code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__: Optional[int] = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: List[str] = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys A__: str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
694
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : dict ,_UpperCAmelCase : str ,_UpperCAmelCase : set ,_UpperCAmelCase : set ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ,_UpperCAmelCase : PriorityQueue ,_UpperCAmelCase : dict ,_UpperCAmelCase : float | int ,) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue _a : Dict =cst_fwd.get(_UpperCAmelCase ,np.inf ) _a : int =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _a : Tuple =new_cost_f _a : Optional[Any] =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _a : str =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : dict ,_UpperCAmelCase : dict ) -> int: _a : Optional[Any] =-1 _a : List[str] =set() _a : Optional[int] =set() _a : Optional[int] ={source: 0} _a : List[str] ={destination: 0} _a : Union[str, Any] ={source: None} _a : Dict ={destination: None} _a : PriorityQueue[Any] =PriorityQueue() _a : PriorityQueue[Any] =PriorityQueue() _a : Optional[int] =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _a , _a : str =queue_forward.get() visited_forward.add(_UpperCAmelCase ) _a , _a : List[Any] =queue_backward.get() visited_backward.add(_UpperCAmelCase ) _a : int =pass_and_relaxation( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,) _a : Any =pass_and_relaxation( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _a : Any =shortest_distance return shortest_path_distance A__: Union[str, Any] = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } A__: str = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
694
1
def _lowerCamelCase ( __A : int , __A : int ) -> Tuple: '''simple docstring''' while a != 0: _UpperCAmelCase , _UpperCAmelCase : Any = b % a, a return b def _lowerCamelCase ( __A : int , __A : int ) -> int: '''simple docstring''' if gcd(__A , __A ) != 1: _UpperCAmelCase : List[str] = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(__A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : int = 1, 0, a _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = 0, 1, m while va != 0: _UpperCAmelCase : Optional[Any] = ua // va _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
717
import argparse import os import re SCREAMING_SNAKE_CASE = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict SCREAMING_SNAKE_CASE = re.compile(R'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings SCREAMING_SNAKE_CASE = re.compile(R'\s*\(\s*"(\S[^"]+)"') def _lowerCamelCase ( __A : Optional[int] , __A : bool = False ) -> int: with open(__A , '''r''' , encoding='''utf-8''' ) as f: _UpperCAmelCase : Union[str, Any] = f.read() _UpperCAmelCase : Any = content.split('''\n''' ) _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = 0 while line_idx < len(__A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _UpperCAmelCase : Union[str, Any] = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 _UpperCAmelCase : str = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _UpperCAmelCase : List[str] = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _UpperCAmelCase : Tuple = sorted(__A , key=lambda __A : _re_identifier.search(__A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(__A ) ) elif "\n".join(__A ) != content: return True def _lowerCamelCase ( __A : bool = False ) -> List[str]: _UpperCAmelCase : List[str] = [os.path.join(__A , __A ) for f in os.listdir(__A ) if f.endswith('''.py''' )] _UpperCAmelCase : List[Any] = [sort_auto_mapping(__A , overwrite=__A ) for fname in fnames] if not overwrite and any(__A ): _UpperCAmelCase : Optional[int] = [f for f, d in zip(__A , __A ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {', '.join(__A )}. Run `make style` to fix''' ''' this.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') SCREAMING_SNAKE_CASE = parser.parse_args() sort_all_auto_mappings(not args.check_only)
186
0
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0 ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = row, column SCREAMING_SNAKE_CASE : Optional[Any] = [[default_value for c in range(UpperCAmelCase_ )] for r in range(UpperCAmelCase_ )] def __str__( self : Optional[int] ): SCREAMING_SNAKE_CASE : Dict = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier SCREAMING_SNAKE_CASE : Dict = 0 for row_vector in self.array: for obj in row_vector: SCREAMING_SNAKE_CASE : Optional[Any] = max(UpperCAmelCase_ , len(str(UpperCAmelCase_ ) ) ) SCREAMING_SNAKE_CASE : Optional[int] = f'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase_ : list[float] ) -> str: nonlocal string_format_identifier SCREAMING_SNAKE_CASE : Optional[int] = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase_ ) for row_vector in self.array ) return s def __repr__( self : Dict ): return str(self ) def _A ( self : Optional[int] , UpperCAmelCase_ : tuple[int, int] ): if not (isinstance(UpperCAmelCase_ , (list, tuple) ) and len(UpperCAmelCase_ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , UpperCAmelCase_ : tuple[int, int] ): assert self.validate_indicies(UpperCAmelCase_ ) return self.array[loc[0]][loc[1]] def __setitem__( self : int , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : float ): assert self.validate_indicies(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = value def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert self.row == another.row and self.column == another.column # Add SCREAMING_SNAKE_CASE : str = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : Any = self[r, c] + another[r, c] return result def __neg__( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : str = -self[r, c] return result def __sub__( self : Optional[Any] , UpperCAmelCase_ : Matrix ): return self + (-another) def __mul__( self : Dict , UpperCAmelCase_ : int | float | Matrix ): if isinstance(UpperCAmelCase_ , (int, float) ): # Scalar multiplication SCREAMING_SNAKE_CASE : Any = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : str = self[r, c] * another return result elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): # Matrix multiplication assert self.column == another.row SCREAMING_SNAKE_CASE : Any = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: SCREAMING_SNAKE_CASE : List[str] = f'''Unsupported type given for another ({type(UpperCAmelCase_ )})''' raise TypeError(UpperCAmelCase_ ) def _A ( self : int ): SCREAMING_SNAKE_CASE : List[str] = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): SCREAMING_SNAKE_CASE : List[str] = self[r, c] return result def _A ( self : Union[str, Any] , UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate SCREAMING_SNAKE_CASE : Tuple = v.transpose() SCREAMING_SNAKE_CASE : int = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = Matrix(3 , 3 , 0 ) for i in range(3 ): SCREAMING_SNAKE_CASE : str = 1 print(F'''a^(-1) is {ainv}''' ) # u, v SCREAMING_SNAKE_CASE : Optional[int] = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = 1, 2, -3 SCREAMING_SNAKE_CASE : Tuple = Matrix(3 , 1 , 0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowercase , lowercase )}''' ) def lowerCamelCase__ ( ): """simple docstring""" import doctest doctest.testmod() testa()
62
import sys import turtle def UpperCamelCase ( __lowercase : tuple[float, float] ,__lowercase : tuple[float, float] ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def UpperCamelCase ( __lowercase : tuple[float, float] ,__lowercase : tuple[float, float] ,__lowercase : tuple[float, float] ,__lowercase : int ,): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) if depth == 0: return triangle(__lowercase ,get_mid(__lowercase ,__lowercase ) ,get_mid(__lowercase ,__lowercase ) ,depth - 1 ) triangle(__lowercase ,get_mid(__lowercase ,__lowercase ) ,get_mid(__lowercase ,__lowercase ) ,depth - 1 ) triangle(__lowercase ,get_mid(__lowercase ,__lowercase ) ,get_mid(__lowercase ,__lowercase ) ,depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) _UpperCAmelCase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") _UpperCAmelCase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
558
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class snake_case__(lowercase_ ): """simple docstring""" lowercase_ = """speech_to_text""" lowercase_ = ["""past_key_values"""] lowercase_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : int , SCREAMING_SNAKE_CASE : Optional[int]=10_000 , SCREAMING_SNAKE_CASE : str=12 , SCREAMING_SNAKE_CASE : List[Any]=2_048 , SCREAMING_SNAKE_CASE : int=4 , SCREAMING_SNAKE_CASE : Optional[Any]=6 , SCREAMING_SNAKE_CASE : int=2_048 , SCREAMING_SNAKE_CASE : List[str]=4 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE : int=0.0 , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : List[str]="relu" , SCREAMING_SNAKE_CASE : Optional[Any]=256 , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : Tuple=0.0 , SCREAMING_SNAKE_CASE : Optional[int]=0.0 , SCREAMING_SNAKE_CASE : Tuple=0.02 , SCREAMING_SNAKE_CASE : Dict=2 , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : List[Any]=0 , SCREAMING_SNAKE_CASE : List[Any]=2 , SCREAMING_SNAKE_CASE : List[str]=6_000 , SCREAMING_SNAKE_CASE : Optional[int]=1_024 , SCREAMING_SNAKE_CASE : Any=2 , SCREAMING_SNAKE_CASE : Optional[int]=(5, 5) , SCREAMING_SNAKE_CASE : int=1_024 , SCREAMING_SNAKE_CASE : Optional[Any]=80 , SCREAMING_SNAKE_CASE : Any=1 , **SCREAMING_SNAKE_CASE : int , ): lowercase__ : List[Any] = vocab_size lowercase__ : List[str] = d_model lowercase__ : Dict = encoder_ffn_dim lowercase__ : Any = encoder_layers lowercase__ : List[Any] = encoder_attention_heads lowercase__ : int = decoder_ffn_dim lowercase__ : Any = decoder_layers lowercase__ : Tuple = decoder_attention_heads lowercase__ : List[Any] = dropout lowercase__ : Dict = attention_dropout lowercase__ : Any = activation_dropout lowercase__ : Tuple = activation_function lowercase__ : Optional[Any] = init_std lowercase__ : str = encoder_layerdrop lowercase__ : Any = decoder_layerdrop lowercase__ : str = use_cache lowercase__ : int = encoder_layers lowercase__ : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ : Any = max_source_positions lowercase__ : Optional[int] = max_target_positions lowercase__ : Tuple = num_conv_layers lowercase__ : Union[str, Any] = list(lowerCamelCase_ ) lowercase__ : Dict = conv_channels lowercase__ : Any = input_feat_per_channel lowercase__ : Dict = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` " f"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
713
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : CLIPSegForImageSegmentation , SCREAMING_SNAKE_CASE : CLIPSegProcessor , SCREAMING_SNAKE_CASE : AutoencoderKL , SCREAMING_SNAKE_CASE : CLIPTextModel , SCREAMING_SNAKE_CASE : CLIPTokenizer , SCREAMING_SNAKE_CASE : UNetaDConditionModel , SCREAMING_SNAKE_CASE : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , SCREAMING_SNAKE_CASE : StableDiffusionSafetyChecker , SCREAMING_SNAKE_CASE : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: lowercase__ : Optional[Any] = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE ) lowercase__ : int = dict(scheduler.config ) lowercase__ : Any = 1 lowercase__ : Union[str, Any] = FrozenDict(SCREAMING_SNAKE_CASE ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: lowercase__ : Optional[Any] = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = dict(scheduler.config ) lowercase__ : Union[str, Any] = True lowercase__ : int = FrozenDict(SCREAMING_SNAKE_CASE ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=SCREAMING_SNAKE_CASE , segmentation_processor=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE ) def snake_case ( self : List[Any] ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase__ : Union[str, Any] = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, List[str]] , SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int = 512 , SCREAMING_SNAKE_CASE : int = 512 , SCREAMING_SNAKE_CASE : int = 50 , SCREAMING_SNAKE_CASE : float = 7.5 , SCREAMING_SNAKE_CASE : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE : Optional[int] = 1 , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE : Optional[str] = "pil" , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE : int = 1 , **SCREAMING_SNAKE_CASE : Optional[Any] , ): lowercase__ : Dict = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) lowercase__ : int = self.segmentation_model(**SCREAMING_SNAKE_CASE ) lowercase__ : int = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase__ : List[str] = self.numpy_to_pil(SCREAMING_SNAKE_CASE )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase__ : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , mask_image=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , )
81
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
666
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' __a = params __a = np.array(SCREAMING_SNAKE_CASE__ ) __a = np.array([len(SCREAMING_SNAKE_CASE__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self : Optional[Any] ): '''simple docstring''' return len(self.lengths ) def __a ( self : str ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __a ( self : Dict ): '''simple docstring''' __a = self.params.max_model_input_size __a = self.lengths > max_len logger.info(f'''Splitting {sum(SCREAMING_SNAKE_CASE__ )} too long sequences.''' ) def divide_chunks(SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): return [l[i : i + n] for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )] __a = [] __a = [] if self.params.mlm: __a , __a = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: __a , __a = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __a = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __a = np.insert(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ ) if sub_s[-1] != sep_id: __a = np.insert(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(SCREAMING_SNAKE_CASE__ ) new_tok_ids.extend(SCREAMING_SNAKE_CASE__ ) new_lengths.extend([len(SCREAMING_SNAKE_CASE__ ) for l in sub_seqs] ) __a = np.array(SCREAMING_SNAKE_CASE__ ) __a = np.array(SCREAMING_SNAKE_CASE__ ) def __a ( self : Optional[Any] ): '''simple docstring''' __a = len(self ) __a = self.lengths > 1_1 __a = self.token_ids[indices] __a = self.lengths[indices] __a = len(self ) logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def __a ( self : Optional[Any] ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: __a = self.params.special_tok_ids["""unk_token"""] __a = len(self ) __a = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __a = (unk_occs / self.lengths) < 0.5 __a = self.token_ids[indices] __a = self.lengths[indices] __a = len(self ) logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def __a ( self : str ): '''simple docstring''' if not self.params.is_master: return logger.info(f'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' __a = [t[0] for t in batch] __a = [t[1] for t in batch] assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) # Max for paddings __a = max(SCREAMING_SNAKE_CASE__ ) # Pad token ids if self.params.mlm: __a = self.params.special_tok_ids["""pad_token"""] else: __a = self.params.special_tok_ids["""unk_token"""] __a = [list(t.astype(SCREAMING_SNAKE_CASE__ ) ) + [pad_idx] * (max_seq_len_ - len(SCREAMING_SNAKE_CASE__ )) for t in token_ids] assert len(tk_ ) == len(SCREAMING_SNAKE_CASE__ ) assert all(len(SCREAMING_SNAKE_CASE__ ) == max_seq_len_ for t in tk_ ) __a = torch.tensor(tk_ ) # (bs, max_seq_len_) __a = torch.tensor(SCREAMING_SNAKE_CASE__ ) # (bs) return tk_t, lg_t
582
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class _lowerCamelCase ( a_ ): _lowerCamelCase :torch.FloatTensor _lowerCamelCase :torch.FloatTensor _lowerCamelCase :Optional[torch.FloatTensor] = None class _lowerCamelCase ( a_ , a_ ): _lowerCamelCase :Union[str, Any] = 2 @register_to_config def __init__( self : Optional[int] , UpperCamelCase : float = 0.02 , UpperCamelCase : float = 1_00 , UpperCamelCase : float = 1.007 , UpperCamelCase : float = 80 , UpperCamelCase : float = 0.05 , UpperCamelCase : float = 50 , ) -> Tuple: """simple docstring""" # standard deviation of the initial noise distribution lowerCAmelCase__ : Dict = sigma_max # setable values lowerCAmelCase__ : int = None lowerCAmelCase__ : np.IntTensor = None lowerCAmelCase__ : torch.FloatTensor = None # sigma(t_i) def _lowerCAmelCase ( self : List[str] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[int] = None ) -> torch.FloatTensor: """simple docstring""" return sample def _lowerCAmelCase ( self : int , UpperCamelCase : int , UpperCamelCase : Union[str, torch.device] = None ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Dict = num_inference_steps lowerCAmelCase__ : Tuple = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase__ : Any = torch.from_numpy(UpperCamelCase ).to(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase__ : List[str] = torch.tensor(UpperCamelCase , dtype=torch.floataa , device=UpperCamelCase ) def _lowerCAmelCase ( self : str , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float , UpperCamelCase : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase__ : int = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase__ : Any = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase__ : Optional[int] = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCamelCase ).to(sample.device ) lowerCAmelCase__ : List[Any] = sigma + gamma * sigma lowerCAmelCase__ : Tuple = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _lowerCAmelCase ( self : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : torch.FloatTensor , UpperCamelCase : bool = True , ) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = sample_hat + sigma_hat * model_output lowerCAmelCase__ : List[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase__ : Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCamelCase , derivative=UpperCamelCase , pred_original_sample=UpperCamelCase ) def _lowerCAmelCase ( self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : torch.FloatTensor , UpperCamelCase : torch.FloatTensor , UpperCamelCase : torch.FloatTensor , UpperCamelCase : bool = True , ) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" lowerCAmelCase__ : str = sample_prev + sigma_prev * model_output lowerCAmelCase__ : Tuple = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase__ : int = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCamelCase , derivative=UpperCamelCase , pred_original_sample=UpperCamelCase ) def _lowerCAmelCase ( self : int , UpperCamelCase : Tuple , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] ) -> Any: """simple docstring""" raise NotImplementedError()
507
"""simple docstring""" import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = """▁""" _A = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} _A = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } _A = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } _A = { """ernie-m-base""": 5_1_4, """ernie-m-large""": 5_1_4, } _A = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class _lowerCamelCase ( a_ ): _lowerCamelCase :List[str] = ["input_ids"] _lowerCamelCase :Any = VOCAB_FILES_NAMES _lowerCamelCase :List[Any] = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase :List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase :List[Any] = RESOURCE_FILES_NAMES def __init__( self : Tuple , UpperCamelCase : int , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Tuple=False , UpperCamelCase : int="utf8" , UpperCamelCase : List[Any]="[UNK]" , UpperCamelCase : int="[SEP]" , UpperCamelCase : List[Any]="[PAD]" , UpperCamelCase : str="[CLS]" , UpperCamelCase : Dict="[MASK]" , UpperCamelCase : Optional[Dict[str, Any]] = None , **UpperCamelCase : Dict , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase__ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , vocab_file=UpperCamelCase , encoding=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase , ) lowerCAmelCase__ : Any = do_lower_case lowerCAmelCase__ : Optional[Any] = sentencepiece_model_ckpt lowerCAmelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowerCAmelCase__ : Optional[int] = self.load_vocab(filepath=UpperCamelCase ) else: lowerCAmelCase__ : Tuple = {self.sp_model.id_to_piece(UpperCamelCase ): id for id in range(self.sp_model.get_piece_size() )} lowerCAmelCase__ : List[str] = {v: k for k, v in self.vocab.items()} def _lowerCAmelCase ( self : Tuple , UpperCamelCase : int ) -> Any: """simple docstring""" if text is None: return None lowerCAmelCase__ : Optional[Any] = self.tokenize(UpperCamelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = """""", [] for i, ch in enumerate(UpperCamelCase ): if ch in self.SP_CHAR_MAPPING: lowerCAmelCase__ : Union[str, Any] = self.SP_CHAR_MAPPING.get(UpperCamelCase ) else: lowerCAmelCase__ : List[Any] = unicodedata.normalize("""NFKC""" , UpperCamelCase ) if self.is_whitespace(UpperCamelCase ): continue normalized_text += ch char_mapping.extend([i] * len(UpperCamelCase ) ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = normalized_text, [], 0 if self.do_lower_case: lowerCAmelCase__ : List[Any] = text.lower() for token in split_tokens: if token[:1] == "▁": lowerCAmelCase__ : List[str] = token[1:] lowerCAmelCase__ : Dict = text[offset:].index(UpperCamelCase ) + offset lowerCAmelCase__ : List[Any] = start + len(UpperCamelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowerCAmelCase__ : Optional[int] = end return token_mapping @property def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" return len(self.vocab ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = self.__dict__.copy() lowerCAmelCase__ : Any = None return state def __setstate__( self : List[str] , UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowerCAmelCase ( self : Tuple , UpperCamelCase : str ) -> str: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(UpperCamelCase , UpperCamelCase ) for c in text) ) def _lowerCAmelCase ( self : Any , UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Optional[int]=64 , UpperCamelCase : List[Any]=0.1 ) -> Any: """simple docstring""" if self.sp_model_kwargs.get("""enable_sampling""" ) is True: lowerCAmelCase__ : Union[str, Any] = True if self.sp_model_kwargs.get("""alpha""" ) is not None: lowerCAmelCase__ : Union[str, Any] = self.sp_model_kwargs.get("""alpha""" ) if self.sp_model_kwargs.get("""nbest_size""" ) is not None: lowerCAmelCase__ : Union[str, Any] = self.sp_model_kwargs.get("""nbest_size""" ) if not enable_sampling: lowerCAmelCase__ : Union[str, Any] = self.sp_model.EncodeAsPieces(UpperCamelCase ) else: lowerCAmelCase__ : List[str] = self.sp_model.SampleEncodeAsPieces(UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[str] = [] for pi, piece in enumerate(UpperCamelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(UpperCamelCase ) and pi != 0: new_pieces.append(UpperCamelCase ) continue else: continue lowerCAmelCase__ : List[Any] = 0 for i, chunk in enumerate(UpperCamelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(UpperCamelCase ) or self.is_punct(UpperCamelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase__ : Dict = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowerCAmelCase__ : Any = i if len(UpperCamelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : str = """""".join(UpperCamelCase ).replace(UpperCamelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self : Optional[Any] , UpperCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : List[str] = self.convert_ids_to_tokens(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = """""".join(UpperCamelCase ).replace(UpperCamelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self : Tuple , UpperCamelCase : int ) -> Union[str, Any]: """simple docstring""" return self.vocab.get(UpperCamelCase , self.vocab.get(self.unk_token ) ) def _lowerCAmelCase ( self : str , UpperCamelCase : Any ) -> Tuple: """simple docstring""" return self.reverse_vocab.get(UpperCamelCase , self.unk_token ) def _lowerCAmelCase ( self : Tuple , UpperCamelCase : List[str] , UpperCamelCase : Tuple=None ) -> List[str]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : Optional[Any] = [self.cls_token_id] lowerCAmelCase__ : List[str] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowerCAmelCase ( self : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any]=None ) -> Any: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Dict=None , UpperCamelCase : Any=False ) -> List[Any]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase )) + [1, 1] + ([0] * len(UpperCamelCase )) + [1] return [1] + ([0] * len(UpperCamelCase )) + [1] def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(UpperCamelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(UpperCamelCase ) + 1) + [1] * (len(UpperCamelCase ) + 3) def _lowerCAmelCase ( self : Any , UpperCamelCase : Union[str, Any] ) -> Any: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def _lowerCAmelCase ( self : List[Any] , UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowerCAmelCase ( self : Tuple , UpperCamelCase : str ) -> Tuple: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowerCAmelCase ( self : int , UpperCamelCase : List[Any] ) -> Dict: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(UpperCamelCase ) == 1: lowerCAmelCase__ : List[Any] = unicodedata.category(UpperCamelCase ) if cat == "Zs": return True return False def _lowerCAmelCase ( self : str , UpperCamelCase : Any ) -> int: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = {} with io.open(UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(UpperCamelCase ): lowerCAmelCase__ : Any = line.rstrip("""\n""" ) lowerCAmelCase__ : Optional[Any] = int(UpperCamelCase ) return token_to_idx def _lowerCAmelCase ( self : Any , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowerCAmelCase__ : Any = 0 if os.path.isdir(UpperCamelCase ): lowerCAmelCase__ : List[str] = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: lowerCAmelCase__ : List[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda UpperCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) lowerCAmelCase__ : Union[str, Any] = token_index writer.write(token + """\n""" ) index += 1 lowerCAmelCase__ : Dict = os.path.join(UpperCamelCase , """sentencepiece.bpe.model""" ) with open(UpperCamelCase , """wb""" ) as fi: lowerCAmelCase__ : Any = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (vocab_file,)
507
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" __UpperCAmelCase = filter(lambda UpperCamelCase__ : p.requires_grad , model.parameters() ) __UpperCAmelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params __lowerCAmelCase : List[str] = logging.getLogger(__name__) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : str ): """simple docstring""" if metric == "rouge2": __UpperCAmelCase = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __UpperCAmelCase = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __UpperCAmelCase = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": __UpperCAmelCase = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" ''' function.''' ) __UpperCAmelCase = ModelCheckpoint( dirpath=UpperCamelCase__ , filename=UpperCamelCase__ , monitor=f"""val_{metric}""" , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): """simple docstring""" return EarlyStopping( monitor=f"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=UpperCamelCase__ , verbose=UpperCamelCase__ , ) class A ( pl.Callback ): def snake_case__ ( self : Union[str, Any] , __a : int , __a : Any ) -> Optional[Any]: __UpperCAmelCase = {f"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def snake_case__ ( self : Union[str, Any] , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Any=True ) -> None: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __UpperCAmelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __UpperCAmelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCAmelCase = od / '''test_results.txt''' __UpperCAmelCase = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCAmelCase = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" __UpperCAmelCase = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , '''a+''' ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue __UpperCAmelCase = metrics[key] if isinstance(__a , torch.Tensor ): __UpperCAmelCase = val.item() __UpperCAmelCase = f"""{key}: {val:.6f}\n""" writer.write(__a ) if not save_generations: return if "preds" in metrics: __UpperCAmelCase = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__a ) @rank_zero_only def snake_case__ ( self : List[Any] , __a : Optional[int] , __a : Union[str, Any] ) -> List[Any]: try: __UpperCAmelCase = pl_module.model.model.num_parameters() except AttributeError: __UpperCAmelCase = pl_module.model.num_parameters() __UpperCAmelCase = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def snake_case__ ( self : List[str] , __a : pl.Trainer , __a : pl.LightningModule ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , '''test''' ) @rank_zero_only def snake_case__ ( self : Any , __a : pl.Trainer , __a : Union[str, Any] ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
262
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : Dict = logging.get_logger(__name__) __lowerCAmelCase : Optional[int] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __lowerCAmelCase : int = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __lowerCAmelCase : List[str] = {"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __UpperCAmelCase = bs[:] __UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = set() __UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase = char return pairs class A ( UpperCAmelCase ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ['''input_ids''', '''attention_mask'''] def __init__( self : str , __a : Union[str, Any] , __a : Optional[Any] , __a : List[Any]="replace" , __a : Union[str, Any]="<s>" , __a : Any="</s>" , __a : Dict="</s>" , __a : Dict="<s>" , __a : Tuple="<unk>" , __a : List[str]="<pad>" , __a : Any="<mask>" , __a : Dict=False , **__a : Union[str, Any] , ) -> Optional[int]: __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else bos_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else sep_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else cls_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( errors=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , **__a , ) with open(__a , encoding='''utf-8''' ) as vocab_handle: __UpperCAmelCase = json.load(__a ) __UpperCAmelCase = {v: k for k, v in self.encoder.items()} __UpperCAmelCase = errors # how to handle errors in decoding __UpperCAmelCase = bytes_to_unicode() __UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(__a , encoding='''utf-8''' ) as merges_handle: __UpperCAmelCase = merges_handle.read().split('''\n''' )[1:-1] __UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __UpperCAmelCase = {} __UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def snake_case__ ( self : List[Any] ) -> Union[str, Any]: return len(self.encoder ) def snake_case__ ( self : str ) -> int: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case__ ( self : List[Any] , __a : Tuple ) -> List[Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase = tuple(__a ) __UpperCAmelCase = get_pairs(__a ) if not pairs: return token while True: __UpperCAmelCase = min(__a , key=lambda __a : self.bpe_ranks.get(__a , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase = bigram __UpperCAmelCase = [] __UpperCAmelCase = 0 while i < len(__a ): try: __UpperCAmelCase = word.index(__a , __a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase = j if word[i] == first and i < len(__a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase = tuple(__a ) __UpperCAmelCase = new_word if len(__a ) == 1: break else: __UpperCAmelCase = get_pairs(__a ) __UpperCAmelCase = ''' '''.join(__a ) __UpperCAmelCase = word return word def snake_case__ ( self : int , __a : int ) -> List[Any]: __UpperCAmelCase = [] for token in re.findall(self.pat , __a ): __UpperCAmelCase = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__a ).split(''' ''' ) ) return bpe_tokens def snake_case__ ( self : Optional[Any] , __a : Tuple ) -> str: return self.encoder.get(__a , self.encoder.get(self.unk_token ) ) def snake_case__ ( self : Optional[int] , __a : Any ) -> List[str]: return self.decoder.get(__a ) def snake_case__ ( self : Union[str, Any] , __a : List[str] ) -> List[Any]: __UpperCAmelCase = ''''''.join(__a ) __UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def snake_case__ ( self : Union[str, Any] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__a , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__a , ensure_ascii=__a ) + '''\n''' ) __UpperCAmelCase = 0 with open(__a , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __a : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __UpperCAmelCase = token_index writer.write(''' '''.join(__a ) + '''\n''' ) index += 1 return vocab_file, merge_file def snake_case__ ( self : Union[str, Any] , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def snake_case__ ( self : Dict , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self : int , __a : Optional[int] , __a : int=False , **__a : Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__a ) > 0 and not text[0].isspace()): __UpperCAmelCase = ''' ''' + text return (text, kwargs) def snake_case__ ( self : List[str] , __a : List[int] , __a : Optional[List[int]] = None ) -> Dict: return token_ids_a + [self.eos_token_id] def snake_case__ ( self : Optional[Any] , __a : "Conversation" ) -> List[int]: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(__a ) __UpperCAmelCase = ''' '''.join(__a ) __UpperCAmelCase = self.encode(__a ) if len(__a ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
262
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : List[str] , snake_case_ : Dict , ): snake_case__ : List[Any] = parent snake_case__ : Tuple = 13 snake_case__ : List[str] = 7 snake_case__ : Optional[int] = 30 snake_case__ : Dict = self.seq_length + self.mem_len snake_case__ : Optional[Any] = 15 snake_case__ : List[Any] = True snake_case__ : Optional[int] = True snake_case__ : List[Any] = 99 snake_case__ : List[Any] = [10, 50, 80] snake_case__ : List[str] = 32 snake_case__ : str = 32 snake_case__ : List[str] = 4 snake_case__ : Dict = 8 snake_case__ : Optional[int] = 128 snake_case__ : int = 2 snake_case__ : Any = 2 snake_case__ : Any = None snake_case__ : int = 1 snake_case__ : Dict = 0 snake_case__ : Any = 3 snake_case__ : List[str] = self.vocab_size - 1 snake_case__ : int = 0.01 def lowerCamelCase ( self : List[str] ): snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : List[Any] = None if self.use_labels: snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Any = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def lowerCamelCase ( self : Union[str, Any] ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def lowerCamelCase ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : str , snake_case_ : Dict , snake_case_ : Optional[int] ): snake_case__ : List[Any] = TFTransfoXLModel(snake_case_ ) snake_case__ : int = model(snake_case_ ).to_tuple() snake_case__ : int = {"""input_ids""": input_ids_a, """mems""": mems_a} snake_case__ : List[str] = model(snake_case_ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowerCamelCase ( self : Union[str, Any] , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Union[str, Any] ): snake_case__ : List[Any] = TFTransfoXLLMHeadModel(snake_case_ ) snake_case__ : Union[str, Any] = model(snake_case_ ).to_tuple() snake_case__ : Union[str, Any] = {"""input_ids""": input_ids_a, """labels""": lm_labels} snake_case__ : Any = model(snake_case_ ).to_tuple() snake_case__ : Tuple = model([input_ids_a, mems_a] ).to_tuple() snake_case__ : Dict = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} snake_case__ : Optional[int] = model(snake_case_ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowerCamelCase ( self : Optional[int] , snake_case_ : str , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Tuple ): snake_case__ : Optional[Any] = TFTransfoXLForSequenceClassification(snake_case_ ) snake_case__ : str = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self : Tuple ): snake_case__ : List[str] = self.prepare_config_and_inputs() (snake_case__) : Dict = config_and_inputs snake_case__ : int = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) lowercase = () if is_tf_available() else () lowercase = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented lowercase = False lowercase = False lowercase = False lowercase = False def lowerCamelCase ( self : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Any , snake_case_ : Union[str, Any] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Optional[int] = TFTransfoXLModelTester(self ) snake_case__ : Union[str, Any] = ConfigTester(self , config_class=snake_case_ , d_embed=37 ) def lowerCamelCase ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCamelCase ( self : List[str] ): self.model_tester.set_seed() snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*snake_case_ ) def lowerCamelCase ( self : List[Any] ): self.model_tester.set_seed() snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*snake_case_ ) def lowerCamelCase ( self : int ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*snake_case_ ) def lowerCamelCase ( self : Tuple ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Tuple = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: snake_case__ : int = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: snake_case__ : Optional[int] = model.get_output_embeddings() assert isinstance(snake_case_ , tf.keras.layers.Layer ) snake_case__ : Optional[int] = model.get_bias() assert name is None else: snake_case__ : List[str] = model.get_output_embeddings() assert x is None snake_case__ : int = model.get_bias() assert name is None def lowerCamelCase ( self : Dict ): # TODO JP: Make TransfoXL XLA compliant pass @slow def lowerCamelCase ( self : List[str] ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Any = TFTransfoXLModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def lowerCamelCase ( self : Tuple ): pass @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def lowerCamelCase ( self : List[Any] ): snake_case__ : str = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off snake_case__ : Optional[Any] = tf.convert_to_tensor([[33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off snake_case__ : Any = [33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0,33,1,1_857,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,28,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> snake_case__ : Optional[Any] = model.generate(snake_case_ , max_length=200 , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].numpy().tolist() , snake_case_ )
712
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __a = logging.get_logger(__name__) __a = "T5Config" def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> jnp.ndarray: snake_case__ : int = jnp.zeros_like(_lowerCAmelCase ) snake_case__ : Optional[int] = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) snake_case__ : List[str] = shifted_input_ids.at[:, 0].set(_lowerCAmelCase ) snake_case__ : List[str] = jnp.where(shifted_input_ids == -100 , _lowerCAmelCase , _lowerCAmelCase ) return shifted_input_ids class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "mt5" lowercase = MTaConfig class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "mt5" lowercase = MTaConfig class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "mt5" lowercase = MTaConfig
301
0
def __UpperCAmelCase ( lowerCamelCase_ : int = 10 , lowerCamelCase_ : int = 10_00 , lowerCamelCase_ : bool = True ) -> int: """simple docstring""" assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ) -> int: """simple docstring""" return int((number_a + number_a) / 2 ) def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int ) -> None: """simple docstring""" assert ( isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(lowerCamelCase_ : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = lower SCREAMING_SNAKE_CASE_ : Dict = higher SCREAMING_SNAKE_CASE_ : Optional[Any] = [] while True: SCREAMING_SNAKE_CASE_ : str = get_avg(lowerCamelCase_ , lowerCamelCase_ ) last_numbers.append(lowerCamelCase_ ) if answer(lowerCamelCase_ ) == "low": SCREAMING_SNAKE_CASE_ : List[Any] = number elif answer(lowerCamelCase_ ) == "high": SCREAMING_SNAKE_CASE_ : List[Any] = number else: break print(F'guess the number : {last_numbers[-1]}' ) print(F'details : {last_numbers!s}' ) def __UpperCAmelCase ( ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = int(input('Enter lower value : ' ).strip() ) SCREAMING_SNAKE_CASE_ : List[Any] = int(input('Enter high value : ' ).strip() ) SCREAMING_SNAKE_CASE_ : Dict = int(input('Enter value to guess : ' ).strip() ) guess_the_number(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
105
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __lowercase = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
167
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging A : Optional[Any] = logging.get_logger(__name__) A : Tuple = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowerCamelCase ( __UpperCAmelCase ): _SCREAMING_SNAKE_CASE = "trajectory_transformer" _SCREAMING_SNAKE_CASE = ["past_key_values"] _SCREAMING_SNAKE_CASE = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Dict , __snake_case : Dict=1_00 , __snake_case : Tuple=5 , __snake_case : Tuple=1 , __snake_case : List[str]=1 , __snake_case : str=2_49 , __snake_case : Optional[Any]=6 , __snake_case : str=17 , __snake_case : Dict=25 , __snake_case : Union[str, Any]=4 , __snake_case : Any=4 , __snake_case : Dict=1_28 , __snake_case : Dict=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[Any]=0.0_006 , __snake_case : Any=5_12 , __snake_case : Optional[int]=0.02 , __snake_case : List[Any]=1e-12 , __snake_case : List[str]=1 , __snake_case : List[Any]=True , __snake_case : Dict=1 , __snake_case : List[Any]=5_02_56 , __snake_case : str=5_02_56 , **__snake_case : int , ): '''simple docstring''' _snake_case: List[Any] = vocab_size _snake_case: Optional[Any] = action_weight _snake_case: Any = reward_weight _snake_case: str = value_weight _snake_case: Union[str, Any] = max_position_embeddings _snake_case: Optional[int] = block_size _snake_case: int = action_dim _snake_case: Tuple = observation_dim _snake_case: Dict = transition_dim _snake_case: int = learning_rate _snake_case: Optional[int] = n_layer _snake_case: Optional[int] = n_head _snake_case: List[Any] = n_embd _snake_case: List[Any] = embd_pdrop _snake_case: Union[str, Any] = attn_pdrop _snake_case: Dict = resid_pdrop _snake_case: List[Any] = initializer_range _snake_case: List[Any] = layer_norm_eps _snake_case: int = kaiming_initializer_range _snake_case: Optional[Any] = use_cache super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
273
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Optional[int]=False ): '''simple docstring''' _snake_case: Dict = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class in get_values(__snake_case ): _snake_case: List[str] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class lowerCamelCase ( __UpperCAmelCase ): def __init__( self : List[str] , __snake_case : int , __snake_case : Any=13 , __snake_case : Dict=7 , __snake_case : Tuple=True , __snake_case : Dict=True , __snake_case : List[Any]=True , __snake_case : Tuple=True , __snake_case : List[str]=99 , __snake_case : List[Any]=32 , __snake_case : Optional[Any]=32 , __snake_case : int=2 , __snake_case : Optional[int]=4 , __snake_case : Union[str, Any]=37 , __snake_case : List[str]="gelu" , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Optional[int]=5_12 , __snake_case : Dict=16 , __snake_case : List[Any]=2 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=3 , __snake_case : Any=4 , __snake_case : Tuple=None , ): '''simple docstring''' _snake_case: List[str] = parent _snake_case: Any = batch_size _snake_case: Union[str, Any] = seq_length _snake_case: List[str] = is_training _snake_case: Optional[int] = use_input_mask _snake_case: Tuple = use_token_type_ids _snake_case: Optional[int] = use_labels _snake_case: str = vocab_size _snake_case: str = hidden_size _snake_case: Optional[Any] = num_hidden_layers _snake_case: List[str] = num_attention_heads _snake_case: str = intermediate_size _snake_case: Optional[int] = hidden_act _snake_case: Any = hidden_dropout_prob _snake_case: Optional[int] = attention_probs_dropout_prob _snake_case: Any = max_position_embeddings _snake_case: int = type_vocab_size _snake_case: Tuple = type_sequence_label_size _snake_case: Optional[Any] = initializer_range _snake_case: Tuple = num_labels _snake_case: Optional[Any] = num_choices _snake_case: Union[str, Any] = scope _snake_case: Any = embedding_size def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case: List[str] = None if self.use_input_mask: _snake_case: List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case: List[str] = None if self.use_token_type_ids: _snake_case: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case: Optional[Any] = None _snake_case: Any = None _snake_case: int = None if self.use_labels: _snake_case: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case: Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case: str = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : int , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : int , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : List[str] ): '''simple docstring''' _snake_case: int = TFMobileBertModel(config=__snake_case ) _snake_case: str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case: List[str] = model(__snake_case ) _snake_case: List[str] = [input_ids, input_mask] _snake_case: Dict = model(__snake_case ) _snake_case: List[str] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : str , __snake_case : int , __snake_case : str , __snake_case : List[str] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : List[str] ): '''simple docstring''' _snake_case: str = TFMobileBertForMaskedLM(config=__snake_case ) _snake_case: Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case: Optional[int] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , __snake_case : int , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : str ): '''simple docstring''' _snake_case: Union[str, Any] = TFMobileBertForNextSentencePrediction(config=__snake_case ) _snake_case: List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case: List[str] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self : int , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' _snake_case: str = TFMobileBertForPreTraining(config=__snake_case ) _snake_case: str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case: List[str] = model(__snake_case ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : int , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Optional[int] ): '''simple docstring''' _snake_case: int = self.num_labels _snake_case: Tuple = TFMobileBertForSequenceClassification(config=__snake_case ) _snake_case: Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case: List[Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Any , __snake_case : List[Any] , __snake_case : Any , __snake_case : Dict , __snake_case : Dict , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : List[str] ): '''simple docstring''' _snake_case: Tuple = self.num_choices _snake_case: Optional[int] = TFMobileBertForMultipleChoice(config=__snake_case ) _snake_case: str = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) _snake_case: Union[str, Any] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) _snake_case: Optional[int] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) _snake_case: Optional[Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _snake_case: Optional[Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : int , __snake_case : str , __snake_case : List[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' _snake_case: Tuple = self.num_labels _snake_case: Dict = TFMobileBertForTokenClassification(config=__snake_case ) _snake_case: str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case: Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Dict , __snake_case : Any ): '''simple docstring''' _snake_case: int = TFMobileBertForQuestionAnswering(config=__snake_case ) _snake_case: Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _snake_case: Union[str, Any] = model(__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' _snake_case: str = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ): Any = config_and_inputs _snake_case: str = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: int = TFMobileBertModelTest.TFMobileBertModelTester(self ) _snake_case: Dict = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _snake_case: Optional[Any] = TFMobileBertModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_tf class lowerCamelCase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: Optional[Any] = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) _snake_case: Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) _snake_case: Optional[Any] = model(__snake_case )[0] _snake_case: str = [1, 6, 3_05_22] self.assertEqual(output.shape , __snake_case ) _snake_case: int = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __snake_case , atol=1e-4 )
273
1
import math def lowercase_ ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__UpperCAmelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
639
'''simple docstring''' from collections.abc import Callable def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : float = a lowerCamelCase_ : float = b if function(__UpperCAmelCase ) == 0: # one of the a or b is a root for the function return a elif function(__UpperCAmelCase ) == 0: return b elif ( function(__UpperCAmelCase ) * function(__UpperCAmelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: lowerCamelCase_ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__UpperCAmelCase ) == 0: return mid elif function(__UpperCAmelCase ) * function(__UpperCAmelCase ) < 0: lowerCamelCase_ : List[str] = mid else: lowerCamelCase_ : Any = mid lowerCamelCase_ : int = start + (end - start) / 2.0 return mid def __snake_case (__UpperCAmelCase ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
501
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) UpperCamelCase__ : str = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') UpperCamelCase__ : Dict = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) UpperCamelCase__ : Dict = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) UpperCamelCase__ : int = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) UpperCamelCase__ : int = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions UpperCamelCase__ : str = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) UpperCamelCase__ : str = tf.keras.preprocessing.image.img_to_array(test_image) UpperCamelCase__ : Any = np.expand_dims(test_image, axis=0) UpperCamelCase__ : Optional[int] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: UpperCamelCase__ : Optional[Any] = 'Normal' if result[0][0] == 1: UpperCamelCase__ : List[str] = 'Abnormality detected'
721
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : str = '▁' UpperCamelCase__ : Any = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCamelCase__ : Union[str, Any] = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } UpperCamelCase__ : Dict = { 'facebook/m2m100_418M': 1_024, } # fmt: off UpperCamelCase__ : Optional[int] = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] = ['''input_ids''', '''attention_mask'''] UpperCAmelCase_ : List[int] = [] UpperCAmelCase_ : List[int] = [] def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_="<s>" ,lowerCamelCase_="</s>" ,lowerCamelCase_="</s>" ,lowerCamelCase_="<pad>" ,lowerCamelCase_="<unk>" ,lowerCamelCase_="m2m100" ,lowerCamelCase_ = None ,lowerCamelCase_=8 ,**lowerCamelCase_ ,) -> None: '''simple docstring''' UpperCAmelCase__ : str = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase__ : Dict = language_codes UpperCAmelCase__ : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCAmelCase__ : Union[str, Any] = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} UpperCAmelCase__ : Any = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowerCamelCase_ ) for lang_code in fairseq_language_code if self.get_lang_token(lowerCamelCase_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCamelCase_ ,tgt_lang=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,language_codes=lowerCamelCase_ ,sp_model_kwargs=self.sp_model_kwargs ,num_madeup_words=lowerCamelCase_ ,**lowerCamelCase_ ,) UpperCAmelCase__ : Optional[int] = vocab_file UpperCAmelCase__ : Optional[Any] = load_json(lowerCamelCase_ ) UpperCAmelCase__ : List[str] = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : List[Any] = spm_file UpperCAmelCase__ : Any = load_spm(lowerCamelCase_ ,self.sp_model_kwargs ) UpperCAmelCase__ : int = len(self.encoder ) UpperCAmelCase__ : Optional[int] = { self.get_lang_token(lowerCamelCase_ ): self.encoder_size + i for i, lang_code in enumerate(lowerCamelCase_ ) } UpperCAmelCase__ : List[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowerCamelCase_ )} UpperCAmelCase__ : List[str] = {v: k for k, v in self.lang_token_to_id.items()} UpperCAmelCase__ : Optional[int] = src_lang if src_lang is not None else '''en''' UpperCAmelCase__ : int = tgt_lang UpperCAmelCase__ : int = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCAmelCase__ : Optional[int] = num_madeup_words @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> None: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase_ ,out_type=lowerCamelCase_ ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Optional[int]: '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowerCamelCase_ ,self.encoder[self.unk_token] ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> str: '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowerCamelCase_ ,self.unk_token ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Any: '''simple docstring''' UpperCAmelCase__ : Any = [] UpperCAmelCase__ : str = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase_ ) + token UpperCAmelCase__ : str = [] else: current_sub_tokens.append(lowerCamelCase_ ) out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string.strip() def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ ) UpperCAmelCase__ : Dict = [1] * len(self.prefix_tokens ) UpperCAmelCase__ : Optional[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase_ )) + ([0] * len(lowerCamelCase_ )) + suffix_ones def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase__ : Tuple = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.__dict__.copy() UpperCAmelCase__ : str = None return state def __setstate__( self ,lowerCamelCase_ ) -> None: '''simple docstring''' UpperCAmelCase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : int = load_spm(self.spm_file ,self.sp_model_kwargs ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = Path(lowerCamelCase_ ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) UpperCAmelCase__ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCAmelCase__ : str = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder ,lowerCamelCase_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file ,lowerCamelCase_ ) elif not os.path.isfile(self.spm_file ): with open(lowerCamelCase_ ,'''wb''' ) as fi: UpperCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (str(lowerCamelCase_ ), str(lowerCamelCase_ )) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = "en" ,lowerCamelCase_ = None ,lowerCamelCase_ = "ro" ,**lowerCamelCase_ ,) -> BatchEncoding: '''simple docstring''' UpperCAmelCase__ : int = src_lang UpperCAmelCase__ : Tuple = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[int]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase__ : List[str] = src_lang UpperCAmelCase__ : List[str] = self(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = self.get_lang_id(lowerCamelCase_ ) UpperCAmelCase__ : Dict = tgt_lang_id return inputs def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> None: '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_lang_token(lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = self.lang_token_to_id[lang_token] UpperCAmelCase__ : Union[str, Any] = [self.cur_lang_id] UpperCAmelCase__ : Dict = [self.eos_token_id] def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> None: '''simple docstring''' UpperCAmelCase__ : Any = self.get_lang_token(lowerCamelCase_ ) UpperCAmelCase__ : Optional[int] = self.lang_token_to_id[lang_token] UpperCAmelCase__ : Tuple = [self.cur_lang_id] UpperCAmelCase__ : str = [self.eos_token_id] def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> str: '''simple docstring''' return self.lang_code_to_token[lang] def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> int: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_lang_token(lowerCamelCase_ ) return self.lang_token_to_id[lang_token] def __UpperCamelCase( _A : str , _A : Dict[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = sentencepiece.SentencePieceProcessor(**_A ) spm.Load(str(_A ) ) return spm def __UpperCamelCase( _A : str ): '''simple docstring''' with open(_A , '''r''' ) as f: return json.load(_A ) def __UpperCamelCase( _A : List[str] , _A : str ): '''simple docstring''' with open(_A , '''w''' ) as f: json.dump(_A , _A , indent=2 )
496
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : def __init__( self : List[str] , snake_case__ : int , snake_case__ : Optional[int]=3 , snake_case__ : Any=32 , snake_case__ : int=3 , snake_case__ : int=10 , snake_case__ : Union[str, Any]=[10, 20, 30, 40] , snake_case__ : Union[str, Any]=[1, 1, 2, 1] , snake_case__ : Optional[Any]=True , snake_case__ : Optional[Any]=True , snake_case__ : str="relu" , snake_case__ : str=3 , snake_case__ : Optional[int]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(snake_case__ ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def __a ( self : List[str] ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __a ( self : Dict , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = RegNetModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self : str , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = RegNetForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() SCREAMING_SNAKE_CASE_ = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowerCAmelCase__ =(RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowerCAmelCase__ =( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) lowerCAmelCase__ =False lowerCAmelCase__ =False lowerCAmelCase__ =False lowerCAmelCase__ =False def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = RegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def __a ( self : str ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __a ( self : int ): """simple docstring""" return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __a ( self : Any ): """simple docstring""" pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __a ( self : List[Any] ): """simple docstring""" pass def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(snake_case__ ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(config=snake_case__ ) for name, module in model.named_modules(): if isinstance(snake_case__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def __a ( self : List[str] ): """simple docstring""" def check_hidden_states_output(snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] ): SCREAMING_SNAKE_CASE_ = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE_ = layer_type SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def __a ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def __a ( self : int ): """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = RegNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _a ( )-> List[Any]: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase_ (unittest.TestCase ): @cached_property def __a ( self : Optional[Any] ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case__ ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**snake_case__ ) # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) SCREAMING_SNAKE_CASE_ = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
360
from math import isqrt def _a ( lowerCAmelCase )-> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(lowerCAmelCase ) + 1 ) ) def _a ( lowerCAmelCase = 10**6 )-> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"""{solution() = }""")
360
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCAmelCase__ ( a_ : int ) -> List[Any]: UpperCAmelCase__ : Tuple = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def lowerCAmelCase__ ( a_ : int ) -> Union[str, Any]: UpperCAmelCase__ , UpperCAmelCase__ : int = emb.weight.shape UpperCAmelCase__ : Optional[Any] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) UpperCAmelCase__ : Any = emb.weight.data return lin_layer def lowerCAmelCase__ ( a_ : Dict ) -> Tuple: UpperCAmelCase__ : str = torch.load(_snake_case , map_location='''cpu''' ) UpperCAmelCase__ : Union[str, Any] = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] UpperCAmelCase__ : Tuple = mam_aaa['''model'''] remove_ignore_keys_(_snake_case ) UpperCAmelCase__ : Any = state_dict['''encoder.embed_tokens.weight'''].shape[0] UpperCAmelCase__ : Optional[int] = MaMaaaConfig( vocab_size=_snake_case , max_position_embeddings=1_0_2_4 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) UpperCAmelCase__ : Tuple = state_dict['''decoder.embed_tokens.weight'''] UpperCAmelCase__ : Any = MaMaaaForConditionalGeneration(_snake_case ) model.model.load_state_dict(_snake_case , strict=_snake_case ) UpperCAmelCase__ : Optional[int] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
711
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = "facebook/bart-large-mnli" SCREAMING_SNAKE_CASE : int = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) SCREAMING_SNAKE_CASE : Union[str, Any] = "text_classifier" SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer SCREAMING_SNAKE_CASE : Any = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Union[str, Any] = ["text", ["text"]] SCREAMING_SNAKE_CASE : Dict = ["text"] def lowerCamelCase ( self ): super().setup() UpperCAmelCase__ : Tuple = self.model.config UpperCAmelCase__ : Dict = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): UpperCAmelCase__ : Optional[Any] = int(_UpperCAmelCase ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : Optional[int] = labels return self.pre_processor( [text] * len(_UpperCAmelCase ) , [F"""This example is {label}""" for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def lowerCamelCase ( self , _UpperCAmelCase ): UpperCAmelCase__ : Tuple = outputs.logits UpperCAmelCase__ : Optional[int] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
599
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : List[str] = 'open-llama' def __init__( self : List[Any] ,lowerCamelCase : Optional[Any]=10_0000 ,lowerCamelCase : Optional[Any]=4096 ,lowerCamelCase : Tuple=1_1008 ,lowerCamelCase : Optional[int]=32 ,lowerCamelCase : Tuple=32 ,lowerCamelCase : int="silu" ,lowerCamelCase : Dict=2048 ,lowerCamelCase : Optional[int]=0.02 ,lowerCamelCase : Any=1E-6 ,lowerCamelCase : Dict=True ,lowerCamelCase : List[Any]=0 ,lowerCamelCase : Optional[Any]=1 ,lowerCamelCase : List[str]=2 ,lowerCamelCase : str=False ,lowerCamelCase : Dict=True ,lowerCamelCase : Tuple=0.1 ,lowerCamelCase : Optional[int]=0.1 ,lowerCamelCase : List[Any]=True ,lowerCamelCase : Optional[Any]=True ,lowerCamelCase : str=None ,**lowerCamelCase : Optional[Any] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = rms_norm_eps __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = kwargs.pop( """use_memorry_efficient_attention""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_dropout_prob __SCREAMING_SNAKE_CASE = use_stable_embedding __SCREAMING_SNAKE_CASE = shared_input_output_embedding __SCREAMING_SNAKE_CASE = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCamelCase ,bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,tie_word_embeddings=lowerCamelCase ,**lowerCamelCase ,) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"""got {self.rope_scaling}""" ) __SCREAMING_SNAKE_CASE = self.rope_scaling.get("""type""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.rope_scaling.get("""factor""" ,lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCamelCase ,lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
109
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __magic_name__ ( lowercase , lowercase , lowercase , lowercase , ) -> list[float]: """simple docstring""" lowercase_ , lowercase_ : List[str] = coefficient_matrix.shape lowercase_ , lowercase_ : Any = constant_matrix.shape if rowsa != colsa: lowercase_ : List[Any] = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowercase ) if colsa != 1: lowercase_ : Optional[int] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowercase ) if rowsa != rowsa: lowercase_ : Tuple = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowercase ) if len(lowercase ) != rowsa: lowercase_ : int = ( """Number of initial values must be equal to number of rows in coefficient """ f"""matrix but received {len(lowercase )} and {rowsa}""" ) raise ValueError(lowercase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) lowercase_ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowercase_ , lowercase_ : Dict = table.shape strictly_diagonally_dominant(lowercase ) # Iterates the whole matrix for given number of times for _ in range(lowercase ): lowercase_ : str = [] for row in range(lowercase ): lowercase_ : Dict = 0 for col in range(lowercase ): if col == row: lowercase_ : Optional[Any] = table[row][col] elif col == cols - 1: lowercase_ : Tuple = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowercase_ : List[Any] = (temp + val) / denom new_val.append(lowercase ) lowercase_ : Optional[int] = new_val return [float(lowercase ) for i in new_val] def __magic_name__ ( lowercase ) -> bool: """simple docstring""" lowercase_ , lowercase_ : str = table.shape lowercase_ : str = True for i in range(0 , lowercase ): lowercase_ : Any = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
458
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
456
def __lowerCAmelCase ( __lowerCamelCase : list[int] ) -> int: if not numbers: return 0 if not isinstance(__lowerCamelCase , (list, tuple) ) or not all( isinstance(__lowerCamelCase , __lowerCamelCase ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) __lowerCAmelCase =__lowerCAmelCase =__lowerCAmelCase =numbers[0] for i in range(1 , len(__lowerCamelCase ) ): # update the maximum and minimum subarray products __lowerCAmelCase =numbers[i] if number < 0: __lowerCAmelCase , __lowerCAmelCase =min_till_now, max_till_now __lowerCAmelCase =max(__lowerCamelCase , max_till_now * number ) __lowerCAmelCase =min(__lowerCamelCase , min_till_now * number ) # update the maximum product found till now __lowerCAmelCase =max(__lowerCamelCase , __lowerCamelCase ) return max_prod
456
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any]=False ) -> List[str]: snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __lowerCamelCase ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: snake_case = """""" else: snake_case = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) snake_case = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case = in_proj_weight[ : config.hidden_size, : ] snake_case = in_proj_bias[: config.hidden_size] snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case = in_proj_weight[ -config.hidden_size :, : ] snake_case = in_proj_bias[-config.hidden_size :] def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> List[str]: snake_case = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ) -> int: snake_case = dct.pop(__lowerCAmelCase ) snake_case = val def __lowerCamelCase ( ) -> Optional[Any]: snake_case = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any ) -> Dict: snake_case = ViTConfig() snake_case = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": snake_case = True snake_case = int(vit_name[-12:-10] ) snake_case = int(vit_name[-9:-6] ) else: snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = """imagenet-1k-id2label.json""" snake_case = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = int(vit_name[-6:-4] ) snake_case = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): snake_case = 1_92 snake_case = 7_68 snake_case = 12 snake_case = 3 elif vit_name[9:].startswith("""small""" ): snake_case = 3_84 snake_case = 15_36 snake_case = 12 snake_case = 6 else: pass else: if vit_name[4:].startswith("""small""" ): snake_case = 7_68 snake_case = 23_04 snake_case = 8 snake_case = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): snake_case = 10_24 snake_case = 40_96 snake_case = 24 snake_case = 16 elif vit_name[4:].startswith("""huge""" ): snake_case = 12_80 snake_case = 51_20 snake_case = 32 snake_case = 16 # load original model from timm snake_case = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case = timm_model.state_dict() if base_model: remove_classification_head_(__lowerCAmelCase ) snake_case = create_rename_keys(__lowerCAmelCase , __lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_q_k_v(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": snake_case = ViTModel(__lowerCAmelCase ).eval() else: snake_case = ViTForImageClassification(__lowerCAmelCase ).eval() model.load_state_dict(__lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: snake_case = DeiTImageProcessor(size=config.image_size ) else: snake_case = ViTImageProcessor(size=config.image_size ) snake_case = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case = encoding["""pixel_values"""] snake_case = model(__lowerCAmelCase ) if base_model: snake_case = timm_model.forward_features(__lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__lowerCAmelCase , outputs.pooler_output , atol=1e-3 ) else: snake_case = timm_model(__lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
369
'''simple docstring''' import re def __lowerCamelCase ( __lowerCAmelCase : str ) -> list: return [char.split() for char in re.split(r"""[^ a-z A-Z 0-9 \s]""" , str_ )] def __lowerCamelCase ( __lowerCAmelCase : str ) -> str: snake_case = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : bool , __lowerCAmelCase : str ) -> str: try: snake_case = split_input(__lowerCAmelCase ) if upper: snake_case = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: snake_case = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __lowerCamelCase ( __lowerCAmelCase : str ) -> str: return to_simple_case(__lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : str ) -> str: try: snake_case = to_simple_case(__lowerCAmelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : bool ) -> str: return to_complex_case(__lowerCAmelCase , __lowerCAmelCase , """_""" ) def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : bool ) -> str: return to_complex_case(__lowerCAmelCase , __lowerCAmelCase , """-""" ) if __name__ == "__main__": __import__("doctest").testmod()
369
1
"""simple docstring""" import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) a_ : Any = '''bert-base-cased''' a_ : int = '''fp16''' a_ : Union[str, Any] = '''bf16''' a_ : Union[str, Any] = [FPaa, BFaa] @require_fsdp @require_cuda class __lowercase( lowercase__ ): '''simple docstring''' def snake_case_ ( self ): super().setUp() __lowerCamelCase : str = dict( ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , ) def snake_case_ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__a ): __lowerCamelCase : Any = self.dist_env.copy() __lowerCamelCase : Optional[Any] = f'''{i + 1}''' __lowerCamelCase : Any = strategy with mockenv_context(**__a ): __lowerCamelCase : List[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def snake_case_ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__a ): __lowerCamelCase : int = self.dist_env.copy() __lowerCamelCase : Union[str, Any] = prefetch_policy with mockenv_context(**__a ): __lowerCamelCase : List[str] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def snake_case_ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__a ): __lowerCamelCase : List[Any] = self.dist_env.copy() __lowerCamelCase : Optional[Any] = state_dict_type with mockenv_context(**__a ): __lowerCamelCase : Optional[int] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def snake_case_ ( self ): __lowerCamelCase : List[str] = AutoModel.from_pretrained(__a ) for policy in FSDP_AUTO_WRAP_POLICY: __lowerCamelCase : Optional[int] = self.dist_env.copy() __lowerCamelCase : Tuple = policy if policy == "TRANSFORMER_BASED_WRAP": __lowerCamelCase : List[str] = 'BertLayer' elif policy == "SIZE_BASED_WRAP": __lowerCamelCase : str = '2000' with mockenv_context(**__a ): __lowerCamelCase : Tuple = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __lowerCamelCase : Tuple = self.dist_env.copy() __lowerCamelCase : List[str] = 'TRANSFORMER_BASED_WRAP' __lowerCamelCase : Optional[Any] = 'T5Layer' with mockenv_context(**__a ): __lowerCamelCase : int = FullyShardedDataParallelPlugin() with self.assertRaises(__a ) as cm: fsdp_plugin.set_auto_wrap_policy(__a ) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) ) __lowerCamelCase : List[str] = self.dist_env.copy() __lowerCamelCase : Optional[Any] = 'SIZE_BASED_WRAP' __lowerCamelCase : int = '0' with mockenv_context(**__a ): __lowerCamelCase : List[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__a ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def snake_case_ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __lowerCamelCase : List[Any] = self.dist_env.copy() __lowerCamelCase : Any = mp_dtype with mockenv_context(**__a ): __lowerCamelCase : List[str] = Accelerator() if mp_dtype == "fp16": __lowerCamelCase : Tuple = torch.floataa elif mp_dtype == "bf16": __lowerCamelCase : Union[str, Any] = torch.bfloataa __lowerCamelCase : Union[str, Any] = MixedPrecision(param_dtype=__a , reduce_dtype=__a , buffer_dtype=__a ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __a ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __a ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__a ) def snake_case_ ( self ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __lowerCamelCase : Any = self.dist_env.copy() __lowerCamelCase : Any = str(__a ).lower() with mockenv_context(**__a ): __lowerCamelCase : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__a ) ) @require_fsdp @require_multi_gpu @slow class __lowercase( lowercase__ ): '''simple docstring''' def snake_case_ ( self ): super().setUp() __lowerCamelCase : Tuple = 0.82 __lowerCamelCase : Union[str, Any] = [ 'fsdp_shard_grad_op_transformer_based_wrap', 'fsdp_full_shard_transformer_based_wrap', ] __lowerCamelCase : int = { 'multi_gpu_fp16': 3200, 'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2000, 'fsdp_full_shard_transformer_based_wrap_fp16': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __lowerCamelCase : Optional[int] = 160 __lowerCamelCase : Optional[Any] = 160 __lowerCamelCase : int = inspect.getfile(accelerate.test_utils ) __lowerCamelCase : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] ) def snake_case_ ( self ): __lowerCamelCase : Union[str, Any] = os.path.join(self.test_scripts_folder , 'test_performance.py' ) __lowerCamelCase : Union[str, Any] = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp'] for config in self.performance_configs: __lowerCamelCase : Dict = cmd.copy() for i, strategy in enumerate(__a ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('--mixed_precision=no' ) else: cmd_config.append('--mixed_precision=fp16' ) if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def snake_case_ ( self ): __lowerCamelCase : str = os.path.join(self.test_scripts_folder , 'test_checkpointing.py' ) __lowerCamelCase : int = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp', '--mixed_precision=fp16', '--fsdp_transformer_layer_cls_to_wrap=BertLayer', ] for i, strategy in enumerate(__a ): __lowerCamelCase : Optional[Any] = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue __lowerCamelCase : Union[str, Any] = len(__a ) for state_dict_type in FSDP_STATE_DICT_TYPE: __lowerCamelCase : Optional[Any] = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', '--partial_train_epoch=1', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) __lowerCamelCase : Union[str, Any] = cmd_config[:-1] __lowerCamelCase : Optional[int] = os.path.join(self.tmpdir , 'epoch_0' ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() ) def snake_case_ ( self ): __lowerCamelCase : int = os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py' ) __lowerCamelCase : Tuple = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __lowerCamelCase : Any = cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16'] ) else: cmd_config.extend(['--mixed_precision=no'] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp'] ) for i, strategy in enumerate(__a ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__a , env=os.environ.copy() )
263
"""simple docstring""" import random def UpperCAmelCase ( A__: Union[str, Any] , A__: List[str] , A__: Union[str, Any] ) -> int: __lowerCamelCase : Optional[Any] = a[left_index] __lowerCamelCase : int = left_index + 1 for j in range(left_index + 1 , A__ ): if a[j] < pivot: __lowerCamelCase , __lowerCamelCase : Optional[int] = a[i], a[j] i += 1 __lowerCamelCase , __lowerCamelCase : str = a[i - 1], a[left_index] return i - 1 def UpperCAmelCase ( A__: List[Any] , A__: Tuple , A__: Tuple ) -> Dict: if left < right: __lowerCamelCase : Optional[int] = random.randint(A__ , right - 1 ) __lowerCamelCase , __lowerCamelCase : int = ( a[left], a[pivot], ) # switches the pivot with the left most bound __lowerCamelCase : Union[str, Any] = partition(A__ , A__ , A__ ) quick_sort_random( A__ , A__ , A__ ) # recursive quicksort to the left of the pivot point quick_sort_random( A__ , pivot_index + 1 , A__ ) # recursive quicksort to the right of the pivot point def UpperCAmelCase ( ) -> int: __lowerCamelCase : Dict = input('Enter numbers separated by a comma:\n' ).strip() __lowerCamelCase : int = [int(A__ ) for item in user_input.split(',' )] quick_sort_random(A__ , 0 , len(A__ ) ) print(A__ ) if __name__ == "__main__": main()
263
1
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = GPTSwaTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = True __lowerCamelCase : Any = False def UpperCamelCase__ ( self: List[Any] ): super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ =GPTSwaTokenizer(_UpperCAmelCase , eos_token="<unk>" , bos_token="<unk>" , pad_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self: Union[str, Any] , UpperCamelCase_: Any ): UpperCamelCase_ ="This is a test" UpperCamelCase_ ="This is a test" return input_text, output_text def UpperCamelCase__ ( self: int ): UpperCamelCase_ ="<s>" UpperCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def UpperCamelCase__ ( self: Optional[Any] ): UpperCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCAmelCase ) , 2000 ) def UpperCamelCase__ ( self: Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def UpperCamelCase__ ( self: Dict ): UpperCamelCase_ =GPTSwaTokenizer(_UpperCAmelCase ) UpperCamelCase_ =tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [465, 287, 265, 631, 842] ) UpperCamelCase_ =tokenizer.tokenize("I was born in 92000, and this is falsé." ) # fmt: off self.assertListEqual( _UpperCAmelCase , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] , ) # fmt: on UpperCamelCase_ =tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCamelCase_ =tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) # fmt: off self.assertListEqual( _UpperCAmelCase , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] ) # fmt: on def UpperCamelCase__ ( self: Tuple ): UpperCamelCase_ =GPTSwaTokenizer(_UpperCAmelCase ) UpperCamelCase_ =["This is a test", "I was born in 92000, and this is falsé."] UpperCamelCase_ =[ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertListEqual(tokenizer.encode_fast(_UpperCAmelCase ) , _UpperCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(tokenizer.decode_fast(_UpperCAmelCase ) , _UpperCAmelCase ) @slow def UpperCamelCase__ ( self: int ): UpperCamelCase_ =[ "<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off UpperCamelCase_ ={"input_ids": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name="AI-Sweden/gpt-sw3-126m" , sequences=_UpperCAmelCase , )
391
import os import sys A : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) A : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : List[Any] ) -> str: """simple docstring""" return AutoConfig.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" return AutoTokenizer.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return AutoModel.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : str , **__magic_name__ : Tuple ) -> List[str]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *__magic_name__ : Optional[Any] , **__magic_name__ : Any ) -> Optional[int]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *__magic_name__ : Any , **__magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*__magic_name__ , **__magic_name__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *__magic_name__ : Dict , **__magic_name__ : List[Any] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*__magic_name__ , **__magic_name__ )
15
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _UpperCAmelCase = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None ) -> int: """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) UpperCamelCase_ = os.path.abspath("examples" ) for item in os.listdir(_SCREAMING_SNAKE_CASE ): if item not in EXCLUDE_EXAMPLES: UpperCamelCase_ = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if os.path.isfile(_SCREAMING_SNAKE_CASE ) and ".py" in item_path: with self.subTest( tested_script=_SCREAMING_SNAKE_CASE , feature_script=_SCREAMING_SNAKE_CASE , tested_section="main()" if parser_only else "training_function()" , ): UpperCamelCase_ = compare_against_test( os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = '''\n'''.join(_SCREAMING_SNAKE_CASE ) if special_strings is not None: for string in special_strings: UpperCamelCase_ = diff.replace(_SCREAMING_SNAKE_CASE , "" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "" ) def lowercase ( self: Dict ) -> Optional[Any]: """simple docstring""" self.one_complete_example("complete_nlp_example.py" , _SCREAMING_SNAKE_CASE ) self.one_complete_example("complete_nlp_example.py" , _SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> Tuple: """simple docstring""" UpperCamelCase_ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) UpperCamelCase_ = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example("complete_cv_example.py" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.one_complete_example("complete_cv_example.py" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class _UpperCamelCase ( UpperCamelCase_ ): _UpperCamelCase : Optional[int] = False @classmethod def lowercase ( cls: Optional[Any] ) -> List[Any]: """simple docstring""" super().setUpClass() UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) UpperCamelCase_ = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def lowercase ( cls: List[Any] ) -> List[Any]: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def lowercase ( self: Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ = f'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def lowercase ( self: Any ) -> Dict: """simple docstring""" UpperCamelCase_ = f'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '''.split() UpperCamelCase_ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def lowercase ( self: int ) -> Dict: """simple docstring""" UpperCamelCase_ = f'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '''.split() UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_SCREAMING_SNAKE_CASE ) self.assertNotIn("epoch 0:" , _SCREAMING_SNAKE_CASE ) self.assertIn("epoch 1:" , _SCREAMING_SNAKE_CASE ) def lowercase ( self: str ) -> List[Any]: """simple docstring""" UpperCamelCase_ = f'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '''.split() UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_SCREAMING_SNAKE_CASE ) if torch.cuda.is_available(): UpperCamelCase_ = torch.cuda.device_count() else: UpperCamelCase_ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , _SCREAMING_SNAKE_CASE ) self.assertIn("epoch 1:" , _SCREAMING_SNAKE_CASE ) else: self.assertIn("epoch 0:" , _SCREAMING_SNAKE_CASE ) self.assertIn("epoch 1:" , _SCREAMING_SNAKE_CASE ) @slow def lowercase ( self: Tuple ) -> str: """simple docstring""" UpperCamelCase_ = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): UpperCamelCase_ = run_command(self._launch_args + testargs , return_stdout=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = re.findall("({.+})" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [r for r in results if '''accuracy''' in r][-1] UpperCamelCase_ = ast.literal_eval(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def lowercase ( self: List[str] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def lowercase ( self: Dict ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: UpperCamelCase_ = f'''\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , "tracking" ) ) ) def lowercase ( self: Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def lowercase ( self: int ) -> List[Any]: """simple docstring""" UpperCamelCase_ = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
719
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : @staticmethod def lowercase ( *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Dict ) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class _UpperCamelCase ( unittest.TestCase ): _UpperCamelCase : str = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCamelCase_ = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = object_detector(examples[0] , threshold=0.0 ) UpperCamelCase_ = len(_SCREAMING_SNAKE_CASE ) self.assertGreater(_SCREAMING_SNAKE_CASE , 0 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ { "score": ANY(_SCREAMING_SNAKE_CASE ), "label": ANY(_SCREAMING_SNAKE_CASE ), "box": {"xmin": ANY(_SCREAMING_SNAKE_CASE ), "ymin": ANY(_SCREAMING_SNAKE_CASE ), "xmax": ANY(_SCREAMING_SNAKE_CASE ), "ymax": ANY(_SCREAMING_SNAKE_CASE )}, } for i in range(_SCREAMING_SNAKE_CASE ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowercase ( self: Tuple ) -> List[str]: """simple docstring""" pass @require_torch def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCamelCase_ = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"score": 0.72_35, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.72_18, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.71_84, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.67_48, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.66_56, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.66_14, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.64_56, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.6_42, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.64_19, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) UpperCamelCase_ = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"score": 0.72_35, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.72_18, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.71_84, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.67_48, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.66_56, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.66_14, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.64_56, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.6_42, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.64_19, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def lowercase ( self: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = pipeline("zero-shot-object-detection" ) UpperCamelCase_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.14_74, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.12_08, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) UpperCamelCase_ = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.14_74, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.12_08, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.14_74, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.12_08, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowercase ( self: List[Any] ) -> str: """simple docstring""" pass @require_torch @slow def lowercase ( self: Any ) -> int: """simple docstring""" UpperCamelCase_ = 0.2 UpperCamelCase_ = pipeline("zero-shot-object-detection" ) UpperCamelCase_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=_SCREAMING_SNAKE_CASE , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.25_37, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def lowercase ( self: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = 2 UpperCamelCase_ = pipeline("zero-shot-object-detection" ) UpperCamelCase_ = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=_SCREAMING_SNAKE_CASE , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {"score": 0.28_68, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.2_77, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
371
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase : lowerCamelCase_ : str lowerCamelCase_ : str = None @staticmethod def lowerCamelCase () -> Any: '''simple docstring''' raise NotImplementedError def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' raise NotImplementedError def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' raise NotImplementedError def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def lowerCamelCase (cls ) -> List[Any]: '''simple docstring''' return F'''`pip install {cls.pip_package or cls.name}`''' class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[int] = '''optuna''' @staticmethod def lowerCamelCase () -> Union[str, Any]: '''simple docstring''' return is_optuna_available() def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' return run_hp_search_optuna(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' return default_hp_space_optuna(__magic_name__ ) class __lowerCAmelCase ( _a ): lowerCamelCase_ : Any = '''ray''' lowerCamelCase_ : List[str] = '''\'ray[tune]\'''' @staticmethod def lowerCamelCase () -> List[Any]: '''simple docstring''' return is_ray_available() def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' return run_hp_search_ray(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' return default_hp_space_ray(__magic_name__ ) class __lowerCAmelCase ( _a ): lowerCamelCase_ : Tuple = '''sigopt''' @staticmethod def lowerCamelCase () -> Optional[int]: '''simple docstring''' return is_sigopt_available() def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' return run_hp_search_sigopt(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' return default_hp_space_sigopt(__magic_name__ ) class __lowerCAmelCase ( _a ): lowerCamelCase_ : Tuple = '''wandb''' @staticmethod def lowerCamelCase () -> Dict: '''simple docstring''' return is_wandb_available() def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' return run_hp_search_wandb(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) def lowerCamelCase (self , __magic_name__ ) -> Optional[Any]: '''simple docstring''' return default_hp_space_wandb(__magic_name__ ) lowerCAmelCase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCamelCase_ ( ) -> str: """simple docstring""" snake_case_ : Optional[int] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_UpperCamelCase ) > 0: snake_case_ : Dict = available_backends[0].name if len(_UpperCamelCase ) > 1: logger.info( f'''{len(_UpperCamelCase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
60
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal a_ : Any = logging.get_logger(__name__) a_ : str = TypeVar('DatasetType', Dataset, IterableDataset) def __a ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(__UpperCAmelCase ): if not isinstance(__UpperCAmelCase , (Dataset, IterableDataset) ): if isinstance(__UpperCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCAmelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCAmelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCAmelCase ).__name__}." ) if i == 0: a__ , a__ = ( (Dataset, IterableDataset) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , info=__UpperCAmelCase , split=__UpperCAmelCase , stopping_strategy=__UpperCAmelCase ) else: return _interleave_iterable_datasets( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , info=__UpperCAmelCase , split=__UpperCAmelCase , stopping_strategy=__UpperCAmelCase ) def __a ( __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0 , ): if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(__UpperCAmelCase ): if not isinstance(__UpperCAmelCase , (Dataset, IterableDataset) ): if isinstance(__UpperCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " '''is an empty dataset dictionary.''' ) raise ValueError( f"Dataset at position {i} has at least one split: {list(__UpperCAmelCase )}\n" f"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__UpperCAmelCase ) )}']" ) raise ValueError( f"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCAmelCase ).__name__}." ) if i == 0: a__ , a__ = ( (Dataset, IterableDataset) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError( f"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCAmelCase , info=__UpperCAmelCase , split=__UpperCAmelCase , axis=__UpperCAmelCase ) else: return _concatenate_iterable_datasets(__UpperCAmelCase , info=__UpperCAmelCase , split=__UpperCAmelCase , axis=__UpperCAmelCase )
194
0
'''simple docstring''' def snake_case_ ( a__ : int ): """simple docstring""" __lowercase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def snake_case_ ( a__ : int = 1_00 ): """simple docstring""" __lowercase = 1 __lowercase = 2 for i in range(2 ,max_n + 1 ): __lowercase = pre_numerator __lowercase = 2 * i // 3 if i % 3 == 0 else 1 __lowercase = cur_numerator __lowercase = e_cont * pre_numerator + temp return sum_digits(a__ ) if __name__ == "__main__": print(F"""{solution() = }""")
163
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() A : int = logging.get_logger(__name__) A : Dict = ["""model.decoder.embed_positions.weights"""] def snake_case_ ( a__ : Union[str, Any] ): """simple docstring""" if "emb" in name: __lowercase = name.replace("""emb""" ,"""model.decoder.embed_tokens""" ) if "transformer" in name: __lowercase = name.replace("""transformer""" ,"""model.decoder""" ) if "cross_attention" in name: __lowercase = name.replace("""cross_attention""" ,"""encoder_attn""" ) if "linear1" in name: __lowercase = name.replace("""linear1""" ,"""fc1""" ) if "linear2" in name: __lowercase = name.replace("""linear2""" ,"""fc2""" ) if "norm1" in name: __lowercase = name.replace("""norm1""" ,"""self_attn_layer_norm""" ) if "norm_cross" in name: __lowercase = name.replace("""norm_cross""" ,"""encoder_attn_layer_norm""" ) if "norm2" in name: __lowercase = name.replace("""norm2""" ,"""final_layer_norm""" ) if "out_norm" in name: __lowercase = name.replace("""out_norm""" ,"""model.decoder.layer_norm""" ) if "linears" in name: __lowercase = name.replace("""linears""" ,"""lm_heads""" ) if "condition_provider.conditioners.description.output_proj" in name: __lowercase = name.replace("""condition_provider.conditioners.description.output_proj""" ,"""enc_to_dec_proj""" ) return name def snake_case_ ( a__ : OrderedDict ,a__ : int ): """simple docstring""" __lowercase = list(state_dict.keys() ) __lowercase = {} for key in keys: __lowercase = state_dict.pop(a__ ) __lowercase = rename_keys(a__ ) if "in_proj_weight" in key: # split fused qkv proj __lowercase = val[:hidden_size, :] __lowercase = val[hidden_size : 2 * hidden_size, :] __lowercase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowercase = val else: __lowercase = val return state_dict, enc_dec_proj_state_dict def snake_case_ ( a__ : str ): """simple docstring""" if checkpoint == "small": # default config values __lowercase = 10_24 __lowercase = 24 __lowercase = 16 elif checkpoint == "medium": __lowercase = 15_36 __lowercase = 48 __lowercase = 24 elif checkpoint == "large": __lowercase = 20_48 __lowercase = 48 __lowercase = 32 else: raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' ) __lowercase = MusicgenDecoderConfig( hidden_size=a__ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=a__ ,num_attention_heads=a__ ,) return config @torch.no_grad() def snake_case_ ( a__ : Optional[Any] ,a__ : Dict=None ,a__ : Tuple=None ,a__ : Optional[int]="cpu" ): """simple docstring""" __lowercase = MusicGen.get_pretrained(a__ ,device=a__ ) __lowercase = decoder_config_from_checkpoint(a__ ) __lowercase = fairseq_model.lm.state_dict() __lowercase ,__lowercase = rename_state_dict( a__ ,hidden_size=decoder_config.hidden_size ) __lowercase = TaEncoderModel.from_pretrained("""t5-base""" ) __lowercase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" ) __lowercase = MusicgenForCausalLM(a__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowercase ,__lowercase = decoder.load_state_dict(a__ ,strict=a__ ) for key in missing_keys.copy(): if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(a__ ) if len(a__ ) > 0: raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' ) if len(a__ ) > 0: raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' ) # init the composite model __lowercase = MusicgenForConditionalGeneration(text_encoder=a__ ,audio_encoder=a__ ,decoder=a__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(a__ ) # check we can do a forward pass __lowercase = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) __lowercase = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): __lowercase = model(input_ids=a__ ,decoder_input_ids=a__ ).logits if logits.shape != (8, 1, 20_48): raise ValueError("""Incorrect shape for logits""" ) # now construct the processor __lowercase = AutoTokenizer.from_pretrained("""t5-base""" ) __lowercase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" ,padding_side="""left""" ) __lowercase = MusicgenProcessor(feature_extractor=a__ ,tokenizer=a__ ) # set the appropriate bos/pad token ids __lowercase = 20_48 __lowercase = 20_48 # set other default generation config params __lowercase = int(30 * audio_encoder.config.frame_rate ) __lowercase = True __lowercase = 3.0 if pytorch_dump_folder is not None: Path(a__ ).mkdir(exist_ok=a__ ) logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) if repo_id: logger.info(f'Pushing model {checkpoint} to {repo_id}' ) model.push_to_hub(a__ ) processor.push_to_hub(a__ ) if __name__ == "__main__": A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) A : Tuple = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
163
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Dict =get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _UpperCamelCase : Tuple =25_00_04 _UpperCamelCase : Union[str, Any] =25_00_20 @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = MBartaaTokenizer SCREAMING_SNAKE_CASE_ = MBartaaTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase = MBartaaTokenizer(_snake_case , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = '''<s>''' __lowerCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_snake_case ) , 10_54 ) def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = MBartaaTokenizer(_snake_case , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_snake_case ) __lowerCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _snake_case , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __lowerCamelCase = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCamelCase = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __lowerCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __lowerCamelCase = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) __lowerCamelCase = self.tokenizer_class.from_pretrained(_snake_case , **_snake_case ) __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(_snake_case ) __lowerCamelCase = tokenizer_p.save_pretrained(_snake_case ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __lowerCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_snake_case , _snake_case ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(_snake_case ) __lowerCamelCase = tokenizer_p.from_pretrained(_snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_snake_case , _snake_case ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_snake_case ) # Save tokenizer rust, legacy_format=True __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(_snake_case , legacy_format=_snake_case ) __lowerCamelCase = tokenizer_p.save_pretrained(_snake_case ) # Checks it save with the same files self.assertSequenceEqual(_snake_case , _snake_case ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(_snake_case ) __lowerCamelCase = tokenizer_p.from_pretrained(_snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_snake_case , _snake_case ) ) shutil.rmtree(_snake_case ) # Save tokenizer rust, legacy_format=False __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = tokenizer_r.save_pretrained(_snake_case , legacy_format=_snake_case ) __lowerCamelCase = tokenizer_p.save_pretrained(_snake_case ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCamelCase = tokenizer_r.from_pretrained(_snake_case ) __lowerCamelCase = tokenizer_p.from_pretrained(_snake_case ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_snake_case , _snake_case ) ) shutil.rmtree(_snake_case ) @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = "facebook/mbart-large-50-one-to-many-mmt" SCREAMING_SNAKE_CASE_ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] SCREAMING_SNAKE_CASE_ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] SCREAMING_SNAKE_CASE_ = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def _lowerCamelCase ( cls ): """simple docstring""" __lowerCamelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __lowerCamelCase = 1 return cls def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids ) __lowerCamelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __lowerCamelCase = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case ) __lowerCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case ) self.assertEqual(_snake_case , _snake_case ) self.assertNotIn(self.tokenizer.eos_token , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _snake_case ) __lowerCamelCase = 10 __lowerCamelCase = self.tokenizer(_snake_case , max_length=_snake_case , truncation=_snake_case ).input_ids[0] self.assertEqual(ids[0] , _snake_case ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_snake_case ) , _snake_case ) def _lowerCamelCase ( self ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = tempfile.mkdtemp() __lowerCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_snake_case ) __lowerCamelCase = MBartaaTokenizer.from_pretrained(_snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _snake_case ) @require_torch def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors='''pt''' ) __lowerCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_snake_case , truncation=_snake_case , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __lowerCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __lowerCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _snake_case ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.tokenizer(self.src_text , padding=_snake_case , truncation=_snake_case , max_length=3 , return_tensors='''pt''' ) __lowerCamelCase = self.tokenizer( text_target=self.tgt_text , padding=_snake_case , truncation=_snake_case , max_length=10 , return_tensors='''pt''' ) __lowerCamelCase = targets['''input_ids'''] __lowerCamelCase = shift_tokens_right(_snake_case , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_snake_case ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
316
'''simple docstring''' import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase__( enum.Enum ): __magic_name__ : Tuple = 0 __magic_name__ : Union[str, Any] = 1 @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[Any] = "generated" def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int )-> Dict: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def a__( self : Tuple , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : Union[str, Any] , )-> Optional[Any]: """simple docstring""" UpperCAmelCase = {} if truncation is not None: UpperCAmelCase = truncation UpperCAmelCase = generate_kwargs UpperCAmelCase = {} if return_tensors is not None and return_type is None: UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase = self.tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) if len(lowerCAmelCase ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a__( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int )-> Optional[Any]: """simple docstring""" return True def a__( self : Optional[int] , *lowerCAmelCase : Tuple , lowerCAmelCase : int )-> List[Any]: """simple docstring""" UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , lowerCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) UpperCAmelCase = ([prefix + arg for arg in args[0]],) UpperCAmelCase = True elif isinstance(args[0] , lowerCAmelCase ): UpperCAmelCase = (prefix + args[0],) UpperCAmelCase = False else: raise ValueError( F""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) UpperCAmelCase = self.tokenizer(*lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str )-> Optional[Any]: """simple docstring""" UpperCAmelCase = super().__call__(*lowerCAmelCase , **lowerCAmelCase ) if ( isinstance(args[0] , lowerCAmelCase ) and all(isinstance(lowerCAmelCase , lowerCAmelCase ) for el in args[0] ) and all(len(lowerCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def a__( self : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict=TruncationStrategy.DO_NOT_TRUNCATE , **lowerCAmelCase : List[Any] )-> Tuple: """simple docstring""" UpperCAmelCase = self._parse_and_tokenize(lowerCAmelCase , truncation=lowerCAmelCase , **lowerCAmelCase ) return inputs def a__( self : Optional[int] , lowerCAmelCase : str , **lowerCAmelCase : Dict )-> str: """simple docstring""" if self.framework == "pt": UpperCAmelCase , UpperCAmelCase = model_inputs['''input_ids'''].shape elif self.framework == "tf": UpperCAmelCase , UpperCAmelCase = tf.shape(model_inputs['''input_ids'''] ).numpy() UpperCAmelCase = generate_kwargs.get('''min_length''' , self.model.config.min_length ) UpperCAmelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(lowerCAmelCase , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) UpperCAmelCase = self.model.generate(**lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = output_ids.shape[0] if self.framework == "pt": UpperCAmelCase = output_ids.reshape(lowerCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCAmelCase = tf.reshape(lowerCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def a__( self : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str=ReturnType.TEXT , lowerCAmelCase : Tuple=False )-> List[Any]: """simple docstring""" UpperCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCAmelCase = {F"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: UpperCAmelCase = { F"""{self.return_name}_text""": self.tokenizer.decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase , ) } records.append(lowerCAmelCase ) return records @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Dict = "summary" def __call__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Union[str, Any] )-> Dict: """simple docstring""" return super().__call__(*lowerCAmelCase , **lowerCAmelCase ) def a__( self : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int )-> bool: """simple docstring""" if max_length < min_length: logger.warning(F"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( F"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' F"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(lowerCAmelCase ) class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Any = "translation" def a__( self : Any , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int )-> Union[str, Any]: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( F"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def a__( self : int , *lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int]=TruncationStrategy.DO_NOT_TRUNCATE , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Tuple=None )-> Any: """simple docstring""" if getattr(self.tokenizer , '''_build_translation_inputs''' , lowerCAmelCase ): return self.tokenizer._build_translation_inputs( *lowerCAmelCase , return_tensors=self.framework , truncation=lowerCAmelCase , src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase ) else: return super()._parse_and_tokenize(*lowerCAmelCase , truncation=lowerCAmelCase ) def a__( self : Any , lowerCAmelCase : int=None , lowerCAmelCase : Optional[Any]=None , **lowerCAmelCase : List[str] )-> str: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = super()._sanitize_parameters(**lowerCAmelCase ) if src_lang is not None: UpperCAmelCase = src_lang if tgt_lang is not None: UpperCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCAmelCase = kwargs.get('''task''' , self.task ) UpperCAmelCase = task.split('''_''' ) if task and len(lowerCAmelCase ) == 4: # translation, XX, to YY UpperCAmelCase = items[1] UpperCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int )-> Tuple: """simple docstring""" return super().__call__(*lowerCAmelCase , **lowerCAmelCase )
210
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """microsoft/speecht5_tts""" _UpperCamelCase = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) _UpperCamelCase = """text_reader""" _UpperCamelCase = SpeechTaProcessor _UpperCamelCase = SpeechTaForTextToSpeech _UpperCamelCase = SpeechTaHifiGan _UpperCamelCase = ["""text"""] _UpperCamelCase = ["""audio"""] def UpperCamelCase__ ( self ) ->int: '''simple docstring''' if self.post_processor is None: __lowerCAmelCase : Tuple = '''microsoft/speecht5_hifigan''' super().setup() def UpperCamelCase__ ( self , A_ , A_=None ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : int = self.pre_processor(text=A_ , return_tensors='''pt''' , truncation=A_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) __lowerCAmelCase : Dict = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) __lowerCAmelCase : Optional[Any] = torch.tensor(embeddings_dataset[7305]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCamelCase__ ( self , A_ ) ->Optional[Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**A_ ) def UpperCamelCase__ ( self , A_ ) ->List[str]: '''simple docstring''' with torch.no_grad(): return self.post_processor(A_ ).cpu().detach()
583
def _lowercase ( lowercase__ , lowercase__ ): __lowerCAmelCase : Union[str, Any] = len(lowercase__ ) __lowerCAmelCase : Any = len(lowercase__ ) __lowerCAmelCase : str = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowerCAmelCase : Optional[Any] = True for i in range(lowercase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowerCAmelCase : Union[str, Any] = True if a[i].islower(): __lowerCAmelCase : Optional[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
583
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __a(SCREAMING_SNAKE_CASE_ : Namespace ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _SCREAMING_SNAKE_CASE = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class lowerCAmelCase_ ( __magic_name__ ): @staticmethod def _snake_case ( _lowerCAmelCase ) -> str: _lowerCAmelCase = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=_lowerCAmelCase , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=_lowerCAmelCase ) def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = logging.get_logger("transformers-cli/converting" ) self._logger.info(f'''Loading model {model_type}''' ) _lowerCAmelCase = model_type _lowerCAmelCase = tf_checkpoint _lowerCAmelCase = pytorch_dump_output _lowerCAmelCase = config _lowerCAmelCase = finetuning_task_name def _snake_case ( self ) -> str: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_lowerCAmelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) if "ckpt" in self._tf_checkpoint.lower(): _lowerCAmelCase = self._tf_checkpoint _lowerCAmelCase = "" else: _lowerCAmelCase = self._tf_checkpoint _lowerCAmelCase = "" convert_transfo_xl_checkpoint_to_pytorch( _lowerCAmelCase , self._config , self._pytorch_dump_output , _lowerCAmelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_lowerCAmelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
18
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Optional[int] = BlenderbotSmallTokenizer _lowerCamelCase: List[Any] = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: super().setUp() A = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] A = dict(zip(A_ ,range(len(A_ ) ) ) ) A = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] A = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,**A_ : Union[str, Any] ) -> Optional[int]: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Tuple ) -> List[Any]: A = 'adapt act apte' A = 'adapt act apte' return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: A = BlenderbotSmallTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) A = 'adapt act apte' A = ['adapt', 'act', 'ap@@', 'te'] A = tokenizer.tokenize(A_ ) self.assertListEqual(A_ ,A_ ) A = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] A = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] A = 'I am a small frog.' A = tok([src_text] ,padding=A_ ,truncation=A_ )['input_ids'] A = tok.batch_decode(A_ ,skip_special_tokens=A_ ,clean_up_tokenization_spaces=A_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: A = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) A = 'I am a small frog .' A = '.' A = tok(A_ )['input_ids'] A = tok(A_ )['input_ids'] assert encoded[-1] == encoded_dot[0]
91
0
"""simple docstring""" import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class _snake_case ( a__ ): snake_case__ = "align_text_model" def __init__( self : Union[str, Any] , UpperCAmelCase : int=30522 , UpperCAmelCase : Union[str, Any]=768 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : str=3072 , UpperCAmelCase : int="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=0.0_2 , UpperCAmelCase : List[Any]=1E-12 , UpperCAmelCase : str=0 , UpperCAmelCase : Union[str, Any]="absolute" , UpperCAmelCase : Any=True , **UpperCAmelCase : Optional[int] , ): super().__init__(**UpperCAmelCase ) __lowerCamelCase : Any = vocab_size __lowerCamelCase : List[str] = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : Tuple = intermediate_size __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : str = attention_probs_dropout_prob __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Union[str, Any] = type_vocab_size __lowerCamelCase : Optional[int] = initializer_range __lowerCamelCase : List[Any] = layer_norm_eps __lowerCamelCase : Tuple = position_embedding_type __lowerCamelCase : Tuple = use_cache __lowerCamelCase : Dict = pad_token_id @classmethod def lowerCamelCase__ ( cls : Optional[Any] , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : int ): cls._set_token_in_kwargs(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : Any = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": __lowerCamelCase : List[Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class _snake_case ( a__ ): snake_case__ = "align_vision_model" def __init__( self : str , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 600 , UpperCAmelCase : float = 2.0 , UpperCAmelCase : float = 3.1 , UpperCAmelCase : int = 8 , UpperCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCAmelCase : List[int] = [] , UpperCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase : float = 0.2_5 , UpperCAmelCase : str = "swish" , UpperCAmelCase : int = 2560 , UpperCAmelCase : str = "mean" , UpperCAmelCase : float = 0.0_2 , UpperCAmelCase : float = 0.0_0_1 , UpperCAmelCase : float = 0.9_9 , UpperCAmelCase : float = 0.2 , **UpperCAmelCase : int , ): super().__init__(**UpperCAmelCase ) __lowerCamelCase : Tuple = num_channels __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Union[str, Any] = width_coefficient __lowerCamelCase : Tuple = depth_coefficient __lowerCamelCase : Tuple = depth_divisor __lowerCamelCase : Tuple = kernel_sizes __lowerCamelCase : Union[str, Any] = in_channels __lowerCamelCase : Union[str, Any] = out_channels __lowerCamelCase : Union[str, Any] = depthwise_padding __lowerCamelCase : int = strides __lowerCamelCase : Union[str, Any] = num_block_repeats __lowerCamelCase : List[Any] = expand_ratios __lowerCamelCase : List[Any] = squeeze_expansion_ratio __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : int = hidden_dim __lowerCamelCase : List[str] = pooling_type __lowerCamelCase : Optional[Any] = initializer_range __lowerCamelCase : Union[str, Any] = batch_norm_eps __lowerCamelCase : Union[str, Any] = batch_norm_momentum __lowerCamelCase : str = drop_connect_rate __lowerCamelCase : Tuple = sum(UpperCAmelCase ) * 4 @classmethod def lowerCamelCase__ ( cls : int , UpperCAmelCase : Union[str, os.PathLike] , **UpperCAmelCase : Tuple ): cls._set_token_in_kwargs(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : int = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": __lowerCamelCase : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class _snake_case ( a__ ): snake_case__ = "align" snake_case__ = True def __init__( self : int , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Any=640 , UpperCAmelCase : int=1.0 , UpperCAmelCase : Any=0.0_2 , **UpperCAmelCase : Dict , ): super().__init__(**UpperCAmelCase ) if text_config is None: __lowerCamelCase : str = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: __lowerCamelCase : Optional[Any] = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) __lowerCamelCase : Optional[int] = AlignTextConfig(**UpperCAmelCase ) __lowerCamelCase : List[str] = AlignVisionConfig(**UpperCAmelCase ) __lowerCamelCase : Optional[int] = projection_dim __lowerCamelCase : Optional[Any] = temperature_init_value __lowerCamelCase : Optional[int] = initializer_range @classmethod def lowerCamelCase__ ( cls : Dict , UpperCAmelCase : AlignTextConfig , UpperCAmelCase : AlignVisionConfig , **UpperCAmelCase : Any ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : int = copy.deepcopy(self.__dict__ ) __lowerCamelCase : Any = self.text_config.to_dict() __lowerCamelCase : str = self.vision_config.to_dict() __lowerCamelCase : List[Any] = self.__class__.model_type return output
366
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __A = logging.get_logger(__name__) __A = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A = [ '''small''', '''small-base''', '''medium''', '''medium-base''', '''intermediate''', '''intermediate-base''', '''large''', '''large-base''', '''xlarge''', '''xlarge-base''', ] __A = { '''vocab_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''', '''funnel-transformer/small-base''': ( '''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''', '''funnel-transformer/medium-base''': ( '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''', '''funnel-transformer/large-base''': ( '''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json''' ), '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''', '''funnel-transformer/xlarge-base''': ( '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json''' ), }, } __A = {F"""funnel-transformer/{name}""": 512 for name in _model_names} __A = {F"""funnel-transformer/{name}""": {'''do_lower_case''': True} for name in _model_names} class _snake_case ( a__ ): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = FunnelTokenizer snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = 2 def __init__( self : List[Any] , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[Any]=True , UpperCAmelCase : int="<unk>" , UpperCAmelCase : List[Any]="<sep>" , UpperCAmelCase : List[str]="<pad>" , UpperCAmelCase : Union[str, Any]="<cls>" , UpperCAmelCase : int="<mask>" , UpperCAmelCase : List[str]="<s>" , UpperCAmelCase : Union[str, Any]="</s>" , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : int=None , UpperCAmelCase : int="##" , **UpperCAmelCase : Dict , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , clean_text=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , wordpieces_prefix=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): __lowerCamelCase : Tuple = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) __lowerCamelCase : Optional[int] = do_lower_case __lowerCamelCase : Union[str, Any] = strip_accents __lowerCamelCase : Optional[Any] = tokenize_chinese_chars __lowerCamelCase : Optional[Any] = normalizer_class(**UpperCAmelCase ) __lowerCamelCase : List[Any] = do_lower_case def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None ): __lowerCamelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : Dict , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): __lowerCamelCase : Tuple = [self.sep_token_id] __lowerCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): __lowerCamelCase : List[Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
366
1
from __future__ import annotations lowercase : Tuple = 10 def snake_case__ ( lowerCamelCase_ ): A : str = 1 A : Union[str, Any] = max(_lowerCAmelCase ) while placement <= max_digit: # declare and initialize empty buckets A : list[list] = [[] for _ in range(_lowerCAmelCase )] # split list_of_ints between the buckets for i in list_of_ints: A : List[str] = int((i / placement) % RADIX ) buckets[tmp].append(_lowerCAmelCase ) # put each buckets' contents into list_of_ints A : Dict = 0 for b in range(_lowerCAmelCase ): for i in buckets[b]: A : List[str] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
542
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _UpperCamelCase = True except ImportError: _UpperCamelCase = False try: from torch.hub import _get_torch_home _UpperCamelCase = _get_torch_home() except ImportError: _UpperCamelCase = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) _UpperCamelCase = os.path.join(torch_cache_home, 'transformers') _UpperCamelCase = 'https://cdn.huggingface.co' _UpperCamelCase = 'https://s3.amazonaws.com/models.huggingface.co/bert' _UpperCamelCase = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) _UpperCamelCase = os.path.join(PATH, 'config.yaml') _UpperCamelCase = os.path.join(PATH, 'attributes.txt') _UpperCamelCase = os.path.join(PATH, 'objects.txt') _UpperCamelCase = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) _UpperCamelCase = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) _UpperCamelCase = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) _UpperCamelCase = 'pytorch_model.bin' _UpperCamelCase = 'config.yaml' def a_ ( _lowerCAmelCase=OBJECTS ,_lowerCAmelCase=ATTRIBUTES ) -> Union[str, Any]: __lowerCamelCase : Dict = [] with open(_lowerCAmelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) __lowerCamelCase : List[Any] = [] with open(_lowerCAmelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def a_ ( _lowerCAmelCase ) -> Any: __lowerCamelCase : Any = OrderedDict() with open(_lowerCAmelCase ,'rb' ) as f: __lowerCamelCase : str = pkl.load(_lowerCAmelCase )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): __lowerCamelCase : Any = ckp.pop(_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,np.ndarray ): __lowerCamelCase : Dict = torch.tensor(_lowerCAmelCase ) else: assert isinstance(_lowerCAmelCase ,torch.tensor ), type(_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = v return r class lowerCamelCase_ : """simple docstring""" a_ ={} def __init__( self : int , _a : dict , _a : str = "root" , _a : int=0 ) -> Union[str, Any]: __lowerCamelCase : Dict = name __lowerCamelCase : Union[str, Any] = level __lowerCamelCase : Tuple = {} for k, v in dictionary.items(): if v is None: raise ValueError() __lowerCamelCase : int = copy.deepcopy(_a ) __lowerCamelCase : List[str] = copy.deepcopy(_a ) if isinstance(_a , _a ): __lowerCamelCase : str = Config(_a , name=_a , level=level + 1 ) __lowerCamelCase : Union[str, Any] = v setattr(self , _a , _a ) __lowerCamelCase : Optional[int] = d def __repr__( self : int ) -> Any: return str(list((self._pointer.keys()) ) ) def __setattr__( self : int , _a : Tuple , _a : Optional[int] ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Optional[Any] = val __lowerCamelCase : List[str] = key.split('.' ) __lowerCamelCase : str = len(_a ) - 1 __lowerCamelCase : str = self._pointer if len(_a ) > 1: for i, l in enumerate(_a ): if hasattr(self , _a ) and isinstance(getattr(self , _a ) , _a ): setattr(getattr(self , _a ) , '.'.join(levels[i:] ) , _a ) if l == last_level: __lowerCamelCase : Union[str, Any] = val else: __lowerCamelCase : List[Any] = pointer[l] def _lowercase ( self : Dict ) -> Optional[Any]: return self._pointer def _lowercase ( self : Any , _a : List[str] , _a : List[str] ) -> Dict: with open(f'{file_name}' , 'w' ) as stream: dump(_a , _a ) def _lowercase ( self : Any , _a : Union[str, Any] , _a : List[Any] ) -> List[Any]: with open(f'{file_name}' , 'w' ) as stream: json.dump(_a , _a ) @staticmethod def _lowercase ( _a : Any ) -> List[str]: with open(_a ) as stream: __lowerCamelCase : Dict = load(_a , Loader=_a ) return data def __str__( self : Any ) -> List[str]: __lowerCamelCase : Dict = ' ' if self._name != "root": __lowerCamelCase : Dict = f'{t * (self._level-1)}{self._name}:\n' else: __lowerCamelCase : str = '' __lowerCamelCase : List[str] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_a , _a ): r += f'{t * (self._level)}{v}\n' self._level += 1 else: r += f'{t * (self._level)}{k}: {v} ({type(_a ).__name__})\n' __lowerCamelCase : Any = level return r[:-1] @classmethod def _lowercase ( cls : int , _a : str , **_a : List[str] ) -> Union[str, Any]: __lowerCamelCase ,__lowerCamelCase : str = cls.get_config_dict(_a , **_a ) return cls(_a ) @classmethod def _lowercase ( cls : Dict , _a : str , **_a : List[str] ) -> List[Any]: __lowerCamelCase : str = kwargs.pop('cache_dir' , _a ) __lowerCamelCase : List[Any] = kwargs.pop('force_download' , _a ) __lowerCamelCase : List[Any] = kwargs.pop('resume_download' , _a ) __lowerCamelCase : List[Any] = kwargs.pop('proxies' , _a ) __lowerCamelCase : Optional[Any] = kwargs.pop('local_files_only' , _a ) if os.path.isdir(_a ): __lowerCamelCase : Tuple = os.path.join(_a , _a ) elif os.path.isfile(_a ) or is_remote_url(_a ): __lowerCamelCase : List[str] = pretrained_model_name_or_path else: __lowerCamelCase : List[Any] = hf_bucket_url(_a , filename=_a , use_cdn=_a ) try: # Load from URL or cache if already cached __lowerCamelCase : str = cached_path( _a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __lowerCamelCase : Optional[Any] = Config.load_yaml(_a ) except EnvironmentError: __lowerCamelCase : Optional[int] = 'Can\'t load config for' raise EnvironmentError(_a ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(_a ), kwargs def a_ ( _lowerCAmelCase ) -> Dict: __lowerCamelCase : Dict = torch.load('dump.pt' ,map_location=in_tensor.device ) __lowerCamelCase : Optional[int] = in_tensor.numpy() __lowerCamelCase : int = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,rtol=0.01 ,atol=0.1 ), ( F'{sum([1 for x in np.isclose(_lowerCAmelCase ,_lowerCAmelCase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def a_ ( _lowerCAmelCase ) -> int: __lowerCamelCase : List[str] = urlparse(_lowerCAmelCase ) return parsed.scheme in ("http", "https") def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=True ) -> str: __lowerCamelCase : Any = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __lowerCamelCase : List[str] = '/' not in model_id if legacy_format: return F'{endpoint}/{model_id}-{filename}' else: return F'{endpoint}/{model_id}/{filename}' def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=0 ,_lowerCAmelCase=None ,) -> Any: __lowerCamelCase : Tuple = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): ua += "; " + "; ".join('{}/{}'.format(_lowerCAmelCase ,_lowerCAmelCase ) for k, v in user_agent.items() ) elif isinstance(_lowerCAmelCase ,_lowerCAmelCase ): ua += "; " + user_agent __lowerCamelCase : List[Any] = {'user-agent': ua} if resume_size > 0: __lowerCamelCase : List[str] = 'bytes=%d-' % (resume_size,) __lowerCamelCase : Optional[Any] = requests.get(_lowerCAmelCase ,stream=_lowerCAmelCase ,proxies=_lowerCAmelCase ,headers=_lowerCAmelCase ) if response.status_code == 416: # Range not satisfiable return __lowerCamelCase : List[Any] = response.headers.get('Content-Length' ) __lowerCamelCase : Tuple = resume_size + int(_lowerCAmelCase ) if content_length is not None else None __lowerCamelCase : int = tqdm( unit='B' ,unit_scale=_lowerCAmelCase ,total=_lowerCAmelCase ,initial=_lowerCAmelCase ,desc='Downloading' ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(_lowerCAmelCase ) ) temp_file.write(_lowerCAmelCase ) progress.close() def a_ ( _lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,_lowerCAmelCase=None ,_lowerCAmelCase=10 ,_lowerCAmelCase=False ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,) -> List[str]: if cache_dir is None: __lowerCamelCase : Any = TRANSFORMERS_CACHE if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): __lowerCamelCase : Tuple = str(_lowerCAmelCase ) os.makedirs(_lowerCAmelCase ,exist_ok=_lowerCAmelCase ) __lowerCamelCase : int = None if not local_files_only: try: __lowerCamelCase : Optional[int] = requests.head(_lowerCAmelCase ,allow_redirects=_lowerCAmelCase ,proxies=_lowerCAmelCase ,timeout=_lowerCAmelCase ) if response.status_code == 200: __lowerCamelCase : List[Any] = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __lowerCamelCase : Tuple = url_to_filename(_lowerCAmelCase ,_lowerCAmelCase ) # get cache path to put the file __lowerCamelCase : Tuple = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_lowerCAmelCase ): return cache_path else: __lowerCamelCase : int = [ file for file in fnmatch.filter(os.listdir(_lowerCAmelCase ) ,filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(_lowerCAmelCase ) > 0: return os.path.join(_lowerCAmelCase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(_lowerCAmelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __lowerCamelCase : Union[str, Any] = cache_path + '.lock' with FileLock(_lowerCAmelCase ): # If the download just completed while the lock was activated. if os.path.exists(_lowerCAmelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __lowerCamelCase : Optional[int] = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(_lowerCAmelCase ,'a+b' ) as f: yield f __lowerCamelCase : Optional[int] = _resumable_file_manager if os.path.exists(_lowerCAmelCase ): __lowerCamelCase : int = os.stat(_lowerCAmelCase ).st_size else: __lowerCamelCase : Dict = 0 else: __lowerCamelCase : str = partial(tempfile.NamedTemporaryFile ,dir=_lowerCAmelCase ,delete=_lowerCAmelCase ) __lowerCamelCase : List[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' ,_lowerCAmelCase ,temp_file.name ,) http_get( _lowerCAmelCase ,_lowerCAmelCase ,proxies=_lowerCAmelCase ,resume_size=_lowerCAmelCase ,user_agent=_lowerCAmelCase ,) os.replace(temp_file.name ,_lowerCAmelCase ) __lowerCamelCase : List[Any] = {'url': url, 'etag': etag} __lowerCamelCase : str = cache_path + '.json' with open(_lowerCAmelCase ,'w' ) as meta_file: json.dump(_lowerCAmelCase ,_lowerCAmelCase ) return cache_path def a_ ( _lowerCAmelCase ,_lowerCAmelCase=None ) -> Dict: __lowerCamelCase : Any = url.encode('utf-8' ) __lowerCamelCase : Tuple = shaaaa(_lowerCAmelCase ) __lowerCamelCase : Dict = url_hash.hexdigest() if etag: __lowerCamelCase : List[str] = etag.encode('utf-8' ) __lowerCamelCase : Any = shaaaa(_lowerCAmelCase ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def a_ ( _lowerCAmelCase ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,) -> str: if cache_dir is None: __lowerCamelCase : Optional[Any] = TRANSFORMERS_CACHE if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): __lowerCamelCase : List[str] = str(_lowerCAmelCase ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): __lowerCamelCase : List[str] = str(_lowerCAmelCase ) if is_remote_url(_lowerCAmelCase ): # URL, so get it from the cache (downloading if necessary) __lowerCamelCase : Optional[Any] = get_from_cache( _lowerCAmelCase ,cache_dir=_lowerCAmelCase ,force_download=_lowerCAmelCase ,proxies=_lowerCAmelCase ,resume_download=_lowerCAmelCase ,user_agent=_lowerCAmelCase ,local_files_only=_lowerCAmelCase ,) elif os.path.exists(_lowerCAmelCase ): # File, and it exists. __lowerCamelCase : List[Any] = url_or_filename elif urlparse(_lowerCAmelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(_lowerCAmelCase ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(_lowerCAmelCase ) ) if extract_compressed_file: if not is_zipfile(_lowerCAmelCase ) and not tarfile.is_tarfile(_lowerCAmelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __lowerCamelCase ,__lowerCamelCase : Tuple = os.path.split(_lowerCAmelCase ) __lowerCamelCase : str = output_file.replace('.' ,'-' ) + '-extracted' __lowerCamelCase : Optional[int] = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) if os.path.isdir(_lowerCAmelCase ) and os.listdir(_lowerCAmelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions __lowerCamelCase : List[Any] = output_path + '.lock' with FileLock(_lowerCAmelCase ): shutil.rmtree(_lowerCAmelCase ,ignore_errors=_lowerCAmelCase ) os.makedirs(_lowerCAmelCase ) if is_zipfile(_lowerCAmelCase ): with ZipFile(_lowerCAmelCase ,'r' ) as zip_file: zip_file.extractall(_lowerCAmelCase ) zip_file.close() elif tarfile.is_tarfile(_lowerCAmelCase ): __lowerCamelCase : Tuple = tarfile.open(_lowerCAmelCase ) tar_file.extractall(_lowerCAmelCase ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(_lowerCAmelCase ) ) return output_path_extracted return output_path def a_ ( _lowerCAmelCase ,_lowerCAmelCase="," ) -> List[str]: assert isinstance(_lowerCAmelCase ,_lowerCAmelCase ) if os.path.isfile(_lowerCAmelCase ): with open(_lowerCAmelCase ) as f: __lowerCamelCase : Optional[Any] = eval(f.read() ) else: __lowerCamelCase : Union[str, Any] = requests.get(_lowerCAmelCase ) try: __lowerCamelCase : Optional[Any] = requests.json() except Exception: __lowerCamelCase : List[Any] = req.content.decode() assert data is not None, "could not connect" try: __lowerCamelCase : Dict = eval(_lowerCAmelCase ) except Exception: __lowerCamelCase : Dict = data.split('\n' ) req.close() return data def a_ ( _lowerCAmelCase ) -> List[Any]: __lowerCamelCase : str = requests.get(_lowerCAmelCase ) __lowerCamelCase : Dict = np.array(Image.open(BytesIO(response.content ) ) ) return img def a_ ( _lowerCAmelCase ) -> Optional[int]: __lowerCamelCase : str = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_lowerCAmelCase ) with open(_lowerCAmelCase ,'rb' ) as stream: __lowerCamelCase : str = pkl.load(_lowerCAmelCase ) __lowerCamelCase : Optional[int] = weights.pop('model' ) __lowerCamelCase : Dict = {} for k, v in model.items(): __lowerCamelCase : str = torch.from_numpy(_lowerCAmelCase ) if "running_var" in k: __lowerCamelCase : Tuple = torch.tensor([0] ) __lowerCamelCase : Any = k.replace('running_var' ,'num_batches_tracked' ) __lowerCamelCase : List[Any] = zero return new def a_ ( ) -> Dict: print(F'{os.path.abspath(os.path.join(_lowerCAmelCase ,os.pardir ) )}/demo.ipynb' ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase="RGB" ) -> List[Any]: assert isinstance(_lowerCAmelCase ,_lowerCAmelCase ) if os.path.isfile(_lowerCAmelCase ): __lowerCamelCase : Any = cva.imread(_lowerCAmelCase ) else: __lowerCamelCase : int = get_image_from_url(_lowerCAmelCase ) assert img is not None, F'could not connect to: {im}' __lowerCamelCase : Dict = cva.cvtColor(_lowerCAmelCase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": __lowerCamelCase : Any = img[:, :, ::-1] return img def a_ ( _lowerCAmelCase ,_lowerCAmelCase=1 ) -> Union[str, Any]: return (images[i : i + batch] for i in range(0 ,len(_lowerCAmelCase ) ,_lowerCAmelCase ))
459
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json", "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json", } class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = '''falcon''' _lowerCamelCase = ['''past_key_values'''] def __init__( self , UpperCamelCase_=6_5024 , UpperCamelCase_=4544 , UpperCamelCase_=32 , UpperCamelCase_=71 , UpperCamelCase_=1E-5 , UpperCamelCase_=0.0_2 , UpperCamelCase_=True , UpperCamelCase_=0.0 , UpperCamelCase_=0.0 , UpperCamelCase_=None , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=11 , UpperCamelCase_=11 , **UpperCamelCase_ , ): __magic_name__ = vocab_size # Backward compatibility with n_embed kwarg __magic_name__ = kwargs.pop('''n_embed''' , UpperCamelCase_ ) __magic_name__ = hidden_size if n_embed is None else n_embed __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = layer_norm_epsilon __magic_name__ = initializer_range __magic_name__ = use_cache __magic_name__ = hidden_dropout __magic_name__ = attention_dropout __magic_name__ = bos_token_id __magic_name__ = eos_token_id __magic_name__ = num_attention_heads if num_kv_heads is None else num_kv_heads __magic_name__ = alibi __magic_name__ = new_decoder_architecture __magic_name__ = multi_query # Ignored when new_decoder_architecture is True __magic_name__ = parallel_attn __magic_name__ = bias super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) @property def lowerCAmelCase__ ( self ): return self.hidden_size // self.num_attention_heads @property def lowerCAmelCase__ ( self ): return not self.alibi
190
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins __lowerCamelCase = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> str: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def lowercase ( __UpperCamelCase ) -> Union[str, Any]: config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=__UpperCamelCase ) def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> Dict: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? __magic_name__ = tmp_path_factory.getbasetemp() / '''cache''' __magic_name__ = test_hf_cache_home / '''datasets''' __magic_name__ = test_hf_cache_home / '''metrics''' __magic_name__ = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(__UpperCamelCase ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(__UpperCamelCase ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(__UpperCamelCase ) ) __magic_name__ = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(__UpperCamelCase ) ) __magic_name__ = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__UpperCamelCase ) ) @pytest.fixture(autouse=__UpperCamelCase , scope='''session''' ) def lowercase ( ) -> Any: datasets.disable_progress_bar() @pytest.fixture(autouse=__UpperCamelCase ) def lowercase ( __UpperCamelCase ) -> str: # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , __UpperCamelCase ) @pytest.fixture def lowercase ( __UpperCamelCase ) -> int: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , __UpperCamelCase )
190
1
'''simple docstring''' import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[Any] = (UnCLIPScheduler,) def __UpperCAmelCase ( self : Optional[int] , **UpperCAmelCase__ : List[str] ) -> Optional[int]: lowerCAmelCase = { 'num_train_timesteps': 1_0_0_0, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**UpperCAmelCase__ ) return config def __UpperCAmelCase ( self : Any ) -> Dict: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict ) -> Any: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> List[Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> int: for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCAmelCase__ , prev_timestep=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict ) -> str: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(variance_type='fixed_small_log' ) lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_994_987 ) ) < 1E-5 def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(variance_type='learned_range' ) lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) lowerCAmelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCAmelCase__ ) - -10.1_712_790 < 1E-5 assert scheduler._get_variance(4_8_7 , predicted_variance=UpperCAmelCase__ ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(9_9_9 , predicted_variance=UpperCAmelCase__ ) - -0.0_010_011 < 1E-5 def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) lowerCAmelCase = scheduler.timesteps lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(UpperCAmelCase__ ): # 1. predict noise residual lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ ).prev_sample lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def __UpperCAmelCase ( self : List[str] ) -> List[Any]: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(2_5 ) lowerCAmelCase = scheduler.timesteps lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(UpperCAmelCase__ ): # 1. predict noise residual lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ ) if i + 1 == timesteps.shape[0]: lowerCAmelCase = None else: lowerCAmelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , prev_timestep=UpperCAmelCase__ , generator=UpperCAmelCase__ ).prev_sample lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def __UpperCAmelCase ( self : Optional[int] ) -> Dict: pass def __UpperCAmelCase ( self : Dict ) -> List[str]: pass
133
'''simple docstring''' import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __snake_case ="""src/transformers""" # This is to make sure the transformers module imported is the one in the repo. __snake_case =importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __snake_case =spec.loader.load_module() __snake_case =transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __snake_case =re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") __snake_case ={ """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def a_ ( ): lowerCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCAmelCase = False # source code of `config_class` lowerCAmelCase = inspect.getsource(lowerCamelCase ) lowerCAmelCase = _re_checkpoint.findall(lowerCamelCase ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCAmelCase , lowerCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowerCAmelCase = True break lowerCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: lowerCAmelCase = '\n'.join(sorted(lowerCamelCase ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
133
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowercase__ ( UpperCamelCase_ , unittest.TestCase): UpperCamelCase_ = WavaVecaPhonemeCTCTokenizer UpperCamelCase_ = False def __A ( self : List[Any] ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Optional[int] = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) SCREAMING_SNAKE_CASE : Tuple = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) SCREAMING_SNAKE_CASE : Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) def __A ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Dict=20 , UpperCamelCase__ : Optional[int]=5 ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase__ )) for i in range(len(UpperCamelCase__ ) )] SCREAMING_SNAKE_CASE : str = list(filter(lambda UpperCamelCase__ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=UpperCamelCase__ ) , UpperCamelCase__ ) ) if max_length is not None and len(UpperCamelCase__ ) > max_length: SCREAMING_SNAKE_CASE : int = toks[:max_length] if min_length is not None and len(UpperCamelCase__ ) < min_length and len(UpperCamelCase__ ) > 0: while len(UpperCamelCase__ ) < min_length: SCREAMING_SNAKE_CASE : int = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE : Dict = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE : List[Any] = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) if " " not in output_txt and len(UpperCamelCase__ ) > 1: SCREAMING_SNAKE_CASE : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase__ ) ) if with_prefix_space: SCREAMING_SNAKE_CASE : Tuple = ''' ''' + output_txt SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) return output_txt, output_ids def __A ( self : Tuple , **UpperCamelCase__ : Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer('''m xxx ɪ''' , do_phonemize=UpperCamelCase__ ).input_ids self.assertEqual(UpperCamelCase__ , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) SCREAMING_SNAKE_CASE : List[str] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=UpperCamelCase__ ).input_ids self.assertEqual(UpperCamelCase__ , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa SCREAMING_SNAKE_CASE : Dict = tokenizer('''maɪ c''' , do_phonemize=UpperCamelCase__ ).input_ids self.assertEqual(UpperCamelCase__ , [3, 200] ) # mai should be <unk> (=3) def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) SCREAMING_SNAKE_CASE : int = '''Hello how are you''' SCREAMING_SNAKE_CASE : List[Any] = tokenizer.phonemize(UpperCamelCase__ , phonemizer_lang='''en-us''' ) self.assertEqual(UpperCamelCase__ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) SCREAMING_SNAKE_CASE : List[Any] = '''Hello how are you''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.phonemize(UpperCamelCase__ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(UpperCamelCase__ ).input_ids , tokenizer(UpperCamelCase__ , do_phonemize=UpperCamelCase__ ).input_ids ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) SCREAMING_SNAKE_CASE : Dict = '''Hello how are you''' SCREAMING_SNAKE_CASE : int = tokenizer.phonemize(UpperCamelCase__ , phonemizer_lang='''en-us''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.decode(tokenizer(UpperCamelCase__ ).input_ids ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) SCREAMING_SNAKE_CASE : List[str] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] SCREAMING_SNAKE_CASE : Any = tokenizer.decode(sample_ids[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , batch_tokens[0] ) self.assertEqual(UpperCamelCase__ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''Hello how are you''' SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.phonemize(UpperCamelCase__ , phonemizer_lang='''en-us''' ) self.assertEqual(UpperCamelCase__ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def __A ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) SCREAMING_SNAKE_CASE : Dict = '''Hello how are you''' SCREAMING_SNAKE_CASE : List[Any] = tokenizer.phonemize(UpperCamelCase__ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(UpperCamelCase__ ).input_ids , tokenizer(UpperCamelCase__ , do_phonemize=UpperCamelCase__ ).input_ids ) def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off SCREAMING_SNAKE_CASE : str = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter SCREAMING_SNAKE_CASE : Any = tokenizer.decode(sample_ids[0] ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , batch_tokens[0] ) self.assertEqual(UpperCamelCase__ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter SCREAMING_SNAKE_CASE : int = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(UpperCamelCase__ , filter_word_delimiter_token=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , batch_tokens[0] ) self.assertEqual(UpperCamelCase__ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) SCREAMING_SNAKE_CASE : int = '''Hello how are you''' SCREAMING_SNAKE_CASE : str = tokenizer.phonemize(UpperCamelCase__ , phonemizer_lang='''en-us''' ) SCREAMING_SNAKE_CASE : int = tokenizer.decode(tokenizer(UpperCamelCase__ ).input_ids , filter_word_delimiter_token=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) SCREAMING_SNAKE_CASE : Tuple = '''Hello how are you''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.phonemize(UpperCamelCase__ , phonemizer_lang='''en-us''' ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.decode(tokenizer(UpperCamelCase__ ).input_ids , filter_word_delimiter_token=UpperCamelCase__ ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , UpperCamelCase__ ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = '''Hello how are you''' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(UpperCamelCase__ , phonemizer_lang='''en-us''' ).input_ids SCREAMING_SNAKE_CASE : Tuple = tokenizer(UpperCamelCase__ , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(UpperCamelCase__ , '''ɛ l o h aʊ a ʁ j u''' ) def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) SCREAMING_SNAKE_CASE : Dict = '''Hello how Are you''' SCREAMING_SNAKE_CASE : str = '''hello how are you''' SCREAMING_SNAKE_CASE : Tuple = tokenizer(UpperCamelCase__ ).input_ids SCREAMING_SNAKE_CASE : Dict = tokenizer(UpperCamelCase__ ).input_ids self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def __A ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off SCREAMING_SNAKE_CASE : Dict = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on SCREAMING_SNAKE_CASE : str = tokenizer.batch_decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def __A ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def __A ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" SCREAMING_SNAKE_CASE : Any = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on SCREAMING_SNAKE_CASE : Tuple = tokenizer.decode(UpperCamelCase__ , output_char_offsets=UpperCamelCase__ , filter_word_delimiter_token=UpperCamelCase__ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(UpperCamelCase__ , UpperCamelCase__ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def __A ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): self.assertTrue(isinstance(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertTrue(isinstance(outputs_list[0] , UpperCamelCase__ ) ) # transform list to ModelOutput SCREAMING_SNAKE_CASE : Any = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(UpperCamelCase__ : Any , UpperCamelCase__ : Dict ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): [recursive_check(UpperCamelCase__ , UpperCamelCase__ ) for la, la in zip(UpperCamelCase__ , UpperCamelCase__ )] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off SCREAMING_SNAKE_CASE : str = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char SCREAMING_SNAKE_CASE : List[Any] = tokenizer.batch_decode(UpperCamelCase__ , output_char_offsets=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = [tokenizer.decode(UpperCamelCase__ , output_char_offsets=UpperCamelCase__ ) for ids in sample_ids] check_list_tuples_equal(UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def __A ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def __A ( self : Any ): '''simple docstring''' pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def __A ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def __A ( self : Any ): '''simple docstring''' pass def __A ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.vocab_size SCREAMING_SNAKE_CASE : List[str] = len(UpperCamelCase__ ) self.assertNotEqual(UpperCamelCase__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) SCREAMING_SNAKE_CASE : Dict = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] SCREAMING_SNAKE_CASE : List[str] = tokenizer.add_tokens(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.vocab_size SCREAMING_SNAKE_CASE : Tuple = len(UpperCamelCase__ ) self.assertNotEqual(UpperCamelCase__ , 0 ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , len(UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , all_size + len(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=UpperCamelCase__ ) self.assertGreaterEqual(len(UpperCamelCase__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.add_special_tokens(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.vocab_size SCREAMING_SNAKE_CASE : List[Any] = len(UpperCamelCase__ ) self.assertNotEqual(UpperCamelCase__ , 0 ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , len(UpperCamelCase__ ) ) self.assertEqual(UpperCamelCase__ , all_size_a + len(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=UpperCamelCase__ ) self.assertGreaterEqual(len(UpperCamelCase__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def __A ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def __A ( self : List[str] ): '''simple docstring''' pass def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizers(fast=UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): SCREAMING_SNAKE_CASE : Tuple = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertIsInstance(output['''text'''] , UpperCamelCase__ )
710
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __UpperCamelCase : int = logging.get_logger(__name__) def A ( _lowercase , _lowercase , _lowercase , _lowercase ): def constraint_to_multiple_of(_lowercase , _lowercase , _lowercase=0 , _lowercase=None ): SCREAMING_SNAKE_CASE : int = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE : Dict = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE : Optional[Any] = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE : Optional[Any] = (output_size, output_size) if isinstance(_lowercase , _lowercase ) else output_size SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = get_image_size(_lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = output_size # determine new height and width SCREAMING_SNAKE_CASE : Dict = output_height / input_height SCREAMING_SNAKE_CASE : Optional[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE : List[Any] = scale_width else: # fit height SCREAMING_SNAKE_CASE : List[Any] = scale_height SCREAMING_SNAKE_CASE : List[str] = constraint_to_multiple_of(scale_height * input_height , multiple=_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = constraint_to_multiple_of(scale_width * input_width , multiple=_lowercase ) return (new_height, new_width) class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = ["""pixel_values"""] def __init__( self : int , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = False , UpperCamelCase__ : int = 1 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 255 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = size if size is not None else {'''height''': 384, '''width''': 384} SCREAMING_SNAKE_CASE : Any = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = do_resize SCREAMING_SNAKE_CASE : Any = size SCREAMING_SNAKE_CASE : str = keep_aspect_ratio SCREAMING_SNAKE_CASE : List[str] = ensure_multiple_of SCREAMING_SNAKE_CASE : int = resample SCREAMING_SNAKE_CASE : Any = do_rescale SCREAMING_SNAKE_CASE : List[Any] = rescale_factor SCREAMING_SNAKE_CASE : Optional[int] = do_normalize SCREAMING_SNAKE_CASE : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : bool = False , UpperCamelCase__ : int = 1 , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE : Any = get_resize_output_image_size( UpperCamelCase__ , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=UpperCamelCase__ , multiple=UpperCamelCase__ , ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Dict , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : str , ): '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Any , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Optional[Any] , UpperCamelCase__ : ImageInput , UpperCamelCase__ : bool = None , UpperCamelCase__ : int = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : int = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : float = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Optional[int] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE : Tuple = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : str = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : Dict = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : Tuple = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Dict = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Any = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Any = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE : Optional[int] = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] SCREAMING_SNAKE_CASE : Tuple = {'''pixel_values''': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ ) def __A ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Tuple] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(UpperCamelCase__ ): SCREAMING_SNAKE_CASE : List[Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE : Optional[int] = [] for idx in range(len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase__ ) else: SCREAMING_SNAKE_CASE : List[Any] = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
34
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCamelCase = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" A__ : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A__ : Union[str, Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A__ : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A__ : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: A__ = ZeroShotClassificationPipeline( model=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: A__ = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(SCREAMING_SNAKE_CASE__ , {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "labels": [ANY(SCREAMING_SNAKE_CASE__ )], "scores": [ANY(SCREAMING_SNAKE_CASE__ )]} ) # No kwarg A__ = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "labels": [ANY(SCREAMING_SNAKE_CASE__ )], "scores": [ANY(SCREAMING_SNAKE_CASE__ )]} ) A__ = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "labels": [ANY(SCREAMING_SNAKE_CASE__ )], "scores": [ANY(SCREAMING_SNAKE_CASE__ )]} ) A__ = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( SCREAMING_SNAKE_CASE__ , {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "labels": [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )], "scores": [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) A__ = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( SCREAMING_SNAKE_CASE__ , {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "labels": [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )], "scores": [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) A__ = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(SCREAMING_SNAKE_CASE__ , {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "labels": [ANY(SCREAMING_SNAKE_CASE__ )], "scores": [ANY(SCREAMING_SNAKE_CASE__ )]} ) # https://github.com/huggingface/transformers/issues/13846 A__ = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "labels": [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )], "scores": [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )]} for i in range(1 ) ] , ) A__ = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( SCREAMING_SNAKE_CASE__ , [ {"sequence": ANY(SCREAMING_SNAKE_CASE__ ), "labels": [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )], "scores": [ANY(SCREAMING_SNAKE_CASE__ ), ANY(SCREAMING_SNAKE_CASE__ )]} for i in range(2 ) ] , ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): classifier("" , candidate_labels="politics" ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): classifier(SCREAMING_SNAKE_CASE__ , candidate_labels="politics" ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): classifier("Who are you voting for in 2020?" , candidate_labels=SCREAMING_SNAKE_CASE__ ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=SCREAMING_SNAKE_CASE__ , ) self.run_entailment_id(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: A__ = zero_shot_classifier.model.config A__ = config.labelaid A__ = zero_shot_classifier.entailment_id A__ = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) A__ = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A__ = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) A__ = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) A__ = original_labelaid self.assertEqual(SCREAMING_SNAKE_CASE__ , zero_shot_classifier.entailment_id ) @require_torch def snake_case__ ( self ) -> List[Any]: A__ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def snake_case__ ( self ) -> Optional[int]: A__ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) A__ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def snake_case__ ( self ) -> List[Any]: A__ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) A__ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def snake_case__ ( self ) -> Union[str, Any]: A__ = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) A__ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) A__ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=SCREAMING_SNAKE_CASE__ , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def snake_case__ ( self ) -> List[str]: A__ = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) A__ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) A__ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=SCREAMING_SNAKE_CASE__ , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
104
"""simple docstring""" def _lowerCamelCase ( UpperCAmelCase_ : bytes ) -> str: """simple docstring""" return "".join([hex(UpperCAmelCase_ )[2:].zfill(2 ).upper() for byte in list(UpperCAmelCase_ )] ) def _lowerCamelCase ( UpperCAmelCase_ : str ) -> bytes: """simple docstring""" if (len(UpperCAmelCase_ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(UpperCAmelCase_ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1], 16 ) for i in range(0, len(UpperCAmelCase_ ), 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
104
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = XGLMTokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : List[Any] = True def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(__UpperCamelCase ) , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = XGLMTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__UpperCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__UpperCamelCase , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=__UpperCamelCase ) lowercase_ = pickle.dumps(__UpperCamelCase ) pickle.loads(__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(__UpperCamelCase ) lowercase_ = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) lowercase_ = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) lowercase_ = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(__UpperCamelCase ) lowercase_ = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @slow def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(__UpperCamelCase , self.big_tokenizer.encode(__UpperCamelCase ) ) @slow def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""facebook/xglm-564M""" , padding=__UpperCamelCase , )
707
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCamelCase__ : def __init__( self : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : str=7 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : str=True , UpperCamelCase__ : Union[str, Any]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Dict=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Tuple=512 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : int=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase__ , ) def UpperCAmelCase__ ( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' lowercase_ = True lowercase_ = OpenLlamaModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , ): '''simple docstring''' lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , ): '''simple docstring''' lowercase_ = True lowercase_ = True lowercase_ = OpenLlamaForCausalLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # first forward pass lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) lowercase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase_ = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] lowercase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice lowercase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase_ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = (OpenLlamaForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Tuple = False __SCREAMING_SNAKE_CASE : Optional[int] = False def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = OpenLlamaModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """single_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = 3 lowercase_ = """multi_label_classification""" lowercase_ = input_dict["""input_ids"""] lowercase_ = input_ids.ne(1 ).to(UpperCamelCase__ ) lowercase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase_ = OpenLlamaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCAmelCase__ ( self : Tuple , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = ids_tensor([1, 10] , config.vocab_size ) lowercase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = OpenLlamaModel(UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) original_model.eval() lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state lowercase_ = original_model(UpperCamelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights lowercase_ = {"""type""": scaling_type, """factor""": 10.0} lowercase_ = OpenLlamaModel(UpperCamelCase__ ) scaled_model.to(UpperCamelCase__ ) scaled_model.eval() lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state lowercase_ = scaled_model(UpperCamelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
650
0
from math import log from scipy.constants import Boltzmann, physical_constants A_ : Tuple = 300 # TEMPERATURE (unit = K) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
57
import numpy # List of input, output pairs A_ : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A_ : List[Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) A_ : Any = [2, 4, 1, 5] A_ : List[Any] = len(train_data) A_ : List[Any] = 0.009 def snake_case (UpperCAmelCase__ , UpperCAmelCase__="train" ) -> Optional[int]: return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output( UpperCAmelCase__ , UpperCAmelCase__ ) def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[Any] = 0 for i in range(len(UpperCAmelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> List[Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def snake_case (UpperCAmelCase__ , UpperCAmelCase__=m ) -> Optional[Any]: UpperCamelCase_: Any = 0 for i in range(UpperCAmelCase__ ): if index == -1: summation_value += _error(UpperCAmelCase__ ) else: summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index] return summation_value def snake_case (UpperCAmelCase__ ) -> Optional[Any]: UpperCamelCase_: Optional[int] = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m return cost_derivative_value def snake_case () -> Union[str, Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_: str = 0.00_0002 UpperCamelCase_: Any = 0 UpperCamelCase_: int = 0 while True: j += 1 UpperCamelCase_: int = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase__ ) ): UpperCamelCase_: Any = get_cost_derivative(i - 1 ) UpperCamelCase_: Optional[int] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ): break UpperCamelCase_: Optional[int] = temp_parameter_vector print(('Number of iterations:', j) ) def snake_case () -> int: for i in range(len(UpperCAmelCase__ ) ): print(('Actual output value:', output(UpperCAmelCase__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
57
1
"""simple docstring""" from maths.prime_factors import prime_factors def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): __A = f'Input value of [number={number}] must be an integer' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
215
"""simple docstring""" from __future__ import annotations def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" return len(set(__UpperCamelCase ) ) == len(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
215
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE : Optional[int] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class snake_case ( lowercase_ ): """simple docstring""" def __init__( self, _lowercase, _lowercase=False, _lowercase=True, _lowercase=False, _lowercase="<s>", _lowercase="</s>", _lowercase="<unk>", _lowercase="<sep>", _lowercase="<pad>", _lowercase="<cls>", _lowercase="<mask>", _lowercase=["<eop>", "<eod>"], _lowercase = None, **_lowercase, ) -> None: SCREAMING_SNAKE_CASE_ = AddedToken(_lowercase, lstrip=_lowercase, rstrip=_lowercase ) if isinstance(_lowercase, _lowercase ) else mask_token SCREAMING_SNAKE_CASE_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase, remove_space=_lowercase, keep_accents=_lowercase, bos_token=_lowercase, eos_token=_lowercase, unk_token=_lowercase, sep_token=_lowercase, pad_token=_lowercase, cls_token=_lowercase, mask_token=_lowercase, additional_special_tokens=_lowercase, sp_model_kwargs=self.sp_model_kwargs, **_lowercase, ) SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowercase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.' ) SCREAMING_SNAKE_CASE_ = jieba SCREAMING_SNAKE_CASE_ = str.maketrans(' \n', '\u2582\u2583' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def a__ ( self ) -> Tuple: return len(self.sp_model ) def a__ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> str: SCREAMING_SNAKE_CASE_ = self.__dict__.copy() SCREAMING_SNAKE_CASE_ = None return state def __setstate__( self, _lowercase ) -> List[Any]: SCREAMING_SNAKE_CASE_ = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self, _lowercase ) -> Dict: if self.remove_space: SCREAMING_SNAKE_CASE_ = ' '.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE_ = inputs SCREAMING_SNAKE_CASE_ = outputs.replace('``', '"' ).replace('\'\'', '"' ) if not self.keep_accents: SCREAMING_SNAKE_CASE_ = unicodedata.normalize('NFKD', _lowercase ) SCREAMING_SNAKE_CASE_ = ''.join([c for c in outputs if not unicodedata.combining(_lowercase )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE_ = outputs.lower() return outputs def a__ ( self, _lowercase ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.preprocess_text(_lowercase ) SCREAMING_SNAKE_CASE_ = self.sp_model.encode(_lowercase, out_type=_lowercase ) SCREAMING_SNAKE_CASE_ = [] for piece in pieces: if len(_lowercase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase, '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE_ = cur_pieces[1:] else: SCREAMING_SNAKE_CASE_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowercase ) else: new_pieces.append(_lowercase ) return new_pieces def a__ ( self, _lowercase ) -> str: return self.sp_model.PieceToId(_lowercase ) def a__ ( self, _lowercase ) -> int: return self.sp_model.IdToPiece(_lowercase ) def a__ ( self, _lowercase ) -> str: SCREAMING_SNAKE_CASE_ = ''.join(_lowercase ).replace(_lowercase, ' ' ).strip() return out_string def a__ ( self, _lowercase, _lowercase = None ) -> List[int]: SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def a__ ( self, _lowercase, _lowercase = None, _lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase, token_ids_a=_lowercase, already_has_special_tokens=_lowercase ) if token_ids_a is not None: return ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1, 1] return ([0] * len(_lowercase )) + [1, 1] def a__ ( self, _lowercase, _lowercase = None ) -> List[int]: SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def a__ ( self, _lowercase, _lowercase = None ) -> Tuple[str]: if not os.path.isdir(_lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowercase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase, 'wb' ) as fi: SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,) def a__ ( self, *_lowercase, **_lowercase ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = super()._decode(*_lowercase, **_lowercase ) SCREAMING_SNAKE_CASE_ = text.replace(' ', '' ).replace('\u2582', ' ' ).replace('\u2583', '\n' ) return text
294
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case ( lowercase_ ): """simple docstring""" _a = ["""image_processor""", """tokenizer"""] _a = """CLIPImageProcessor""" _a = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self, _lowercase=None, _lowercase=None, **_lowercase ) -> int: SCREAMING_SNAKE_CASE_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', _lowercase, ) SCREAMING_SNAKE_CASE_ = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_lowercase, _lowercase ) def __call__( self, _lowercase=None, _lowercase=None, _lowercase=None, **_lowercase ) -> str: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: SCREAMING_SNAKE_CASE_ = self.tokenizer(_lowercase, return_tensors=_lowercase, **_lowercase ) if images is not None: SCREAMING_SNAKE_CASE_ = self.image_processor(_lowercase, return_tensors=_lowercase, **_lowercase ) if text is not None and images is not None: SCREAMING_SNAKE_CASE_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowercase ), tensor_type=_lowercase ) def a__ ( self, *_lowercase, **_lowercase ) -> Optional[int]: return self.tokenizer.batch_decode(*_lowercase, **_lowercase ) def a__ ( self, *_lowercase, **_lowercase ) -> Optional[Any]: return self.tokenizer.decode(*_lowercase, **_lowercase ) @property def a__ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
294
1
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any]=10_24 ) -> Union[str, Any]: __snake_case , __snake_case = [], [] __snake_case = list(zip(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case , __snake_case = sorted_examples[0] def is_too_big(_UpperCAmelCase : List[Any] ): return tok(_UpperCAmelCase , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __snake_case = new_src + " " + src __snake_case = new_tgt + " " + tgt if is_too_big(_UpperCAmelCase ) or is_too_big(_UpperCAmelCase ): # cant fit, finalize example finished_src.append(_UpperCAmelCase ) finished_tgt.append(_UpperCAmelCase ) __snake_case , __snake_case = src, tgt else: # can fit, keep adding __snake_case , __snake_case = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_UpperCAmelCase ) finished_tgt.append(_UpperCAmelCase ) return finished_src, finished_tgt def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Path , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ) -> List[Any]: __snake_case = Path(_UpperCAmelCase ) save_path.mkdir(exist_ok=_UpperCAmelCase ) for split in ["train"]: __snake_case , __snake_case = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' __snake_case = [x.rstrip() for x in Path(_UpperCAmelCase ).open().readlines()] __snake_case = [x.rstrip() for x in Path(_UpperCAmelCase ).open().readlines()] __snake_case , __snake_case = pack_examples(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) print(F'''packed {split} split from {len(_UpperCAmelCase )} examples -> {len(_UpperCAmelCase )}.''' ) Path(save_path / F'''{split}.source''' ).open("w" ).write("\n".join(_UpperCAmelCase ) ) Path(save_path / F'''{split}.target''' ).open("w" ).write("\n".join(_UpperCAmelCase ) ) for split in ["val", "test"]: __snake_case , __snake_case = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(_UpperCAmelCase , save_path / F'''{split}.source''' ) shutil.copyfile(_UpperCAmelCase , save_path / F'''{split}.target''' ) def __UpperCAmelCase ( ) -> Tuple: __snake_case = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=_UpperCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=_UpperCAmelCase , default=1_28 ) parser.add_argument("--data_dir" , type=_UpperCAmelCase ) parser.add_argument("--save_path" , type=_UpperCAmelCase ) __snake_case = parser.parse_args() __snake_case = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_UpperCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
680
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''vocab_file''': '''spiece.model'''} UpperCamelCase__ = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class a__ ( UpperCamelCase_ ): def __init__( self : Optional[Any] ,a__ : Dict ,a__ : Union[str, Any]=False ,a__ : Union[str, Any]=True ,a__ : Dict=False ,a__ : Any="<s>" ,a__ : Any="</s>" ,a__ : Optional[int]="<unk>" ,a__ : int="<sep>" ,a__ : Tuple="<pad>" ,a__ : Any="<cls>" ,a__ : List[Any]="<mask>" ,a__ : List[str]=["<eop>", "<eod>"] ,a__ : Optional[Dict[str, Any]] = None ,**a__ : Optional[int] ,) -> None: """simple docstring""" _lowerCAmelCase:Union[str, Any] = AddedToken(a__ ,lstrip=a__ ,rstrip=a__) if isinstance(a__ ,a__) else mask_token _lowerCAmelCase:Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a__ ,remove_space=a__ ,keep_accents=a__ ,bos_token=a__ ,eos_token=a__ ,unk_token=a__ ,sep_token=a__ ,pad_token=a__ ,cls_token=a__ ,mask_token=a__ ,additional_special_tokens=a__ ,sp_model_kwargs=self.sp_model_kwargs ,**a__ ,) _lowerCAmelCase:List[Any] = 3 _lowerCAmelCase:Union[str, Any] = do_lower_case _lowerCAmelCase:Dict = remove_space _lowerCAmelCase:Union[str, Any] = keep_accents _lowerCAmelCase:Dict = vocab_file _lowerCAmelCase:Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(a__) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''') _lowerCAmelCase:str = jieba _lowerCAmelCase:List[Any] = str.maketrans(''' \n''' ,'''\u2582\u2583''') @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __UpperCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" return len(self.sp_model) def __UpperCamelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" _lowerCAmelCase:Optional[int] = {self.convert_ids_to_tokens(a__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Union[str, Any]) -> Any: """simple docstring""" _lowerCAmelCase:Optional[Any] = self.__dict__.copy() _lowerCAmelCase:Any = None return state def __setstate__( self : List[str] ,a__ : Tuple) -> Any: """simple docstring""" _lowerCAmelCase:Any = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs'''): _lowerCAmelCase:str = {} _lowerCAmelCase:List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __UpperCamelCase ( self : Dict ,a__ : Union[str, Any]) -> Any: """simple docstring""" if self.remove_space: _lowerCAmelCase:List[str] = ''' '''.join(inputs.strip().split()) else: _lowerCAmelCase:str = inputs _lowerCAmelCase:int = outputs.replace('''``''' ,'''"''').replace('''\'\'''' ,'''"''') if not self.keep_accents: _lowerCAmelCase:Any = unicodedata.normalize('''NFKD''' ,a__) _lowerCAmelCase:Dict = ''''''.join([c for c in outputs if not unicodedata.combining(a__)]) if self.do_lower_case: _lowerCAmelCase:Dict = outputs.lower() return outputs def __UpperCamelCase ( self : str ,a__ : str) -> List[str]: """simple docstring""" _lowerCAmelCase:int = self.preprocess_text(a__) _lowerCAmelCase:int = self.sp_model.encode(a__ ,out_type=a__) _lowerCAmelCase:Tuple = [] for piece in pieces: if len(a__) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): _lowerCAmelCase:Optional[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(a__ ,'''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: _lowerCAmelCase:str = cur_pieces[1:] else: _lowerCAmelCase:Dict = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(a__) else: new_pieces.append(a__) return new_pieces def __UpperCamelCase ( self : int ,a__ : Any) -> Union[str, Any]: """simple docstring""" return self.sp_model.PieceToId(a__) def __UpperCamelCase ( self : Union[str, Any] ,a__ : int) -> Tuple: """simple docstring""" return self.sp_model.IdToPiece(a__) def __UpperCamelCase ( self : Dict ,a__ : Any) -> List[str]: """simple docstring""" _lowerCAmelCase:Optional[Any] = ''''''.join(a__).replace(a__ ,''' ''').strip() return out_string def __UpperCamelCase ( self : Union[str, Any] ,a__ : List[int] ,a__ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _lowerCAmelCase:Optional[Any] = [self.sep_token_id] _lowerCAmelCase:Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __UpperCamelCase ( self : Tuple ,a__ : List[int] ,a__ : Optional[List[int]] = None ,a__ : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ ,token_ids_a=a__ ,already_has_special_tokens=a__) if token_ids_a is not None: return ([0] * len(a__)) + [1] + ([0] * len(a__)) + [1, 1] return ([0] * len(a__)) + [1, 1] def __UpperCamelCase ( self : Optional[int] ,a__ : List[int] ,a__ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _lowerCAmelCase:List[Any] = [self.sep_token_id] _lowerCAmelCase:List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __UpperCamelCase ( self : Dict ,a__ : str ,a__ : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(a__): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return _lowerCAmelCase:List[str] = os.path.join( a__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(a__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file ,a__) elif not os.path.isfile(self.vocab_file): with open(a__ ,'''wb''') as fi: _lowerCAmelCase:Optional[Any] = self.sp_model.serialized_model_proto() fi.write(a__) return (out_vocab_file,) def __UpperCamelCase ( self : Dict ,*a__ : str ,**a__ : Optional[int]) -> str: """simple docstring""" _lowerCAmelCase:List[str] = super()._decode(*a__ ,**a__) _lowerCAmelCase:List[str] = text.replace(''' ''' ,'''''').replace('''\u2582''' ,''' ''').replace('''\u2583''' ,'''\n''') return text
227
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {} class a__ ( UpperCamelCase_ ): snake_case__ = '''llama''' snake_case__ = ['''past_key_values'''] def __init__( self : str ,a__ : Union[str, Any]=3_2000 ,a__ : Any=4096 ,a__ : int=1_1008 ,a__ : int=32 ,a__ : Optional[Any]=32 ,a__ : List[Any]=None ,a__ : List[Any]="silu" ,a__ : Union[str, Any]=2048 ,a__ : Any=0.02 ,a__ : Any=1E-6 ,a__ : int=True ,a__ : Optional[int]=0 ,a__ : Any=1 ,a__ : Any=2 ,a__ : str=1 ,a__ : str=False ,a__ : Union[str, Any]=None ,**a__ : List[Any] ,) -> str: """simple docstring""" _lowerCAmelCase:Tuple = vocab_size _lowerCAmelCase:Optional[int] = max_position_embeddings _lowerCAmelCase:int = hidden_size _lowerCAmelCase:Dict = intermediate_size _lowerCAmelCase:List[Any] = num_hidden_layers _lowerCAmelCase:List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: _lowerCAmelCase:List[Any] = num_attention_heads _lowerCAmelCase:Any = num_key_value_heads _lowerCAmelCase:Union[str, Any] = hidden_act _lowerCAmelCase:int = initializer_range _lowerCAmelCase:Any = rms_norm_eps _lowerCAmelCase:Optional[Any] = pretraining_tp _lowerCAmelCase:str = use_cache _lowerCAmelCase:Union[str, Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a__ ,bos_token_id=a__ ,eos_token_id=a__ ,tie_word_embeddings=a__ ,**a__ ,) def __UpperCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,a__) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'got {self.rope_scaling}') _lowerCAmelCase:Optional[Any] = self.rope_scaling.get('''type''' ,a__) _lowerCAmelCase:Any = self.rope_scaling.get('''factor''' ,a__) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}') if rope_scaling_factor is None or not isinstance(a__ ,a__) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}')
227
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } __UpperCAmelCase = { 'google/fnet-base': 512, 'google/fnet-large': 512, } __UpperCAmelCase = '▁' class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'token_type_ids'] A = FNetTokenizer def __init__( self ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE=False ,__SCREAMING_SNAKE_CASE=True ,__SCREAMING_SNAKE_CASE=True ,__SCREAMING_SNAKE_CASE="<unk>" ,__SCREAMING_SNAKE_CASE="[SEP]" ,__SCREAMING_SNAKE_CASE="<pad>" ,__SCREAMING_SNAKE_CASE="[CLS]" ,__SCREAMING_SNAKE_CASE="[MASK]" ,**__SCREAMING_SNAKE_CASE ,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE : List[str] = ( AddedToken(__SCREAMING_SNAKE_CASE ,lstrip=__SCREAMING_SNAKE_CASE ,rstrip=__SCREAMING_SNAKE_CASE ,normalized=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) else mask_token ) super().__init__( __SCREAMING_SNAKE_CASE ,tokenizer_file=__SCREAMING_SNAKE_CASE ,do_lower_case=__SCREAMING_SNAKE_CASE ,remove_space=__SCREAMING_SNAKE_CASE ,keep_accents=__SCREAMING_SNAKE_CASE ,unk_token=__SCREAMING_SNAKE_CASE ,sep_token=__SCREAMING_SNAKE_CASE ,pad_token=__SCREAMING_SNAKE_CASE ,cls_token=__SCREAMING_SNAKE_CASE ,mask_token=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ,) SCREAMING_SNAKE_CASE : List[Any] = do_lower_case SCREAMING_SNAKE_CASE : Dict = remove_space SCREAMING_SNAKE_CASE : int = keep_accents SCREAMING_SNAKE_CASE : Optional[Any] = vocab_file SCREAMING_SNAKE_CASE : Tuple = False if not self.vocab_file else True def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( __SCREAMING_SNAKE_CASE ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file ,__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
706
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( snake_case_ : list ) -> bool: if not isinstance(snake_case_ , snake_case_ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(snake_case_ ) == 0: raise ValueError('Input list must be a non empty list' ) if len(snake_case_ ) == 1: return True SCREAMING_SNAKE_CASE : Any = series[1] - series[0] for index in range(len(snake_case_ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE_ ( snake_case_ : list ) -> float: if not isinstance(snake_case_ , snake_case_ ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(snake_case_ ) == 0: raise ValueError('Input list must be a non empty list' ) SCREAMING_SNAKE_CASE : List[str] = 0 for val in series: answer += val return answer / len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
220
0
import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# __a = [ # (stable-diffusion, HF Diffusers) ('time_embed.0.weight', 'time_embedding.linear_1.weight'), ('time_embed.0.bias', 'time_embedding.linear_1.bias'), ('time_embed.2.weight', 'time_embedding.linear_2.weight'), ('time_embed.2.bias', 'time_embedding.linear_2.bias'), ('input_blocks.0.0.weight', 'conv_in.weight'), ('input_blocks.0.0.bias', 'conv_in.bias'), ('out.0.weight', 'conv_norm_out.weight'), ('out.0.bias', 'conv_norm_out.bias'), ('out.2.weight', 'conv_out.weight'), ('out.2.bias', 'conv_out.bias'), ] __a = [ # (stable-diffusion, HF Diffusers) ('in_layers.0', 'norm1'), ('in_layers.2', 'conv1'), ('out_layers.0', 'norm2'), ('out_layers.3', 'conv2'), ('emb_layers.1', 'time_emb_proj'), ('skip_connection', 'conv_shortcut'), ] __a = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks __a = f"down_blocks.{i}.resnets.{j}." __a = f"input_blocks.{3*i + j + 1}.0." unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 __a = f"down_blocks.{i}.attentions.{j}." __a = f"input_blocks.{3*i + j + 1}.1." unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks __a = f"up_blocks.{i}.resnets.{j}." __a = f"output_blocks.{3*i + j}.0." unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 __a = f"up_blocks.{i}.attentions.{j}." __a = f"output_blocks.{3*i + j}.1." unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 __a = f"down_blocks.{i}.downsamplers.0.conv." __a = f"input_blocks.{3*(i+1)}.0.op." unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 __a = f"up_blocks.{i}.upsamplers.0." __a = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}." unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) __a = 'mid_block.attentions.0.' __a = 'middle_block.1.' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): __a = f"mid_block.resnets.{j}." __a = f"middle_block.{2*j}." unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def a ( snake_case__: Tuple ): '''simple docstring''' # buyer beware: this is a *brittle* function, # and correct output requires that all of these pieces interact in # the exact order in which I have arranged them. lowercase_ = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowercase_ = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowercase_ = v.replace(snake_case__ , snake_case__ ) lowercase_ = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowercase_ = v.replace(snake_case__ , snake_case__ ) lowercase_ = v lowercase_ = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# __a = [ # (stable-diffusion, HF Diffusers) ('nin_shortcut', 'conv_shortcut'), ('norm_out', 'conv_norm_out'), ('mid.attn_1.', 'mid_block.attentions.0.'), ] for i in range(4): # down_blocks have two resnets for j in range(2): __a = f"encoder.down_blocks.{i}.resnets.{j}." __a = f"encoder.down.{i}.block.{j}." vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: __a = f"down_blocks.{i}.downsamplers.0." __a = f"down.{i}.downsample." vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) __a = f"up_blocks.{i}.upsamplers.0." __a = f"up.{3-i}.upsample." vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): __a = f"decoder.up_blocks.{i}.resnets.{j}." __a = f"decoder.up.{3-i}.block.{j}." vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): __a = f"mid_block.resnets.{i}." __a = f"mid.block_{i+1}." vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) __a = [ # (stable-diffusion, HF Diffusers) ('norm.', 'group_norm.'), ('q.', 'query.'), ('k.', 'key.'), ('v.', 'value.'), ('proj_out.', 'proj_attn.'), ] def a ( snake_case__: Tuple ): '''simple docstring''' # convert HF linear weights to SD conv2d weights return w.reshape(*w.shape , 1 , 1 ) def a ( snake_case__: Dict ): '''simple docstring''' lowercase_ = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowercase_ = v.replace(snake_case__ , snake_case__ ) lowercase_ = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowercase_ = v.replace(snake_case__ , snake_case__ ) lowercase_ = v lowercase_ = {v: vae_state_dict[k] for k, v in mapping.items()} lowercase_ = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) lowercase_ = reshape_weight_for_sd(snake_case__ ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# __a = [ # (stable-diffusion, HF Diffusers) ('resblocks.', 'text_model.encoder.layers.'), ('ln_1', 'layer_norm1'), ('ln_2', 'layer_norm2'), ('.c_fc.', '.fc1.'), ('.c_proj.', '.fc2.'), ('.attn', '.self_attn'), ('ln_final.', 'transformer.text_model.final_layer_norm.'), ('token_embedding.weight', 'transformer.text_model.embeddings.token_embedding.weight'), ('positional_embedding', 'transformer.text_model.embeddings.position_embedding.weight'), ] __a = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} __a = re.compile('|'.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp __a = {'q': 0, 'k': 1, 'v': 2} def a ( snake_case__: Dict ): '''simple docstring''' lowercase_ = {} lowercase_ = {} lowercase_ = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): lowercase_ = k[: -len('''.q_proj.weight''' )] lowercase_ = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: lowercase_ = [None, None, None] lowercase_ = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): lowercase_ = k[: -len('''.q_proj.bias''' )] lowercase_ = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: lowercase_ = [None, None, None] lowercase_ = v continue lowercase_ = textenc_pattern.sub(lambda snake_case__ : protected[re.escape(m.group(0 ) )] , snake_case__ ) lowercase_ = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) lowercase_ = textenc_pattern.sub(lambda snake_case__ : protected[re.escape(m.group(0 ) )] , snake_case__ ) lowercase_ = torch.cat(snake_case__ ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) lowercase_ = textenc_pattern.sub(lambda snake_case__ : protected[re.escape(m.group(0 ) )] , snake_case__ ) lowercase_ = torch.cat(snake_case__ ) return new_state_dict def a ( snake_case__: List[Any] ): '''simple docstring''' return text_enc_dict if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--use_safetensors', action='store_true', help='Save weights use safetensors, default is ckpt.' ) __a = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors __a = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.safetensors') __a = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.safetensors') __a = osp.join(args.model_path, 'text_encoder', 'model.safetensors') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): __a = load_file(unet_path, device='cpu') else: __a = osp.join(args.model_path, 'unet', 'diffusion_pytorch_model.bin') __a = torch.load(unet_path, map_location='cpu') if osp.exists(vae_path): __a = load_file(vae_path, device='cpu') else: __a = osp.join(args.model_path, 'vae', 'diffusion_pytorch_model.bin') __a = torch.load(vae_path, map_location='cpu') if osp.exists(text_enc_path): __a = load_file(text_enc_path, device='cpu') else: __a = osp.join(args.model_path, 'text_encoder', 'pytorch_model.bin') __a = torch.load(text_enc_path, map_location='cpu') # Convert the UNet model __a = convert_unet_state_dict(unet_state_dict) __a = {'model.diffusion_model.' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model __a = convert_vae_state_dict(vae_state_dict) __a = {'first_stage_model.' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper __a = 'text_model.encoder.layers.22.layer_norm2.bias' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm __a = {'transformer.' + k: v for k, v in text_enc_dict.items()} __a = convert_text_enc_state_dict_vaa(text_enc_dict) __a = {'cond_stage_model.model.' + k: v for k, v in text_enc_dict.items()} else: __a = convert_text_enc_state_dict(text_enc_dict) __a = {'cond_stage_model.transformer.' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint __a = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: __a = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: __a = {'state_dict': state_dict} torch.save(state_dict, args.checkpoint_path)
97
"""simple docstring""" import numpy as np import datasets a_ = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' a_ = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' a_ = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def _lowerCamelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: # convert to numpy arrays __lowercase : Dict = np.array(UpperCamelCase_ ) __lowercase : str = np.array(UpperCamelCase_ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction __lowercase : Tuple = X - np.mean(UpperCamelCase_ ) __lowercase : List[Any] = np.cov(reference_distribution.T ) try: __lowercase : Tuple = np.linalg.inv(UpperCamelCase_ ) except np.linalg.LinAlgError: __lowercase : str = np.linalg.pinv(UpperCamelCase_ ) __lowercase : Any = np.dot(UpperCamelCase_ , UpperCamelCase_ ) __lowercase : Optional[Any] = np.dot(UpperCamelCase_ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
76
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def UpperCamelCase ( self ): A__ = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) A__ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]],dtype=tf.intaa,) # J'aime le camembert !" A__ = model(__lowerCAmelCase )['''last_hidden_state'''] A__ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape,__lowerCAmelCase ) # compare the actual values for a slice. A__ = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]],dtype=tf.floataa,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy(),expected_slice.numpy(),atol=1E-4 ) )
710
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) a__: List[str] = None a__: List[Any] = { '7B': 11_008, '13B': 13_824, '30B': 17_920, '65B': 22_016, '70B': 28_672, } a__: List[str] = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def UpperCamelCase__( UpperCamelCase__ : str , UpperCamelCase__ : List[str]=1 , UpperCamelCase__ : Optional[int]=2_56 )->List[str]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def UpperCamelCase__( UpperCamelCase__ : Optional[int] )->List[Any]: with open(UpperCamelCase__ , '''r''' ) as f: return json.load(UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] )->Dict: with open(UpperCamelCase__ , '''w''' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : Dict , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict=True )->Optional[int]: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) A__ = os.path.join(UpperCamelCase__ , '''tmp''' ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) A__ = read_json(os.path.join(UpperCamelCase__ , '''params.json''' ) ) A__ = NUM_SHARDS[model_size] A__ = params['''n_layers'''] A__ = params['''n_heads'''] A__ = n_heads // num_shards A__ = params['''dim'''] A__ = dim // n_heads A__ = 10000.0 A__ = 1.0 / (base ** (torch.arange(0 , UpperCamelCase__ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: A__ = params['''n_kv_heads'''] # for GQA / MQA A__ = n_heads_per_shard // num_key_value_heads A__ = dim // num_key_value_heads else: # compatibility with other checkpoints A__ = n_heads A__ = n_heads_per_shard A__ = dim # permute for sliced rotary def permute(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict=n_heads , UpperCamelCase__ : str=dim , UpperCamelCase__ : Any=dim ): return w.view(UpperCamelCase__ , dima // n_heads // 2 , 2 , UpperCamelCase__ ).transpose(1 , 2 ).reshape(UpperCamelCase__ , UpperCamelCase__ ) print(f"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) A__ = torch.load(os.path.join(UpperCamelCase__ , '''consolidated.00.pth''' ) , map_location='''cpu''' ) else: # Sharded A__ = [ torch.load(os.path.join(UpperCamelCase__ , f"consolidated.{i:02d}.pth" ) , map_location='''cpu''' ) for i in range(UpperCamelCase__ ) ] A__ = 0 A__ = {'''weight_map''': {}} for layer_i in range(UpperCamelCase__ ): A__ = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded A__ = { f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"] ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"] ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. A__ = { f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } A__ = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for i in range(UpperCamelCase__ ) ] , dim=0 , ).reshape(UpperCamelCase__ , UpperCamelCase__ ) ) A__ = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for i in range(UpperCamelCase__ ) ] , dim=0 , ).reshape(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) A__ = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for i in range(UpperCamelCase__ ) ] , dim=0 , ).reshape(UpperCamelCase__ , UpperCamelCase__ ) A__ = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(UpperCamelCase__ )] , dim=1 ) A__ = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(UpperCamelCase__ )] , dim=0 ) A__ = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(UpperCamelCase__ )] , dim=1 ) A__ = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(UpperCamelCase__ )] , dim=0 ) A__ = inv_freq for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) A__ = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded A__ = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: A__ = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(UpperCamelCase__ )] , dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(UpperCamelCase__ )] , dim=0 ), } for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) # Write configs A__ = {'''total_size''': param_count * 2} write_json(UpperCamelCase__ , os.path.join(UpperCamelCase__ , '''pytorch_model.bin.index.json''' ) ) A__ = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 A__ = params['''multiple_of'''] if '''multiple_of''' in params else 2_56 A__ = LlamaConfig( hidden_size=UpperCamelCase__ , intermediate_size=compute_intermediate_size(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , num_attention_heads=params['''n_heads'''] , num_hidden_layers=params['''n_layers'''] , rms_norm_eps=params['''norm_eps'''] , num_key_value_heads=UpperCamelCase__ , ) config.save_pretrained(UpperCamelCase__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) A__ = LlamaForCausalLM.from_pretrained(UpperCamelCase__ , torch_dtype=torch.floataa , low_cpu_mem_usage=UpperCamelCase__ ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(UpperCamelCase__ , safe_serialization=UpperCamelCase__ ) shutil.rmtree(UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] )->List[str]: # Initialize the tokenizer based on the `spm` model A__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) A__ = tokenizer_class(UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) def UpperCamelCase__( )->Tuple: A__ = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' , help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' , ) parser.add_argument( '''--model_size''' , choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] , ) parser.add_argument( '''--output_dir''' , help='''Location to write HF model and tokenizer''' , ) parser.add_argument('''--safe_serialization''' , type=UpperCamelCase__ , help='''Whether or not to save using `safetensors`.''' ) A__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) A__ = os.path.join(args.input_dir , '''tokenizer.model''' ) write_tokenizer(args.output_dir , UpperCamelCase__ ) if __name__ == "__main__": main()
212
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : Tuple = { '''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['''VivitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ '''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VivitModel''', '''VivitPreTrainedModel''', '''VivitForVideoClassification''', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
1
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class a__ ( A__ ): UpperCAmelCase__ = (DDPMScheduler,) def lowerCamelCase_ ( self :Optional[Any] , **_lowerCamelCase :Any ): '''simple docstring''' UpperCamelCase_ : str ={ 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_lowerCamelCase ) return config def lowerCamelCase_ ( self :Dict ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def lowerCamelCase_ ( self :Any ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def lowerCamelCase_ ( self :Dict ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowerCamelCase ) def lowerCamelCase_ ( self :List[str] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCamelCase ) def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' self.check_over_configs(thresholding=_lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowerCamelCase , prediction_type=_lowerCamelCase , sample_max_value=_lowerCamelCase , ) def lowerCamelCase_ ( self :Union[str, Any] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def lowerCamelCase_ ( self :Dict ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : str =self.scheduler_classes[0] UpperCamelCase_ : Any =self.get_scheduler_config() UpperCamelCase_ : Any =scheduler_class(**_lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : Tuple =self.scheduler_classes[0] UpperCamelCase_ : List[Any] =self.get_scheduler_config() UpperCamelCase_ : Tuple =scheduler_class(**_lowerCamelCase ) UpperCamelCase_ : Dict =len(_lowerCamelCase ) UpperCamelCase_ : int =self.dummy_model() UpperCamelCase_ : Dict =self.dummy_sample_deter UpperCamelCase_ : str =torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual UpperCamelCase_ : Optional[int] =model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 UpperCamelCase_ : Tuple =scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase_ : List[Any] =pred_prev_sample UpperCamelCase_ : Union[str, Any] =torch.sum(torch.abs(_lowerCamelCase ) ) UpperCamelCase_ : Dict =torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1E-2 assert abs(result_mean.item() - 0.3372 ) < 1E-3 def lowerCamelCase_ ( self :str ): '''simple docstring''' UpperCamelCase_ : Any =self.scheduler_classes[0] UpperCamelCase_ : Optional[int] =self.get_scheduler_config(prediction_type='v_prediction' ) UpperCamelCase_ : Dict =scheduler_class(**_lowerCamelCase ) UpperCamelCase_ : Optional[Any] =len(_lowerCamelCase ) UpperCamelCase_ : Tuple =self.dummy_model() UpperCamelCase_ : List[Any] =self.dummy_sample_deter UpperCamelCase_ : Tuple =torch.manual_seed(0 ) for t in reversed(range(_lowerCamelCase ) ): # 1. predict noise residual UpperCamelCase_ : List[Any] =model(_lowerCamelCase , _lowerCamelCase ) # 2. predict previous mean of sample x_t-1 UpperCamelCase_ : int =scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase_ : List[Any] =pred_prev_sample UpperCamelCase_ : Tuple =torch.sum(torch.abs(_lowerCamelCase ) ) UpperCamelCase_ : Any =torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1E-2 assert abs(result_mean.item() - 0.2631 ) < 1E-3 def lowerCamelCase_ ( self :Union[str, Any] ): '''simple docstring''' UpperCamelCase_ : List[Any] =self.scheduler_classes[0] UpperCamelCase_ : List[str] =self.get_scheduler_config() UpperCamelCase_ : Dict =scheduler_class(**_lowerCamelCase ) UpperCamelCase_ : str =[100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowerCamelCase ) UpperCamelCase_ : Optional[int] =scheduler.timesteps for i, timestep in enumerate(_lowerCamelCase ): if i == len(_lowerCamelCase ) - 1: UpperCamelCase_ : int =-1 else: UpperCamelCase_ : Dict =timesteps[i + 1] UpperCamelCase_ : List[str] =scheduler.previous_timestep(_lowerCamelCase ) UpperCamelCase_ : Optional[int] =prev_t.item() self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_ ( self :str ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =self.scheduler_classes[0] UpperCamelCase_ : Dict =self.get_scheduler_config() UpperCamelCase_ : Optional[Any] =scheduler_class(**_lowerCamelCase ) UpperCamelCase_ : Any =[100, 87, 50, 51, 0] with self.assertRaises(_lowerCamelCase , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' UpperCamelCase_ : List[Any] =self.scheduler_classes[0] UpperCamelCase_ : List[str] =self.get_scheduler_config() UpperCamelCase_ : List[Any] =scheduler_class(**_lowerCamelCase ) UpperCamelCase_ : Any =[100, 87, 50, 1, 0] UpperCamelCase_ : Dict =len(_lowerCamelCase ) with self.assertRaises(_lowerCamelCase , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_lowerCamelCase , timesteps=_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : int =self.scheduler_classes[0] UpperCamelCase_ : Tuple =self.get_scheduler_config() UpperCamelCase_ : Optional[Any] =scheduler_class(**_lowerCamelCase ) UpperCamelCase_ : Dict =[scheduler.config.num_train_timesteps] with self.assertRaises( _lowerCamelCase , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_lowerCamelCase )
395
"""simple docstring""" def A_ ( __lowercase = 10 ): if not isinstance(__lowercase , __lowercase ) or n < 0: raise ValueError('Invalid input' ) UpperCamelCase_ : int =10**n UpperCamelCase_ : List[str] =2_84_33 * (pow(2 , 7_83_04_57 , __lowercase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(10) = }""")
395
1
"""simple docstring""" import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
260
"""simple docstring""" from collections.abc import Callable def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = a A__ = b if function(lowerCAmelCase__ ) == 0: # one of the a or b is a root for the function return a elif function(lowerCAmelCase__ ) == 0: return b elif ( function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: A__ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowerCAmelCase__ ) == 0: return mid elif function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) < 0: A__ = mid else: A__ = mid A__ = start + (end - start) / 2.0 return mid def __lowerCamelCase ( lowerCAmelCase__ ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
260
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : Dict[Optional[str], Type[Formatter]] = {} lowerCAmelCase : Dict[Optional[str], str] = {} lowerCAmelCase : Dict[Optional[str], Exception] = {} def A_ ( a , a , a = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) SCREAMING_SNAKE_CASE_ : Optional[int] = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) SCREAMING_SNAKE_CASE_ : Dict = format_type def A_ ( a , a , a = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): SCREAMING_SNAKE_CASE_ : Any = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: lowerCAmelCase : Optional[Any] = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: lowerCAmelCase : Any = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: lowerCAmelCase : Optional[int] = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def A_ ( a ): """simple docstring""" if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def A_ ( a , **a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = get_format_type_from_alias(a ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**a ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'" )
716
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return model @property def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , cross_attention_dim=10 , ) return model @property def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoencoderKL( sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , ) SCREAMING_SNAKE_CASE_ : Dict = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=('AttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'AttnUpBlock2D') , ) return vqvae, unet @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE_ : Any = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = DDPMScheduler() SCREAMING_SNAKE_CASE_ : str = AudioDiffusionPipeline(vqvae=_SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe(generator=_SCREAMING_SNAKE_CASE , steps=4 ) SCREAMING_SNAKE_CASE_ : Any = output.audios[0] SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.images[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(generator=_SCREAMING_SNAKE_CASE , steps=4 , return_dict=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) SCREAMING_SNAKE_CASE_ : List[Any] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] SCREAMING_SNAKE_CASE_ : List[Any] = np.frombuffer(image_from_tuple.tobytes() , dtype='uint8' )[:10] SCREAMING_SNAKE_CASE_ : Any = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 SCREAMING_SNAKE_CASE_ : Optional[int] = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) SCREAMING_SNAKE_CASE_ : str = DDIMScheduler() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.dummy_vqvae_and_unet SCREAMING_SNAKE_CASE_ : int = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) np.random.seed(0 ) SCREAMING_SNAKE_CASE_ : Dict = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) SCREAMING_SNAKE_CASE_ : str = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(raw_audio=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , start_step=5 , steps=10 ) SCREAMING_SNAKE_CASE_ : int = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) SCREAMING_SNAKE_CASE_ : Optional[int] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] SCREAMING_SNAKE_CASE_ : int = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 SCREAMING_SNAKE_CASE_ : Dict = self.dummy_unet_condition SCREAMING_SNAKE_CASE_ : Union[str, Any] = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=_SCREAMING_SNAKE_CASE , mel=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) np.random.seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.rand((1, 1, 10) ) SCREAMING_SNAKE_CASE_ : Any = pipe(generator=_SCREAMING_SNAKE_CASE , encoding=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.images[0] SCREAMING_SNAKE_CASE_ : Dict = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = torch_device SCREAMING_SNAKE_CASE_ : str = DiffusionPipeline.from_pretrained('teticio/audio-diffusion-ddim-256' ) SCREAMING_SNAKE_CASE_ : Dict = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(42 ) SCREAMING_SNAKE_CASE_ : List[Any] = pipe(generator=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = output.audios[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] SCREAMING_SNAKE_CASE_ : Optional[int] = np.frombuffer(image.tobytes() , dtype='uint8' )[:10] SCREAMING_SNAKE_CASE_ : Any = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
353
0
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase_ = logging.get_logger(__name__) enable_full_determinism() class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : List[Any] = UNetaDModel __lowerCAmelCase : str = """sample""" @property def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 3 _lowerCAmelCase : List[str] = (3_2, 3_2) _lowerCAmelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case_ ) _lowerCAmelCase : List[Any] = torch.tensor([1_0] ).to(snake_case_ ) return {"sample": noise, "timestep": time_step} @property def __UpperCamelCase ( self ): return (3, 3_2, 3_2) @property def __UpperCamelCase ( self ): return (3, 3_2, 3_2) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = { """block_out_channels""": (3_2, 6_4), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 3_2, } _lowerCAmelCase : Dict = self.dummy_input return init_dict, inputs_dict class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : Optional[int] = UNetaDModel __lowerCAmelCase : List[str] = """sample""" @property def __UpperCamelCase ( self ): _lowerCAmelCase : str = 4 _lowerCAmelCase : Optional[Any] = 4 _lowerCAmelCase : Optional[int] = (3_2, 3_2) _lowerCAmelCase : Dict = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case_ ) _lowerCAmelCase : str = torch.tensor([1_0] ).to(snake_case_ ) return {"sample": noise, "timestep": time_step} @property def __UpperCamelCase ( self ): return (4, 3_2, 3_2) @property def __UpperCamelCase ( self ): return (4, 3_2, 3_2) def __UpperCamelCase ( self ): _lowerCAmelCase : int = { """sample_size""": 3_2, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (3_2, 6_4), """attention_head_dim""": 3_2, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } _lowerCAmelCase : int = self.dummy_input return init_dict, inputs_dict def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : List[str] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(snake_case_ ) _lowerCAmelCase : List[str] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=snake_case_ ) model.to(snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def __UpperCamelCase ( self ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=snake_case_ ) model_accelerate.to(snake_case_ ) model_accelerate.eval() _lowerCAmelCase : List[Any] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCAmelCase : Any = noise.to(snake_case_ ) _lowerCAmelCase : List[str] = torch.tensor([1_0] * noise.shape[0] ).to(snake_case_ ) _lowerCAmelCase : Tuple = model_accelerate(snake_case_ , snake_case_ )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _lowerCAmelCase , _lowerCAmelCase : int = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=snake_case_ , low_cpu_mem_usage=snake_case_ ) model_normal_load.to(snake_case_ ) model_normal_load.eval() _lowerCAmelCase : Union[str, Any] = model_normal_load(snake_case_ , snake_case_ )["""sample"""] assert torch_all_close(snake_case_ , snake_case_ , rtol=1E-3 ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(snake_case_ ) _lowerCAmelCase : Dict = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _lowerCAmelCase : Tuple = noise.to(snake_case_ ) _lowerCAmelCase : Optional[Any] = torch.tensor([1_0] * noise.shape[0] ).to(snake_case_ ) with torch.no_grad(): _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ).sample _lowerCAmelCase : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _lowerCAmelCase : Dict = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(snake_case_ , snake_case_ , rtol=1E-3 ) ) class a_ (_a , _a , unittest.TestCase ): __lowerCAmelCase : int = UNetaDModel __lowerCAmelCase : Optional[Any] = """sample""" @property def __UpperCamelCase ( self , snake_case_=(3_2, 3_2) ): _lowerCAmelCase : Any = 4 _lowerCAmelCase : int = 3 _lowerCAmelCase : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case_ ) _lowerCAmelCase : List[Any] = torch.tensor(batch_size * [1_0] ).to(dtype=torch.intaa , device=snake_case_ ) return {"sample": noise, "timestep": time_step} @property def __UpperCamelCase ( self ): return (3, 3_2, 3_2) @property def __UpperCamelCase ( self ): return (3, 3_2, 3_2) def __UpperCamelCase ( self ): _lowerCAmelCase : List[Any] = { """block_out_channels""": [3_2, 6_4, 6_4, 6_4], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1E-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } _lowerCAmelCase : Optional[Any] = self.dummy_input return init_dict, inputs_dict @slow def __UpperCamelCase ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(snake_case_ ) _lowerCAmelCase : Optional[Any] = self.dummy_input _lowerCAmelCase : Union[str, Any] = floats_tensor((4, 3) + (2_5_6, 2_5_6) ).to(snake_case_ ) _lowerCAmelCase : Any = noise _lowerCAmelCase : str = model(**snake_case_ ) assert image is not None, "Make sure output is not None" @slow def __UpperCamelCase ( self ): _lowerCAmelCase : List[Any] = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(snake_case_ ) _lowerCAmelCase : Optional[int] = 4 _lowerCAmelCase : Any = 3 _lowerCAmelCase : Any = (2_5_6, 2_5_6) _lowerCAmelCase : Optional[Any] = torch.ones((batch_size, num_channels) + sizes ).to(snake_case_ ) _lowerCAmelCase : Optional[int] = torch.tensor(batch_size * [1E-4] ).to(snake_case_ ) with torch.no_grad(): _lowerCAmelCase : Any = model(snake_case_ , snake_case_ ).sample _lowerCAmelCase : int = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _lowerCAmelCase : Optional[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(snake_case_ , snake_case_ , rtol=1E-2 ) ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(snake_case_ ) _lowerCAmelCase : Union[str, Any] = 4 _lowerCAmelCase : Optional[Any] = 3 _lowerCAmelCase : str = (3_2, 3_2) _lowerCAmelCase : int = torch.ones((batch_size, num_channels) + sizes ).to(snake_case_ ) _lowerCAmelCase : Dict = torch.tensor(batch_size * [1E-4] ).to(snake_case_ ) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(snake_case_ , snake_case_ ).sample _lowerCAmelCase : Optional[int] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _lowerCAmelCase : Any = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(snake_case_ , snake_case_ , rtol=1E-2 ) ) def __UpperCamelCase ( self ): # not required for this model pass
384
'''simple docstring''' from math import factorial UpperCamelCase_ = {str(digit): factorial(digit) for digit in range(10)} def _UpperCAmelCase ( _lowerCamelCase : int ) -> int: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(_lowerCamelCase ) ) def _UpperCAmelCase ( _lowerCamelCase : int = 60 , _lowerCamelCase : int = 1_00_00_00 ) -> int: if not isinstance(_lowerCamelCase , _lowerCamelCase ) or not isinstance(_lowerCamelCase , _lowerCamelCase ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length _lowerCAmelCase : Union[str, Any] = 0 # the cached sizes of the previous chains _lowerCAmelCase : dict[int, int] = {} for start_chain_element in range(1 , _lowerCamelCase ): # The temporary set will contain the elements of the chain _lowerCAmelCase : Any = set() _lowerCAmelCase : Dict = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. _lowerCAmelCase : Union[str, Any] = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(_lowerCamelCase ) chain_set_length += 1 _lowerCAmelCase : List[Any] = digit_factorial_sum(_lowerCamelCase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] _lowerCAmelCase : Union[str, Any] = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution()}')
384
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor a__ : Dict = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) ->None: warnings.warn( '''The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use GLPNImageProcessor instead.''' , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
333
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Any = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys a__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
333
1
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class a__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=37 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_12 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=4 , ) -> List[Any]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_attention_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_choices def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_attention_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = True lowerCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Dict = True lowercase__ : str = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = FlaxBertModelTester(self ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> str: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. lowerCAmelCase__ = FlaxBertModel.from_pretrained('''bert-base-cased''' ) lowerCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
90
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=64 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.02 , lowerCAmelCase__=[1, 16, 4, 4] , lowerCAmelCase__=None , ) -> int: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size SCREAMING_SNAKE_CASE = (self.image_size // 32) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowerCAmelCase__ , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: SCREAMING_SNAKE_CASE = ViTHybridModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = ViTHybridForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> str: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[str] = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : List[str] = False def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = ViTHybridModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __A ( self ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __A ( self ) -> List[Any]: pass def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=lowerCAmelCase__ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": SCREAMING_SNAKE_CASE = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __A ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = ViTHybridModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def lowercase () -> Union[str, Any]: SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[str]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __A ( self ) -> int: SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow @require_accelerate def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = outputs.logits # model predicts one of the 1000 ImageNet classes SCREAMING_SNAKE_CASE = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
247
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase : Optional[Any] = TypeVar("T") class __lowerCAmelCase ( Generic[T]): def __init__( self: Dict , _lowerCAmelCase: T ): lowercase :Union[str, Any] = data lowercase :Node[T] | None = None def __str__( self: str ): return F"{self.data}" class __lowerCAmelCase ( Generic[T]): def __init__( self: Optional[int] ): lowercase :Node[T] | None = None def __iter__( self: List[Any] ): lowercase :str = self.top while node: yield node.data lowercase :Optional[Any] = node.next def __str__( self: Dict ): return "->".join([str(_lowerCAmelCase ) for item in self] ) def __len__( self: int ): return len(tuple(iter(self ) ) ) def SCREAMING_SNAKE_CASE ( self: Tuple ): return self.top is None def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: T ): lowercase :Optional[Any] = Node(_lowerCAmelCase ) if not self.is_empty(): lowercase :Optional[int] = self.top lowercase :Tuple = node def SCREAMING_SNAKE_CASE ( self: int ): if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , _lowerCAmelCase ) lowercase :Tuple = self.top lowercase :Dict = self.top.next return pop_node.data def SCREAMING_SNAKE_CASE ( self: Any ): if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
453
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") _UpperCAmelCase , _UpperCAmelCase : Dict = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") _UpperCAmelCase : List[Any] = rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: _UpperCAmelCase : Tuple = rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _UpperCAmelCase : Any = args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
453
1
def _A ( SCREAMING_SNAKE_CASE = 2_0_0_0_0_0_0 ): UpperCAmelCase__: Union[str, Any] = [0 for i in range(n + 1 )] UpperCAmelCase__: Optional[Any] = 1 UpperCAmelCase__: Optional[Any] = 1 for i in range(2 ,int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i ,n + 1 ,__lowerCamelCase ): UpperCAmelCase__: Union[str, Any] = 1 UpperCAmelCase__: Union[str, Any] = 0 for i in range(__lowerCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F"{solution() = }")
113
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Tuple = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''deformable_detr''' UpperCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self :List[str] , __magic_name__ :Tuple=True , __magic_name__ :str=None , __magic_name__ :Tuple=3 , __magic_name__ :List[str]=300 , __magic_name__ :Dict=1024 , __magic_name__ :Tuple=6 , __magic_name__ :Tuple=1024 , __magic_name__ :int=8 , __magic_name__ :List[Any]=6 , __magic_name__ :Tuple=1024 , __magic_name__ :List[Any]=8 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :Union[str, Any]=True , __magic_name__ :str="relu" , __magic_name__ :Optional[Any]=256 , __magic_name__ :int=0.1 , __magic_name__ :List[str]=0.0 , __magic_name__ :str=0.0 , __magic_name__ :str=0.02 , __magic_name__ :int=1.0 , __magic_name__ :List[str]=True , __magic_name__ :Union[str, Any]=False , __magic_name__ :List[Any]="sine" , __magic_name__ :Union[str, Any]="resnet50" , __magic_name__ :int=True , __magic_name__ :Any=False , __magic_name__ :List[str]=4 , __magic_name__ :Tuple=4 , __magic_name__ :Union[str, Any]=4 , __magic_name__ :Optional[int]=False , __magic_name__ :Tuple=300 , __magic_name__ :Tuple=False , __magic_name__ :List[Any]=1 , __magic_name__ :List[str]=5 , __magic_name__ :List[Any]=2 , __magic_name__ :Optional[int]=1 , __magic_name__ :Union[str, Any]=1 , __magic_name__ :List[Any]=5 , __magic_name__ :Optional[Any]=2 , __magic_name__ :Optional[int]=0.1 , __magic_name__ :List[str]=0.25 , __magic_name__ :str=False , **__magic_name__ :List[str] , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) a = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__magic_name__ , __magic_name__ ): a = backbone_config.get("""model_type""" ) a = CONFIG_MAPPING[backbone_model_type] a = config_class.from_dict(__magic_name__ ) a = use_timm_backbone a = backbone_config a = num_channels a = num_queries a = max_position_embeddings a = d_model a = encoder_ffn_dim a = encoder_layers a = encoder_attention_heads a = decoder_ffn_dim a = decoder_layers a = decoder_attention_heads a = dropout a = attention_dropout a = activation_dropout a = activation_function a = init_std a = init_xavier_std a = encoder_layerdrop a = auxiliary_loss a = position_embedding_type a = backbone a = use_pretrained_backbone a = dilation # deformable attributes a = num_feature_levels a = encoder_n_points a = decoder_n_points a = two_stage a = two_stage_num_proposals a = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = mask_loss_coefficient a = dice_loss_coefficient a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient a = focal_alpha a = disable_custom_kernels super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ ) @property def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' return self.encoder_attention_heads @property def lowerCamelCase__ ( self :int ): '''simple docstring''' return self.d_model def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: a = self.backbone_config.to_dict() a = self.__class__.model_type return output
468
0
import doctest from collections import deque import numpy as np class UpperCamelCase : '''simple docstring''' def __init__( self ): lowercase_ :Any = [2, 1, 2, -1] lowercase_ :Optional[Any] = [1, 2, 3, 4] def UpperCamelCase ( self ): lowercase_ :List[str] = len(self.first_signal ) lowercase_ :str = len(self.second_signal ) lowercase_ :int = max(UpperCamelCase_ , UpperCamelCase_ ) # create a zero matrix of max_length x max_length lowercase_ :Any = [[0] * max_length for i in range(UpperCamelCase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase_ ): lowercase_ :List[str] = deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase_ ) for j, item in enumerate(UpperCamelCase_ ): matrix[i][j] += item # multiply the matrix with the first signal lowercase_ :Tuple = np.matmul(np.transpose(UpperCamelCase_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
441
def UpperCamelCase ( _a ) -> int: '''simple docstring''' assert isinstance(_a , _a ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: lowercase_ :str = f"The input value of [n={number}] has to be > 0" raise ValueError(_a ) else: lowercase_ :List[str] = sylvester(number - 1 ) lowercase_ :Union[str, Any] = num - 1 lowercase_ :List[str] = num return lower * upper + 1 if __name__ == "__main__": print(f"The 8th number in Sylvester's sequence: {sylvester(8)}")
441
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = {'''vocab_file''': '''spiece.model'''} snake_case = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } snake_case = { '''albert-base-v1''': 5_1_2, '''albert-large-v1''': 5_1_2, '''albert-xlarge-v1''': 5_1_2, '''albert-xxlarge-v1''': 5_1_2, '''albert-base-v2''': 5_1_2, '''albert-large-v2''': 5_1_2, '''albert-xlarge-v2''': 5_1_2, '''albert-xxlarge-v2''': 5_1_2, } snake_case = '''▁''' class UpperCAmelCase ( __lowerCamelCase ): A__ : List[Any] = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]="[CLS]" , __lowerCamelCase : Any="[SEP]" , __lowerCamelCase : Dict="<unk>" , __lowerCamelCase : str="[SEP]" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : Optional[Any]="[CLS]" , __lowerCamelCase : Tuple="[MASK]" , __lowerCamelCase : List[Any] = None , **__lowerCamelCase : Tuple , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _snake_case = ( AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE , normalized=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token ) _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) _snake_case = do_lower_case _snake_case = remove_space _snake_case = keep_accents _snake_case = vocab_file _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return len(self.sp_model ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): """simple docstring""" _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : List[Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" _snake_case = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] ): """simple docstring""" if self.remove_space: _snake_case = " ".join(inputs.strip().split() ) else: _snake_case = inputs _snake_case = outputs.replace('''``''' , '''\"''' ).replace('''\'\'''' , '''\"''' ) if not self.keep_accents: _snake_case = unicodedata.normalize('''NFKD''' , _SCREAMING_SNAKE_CASE ) _snake_case = "".join([c for c in outputs if not unicodedata.combining(_SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: _snake_case = outputs.lower() return outputs def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = self.preprocess_text(_SCREAMING_SNAKE_CASE ) _snake_case = self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) _snake_case = [] for piece in pieces: if len(_SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): _snake_case = self.sp_model.EncodeAsPieces(piece[:-1].replace(_SCREAMING_SNAKE_CASE , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _snake_case = cur_pieces[1:] else: _snake_case = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_SCREAMING_SNAKE_CASE ) else: new_pieces.append(_SCREAMING_SNAKE_CASE ) return new_pieces def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Dict ): """simple docstring""" return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : str ): """simple docstring""" return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : List[Any] ): """simple docstring""" _snake_case = [] _snake_case = "" _snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token _snake_case = True _snake_case = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) _snake_case = False out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] = None , __lowerCamelCase : Tuple = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , '''wb''' ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
103
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Optional[Any] ) -> List[Any]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str ) -> Union[str, Any]: # word like '180' or '身高' or '神' for char in word: a_ : Union[str, Any] = ord(_SCREAMING_SNAKE_CASE ) if not _is_chinese_char(_SCREAMING_SNAKE_CASE ): return 0 return 1 def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[str] ) -> Dict: a_ : int = set() for token in tokens: a_ : Any = len(_SCREAMING_SNAKE_CASE ) > 1 and is_chinese(_SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(_SCREAMING_SNAKE_CASE ) a_ : int = list(_SCREAMING_SNAKE_CASE ) return word_list def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :set() ) -> Dict: if not chinese_word_set: return bert_tokens a_ : Dict = max([len(_SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) a_ : int = bert_tokens a_ , a_ : int = 0, len(_SCREAMING_SNAKE_CASE ) while start < end: a_ : List[Any] = True if is_chinese(bert_word[start] ): a_ : Dict = min(end - start , _SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE , 1 , -1 ): a_ : Optional[int] = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a_ : Any = "##" + bert_word[j] a_ : int = start + i a_ : Union[str, Any] = False break if single_word: start += 1 return bert_word def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :LTP , _SCREAMING_SNAKE_CASE :BertTokenizer ) -> str: a_ : Union[str, Any] = [] for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 100 ): a_ : Union[str, Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws a_ : Union[str, Any] = [get_chinese_word(_SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(_SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) a_ : Tuple = [] for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , 100 ): a_ : Union[str, Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) a_ : int = [] for input_ids, chinese_word in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a_ : Any = [] for id in input_ids: a_ : Any = bert_tokenizer._convert_id_to_token(_SCREAMING_SNAKE_CASE ) input_tokens.append(_SCREAMING_SNAKE_CASE ) a_ : int = add_sub_symbol(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a_ : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_SCREAMING_SNAKE_CASE ): if token[:2] == "##": a_ : List[Any] = token[2:] # save chinese tokens' pos if len(_SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(_SCREAMING_SNAKE_CASE ) ): ref_id.append(_SCREAMING_SNAKE_CASE ) ref_ids.append(_SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) return ref_ids def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Any ) -> str: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8" ) as f: a_ : Optional[Any] = f.readlines() a_ : Optional[int] = [line.strip() for line in data if len(_SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ : Tuple = LTP(args.ltp ) # faster in GPU device a_ : int = BertTokenizer.from_pretrained(args.bert ) a_ : List[str] = prepare_ref(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with open(args.save_path , "w" , encoding="utf-8" ) as f: a_ : List[str] = [json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" for ref in ref_ids] f.writelines(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', required=False, type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', required=False, type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path', ) parser.add_argument( '--bert', required=False, type=str, default='./resources/robert', help='resources for Bert tokenizer', ) parser.add_argument( '--save_path', required=False, type=str, default='./resources/ref.txt', help='path to save res', ) UpperCamelCase = parser.parse_args() main(args)
473
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _a : Any = logging.get_logger(__name__) _a : Any = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _UpperCAmelCase ( _UpperCamelCase): __lowercase : List[str] = "altclip_text_model" def __init__( self , snake_case_=25_00_02 , snake_case_=10_24 , snake_case_=24 , snake_case_=16 , snake_case_=40_96 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_14 , snake_case_=1 , snake_case_=0.02 , snake_case_=0.02 , snake_case_=1E-05 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_="absolute" , snake_case_=True , snake_case_=7_68 , **snake_case_ , ): super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _snake_case : Union[str, Any] = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : Tuple = num_hidden_layers _snake_case : Tuple = num_attention_heads _snake_case : int = hidden_act _snake_case : Any = intermediate_size _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : Dict = attention_probs_dropout_prob _snake_case : List[str] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Dict = initializer_range _snake_case : List[str] = initializer_factor _snake_case : Union[str, Any] = layer_norm_eps _snake_case : Tuple = position_embedding_type _snake_case : Optional[Any] = use_cache _snake_case : Optional[int] = project_dim class _UpperCAmelCase ( _UpperCamelCase): __lowercase : List[str] = "altclip_vision_model" def __init__( self , snake_case_=7_68 , snake_case_=30_72 , snake_case_=5_12 , snake_case_=12 , snake_case_=12 , snake_case_=3 , snake_case_=2_24 , snake_case_=32 , snake_case_="quick_gelu" , snake_case_=1E-5 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=1.0 , **snake_case_ , ): super().__init__(**__a ) _snake_case : int = hidden_size _snake_case : Optional[int] = intermediate_size _snake_case : Any = projection_dim _snake_case : Tuple = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : List[Any] = num_channels _snake_case : Dict = patch_size _snake_case : Any = image_size _snake_case : List[str] = initializer_range _snake_case : List[str] = initializer_factor _snake_case : Optional[Any] = attention_dropout _snake_case : Union[str, Any] = layer_norm_eps _snake_case : Dict = hidden_act @classmethod def lowerCamelCase__ ( cls , snake_case_ , **snake_case_ ): cls._set_token_in_kwargs(__a ) _snake_case : int = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": _snake_case : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__a , **__a ) class _UpperCAmelCase ( _UpperCamelCase): __lowercase : Any = "altclip" __lowercase : List[str] = True def __init__( self , snake_case_=None , snake_case_=None , snake_case_=7_68 , snake_case_=2.6592 , **snake_case_ ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). _snake_case : Tuple = kwargs.pop("text_config_dict" , __a ) _snake_case : Tuple = kwargs.pop("vision_config_dict" , __a ) super().__init__(**__a ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: _snake_case : int = {} # This is the complete result when using `text_config_dict`. _snake_case : Any = AltCLIPTextConfig(**__a ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: _snake_case : Optional[int] = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: _snake_case : Union[str, Any] = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(__a ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: _snake_case : int = {} # This is the complete result when using `vision_config_dict`. _snake_case : List[Any] = AltCLIPVisionConfig(**__a ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _snake_case : Dict = { str(__a ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: _snake_case : Optional[int] = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: _snake_case : Optional[Any] = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(__a ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: _snake_case : Optional[Any] = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: _snake_case : Dict = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) _snake_case : Union[str, Any] = AltCLIPTextConfig(**__a ) _snake_case : Dict = AltCLIPVisionConfig(**__a ) _snake_case : Any = projection_dim _snake_case : Union[str, Any] = logit_scale_init_value _snake_case : Optional[Any] = 1.0 @classmethod def lowerCamelCase__ ( cls , snake_case_ , snake_case_ , **snake_case_ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def lowerCamelCase__ ( self ): _snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) _snake_case : List[str] = self.text_config.to_dict() _snake_case : int = self.vision_config.to_dict() _snake_case : Optional[int] = self.__class__.model_type return output
707
"""simple docstring""" from __future__ import annotations import requests _a : List[str] = set( """approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports""".split() ) def a__ ( a : str , a : int = 1 , a : str = "new" , a : list | None = None ): """simple docstring""" _snake_case : Any = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(a ) - valid_terms ) ): _snake_case : Optional[int] = f'Invalid search term: {invalid_search_terms}' raise ValueError(a ) _snake_case : int = requests.get( f'https://reddit.com/r/{subreddit}/{age}.json?limit={limit}' , headers={"User-agent": "A random string"} , ) if response.status_code == 429: raise requests.HTTPError _snake_case : Optional[Any] = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(a )} _snake_case : Tuple = {} for id_ in range(a ): _snake_case : List[str] = { item: data["data"]["children"][id_]["data"][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
87
0
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __snake_case : '''simple docstring''' def __init__( self , A_ , A_=3 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=5_12 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=A_ , ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = FalconModel(config=A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ ) SCREAMING_SNAKE_CASE__ = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = FalconModel(A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , ) SCREAMING_SNAKE_CASE__ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , ) SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = FalconForCausalLM(config=A_ ) model.to(A_ ) model.eval() # first forward pass SCREAMING_SNAKE_CASE__ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , use_cache=A_ , ) SCREAMING_SNAKE_CASE__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , output_hidden_states=A_ , )['''hidden_states'''][0] SCREAMING_SNAKE_CASE__ = model( A_ , attention_mask=A_ , encoder_hidden_states=A_ , encoder_attention_mask=A_ , past_key_values=A_ , output_hidden_states=A_ , )['''hidden_states'''][0] # select random slice SCREAMING_SNAKE_CASE__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A_ , A_ , atol=1E-3 ) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ : Dict = (FalconForCausalLM,) if is_torch_available() else () lowerCamelCase__ : List[Any] = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Tuple = False def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = FalconModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=A_ , hidden_size=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: SCREAMING_SNAKE_CASE__ = alibi self.model_tester.create_and_check_model(A_ , *A_ ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = input_ids.ne(1 ).to(A_ ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = '''single_label_classification''' SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = input_ids.ne(1 ).to(A_ ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = FalconForCausalLM(A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ , use_cache=A_ ) SCREAMING_SNAKE_CASE__ = input_ids.shape[0] SCREAMING_SNAKE_CASE__ = model._convert_to_rw_cache(result.past_key_values ) SCREAMING_SNAKE_CASE__ = model._convert_cache_to_standard_format(A_ , A_ ) for layer in range(len(A_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = '''multi_label_classification''' SCREAMING_SNAKE_CASE__ = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ = input_ids.ne(1 ).to(A_ ) SCREAMING_SNAKE_CASE__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) SCREAMING_SNAKE_CASE__ = FalconForSequenceClassification(A_ ) model.to(A_ ) model.eval() SCREAMING_SNAKE_CASE__ = model(A_ , attention_mask=A_ , labels=A_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self ): '''simple docstring''' for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(A_ , '''use_cache''' ): return SCREAMING_SNAKE_CASE__ = model_class(A_ ).to(A_ ) if "use_cache" not in inputs: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = model(**A_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return SCREAMING_SNAKE_CASE__ = ( getattr(A_ , '''decoder_layers''' , A_ ) or getattr(A_ , '''num_decoder_layers''' , A_ ) or config.num_hidden_layers ) SCREAMING_SNAKE_CASE__ = getattr(A_ , '''num_kv_heads''' , config.num_attention_heads ) SCREAMING_SNAKE_CASE__ = getattr(A_ , '''d_model''' , config.hidden_size ) SCREAMING_SNAKE_CASE__ = embed_dim // num_attention_heads SCREAMING_SNAKE_CASE__ = outputs['''past_key_values'''] self.assertEqual(len(A_ ) , A_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = inputs['''input_ids'''].shape for i in range(A_ ): if config.new_decoder_architecture: SCREAMING_SNAKE_CASE__ = config.num_attention_heads elif config.multi_query: SCREAMING_SNAKE_CASE__ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __snake_case ( unittest.TestCase ): '''simple docstring''' @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) SCREAMING_SNAKE_CASE__ = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(A_ ) SCREAMING_SNAKE_CASE__ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(A_ ) SCREAMING_SNAKE_CASE__ = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) SCREAMING_SNAKE_CASE__ = model.generate(**A_ , do_sample=A_ , max_new_tokens=19 ) SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(A_ )[0] self.assertEqual(A_ , A_ ) @slow def lowercase_ ( self ): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(A_ ) SCREAMING_SNAKE_CASE__ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(A_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**A_ , do_sample=A_ , max_new_tokens=4 ) model.generate(**A_ , do_sample=A_ , max_new_tokens=4 ) model.generate(**A_ , num_beams=2 , max_new_tokens=4 ) @slow def lowercase_ ( self ): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(A_ ) SCREAMING_SNAKE_CASE__ = FalconForCausalLM.from_pretrained(A_ ) model.eval() model.to(device=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(A_ ) # Test results are the same with and without cache SCREAMING_SNAKE_CASE__ = model.generate(**A_ , do_sample=A_ , max_new_tokens=20 , use_cache=A_ ) SCREAMING_SNAKE_CASE__ = model.generate(**A_ , do_sample=A_ , max_new_tokens=20 , use_cache=A_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
100
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } __lowerCAmelCase : Optional[int] ={'mobilebert-uncased': 5_1_2} __lowerCAmelCase : Union[str, Any] ={} class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = MobileBertTokenizer def __init__( self :Tuple , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]="[UNK]" , lowerCAmelCase__ :List[Any]="[SEP]" , lowerCAmelCase__ :List[Any]="[PAD]" , lowerCAmelCase__ :List[Any]="[CLS]" , lowerCAmelCase__ :Any="[MASK]" , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Tuple=None , **lowerCAmelCase__ :List[str] , ) -> Optional[Any]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case __SCREAMING_SNAKE_CASE : str = strip_accents __SCREAMING_SNAKE_CASE : Dict = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Union[str, Any] = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = do_lower_case def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
696
0
'''simple docstring''' import sys from collections import defaultdict class __A : def __init__(self : Any ): UpperCAmelCase_ = [] def _lowercase (self : Dict , __a : str ): return self.node_position[vertex] def _lowercase (self : Tuple , __a : int , __a : str ): UpperCAmelCase_ = pos def _lowercase (self : Optional[int] , __a : Optional[int] , __a : List[str] , __a : List[str] , __a : Tuple ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCAmelCase_ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCAmelCase_ = 2 * start + 1 else: UpperCAmelCase_ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCAmelCase_ , UpperCAmelCase_ = heap[smallest_child], positions[smallest_child] UpperCAmelCase_ , UpperCAmelCase_ = ( heap[start], positions[start], ) UpperCAmelCase_ , UpperCAmelCase_ = temp, tempa UpperCAmelCase_ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , __a ) self.top_to_bottom(__a , __a , __a , __a ) def _lowercase (self : List[str] , __a : List[Any] , __a : Optional[Any] , __a : str , __a : int ): UpperCAmelCase_ = position[index] while index != 0: UpperCAmelCase_ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCAmelCase_ = heap[parent] UpperCAmelCase_ = position[parent] self.set_position(position[parent] , __a ) else: UpperCAmelCase_ = val UpperCAmelCase_ = temp self.set_position(__a , __a ) break UpperCAmelCase_ = parent else: UpperCAmelCase_ = val UpperCAmelCase_ = temp self.set_position(__a , 0 ) def _lowercase (self : List[Any] , __a : List[str] , __a : Dict ): UpperCAmelCase_ = len(__a ) // 2 - 1 for i in range(__a , -1 , -1 ): self.top_to_bottom(__a , __a , len(__a ) , __a ) def _lowercase (self : int , __a : Tuple , __a : Any ): UpperCAmelCase_ = positions[0] UpperCAmelCase_ = sys.maxsize self.top_to_bottom(__a , 0 , len(__a ) , __a ) return temp def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> str: '''simple docstring''' UpperCAmelCase_ = Heap() UpperCAmelCase_ = [0] * len(snake_case_ ) UpperCAmelCase_ = [-1] * len(snake_case_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCAmelCase_ = [] # Heap of Distance of vertices from their neighboring vertex UpperCAmelCase_ = [] for vertex in range(len(snake_case_ ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case_ ) heap.node_position.append(snake_case_ ) UpperCAmelCase_ = [] UpperCAmelCase_ = 1 UpperCAmelCase_ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCAmelCase_ = 0 UpperCAmelCase_ = distance heap.heapify(snake_case_ , snake_case_ ) for _ in range(1 , len(snake_case_ ) ): UpperCAmelCase_ = heap.delete_minimum(snake_case_ , snake_case_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCAmelCase_ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case_ )] ): UpperCAmelCase_ = distance heap.bottom_to_top( snake_case_ , heap.get_position(snake_case_ ) , snake_case_ , snake_case_ ) UpperCAmelCase_ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > SCREAMING_SNAKE_CASE_: Any =int(input('Enter number of edges: ').strip()) SCREAMING_SNAKE_CASE_: int =defaultdict(list) for _ in range(edges_number): SCREAMING_SNAKE_CASE_: Tuple =[int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
415
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : list[int] ) -> list[int]: # This function is recursive '''simple docstring''' UpperCAmelCase_ = len(snake_case_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else UpperCAmelCase_ = array[0] UpperCAmelCase_ = False UpperCAmelCase_ = 1 UpperCAmelCase_ = [] while not is_found and i < array_length: if array[i] < pivot: UpperCAmelCase_ = True UpperCAmelCase_ = [element for element in array[i:] if element >= array[i]] UpperCAmelCase_ = longest_subsequence(snake_case_ ) if len(snake_case_ ) > len(snake_case_ ): UpperCAmelCase_ = temp_array else: i += 1 UpperCAmelCase_ = [element for element in array[1:] if element >= pivot] UpperCAmelCase_ = [pivot, *longest_subsequence(snake_case_ )] if len(snake_case_ ) > len(snake_case_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
415
1
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A__ : Any = """src/transformers""" A__ : Union[str, Any] = """docs/source/en/tasks""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ) -> List[str]: with open(UpperCAmelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Optional[int] = f.readlines() # Find the start prompt. __lowerCamelCase : str = 0 while not lines[start_index].startswith(UpperCAmelCase_ ): start_index += 1 start_index += 1 __lowerCamelCase : List[str] = start_index while not lines[end_index].startswith(UpperCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A__ : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) A__ : int = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A__ : List[Any] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> List[str]: __lowerCamelCase : Dict = TASK_GUIDE_TO_MODELS[task_guide] __lowerCamelCase : Tuple = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCAmelCase_ , set() ) __lowerCamelCase : str = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict=False ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = _find_text_in_file( filename=os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) __lowerCamelCase : Optional[Any] = get_model_list_for_task(UpperCAmelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ' to fix this.' ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
13
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = XLMTokenizer A_ : Dict = False def _lowerCamelCase ( self : Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCAmelCase_ : Dict = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) UpperCAmelCase_ : str = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__snake_case ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = '''lower newer''' UpperCAmelCase_ : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase_ : Union[str, Any] = '''lower''' UpperCAmelCase_ : Optional[Any] = ['''low''', '''er</w>'''] UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase_ : str = tokens + ['''<unk>'''] UpperCAmelCase_ : Any = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) UpperCAmelCase_ : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) UpperCAmelCase_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__snake_case ) UpperCAmelCase_ : str = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
641
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } a_ = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowercase ( snake_case_ : Optional[int] ,snake_case_ : Optional[int] ,snake_case_ : List[Any] ,snake_case_ : List[Any] ,snake_case_ : List[str] ,snake_case_ : Any ) ->Tuple: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models __A : Union[str, Any] = '''lm_head''' __A : Tuple = getattr(snake_case_ ,snake_case_ ) if weight_type is not None: __A : Optional[Any] = getattr(snake_case_ ,snake_case_ ).shape else: __A : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __A : Optional[Any] = value elif weight_type == "weight_g": __A : List[Any] = value elif weight_type == "weight_v": __A : Union[str, Any] = value elif weight_type == "bias": __A : Union[str, Any] = value else: __A : Optional[Any] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __lowercase ( snake_case_ : Union[str, Any] ,snake_case_ : List[str] ,snake_case_ : List[str] ) ->Optional[Any]: '''simple docstring''' __A : Union[str, Any] = [] __A : Optional[Any] = fairseq_model.state_dict() __A : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): __A : Any = False if "conv_layers" in name: load_conv_layer( snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,hf_model.config.feat_extract_norm == '''group''' ,) __A : List[Any] = True else: for key, mapped_key in MAPPING.items(): __A : List[Any] = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __A : str = True if "*" in mapped_key: __A : Tuple = name.split(snake_case_ )[0].split('''.''' )[-2] __A : Tuple = mapped_key.replace('''*''' ,snake_case_ ) if "weight_g" in name: __A : Dict = '''weight_g''' elif "weight_v" in name: __A : Dict = '''weight_v''' elif "bias" in name: __A : Tuple = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : List[str] = '''weight''' else: __A : Optional[int] = None set_recursively(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __lowercase ( snake_case_ : str ,snake_case_ : Optional[Any] ,snake_case_ : int ,snake_case_ : Tuple ,snake_case_ : int ) ->List[str]: '''simple docstring''' __A : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __A : List[str] = name.split('''.''' ) __A : List[Any] = int(items[0] ) __A : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __A : Union[str, Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __A : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __A : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __A : Optional[int] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def __lowercase ( snake_case_ : List[Any] ,snake_case_ : Any ,snake_case_ : Optional[int]=None ,snake_case_ : List[str]=None ,snake_case_ : List[Any]=True ) ->int: '''simple docstring''' if config_path is not None: __A : int = UniSpeechConfig.from_pretrained(snake_case_ ) else: __A : str = UniSpeechConfig() if is_finetuned: if dict_path: __A : Optional[int] = Dictionary.load_from_json(snake_case_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __A : Dict = target_dict.pad_index __A : Any = target_dict.bos_index __A : List[str] = target_dict.eos_index __A : str = len(target_dict.symbols ) __A : List[Any] = os.path.join(snake_case_ ,'''vocab.json''' ) if not os.path.isdir(snake_case_ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case_ ) ) return os.makedirs(snake_case_ ,exist_ok=snake_case_ ) __A : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched __A : Union[str, Any] = 42 __A : str = 43 with open(snake_case_ ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(snake_case_ ,snake_case_ ) __A : Optional[Any] = WavaVecaPhonemeCTCTokenizer( snake_case_ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=snake_case_ ,) __A : Tuple = True if config.feat_extract_norm == '''layer''' else False __A : Tuple = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=snake_case_ ,return_attention_mask=snake_case_ ,) __A : int = WavaVecaProcessor(feature_extractor=snake_case_ ,tokenizer=snake_case_ ) processor.save_pretrained(snake_case_ ) __A : List[Any] = UniSpeechForCTC(snake_case_ ) else: __A : Optional[int] = UniSpeechForPreTraining(snake_case_ ) if is_finetuned: __A , __A , __A : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: __A , __A , __A : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __A : List[str] = model[0].eval() recursively_load_weights(snake_case_ ,snake_case_ ,snake_case_ ) hf_unispeech.save_pretrained(snake_case_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) a_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
177
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """poolformer""" def __init__( self , __lowerCamelCase=3 , __lowerCamelCase=16 , __lowerCamelCase=16 , __lowerCamelCase=3 , __lowerCamelCase=4.0 , __lowerCamelCase=[2, 2, 6, 2] , __lowerCamelCase=[64, 128, 320, 512] , __lowerCamelCase=[7, 3, 3, 3] , __lowerCamelCase=[4, 2, 2, 2] , __lowerCamelCase=[2, 1, 1, 1] , __lowerCamelCase=4 , __lowerCamelCase=0.0 , __lowerCamelCase="gelu" , __lowerCamelCase=True , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0_2 , **__lowerCamelCase , ): '''simple docstring''' __A : str = num_channels __A : List[str] = patch_size __A : str = stride __A : Any = padding __A : Any = pool_size __A : Dict = hidden_sizes __A : Optional[Any] = mlp_ratio __A : Any = depths __A : List[str] = patch_sizes __A : Union[str, Any] = strides __A : List[str] = num_encoder_blocks __A : Optional[int] = drop_path_rate __A : Union[str, Any] = hidden_act __A : Optional[Any] = use_layer_scale __A : List[Any] = layer_scale_init_value __A : List[Any] = initializer_range super().__init__(**__lowerCamelCase ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = version.parse("""1.11""" ) @property def UpperCamelCase__( self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase__( self ): '''simple docstring''' return 2e-3
177
1
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Optional[Any] ,__UpperCamelCase: Dict ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = MobileBertConfig.from_json_file(__UpperCamelCase ) print(f"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE : List[str] = MobileBertForPreTraining(__UpperCamelCase ) # Load weights from tf checkpoint SCREAMING_SNAKE_CASE : Optional[int] = load_tf_weights_in_mobilebert(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() ,__UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
719
'''simple docstring''' def lowercase__( __UpperCamelCase: list[list[int]] ,__UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: set ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = len(__UpperCamelCase ), len(grid[0] ) if ( min(__UpperCamelCase ,__UpperCamelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) SCREAMING_SNAKE_CASE : Dict = 0 count += depth_first_search(__UpperCamelCase ,row + 1 ,__UpperCamelCase ,__UpperCamelCase ) count += depth_first_search(__UpperCamelCase ,row - 1 ,__UpperCamelCase ,__UpperCamelCase ) count += depth_first_search(__UpperCamelCase ,__UpperCamelCase ,col + 1 ,__UpperCamelCase ) count += depth_first_search(__UpperCamelCase ,__UpperCamelCase ,col - 1 ,__UpperCamelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
508
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ : Optional[Any] = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Optional[Any] = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCAmelCase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
410
'''simple docstring''' def _lowercase ( UpperCamelCase__ : dict ): __A : Dict = set() # edges = list of graph's edges __A : Any = get_edges(UpperCamelCase__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __A ,__A : List[Any] = edges.pop() chosen_vertices.add(UpperCamelCase__ ) chosen_vertices.add(UpperCamelCase__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(UpperCamelCase__ ) return chosen_vertices def _lowercase ( UpperCamelCase__ : dict ): __A : Any = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
365
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: complex , __lowerCamelCase: str = "x" , __lowerCamelCase: float = 10**-10 , __lowerCamelCase: int = 1 , ): '''simple docstring''' lowercase_ = symbols(__lowerCamelCase ) lowercase_ = lambdify(__lowerCamelCase , __lowerCamelCase ) lowercase_ = lambdify(__lowerCamelCase , diff(__lowerCamelCase , __lowerCamelCase ) ) lowercase_ = starting_point while True: if diff_function(__lowerCamelCase ) != 0: lowercase_ = prev_guess - multiplicity * func(__lowerCamelCase ) / diff_function( __lowerCamelCase ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess lowercase_ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", f"""{newton_raphson('exp(x) - 1', 1_0, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
601
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin SCREAMING_SNAKE_CASE__ = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=16 , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=14 , UpperCAmelCase=10 , UpperCAmelCase=19 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=True , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=[1, 2, 3, 4, 5] , UpperCAmelCase=25 , UpperCAmelCase=5 , ) -> Optional[int]: '''simple docstring''' lowercase_ = d_model lowercase_ = parent lowercase_ = batch_size lowercase_ = prediction_length lowercase_ = context_length lowercase_ = cardinality lowercase_ = num_time_features lowercase_ = lags_sequence lowercase_ = embedding_dimension lowercase_ = is_training lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = context_length lowercase_ = prediction_length + label_length lowercase_ = label_length lowercase_ = moving_average lowercase_ = autocorrelation_factor def A__ ( self ) -> Optional[int]: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = config.context_length + max(config.lags_sequence ) lowercase_ = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowercase_ = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowercase_ = floats_tensor([self.batch_size, _past_length] ) lowercase_ = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowercase_ = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowercase_ = floats_tensor([self.batch_size, config.prediction_length] ) lowercase_ = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = self.get_config() lowercase_ = self.prepare_autoformer_inputs_dict(UpperCAmelCase ) return config, inputs_dict def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase_ , lowercase_ = self.prepare_config_and_inputs() return config, inputs_dict def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowercase_ = AutoformerModel(config=UpperCAmelCase ).to(UpperCAmelCase ).eval() lowercase_ = model(**UpperCAmelCase ) lowercase_ = outputs.encoder_last_hidden_state lowercase_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ = model.get_encoder() encoder.save_pretrained(UpperCAmelCase ) lowercase_ = AutoformerEncoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = model.create_network_inputs(**UpperCAmelCase ) lowercase_ , lowercase_ = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowercase_ = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowercase_ = encoder(inputs_embeds=UpperCAmelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) lowercase_ = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowercase_ = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowercase_ = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowercase_ = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ = model.get_decoder() decoder.save_pretrained(UpperCAmelCase ) lowercase_ = AutoformerDecoder.from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) lowercase_ = decoder( trend=UpperCAmelCase , inputs_embeds=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __lowerCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCAmelCase__ = (AutoformerForPrediction,) if is_torch_available() else () lowerCAmelCase__ = {"feature-extraction": AutoformerModel} if is_torch_available() else {} lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = AutoformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def A__ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase ) lowercase_ , lowercase_ = model_class.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase ) self.assertEqual(info["missing_keys"] , [] ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase ) @unittest.skip(reason="Model has no tokens embeddings" ) def A__ ( self ) -> int: '''simple docstring''' pass def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = inspect.signature(getattr(UpperCAmelCase , "forward" ) ) # The main input is the name of the argument after `self` lowercase_ = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCAmelCase ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(UpperCAmelCase )] , UpperCAmelCase ) def A__ ( self ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True lowercase_ = getattr(self.model_tester , "seq_length" , UpperCAmelCase ) lowercase_ = getattr(self.model_tester , "decoder_seq_length" , UpperCAmelCase ) lowercase_ = getattr(self.model_tester , "encoder_seq_length" , UpperCAmelCase ) lowercase_ = getattr(self.model_tester , "d_model" , UpperCAmelCase ) lowercase_ = getattr(self.model_tester , "num_attention_heads" , UpperCAmelCase ) lowercase_ = d_model // num_attention_heads for model_class in self.all_model_classes: lowercase_ = True lowercase_ = False lowercase_ = True lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ = True lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowercase_ = outputs.encoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowercase_ = len(UpperCAmelCase ) lowercase_ = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCAmelCase , UpperCAmelCase ) # decoder attentions lowercase_ = outputs.decoder_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowercase_ = outputs.cross_attentions self.assertIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowercase_ = True lowercase_ = True lowercase_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + 2 , len(UpperCAmelCase ) ) lowercase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def A__ ( self ) -> List[Any]: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int]="train-batch.pt" ): '''simple docstring''' lowercase_ = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=__lowerCamelCase , repo_type="dataset" ) lowercase_ = torch.load(__lowerCamelCase , map_location=__lowerCamelCase ) return batch @require_torch @slow class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> Any: '''simple docstring''' lowercase_ = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(UpperCAmelCase ) lowercase_ = prepare_batch() with torch.no_grad(): lowercase_ = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] lowercase_ = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCAmelCase ) lowercase_ = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def A__ ( self ) -> Tuple: '''simple docstring''' lowercase_ = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(UpperCAmelCase ) lowercase_ = prepare_batch("val-batch.pt" ) with torch.no_grad(): lowercase_ = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state lowercase_ = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCAmelCase ) lowercase_ = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=UpperCAmelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase_ = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(UpperCAmelCase ) lowercase_ = prepare_batch("val-batch.pt" ) with torch.no_grad(): lowercase_ = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) lowercase_ = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCAmelCase ) lowercase_ = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCAmelCase ) lowercase_ = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCAmelCase , rtol=1e-1 ) )
601
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available A: Tuple = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
160
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor A: Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
160
1
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate SCREAMING_SNAKE_CASE = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('', '|', '|'), datarow=DataRow('', '|', '|'), padding=1, with_header_hide=None, ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = {'type': 'section', 'text': {'type': 'plain_text', 'text': 'No failed tests! 🤗', 'emoji': True}} SCREAMING_SNAKE_CASE = [ { 'type': 'header', 'text': { 'type': 'plain_text', 'text': f"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", 'emoji': True, }, } ] SCREAMING_SNAKE_CASE = 0 for log in Path().glob('*.log'): SCREAMING_SNAKE_CASE = 0 with open(log, 'r') as f: for line in f: SCREAMING_SNAKE_CASE = json.loads(line) if line.get('nodeid', '') != "": SCREAMING_SNAKE_CASE = line['nodeid'] if line.get('duration', None) is not None: SCREAMING_SNAKE_CASE = f"""{line['duration']:.4f}""" if line.get('outcome', '') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('_')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) SCREAMING_SNAKE_CASE = [] log.unlink() SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = {} for test in failed_tests: SCREAMING_SNAKE_CASE = test[0].split('::') SCREAMING_SNAKE_CASE = data[0].split('/')[-1] if data[0] not in filesafailed: SCREAMING_SNAKE_CASE = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) SCREAMING_SNAKE_CASE = [test[0] for test in failed_table] SCREAMING_SNAKE_CASE = list(set(files)) # Count number of instances in failed_tests SCREAMING_SNAKE_CASE = [] for file in individual_files: table.append([file, len(filesafailed[file])]) SCREAMING_SNAKE_CASE = tabulate( table, headers=['Test Location', 'Num Failed'], tablefmt=hf_table_format, stralign='right', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: SCREAMING_SNAKE_CASE = 'Too many failed tests, please see the full report in the Action results.' SCREAMING_SNAKE_CASE = len(err) + 10 SCREAMING_SNAKE_CASE = message[: 3000 - offset] + f"""\n...\n```\n{err}""" print(f"""### {message}""") else: SCREAMING_SNAKE_CASE = 'No failed tests! 🤗' print(f"""## {message}""") payload.append(no_error_payload) if os.environ.get('TEST_TYPE', '') != "": from slack_sdk import WebClient SCREAMING_SNAKE_CASE = WebClient(token=os.environ['SLACK_API_TOKEN']) if message != "No failed tests! 🤗": SCREAMING_SNAKE_CASE = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': message, }, } payload.append(md_report) SCREAMING_SNAKE_CASE = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': '*For more details:*', }, 'accessory': { 'type': 'button', 'text': { 'type': 'plain_text', 'text': 'Check Action results', 'emoji': True, }, 'url': f"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) SCREAMING_SNAKE_CASE = { 'type': 'context', 'elements': [ { 'type': 'plain_text', 'text': f"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) SCREAMING_SNAKE_CASE = client.chat_postMessage(channel='#accelerate-ci-daily', text=message, blocks=payload) SCREAMING_SNAKE_CASE = response.data['ts'] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name SCREAMING_SNAKE_CASE = '' for i, row in enumerate(test_failures): if row[0] != test_class: SCREAMING_SNAKE_CASE = row[0] else: SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': f"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel='#accelerate-ci-daily', thread_ts=ts, blocks=[payload], )
283
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } SCREAMING_SNAKE_CASE = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def __lowerCAmelCase( ): """simple docstring""" _lowercase : Tuple = ( list(range(ord('!' ) ,ord('~' ) + 1 ) ) + list(range(ord('¡' ) ,ord('¬' ) + 1 ) ) + list(range(ord('®' ) ,ord('ÿ' ) + 1 ) ) ) _lowercase : List[Any] = bs[:] _lowercase : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__UpperCAmelCase ) cs.append(2**8 + n ) n += 1 _lowercase : Dict = [chr(__UpperCAmelCase ) for n in cs] return dict(zip(__UpperCAmelCase ,__UpperCAmelCase ) ) def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" _lowercase : Tuple = set() _lowercase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowercase : Union[str, Any] = char return pairs class _lowerCamelCase (__lowerCamelCase ): _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ["input_ids", "attention_mask"] def __init__( self : int , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]="replace" , lowerCamelCase_ : List[str]="<s>" , lowerCamelCase_ : Optional[int]="</s>" , lowerCamelCase_ : Tuple="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : Dict="<unk>" , lowerCamelCase_ : Optional[Any]="<pad>" , lowerCamelCase_ : List[Any]="<mask>" , lowerCamelCase_ : str=False , **lowerCamelCase_ : str , ): """simple docstring""" _lowercase : int = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token _lowercase : int = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token _lowercase : Dict = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token _lowercase : Optional[int] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token _lowercase : Any = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token _lowercase : Union[str, Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowercase : str = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding='utf-8' ) as vocab_handle: _lowercase : str = json.load(lowerCamelCase_ ) _lowercase : Tuple = {v: k for k, v in self.encoder.items()} _lowercase : Any = errors # how to handle errors in decoding _lowercase : str = bytes_to_unicode() _lowercase : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ , encoding='utf-8' ) as merges_handle: _lowercase : Union[str, Any] = merges_handle.read().split('\n' )[1:-1] _lowercase : Dict = [tuple(merge.split() ) for merge in bpe_merges] _lowercase : Any = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _lowercase : Tuple = {} _lowercase : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowercase : int = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def __UpperCAmelCase ( self : Dict ): """simple docstring""" return len(self.encoder ) def __UpperCAmelCase ( self : int ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" if token in self.cache: return self.cache[token] _lowercase : str = tuple(lowerCamelCase_ ) _lowercase : Dict = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: _lowercase : List[str] = min(lowerCamelCase_ , key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowercase , _lowercase : List[Any] = bigram _lowercase : Optional[int] = [] _lowercase : Optional[Any] = 0 while i < len(lowerCamelCase_ ): try: _lowercase : int = word.index(lowerCamelCase_ , lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowercase : Dict = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowercase : Tuple = tuple(lowerCamelCase_ ) _lowercase : Dict = new_word if len(lowerCamelCase_ ) == 1: break else: _lowercase : str = get_pairs(lowerCamelCase_ ) _lowercase : str = ' '.join(lowerCamelCase_ ) _lowercase : List[str] = word return word def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : str ): """simple docstring""" _lowercase : Union[str, Any] = [] for token in re.findall(self.pat , lowerCamelCase_ ): _lowercase : List[str] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(' ' ) ) return bpe_tokens def __UpperCAmelCase ( self : int , lowerCamelCase_ : Optional[Any] ): """simple docstring""" return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Dict ): """simple docstring""" return self.decoder.get(lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Any ): """simple docstring""" _lowercase : Dict = ''.join(lowerCamelCase_ ) _lowercase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __UpperCAmelCase ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : Union[str, Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : List[Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '\n' ) _lowercase : Optional[int] = 0 with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _lowercase : int = token_index writer.write(' '.join(lowerCamelCase_ ) + '\n' ) index += 1 return vocab_file, merge_file def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : Optional[Any] = [self.cls_token_id] _lowercase : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" _lowercase : int = [self.sep_token_id] _lowercase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=False , **lowerCamelCase_ : int ): """simple docstring""" _lowercase : Dict = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): _lowercase : Dict = ' ' + text return (text, kwargs)
283
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets a__ = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' a__ = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' a__ = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def __UpperCAmelCase ( __a : Optional[int] ) -> int: """simple docstring""" def remove_articles(__a : Tuple ): _a : Union[str, Any] = re.compile(R'''\b(a|an|the)\b''' ,re.UNICODE ) return re.sub(__a ,''' ''' ,__a ) def white_space_fix(__a : Any ): return " ".join(text.split() ) def remove_punc(__a : str ): _a : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__a : int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__a ) ) ) ) def __UpperCAmelCase ( __a : Any ,__a : int ) -> Optional[Any]: """simple docstring""" return int(normalize_answer(__a ) == normalize_answer(__a ) ) def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Optional[int] ) -> int: """simple docstring""" _a : Dict = [any(compute_exact(__a ,__a ) for ref in refs ) for pred, refs in zip(__a ,__a )] return (sum(__a ) / len(__a )) * 100 def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Optional[int] ,__a : Union[str, Any] ) -> Tuple: """simple docstring""" _a : Optional[Any] = [rgram for rgrams in rgramslist for rgram in rgrams] _a : Any = Counter(__a ) _a : Dict = Counter(__a ) _a : Tuple = Counter() for sgram, scount in sgramcounter.items(): _a : List[str] = scount * numref _a : Optional[Any] = Counter(__a ) _a : Dict = Counter() for cgram, ccount in cgramcounter.items(): _a : int = ccount * numref # KEEP _a : Optional[Any] = sgramcounter_rep & cgramcounter_rep _a : Dict = keepgramcounter_rep & rgramcounter _a : str = sgramcounter_rep & rgramcounter _a : Any = 0 _a : Optional[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a : List[str] = 1 _a : List[str] = 1 if len(__a ) > 0: _a : Any = keeptmpscorea / len(__a ) if len(__a ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a : Optional[int] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a : List[Any] = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a : str = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a : Tuple = sgramcounter_rep - cgramcounter_rep _a : Tuple = delgramcounter_rep - rgramcounter _a : List[Any] = sgramcounter_rep - rgramcounter _a : int = 0 _a : Union[str, Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a : int = 1 if len(__a ) > 0: _a : Any = deltmpscorea / len(__a ) # ADDITION _a : Union[str, Any] = set(__a ) - set(__a ) _a : str = set(__a ) & set(__a ) _a : Optional[int] = set(__a ) - set(__a ) _a : Dict = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a : Optional[int] = 1 _a : str = 1 if len(__a ) > 0: _a : List[Any] = addtmpscore / len(__a ) if len(__a ) > 0: _a : Optional[Any] = addtmpscore / len(__a ) _a : Dict = 0 if addscore_precision > 0 or addscore_recall > 0: _a : Optional[Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __UpperCAmelCase ( __a : int ,__a : Tuple ,__a : Optional[int] ) -> str: """simple docstring""" _a : List[Any] = len(__a ) _a : int = ssent.split(''' ''' ) _a : List[Any] = csent.split(''' ''' ) _a : List[Any] = [] _a : Tuple = [] _a : Union[str, Any] = [] _a : Dict = [] _a : Dict = [] _a : Any = [] _a : List[Any] = [] _a : List[Any] = [] _a : List[Any] = [] _a : Optional[int] = [] for rsent in rsents: _a : Dict = rsent.split(''' ''' ) _a : Optional[Any] = [] _a : Tuple = [] _a : Optional[Any] = [] ragramslist.append(__a ) for i in range(0 ,len(__a ) - 1 ): if i < len(__a ) - 1: _a : Any = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(__a ) if i < len(__a ) - 2: _a : List[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(__a ) if i < len(__a ) - 3: _a : List[str] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(__a ) ragramslist.append(__a ) ragramslist.append(__a ) ragramslist.append(__a ) for i in range(0 ,len(__a ) - 1 ): if i < len(__a ) - 1: _a : str = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(__a ) if i < len(__a ) - 2: _a : Optional[int] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(__a ) if i < len(__a ) - 3: _a : List[str] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(__a ) for i in range(0 ,len(__a ) - 1 ): if i < len(__a ) - 1: _a : str = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(__a ) if i < len(__a ) - 2: _a : int = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(__a ) if i < len(__a ) - 3: _a : Optional[int] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(__a ) ((_a) , (_a) , (_a)) : Union[str, Any] = SARIngram(__a ,__a ,__a ,__a ) ((_a) , (_a) , (_a)) : Tuple = SARIngram(__a ,__a ,__a ,__a ) ((_a) , (_a) , (_a)) : int = SARIngram(__a ,__a ,__a ,__a ) ((_a) , (_a) , (_a)) : List[str] = SARIngram(__a ,__a ,__a ,__a ) _a : List[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a : List[str] = sum([delascore, delascore, delascore, delascore] ) / 4 _a : Optional[Any] = sum([addascore, addascore, addascore, addascore] ) / 4 _a : int = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __UpperCAmelCase ( __a : str ,__a : bool = True ,__a : str = "13a" ,__a : bool = True ) -> Optional[int]: """simple docstring""" if lowercase: _a : List[str] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a : int = sacrebleu.metrics.bleu._get_tokenizer(__a )()(__a ) else: _a : Optional[int] = sacrebleu.TOKENIZERS[tokenizer]()(__a ) elif tokenizer == "moses": _a : str = sacremoses.MosesTokenizer().tokenize(__a ,return_str=__a ,escape=__a ) elif tokenizer == "penn": _a : Dict = sacremoses.MosesTokenizer().penn_tokenize(__a ,return_str=__a ) else: _a : Optional[int] = sentence if not return_str: _a : Optional[Any] = normalized_sent.split() return normalized_sent def __UpperCAmelCase ( __a : Optional[Any] ,__a : Optional[Any] ,__a : Optional[int] ) -> List[str]: """simple docstring""" if not (len(__a ) == len(__a ) == len(__a )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a : Any = 0 for src, pred, refs in zip(__a ,__a ,__a ): sari_score += SARIsent(normalize(__a ) ,normalize(__a ) ,[normalize(__a ) for sent in refs] ) _a : str = sari_score / len(__a ) return 100 * sari_score def __UpperCAmelCase ( __a : Optional[int] ,__a : Optional[int] ,__a : Any="exp" ,__a : str=None ,__a : str=False ,__a : Dict=False ,__a : List[str]=False ,) -> Optional[Any]: """simple docstring""" _a : List[str] = len(references[0] ) if any(len(__a ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a : str = [[refs[i] for refs in references] for i in range(__a )] _a : Union[str, Any] = sacrebleu.corpus_bleu( __a ,__a ,smooth_method=__a ,smooth_value=__a ,force=__a ,lowercase=__a ,use_effective_order=__a ,) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowercase ( self , _a , _a , _a ) -> Optional[int]: _a : Optional[Any] = {} result.update({'''sari''': compute_sari(sources=_a , predictions=_a , references=_a )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_a , references=_a )} ) result.update({'''exact''': compute_em(predictions=_a , references=_a )} ) return result
14
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __UpperCAmelCase ( __a : Any ) -> List[Any]: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(F"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) a__ = parser.parse_args() a__ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
14
1
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a ,'tf_padding' ) ) self.parent.assertTrue(hasattr(_a ,'depth_multiplier' ) ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : Tuple ,_a : Dict ,_a : List[str]=13 ,_a : Union[str, Any]=3 ,_a : str=32 ,_a : List[str]=0.25 ,_a : Tuple=8 ,_a : Any=8 ,_a : Optional[int]=6 ,_a : int=32 ,_a : List[str]=True ,_a : Optional[Any]=True ,_a : int=True ,_a : Dict="relu6" ,_a : Union[str, Any]=1280 ,_a : str=0.1 ,_a : Optional[Any]=0.02 ,_a : str=True ,_a : Dict=True ,_a : List[Any]=10 ,_a : List[Any]=None ,): '''simple docstring''' _a : str = parent _a : Tuple = batch_size _a : List[str] = num_channels _a : int = image_size _a : Optional[int] = depth_multiplier _a : str = depth_divisible_by _a : int = min_depth _a : Optional[Any] = expand_ratio _a : str = tf_padding _a : str = output_stride _a : Tuple = first_layer_is_expansion _a : Optional[Any] = finegrained_output _a : Union[str, Any] = hidden_act _a : Any = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) _a : List[Any] = classifier_dropout_prob _a : int = use_labels _a : Optional[Any] = is_training _a : Dict = num_labels _a : int = initializer_range _a : Dict = scope def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Union[str, Any] = None _a : Any = None if self.use_labels: _a : Any = ids_tensor([self.batch_size] ,self.num_labels ) _a : Any = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) _a : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def __lowercase ( self : str ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels ,image_size=self.image_size ,depth_multiplier=self.depth_multiplier ,depth_divisible_by=self.depth_divisible_by ,min_depth=self.min_depth ,expand_ratio=self.expand_ratio ,output_stride=self.output_stride ,first_layer_is_expansion=self.first_layer_is_expansion ,finegrained_output=self.finegrained_output ,hidden_act=self.hidden_act ,tf_padding=self.tf_padding ,classifier_dropout_prob=self.classifier_dropout_prob ,initializer_range=self.initializer_range ,) def __lowercase ( self : str ,_a : Tuple ,_a : int ,_a : Union[str, Any] ,_a : Dict ): '''simple docstring''' _a : Optional[Any] = MobileNetVaModel(config=_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual( result.last_hidden_state.shape ,( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) self.parent.assertEqual( result.pooler_output.shape ,(self.batch_size, self.last_hidden_size) ,) def __lowercase ( self : Optional[Any] ,_a : List[Any] ,_a : Any ,_a : Dict ,_a : Optional[Any] ): '''simple docstring''' _a : List[str] = self.num_labels _a : List[Any] = MobileNetVaForImageClassification(_a ) model.to(_a ) model.eval() _a : Union[str, Any] = model(_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : int ,_a : Tuple ,_a : str ,_a : Optional[Any] ,_a : Optional[Any] ): '''simple docstring''' _a : Optional[Any] = self.num_labels _a : Tuple = MobileNetVaForSemanticSegmentation(_a ) model.to(_a ) model.eval() _a : int = model(_a ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) _a : List[str] = model(_a ,labels=_a ) self.parent.assertEqual( result.logits.shape ,( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) ,) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : List[str] = self.prepare_config_and_inputs() _a, _a, _a, _a : Optional[int] = config_and_inputs _a : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase : List[str] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[int] = False def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Any = MobileNetVaModelTester(self ) _a : List[str] = MobileNetVaConfigTester(self ,config_class=_a ,has_text_modality=_a ) def __lowercase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def __lowercase ( self : Any ): '''simple docstring''' pass def __lowercase ( self : Dict ): '''simple docstring''' _a, _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_a ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Any = [*signature.parameters.keys()] _a : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(_a : Any ,_a : Tuple ,_a : Union[str, Any] ): _a : List[Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Optional[Any] = model(**self._prepare_for_class(_a ,_a ) ) _a : str = outputs.hidden_states _a : Any = 16 self.assertEqual(len(_a ) ,_a ) _a, _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = True check_hidden_states_output(_a ,_a ,_a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : Optional[Any] = True check_hidden_states_output(_a ,_a ,_a ) def __lowercase ( self : Any ): '''simple docstring''' _a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_a ) @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Union[str, Any] = MobileNetVaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[Any] = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(_a ) _a : List[Any] = self.default_image_processor _a : Any = prepare_img() _a : List[Any] = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : List[Any] = model(**_a ) # verify the logits _a : int = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape ,_a ) _a : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) ) @slow def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Optional[int] = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) _a : Optional[Any] = model.to(_a ) _a : Tuple = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) _a : Union[str, Any] = prepare_img() _a : Tuple = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : str = model(**_a ) _a : Optional[Any] = outputs.logits # verify the logits _a : List[Any] = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape ,_a ) _a : Union[str, Any] = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] ,device=_a ,) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] ,_a ,atol=1E-4 ) )
319
'''simple docstring''' def UpperCAmelCase_ (__a : int ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 _a : Optional[Any] = 1 _a : str = 1 while repunit: _a : Union[str, Any] = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCAmelCase_ (__a : int = 1_0_0_0_0_0_0 ): """simple docstring""" _a : int = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(__a ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
319
1
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class __lowercase ( __lowerCamelCase , unittest.TestCase ): snake_case_ = GPTSwaTokenizer snake_case_ = False snake_case_ = True snake_case_ = False def __lowercase ( self : Any ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Dict = GPTSwaTokenizer(snake_case_ ,eos_token="""<unk>""" ,bos_token="""<unk>""" ,pad_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : Dict ,A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = '''This is a test''' UpperCAmelCase__ : Optional[int] = '''This is a test''' return input_text, output_text def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = '''<s>''' UpperCAmelCase__ : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) ,snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) ,snake_case_ ) def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""j""" ) self.assertEqual(len(snake_case_ ) ,2_000 ) def __lowercase ( self : Any ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,2_000 ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = GPTSwaTokenizer(snake_case_ ) UpperCAmelCase__ : str = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) ,[465, 287, 265, 631, 842] ) UpperCAmelCase__ : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) # fmt: off self.assertListEqual( snake_case_ ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ,) # fmt: on UpperCAmelCase__ : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ ,[262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] ,) UpperCAmelCase__ : List[Any] = tokenizer.convert_ids_to_tokens(snake_case_ ) # fmt: off self.assertListEqual( snake_case_ ,["""▁I""", """▁was""", """▁bor""", """n""", """▁in""", """▁""", """<0x39>""", """2""", """0""", """0""", """0""", """,""", """▁and""", """▁this""", """▁is""", """▁f""", """al""", """s""", """<0xC3>""", """<0xA9>""", """."""] ) # fmt: on def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = GPTSwaTokenizer(snake_case_ ) UpperCAmelCase__ : int = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] UpperCAmelCase__ : int = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(snake_case_ ,snake_case_ ): self.assertListEqual(tokenizer.encode_fast(snake_case_ ) ,snake_case_ ) # Test that decode_fast returns the input text for text, token_ids in zip(snake_case_ ,snake_case_ ): self.assertEqual(tokenizer.decode_fast(snake_case_ ) ,snake_case_ ) @slow def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off UpperCAmelCase__ : Dict = {'''input_ids''': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ ,model_name="""AI-Sweden/gpt-sw3-126m""" ,sequences=snake_case_ ,)
65
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) def _a ( __lowerCAmelCase : bool , __lowerCAmelCase : bool ): """simple docstring""" def run_func(__lowerCAmelCase : Optional[int] ): @wraps(__lowerCAmelCase ) def run_in_eager_mode(*__lowerCAmelCase : str , **__lowerCAmelCase : Union[str, Any] ): return func(*__lowerCAmelCase , **__lowerCAmelCase ) @wraps(__lowerCAmelCase ) @tf.function(experimental_compile=__lowerCAmelCase ) def run_in_graph_mode(*__lowerCAmelCase : Tuple , **__lowerCAmelCase : Optional[int] ): return func(*__lowerCAmelCase , **__lowerCAmelCase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _a ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" snake_case__ : int = random.Random() snake_case__ : Any = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__lowerCAmelCase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 __UpperCAmelCase = "TensorFlow" @property def __magic_name__ ( self : List[Any] ): '''simple docstring''' return tf.__version__ def __magic_name__ ( self : Any , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) snake_case__ : Optional[int] = self._prepare_inference_func(snake_case_ , snake_case_ , snake_case_ ) return self._measure_speed(_inference ) def __magic_name__ ( self : Optional[Any] , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) snake_case__ : int = self._prepare_train_func(snake_case_ , snake_case_ , snake_case_ ) return self._measure_speed(_train ) def __magic_name__ ( self : List[str] , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , snake_case_ ) snake_case__ : Optional[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) snake_case__ : Union[str, Any] = self._prepare_inference_func(snake_case_ , snake_case_ , snake_case_ ) return self._measure_memory(_inference ) def __magic_name__ ( self : str , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , snake_case_ ) snake_case__ : str = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) snake_case__ : int = self._prepare_train_func(snake_case_ , snake_case_ , snake_case_ ) return self._measure_memory(_train ) def __magic_name__ ( self : Optional[Any] , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : List[Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) snake_case__ : str = ( hasattr(snake_case_ , '''architectures''' ) and isinstance(config.architectures , snake_case_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: snake_case__ : str = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model snake_case__ : List[Any] = __import__('''transformers''' , fromlist=[model_class] ) snake_case__ : Union[str, Any] = getattr(snake_case_ , snake_case_ ) snake_case__ : Tuple = model_cls(snake_case_ ) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: snake_case__ : Optional[int] = TF_MODEL_MAPPING[config.__class__](snake_case_ ) # encoder-decoder has vocab size saved differently snake_case__ : Union[str, Any] = config.vocab_size if hasattr(snake_case_ , '''vocab_size''' ) else config.encoder.vocab_size snake_case__ : int = random_input_ids(snake_case_ , snake_case_ , snake_case_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(snake_case_ , decoder_input_ids=snake_case_ , training=snake_case_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(snake_case_ , training=snake_case_ ) snake_case__ : Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __magic_name__ ( self : Optional[Any] , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : List[Any] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) snake_case__ : List[Any] = ( hasattr(snake_case_ , '''architectures''' ) and isinstance(config.architectures , snake_case_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: snake_case__ : Union[str, Any] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model snake_case__ : Any = __import__('''transformers''' , fromlist=[model_class] ) snake_case__ : Dict = getattr(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = model_cls(snake_case_ ) except ImportError: raise ImportError( F"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: snake_case__ : int = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](snake_case_ ) # encoder-decoder has vocab size saved differently snake_case__ : Optional[Any] = config.vocab_size if hasattr(snake_case_ , '''vocab_size''' ) else config.encoder.vocab_size snake_case__ : Optional[int] = random_input_ids(snake_case_ , snake_case_ , snake_case_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): snake_case__ : List[str] = model(snake_case_ , decoder_input_ids=snake_case_ , labels=snake_case_ , training=snake_case_ )[0] snake_case__ : Any = tf.gradients(snake_case_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): snake_case__ : Dict = model(snake_case_ , labels=snake_case_ , training=snake_case_ )[0] snake_case__ : Optional[int] = tf.gradients(snake_case_ , model.trainable_variables ) return gradients snake_case__ : Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __magic_name__ ( self : int , snake_case_ : List[Any] ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(snake_case_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average snake_case__ : Optional[int] = timeit.repeat( snake_case_ , repeat=self.args.repeat , number=1_0 , ) return min(snake_case_ ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""" ) def __magic_name__ ( self : Tuple , snake_case_ : Callable[[], None] ): '''simple docstring''' logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) snake_case__ : int = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) snake_case__ : int = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() snake_case__ : Dict = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) snake_case__ : Optional[Any] = nvml.nvmlDeviceGetMemoryInfo(snake_case_ ) snake_case__ : Union[str, Any] = meminfo.used snake_case__ : int = Memory(snake_case_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) snake_case__ : str = None else: snake_case__ : Union[str, Any] = measure_peak_memory_cpu(snake_case_ ) snake_case__ : int = Memory(snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else memory_bytes if self.args.trace_memory_line_by_line: snake_case__ : int = stop_memory_tracing(snake_case_ ) if memory is None: snake_case__ : Optional[int] = summary.total else: snake_case__ : str = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F"""Doesn't fit on GPU. {e}""" ) return "N/A", None
347
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False, False, False @dataclass class __magic_name__ : """simple docstring""" _UpperCamelCase = None _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = None # Automatically constructed _UpperCamelCase = "dict" _UpperCamelCase = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) _UpperCamelCase = field(default="Audio" ,init=lowercase_ ,repr=lowercase_ ) def __call__( self ): return self.pa_type def _UpperCAmelCase ( self , a__ ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(a__ , a__ ): return {"bytes": None, "path": value} elif isinstance(a__ , a__ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes _lowerCamelCase = BytesIO() sf.write(a__ , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) _lowerCamelCase = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: _lowerCamelCase = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_27_67 _lowerCamelCase = BytesIO(bytes() ) sf.write(a__ , a__ , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def _UpperCAmelCase ( self , a__ , a__ = None ): if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) _lowerCamelCase , _lowerCamelCase = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err _lowerCamelCase = xsplitext(a__ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: _lowerCamelCase = token_per_repo_id or {} _lowerCamelCase = path.split('''::''' )[-1] try: _lowerCamelCase = string_to_dict(a__ , config.HUB_DATASETS_URL )['''repo_id'''] _lowerCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): _lowerCamelCase = None with xopen(a__ , '''rb''' , use_auth_token=a__ ) as f: _lowerCamelCase , _lowerCamelCase = sf.read(a__ ) else: _lowerCamelCase , _lowerCamelCase = sf.read(a__ ) _lowerCamelCase = array.T if self.mono: _lowerCamelCase = librosa.to_mono(a__ ) if self.sampling_rate and self.sampling_rate != sampling_rate: _lowerCamelCase = librosa.resample(a__ , orig_sr=a__ , target_sr=self.sampling_rate ) _lowerCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _UpperCAmelCase ( self ): from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def _UpperCAmelCase ( self , a__ ): if pa.types.is_string(storage.type ): _lowerCamelCase = pa.array([None] * len(a__ ) , type=pa.binary() ) _lowerCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowerCamelCase = pa.array([None] * len(a__ ) , type=pa.string() ) _lowerCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): _lowerCamelCase = pa.array([Audio().encode_example(a__ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: _lowerCamelCase = storage.field('''bytes''' ) else: _lowerCamelCase = pa.array([None] * len(a__ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: _lowerCamelCase = storage.field('''path''' ) else: _lowerCamelCase = pa.array([None] * len(a__ ) , type=pa.string() ) _lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(a__ , self.pa_type ) def _UpperCAmelCase ( self , a__ ): @no_op_if_value_is_null def path_to_bytes(a__ ): with xopen(a__ , '''rb''' ) as f: _lowerCamelCase = f.read() return bytes_ _lowerCamelCase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _lowerCamelCase = pa.array( [os.path.basename(a__ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) _lowerCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(a__ , self.pa_type )
297
from maths.prime_factors import prime_factors def _lowerCamelCase ( _a ): """simple docstring""" if not isinstance(_a , _a ): _lowerCamelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(_a ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(_a ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
297
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowerCAmelCase_ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowerCamelCase_ ( UpperCamelCase__ ): _lowerCAmelCase : Dict = field(default=UpperCamelCase__ , metadata={'help': 'Whether to use SortishSampler or not.'} ) _lowerCAmelCase : List[Any] = field( default=UpperCamelCase__ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) _lowerCAmelCase : str = field( default=UpperCamelCase__ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) _lowerCAmelCase : Tuple = field( default=UpperCamelCase__ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) _lowerCAmelCase : Any = field( default=UpperCamelCase__ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def __lowercase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = super().to_dict() for k, v in d.items(): if isinstance(_a , _a ): SCREAMING_SNAKE_CASE : int = v.to_dict() return d
527
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__ : def __init__( self : Optional[Any] , _a : int , _a : Optional[Any]=3 , _a : Tuple=32 , _a : Any=3 , _a : Union[str, Any]=10 , _a : Optional[int]=[8, 16, 32, 64] , _a : Union[str, Any]=[1, 1, 2, 1] , _a : Optional[Any]=True , _a : int=True , _a : Tuple="relu" , _a : Optional[Any]=3 , _a : str=None , _a : List[Any]=["stage2", "stage3", "stage4"] , _a : Union[str, Any]=[2, 3, 4] , _a : Dict=1 , ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =embeddings_size _SCREAMING_SNAKE_CASE =hidden_sizes _SCREAMING_SNAKE_CASE =depths _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =len(_a ) _SCREAMING_SNAKE_CASE =out_features _SCREAMING_SNAKE_CASE =out_indices _SCREAMING_SNAKE_CASE =num_groups def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_labels ) _SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __UpperCamelCase ( self : Optional[Any] , _a : Dict , _a : str , _a : Dict ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =BitModel(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self : Union[str, Any] , _a : Union[str, Any] , _a : Optional[Any] , _a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =BitForImageClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : List[str] , _a : Any , _a : str , _a : List[str] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =BitBackbone(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =BitBackbone(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =config_and_inputs _SCREAMING_SNAKE_CASE ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =BitModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_a ) _SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] _SCREAMING_SNAKE_CASE =['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(_a : Any , _a : Optional[int] , _a : Tuple ): _SCREAMING_SNAKE_CASE =model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(_a , _a ) ) _SCREAMING_SNAKE_CASE =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE =self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _SCREAMING_SNAKE_CASE =layer_type _SCREAMING_SNAKE_CASE =True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE =True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) _SCREAMING_SNAKE_CASE =self.default_image_processor _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**_a ) # verify the logits _SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _SCREAMING_SNAKE_CASE =torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @require_torch class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = (BitBackbone,) if is_torch_available() else () UpperCAmelCase = BitConfig UpperCAmelCase = False def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =BitModelTester(self )
691
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class lowerCamelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' _lowercase : List[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowercase : Optional[int] = len(A__ ) - 1 def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : str ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowercase : Optional[Any] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , A__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A__ ) , 5 ) == 1 return output_values def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : int ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowercase : str = self.basis_function(A__ ) _lowercase : str = 0.0 _lowercase : Dict = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : List[str] = 0.01 ) -> str: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore _lowercase : int = [] # x coordinates of points to plot _lowercase : Union[str, Any] = [] # y coordinates of points to plot _lowercase : List[str] = 0.0 while t <= 1: _lowercase : List[Any] = self.bezier_curve_function(A__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowercase : Optional[Any] = [i[0] for i in self.list_of_points] _lowercase : List[str] = [i[1] for i in self.list_of_points] plt.plot( A__ , A__ , color='blue' , label='Curve of Degree ' + str(self.degree ) , ) plt.scatter(A__ , A__ , color='red' , label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
721
'''simple docstring''' import os from collections.abc import Iterator def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowercase ): _lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"): yield os.path.join(_lowercase, _lowercase ).lstrip('./' ) def __UpperCamelCase ( _lowercase ) -> List[str]: return f'''{i * " "}*''' if i else "\n##" def __UpperCamelCase ( _lowercase, _lowercase ) -> str: _lowercase : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' ) return new_path def __UpperCamelCase ( _lowercase = "." ) -> None: _lowercase : Dict = '' for filepath in sorted(good_file_paths(_lowercase ) ): _lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase ) if filepath != old_path: _lowercase : Dict = print_path(_lowercase, _lowercase ) _lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' ) _lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0] print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('''.''')
4
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : int = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] = [ "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
405
'''simple docstring''' def _lowerCAmelCase ( ) -> int: """simple docstring""" return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(_UpperCamelCase , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'''{solution() = }''')
405
1
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowercase_ ( ) -> str: '''simple docstring''' __lowerCamelCase : Optional[int] = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) __lowerCamelCase : Dict = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(_lowerCamelCase ) DownloadCommand.register_subcommand(_lowerCamelCase ) EnvironmentCommand.register_subcommand(_lowerCamelCase ) RunCommand.register_subcommand(_lowerCamelCase ) ServeCommand.register_subcommand(_lowerCamelCase ) UserCommands.register_subcommand(_lowerCamelCase ) AddNewModelCommand.register_subcommand(_lowerCamelCase ) AddNewModelLikeCommand.register_subcommand(_lowerCamelCase ) LfsCommands.register_subcommand(_lowerCamelCase ) PTtoTFCommand.register_subcommand(_lowerCamelCase ) # Let's go __lowerCamelCase : Optional[Any] = parser.parse_args() if not hasattr(_lowerCamelCase , "func" ): parser.print_help() exit(1 ) # Run __lowerCamelCase : Dict = args.func(_lowerCamelCase ) service.run() if __name__ == "__main__": main()
366
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __A = logging.get_logger('''transformers.models.speecht5''') def lowercase_ ( _lowerCamelCase: Any , _lowerCamelCase: List[Any] , _lowerCamelCase: Tuple ) -> Union[str, Any]: '''simple docstring''' hf_model.apply_weight_norm() __lowerCamelCase : Union[str, Any] = checkpoint["input_conv.weight_g"] __lowerCamelCase : int = checkpoint["input_conv.weight_v"] __lowerCamelCase : Dict = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): __lowerCamelCase : Dict = checkpoint[F"""upsamples.{i}.1.weight_g"""] __lowerCamelCase : Optional[int] = checkpoint[F"""upsamples.{i}.1.weight_v"""] __lowerCamelCase : Any = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __lowerCamelCase : List[str] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] __lowerCamelCase : str = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] __lowerCamelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] __lowerCamelCase : str = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] __lowerCamelCase : int = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] __lowerCamelCase : int = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] __lowerCamelCase : Any = checkpoint["output_conv.1.weight_g"] __lowerCamelCase : Tuple = checkpoint["output_conv.1.weight_v"] __lowerCamelCase : int = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def lowercase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: Dict , _lowerCamelCase: Optional[int] , _lowerCamelCase: Any=None , _lowerCamelCase: Optional[int]=None , ) -> Optional[int]: '''simple docstring''' if config_path is not None: __lowerCamelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_lowerCamelCase ) else: __lowerCamelCase : Tuple = SpeechTaHifiGanConfig() __lowerCamelCase : List[Any] = SpeechTaHifiGan(_lowerCamelCase ) __lowerCamelCase : int = torch.load(_lowerCamelCase ) load_weights(orig_checkpoint["model"]["generator"] , _lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : Dict = np.load(_lowerCamelCase ) __lowerCamelCase : List[str] = stats[0].reshape(-1 ) __lowerCamelCase : Optional[int] = stats[1].reshape(-1 ) __lowerCamelCase : int = torch.from_numpy(_lowerCamelCase ).float() __lowerCamelCase : List[str] = torch.from_numpy(_lowerCamelCase ).float() model.save_pretrained(_lowerCamelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(_lowerCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __A = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
366
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = """pegasus""" _lowerCamelCase = ["""past_key_values"""] _lowerCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __A=50265 , __A=1024 , __A=12 , __A=4096 , __A=16 , __A=12 , __A=4096 , __A=16 , __A=0.0 , __A=0.0 , __A=True , __A=True , __A="gelu" , __A=1024 , __A=0.1 , __A=0.0 , __A=0.0 , __A=0.02 , __A=0 , __A=False , __A=0 , __A=1 , __A=1 , **__A , ): __a = vocab_size __a = max_position_embeddings __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = encoder_layerdrop __a = decoder_layerdrop __a = use_cache __a = encoder_layers __a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) @property def snake_case_ ( self ): return self.encoder_attention_heads @property def snake_case_ ( self ): return self.d_model
99
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) SCREAMING_SNAKE_CASE = logging.getLogger() def a (): __a = argparse.ArgumentParser() parser.add_argument("""-f""" ) __a = parser.parse_args() return args.f class __UpperCAmelCase ( __A ): """simple docstring""" def snake_case_ ( self ): __a = logging.StreamHandler(sys.stdout ) logger.addHandler(__A ) def snake_case_ ( self , __A ): __a = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(__A , """argv""" , __A ): __a = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(__A , 0.666 ) @slow @require_torch_non_multi_gpu def snake_case_ ( self ): __a = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(__A ) __a = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(__A ) __a = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(__A )
99
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase : str = 16 __UpperCamelCase : List[Any] = 32 def __UpperCAmelCase ( lowercase_: Accelerator, lowercase_: int = 16 ) -> List[Any]: """simple docstring""" __a = AutoTokenizer.from_pretrained('bert-base-cased' ) __a = load_dataset('glue', 'mrpc' ) def tokenize_function(lowercase_: str ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['sentence1'], examples['sentence2'], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a = datasets.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowercase_: str ): # On TPU it's best to pad everything to the same length or training will be very slow. __a = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a = 16 elif accelerator.mixed_precision != "no": __a = 8 else: __a = None return tokenizer.pad( SCREAMING_SNAKE_CASE__, padding='longest', max_length=SCREAMING_SNAKE_CASE__, pad_to_multiple_of=SCREAMING_SNAKE_CASE__, return_tensors='pt', ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['train'], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ ) __a = DataLoader( tokenized_datasets['validation'], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCamelCase : Any = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( lowercase_: Optional[int], lowercase_: Optional[Any] ) -> List[str]: """simple docstring""" # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', SCREAMING_SNAKE_CASE__ ) == "1": __a = 2 # New Code # __a = int(args.gradient_accumulation_steps ) # Initialize accelerator __a = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=SCREAMING_SNAKE_CASE__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['lr'] __a = int(config['num_epochs'] ) __a = int(config['seed'] ) __a = int(config['batch_size'] ) __a = evaluate.load('glue', 'mrpc' ) set_seed(SCREAMING_SNAKE_CASE__ ) __a , __a = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a = model.to(accelerator.device ) # Instantiate optimizer __a = AdamW(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler __a = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=100, num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE__ ): __a = model(**SCREAMING_SNAKE_CASE__ ) __a = output.loss accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**SCREAMING_SNAKE_CASE__ ) __a = outputs.logits.argmax(dim=-1 ) __a , __a = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ ) def __UpperCAmelCase ( ) -> Dict: """simple docstring""" __a = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) # New Code # parser.add_argument( '--gradient_accumulation_steps', type=SCREAMING_SNAKE_CASE__, default=1, help='The number of minibatches to be ran before gradients are accumulated.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) __a = parser.parse_args() __a = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
702
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
270
0
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _UpperCamelCase : List[Any] = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __UpperCAmelCase ( A : int , A : Optional[Any] , A : Optional[Any] , A : List[Any]=None ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = XLNetConfig.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) UpperCAmelCase_ : int = finetuning_task UpperCAmelCase_ : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCAmelCase_ : List[str] = XLNetForSequenceClassification(_SCREAMING_SNAKE_CASE ) elif "squad" in finetuning_task: UpperCAmelCase_ : Union[str, Any] = finetuning_task UpperCAmelCase_ : List[str] = XLNetForQuestionAnswering(_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase_ : Optional[int] = XLNetLMHeadModel(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model UpperCAmelCase_ : int = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(F"Save PyTorch model to {os.path.abspath(_SCREAMING_SNAKE_CASE )}" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) print(F"Save configuration file to {os.path.abspath(_SCREAMING_SNAKE_CASE )}" ) with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) _UpperCamelCase : Union[str, Any] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
541
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
186
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __UpperCAmelCase = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __UpperCAmelCase = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE : Any = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE : List[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[Any] = numpy_to_pil(snake_case_ ) return images def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[Any] ) -> Any: if images.ndim == 3: SCREAMING_SNAKE_CASE : Optional[Any] = images[None, ...] SCREAMING_SNAKE_CASE : Optional[int] = (images * 255).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images SCREAMING_SNAKE_CASE : List[str] = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: SCREAMING_SNAKE_CASE : List[Any] = [Image.fromarray(snake_case_ ) for image in images] return pil_images
220
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[str] = { 'shi-labs/dinat-mini-in1k-224': 'https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json', # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ='''dinat''' _lowerCamelCase ={ '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : int , a__ : str=4 , a__ : int=3 , a__ : Optional[int]=64 , a__ : Dict=[3, 4, 6, 5] , a__ : Tuple=[2, 4, 8, 16] , a__ : Any=7 , a__ : List[Any]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , a__ : Dict=3.0 , a__ : str=True , a__ : Optional[int]=0.0 , a__ : Optional[Any]=0.0 , a__ : List[str]=0.1 , a__ : int="gelu" , a__ : Optional[int]=0.02 , a__ : List[str]=1e-5 , a__ : Optional[Any]=0.0 , a__ : Optional[Any]=None , a__ : int=None , **a__ : Optional[int] , ): super().__init__(**a__ ) UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = depths UpperCAmelCase = len(a__ ) UpperCAmelCase = num_heads UpperCAmelCase = kernel_size UpperCAmelCase = dilations UpperCAmelCase = mlp_ratio UpperCAmelCase = qkv_bias UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = hidden_act UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase = int(embed_dim * 2 ** (len(a__ ) - 1) ) UpperCAmelCase = layer_scale_init_value UpperCAmelCase = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(a__ ) + 1 )] UpperCAmelCase, UpperCAmelCase = get_aligned_output_features_output_indices( out_features=a__ , out_indices=a__ , stage_names=self.stage_names )
51
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _snake_case( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): __snake_case: Union[str, Any] = StableUnCLIPPipeline __snake_case: List[str] = TEXT_TO_IMAGE_PARAMS __snake_case: str = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case: Dict = TEXT_TO_IMAGE_IMAGE_PARAMS __snake_case: List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __snake_case: str = False def _UpperCamelCase (self : Optional[int] ) -> int: """simple docstring""" A__ = 32 A__ = embedder_hidden_size # prior components torch.manual_seed(0 ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) A__ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a , projection_dim=a , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) A__ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a , num_layers=1 , ) torch.manual_seed(0 ) A__ = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=10_00 , clip_sample=a , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) A__ = StableUnCLIPImageNormalizer(embedding_dim=a ) A__ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) A__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) A__ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a , layers_per_block=1 , upcast_attention=a , use_linear_projection=a , ) torch.manual_seed(0 ) A__ = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=a , steps_offset=1 , ) torch.manual_seed(0 ) A__ = AutoencoderKL() A__ = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def _UpperCamelCase (self : List[Any] , a : Optional[Any] , a : str=0 ) -> Dict: """simple docstring""" if str(a ).startswith('mps' ): A__ = torch.manual_seed(a ) else: A__ = torch.Generator(device=a ).manual_seed(a ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _UpperCamelCase (self : List[str] ) -> Optional[int]: """simple docstring""" A__ = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=a ) def _UpperCamelCase (self : Dict ) -> str: """simple docstring""" A__ = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=a ) @slow @require_torch_gpu class _snake_case( unittest.TestCase ): def _UpperCamelCase (self : Any ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase (self : Dict ) -> Union[str, Any]: """simple docstring""" A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) A__ = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A__ = torch.Generator(device='cpu' ).manual_seed(0 ) A__ = pipe('anime turle' , generator=a , output_type='np' ) A__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(a , a ) def _UpperCamelCase (self : Optional[Any] ) -> str: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) A__ = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A__ = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) A__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
531
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class _UpperCamelCase ( A_ ): '''simple docstring''' lowerCamelCase : Union[List[PIL.Image.Image], np.ndarray] lowerCamelCase : Optional[List[bool]] lowerCamelCase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
486
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[int] , __lowercase : Union[str, Any] , __lowercase : Optional[int]=13 , __lowercase : Union[str, Any]=2 , __lowercase : Union[str, Any]=24 , __lowercase : Tuple=16 , __lowercase : Any=True , __lowercase : List[str]=True , __lowercase : List[Any]=32 , __lowercase : Tuple=5 , __lowercase : List[str]=4 , __lowercase : Optional[Any]=37 , __lowercase : Tuple="gelu" , __lowercase : Any=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : Tuple=10 , __lowercase : List[str]=0.02 , __lowercase : str=None , __lowercase : Any=2 , __lowercase : Optional[int]=2 , ): '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = max_length UpperCAmelCase_ = num_mel_bins UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = frequency_stride UpperCAmelCase_ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase_ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase_ = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase_ = frequency_out_dimension * time_out_dimension UpperCAmelCase_ = num_patches + 2 def SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, input_values, labels def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def SCREAMING_SNAKE_CASE ( self : List[str] , __lowercase : int , __lowercase : Dict , __lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = ASTModel(config=__lowercase ) model.to(__lowercase ) model.eval() UpperCAmelCase_ = model(__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"""input_values""": input_values} return config, inputs_dict @require_torch class _UpperCamelCase ( A_ , A_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase : Any = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) lowerCamelCase : Union[str, Any] = False lowerCamelCase : Tuple = False lowerCamelCase : List[str] = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowercase : Union[str, Any] , __lowercase : List[str] , __lowercase : int , __lowercase : str , __lowercase : Dict ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = ASTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__lowercase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["""input_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = ASTModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def A_( ): UpperCAmelCase_ = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) UpperCAmelCase_ , UpperCAmelCase_ = torchaudio.load(A ) return audio, sampling_rate @require_torch @require_torchaudio class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' UpperCAmelCase_ = self.default_feature_extractor UpperCAmelCase_ = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(__lowercase ) UpperCAmelCase_ = self.default_feature_extractor UpperCAmelCase_ , UpperCAmelCase_ = prepare_audio() UpperCAmelCase_ = audio.squeeze().numpy() UpperCAmelCase_ = feature_extractor(__lowercase , sampling_rate=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**__lowercase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , __lowercase ) UpperCAmelCase_ = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) )
486
1
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] A__ = (low + high) // 2 A__ , A__ , A__ = max_subarray(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) A__ , A__ , A__ = max_subarray(UpperCAmelCase ,mid + 1 ,UpperCAmelCase ) A__ , A__ , A__ = max_cross_sum(UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ , A__ = float('-inf' ), -1 A__ , A__ = float('-inf' ), -1 A__ = 0 for i in range(UpperCAmelCase ,low - 1 ,-1 ): summ += arr[i] if summ > left_sum: A__ = summ A__ = i A__ = 0 for i in range(mid + 1 ,high + 1 ): summ += arr[i] if summ > right_sum: A__ = summ A__ = i return max_left, max_right, (left_sum + right_sum) def _A ( UpperCAmelCase ): '''simple docstring''' A__ = [randint(1 ,UpperCAmelCase ) for _ in range(UpperCAmelCase )] A__ = time.time() max_subarray(UpperCAmelCase ,0 ,input_size - 1 ) A__ = time.time() return end - start def _A ( ): '''simple docstring''' A__ = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] A__ = [time_max_subarray(UpperCAmelCase ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(UpperCAmelCase ,UpperCAmelCase ): print(UpperCAmelCase ,'\t\t' ,UpperCAmelCase ) plt.plot(UpperCAmelCase ,UpperCAmelCase ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
531
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _snake_case: def __init__(self : List[Any] , a : str , a : Any=13 , a : Optional[Any]=30 , a : Union[str, Any]=2 , a : List[str]=3 , a : List[str]=True , a : List[Any]=True , a : Tuple=32 , a : Optional[Any]=5 , a : str=4 , a : List[str]=37 , a : List[str]="gelu" , a : int=0.1 , a : int=0.1 , a : str=10 , a : Tuple=0.02 , a : Union[str, Any]=3 , a : List[str]=None , a : Any=2 , ) -> Optional[int]: """simple docstring""" A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope A__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A__ = (image_size // patch_size) ** 2 A__ = num_patches + 2 def _UpperCamelCase (self : Optional[Any] ) -> List[str]: """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def _UpperCamelCase (self : Union[str, Any] ) -> int: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _UpperCamelCase (self : Optional[int] , a : Tuple , a : Dict , a : Optional[Any] ) -> Optional[Any]: """simple docstring""" A__ = DeiTModel(config=a ) model.to(a ) model.eval() A__ = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase (self : Optional[int] , a : Any , a : Optional[Any] , a : Optional[int] ) -> Dict: """simple docstring""" A__ = DeiTForMaskedImageModeling(config=a ) model.to(a ) model.eval() A__ = model(a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A__ = 1 A__ = DeiTForMaskedImageModeling(a ) model.to(a ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _UpperCamelCase (self : Optional[Any] , a : Optional[Any] , a : Union[str, Any] , a : Union[str, Any] ) -> str: """simple docstring""" A__ = self.type_sequence_label_size A__ = DeiTForImageClassification(a ) model.to(a ) model.eval() A__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ = 1 A__ = DeiTForImageClassification(a ) model.to(a ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase (self : List[Any] ) -> Optional[int]: """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _snake_case( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): __snake_case: Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __snake_case: int = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __snake_case: Any = False __snake_case: Any = False __snake_case: Any = False def _UpperCamelCase (self : Any ) -> int: """simple docstring""" A__ = DeiTModelTester(self ) A__ = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37 ) def _UpperCamelCase (self : Dict ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def _UpperCamelCase (self : List[str] ) -> List[str]: """simple docstring""" pass def _UpperCamelCase (self : Optional[Any] ) -> Tuple: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear ) ) def _UpperCamelCase (self : Union[str, Any] ) -> str: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(a ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCamelCase (self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCamelCase (self : Dict ) -> Any: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a ) def _UpperCamelCase (self : List[Any] ) -> Optional[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) def _UpperCamelCase (self : Optional[int] , a : int , a : Union[str, Any] , a : List[Any]=False ) -> Optional[int]: """simple docstring""" A__ = super()._prepare_for_class(a , a , return_labels=a ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _UpperCamelCase (self : Any ) -> Tuple: """simple docstring""" if not self.model_tester.is_training: return A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(a ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue A__ = model_class(a ) model.to(a ) model.train() A__ = self._prepare_for_class(a , a , return_labels=a ) A__ = model(**a ).loss loss.backward() def _UpperCamelCase (self : Optional[Any] ) -> int: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A__ = False A__ = True for model_class in self.all_model_classes: if model_class in get_values(a ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue A__ = model_class(a ) model.gradient_checkpointing_enable() model.to(a ) model.train() A__ = self._prepare_for_class(a , a , return_labels=a ) A__ = model(**a ).loss loss.backward() def _UpperCamelCase (self : Optional[Any] ) -> List[str]: """simple docstring""" A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(a ), *get_values(a ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): A__ = problem_type['title'] A__ = problem_type['num_labels'] A__ = model_class(a ) model.to(a ) model.train() A__ = self._prepare_for_class(a , a , return_labels=a ) if problem_type["num_labels"] > 1: A__ = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) A__ = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=a ) as warning_list: A__ = model(**a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def _UpperCamelCase (self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = DeiTModel.from_pretrained(a ) self.assertIsNotNone(a ) def _A ( ): '''simple docstring''' A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _snake_case( unittest.TestCase ): @cached_property def _UpperCamelCase (self : Tuple ) -> Union[str, Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def _UpperCamelCase (self : List[str] ) -> Optional[Any]: """simple docstring""" A__ = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( a ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): A__ = model(**a ) # verify the logits A__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a ) A__ = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _UpperCamelCase (self : Tuple ) -> str: """simple docstring""" A__ = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto' ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=a , return_tensors='pt' ) A__ = inputs.pixel_values.to(a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): A__ = model(a )
531
1
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''vocab.txt'''} __A ={ '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } __A ={ '''facebook/esm2_t6_8M_UR50D''': 1_0_2_4, '''facebook/esm2_t12_35M_UR50D''': 1_0_2_4, } def lowerCamelCase_ ( lowerCamelCase__ ): with open(lowerCamelCase__ , "r" ) as f: lowerCamelCase_ = f.read().splitlines() return [l.strip() for l in lines] class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase="<unk>" , lowercase="<cls>" , lowercase="<pad>" , lowercase="<mask>" , lowercase="<eos>" , **lowercase , ) -> List[str]: super().__init__(**lowercase ) lowerCamelCase_ = load_vocab_file(lowercase ) lowerCamelCase_ = dict(enumerate(self.all_tokens ) ) lowerCamelCase_ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowerCamelCase_ = unk_token lowerCamelCase_ = cls_token lowerCamelCase_ = pad_token lowerCamelCase_ = mask_token lowerCamelCase_ = eos_token lowerCamelCase_ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> str: return self._id_to_token.get(lowercase , self.unk_token ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: return self._token_to_id.get(lowercase , self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_( self , lowercase , **lowercase ) -> int: return text.split() def SCREAMING_SNAKE_CASE_( self , lowercase=False ) -> List[Any]: return len(self._id_to_token ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: return {token: i for i, token in enumerate(self.all_tokens )} def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: return self._token_to_id.get(lowercase , self._token_to_id.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> str: return self._id_to_token.get(lowercase , self.unk_token ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowerCamelCase_ = [1] + ([0] * len(lowercase )) + [1] if token_ids_a is not None: mask += [0] * len(lowercase ) + [1] return mask def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Any: lowerCamelCase_ = os.path.join(lowercase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(lowercase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def SCREAMING_SNAKE_CASE_( self ) -> int: return self.get_vocab_size(with_added_tokens=lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = False ) -> int: return super()._add_tokens(lowercase , special_tokens=lowercase )
313
import sys from collections import defaultdict class _SCREAMING_SNAKE_CASE : def __init__( self ) -> int: lowerCamelCase_ = [] def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[Any]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> List[Any]: lowerCamelCase_ = pos def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCamelCase_ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCamelCase_ = 2 * start + 1 else: lowerCamelCase_ = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCamelCase_ , lowerCamelCase_ = heap[smallest_child], positions[smallest_child] lowerCamelCase_ , lowerCamelCase_ = ( heap[start], positions[start], ) lowerCamelCase_ , lowerCamelCase_ = temp, tempa lowerCamelCase_ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowercase ) self.top_to_bottom(lowercase , lowercase , lowercase , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCamelCase_ = position[index] while index != 0: lowerCamelCase_ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCamelCase_ = heap[parent] lowerCamelCase_ = position[parent] self.set_position(position[parent] , lowercase ) else: lowerCamelCase_ = val lowerCamelCase_ = temp self.set_position(lowercase , lowercase ) break lowerCamelCase_ = parent else: lowerCamelCase_ = val lowerCamelCase_ = temp self.set_position(lowercase , 0 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Union[str, Any]: lowerCamelCase_ = len(lowercase ) // 2 - 1 for i in range(lowercase , -1 , -1 ): self.top_to_bottom(lowercase , lowercase , len(lowercase ) , lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> Tuple: lowerCamelCase_ = positions[0] lowerCamelCase_ = sys.maxsize self.top_to_bottom(lowercase , 0 , len(lowercase ) , lowercase ) return temp def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = Heap() lowerCamelCase_ = [0] * len(lowerCamelCase__ ) lowerCamelCase_ = [-1] * len(lowerCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCamelCase_ = [] # Heap of Distance of vertices from their neighboring vertex lowerCamelCase_ = [] for vertex in range(len(lowerCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(lowerCamelCase__ ) heap.node_position.append(lowerCamelCase__ ) lowerCamelCase_ = [] lowerCamelCase_ = 1 lowerCamelCase_ = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCamelCase_ = 0 lowerCamelCase_ = distance heap.heapify(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(1 , len(lowerCamelCase__ ) ): lowerCamelCase_ = heap.delete_minimum(lowerCamelCase__ , lowerCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCamelCase_ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowerCamelCase__ )] ): lowerCamelCase_ = distance heap.bottom_to_top( lowerCamelCase__ , heap.get_position(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A =int(input('''Enter number of edges: ''').strip()) __A =defaultdict(list) for _ in range(edges_number): __A =[int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
313
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): @staticmethod @abstractmethod def UpperCamelCase_ ( __lowercase : ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' raise NotImplementedError()
225
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCamelCase__ = False class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] , __lowercase : Any=32 ): '''simple docstring''' set_seed(0 ) __a = UNetaDModel(sample_size=__lowercase , in_channels=3 , out_channels=3 ) __a = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = """cpu""" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __a = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=__lowercase , ) __a = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule="""linear""" , clip_sample=__lowercase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) __a = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(__lowercase ) for _ in range(4 )] __a = [torch.randn((4, 3, 32, 32) ).to(__lowercase ) for _ in range(4 )] __a = [torch.randint(0 , 1000 , (4,) ).long().to(__lowercase ) for _ in range(4 )] # train with a DDPM scheduler __a , __a = self.get_model_optimizer(resolution=32 ) model.train().to(__lowercase ) for i in range(4 ): optimizer.zero_grad() __a = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __a = model(__lowercase , timesteps[i] ).sample __a = torch.nn.functional.mse_loss(__lowercase , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __a , __a = self.get_model_optimizer(resolution=32 ) model.train().to(__lowercase ) for i in range(4 ): optimizer.zero_grad() __a = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __a = model(__lowercase , timesteps[i] ).sample __a = torch.nn.functional.mse_loss(__lowercase , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) ) self.assertTrue(torch.allclose(__lowercase , __lowercase , atol=1E-5 ) )
225
1
'''simple docstring''' import requests def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str): lowerCamelCase : Dict = {'Content-Type': 'application/json'} lowerCamelCase : Optional[int] = requests.post(UpperCAmelCase__ , json={'text': message_body} , headers=UpperCAmelCase__) if response.status_code != 2_00: lowerCamelCase : List[str] = ( 'Request to slack returned an error ' F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(UpperCAmelCase__) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
449
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint A = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } A = { '169M': 768, '430M': 1024, '1B5': 2048, '3B': 2560, '7B': 4096, '14B': 5120, } def UpperCAmelCase ( UpperCAmelCase__ : Any): lowerCamelCase : Any = list(state_dict.keys()) for name in state_dict_keys: lowerCamelCase : List[str] = state_dict.pop(UpperCAmelCase__) # emb -> embedding if name.startswith('emb.'): lowerCamelCase : Dict = name.replace('emb.' , 'embeddings.') # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0'): lowerCamelCase : str = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln') # att -> attention lowerCamelCase : str = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , UpperCAmelCase__) # ffn -> feed_forward lowerCamelCase : List[Any] = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , UpperCAmelCase__) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k'): lowerCamelCase : Any = name.replace('.time_mix_k' , '.time_mix_key') # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v'): lowerCamelCase : str = name.replace('.time_mix_v' , '.time_mix_value') # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r'): lowerCamelCase : List[Any] = name.replace('.time_mix_r' , '.time_mix_receptance') if name != "head.weight": lowerCamelCase : Any = 'rwkv.' + name lowerCamelCase : Any = weight return state_dict def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[Any]=False , UpperCAmelCase__ : Dict=None): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.') lowerCamelCase : Dict = 5_02_77 lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b') else: lowerCamelCase : int = PreTrainedTokenizerFast(tokenizer_file=UpperCAmelCase__) lowerCamelCase : List[Any] = len(UpperCAmelCase__) tokenizer.save_pretrained(UpperCAmelCase__) # 2. Build the config lowerCamelCase : Tuple = list(NUM_HIDDEN_LAYERS_MAPPING.keys()) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCamelCase : Union[str, Any] = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.') if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''') lowerCamelCase : List[Any] = RwkvConfig( vocab_size=UpperCAmelCase__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(UpperCAmelCase__) # 3. Download model file then convert state_dict lowerCamelCase : Tuple = hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__) lowerCamelCase : Any = torch.load(UpperCAmelCase__ , map_location='cpu') lowerCamelCase : str = convert_state_dict(UpperCAmelCase__) # 4. Split in shards and save lowerCamelCase , lowerCamelCase : Optional[int] = shard_checkpoint(UpperCAmelCase__) for shard_file, shard in shards.items(): torch.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , UpperCAmelCase__)) if index is not None: lowerCamelCase : Dict = os.path.join(UpperCAmelCase__ , UpperCAmelCase__) # Save the index as well with open(UpperCAmelCase__ , 'w' , encoding='utf-8') as f: lowerCamelCase : int = json.dumps(UpperCAmelCase__ , indent=2 , sort_keys=UpperCAmelCase__) + '\n' f.write(UpperCAmelCase__) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.') lowerCamelCase : List[str] = list(shards.keys()) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCamelCase : Dict = torch.load(os.path.join(UpperCAmelCase__ , UpperCAmelCase__)) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(UpperCAmelCase__ , UpperCAmelCase__)) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.') lowerCamelCase : List[Any] = AutoModelForCausalLM.from_pretrained(UpperCAmelCase__) model.push_to_hub(UpperCAmelCase__ , max_shard_size='2GB') tokenizer.push_to_hub(UpperCAmelCase__) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) A = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
449
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): _SCREAMING_SNAKE_CASE : str = True from torch.cuda.amp import autocast _SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) @dataclass class UpperCamelCase__ : a__ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a__ : Optional[bool] = field( default=__lowerCamelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) a__ : Optional[bool] = field( default=__lowerCamelCase , metadata={'help': 'Whether to log verbose messages or not.'} , ) a__ : Optional[float] = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) a__ : Optional[float] = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) a__ : Optional[float] = field( default=0.99_9995 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def _lowercase ( __lowerCamelCase : ModelArguments ,__lowerCamelCase : TrainingArguments ) -> int: '''simple docstring''' logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,handlers=[logging.StreamHandler(sys.stdout )] ,) UpperCamelCase__ : Optional[Any] = logging.WARNING if model_args.verbose_logging: UpperCamelCase__ : Tuple = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): UpperCamelCase__ : Optional[int] = logging.INFO logger.setLevel(__lowerCamelCase ) @dataclass class UpperCamelCase__ : a__ : str = field( default=__lowerCamelCase , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) a__ : Optional[str] = field( default=__lowerCamelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) a__ : Optional[str] = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) a__ : Optional[str] = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) a__ : Optional[str] = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) a__ : bool = field( default=__lowerCamelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) a__ : Optional[int] = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) a__ : Optional[int] = field( default=__lowerCamelCase , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) a__ : Optional[float] = field( default=20.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class UpperCamelCase__ : a__ : WavaVecaForPreTraining a__ : WavaVecaFeatureExtractor a__ : Union[bool, str] = "longest" a__ : Optional[int] = None a__ : Optional[int] = None def __call__( self : Optional[Any], __lowerCamelCase : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format UpperCamelCase__ : Union[str, Any] = self.feature_extractor.pad( __lowerCamelCase, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='''pt''', ) UpperCamelCase__ : int = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) UpperCamelCase__ : Union[str, Any] = batch['''input_values'''].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula UpperCamelCase__ : Tuple = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) UpperCamelCase__ : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to UpperCamelCase__ : Tuple = 1 UpperCamelCase__ : Union[str, Any] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices UpperCamelCase__ : Any = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__lowerCamelCase, min_masks=2, ) return batch class UpperCamelCase__ ( __lowerCamelCase ): def __init__( self : List[Any], *__lowerCamelCase : int, __lowerCamelCase : Union[str, Any]=1, __lowerCamelCase : str=0, __lowerCamelCase : List[Any]=1.0, **__lowerCamelCase : Optional[int] ) -> List[Any]: super().__init__(*__lowerCamelCase, **__lowerCamelCase ) UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : List[Any] = max_gumbel_temp UpperCamelCase__ : Any = min_gumbel_temp UpperCamelCase__ : Union[str, Any] = gumbel_temp_decay def __lowercase( self : Any, __lowerCamelCase : nn.Module, __lowerCamelCase : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() UpperCamelCase__ : List[str] = self._prepare_inputs(__lowerCamelCase ) if self.use_amp: with autocast(): UpperCamelCase__ : Optional[int] = self.compute_loss(__lowerCamelCase, __lowerCamelCase ) else: UpperCamelCase__ : Union[str, Any] = self.compute_loss(__lowerCamelCase, __lowerCamelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": UpperCamelCase__ : Dict = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCamelCase__ : Tuple = loss.sum() / (inputs['''mask_time_indices''']).sum() else: raise ValueError(f'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: UpperCamelCase__ : Optional[Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__lowerCamelCase ).backward() elif self.use_apex: with amp.scale_loss(__lowerCamelCase, self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__lowerCamelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp ) ) return loss.detach() def _lowercase ( ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[Any] = parser.parse_args_into_dataclasses() configure_logger(__lowerCamelCase ,__lowerCamelCase ) # Downloading and loading a dataset from the hub. UpperCamelCase__ : int = load_dataset(data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" UpperCamelCase__ : List[str] = DatasetDict() UpperCamelCase__ : List[Any] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' ,cache_dir=model_args.cache_dir ,) UpperCamelCase__ : Optional[int] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' ,cache_dir=model_args.cache_dir ,) else: # make sure only "validation" and "train" keys remain" UpperCamelCase__ : int = DatasetDict() UpperCamelCase__ : List[Any] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split='''validation''' ,cache_dir=model_args.cache_dir ,) UpperCamelCase__ : int = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=F'{data_args.train_split_name}' ,cache_dir=model_args.cache_dir ,) # only normalized-inputs-training is supported UpperCamelCase__ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,do_normalize=__lowerCamelCase ) def prepare_dataset(__lowerCamelCase : Tuple ): # check that all files have the correct sampling rate UpperCamelCase__ ,UpperCamelCase__ : int = librosa.load(batch[data_args.speech_file_column] ,sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays UpperCamelCase__ : List[str] = datasets.map( __lowerCamelCase ,num_proc=data_args.preprocessing_num_workers ,remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long UpperCamelCase__ : str = vectorized_datasets.filter( lambda __lowerCamelCase : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowerCamelCase : str ): return feature_extractor(batch['''speech'''] ,sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` UpperCamelCase__ : List[Any] = vectorized_datasets.map( __lowerCamelCase ,batched=__lowerCamelCase ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,remove_columns=vectorized_datasets['''train'''].column_names ,) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 UpperCamelCase__ : Any = WavaVecaConfig.from_pretrained( model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,gradient_checkpointing=training_args.gradient_checkpointing ,) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) UpperCamelCase__ : List[Any] = WavaVecaForPreTraining(__lowerCamelCase ) UpperCamelCase__ : Optional[Any] = DataCollatorForWavaVecaPretraining(model=__lowerCamelCase ,feature_extractor=__lowerCamelCase ) UpperCamelCase__ : Any = WavaVecaPreTrainer( model=__lowerCamelCase ,data_collator=__lowerCamelCase ,args=__lowerCamelCase ,train_dataset=vectorized_datasets['''train'''] ,eval_dataset=vectorized_datasets['''validation'''] ,tokenizer=__lowerCamelCase ,max_gumbel_temp=model_args.max_gumbel_temperature ,min_gumbel_temp=model_args.min_gumbel_temperature ,gumbel_temp_decay=model_args.gumbel_temperature_decay ,) trainer.train() if __name__ == "__main__": main()
344
from __future__ import annotations from collections.abc import Sequence from typing import Literal def _lowercase ( __lowerCamelCase : str ,__lowerCamelCase : str ) -> str | Literal[False]: '''simple docstring''' UpperCamelCase__ : Any = list(__lowerCamelCase ) UpperCamelCase__ : str = list(__lowerCamelCase ) UpperCamelCase__ : Dict = 0 for i in range(len(__lowerCamelCase ) ): if lista[i] != lista[i]: count += 1 UpperCamelCase__ : Dict = '''_''' if count > 1: return False else: return "".join(__lowerCamelCase ) def _lowercase ( __lowerCamelCase : list[str] ) -> list[str]: '''simple docstring''' UpperCamelCase__ : str = [] while True: UpperCamelCase__ : Tuple = ['''$'''] * len(__lowerCamelCase ) UpperCamelCase__ : str = [] for i in range(len(__lowerCamelCase ) ): for j in range(i + 1 ,len(__lowerCamelCase ) ): UpperCamelCase__ : Optional[Any] = compare_string(binary[i] ,binary[j] ) if k is False: UpperCamelCase__ : Any = '''*''' UpperCamelCase__ : int = '''*''' temp.append('''X''' ) for i in range(len(__lowerCamelCase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__lowerCamelCase ) == 0: return pi UpperCamelCase__ : Tuple = list(set(__lowerCamelCase ) ) def _lowercase ( __lowerCamelCase : int ,__lowerCamelCase : Sequence[float] ) -> list[str]: '''simple docstring''' UpperCamelCase__ : Optional[int] = [] for minterm in minterms: UpperCamelCase__ : Optional[Any] = '''''' for _ in range(__lowerCamelCase ): UpperCamelCase__ : Optional[int] = str(minterm % 2 ) + string minterm //= 2 temp.append(__lowerCamelCase ) return temp def _lowercase ( __lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : int ) -> bool: '''simple docstring''' UpperCamelCase__ : Optional[int] = list(__lowerCamelCase ) UpperCamelCase__ : Optional[Any] = list(__lowerCamelCase ) UpperCamelCase__ : str = 0 for i in range(len(__lowerCamelCase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _lowercase ( __lowerCamelCase : list[list[int]] ,__lowerCamelCase : list[str] ) -> list[str]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Union[str, Any] = [0] * len(__lowerCamelCase ) for i in range(len(chart[0] ) ): UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : int = -1 for j in range(len(__lowerCamelCase ) ): if chart[j][i] == 1: count += 1 UpperCamelCase__ : Dict = j if count == 1: UpperCamelCase__ : int = 1 for i in range(len(__lowerCamelCase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__lowerCamelCase ) ): UpperCamelCase__ : List[str] = 0 temp.append(prime_implicants[i] ) while True: UpperCamelCase__ : Any = 0 UpperCamelCase__ : List[str] = -1 UpperCamelCase__ : Dict = 0 for i in range(len(__lowerCamelCase ) ): UpperCamelCase__ : Any = chart[i].count(1 ) if count_n > max_n: UpperCamelCase__ : Optional[int] = count_n UpperCamelCase__ : str = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__lowerCamelCase ) ): UpperCamelCase__ : List[str] = 0 def _lowercase ( __lowerCamelCase : list[str] ,__lowerCamelCase : list[str] ) -> list[list[int]]: '''simple docstring''' UpperCamelCase__ : List[Any] = [[0 for x in range(len(__lowerCamelCase ) )] for x in range(len(__lowerCamelCase ) )] for i in range(len(__lowerCamelCase ) ): UpperCamelCase__ : Optional[Any] = prime_implicants[i].count('''_''' ) for j in range(len(__lowerCamelCase ) ): if is_for_table(prime_implicants[i] ,binary[j] ,__lowerCamelCase ): UpperCamelCase__ : Optional[int] = 1 return chart def _lowercase ( ) -> None: '''simple docstring''' UpperCamelCase__ : int = int(input('''Enter the no. of variables\n''' ) ) UpperCamelCase__ : Optional[Any] = [ float(__lowerCamelCase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] UpperCamelCase__ : Dict = decimal_to_binary(__lowerCamelCase ,__lowerCamelCase ) UpperCamelCase__ : Any = check(__lowerCamelCase ) print('''Prime Implicants are:''' ) print(__lowerCamelCase ) UpperCamelCase__ : Dict = prime_implicant_chart(__lowerCamelCase ,__lowerCamelCase ) UpperCamelCase__ : Tuple = selection(__lowerCamelCase ,__lowerCamelCase ) print('''Essential Prime Implicants are:''' ) print(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
344
1
class snake_case_ : def __init__( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict = n SCREAMING_SNAKE_CASE_ : Optional[Any] = [None] * self.n SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 # index of the first element SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 def __len__( self ): return self.size def __A ( self ): return self.size == 0 def __A ( self ): return False if self.is_empty() else self.array[self.front] def __A ( self , __lowerCAmelCase ): if self.size >= self.n: raise Exception('QUEUE IS FULL' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = data SCREAMING_SNAKE_CASE_ : Dict = (self.rear + 1) % self.n self.size += 1 return self def __A ( self ): if self.size == 0: raise Exception('UNDERFLOW' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.array[self.front] SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Any = (self.front + 1) % self.n self.size -= 1 return temp
311
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): SCREAMING_SNAKE_CASE_ : str = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): SCREAMING_SNAKE_CASE_ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: SCREAMING_SNAKE_CASE_ : Optional[int] = subset[i - 1][j] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE_ : int = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
311
1
import math import os import sys def UpperCamelCase ( snake_case__ : str ) -> str: UpperCamelCase : Tuple = '' try: with open(snake_case__ , 'rb' ) as binary_file: UpperCamelCase : Dict = binary_file.read() for dat in data: UpperCamelCase : str = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCamelCase ( snake_case__ : dict[str, str] , snake_case__ : str , snake_case__ : int , snake_case__ : str ) -> None: lexicon.pop(snake_case__ ) UpperCamelCase : Tuple = last_match_id if math.loga(snake_case__ ).is_integer(): for curr_key in lexicon: UpperCamelCase : List[str] = '0' + lexicon[curr_key] UpperCamelCase : List[str] = bin(snake_case__ )[2:] def UpperCamelCase ( snake_case__ : str ) -> str: UpperCamelCase : int = {'0': '0', '1': '1'} UpperCamelCase , UpperCamelCase : Union[str, Any] = '', '' UpperCamelCase : str = len(snake_case__ ) for i in range(len(snake_case__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase : List[Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) index += 1 UpperCamelCase : Optional[int] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCamelCase : Tuple = lexicon[curr_string] result += last_match_id return result def UpperCamelCase ( snake_case__ : str , snake_case__ : str ) -> str: UpperCamelCase : Optional[Any] = os.path.getsize(snake_case__ ) UpperCamelCase : str = bin(snake_case__ )[2:] UpperCamelCase : int = len(snake_case__ ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase ( snake_case__ : str , snake_case__ : str ) -> None: UpperCamelCase : List[Any] = 8 try: with open(snake_case__ , 'wb' ) as opened_file: UpperCamelCase : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(snake_case__ ) , snake_case__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCamelCase ( snake_case__ : str , snake_case__ : str ) -> None: UpperCamelCase : List[str] = read_file_binary(snake_case__ ) UpperCamelCase : Optional[int] = compress_data(snake_case__ ) UpperCamelCase : str = add_file_length(snake_case__ , snake_case__ ) write_file_binary(snake_case__ , snake_case__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
40
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCAmelCase : _A : Union[str, Any] = MBartConfig _A : Tuple = {} _A : Tuple = """gelu""" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=False , __A=99 , __A=32 , __A=2 , __A=4 , __A=37 , __A=0.1 , __A=0.1 , __A=20 , __A=2 , __A=1 , __A=0 , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = eos_token_id __UpperCAmelCase = pad_token_id __UpperCAmelCase = bos_token_id def __lowerCamelCase ( self ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __UpperCAmelCase = prepare_mbart_inputs_dict(__A , __A , __A ) return config, inputs_dict def __lowerCamelCase ( self , __A , __A ): __UpperCAmelCase = TFMBartModel(config=__A ).get_decoder() __UpperCAmelCase = inputs_dict['input_ids'] __UpperCAmelCase = input_ids[:1, :] __UpperCAmelCase = inputs_dict['attention_mask'][:1, :] __UpperCAmelCase = inputs_dict['head_mask'] __UpperCAmelCase = 1 # first forward pass __UpperCAmelCase = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) __UpperCAmelCase , __UpperCAmelCase = outputs.to_tuple() __UpperCAmelCase = past_key_values[1] def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , )-> Tuple: if attention_mask is None: __UpperCAmelCase = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): _A : int = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _A : List[Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else () _A : str = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _A : List[str] = True _A : Optional[int] = False _A : Optional[Any] = False def __lowerCamelCase ( self , __A , __A , __A , __A , __A ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __lowerCamelCase ( self ): __UpperCAmelCase = TFMBartModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__A ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCAmelCase ( unittest.TestCase ): _A : List[str] = [ """ UN Chief Says There Is No Military Solution in Syria""", ] _A : Optional[Any] = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] _A : Optional[int] = """facebook/mbart-large-en-ro""" @cached_property def __lowerCamelCase ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __lowerCamelCase ( self ): __UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __lowerCamelCase ( self , **__A ): __UpperCAmelCase = self.translate_src_text(**__A ) self.assertListEqual(self.expected_text , __A ) def __lowerCamelCase ( self , **__A ): __UpperCAmelCase = self.tokenizer(self.src_text , **__A , return_tensors='tf' ) __UpperCAmelCase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __UpperCAmelCase = self.tokenizer.batch_decode(__A , skip_special_tokens=__A ) return generated_words @slow def __lowerCamelCase ( self ): self._assert_generated_batch_equal_expected()
126
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={ "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class A__( __magic_name__ ): lowerCAmelCase = '''van''' def __init__( self : int , __SCREAMING_SNAKE_CASE : Optional[Any]=2_24 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE : Optional[int]=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE : str=[64, 1_28, 3_20, 5_12] , __SCREAMING_SNAKE_CASE : Optional[Any]=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE : Dict=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-6 , __SCREAMING_SNAKE_CASE : Any=1E-2 , __SCREAMING_SNAKE_CASE : str=0.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , **__SCREAMING_SNAKE_CASE : str , ) -> List[str]: """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_sizes __SCREAMING_SNAKE_CASE = strides __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = mlp_ratios __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = layer_scale_init_value __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = dropout_rate
690
"""simple docstring""" import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "spiece.model"} lowerCAmelCase__ ={ "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } lowerCAmelCase__ ={ "AI-Sweden/gpt-sw3-126m": 2_048, "AI-Sweden/gpt-sw3-350m": 2_048, "AI-Sweden/gpt-sw3-1.6b": 2_048, "AI-Sweden/gpt-sw3-6.7b": 2_048, "AI-Sweden/gpt-sw3-20b": 2_048, } class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **__SCREAMING_SNAKE_CASE : Dict , ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs __SCREAMING_SNAKE_CASE = kwargs.get('''name_or_path''' ) if name_or_path is None: logger.warning( '''name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,''' ''' you are testing the model, this can safely be ignored''' ) __SCREAMING_SNAKE_CASE = '''None''' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __SCREAMING_SNAKE_CASE = '''<|endoftext|>''' if eos_token is None else eos_token __SCREAMING_SNAKE_CASE = '''<unk>''' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __SCREAMING_SNAKE_CASE = unk_token if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = eos_token if bos_token is None else bos_token else: __SCREAMING_SNAKE_CASE = '''<pad>''' if pad_token is None else pad_token __SCREAMING_SNAKE_CASE = '''<s>''' if bos_token is None else bos_token super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = remove_space __SCREAMING_SNAKE_CASE = keep_accents __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off __SCREAMING_SNAKE_CASE = {''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', ''' ''', '''''', '''„'''} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __SCREAMING_SNAKE_CASE = re.compile( f"""[{"".join(map(__SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]""" ) def __getstate__( self : List[str] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.__dict__.copy() __SCREAMING_SNAKE_CASE = None return state def __setstate__( self : int , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _a ( self : Optional[Any] ) -> int: """simple docstring""" return len(self.sp_model ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.non_printing_characters_re.sub('''''' , __SCREAMING_SNAKE_CASE ) # Normalize whitespaces __SCREAMING_SNAKE_CASE = ''''''.join([char if char not in self.whitespaces else ''' ''' for char in text] ) # NFC Unicode normalization __SCREAMING_SNAKE_CASE = unicodedata.normalize('''NFC''' , __SCREAMING_SNAKE_CASE ) return text def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) @staticmethod def _a ( __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" return out_string def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = '''''' __SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string def _a ( self : Union[str, Any] ) -> Dict[str, int]: """simple docstring""" __SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, List[str]] , __SCREAMING_SNAKE_CASE : Union[str, bool] = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = self.preprocess_text(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = [self.preprocess_text(__SCREAMING_SNAKE_CASE ) for t in text] __SCREAMING_SNAKE_CASE = self.sp_model.encode(__SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": __SCREAMING_SNAKE_CASE = torch.tensor(__SCREAMING_SNAKE_CASE ) return token_ids def _a ( self : Any , __SCREAMING_SNAKE_CASE : Union[int, List[int]] ) -> str: """simple docstring""" return self.sp_model.decode(__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : "Conversation" ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [f"""User: {text}""" if is_user else f"""Bot: {text}""" for is_user, text in conversation.iter_texts()] __SCREAMING_SNAKE_CASE = ( f"""{self.eos_token}{self.bos_token}""" + f"""{self.bos_token}""".join(__SCREAMING_SNAKE_CASE ) + f"""{self.bos_token}Bot:""" ) return self.encode(text=__SCREAMING_SNAKE_CASE )
690
1
'''simple docstring''' import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =VQModel _lowerCamelCase ="sample" @property def __snake_case ( self : List[str] , a__ : Optional[int]=(32, 32) ): UpperCAmelCase = 4 UpperCAmelCase = 3 UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(a__ ) return {"sample": image} @property def __snake_case ( self : Any ): return (3, 32, 32) @property def __snake_case ( self : Dict ): return (3, 32, 32) def __snake_case ( self : Dict ): UpperCAmelCase = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def __snake_case ( self : List[str] ): pass def __snake_case ( self : List[Any] ): pass def __snake_case ( self : int ): UpperCAmelCase, UpperCAmelCase = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(a__ ) UpperCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __snake_case ( self : List[str] ): UpperCAmelCase = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(a__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) UpperCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) UpperCAmelCase = image.to(a__ ) with torch.no_grad(): UpperCAmelCase = model(a__ ).sample UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) )
51
'''simple docstring''' import math from collections.abc import Iterator from itertools import takewhile def _lowerCAmelCase ( lowerCamelCase_ : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( ): __lowercase = 2 while True: if is_prime(lowerCamelCase_ ): yield num num += 1 def _lowerCAmelCase ( lowerCamelCase_ : int = 2_0_0_0_0_0_0 ): return sum(takewhile(lambda lowerCamelCase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(f'''{solution() = }''')
502
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = """wavlm""" def __init__( self , UpperCAmelCase__=3_2 , UpperCAmelCase__=7_6_8 , UpperCAmelCase__=1_2 , UpperCAmelCase__=1_2 , UpperCAmelCase__=3_0_7_2 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.0 , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-5 , UpperCAmelCase__="group" , UpperCAmelCase__="gelu" , UpperCAmelCase__=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase__=(1_0, 3, 3, 3, 3, 2, 2) , UpperCAmelCase__=False , UpperCAmelCase__=1_2_8 , UpperCAmelCase__=1_6 , UpperCAmelCase__=3_2_0 , UpperCAmelCase__=8_0_0 , UpperCAmelCase__=False , UpperCAmelCase__=True , UpperCAmelCase__=0.0_5 , UpperCAmelCase__=1_0 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0 , UpperCAmelCase__=1_0 , UpperCAmelCase__=3_2_0 , UpperCAmelCase__=2 , UpperCAmelCase__=0.1 , UpperCAmelCase__=1_0_0 , UpperCAmelCase__=2_5_6 , UpperCAmelCase__=2_5_6 , UpperCAmelCase__=0.1 , UpperCAmelCase__="mean" , UpperCAmelCase__=False , UpperCAmelCase__=False , UpperCAmelCase__=2_5_6 , UpperCAmelCase__=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCAmelCase__=(5, 3, 3, 1, 1) , UpperCAmelCase__=(1, 2, 3, 1, 1) , UpperCAmelCase__=5_1_2 , UpperCAmelCase__=8_0 , UpperCAmelCase__=0 , UpperCAmelCase__=1 , UpperCAmelCase__=2 , UpperCAmelCase__=False , UpperCAmelCase__=3 , UpperCAmelCase__=2 , UpperCAmelCase__=3 , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> Union[str, Any]: super().__init__(**UpperCAmelCase__ , pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ ) _A : str = hidden_size _A : Optional[int] = feat_extract_norm _A : Dict = feat_extract_activation _A : Union[str, Any] = list(UpperCAmelCase__ ) _A : Optional[Any] = list(UpperCAmelCase__ ) _A : str = list(UpperCAmelCase__ ) _A : Tuple = conv_bias _A : Any = num_buckets _A : str = max_bucket_distance _A : str = num_conv_pos_embeddings _A : str = num_conv_pos_embedding_groups _A : Optional[Any] = len(self.conv_dim ) _A : Optional[int] = num_hidden_layers _A : List[Any] = intermediate_size _A : Tuple = hidden_act _A : Optional[Any] = num_attention_heads _A : List[str] = hidden_dropout _A : int = attention_dropout _A : Optional[int] = activation_dropout _A : Any = feat_proj_dropout _A : Union[str, Any] = final_dropout _A : Tuple = layerdrop _A : int = layer_norm_eps _A : List[str] = initializer_range _A : int = num_ctc_classes _A : Union[str, Any] = vocab_size _A : Union[str, Any] = do_stable_layer_norm _A : List[str] = use_weighted_layer_sum _A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _A : Tuple = apply_spec_augment _A : int = mask_time_prob _A : Any = mask_time_length _A : int = mask_time_min_masks _A : List[Any] = mask_feature_prob _A : Any = mask_feature_length # parameters for pretraining with codevector quantized representations _A : List[str] = num_codevectors_per_group _A : Tuple = num_codevector_groups _A : List[str] = contrastive_logits_temperature _A : Optional[int] = num_negatives _A : str = codevector_dim _A : Dict = proj_codevector_dim _A : Any = diversity_loss_weight # ctc loss _A : List[str] = ctc_loss_reduction _A : Optional[Any] = ctc_zero_infinity # adapter _A : List[str] = add_adapter _A : List[str] = adapter_kernel_size _A : List[str] = adapter_stride _A : Optional[int] = num_adapter_layers _A : Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _A : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _A : Optional[Any] = list(UpperCAmelCase__ ) _A : Tuple = list(UpperCAmelCase__ ) _A : List[str] = list(UpperCAmelCase__ ) _A : Optional[int] = xvector_output_dim @property def _lowerCamelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
417
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = ["""pixel_values"""] def __init__( self , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = PILImageResampling.BILINEAR , UpperCAmelCase__ = True , UpperCAmelCase__ = 1 / 2_5_5 , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = True , **UpperCAmelCase__ , ) -> None: super().__init__(**UpperCAmelCase__ ) _A : Tuple = size if size is not None else {'''shortest_edge''': 2_2_4} _A : Any = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _A : Tuple = crop_size if crop_size is not None else {'''height''': 2_5_6, '''width''': 2_5_6} _A : Optional[int] = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''' ) _A : Union[str, Any] = do_resize _A : int = size _A : Union[str, Any] = resample _A : List[str] = do_rescale _A : Union[str, Any] = rescale_factor _A : int = do_center_crop _A : Union[str, Any] = crop_size _A : int = do_flip_channel_order def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = PIL.Image.BILINEAR , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> np.ndarray: _A : Optional[Any] = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) _A : Any = get_resize_output_image_size(UpperCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> np.ndarray: _A : List[Any] = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(UpperCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ) -> Optional[int]: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> np.ndarray: return flip_channel_order(UpperCAmelCase__ , data_format=UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = ChannelDimension.FIRST , **UpperCAmelCase__ , ) -> PIL.Image.Image: _A : Union[str, Any] = do_resize if do_resize is not None else self.do_resize _A : Any = resample if resample is not None else self.resample _A : Tuple = do_rescale if do_rescale is not None else self.do_rescale _A : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor _A : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _A : Union[str, Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _A : Optional[int] = size if size is not None else self.size _A : Tuple = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) _A : Any = crop_size if crop_size is not None else self.crop_size _A : str = get_size_dict(UpperCAmelCase__ , param_name='''crop_size''' ) _A : Union[str, Any] = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. _A : Tuple = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: _A : List[str] = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: _A : Union[str, Any] = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: _A : str = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _A : Dict = [self.flip_channel_order(image=UpperCAmelCase__ ) for image in images] _A : int = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] _A : List[Any] = {'''pixel_values''': images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ) -> Optional[int]: _A : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(UpperCAmelCase__ ): _A : int = target_sizes.numpy() _A : Optional[int] = [] for idx in range(len(UpperCAmelCase__ ) ): _A : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=UpperCAmelCase__ ) _A : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase__ ) else: _A : Any = logits.argmax(dim=1 ) _A : int = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
417
1
import math import qiskit def __lowerCAmelCase ( _UpperCamelCase : int = 1 , _UpperCamelCase : int = 1 , _UpperCamelCase : int = 1 ) -> qiskit.result.counts.Counts: '''simple docstring''' if ( isinstance(_UpperCamelCase , _UpperCamelCase ) or isinstance(_UpperCamelCase , _UpperCamelCase ) or isinstance(_UpperCamelCase , _UpperCamelCase ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(_UpperCamelCase ) != input_a) or (math.floor(_UpperCamelCase ) != input_a) or (math.floor(_UpperCamelCase ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers SCREAMING_SNAKE_CASE = qiskit.QuantumRegister(4 , 'qr' ) SCREAMING_SNAKE_CASE = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries SCREAMING_SNAKE_CASE = [input_a, input_a, carry_in] SCREAMING_SNAKE_CASE = qiskit.QuantumCircuit(_UpperCamelCase , _UpperCamelCase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(_UpperCamelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_UpperCamelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_UpperCamelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , _UpperCamelCase ) # measure the last two qbits SCREAMING_SNAKE_CASE = qiskit.Aer.get_backend('aer_simulator' ) SCREAMING_SNAKE_CASE = qiskit.execute(_UpperCamelCase , _UpperCamelCase , shots=10_00 ) return job.result().get_counts(_UpperCamelCase ) if __name__ == "__main__": print(F"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
439
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = BigBirdConfig.from_json_file(_UpperCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: SCREAMING_SNAKE_CASE = BigBirdForQuestionAnswering(_UpperCamelCase ) else: SCREAMING_SNAKE_CASE = BigBirdForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(_UpperCamelCase , _UpperCamelCase , is_trivia_qa=_UpperCamelCase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) a_ : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
439
1
class lowerCAmelCase__ : def __init__( self : str , __UpperCamelCase : str = "" , __UpperCamelCase : bool = False ) -> None: # Mapping from the first character of the prefix of the node A = {} # A node will be a leaf if the tree contains its word A = is_leaf A = prefix def __UpperCamelCase ( self : int , __UpperCamelCase : str ) -> tuple[str, str, str]: A = 0 for q, w in zip(self.prefix , __UpperCamelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : int , __UpperCamelCase : list[str] ) -> None: for word in words: self.insert(__UpperCamelCase ) def __UpperCamelCase ( self : Tuple , __UpperCamelCase : str ) -> None: # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: A = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: A = RadixNode(prefix=__UpperCamelCase , is_leaf=__UpperCamelCase ) else: A = self.nodes[word[0]] A , A , A = incoming_node.match( __UpperCamelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(__UpperCamelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: A = remaining_prefix A = self.nodes[matching_string[0]] A = RadixNode(__UpperCamelCase , __UpperCamelCase ) A = aux_node if remaining_word == "": A = True else: self.nodes[matching_string[0]].insert(__UpperCamelCase ) def __UpperCamelCase ( self : int , __UpperCamelCase : str ) -> bool: A = self.nodes.get(word[0] , __UpperCamelCase ) if not incoming_node: return False else: A , A , A = incoming_node.match( __UpperCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(__UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : str ) -> bool: A = self.nodes.get(word[0] , __UpperCamelCase ) if not incoming_node: return False else: A , A , A = incoming_node.match( __UpperCamelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(__UpperCamelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: A = list(self.nodes.values() )[0] A = merging_node.is_leaf self.prefix += merging_node.prefix A = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: A = False # If there is 1 edge, we merge it with its child else: A = list(incoming_node.nodes.values() )[0] A = merging_node.is_leaf incoming_node.prefix += merging_node.prefix A = merging_node.nodes return True def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : int = 0 ) -> None: if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowerCamelCase_ ( ) -> bool: '''simple docstring''' A = 'banana bananas bandana band apple all beast'.split() A = RadixNode() root.insert_many(lowerCAmelCase__ ) assert all(root.find(lowerCAmelCase__ ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowerCamelCase_ ( ) -> None: '''simple docstring''' assert test_trie() def lowerCamelCase_ ( ) -> None: '''simple docstring''' A = RadixNode() A = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCAmelCase__ ) print('Words:' , lowerCAmelCase__ ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
224
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ) -> int: '''simple docstring''' A = [] for part_id in partition_order: A = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(lowerCAmelCase__ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Any: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(100 ).repartition(1 ) A = Spark(lowerCAmelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Dict: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(10 ).repartition(2 ) A = [1, 0] A = _generate_iterable_examples(lowerCAmelCase__ , lowerCAmelCase__ ) # Reverse the partitions. A = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , lowerCAmelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): A , A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Any: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(10 ).repartition(1 ) A = SparkExamplesIterable(lowerCAmelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: A = lambda lowerCAmelCase__ : x.reverse() A = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , [2, 1, 0] ) A = SparkExamplesIterable(lowerCAmelCase__ ).shuffle_data_sources(lowerCAmelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): A , A = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 A = SparkExamplesIterable(lowerCAmelCase__ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 A = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): A , A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 A = SparkExamplesIterable(lowerCAmelCase__ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 A = _get_expected_row_ids_and_row_dicts_for_partition_order(lowerCAmelCase__ , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowerCAmelCase__ ): A , A = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase_ ( ) -> int: '''simple docstring''' A = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() A = spark.range(100 ).repartition(1 ) A = Spark(lowerCAmelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
224
1
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' __SCREAMING_SNAKE_CASE = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __magic_name__ ( ) -> List[str]: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
109
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase__ = TypeVar("T") def _A( UpperCamelCase__ : int ) -> int: '''simple docstring''' return (position - 1) // 2 def _A( UpperCamelCase__ : int ) -> int: '''simple docstring''' return (2 * position) + 1 def _A( UpperCamelCase__ : int ) -> int: '''simple docstring''' return (2 * position) + 2 class a ( Generic[T] ): """simple docstring""" def __init__( self : Tuple ) -> None: """simple docstring""" __lowercase = [] __lowercase = {} __lowercase = 0 def __len__( self : str ) -> int: """simple docstring""" return self.elements def __repr__( self : int ) -> str: """simple docstring""" return str(self.heap ) def UpperCAmelCase_ ( self : List[Any] ) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase_ ( self : Dict , lowerCamelCase__ : T , lowerCamelCase__ : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) __lowercase = self.elements self.elements += 1 self._bubble_up(lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __lowercase , __lowercase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __lowercase , __lowercase = self.heap[0] self._bubble_down(lowerCamelCase__ ) return elem def UpperCAmelCase_ ( self : Union[str, Any] , lowerCamelCase__ : T , lowerCamelCase__ : int ) -> None: """simple docstring""" __lowercase = self.position_map[elem] __lowercase = (elem, weight) if position > 0: __lowercase = get_parent_position(lowerCamelCase__ ) __lowercase , __lowercase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowerCamelCase__ ) else: self._bubble_down(lowerCamelCase__ ) else: self._bubble_down(lowerCamelCase__ ) def UpperCAmelCase_ ( self : str , lowerCamelCase__ : T ) -> None: """simple docstring""" __lowercase = self.position_map[elem] if curr_pos == 0: return None __lowercase = get_parent_position(lowerCamelCase__ ) __lowercase , __lowercase = self.heap[curr_pos] __lowercase , __lowercase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowerCamelCase__ , lowerCamelCase__ ) return self._bubble_up(lowerCamelCase__ ) return None def UpperCAmelCase_ ( self : Optional[Any] , lowerCamelCase__ : T ) -> None: """simple docstring""" __lowercase = self.position_map[elem] __lowercase , __lowercase = self.heap[curr_pos] __lowercase = get_child_left_position(lowerCamelCase__ ) __lowercase = get_child_right_position(lowerCamelCase__ ) if child_left_position < self.elements and child_right_position < self.elements: __lowercase , __lowercase = self.heap[child_left_position] __lowercase , __lowercase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowerCamelCase__ , lowerCamelCase__ ) return self._bubble_down(lowerCamelCase__ ) if child_left_position < self.elements: __lowercase , __lowercase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowerCamelCase__ , lowerCamelCase__ ) return self._bubble_down(lowerCamelCase__ ) else: return None if child_right_position < self.elements: __lowercase , __lowercase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowerCamelCase__ , lowerCamelCase__ ) return self._bubble_down(lowerCamelCase__ ) return None def UpperCAmelCase_ ( self : int , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> None: """simple docstring""" __lowercase = self.heap[nodea_pos][0] __lowercase = self.heap[nodea_pos][0] __lowercase , __lowercase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __lowercase = nodea_pos __lowercase = nodea_pos class a ( Generic[T] ): """simple docstring""" def __init__( self : Tuple ) -> None: """simple docstring""" __lowercase = {} __lowercase = 0 def __repr__( self : str ) -> str: """simple docstring""" return str(self.connections ) def __len__( self : str ) -> int: """simple docstring""" return self.nodes def UpperCAmelCase_ ( self : List[Any] , lowerCamelCase__ : T ) -> None: """simple docstring""" if node not in self.connections: __lowercase = {} self.nodes += 1 def UpperCAmelCase_ ( self : List[Any] , lowerCamelCase__ : T , lowerCamelCase__ : T , lowerCamelCase__ : int ) -> None: """simple docstring""" self.add_node(lowerCamelCase__ ) self.add_node(lowerCamelCase__ ) __lowercase = weight __lowercase = weight def _A( UpperCamelCase__ : GraphUndirectedWeighted[T] , ) -> tuple[dict[T, int], dict[T, T | None]]: '''simple docstring''' __lowercase = {node: maxsize for node in graph.connections} __lowercase = {node: None for node in graph.connections} __lowercase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(UpperCamelCase__ , UpperCamelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization __lowercase = priority_queue.extract_min() __lowercase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowercase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCamelCase__ , dist[neighbour] ) __lowercase = node # running prim's algorithm while not priority_queue.is_empty(): __lowercase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __lowercase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(UpperCamelCase__ , dist[neighbour] ) __lowercase = node return dist, parent
332
0
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A ='platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class _a : __a : Any = PegasusConfig __a : Optional[int] = {} __a : Tuple = """gelu""" def __init__( self : Optional[Any] , lowercase : int , lowercase : List[str]=13 , lowercase : int=7 , lowercase : Tuple=True , lowercase : List[Any]=False , lowercase : Optional[Any]=99 , lowercase : Any=32 , lowercase : int=5 , lowercase : List[str]=4 , lowercase : int=37 , lowercase : List[str]=0.1 , lowercase : Optional[int]=0.1 , lowercase : List[Any]=20 , lowercase : str=2 , lowercase : Optional[int]=1 , lowercase : List[Any]=0 , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id def A ( self : Any ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase = prepare_pegasus_inputs_dict(lowercase , lowercase , lowercase ) return config, inputs_dict def A ( self : Optional[int] , lowercase : Dict , lowercase : Any , lowercase : Any ): '''simple docstring''' UpperCAmelCase = 20 UpperCAmelCase = model_class_name(lowercase ) UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase , UpperCAmelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , lowercase , decoder_attention_mask=lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase , ) UpperCAmelCase = model.decode(lowercase , lowercase ) UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def A ( self : Optional[Any] , lowercase : str , lowercase : Dict , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = 20 UpperCAmelCase = model_class_name(lowercase ) UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase , UpperCAmelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , lowercase , lowercase ) UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , lowercase , decoder_attention_mask=lowercase , past_key_values=lowercase , decoder_position_ids=lowercase , ) UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase , decoder_position_ids=lowercase , ) UpperCAmelCase = model.decode(lowercase , lowercase , decoder_attention_mask=lowercase ) UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def snake_case_ (_a : Dict , _a : List[str] , _a : Optional[Any] , _a : List[str]=None , _a : List[Any]=None , ): if attention_mask is None: UpperCAmelCase = np.not_equal(_a , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCAmelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class _a ( __a , unittest.TestCase ): __a : Tuple = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __a : Union[str, Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __a : Dict = True __a : Any = False __a : Optional[Any] = False __a : Tuple = False def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = FlaxPegasusModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase ) def A ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase , lowercase , lowercase ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase , lowercase , lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowercase , lowercase ) UpperCAmelCase = model_class(lowercase ) @jax.jit def encode_jitted(lowercase : Optional[int] , lowercase : Dict=None , **lowercase : List[str] ): return model.encode(input_ids=lowercase , attention_mask=lowercase ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = encode_jitted(**lowercase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = encode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def A ( self : str ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) UpperCAmelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowercase : List[str] , lowercase : Union[str, Any] , lowercase : List[str] ): return model.decode( decoder_input_ids=lowercase , decoder_attention_mask=lowercase , encoder_outputs=lowercase , ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase = decode_jitted(**lowercase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase = decode_jitted(**lowercase ).to_tuple() self.assertEqual(len(lowercase ) , len(lowercase ) ) for jitted_output, output in zip(lowercase , lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A ( self : int ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=lowercase ) UpperCAmelCase = np.ones((1, 1) ) UpperCAmelCase = model(lowercase ) self.assertIsNotNone(lowercase ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) UpperCAmelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) UpperCAmelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCAmelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] UpperCAmelCase = tokenizer(lowercase , return_tensors='''np''' , truncation=lowercase , max_length=512 , padding=lowercase ) UpperCAmelCase = model.generate(**lowercase , num_beams=2 ).sequences UpperCAmelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase ) assert tgt_text == decoded
358
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _a ( __a ): __a : List[Any] = """mgp-str""" def __init__( self : str , lowercase : str=[32, 128] , lowercase : Optional[Any]=4 , lowercase : Optional[Any]=3 , lowercase : Dict=27 , lowercase : Any=38 , lowercase : int=50_257 , lowercase : List[str]=30_522 , lowercase : Optional[int]=768 , lowercase : List[Any]=12 , lowercase : Tuple=12 , lowercase : Optional[int]=4.0 , lowercase : Union[str, Any]=True , lowercase : str=False , lowercase : str=1E-5 , lowercase : Dict=0.0 , lowercase : Dict=0.0 , lowercase : Tuple=0.0 , lowercase : str=False , lowercase : Optional[Any]=0.02 , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = max_token_length UpperCAmelCase = num_character_labels UpperCAmelCase = num_bpe_labels UpperCAmelCase = num_wordpiece_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = mlp_ratio UpperCAmelCase = distilled UpperCAmelCase = layer_norm_eps UpperCAmelCase = drop_rate UpperCAmelCase = qkv_bias UpperCAmelCase = attn_drop_rate UpperCAmelCase = drop_path_rate UpperCAmelCase = output_aa_attentions UpperCAmelCase = initializer_range
358
1
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[Any]=13 , UpperCamelCase : Any=7 , UpperCamelCase : Tuple=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : List[str]=False , UpperCamelCase : Tuple=True , UpperCamelCase : List[Any]=99 , UpperCamelCase : Any=32 , UpperCamelCase : Optional[Any]=5 , UpperCamelCase : Any=4 , UpperCamelCase : List[str]=64 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : Any=0.1 , UpperCamelCase : str=0.1 , UpperCamelCase : Tuple=5_12 , UpperCamelCase : List[str]=16 , UpperCamelCase : int=2 , UpperCamelCase : str=0.02 , UpperCamelCase : Optional[int]=3 , UpperCamelCase : Dict=4 , UpperCamelCase : List[Any]=None , UpperCamelCase : Tuple=2 , UpperCamelCase : Any=2 , UpperCamelCase : Any=2 , UpperCamelCase : Dict=2 , UpperCamelCase : List[str]=4 , UpperCamelCase : List[Any]=1 , ): '''simple docstring''' _snake_case : Optional[int] = parent _snake_case : List[Any] = batch_size _snake_case : Dict = seq_length _snake_case : Any = is_training _snake_case : Tuple = use_input_mask _snake_case : str = use_token_type_ids _snake_case : Optional[Any] = use_labels _snake_case : Union[str, Any] = vocab_size _snake_case : Any = hidden_size _snake_case : Dict = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : Optional[Any] = intermediate_size _snake_case : Any = hidden_act _snake_case : int = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : str = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : List[str] = type_sequence_label_size _snake_case : List[Any] = initializer_range _snake_case : Union[str, Any] = num_labels _snake_case : Any = num_choices _snake_case : Optional[Any] = scope _snake_case : Dict = q_groups _snake_case : str = k_groups _snake_case : int = v_groups _snake_case : List[Any] = post_attention_groups _snake_case : int = intermediate_groups _snake_case : List[str] = output_groups def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : str = None if self.use_input_mask: _snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case : Optional[Any] = None _snake_case : Optional[Any] = None _snake_case : Dict = None if self.use_labels: _snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def UpperCamelCase_ ( self : int , UpperCamelCase : str , UpperCamelCase : Dict , UpperCamelCase : Union[str, Any] , UpperCamelCase : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Tuple ): '''simple docstring''' _snake_case : int = SqueezeBertModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Any = model(UpperCamelCase , UpperCamelCase ) _snake_case : Optional[int] = model(UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : List[str] , UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : Any , UpperCamelCase : Any ): '''simple docstring''' _snake_case : Union[str, Any] = SqueezeBertForMaskedLM(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Optional[int] = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self : int , UpperCamelCase : int , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict ): '''simple docstring''' _snake_case : int = SqueezeBertForQuestionAnswering(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : List[Any] = model( UpperCamelCase , attention_mask=UpperCamelCase , start_positions=UpperCamelCase , end_positions=UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : int , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[Any] ): '''simple docstring''' _snake_case : int = self.num_labels _snake_case : Dict = SqueezeBertForSequenceClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Tuple = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int , UpperCamelCase : List[Any] , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Any , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' _snake_case : int = self.num_labels _snake_case : List[str] = SqueezeBertForTokenClassification(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : Optional[Any] = model(UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] , UpperCamelCase : Dict , UpperCamelCase : str , UpperCamelCase : Any , UpperCamelCase : List[str] , UpperCamelCase : str , UpperCamelCase : str ): '''simple docstring''' _snake_case : Dict = self.num_choices _snake_case : List[Any] = SqueezeBertForMultipleChoice(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() _snake_case : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case : Optional[int] = model( UpperCamelCase , attention_mask=UpperCamelCase , labels=UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _snake_case : List[Any] = self.prepare_config_and_inputs() ((_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case) , (_snake_case)) : List[Any] = config_and_inputs _snake_case : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : Optional[Any] =( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) a_ : Optional[Any] =( { """feature-extraction""": SqueezeBertModel, """fill-mask""": SqueezeBertForMaskedLM, """question-answering""": SqueezeBertForQuestionAnswering, """text-classification""": SqueezeBertForSequenceClassification, """token-classification""": SqueezeBertForTokenClassification, """zero-shot""": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) a_ : Tuple =False a_ : str =True a_ : Union[str, Any] =False def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : int = SqueezeBertModelTester(self ) _snake_case : Tuple = ConfigTester(self , config_class=UpperCamelCase , dim=37 ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*UpperCamelCase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCamelCase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCamelCase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCamelCase ) @slow def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Any = SqueezeBertModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) @require_sentencepiece @require_tokenizers @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _snake_case : Optional[Any] = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) _snake_case : Tuple = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) _snake_case : Optional[Any] = model(UpperCamelCase )[0] _snake_case : int = torch.Size((1, 3) ) self.assertEqual(output.shape , UpperCamelCase ) _snake_case : Union[str, Any] = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(UpperCamelCase , UpperCamelCase , atol=1e-4 ) )
411
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: assert isinstance(lowerCAmelCase , lowerCAmelCase ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: _snake_case : int = F"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCAmelCase ) else: _snake_case : str = sylvester(number - 1 ) _snake_case : Optional[int] = num - 1 _snake_case : List[Any] = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
411
1
'''simple docstring''' import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _SCREAMING_SNAKE_CASE ( A : Optional[Any] ) -> Dict: """simple docstring""" __snake_case : int = SwinConfig() __snake_case : List[str] = swin_name.split('_' ) __snake_case : Any = name_split[1] __snake_case : List[str] = int(name_split[4] ) __snake_case : Optional[Any] = int(name_split[3][-1] ) if model_size == "tiny": __snake_case : Dict = 96 __snake_case : Optional[int] = (2, 2, 6, 2) __snake_case : Any = (3, 6, 12, 24) elif model_size == "small": __snake_case : List[str] = 96 __snake_case : List[Any] = (2, 2, 18, 2) __snake_case : Any = (3, 6, 12, 24) elif model_size == "base": __snake_case : Tuple = 1_28 __snake_case : Tuple = (2, 2, 18, 2) __snake_case : Dict = (4, 8, 16, 32) else: __snake_case : Optional[Any] = 1_92 __snake_case : Optional[int] = (2, 2, 18, 2) __snake_case : Optional[Any] = (6, 12, 24, 48) if "in22k" in swin_name: __snake_case : Dict = 2_18_41 else: __snake_case : Optional[int] = 10_00 __snake_case : Union[str, Any] = 'huggingface/label-files' __snake_case : Tuple = 'imagenet-1k-id2label.json' __snake_case : Optional[int] = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) __snake_case : str = {int(A ): v for k, v in idalabel.items()} __snake_case : Optional[int] = idalabel __snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} __snake_case : Union[str, Any] = img_size __snake_case : Any = num_classes __snake_case : int = embed_dim __snake_case : Optional[int] = depths __snake_case : Optional[Any] = num_heads __snake_case : List[str] = window_size return config def _SCREAMING_SNAKE_CASE ( A : List[str] ) -> Union[str, Any]: """simple docstring""" if "patch_embed.proj" in name: __snake_case : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case : Optional[Any] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __snake_case : int = 'encoder.' + name if "attn.proj" in name: __snake_case : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __snake_case : List[str] = name.replace('attn' , 'attention.self' ) if "norm1" in name: __snake_case : int = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __snake_case : Union[str, Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __snake_case : Optional[Any] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __snake_case : List[str] = name.replace('mlp.fc2' , 'output.dense' ) if name == "norm.weight": __snake_case : Any = 'layernorm.weight' if name == "norm.bias": __snake_case : List[str] = 'layernorm.bias' if "head" in name: __snake_case : Union[str, Any] = name.replace('head' , 'classifier' ) else: __snake_case : Union[str, Any] = 'swin.' + name return name def _SCREAMING_SNAKE_CASE ( A : int , A : int ) -> Optional[Any]: """simple docstring""" for key in orig_state_dict.copy().keys(): __snake_case : str = orig_state_dict.pop(A ) if "mask" in key: continue elif "qkv" in key: __snake_case : Union[str, Any] = key.split('.' ) __snake_case : Any = int(key_split[1] ) __snake_case : Optional[int] = int(key_split[3] ) __snake_case : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __snake_case : List[Any] = val[:dim, :] __snake_case : Any = val[ dim : dim * 2, : ] __snake_case : str = val[-dim:, :] else: __snake_case : Dict = val[ :dim ] __snake_case : List[str] = val[ dim : dim * 2 ] __snake_case : Tuple = val[ -dim: ] else: __snake_case : Dict = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( A : int , A : List[Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = timm.create_model(A , pretrained=A ) timm_model.eval() __snake_case : Any = get_swin_config(A ) __snake_case : Optional[int] = SwinForImageClassification(A ) model.eval() __snake_case : List[Any] = convert_state_dict(timm_model.state_dict() , A ) model.load_state_dict(A ) __snake_case : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case : int = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swin_name.replace('_' , '-' ) ) ) __snake_case : Dict = Image.open(requests.get(A , stream=A ).raw ) __snake_case : str = image_processor(images=A , return_tensors='pt' ) __snake_case : Optional[Any] = timm_model(inputs['pixel_values'] ) __snake_case : Optional[int] = model(**A ).logits assert torch.allclose(A , A , atol=1e-3 ) print(F"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
61
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class a_ : def __init__(self , __a , __a = 1_3 , __a = 6_4 , __a = 2 , __a = 3 , __a = 3 , __a = True , __a = True , __a = 1_2_8 , __a=[1_6, 3_2, 6_4, 1_2_8] , __a = 7 , __a = 4 , __a = 3_7 , __a = "gelu" , __a = 0.1 , __a = 0.1 , __a = 1_0 , __a = 0.02 , __a = 2 , __a = 1 , __a = 1_2_8 , __a = [2, 2, 2, 2] , __a = 2 , __a = 2 , ) -> str: """simple docstring""" __snake_case : Optional[Any] = parent __snake_case : Optional[int] = batch_size __snake_case : Optional[Any] = image_size __snake_case : Optional[int] = patch_size __snake_case : Optional[Any] = num_channels __snake_case : Optional[Any] = is_training __snake_case : Tuple = use_labels __snake_case : Optional[int] = hidden_size __snake_case : Any = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Tuple = intermediate_size __snake_case : List[str] = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : Dict = type_sequence_label_size __snake_case : str = initializer_range __snake_case : int = encoder_stride __snake_case : List[str] = num_attention_outputs __snake_case : Optional[Any] = embed_dim __snake_case : Optional[Any] = embed_dim + 1 __snake_case : List[str] = resolution __snake_case : Optional[int] = depths __snake_case : List[Any] = hidden_sizes __snake_case : List[str] = dim __snake_case : Union[str, Any] = mlp_expansion_ratio def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" __snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case : List[str] = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __snake_case : Tuple = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ (self) -> List[str]: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE__ (self , __a , __a , __a) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = TFEfficientFormerModel(config=__a) __snake_case : int = model(__a , training=__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE__ (self , __a , __a , __a) -> Tuple: """simple docstring""" __snake_case : Dict = self.type_sequence_label_size __snake_case : List[Any] = TFEfficientFormerForImageClassification(__a) __snake_case : Optional[int] = model(__a , labels=__a , training=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __snake_case : List[Any] = 1 __snake_case : List[Any] = TFEfficientFormerForImageClassification(__a) __snake_case : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __snake_case : str = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.prepare_config_and_inputs() __snake_case ,__snake_case ,__snake_case : Union[str, Any] = config_and_inputs __snake_case : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class a_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): _snake_case = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _snake_case = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _snake_case = False _snake_case = False _snake_case = False _snake_case = False _snake_case = False def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" __snake_case : Dict = TFEfficientFormerModelTester(self) __snake_case : List[Any] = ConfigTester( self , config_class=__a , has_text_modality=__a , hidden_size=3_7) def SCREAMING_SNAKE_CASE__ (self) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds') def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings') def SCREAMING_SNAKE_CASE__ (self) -> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE__ (self) -> Any: """simple docstring""" __snake_case ,__snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(__a) __snake_case : Union[str, Any] = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Optional[int] = [*signature.parameters.keys()] __snake_case : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , __a) def SCREAMING_SNAKE_CASE__ (self) -> Optional[int]: """simple docstring""" def check_hidden_states_output(__a , __a , __a): __snake_case : str = model_class(__a) __snake_case : List[Any] = model(**self._prepare_for_class(__a , __a) , training=__a) __snake_case : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : Optional[Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(__a) , __a) if hasattr(self.model_tester , 'encoder_seq_length'): __snake_case : List[Any] = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length') and self.model_tester.chunk_length > 1: __snake_case : str = seq_length * self.model_tester.chunk_length else: __snake_case : Optional[int] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __snake_case : List[Any] = outputs.decoder_hidden_states self.asseretIsInstance(__a , (list, tuple)) self.assertEqual(len(__a) , __a) __snake_case : List[str] = getattr(self.model_tester , 'seq_length' , __a) __snake_case : Tuple = getattr(self.model_tester , 'decoder_seq_length' , __a) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) __snake_case ,__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = True check_hidden_states_output(__a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(__a , __a , __a) def SCREAMING_SNAKE_CASE__ (self , __a , __a , __a=False) -> int: """simple docstring""" __snake_case : Optional[int] = super()._prepare_for_class(__a , __a , return_labels=__a) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet') def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a) def SCREAMING_SNAKE_CASE__ (self) -> int: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) @slow def SCREAMING_SNAKE_CASE__ (self) -> List[str]: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = TFEfficientFormerModel.from_pretrained(__a) self.assertIsNotNone(__a) def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" __snake_case ,__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = True __snake_case : Optional[Any] = getattr(self.model_tester , 'seq_length' , __a) __snake_case : List[Any] = getattr(self.model_tester , 'encoder_seq_length' , __a) __snake_case : Tuple = getattr(self.model_tester , 'key_length' , __a) __snake_case : Optional[Any] = getattr(self.model_tester , 'chunk_length' , __a) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes'): __snake_case : str = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __snake_case : Optional[Any] = True __snake_case : Dict = False __snake_case : Optional[int] = True __snake_case : Dict = model_class(__a) __snake_case : Tuple = model(**self._prepare_for_class(__a , __a) , training=__a) __snake_case : Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : Dict = True __snake_case : str = model_class(__a) __snake_case : str = model(**self._prepare_for_class(__a , __a) , training=__a) __snake_case : Tuple = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__a) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE__ (self) -> int: """simple docstring""" __snake_case ,__snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __snake_case : Tuple = model_class(__a) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __snake_case : Optional[Any] = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=__a) for key, val in model.input_signature.items() if key in model.dummy_inputs } __snake_case : Tuple = model(__a) self.assertTrue(outputs_dict is not None) def _SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" __snake_case : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ (self) -> int: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ (self) -> Union[str, Any]: """simple docstring""" __snake_case : List[str] = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300') __snake_case : Optional[int] = self.default_image_processor __snake_case : List[Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__a , return_tensors='tf') # forward pass __snake_case : List[str] = model(**__a , training=__a) # verify the logits __snake_case : str = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , __a) __snake_case : Any = tf.constant([-0.0_555, 0.4_825, -0.0_852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , __a , atol=1E-4)) @slow def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" __snake_case : List[Any] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300') __snake_case : List[Any] = self.default_image_processor __snake_case : Union[str, Any] = prepare_img() __snake_case : List[Any] = image_processor(images=__a , return_tensors='tf') # forward pass __snake_case : Optional[int] = model(**__a , training=__a) # verify the logits __snake_case : Optional[int] = tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , __a) __snake_case : List[str] = tf.constant([-0.1_312, 0.4_353, -1.0_499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , __a , atol=1E-4))
61
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case_ (UpperCamelCase : Optional[Any] ): '''simple docstring''' _a = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] _a = True if '''large''' in model_name or '''huge''' in model_name else False _a = True if '''large''' in model_name or '''huge''' in model_name else False _a = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _a = [3, 3, 3, 3] _a = [5, 5, 5, 5] elif "fl4" in model_name: _a = [4, 4, 4, 4] _a = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _a = [3, 3, 3, 3] if "lrf" in model_name: _a = [3, 3, 3, 3] else: _a = [2, 2, 2, 2] if "tiny" in model_name: _a = 96 elif "small" in model_name: _a = 96 elif "base" in model_name: _a = 128 elif "large" in model_name: _a = 192 elif "xlarge" in model_name: _a = 256 elif "huge" in model_name: _a = 352 # set label information _a = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: _a = '''imagenet-22k-id2label.json''' else: _a = '''imagenet-1k-id2label.json''' _a = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) _a = {int(UpperCamelCase ): v for k, v in idalabel.items()} _a = {v: k for k, v in idalabel.items()} _a = FocalNetConfig( embed_dim=UpperCamelCase , depths=UpperCamelCase , focal_levels=UpperCamelCase , focal_windows=UpperCamelCase , use_conv_embed=UpperCamelCase , idalabel=UpperCamelCase , labelaid=UpperCamelCase , use_post_layernorm=UpperCamelCase , use_layerscale=UpperCamelCase , ) return config def snake_case_ (UpperCamelCase : Optional[Any] ): '''simple docstring''' if "patch_embed.proj" in name: _a = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: _a = '''encoder.''' + name if "encoder.layers" in name: _a = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: _a = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: _a = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _a = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _a = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _a = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": _a = '''layernorm.weight''' if name == "norm.bias": _a = '''layernorm.bias''' if "head" in name: _a = name.replace('''head''' , '''classifier''' ) else: _a = '''focalnet.''' + name return name def snake_case_ (UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=False ): '''simple docstring''' _a = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on _a = model_name_to_url[model_name] print('''Checkpoint URL: ''' , UpperCamelCase ) _a = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): _a = state_dict.pop(UpperCamelCase ) _a = val _a = get_focalnet_config(UpperCamelCase ) _a = FocalNetForImageClassification(UpperCamelCase ) model.eval() # load state dict model.load_state_dict(UpperCamelCase ) # verify conversion _a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a = BitImageProcessor( do_resize=UpperCamelCase , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCamelCase , crop_size=224 , do_normalize=UpperCamelCase , image_mean=UpperCamelCase , image_std=UpperCamelCase , ) _a = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) _a = processor(images=UpperCamelCase , return_tensors='''pt''' ) _a = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) _a = image_transforms(UpperCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCamelCase , atol=1e-4 ) _a = model(**UpperCamelCase ) _a = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _a = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": _a = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": _a = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": _a = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": _a = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": _a = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model and processor of {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if push_to_hub: print(f'Pushing model and processor of {model_name} to the hub...' ) model.push_to_hub(f'{model_name}' ) processor.push_to_hub(f'{model_name}' ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) _snake_case : Optional[int] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
22
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class A : lowercase_ = 42 lowercase_ = 42 class A : def __init__( self : Optional[Any] , lowerCAmelCase_ : int ) -> str: """simple docstring""" _a = [[] for _ in range(lowerCAmelCase_ )] _a = size def __getitem__( self : Any , lowerCAmelCase_ : int ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" return self._size def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict: """simple docstring""" if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int | None: """simple docstring""" _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
22
1
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __lowerCamelCase : str = TypeVar("""KEY""") __lowerCamelCase : int = TypeVar("""VAL""") @dataclass(frozen=UpperCamelCase_ , slots=UpperCamelCase_ ) class SCREAMING_SNAKE_CASE__ ( Generic[KEY, VAL] ): """simple docstring""" a_ = 42 a_ = 42 class SCREAMING_SNAKE_CASE__ ( _Item ): """simple docstring""" def __init__( self : Tuple ): super().__init__(__A , __A ) def __bool__( self : Dict ): return False __lowerCamelCase : List[str] = _DeletedItem() class SCREAMING_SNAKE_CASE__ ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Optional[Any] , __A : int = 8 , __A : float = 0.7_5 ): snake_case__ : Dict = initial_block_size snake_case__ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 snake_case__ : Optional[Any] = capacity_factor snake_case__ : str = 0 def _lowercase ( self : List[str] , __A : KEY ): return hash(__A ) % len(self._buckets ) def _lowercase ( self : Union[str, Any] , __A : int ): return (ind + 1) % len(self._buckets ) def _lowercase ( self : Optional[Any] , __A : int , __A : KEY , __A : VAL ): snake_case__ : Tuple = self._buckets[ind] if not stored: snake_case__ : List[Any] = _Item(__A , __A ) self._len += 1 return True elif stored.key == key: snake_case__ : List[str] = _Item(__A , __A ) return True else: return False def _lowercase ( self : Dict ): snake_case__ : Optional[Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__A ) def _lowercase ( self : Dict ): if len(self._buckets ) <= self._initial_block_size: return False snake_case__ : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _lowercase ( self : Optional[int] , __A : int ): snake_case__ : Optional[Any] = self._buckets snake_case__ : Optional[int] = [None] * new_size snake_case__ : Any = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _lowercase ( self : int ): self._resize(len(self._buckets ) * 2 ) def _lowercase ( self : Union[str, Any] ): self._resize(len(self._buckets ) // 2 ) def _lowercase ( self : int , __A : KEY ): snake_case__ : List[Any] = self._get_bucket_index(__A ) for _ in range(len(self._buckets ) ): yield ind snake_case__ : int = self._get_next_ind(__A ) def _lowercase ( self : Tuple , __A : KEY , __A : VAL ): for ind in self._iterate_buckets(__A ): if self._try_set(__A , __A , __A ): break def __setitem__( self : Union[str, Any] , __A : KEY , __A : VAL ): if self._is_full(): self._size_up() self._add_item(__A , __A ) def __delitem__( self : List[str] , __A : KEY ): for ind in self._iterate_buckets(__A ): snake_case__ : str = self._buckets[ind] if item is None: raise KeyError(__A ) if item is _deleted: continue if item.key == key: snake_case__ : str = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : str , __A : KEY ): for ind in self._iterate_buckets(__A ): snake_case__ : Dict = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__A ) def __len__( self : int ): return self._len def __iter__( self : List[str] ): yield from (item.key for item in self._buckets if item) def __repr__( self : str ): snake_case__ : Union[str, Any] = " ,".join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
25
from __future__ import annotations import time __lowerCamelCase : str = list[tuple[int, int]] __lowerCamelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Union[str, Any] , __A : int , __A : int , __A : int , __A : int , __A : Node | None ): snake_case__ : Optional[int] = pos_x snake_case__ : Dict = pos_y snake_case__ : int = (pos_y, pos_x) snake_case__ : Optional[int] = goal_x snake_case__ : Tuple = goal_y snake_case__ : str = parent class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[Any] , __A : tuple[int, int] , __A : tuple[int, int] ): snake_case__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , __A ) snake_case__ : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , __A ) snake_case__ : int = [self.start] snake_case__ : Union[str, Any] = False def _lowercase ( self : Dict ): while self.node_queue: snake_case__ : Optional[Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: snake_case__ : Optional[Any] = True return self.retrace_path(__A ) snake_case__ : int = self.get_successors(__A ) for node in successors: self.node_queue.append(__A ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , __A : Node ): snake_case__ : str = [] for action in delta: snake_case__ : str = parent.pos_x + action[1] snake_case__ : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__A ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__A , __A , self.target.pos_y , self.target.pos_x , __A ) ) return successors def _lowercase ( self : Optional[Any] , __A : Node | None ): snake_case__ : Tuple = node snake_case__ : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ : Tuple = current_node.parent path.reverse() return path class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Dict , __A : str , __A : int ): snake_case__ : str = BreadthFirstSearch(__A , __A ) snake_case__ : int = BreadthFirstSearch(__A , __A ) snake_case__ : Tuple = False def _lowercase ( self : Optional[Any] ): while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: snake_case__ : Any = self.fwd_bfs.node_queue.pop(0 ) snake_case__ : List[str] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: snake_case__ : List[str] = True return self.retrace_bidirectional_path( __A , __A ) snake_case__ : Union[str, Any] = current_bwd_node snake_case__ : Dict = current_fwd_node snake_case__ : List[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__A ), self.bwd_bfs: self.bwd_bfs.get_successors(__A ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__A ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Any , __A : Node , __A : Node ): snake_case__ : List[str] = self.fwd_bfs.retrace_path(__A ) snake_case__ : Optional[Any] = self.bwd_bfs.retrace_path(__A ) bwd_path.pop() bwd_path.reverse() snake_case__ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __lowerCamelCase : str = (0, 0) __lowerCamelCase : List[str] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : Any = time.time() __lowerCamelCase : Optional[Any] = BreadthFirstSearch(init, goal) __lowerCamelCase : str = bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bfs_time print("""Unidirectional BFS computation time : """, bfs_time) __lowerCamelCase : Optional[Any] = time.time() __lowerCamelCase : Optional[int] = BidirectionalBreadthFirstSearch(init, goal) __lowerCamelCase : str = bd_bfs.search() __lowerCamelCase : Optional[Any] = time.time() - start_bd_bfs_time print("""Bidirectional BFS computation time : """, bd_bfs_time)
25
1
"""simple docstring""" def __UpperCamelCase ( snake_case__ ): return "".join(chr(ord(snake_case__ ) - 32 ) if """a""" <= char <= """z""" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
180
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=True , snake_case__="pt" ): A_ : Dict = {"""add_prefix_space""": True} if isinstance(snake_case__ , snake_case__ ) and not line.startswith(""" """ ) else {} A_ : int = padding_side return tokenizer( [line] , max_length=snake_case__ , padding="""max_length""" if pad_to_max_length else None , truncation=snake_case__ , return_tensors=snake_case__ , add_special_tokens=snake_case__ , **snake_case__ , ) def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None , ): A_ : int = input_ids.ne(snake_case__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="train" , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_="" , ): super().__init__() A_ : str = Path(lowerCAmelCase_ ).joinpath(type_path + """.source""" ) A_ : Tuple = Path(lowerCAmelCase_ ).joinpath(type_path + """.target""" ) A_ : Optional[Any] = self.get_char_lens(self.src_file ) A_ : Optional[Any] = max_source_length A_ : Tuple = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" A_ : Tuple = tokenizer A_ : Optional[int] = prefix if n_obs is not None: A_ : Union[str, Any] = self.src_lens[:n_obs] A_ : Optional[int] = src_lang A_ : Union[str, Any] = tgt_lang def __len__(self ): return len(self.src_lens ) def __getitem__(self , lowerCAmelCase_ ): A_ : Optional[Any] = index + 1 # linecache starts at 1 A_ : int = self.prefix + linecache.getline(str(self.src_file ) , lowerCAmelCase_ ).rstrip("""\n""" ) A_ : Any = linecache.getline(str(self.tgt_file ) , lowerCAmelCase_ ).rstrip("""\n""" ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCAmelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : Optional[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase_ ) else self.tokenizer ) A_ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase_ ) else self.tokenizer A_ : str = encode_line(lowerCAmelCase_ , lowerCAmelCase_ , self.max_source_length , """right""" ) A_ : Optional[Any] = encode_line(lowerCAmelCase_ , lowerCAmelCase_ , self.max_target_length , """right""" ) A_ : int = source_inputs["""input_ids"""].squeeze() A_ : int = target_inputs["""input_ids"""].squeeze() A_ : Tuple = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCamelCase(lowerCAmelCase_ ): return [len(lowerCAmelCase_ ) for x in Path(lowerCAmelCase_ ).open().readlines()] def lowerCamelCase(self , lowerCAmelCase_ ): A_ : List[str] = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Optional[int] = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : Any = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase_ ) else self.tokenizer.pad_token_id ) A_ : int = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase_ ) else self.tokenizer.pad_token_id ) A_ : List[str] = trim_batch(lowerCAmelCase_ , lowerCAmelCase_ ) A_ , A_ : Dict = trim_batch(lowerCAmelCase_ , lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) A_ : Optional[Any] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch _lowerCAmelCase = getLogger(__name__) def __UpperCamelCase ( snake_case__ ): return list(itertools.chain.from_iterable(snake_case__ ) ) def __UpperCamelCase ( snake_case__ ): A_ : List[str] = get_git_info() save_json(snake_case__ , os.path.join(snake_case__ , """git_log.json""" ) ) def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=4 , **snake_case__ ): with open(snake_case__ , """w""" ) as f: json.dump(snake_case__ , snake_case__ , indent=snake_case__ , **snake_case__ ) def __UpperCamelCase ( snake_case__ ): with open(snake_case__ ) as f: return json.load(snake_case__ ) def __UpperCamelCase ( ): A_ : Optional[int] = git.Repo(search_parent_directories=snake_case__ ) A_ : Union[str, Any] = { """repo_id""": str(snake_case__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __UpperCamelCase ( snake_case__ , snake_case__ ): return list(map(snake_case__ , snake_case__ ) ) def __UpperCamelCase ( snake_case__ , snake_case__ ): with open(snake_case__ , """wb""" ) as f: return pickle.dump(snake_case__ , snake_case__ ) def __UpperCamelCase ( snake_case__ ): def remove_articles(snake_case__ ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , snake_case__ ) def white_space_fix(snake_case__ ): return " ".join(text.split() ) def remove_punc(snake_case__ ): A_ : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case__ ) ) ) ) def __UpperCamelCase ( snake_case__ , snake_case__ ): A_ : Tuple = normalize_answer(snake_case__ ).split() A_ : Dict = normalize_answer(snake_case__ ).split() A_ : int = Counter(snake_case__ ) & Counter(snake_case__ ) A_ : Dict = sum(common.values() ) if num_same == 0: return 0 A_ : str = 1.0 * num_same / len(snake_case__ ) A_ : Any = 1.0 * num_same / len(snake_case__ ) A_ : Union[str, Any] = (2 * precision * recall) / (precision + recall) return fa def __UpperCamelCase ( snake_case__ , snake_case__ ): return normalize_answer(snake_case__ ) == normalize_answer(snake_case__ ) def __UpperCamelCase ( snake_case__ , snake_case__ ): assert len(snake_case__ ) == len(snake_case__ ) A_ : Optional[Any] = 0 for hypo, pred in zip(snake_case__ , snake_case__ ): em += exact_match_score(snake_case__ , snake_case__ ) if len(snake_case__ ) > 0: em /= len(snake_case__ ) return {"em": em} def __UpperCamelCase ( snake_case__ ): return model_prefix.startswith("""rag""" ) def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ ): A_ : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : List[Any] = """dropout_rate""" for p in extra_params: if getattr(snake_case__ , snake_case__ , snake_case__ ): if not hasattr(snake_case__ , snake_case__ ) and not hasattr(snake_case__ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(snake_case__ ) ) delattr(snake_case__ , snake_case__ ) continue A_ : Dict = p if hasattr(snake_case__ , snake_case__ ) else equivalent_param[p] setattr(snake_case__ , snake_case__ , getattr(snake_case__ , snake_case__ ) ) delattr(snake_case__ , snake_case__ ) return hparams, config
180
1
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _A = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _A = logging.get_logger(__name__) class UpperCAmelCase__ ( _snake_case ): """simple docstring""" A : List[str] = '''maskformer''' A : List[str] = {'''hidden_size''': '''mask_feature_size'''} A : Dict = ['''resnet''', '''swin'''] A : Optional[Any] = ['''detr'''] def __init__(self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ) -> int: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase_ : List[Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_a , _a ): lowercase_ : Dict = backbone_config.pop('model_type' ) lowercase_ : Tuple = CONFIG_MAPPING[backbone_model_type] lowercase_ : Tuple = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase_ : str = DetrConfig() else: # verify that the decoder is supported lowercase_ : List[Any] = ( decoder_config.pop('model_type' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {",".join(self.decoders_supported )}''' ) if isinstance(_a , _a ): lowercase_ : List[Any] = CONFIG_MAPPING[decoder_type] lowercase_ : Tuple = config_class.from_dict(_a ) lowercase_ : Optional[Any] = backbone_config lowercase_ : int = decoder_config # main feature dimension for the model lowercase_ : List[Any] = fpn_feature_size lowercase_ : Tuple = mask_feature_size # initializer lowercase_ : Optional[int] = init_std lowercase_ : List[str] = init_xavier_std # Hungarian matcher && loss lowercase_ : int = cross_entropy_weight lowercase_ : Optional[int] = dice_weight lowercase_ : Dict = mask_weight lowercase_ : Tuple = use_auxiliary_loss lowercase_ : int = no_object_weight lowercase_ : Union[str, Any] = output_auxiliary_logits lowercase_ : List[Any] = self.decoder_config.encoder_attention_heads lowercase_ : Tuple = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def _lowerCamelCase (cls , _a , _a , **_a ) -> Union[str, Any]: return cls( backbone_config=_a , decoder_config=_a , **_a , ) def _lowerCamelCase (self ) -> Dict[str, any]: lowercase_ : Optional[int] = copy.deepcopy(self.__dict__ ) lowercase_ : Union[str, Any] = self.backbone_config.to_dict() lowercase_ : Optional[Any] = self.decoder_config.to_dict() lowercase_ : Dict = self.__class__.model_type return output
438
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} _A = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } _A = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } _A = { 'ernie-m-base': 5_1_4, 'ernie-m-large': 5_1_4, } _A = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class UpperCAmelCase__ ( _snake_case ): """simple docstring""" A : List[str] = ["input_ids"] A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_INIT_CONFIGURATION A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[str] = PRETRAINED_VOCAB_FILES_MAP A : Any = RESOURCE_FILES_NAMES def __init__(self , _a , _a=None , _a=False , _a="utf8" , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a = None , **_a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , vocab_file=_a , encoding=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) lowercase_ : int = do_lower_case lowercase_ : str = sentencepiece_model_ckpt lowercase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowercase_ : Union[str, Any] = self.load_vocab(filepath=_a ) else: lowercase_ : Any = {self.sp_model.id_to_piece(_a ): id for id in range(self.sp_model.get_piece_size() )} lowercase_ : Optional[int] = {v: k for k, v in self.vocab.items()} def _lowerCamelCase (self , _a ) -> Any: if text is None: return None lowercase_ : Dict = self.tokenize(_a ) lowercase_ ,lowercase_ : Dict = '', [] for i, ch in enumerate(_a ): if ch in self.SP_CHAR_MAPPING: lowercase_ : str = self.SP_CHAR_MAPPING.get(_a ) else: lowercase_ : List[str] = unicodedata.normalize('NFKC' , _a ) if self.is_whitespace(_a ): continue normalized_text += ch char_mapping.extend([i] * len(_a ) ) lowercase_ ,lowercase_ ,lowercase_ : int = normalized_text, [], 0 if self.do_lower_case: lowercase_ : Optional[Any] = text.lower() for token in split_tokens: if token[:1] == "▁": lowercase_ : Tuple = token[1:] lowercase_ : List[str] = text[offset:].index(_a ) + offset lowercase_ : Any = start + len(_a ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowercase_ : Tuple = end return token_mapping @property def _lowerCamelCase (self ) -> List[Any]: return len(self.vocab ) def _lowerCamelCase (self ) -> int: return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__(self ) -> Optional[Any]: lowercase_ : Dict = self.__dict__.copy() lowercase_ : List[str] = None return state def __setstate__(self , _a ) -> Any: lowercase_ : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase_ : Tuple = {} lowercase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowerCamelCase (self , _a ) -> str: return "".join((self.SP_CHAR_MAPPING.get(_a , _a ) for c in text) ) def _lowerCamelCase (self , _a , _a=False , _a=64 , _a=0.1 ) -> Optional[int]: if self.sp_model_kwargs.get('enable_sampling' ) is True: lowercase_ : Optional[int] = True if self.sp_model_kwargs.get('alpha' ) is not None: lowercase_ : Union[str, Any] = self.sp_model_kwargs.get('alpha' ) if self.sp_model_kwargs.get('nbest_size' ) is not None: lowercase_ : Optional[int] = self.sp_model_kwargs.get('nbest_size' ) if not enable_sampling: lowercase_ : Optional[Any] = self.sp_model.EncodeAsPieces(_a ) else: lowercase_ : List[Any] = self.sp_model.SampleEncodeAsPieces(_a , _a , _a ) lowercase_ : int = [] for pi, piece in enumerate(_a ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(_a ) and pi != 0: new_pieces.append(_a ) continue else: continue lowercase_ : Optional[Any] = 0 for i, chunk in enumerate(_a ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(_a ) or self.is_punct(_a ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(_a ) lowercase_ : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase_ : Optional[Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase_ : int = i if len(_a ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowerCamelCase (self , _a ) -> Union[str, Any]: lowercase_ : Optional[Any] = ''.join(_a ).replace(_a , ' ' ).strip() return out_string def _lowerCamelCase (self , _a ) -> Optional[int]: lowercase_ : Optional[Any] = self.convert_ids_to_tokens(_a ) lowercase_ : Tuple = ''.join(_a ).replace(_a , ' ' ).strip() return out_string def _lowerCamelCase (self , _a ) -> Optional[int]: return self.vocab.get(_a , self.vocab.get(self.unk_token ) ) def _lowerCamelCase (self , _a ) -> int: return self.reverse_vocab.get(_a , self.unk_token ) def _lowerCamelCase (self , _a , _a=None ) -> Any: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : Tuple = [self.cls_token_id] lowercase_ : int = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowerCamelCase (self , _a , _a=None ) -> Optional[Any]: if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowerCamelCase (self , _a , _a=None , _a=False ) -> Union[str, Any]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] def _lowerCamelCase (self , _a , _a = None ) -> List[int]: # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(_a ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(_a ) + 1) + [1] * (len(_a ) + 3) def _lowerCamelCase (self , _a ) -> int: if "\u4e00" <= char <= "\u9fff": return True return False def _lowerCamelCase (self , _a ) -> List[str]: if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowerCamelCase (self , _a ) -> int: if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowerCamelCase (self , _a ) -> List[Any]: if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(_a ) == 1: lowercase_ : Optional[Any] = unicodedata.category(_a ) if cat == "Zs": return True return False def _lowerCamelCase (self , _a ) -> Tuple: lowercase_ : List[Any] = {} with io.open(_a , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(_a ): lowercase_ : Dict = line.rstrip('\n' ) lowercase_ : Dict = int(_a ) return token_to_idx def _lowerCamelCase (self , _a , _a = None ) -> Tuple[str]: lowercase_ : Tuple = 0 if os.path.isdir(_a ): lowercase_ : Any = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: lowercase_ : Tuple = (filename_prefix + '-' if filename_prefix else '') + save_directory with open(_a , 'w' , encoding='utf-8' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda _a : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) lowercase_ : Tuple = token_index writer.write(token + '\n' ) index += 1 lowercase_ : List[str] = os.path.join(_a , 'sentencepiece.bpe.model' ) with open(_a , 'wb' ) as fi: lowercase_ : Tuple = self.sp_model.serialized_model_proto() fi.write(_a ) return (vocab_file,)
438
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') UpperCAmelCase__ = logging.getLogger(__name__) @dataclass class snake_case_ : """simple docstring""" snake_case__ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) snake_case__ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) snake_case__ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) snake_case__ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) snake_case__ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) snake_case__ = field( default=_UpperCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class snake_case_ : """simple docstring""" snake_case__ = field( default=_UpperCamelCase , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case__ = field( default=_UpperCamelCase , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) snake_case__ = field( default=_UpperCamelCase , metadata={"""help""": """Train language if it is different from the evaluation language."""} ) snake_case__ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case__ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case__ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) snake_case__ = field( default=_UpperCamelCase , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) snake_case__ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) snake_case__ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) snake_case__ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) snake_case__ = field( default=_UpperCamelCase , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def a_ () -> Dict: """simple docstring""" __a : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __a : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , lowercase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __a : str = training_args.get_process_log_level() logger.setLevel(lowercase_ ) datasets.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __a : Optional[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __a : List[Any] = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __a : Optional[int] = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __a : str = train_dataset.features["label"].names if training_args.do_eval: __a : int = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __a : List[Any] = eval_dataset.features["label"].names if training_args.do_predict: __a : int = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __a : List[str] = predict_dataset.features["label"].names # Labels __a : List[Any] = len(lowercase_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase_ , idalabel={str(lowercase_ ): label for i, label in enumerate(lowercase_ )} , labelaid={label: i for i, label in enumerate(lowercase_ )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __a : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __a : List[str] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __a : Any = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a : Optional[Any] = False def preprocess_function(__A ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=lowercase_ , max_length=data_args.max_seq_length , truncation=lowercase_ , ) if training_args.do_train: if data_args.max_train_samples is not None: __a : Optional[Any] = min(len(lowercase_ ) , data_args.max_train_samples ) __a : Optional[Any] = train_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): __a : Union[str, Any] = train_dataset.map( lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowercase_ ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: __a : List[Any] = min(len(lowercase_ ) , data_args.max_eval_samples ) __a : str = eval_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): __a : Dict = eval_dataset.map( lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __a : Optional[int] = min(len(lowercase_ ) , data_args.max_predict_samples ) __a : int = predict_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): __a : Union[str, Any] = predict_dataset.map( lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function __a : Union[str, Any] = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A ): __a : int = p.predictions[0] if isinstance(p.predictions , lowercase_ ) else p.predictions __a : Union[str, Any] = np.argmax(lowercase_ , axis=1 ) return metric.compute(predictions=lowercase_ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a : str = default_data_collator elif training_args.fpaa: __a : Tuple = DataCollatorWithPadding(lowercase_ , pad_to_multiple_of=8 ) else: __a : List[Any] = None # Initialize our Trainer __a : List[str] = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , data_collator=lowercase_ , ) # Training if training_args.do_train: __a : str = None if training_args.resume_from_checkpoint is not None: __a : Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a : Optional[Any] = last_checkpoint __a : Optional[Any] = trainer.train(resume_from_checkpoint=lowercase_ ) __a : Tuple = train_result.metrics __a : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase_ ) ) __a : Tuple = min(lowercase_ , len(lowercase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowercase_ ) trainer.save_metrics("train" , lowercase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) __a : Union[str, Any] = trainer.evaluate(eval_dataset=lowercase_ ) __a : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase_ ) __a : Dict = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics("eval" , lowercase_ ) trainer.save_metrics("eval" , lowercase_ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) __a : Tuple = trainer.predict(lowercase_ , metric_key_prefix="predict" ) __a : Tuple = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowercase_ ) ) __a : Dict = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics("predict" , lowercase_ ) trainer.save_metrics("predict" , lowercase_ ) __a : Dict = np.argmax(lowercase_ , axis=1 ) __a : List[Any] = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(lowercase_ , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(lowercase_ ): __a : int = label_list[item] writer.write(f'{index}\t{item}\n' ) if __name__ == "__main__": main()
351
"""simple docstring""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = ["model.decoder.embed_positions.weights"] def lowercase__ ( lowercase_ ) -> Dict: """simple docstring""" if "emb" in name: _UpperCamelCase : Optional[int] = name.replace("emb" ,"model.decoder.embed_tokens" ) if "transformer" in name: _UpperCamelCase : List[Any] = name.replace("transformer" ,"model.decoder" ) if "cross_attention" in name: _UpperCamelCase : Any = name.replace("cross_attention" ,"encoder_attn" ) if "linear1" in name: _UpperCamelCase : List[str] = name.replace("linear1" ,"fc1" ) if "linear2" in name: _UpperCamelCase : Optional[Any] = name.replace("linear2" ,"fc2" ) if "norm1" in name: _UpperCamelCase : int = name.replace("norm1" ,"self_attn_layer_norm" ) if "norm_cross" in name: _UpperCamelCase : Optional[int] = name.replace("norm_cross" ,"encoder_attn_layer_norm" ) if "norm2" in name: _UpperCamelCase : Optional[Any] = name.replace("norm2" ,"final_layer_norm" ) if "out_norm" in name: _UpperCamelCase : Tuple = name.replace("out_norm" ,"model.decoder.layer_norm" ) if "linears" in name: _UpperCamelCase : List[str] = name.replace("linears" ,"lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: _UpperCamelCase : Optional[Any] = name.replace("condition_provider.conditioners.description.output_proj" ,"enc_to_dec_proj" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Tuple[Dict, Dict]: """simple docstring""" _UpperCamelCase : List[Any] = list(state_dict.keys() ) _UpperCamelCase : int = {} for key in keys: _UpperCamelCase : List[str] = state_dict.pop(lowercase_ ) _UpperCamelCase : List[Any] = rename_keys(lowercase_ ) if "in_proj_weight" in key: # split fused qkv proj _UpperCamelCase : List[Any] = val[:hidden_size, :] _UpperCamelCase : List[Any] = val[hidden_size : 2 * hidden_size, :] _UpperCamelCase : Tuple = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _UpperCamelCase : Optional[Any] = val else: _UpperCamelCase : str = val return state_dict, enc_dec_proj_state_dict def lowercase__ ( lowercase_ ) -> MusicgenDecoderConfig: """simple docstring""" if checkpoint == "small": # default config values _UpperCamelCase : Optional[Any] = 1_024 _UpperCamelCase : List[str] = 24 _UpperCamelCase : Optional[int] = 16 elif checkpoint == "medium": _UpperCamelCase : int = 1_536 _UpperCamelCase : Any = 48 _UpperCamelCase : Optional[Any] = 24 elif checkpoint == "large": _UpperCamelCase : int = 2_048 _UpperCamelCase : Dict = 48 _UpperCamelCase : Dict = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _UpperCamelCase : List[Any] = MusicgenDecoderConfig( hidden_size=lowercase_ ,ffn_dim=hidden_size * 4 ,num_hidden_layers=lowercase_ ,num_attention_heads=lowercase_ ,) return config @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_=None ,lowercase_=None ,lowercase_="cpu" ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : int = MusicGen.get_pretrained(lowercase_ ,device=lowercase_ ) _UpperCamelCase : int = decoder_config_from_checkpoint(lowercase_ ) _UpperCamelCase : int = fairseq_model.lm.state_dict() _UpperCamelCase, _UpperCamelCase : Tuple = rename_state_dict( lowercase_ ,hidden_size=decoder_config.hidden_size ) _UpperCamelCase : int = TaEncoderModel.from_pretrained("t5-base" ) _UpperCamelCase : str = EncodecModel.from_pretrained("facebook/encodec_32khz" ) _UpperCamelCase : Dict = MusicgenForCausalLM(lowercase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _UpperCamelCase, _UpperCamelCase : List[str] = decoder.load_state_dict(lowercase_ ,strict=lowercase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowercase_ ) if len(lowercase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowercase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _UpperCamelCase : Tuple = MusicgenForConditionalGeneration(text_encoder=lowercase_ ,audio_encoder=lowercase_ ,decoder=lowercase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowercase_ ) # check we can do a forward pass _UpperCamelCase : Any = torch.arange(0 ,8 ,dtype=torch.long ).reshape(2 ,-1 ) _UpperCamelCase : List[Any] = input_ids.reshape(2 * 4 ,-1 ) with torch.no_grad(): _UpperCamelCase : List[str] = model(input_ids=lowercase_ ,decoder_input_ids=lowercase_ ).logits if logits.shape != (8, 1, 2_048): raise ValueError("Incorrect shape for logits" ) # now construct the processor _UpperCamelCase : str = AutoTokenizer.from_pretrained("t5-base" ) _UpperCamelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" ,padding_side="left" ) _UpperCamelCase : Any = MusicgenProcessor(feature_extractor=lowercase_ ,tokenizer=lowercase_ ) # set the appropriate bos/pad token ids _UpperCamelCase : Optional[Any] = 2_048 _UpperCamelCase : str = 2_048 # set other default generation config params _UpperCamelCase : Optional[int] = int(30 * audio_encoder.config.frame_rate ) _UpperCamelCase : Optional[Any] = True _UpperCamelCase : Any = 3.0 if pytorch_dump_folder is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowercase_ ) processor.push_to_hub(lowercase_ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) lowerCamelCase__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
624
0
'''simple docstring''' def _UpperCamelCase ( __A ) -> Union[str, Any]: '''simple docstring''' return "".join(chr(ord(__A ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
721
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a__ : List[Any] = logging.get_logger(__name__) def _UpperCamelCase ( __A , __A , __A , __A ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(__A , __A , __A=0 , __A=None ): UpperCamelCase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase__ = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase__ = math.ceil(val / multiple ) * multiple return x UpperCamelCase__ = (output_size, output_size) if isinstance(__A , __A ) else output_size UpperCamelCase__ , UpperCamelCase__ = get_image_size(__A ) UpperCamelCase__ , UpperCamelCase__ = output_size # determine new height and width UpperCamelCase__ = output_height / input_height UpperCamelCase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase__ = scale_width else: # fit height UpperCamelCase__ = scale_height UpperCamelCase__ = constraint_to_multiple_of(scale_height * input_height , multiple=__A ) UpperCamelCase__ = constraint_to_multiple_of(scale_width * input_width , multiple=__A ) return (new_height, new_width) class lowercase_ ( a__ ): __UpperCAmelCase = ['pixel_values'] def __init__( self , a = True , a = None , a = PILImageResampling.BILINEAR , a = False , a = 1 , a = True , a = 1 / 2_55 , a = True , a = None , a = None , **a , ): super().__init__(**a ) UpperCamelCase__ = size if size is not None else {"height": 3_84, "width": 3_84} UpperCamelCase__ = get_size_dict(a ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = keep_aspect_ratio UpperCamelCase__ = ensure_multiple_of UpperCamelCase__ = resample UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self , a , a , a = False , a = 1 , a = PILImageResampling.BICUBIC , a = None , **a , ): UpperCamelCase__ = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCamelCase__ = get_resize_output_image_size( a , output_size=(size["height"], size["width"]) , keep_aspect_ratio=a , multiple=a , ) return resize(a , size=a , resample=a , data_format=a , **a ) def __a ( self , a , a , a = None , **a , ): return rescale(a , scale=a , data_format=a , **a ) def __a ( self , a , a , a , a = None , **a , ): return normalize(a , mean=a , std=a , data_format=a , **a ) def __a ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a ) UpperCamelCase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a , size=a , resample=a ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=a , mean=a , std=a ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a , a ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a ) def __a ( self , a , a = None ): UpperCamelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a ) != len(a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(a ): UpperCamelCase__ = target_sizes.numpy() UpperCamelCase__ = [] for idx in range(len(a ) ): UpperCamelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=a ) UpperCamelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a ) else: UpperCamelCase__ = logits.argmax(dim=1 ) UpperCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
223
0
def A__ ( _a : int ): '''simple docstring''' if not isinstance(_a , _a ): snake_case__ : Any =f"Input value of [number={number}] must be an integer" raise TypeError(_a ) if number < 1: snake_case__ : List[str] =f"Input value of [number={number}] must be > 0" raise ValueError(_a ) snake_case__ : Union[str, Any] =1 for i in range(1 , _a ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
385
def A__ ( _a : int ): '''simple docstring''' snake_case__ : str =generate_pascal_triangle(_a ) for row_idx in range(_a ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def A__ ( _a : int ): '''simple docstring''' if not isinstance(_a , _a ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case__ : list[list[int]] =[] for current_row_idx in range(_a ): snake_case__ : Optional[Any] =populate_current_row(_a , _a ) triangle.append(_a ) return triangle def A__ ( _a : list[list[int]] , _a : int ): '''simple docstring''' snake_case__ : Any =[-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 snake_case__ , snake_case__ : List[str] =1, 1 for current_col_idx in range(1 , _a ): calculate_current_element( _a , _a , _a , _a ) return current_row def A__ ( _a : list[list[int]] , _a : list[int] , _a : int , _a : int , ): '''simple docstring''' snake_case__ : List[Any] =triangle[current_row_idx - 1][current_col_idx - 1] snake_case__ : Tuple =triangle[current_row_idx - 1][current_col_idx] snake_case__ : Union[str, Any] =above_to_left_elt + above_to_right_elt def A__ ( _a : int ): '''simple docstring''' if not isinstance(_a , _a ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) snake_case__ : list[list[int]] =[[1]] for row_index in range(1 , _a ): snake_case__ : Tuple =[0] + result[-1] + [0] snake_case__ : Optional[Any] =row_index + 1 # Calculate the number of distinct elements in a row snake_case__ : int =sum(divmod(_a , 2 ) ) snake_case__ : List[str] =[ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] snake_case__ : List[str] =row_first_half[: (row_index + 1) // 2] row_second_half.reverse() snake_case__ : Optional[int] =row_first_half + row_second_half result.append(_a ) return result def A__ ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(_a : Callable , _a : int ) -> None: snake_case__ : List[str] =f"{func.__name__}({value})" snake_case__ : Tuple =timeit(f"__main__.{call}" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(_a , _a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
385
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = word.split() def justify(_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any ) -> str: _UpperCAmelCase = max_width - width _UpperCAmelCase = len(_lowercase ) if len(_lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _UpperCAmelCase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _UpperCAmelCase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _UpperCAmelCase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase ): num_spaces_between_words_list[i] += 1 _UpperCAmelCase = [] for i in range(_lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowercase ) _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = 0 for word in words: if width + len(_lowercase ) + len(_lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase ) width += len(_lowercase ) else: # justify the line and add it to result answer.append(justify(_lowercase , _lowercase , _lowercase ) ) # reset new line and new width _UpperCAmelCase = [word], len(_lowercase ) _UpperCAmelCase = max_width - width - len(_lowercase ) answer.append(''' '''.join(_lowercase ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
704
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __A : Any = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n" __A : Optional[Any] = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n" __A : Tuple = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n" @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): """simple docstring""" def lowercase__ ( self : List[Any] )->Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def lowercase__ ( self : int , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] )->Tuple: _UpperCAmelCase = 0.0 for i, j in zip(__UpperCamelCase , __UpperCamelCase ): n_correct += 1.0 if math_equivalence.is_equiv(__UpperCamelCase , __UpperCamelCase ) else 0.0 _UpperCAmelCase = n_correct / len(__UpperCamelCase ) return { "accuracy": accuracy, }
95
0