decode(UpperCamelCase_ , output_char_offsets=UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = [tokenizer.decode(UpperCamelCase_ , output_char_offsets=UpperCamelCase_ ) for ids in sample_ids] check_list_tuples_equal(UpperCamelCase_ , UpperCamelCase_ ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ : int = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : List[str] = tokenizer.vocab_size lowerCamelCase_ : Optional[int] = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCamelCase_ : Tuple = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] lowerCamelCase_ : Dict = tokenizer.add_tokens(UpperCamelCase_ ) lowerCamelCase_ : Dict = tokenizer.vocab_size lowerCamelCase_ : Dict = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ , all_size + len(UpperCamelCase_ ) ) lowerCamelCase_ : Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCamelCase_ : List[Any] = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} lowerCamelCase_ : List[Any] = tokenizer.add_special_tokens(UpperCamelCase_ ) lowerCamelCase_ : Optional[int] = tokenizer.vocab_size lowerCamelCase_ : Dict = len(UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , 0 ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , len(UpperCamelCase_ ) ) self.assertEqual(UpperCamelCase_ , all_size_a + len(UpperCamelCase_ ) ) lowerCamelCase_ : Union[str, Any] = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=UpperCamelCase_ ) self.assertGreaterEqual(len(UpperCamelCase_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" pass def __UpperCamelCase ( self : str ) -> int: """simple docstring""" lowerCamelCase_ : Dict = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : List[Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] lowerCamelCase_ : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(output['''text'''] , UpperCamelCase_ )
501
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class a ( __lowerCamelCase ): __lowerCAmelCase : jnp.ndarray __lowerCAmelCase : jnp.ndarray class a ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : Tuple[int] = (16, 32, 96, 2_56) __lowerCAmelCase : jnp.dtype = jnp.floataa def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[int] = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) snake_case__ : List[str] = [] for i in range(len(self.block_out_channels ) - 1 ): snake_case__ : Tuple = self.block_out_channels[i] snake_case__ : Optional[int] = self.block_out_channels[i + 1] snake_case__ : Union[str, Any] = nn.Conv( __lowercase ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(__lowercase ) snake_case__ : Dict = nn.Conv( __lowercase ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(__lowercase ) snake_case__ : Any = blocks snake_case__ : List[Any] = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self :str ,__lowercase :Tuple ): snake_case__ : Tuple = self.conv_in(__lowercase ) snake_case__ : List[str] = nn.silu(__lowercase ) for block in self.blocks: snake_case__ : Optional[int] = block(__lowercase ) snake_case__ : int = nn.silu(__lowercase ) snake_case__ : Dict = self.conv_out(__lowercase ) return embedding @flax_register_to_config class a ( nn.Module , __lowerCamelCase , __lowerCamelCase ): __lowerCAmelCase : int = 32 __lowerCAmelCase : int = 4 __lowerCAmelCase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __lowerCAmelCase : Union[bool, Tuple[bool]] = False __lowerCAmelCase : Tuple[int] = (3_20, 6_40, 12_80, 12_80) __lowerCAmelCase : int = 2 __lowerCAmelCase : Union[int, Tuple[int]] = 8 __lowerCAmelCase : Optional[Union[int, Tuple[int]]] = None __lowerCAmelCase : int = 12_80 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : bool = False __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True __lowerCAmelCase : int = 0 __lowerCAmelCase : str = "rgb" __lowerCAmelCase : Tuple[int] = (16, 32, 96, 2_56) def __lowerCamelCase ( self :List[str] ,__lowercase :jax.random.KeyArray ): # init input tensors snake_case__ : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) snake_case__ : Optional[int] = jnp.zeros(__lowercase ,dtype=jnp.floataa ) snake_case__ : Dict = jnp.ones((1,) ,dtype=jnp.intaa ) snake_case__ : Any = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) snake_case__ : Any = (1, 3, self.sample_size * 8, self.sample_size * 8) snake_case__ : Any = jnp.zeros(__lowercase ,dtype=jnp.floataa ) snake_case__ : Optional[Any] = jax.random.split(__lowercase ) snake_case__ : Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase )["params"] def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[int] = self.block_out_channels snake_case__ : Optional[Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case__ : List[Any] = self.num_attention_heads or self.attention_head_dim # input snake_case__ : Tuple = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time snake_case__ : str = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) snake_case__ : Any = FlaxTimestepEmbedding(__lowercase ,dtype=self.dtype ) snake_case__ : Optional[int] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) snake_case__ : Optional[int] = self.only_cross_attention if isinstance(__lowercase ,__lowercase ): snake_case__ : Tuple = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__lowercase ,__lowercase ): snake_case__ : int = (num_attention_heads,) * len(self.down_block_types ) # down snake_case__ : Any = [] snake_case__ : List[str] = [] snake_case__ : Dict = block_out_channels[0] snake_case__ : int = nn.Conv( __lowercase ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(__lowercase ) for i, down_block_type in enumerate(self.down_block_types ): snake_case__ : int = output_channel snake_case__ : str = block_out_channels[i] snake_case__ : str = i == len(__lowercase ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case__ : Optional[int] = FlaxCrossAttnDownBlockaD( in_channels=__lowercase ,out_channels=__lowercase ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: snake_case__ : Any = FlaxDownBlockaD( in_channels=__lowercase ,out_channels=__lowercase ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(__lowercase ) for _ in range(self.layers_per_block ): snake_case__ : int = nn.Conv( __lowercase ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(__lowercase ) if not is_final_block: snake_case__ : List[str] = nn.Conv( __lowercase ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(__lowercase ) snake_case__ : Union[str, Any] = down_blocks snake_case__ : Dict = controlnet_down_blocks # mid snake_case__ : Union[str, Any] = block_out_channels[-1] snake_case__ : List[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=__lowercase ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) snake_case__ : Any = nn.Conv( __lowercase ,kernel_size=(1, 1) ,padding='''VALID''' ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self :Union[str, Any] ,__lowercase :Optional[int] ,__lowercase :Any ,__lowercase :Optional[Any] ,__lowercase :Optional[int] ,__lowercase :float = 1.0 ,__lowercase :bool = True ,__lowercase :bool = False ,): snake_case__ : Optional[Any] = self.controlnet_conditioning_channel_order if channel_order == "bgr": snake_case__ : int = jnp.flip(__lowercase ,axis=1 ) # 1. time if not isinstance(__lowercase ,jnp.ndarray ): snake_case__ : int = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(__lowercase ,jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case__ : str = timesteps.astype(dtype=jnp.floataa ) snake_case__ : List[Any] = jnp.expand_dims(__lowercase ,0 ) snake_case__ : List[str] = self.time_proj(__lowercase ) snake_case__ : List[str] = self.time_embedding(__lowercase ) # 2. pre-process snake_case__ : Dict = jnp.transpose(__lowercase ,(0, 2, 3, 1) ) snake_case__ : Tuple = self.conv_in(__lowercase ) snake_case__ : List[str] = jnp.transpose(__lowercase ,(0, 2, 3, 1) ) snake_case__ : Any = self.controlnet_cond_embedding(__lowercase ) sample += controlnet_cond # 3. down snake_case__ : Tuple = (sample,) for down_block in self.down_blocks: if isinstance(__lowercase ,__lowercase ): snake_case__ : List[Any] = down_block(__lowercase ,__lowercase ,__lowercase ,deterministic=not train ) else: snake_case__ : Optional[int] = down_block(__lowercase ,__lowercase ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid snake_case__ : Any = self.mid_block(__lowercase ,__lowercase ,__lowercase ,deterministic=not train ) # 5. contronet blocks snake_case__ : Any = () for down_block_res_sample, controlnet_block in zip(__lowercase ,self.controlnet_down_blocks ): snake_case__ : str = controlnet_block(__lowercase ) controlnet_down_block_res_samples += (down_block_res_sample,) snake_case__ : Dict = controlnet_down_block_res_samples snake_case__ : Any = self.controlnet_mid_block(__lowercase ) # 6. scaling snake_case__ : Tuple = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__lowercase ,mid_block_res_sample=__lowercase )
707
def _lowerCAmelCase ( __lowerCAmelCase ) -> float: """simple docstring""" if edge <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _lowerCAmelCase ( __lowerCAmelCase ) -> float: """simple docstring""" if edge <= 0 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
219
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) lowerCAmelCase__ : Dict =None lowerCAmelCase__ : Union[str, Any] ={ '7B': 1_10_08, '13B': 1_38_24, '30B': 1_79_20, '65B': 2_20_16, '70B': 2_86_72, } lowerCAmelCase__ : List[str] ={ '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def a__ ( A__, A__=1, A__=2_5_6 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def a__ ( A__ ): with open(A__, 'r' ) as f: return json.load(A__ ) def a__ ( A__, A__ ): with open(A__, 'w' ) as f: json.dump(A__, A__ ) def a__ ( A__, A__, A__, A__=True ): os.makedirs(A__, exist_ok=A__ ) SCREAMING_SNAKE_CASE_ : Dict = os.path.join(A__, 'tmp' ) os.makedirs(A__, exist_ok=A__ ) SCREAMING_SNAKE_CASE_ : Any = read_json(os.path.join(A__, 'params.json' ) ) SCREAMING_SNAKE_CASE_ : List[Any] = NUM_SHARDS[model_size] SCREAMING_SNAKE_CASE_ : Optional[int] = params['n_layers'] SCREAMING_SNAKE_CASE_ : Any = params['n_heads'] SCREAMING_SNAKE_CASE_ : Any = n_heads // num_shards SCREAMING_SNAKE_CASE_ : int = params['dim'] SCREAMING_SNAKE_CASE_ : str = dim // n_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = 1_00_00.0 SCREAMING_SNAKE_CASE_ : Optional[Any] = 1.0 / (base ** (torch.arange(0, A__, 2 ).float() / dims_per_head)) if "n_kv_heads" in params: SCREAMING_SNAKE_CASE_ : List[str] = params['n_kv_heads'] # for GQA / MQA SCREAMING_SNAKE_CASE_ : Union[str, Any] = n_heads_per_shard // num_key_value_heads SCREAMING_SNAKE_CASE_ : Tuple = dim // num_key_value_heads else: # compatibility with other checkpoints SCREAMING_SNAKE_CASE_ : Dict = n_heads SCREAMING_SNAKE_CASE_ : Tuple = n_heads_per_shard SCREAMING_SNAKE_CASE_ : int = dim # permute for sliced rotary def permute(A__, A__=n_heads, A__=dim, A__=dim ): return w.view(A__, dima // n_heads // 2, 2, A__ ).transpose(1, 2 ).reshape(A__, A__ ) print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) SCREAMING_SNAKE_CASE_ : List[str] = torch.load(os.path.join(A__, 'consolidated.00.pth' ), map_location='cpu' ) else: # Sharded SCREAMING_SNAKE_CASE_ : str = [ torch.load(os.path.join(A__, F'''consolidated.{i:02d}.pth''' ), map_location='cpu' ) for i in range(A__ ) ] SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : str = {'weight_map': {}} for layer_i in range(A__ ): SCREAMING_SNAKE_CASE_ : Any = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded SCREAMING_SNAKE_CASE_ : Union[str, Any] = { F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wq.weight'''] ), F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wk.weight'''] ), F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''], F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''], F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''], F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''], F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''], F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''], F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. SCREAMING_SNAKE_CASE_ : Dict = { F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.attention_norm.weight''' ].clone(), F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } SCREAMING_SNAKE_CASE_ : int = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(A__, A__, A__ ) for i in range(A__ ) ], dim=0, ).reshape(A__, A__ ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view( A__, A__, A__ ) for i in range(A__ ) ], dim=0, ).reshape(A__, A__ ), A__, A__, A__, ) SCREAMING_SNAKE_CASE_ : Tuple = torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view( A__, A__, A__ ) for i in range(A__ ) ], dim=0, ).reshape(A__, A__ ) SCREAMING_SNAKE_CASE_ : Dict = torch.cat( [loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(A__ )], dim=1 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(A__ )], dim=0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(A__ )], dim=1 ) SCREAMING_SNAKE_CASE_ : Any = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(A__ )], dim=0 ) SCREAMING_SNAKE_CASE_ : str = inv_freq for k, v in state_dict.items(): SCREAMING_SNAKE_CASE_ : Any = filename param_count += v.numel() torch.save(A__, os.path.join(A__, A__ ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded SCREAMING_SNAKE_CASE_ : Optional[int] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: SCREAMING_SNAKE_CASE_ : Optional[int] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(A__ )], dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(A__ )], dim=0 ), } for k, v in state_dict.items(): SCREAMING_SNAKE_CASE_ : Tuple = filename param_count += v.numel() torch.save(A__, os.path.join(A__, A__ ) ) # Write configs SCREAMING_SNAKE_CASE_ : Optional[int] = {'total_size': param_count * 2} write_json(A__, os.path.join(A__, 'pytorch_model.bin.index.json' ) ) SCREAMING_SNAKE_CASE_ : str = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 SCREAMING_SNAKE_CASE_ : Tuple = params['multiple_of'] if 'multiple_of' in params else 2_5_6 SCREAMING_SNAKE_CASE_ : List[str] = LlamaConfig( hidden_size=A__, intermediate_size=compute_intermediate_size(A__, A__, A__ ), num_attention_heads=params['n_heads'], num_hidden_layers=params['n_layers'], rms_norm_eps=params['norm_eps'], num_key_value_heads=A__, ) config.save_pretrained(A__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LlamaForCausalLM.from_pretrained(A__, torch_dtype=torch.floataa, low_cpu_mem_usage=A__ ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(A__, safe_serialization=A__ ) shutil.rmtree(A__ ) def a__ ( A__, A__ ): # Initialize the tokenizer based on the `spm` model SCREAMING_SNAKE_CASE_ : List[str] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer_class(A__ ) tokenizer.save_pretrained(A__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ : List[Any] = argparse.ArgumentParser() parser.add_argument( '--input_dir', help='Location of LLaMA weights, which contains tokenizer.model and model folders', ) parser.add_argument( '--model_size', choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'], ) parser.add_argument( '--output_dir', help='Location to write HF model and tokenizer', ) parser.add_argument('--safe_serialization', type=A__, help='Whether or not to save using `safetensors`.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size ), model_size=args.model_size, safe_serialization=args.safe_serialization, ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(args.input_dir, 'tokenizer.model' ) write_tokenizer(args.output_dir, A__ ) if __name__ == "__main__": main()
101
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = '''https://openaipublic.azureedge.net/jukebox/models/''' UpperCamelCase__ : Optional[Any] = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> int: """simple docstring""" if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : List[str] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Any = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : Tuple = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: SCREAMING_SNAKE_CASE_ : List[Any] = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: SCREAMING_SNAKE_CASE_ : List[Any] = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: SCREAMING_SNAKE_CASE_ : Optional[Any] = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: SCREAMING_SNAKE_CASE_ : Union[str, Any] = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = {} import re SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : str = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Tuple = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Dict = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Dict = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = re_encoder_block_conv_in.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[int] = re_encoder_block_conv_in.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_encoder_block_resnet.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[Any] = re_encoder_block_resnet.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = regex_match.groups() SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) SCREAMING_SNAKE_CASE_ : str = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : int = F'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : str = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[Any] = prefix + resnet_block SCREAMING_SNAKE_CASE_ : List[Any] = re_encoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_encoder_block_proj_out.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = re_encoder_block_proj_out.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = regex_match.groups() SCREAMING_SNAKE_CASE_ : int = F'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Tuple = re_encoder_block_proj_out.sub(lowerCamelCase_ , lowerCamelCase_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Any = re_decoder_block_conv_out.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ : Optional[int] = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[int] = re_decoder_block_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_decoder_block_resnet.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Dict = re_decoder_block_resnet.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : str = int(groups[2] ) * 2 + int(groups[3] ) - 2 SCREAMING_SNAKE_CASE_ : Optional[Any] = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = F'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Dict = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Union[str, Any] = prefix + resnet_block SCREAMING_SNAKE_CASE_ : Dict = re_decoder_block_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_decoder_block_proj_in.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = re_decoder_block_proj_in.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : int = F'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Optional[Any] = re_decoder_block_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : List[str] = re_prior_cond_conv_out.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = regex_match.groups() SCREAMING_SNAKE_CASE_ : str = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ : Any = F'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : List[Any] = re_prior_cond_conv_out.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_prior_cond_resnet.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[int] = re_prior_cond_resnet.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = regex_match.groups() SCREAMING_SNAKE_CASE_ : Tuple = int(groups[1] ) * 2 + int(groups[2] ) - 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'1': 1, '3': 2}[groups[-2]] SCREAMING_SNAKE_CASE_ : List[str] = F'conditioner_blocks.upsampler.upsample_block.{block_index}.' SCREAMING_SNAKE_CASE_ : Optional[int] = F'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' SCREAMING_SNAKE_CASE_ : Dict = prefix + resnet_block SCREAMING_SNAKE_CASE_ : List[str] = re_prior_cond_resnet.sub(lowerCamelCase_ , lowerCamelCase_ ) elif re_prior_cond_proj_in.fullmatch(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Any = re_prior_cond_proj_in.match(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = regex_match.groups() SCREAMING_SNAKE_CASE_ : List[Any] = F'conditioner_blocks.upsampler.proj_in.{groups[-1]}' SCREAMING_SNAKE_CASE_ : List[Any] = re_prior_cond_proj_in.sub(lowerCamelCase_ , lowerCamelCase_ ) # keep original key else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = original_key SCREAMING_SNAKE_CASE_ : Optional[Any] = replace_key(lowerCamelCase_ ) if F'{key_prefix}.{key}' not in model_state_dict or key is None: print(F'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[F'{key_prefix}.{key}'].shape: SCREAMING_SNAKE_CASE_ : str = model_state_dict[F'{key_prefix}.{key}'] print(F'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) SCREAMING_SNAKE_CASE_ : Dict = original_key SCREAMING_SNAKE_CASE_ : int = original_key SCREAMING_SNAKE_CASE_ : int = value return new_dict @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ : int=None , lowerCamelCase_ : int=None ) -> Dict: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): SCREAMING_SNAKE_CASE_ : int = requests.get(F'{PREFIX}{file}' , allow_redirects=lowerCamelCase_ ) os.makedirs(F'{pytorch_dump_folder_path}/' , exist_ok=lowerCamelCase_ ) open(F'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , 'wb' ).write(r.content ) SCREAMING_SNAKE_CASE_ : List[str] = MODEL_MAPPING[model_name.split('/' )[-1]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = JukeboxConfig.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : str = JukeboxModel(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = {} for i, dict_name in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : str = torch.load(F'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )['model'] SCREAMING_SNAKE_CASE_ : int = {} for k in old_dic.keys(): if k.endswith('.b' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = old_dic[k] elif k.endswith('.w' ): SCREAMING_SNAKE_CASE_ : str = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: SCREAMING_SNAKE_CASE_ : int = old_dic[k] else: SCREAMING_SNAKE_CASE_ : List[Any] = old_dic[k] SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'vqvae' if i == 0 else F'priors.{3 - i}' SCREAMING_SNAKE_CASE_ : Any = fix_jukebox_keys(lowerCamelCase_ , model.state_dict() , lowerCamelCase_ , lowerCamelCase_ ) weight_dict.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = weight_dict.pop(0 ) model.vqvae.load_state_dict(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) with open(F'{pytorch_dump_folder_path}/mapping.json' , 'w' ) as txtfile: json.dump(lowerCamelCase_ , lowerCamelCase_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase_ ) return weight_dict if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) UpperCamelCase__ : str = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
105
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _UpperCAmelCase ( a : Tuple ): snake_case__ = args.pruning_method snake_case__ = args.threshold snake_case__ = args.model_name_or_path.rstrip("""/""" ) snake_case__ = args.target_model_path print(F'''Load fine-pruned model from {model_name_or_path}''' ) snake_case__ = torch.load(os.path.join(a , """pytorch_model.bin""" ) ) snake_case__ = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: snake_case__ = tensor print(F'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: snake_case__ = tensor print(F'''Copied layer {name}''' ) elif "bias" in name: snake_case__ = tensor print(F'''Copied layer {name}''' ) else: if pruning_method == "magnitude": snake_case__ = MagnitudeBinarizer.apply(inputs=a , threshold=a ) snake_case__ = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue snake_case__ = name[:-6] snake_case__ = model[F'''{prefix_}mask_scores'''] snake_case__ = TopKBinarizer.apply(a , a ) snake_case__ = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue snake_case__ = name[:-6] snake_case__ = model[F'''{prefix_}mask_scores'''] snake_case__ = ThresholdBinarizer.apply(a , a , a ) snake_case__ = tensor * mask print(F'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue snake_case__ = name[:-6] snake_case__ = model[F'''{prefix_}mask_scores'''] snake_case__ , snake_case__ = -0.1, 1.1 snake_case__ = torch.sigmoid(a ) snake_case__ = s * (r - l) + l snake_case__ = s_bar.clamp(min=0.0 , max=1.0 ) snake_case__ = tensor * mask print(F'''Pruned layer {name}''' ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: snake_case__ = os.path.join( os.path.dirname(a ) , F'''bertarized_{os.path.basename(a )}''' ) if not os.path.isdir(a ): shutil.copytree(a , a ) print(F'''\nCreated folder {target_model_path}''' ) torch.save(a , os.path.join(a , """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) a__ = parser.parse_args() main(args)
99
from collections.abc import Callable def _UpperCAmelCase ( a : Callable[[float], float] , a : float , a : float ): snake_case__ = a snake_case__ = b if function(a ) == 0: # one of the a or b is a root for the function return a elif function(a ) == 0: return b elif ( function(a ) * function(a ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: snake_case__ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(a ) == 0: return mid elif function(a ) * function(a ) < 0: snake_case__ = mid else: snake_case__ = mid snake_case__ = start + (end - start) / 2.0 return mid def _UpperCAmelCase ( a : float ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
99
1
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """vocab.json"""} lowercase__ = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } lowercase__ = {"""mgp-str""": 27} class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowercase , lowercase="[GO]" , lowercase="[GO]" , lowercase="[s]" , lowercase="[GO]" , **lowercase ): super().__init__( unk_token=lowercase , bos_token=lowercase , eos_token=lowercase , pad_token=lowercase , **lowercase , ) with open(lowercase , encoding='utf-8' ) as vocab_handle: _lowerCamelCase : Dict = json.load(lowercase ) _lowerCamelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def A_ ( self ): return len(self.vocab ) def A_ ( self ): return dict(self.vocab , **self.added_tokens_encoder ) def A_ ( self , lowercase ): _lowerCamelCase : str = [] for s in text: char_tokens.extend(lowercase ) return char_tokens def A_ ( self , lowercase ): return self.vocab.get(lowercase , self.vocab.get(self.unk_token ) ) def A_ ( self , lowercase ): return self.decoder.get(lowercase ) def A_ ( self , lowercase , lowercase = None ): if not os.path.isdir(lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(lowercase ) ) return _lowerCamelCase : List[str] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowercase , ensure_ascii=lowercase ) + '\n' ) return (vocab_file,)
630
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """dpr""" def __init__( self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=0 , lowercase="absolute" , lowercase = 0 , **lowercase , ): super().__init__(pad_token_id=lowercase , **lowercase ) _lowerCamelCase : int = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : str = num_hidden_layers _lowerCamelCase : Optional[int] = num_attention_heads _lowerCamelCase : Tuple = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Tuple = attention_probs_dropout_prob _lowerCamelCase : Union[str, Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : int = initializer_range _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : Dict = projection_dim _lowerCamelCase : int = position_embedding_type
630
1
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } UpperCAmelCase =[ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _A ( _a : Tuple , _a : str , _a : int , _a : Dict , _a : Union[str, Any] ): """simple docstring""" for attribute in key.split(""".""" ): A = getattr(_a , _a ) if weight_type is not None: A = getattr(_a , _a ).shape else: A = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _A ( _a : Union[str, Any] , _a : str ): """simple docstring""" A = [] A = fairseq_model.state_dict() A = hf_model.feature_extractor A = hf_model.adapter for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == """group""" , ) A = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(_a , _a , _a , _a ) A = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A = True if "*" in mapped_key: A = name.split(_a )[0].split(""".""" )[-2] A = mapped_key.replace("""*""" , _a ) if "weight_g" in name: A = """weight_g""" elif "weight_v" in name: A = """weight_v""" elif "bias" in name: A = """bias""" elif "weight" in name: A = """weight""" else: A = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(f'Unused weights: {unused_weights}' ) def _A ( _a : int , _a : Optional[int] , _a : Any , _a : Union[str, Any] , _a : Tuple ): """simple docstring""" A = full_name.split("""conv_layers.""" )[-1] A = name.split(""".""" ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) A = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_a ) def _A ( _a : List[str] , _a : Any , _a : Union[str, Any] , _a : Optional[int] ): """simple docstring""" A = full_name.split("""adaptor.""" )[-1] A = name.split(""".""" ) if items[1].isdigit(): A = int(items[1] ) else: A = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' A = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' A = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' A = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' A = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(_a , _a ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' A = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' A = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(_a ) def _A ( _a : List[Any] ): """simple docstring""" A , A = emb.weight.shape A = nn.Linear(_a , _a , bias=_a ) A = emb.weight.data return lin_layer @torch.no_grad() def _A ( _a : List[str] , _a : Tuple , _a : Dict , _a : Optional[Any] , _a : str , _a : Dict , _a : Optional[int] , _a : Optional[Any] , _a : Tuple , _a : int , _a : Tuple , ): """simple docstring""" A = WavaVecaConfig.from_pretrained( _a , add_adapter=_a , adapter_stride=_a , adapter_kernel_size=_a , use_auth_token=_a , output_hidden_size=_a , ) A = MBartConfig.from_pretrained(_a ) # load model A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) A = model[0].eval() # load feature extractor A = WavaVecaFeatureExtractor.from_pretrained(_a , use_auth_token=_a ) # set weights for wav2vec2 encoder A = WavaVecaModel(_a ) recursively_load_weights_wavaveca(model.encoder , _a ) # load decoder weights A = MBartForCausalLM(_a ) A , A = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=_a ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) A = SpeechEncoderDecoderModel(encoder=_a , decoder=_a ) A = False A = MBartaaTokenizer(_a ) tokenizer.save_pretrained(_a ) A = hf_wavavec.config.to_dict() A = tokenizer.pad_token_id A = tokenizer.bos_token_id A = tokenizer.eos_token_id A = """mbart50""" A = """wav2vec2""" A = tokenizer.eos_token_id A = 2_5_0_0_0_4 A = tokenizer.eos_token_id A = SpeechEncoderDecoderConfig.from_dict(_a ) hf_wavavec.save_pretrained(_a ) feature_extractor.save_pretrained(_a ) if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1_024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=250_004, type=int, help="`decoder_start_token_id` of model config") UpperCAmelCase =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
701
"""simple docstring""" def _A ( _a : int | float | str ): """simple docstring""" try: A = float(_a ) except ValueError: raise ValueError("""Please enter a valid number""" ) A = decimal - int(_a ) if fractional_part == 0: return int(_a ), 1 else: A = len(str(_a ).split(""".""" )[1] ) A = int(decimal * (1_0**number_of_frac_digits) ) A = 1_0**number_of_frac_digits A , A = denominator, numerator while True: A = dividend % divisor if remainder == 0: break A , A = divisor, remainder A , A = numerator / divisor, denominator / divisor return int(_a ), int(_a ) if __name__ == "__main__": print(f"""{decimal_to_fraction(2) = }""") print(f"""{decimal_to_fraction(89.0) = }""") print(f"""{decimal_to_fraction("67") = }""") print(f"""{decimal_to_fraction("45.0") = }""") print(f"""{decimal_to_fraction(1.5) = }""") print(f"""{decimal_to_fraction("6.25") = }""") print(f"""{decimal_to_fraction("78td") = }""")
255
0
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node snake_case_ : Optional[int] = 4 snake_case_ : int = 3 class snake_case__ ( lowerCAmelCase_ ): pass def lowercase_ ( _lowercase : List[str] ): '''simple docstring''' for shard in shards: for i in range(_lowercase ): yield {"i": i, "shard": shard} def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : Tuple = int(os.environ["RANK"] ) UpperCAmelCase : Tuple = int(os.environ["WORLD_SIZE"] ) UpperCAmelCase : Optional[int] = ArgumentParser() parser.add_argument("--streaming" , type=_lowercase ) parser.add_argument("--local_rank" , type=_lowercase ) parser.add_argument("--num_workers" , type=_lowercase , default=0 ) UpperCAmelCase : List[str] = parser.parse_args() UpperCAmelCase : str = args.streaming UpperCAmelCase : Optional[int] = args.num_workers UpperCAmelCase : Union[str, Any] = {"shards": [F"""shard_{shard_idx}""" for shard_idx in range(_lowercase )]} UpperCAmelCase : Any = IterableDataset.from_generator(_lowercase , gen_kwargs=_lowercase ) if not streaming: UpperCAmelCase : Optional[Any] = Dataset.from_list(list(_lowercase ) ) UpperCAmelCase : Union[str, Any] = split_dataset_by_node(_lowercase , rank=_lowercase , world_size=_lowercase ) UpperCAmelCase : str = torch.utils.data.DataLoader(_lowercase , num_workers=_lowercase ) UpperCAmelCase : Union[str, Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase : Optional[int] = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
595
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) snake_case_ : Optional[Any] = logging.getLogger(__name__) class snake_case__ ( lowerCAmelCase_ ): def __lowerCAmelCase ( self : Union[str, Any] , lowercase : str , lowercase : Union[str, Any] , lowercase : Dict=None , lowercase : Any=None ): '''simple docstring''' UpperCAmelCase : Any = self.layer[current_layer](lowercase , lowercase , head_mask[current_layer] ) UpperCAmelCase : List[str] = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''' , lowerCAmelCase_ , ) class snake_case__ ( lowerCAmelCase_ ): def __init__( self : Optional[Any] , lowercase : str ): '''simple docstring''' super().__init__(lowercase ) UpperCAmelCase : int = BertEncoderWithPabee(lowercase ) self.init_weights() UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : str = 0 def __lowerCAmelCase ( self : str , lowercase : Dict ): '''simple docstring''' UpperCAmelCase : List[str] = threshold def __lowerCAmelCase ( self : Optional[int] , lowercase : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = patience def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : int = 0 def __lowerCAmelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase : Tuple = self.inference_layers_num / self.inference_instances_num UpperCAmelCase : Optional[int] = ( f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(lowercase ) @add_start_docstrings_to_model_forward(lowercase ) def __lowerCAmelCase ( self : Optional[int] , lowercase : Optional[Any]=None , lowercase : Optional[Any]=None , lowercase : List[str]=None , lowercase : List[Any]=None , lowercase : str=None , lowercase : List[Any]=None , lowercase : str=None , lowercase : Union[str, Any]=None , lowercase : Optional[int]=None , lowercase : Union[str, Any]=None , lowercase : Any=False , ): '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: UpperCAmelCase : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: UpperCAmelCase : Tuple = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) UpperCAmelCase : Any = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCAmelCase : Dict = torch.ones(lowercase , device=lowercase ) if token_type_ids is None: UpperCAmelCase : Dict = torch.zeros(lowercase , dtype=torch.long , device=lowercase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(lowercase , lowercase , lowercase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = encoder_hidden_states.size() UpperCAmelCase : Dict = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCAmelCase : List[str] = torch.ones(lowercase , device=lowercase ) UpperCAmelCase : Optional[int] = self.invert_attention_mask(lowercase ) else: UpperCAmelCase : Union[str, Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCAmelCase : Union[str, Any] = self.get_head_mask(lowercase , self.config.num_hidden_layers ) UpperCAmelCase : List[str] = self.embeddings( input_ids=lowercase , position_ids=lowercase , token_type_ids=lowercase , inputs_embeds=lowercase ) UpperCAmelCase : Tuple = embedding_output if self.training: UpperCAmelCase : Dict = [] for i in range(self.config.num_hidden_layers ): UpperCAmelCase : str = self.encoder.adaptive_forward( lowercase , current_layer=lowercase , attention_mask=lowercase , head_mask=lowercase ) UpperCAmelCase : Tuple = self.pooler(lowercase ) UpperCAmelCase : Optional[int] = output_layers[i](output_dropout(lowercase ) ) res.append(lowercase ) elif self.patience == 0: # Use all layers for inference UpperCAmelCase : str = self.encoder( lowercase , attention_mask=lowercase , head_mask=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , ) UpperCAmelCase : Union[str, Any] = self.pooler(encoder_outputs[0] ) UpperCAmelCase : Tuple = [output_layers[self.config.num_hidden_layers - 1](lowercase )] else: UpperCAmelCase : Tuple = 0 UpperCAmelCase : str = None UpperCAmelCase : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCAmelCase : Tuple = self.encoder.adaptive_forward( lowercase , current_layer=lowercase , attention_mask=lowercase , head_mask=lowercase ) UpperCAmelCase : Union[str, Any] = self.pooler(lowercase ) UpperCAmelCase : int = output_layers[i](lowercase ) if regression: UpperCAmelCase : Union[str, Any] = logits.detach() if patient_result is not None: UpperCAmelCase : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCAmelCase : List[Any] = 0 else: UpperCAmelCase : int = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCAmelCase : Dict = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowercase ) ): patient_counter += 1 else: UpperCAmelCase : str = 0 UpperCAmelCase : Any = logits if patient_counter == self.patience: break UpperCAmelCase : int = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. ''' , lowerCAmelCase_ , ) class snake_case__ ( lowerCAmelCase_ ): def __init__( self : List[str] , lowercase : int ): '''simple docstring''' super().__init__(lowercase ) UpperCAmelCase : Tuple = config.num_labels UpperCAmelCase : Optional[Any] = BertModelWithPabee(lowercase ) UpperCAmelCase : Union[str, Any] = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase : Optional[Any] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowercase ) def __lowerCAmelCase ( self : Optional[int] , lowercase : Optional[int]=None , lowercase : int=None , lowercase : Union[str, Any]=None , lowercase : Tuple=None , lowercase : List[str]=None , lowercase : List[Any]=None , lowercase : Any=None , ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.bert( input_ids=lowercase , attention_mask=lowercase , token_type_ids=lowercase , position_ids=lowercase , head_mask=lowercase , inputs_embeds=lowercase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCAmelCase : Optional[int] = (logits[-1],) if labels is not None: UpperCAmelCase : Dict = None UpperCAmelCase : int = 0 for ix, logits_item in enumerate(lowercase ): if self.num_labels == 1: # We are doing regression UpperCAmelCase : Tuple = MSELoss() UpperCAmelCase : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase : List[Any] = CrossEntropyLoss() UpperCAmelCase : Any = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCAmelCase : Union[str, Any] = (total_loss / total_weights,) + outputs return outputs
595
1
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __A ( a_ : str ,a_ : str = "cpu" ,a_ : Union[str, None] = None ): lowerCAmelCase : Optional[int] = torch.load(a_ ,map_location=a_ ) for k, v in tqdm(state_dict.items() ): if not isinstance(a_ ,torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) lowerCAmelCase : str = v.half() if save_path is None: # overwrite src_path lowerCAmelCase : Tuple = src_path torch.save(a_ ,a_ ) if __name__ == "__main__": fire.Fire(convert)
551
'''simple docstring''' from __future__ import annotations lowerCAmelCase = [] def __A ( a_ : list[list[int]] ,a_ : int ,a_ : int ): for i in range(len(a_ ) ): if board[row][i] == 1: return False for i in range(len(a_ ) ): if board[i][column] == 1: return False for i, j in zip(range(a_ ,-1 ,-1 ) ,range(a_ ,-1 ,-1 ) ): if board[i][j] == 1: return False for i, j in zip(range(a_ ,-1 ,-1 ) ,range(a_ ,len(a_ ) ) ): if board[i][j] == 1: return False return True def __A ( a_ : list[list[int]] ,a_ : int ): if row >= len(a_ ): solution.append(a_ ) printboard(a_ ) print() return True for i in range(len(a_ ) ): if is_safe(a_ ,a_ ,a_ ): lowerCAmelCase : Any = 1 solve(a_ ,row + 1 ) lowerCAmelCase : List[Any] = 0 return False def __A ( a_ : list[list[int]] ): for i in range(len(a_ ) ): for j in range(len(a_ ) ): if board[i][j] == 1: print("Q" ,end=" " ) else: print("." ,end=" " ) print() # n=int(input("The no. of queens")) lowerCAmelCase = 8 lowerCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
551
1