code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : int , a : Any=3_6000 , a : Optional[int]=1280 , a : Tuple=1024 , a : Optional[Any]=8192 , a : List[str]=4096 , a : Optional[Any]=128 , a : Optional[Any]=10 , a : List[Any]=0 , a : Union[str, Any]=16 , a : str=16 , a : Tuple=128 , a : List[str]=0.0 , a : Union[str, Any]=1e-5 , a : int=False , a : Optional[int]=0.0 , a : Union[str, Any]="float32" , a : str=False , a : Dict=False , a : Dict=False , a : Optional[Any]=0.002 , a : Tuple=False , a : List[str]=True , a : int=3_5998 , a : Union[str, Any]=3_5995 , a : int=3_5999 , **a : Optional[int] , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = d_model SCREAMING_SNAKE_CASE : Union[str, Any] = d_ff SCREAMING_SNAKE_CASE : Optional[Any] = d_ext SCREAMING_SNAKE_CASE : List[str] = d_spout SCREAMING_SNAKE_CASE : Optional[Any] = num_switch_layers SCREAMING_SNAKE_CASE : str = num_ext_layers SCREAMING_SNAKE_CASE : int = num_switch_layers + num_ext_layers SCREAMING_SNAKE_CASE : str = num_heads SCREAMING_SNAKE_CASE : Optional[int] = num_experts SCREAMING_SNAKE_CASE : Optional[int] = expert_capacity SCREAMING_SNAKE_CASE : List[str] = dropout_rate SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE : List[str] = router_bias SCREAMING_SNAKE_CASE : Union[str, Any] = router_jitter_noise SCREAMING_SNAKE_CASE : Tuple = router_dtype SCREAMING_SNAKE_CASE : Dict = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : Tuple = output_hidden_states SCREAMING_SNAKE_CASE : Union[str, Any] = output_attentions SCREAMING_SNAKE_CASE : str = initializer_factor SCREAMING_SNAKE_CASE : Union[str, Any] = output_router_logits SCREAMING_SNAKE_CASE : Optional[int] = use_cache super().__init__( separator_token_id=a , pad_token_id=a , eos_token_id=a , **a , )
25
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
25
1
'''simple docstring''' def snake_case__ ( a , a , a ) -> str: '''simple docstring''' if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__lowerCAmelCase , n - 1 , __lowerCAmelCase ) * a) % mod else: snake_case__ = binary_exponentiation(__lowerCAmelCase , n / 2 , __lowerCAmelCase ) return (b * b) % mod # a prime number a__ = 701 a__ = 1_000_000_000 a__ = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
709
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __magic_name__( __lowerCAmelCase , unittest.TestCase ): UpperCAmelCase_ : Tuple = DebertaVaTokenizer UpperCAmelCase_ : Any = DebertaVaTokenizerFast UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Tuple = True def __lowerCAmelCase( self : List[str] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case__ = DebertaVaTokenizer(__UpperCamelCase , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase( self : Optional[int] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case__ = """this is a test""" snake_case__ = """this is a test""" return input_text, output_text def __lowerCAmelCase( self : int ): '''simple docstring''' snake_case__ = """<pad>""" snake_case__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __lowerCAmelCase( self : Tuple ): '''simple docstring''' snake_case__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(__UpperCamelCase ) , 3_0_0_0_1 ) def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' snake_case__ = """ \tHeLLo!how \n Are yoU? """ snake_case__ = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on snake_case__ = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __lowerCAmelCase( self : List[Any] ): '''simple docstring''' pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' pass def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' snake_case__ = """I was born in 92000, and this is falsé.""" snake_case__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on snake_case__ = DebertaVaTokenizer(__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : List[Any] ): '''simple docstring''' snake_case__ = """I was born in 92000, and this is falsé.""" snake_case__ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on snake_case__ = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : Dict ): '''simple docstring''' snake_case__ = """I was born in 92000, and this is falsé.""" snake_case__ = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on snake_case__ = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : int ): '''simple docstring''' snake_case__ = """I was born in 92000, and this is falsé.""" snake_case__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on snake_case__ = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : Dict ): '''simple docstring''' snake_case__ = """ \tHeLLo!how \n Are yoU? """ snake_case__ = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on snake_case__ = DebertaVaTokenizer(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , do_lower_case=__UpperCamelCase , split_by_punct=__UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' snake_case__ = self.get_tokenizer() snake_case__ = self.get_rust_tokenizer() snake_case__ = """I was born in 92000, and this is falsé.""" snake_case__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) snake_case__ = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = self.get_rust_tokenizer() snake_case__ = tokenizer.encode(__UpperCamelCase ) snake_case__ = rust_tokenizer.encode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' snake_case__ = """This is a test""" snake_case__ = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] snake_case__ = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] snake_case__ = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] snake_case__ = DebertaVaTokenizer(__UpperCamelCase , keep_accents=__UpperCamelCase ) snake_case__ = DebertaVaTokenizerFast(__UpperCamelCase , keep_accents=__UpperCamelCase ) snake_case__ = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # fmt: off snake_case__ = """I was born in 92000, and this is falsé.""" snake_case__ = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] snake_case__ = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] snake_case__ = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on snake_case__ = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = rust_tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) snake_case__ = rust_tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase( self : Tuple ): '''simple docstring''' snake_case__ = DebertaVaTokenizer(__UpperCamelCase ) snake_case__ = tokenizer.encode("""sequence builders""" ) snake_case__ = tokenizer.encode("""multi-sequence build""" ) snake_case__ = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) snake_case__ = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __UpperCamelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __UpperCamelCase , ) @slow def __lowerCAmelCase( self : Dict ): '''simple docstring''' snake_case__ = {"""input_ids""": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
566
0
'''simple docstring''' def __lowercase (_SCREAMING_SNAKE_CASE :int = 60_08_51_47_51_43 ): try: SCREAMING_SNAKE_CASE : Optional[int] = int(_SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Union[str, Any] = 2 while i * i <= n: while n % i == 0: SCREAMING_SNAKE_CASE : List[Any] = i n //= i i += 1 if n > 1: SCREAMING_SNAKE_CASE : Tuple = n return int(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'''{solution() = }''')
507
'''simple docstring''' from __future__ import annotations def __lowercase (_SCREAMING_SNAKE_CASE :list[int] ): if not nums: return 0 SCREAMING_SNAKE_CASE : Tuple = nums[0] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for num in nums[1:]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = ( max_excluding + num, max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
507
1
def a ( ) -> int: '''simple docstring''' return 1 def a ( A__ ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def a ( A__ ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(A__ ) def a ( A__ ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(A__ ) def a ( A__ ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(A__ ) def a ( A__ ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(A__ ) def a ( A__ ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(A__ ) def a ( A__ ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(A__ ) def a ( A__ = 2_0_0 ) -> int: '''simple docstring''' return two_pound(A__ ) if __name__ == "__main__": print(solution(int(input().strip())))
250
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ :Tuple = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :List[str] = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
1
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants UpperCamelCase__ =Mapping[str, np.ndarray] UpperCamelCase__ =Mapping[str, Any] # Is a nested dict. UpperCamelCase__ =0.01 @dataclasses.dataclass(frozen=__lowercase ) class lowerCAmelCase__: '''simple docstring''' __snake_case = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. __snake_case = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. __snake_case = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. __snake_case = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. __snake_case = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions __snake_case = None # Optional remark about the protein. Included as a comment in output PDB # files __snake_case = None # Templates used to generate this protein (prediction-only) __snake_case = None # Chain corresponding to each parent __snake_case = None def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = R"(\[[A-Z]+\]\n)" _SCREAMING_SNAKE_CASE : List[str] = [tag.strip() for tag in re.split(__lowerCamelCase, __lowerCamelCase ) if len(__lowerCamelCase ) > 0] _SCREAMING_SNAKE_CASE : Iterator[Tuple[str, List[str]]] = zip(tags[0::2], [l.split("\n" ) for l in tags[1::2]] ) _SCREAMING_SNAKE_CASE : List[str] = ["N", "CA", "C"] _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[Any] = None _SCREAMING_SNAKE_CASE : str = None for g in groups: if "[PRIMARY]" == g[0]: _SCREAMING_SNAKE_CASE : str = g[1][0].strip() for i in range(len(__lowerCamelCase ) ): if seq[i] not in residue_constants.restypes: _SCREAMING_SNAKE_CASE : List[str] = "X" # FIXME: strings are immutable _SCREAMING_SNAKE_CASE : Tuple = np.array( [residue_constants.restype_order.get(__lowerCamelCase, residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _SCREAMING_SNAKE_CASE : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowerCamelCase, g[1][axis].split() ) ) ) _SCREAMING_SNAKE_CASE : int = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _SCREAMING_SNAKE_CASE : Tuple = np.array(list(map({"-": 0, "+": 1}.get, g[1][0].strip() ) ) ) _SCREAMING_SNAKE_CASE : str = np.zeros( ( len(__lowerCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowerCamelCase, atom_mask=__lowerCamelCase, aatype=__lowerCamelCase, residue_index=np.arange(len(__lowerCamelCase ) ), b_factors=__lowerCamelCase, ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = 0 ): _SCREAMING_SNAKE_CASE : List[str] = [] _SCREAMING_SNAKE_CASE : Tuple = prot.remark if remark is not None: pdb_headers.append(f"""REMARK {remark}""" ) _SCREAMING_SNAKE_CASE : int = prot.parents _SCREAMING_SNAKE_CASE : Tuple = prot.parents_chain_index if parents is not None and parents_chain_index is not None: _SCREAMING_SNAKE_CASE : Tuple = [p for i, p in zip(__lowerCamelCase, __lowerCamelCase ) if i == chain_id] if parents is None or len(__lowerCamelCase ) == 0: _SCREAMING_SNAKE_CASE : Optional[Any] = ["N/A"] pdb_headers.append(f"""PARENT {' '.join(__lowerCamelCase )}""" ) return pdb_headers def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = [] _SCREAMING_SNAKE_CASE : Optional[int] = pdb_str.split("\n" ) _SCREAMING_SNAKE_CASE : Tuple = prot.remark if remark is not None: out_pdb_lines.append(f"""REMARK {remark}""" ) _SCREAMING_SNAKE_CASE : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: _SCREAMING_SNAKE_CASE : Any = [] if prot.parents_chain_index is not None: _SCREAMING_SNAKE_CASE : Dict[str, List[str]] = {} for p, i in zip(prot.parents, prot.parents_chain_index ): parent_dict.setdefault(str(__lowerCamelCase ), [] ) parent_dict[str(__lowerCamelCase )].append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = max([int(__lowerCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _SCREAMING_SNAKE_CASE : int = parent_dict.get(str(__lowerCamelCase ), ["N/A"] ) parents_per_chain.append(__lowerCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: _SCREAMING_SNAKE_CASE : Union[str, Any] = [["N/A"]] def make_parent_line(__lowerCamelCase ) -> str: return f"""PARENT {' '.join(__lowerCamelCase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _SCREAMING_SNAKE_CASE : Optional[int] = 0 for i, l in enumerate(__lowerCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowerCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = parents_per_chain[chain_counter] else: _SCREAMING_SNAKE_CASE : Union[str, Any] = ["N/A"] out_pdb_lines.append(make_parent_line(__lowerCamelCase ) ) return "\n".join(__lowerCamelCase ) def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = residue_constants.restypes + ["X"] def res_atoa(__lowerCamelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r], "UNK" ) _SCREAMING_SNAKE_CASE : str = residue_constants.atom_types _SCREAMING_SNAKE_CASE : List[str] = [] _SCREAMING_SNAKE_CASE : List[Any] = prot.atom_mask _SCREAMING_SNAKE_CASE : Optional[Any] = prot.aatype _SCREAMING_SNAKE_CASE : str = prot.atom_positions _SCREAMING_SNAKE_CASE : Any = prot.residue_index.astype(np.intaa ) _SCREAMING_SNAKE_CASE : Optional[Any] = prot.b_factors _SCREAMING_SNAKE_CASE : List[Any] = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) _SCREAMING_SNAKE_CASE : Tuple = get_pdb_headers(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: pdb_lines.extend(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = aatype.shape[0] _SCREAMING_SNAKE_CASE : str = 1 _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 _SCREAMING_SNAKE_CASE : str = string.ascii_uppercase _SCREAMING_SNAKE_CASE : Any = None # Add all atom sites. for i in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowerCamelCase, atom_positions[i], atom_mask[i], b_factors[i] ): if mask < 0.5: continue _SCREAMING_SNAKE_CASE : Optional[Any] = "ATOM" _SCREAMING_SNAKE_CASE : Dict = atom_name if len(__lowerCamelCase ) == 4 else f""" {atom_name}""" _SCREAMING_SNAKE_CASE : Optional[Any] = "" _SCREAMING_SNAKE_CASE : List[Any] = "" _SCREAMING_SNAKE_CASE : Optional[Any] = 1.00 _SCREAMING_SNAKE_CASE : Any = atom_name[0] # Protein supports only C, N, O, S, this works. _SCREAMING_SNAKE_CASE : List[Any] = "" _SCREAMING_SNAKE_CASE : int = "A" if chain_index is not None: _SCREAMING_SNAKE_CASE : int = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _SCREAMING_SNAKE_CASE : List[Any] = ( f"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" f"""{res_name_a:>3} {chain_tag:>1}""" f"""{residue_index[i]:>4}{insertion_code:>1} """ f"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" f"""{occupancy:>6.2f}{b_factor:>6.2f} """ f"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 _SCREAMING_SNAKE_CASE : Optional[int] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _SCREAMING_SNAKE_CASE : Union[str, Any] = True _SCREAMING_SNAKE_CASE : Tuple = chain_index[i + 1] if should_terminate: # Close the chain. _SCREAMING_SNAKE_CASE : str = "TER" _SCREAMING_SNAKE_CASE : Optional[int] = ( f"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowerCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowerCamelCase, __lowerCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowerCamelCase ) def lowerCamelCase__ (__lowerCamelCase ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase = None, __lowerCamelCase = None, __lowerCamelCase = None, __lowerCamelCase = None, __lowerCamelCase = None, ): return Protein( aatype=features["aatype"], atom_positions=result["final_atom_positions"], atom_mask=result["final_atom_mask"], residue_index=features["residue_index"] + 1, b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ), chain_index=__lowerCamelCase, remark=__lowerCamelCase, parents=__lowerCamelCase, parents_chain_index=__lowerCamelCase, )
249
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = AutoConfig.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = checkpoints.load_tax_checkpoint(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": _SCREAMING_SNAKE_CASE : List[str] = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": _SCREAMING_SNAKE_CASE : Optional[Any] = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE : int = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): _SCREAMING_SNAKE_CASE : List[str] = f"""layers_{str(__lowerCamelCase )}""" # Self-Attention _SCREAMING_SNAKE_CASE : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] _SCREAMING_SNAKE_CASE : Any = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] _SCREAMING_SNAKE_CASE : int = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization _SCREAMING_SNAKE_CASE : Tuple = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: _SCREAMING_SNAKE_CASE : Optional[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] _SCREAMING_SNAKE_CASE : Dict = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] _SCREAMING_SNAKE_CASE : int = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _SCREAMING_SNAKE_CASE : Dict = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _SCREAMING_SNAKE_CASE : List[str] = flax_model.params["encoder"]["block"][str(__lowerCamelCase )]["layer"] _SCREAMING_SNAKE_CASE : Tuple = tax_attention_key _SCREAMING_SNAKE_CASE : List[Any] = tax_attention_out _SCREAMING_SNAKE_CASE : Tuple = tax_attention_query _SCREAMING_SNAKE_CASE : List[str] = tax_attention_value _SCREAMING_SNAKE_CASE : Any = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE : str = tax_global_layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE : int = tax_mlp_wi_a _SCREAMING_SNAKE_CASE : Tuple = tax_mlp_wi_a else: _SCREAMING_SNAKE_CASE : List[str] = tax_mlp_wi _SCREAMING_SNAKE_CASE : int = tax_mlp_wo _SCREAMING_SNAKE_CASE : Optional[int] = tax_mlp_layer_norm _SCREAMING_SNAKE_CASE : Tuple = flax_model_encoder_layer_block # Only for layer 0: _SCREAMING_SNAKE_CASE : Optional[Any] = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T _SCREAMING_SNAKE_CASE : str = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE : Dict = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T _SCREAMING_SNAKE_CASE : Tuple = tax_encoder_global_rel_embedding # Assigning _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _SCREAMING_SNAKE_CASE : Dict = f"""layers_{str(__lowerCamelCase )}""" # Self-Attention _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] _SCREAMING_SNAKE_CASE : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] _SCREAMING_SNAKE_CASE : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] _SCREAMING_SNAKE_CASE : Dict = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention _SCREAMING_SNAKE_CASE : List[Any] = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_enc_dec_attention_module["key"]["kernel"] _SCREAMING_SNAKE_CASE : Any = tax_enc_dec_attention_module["out"]["kernel"] _SCREAMING_SNAKE_CASE : Any = tax_enc_dec_attention_module["query"]["kernel"] _SCREAMING_SNAKE_CASE : int = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization _SCREAMING_SNAKE_CASE : int = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: _SCREAMING_SNAKE_CASE : int = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] _SCREAMING_SNAKE_CASE : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _SCREAMING_SNAKE_CASE : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _SCREAMING_SNAKE_CASE : Any = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _SCREAMING_SNAKE_CASE : int = flax_model.params["decoder"]["block"][str(__lowerCamelCase )]["layer"] _SCREAMING_SNAKE_CASE : Any = tax_attention_key _SCREAMING_SNAKE_CASE : Optional[int] = tax_attention_out _SCREAMING_SNAKE_CASE : Optional[Any] = tax_attention_query _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_attention_value _SCREAMING_SNAKE_CASE : Optional[Any] = tax_pre_attention_layer_norm _SCREAMING_SNAKE_CASE : Optional[int] = tax_enc_dec_attention_key _SCREAMING_SNAKE_CASE : Dict = tax_enc_dec_attention_out _SCREAMING_SNAKE_CASE : Dict = tax_enc_dec_attention_query _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_enc_dec_attention_value _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_cross_layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE : int = tax_mlp_wi_a _SCREAMING_SNAKE_CASE : Tuple = tax_mlp_wi_a else: _SCREAMING_SNAKE_CASE : Tuple = tax_mlp_wi _SCREAMING_SNAKE_CASE : List[str] = tax_mlp_wo _SCREAMING_SNAKE_CASE : Any = txa_mlp_layer_norm _SCREAMING_SNAKE_CASE : List[str] = flax_model_decoder_layer_block # Decoder Normalization _SCREAMING_SNAKE_CASE : Optional[int] = tax_model["target"]["decoder"]["decoder_norm"]["scale"] _SCREAMING_SNAKE_CASE : List[str] = txa_decoder_norm # Only for layer 0: _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T _SCREAMING_SNAKE_CASE : Tuple = tax_decoder_rel_embedding # Token Embeddings _SCREAMING_SNAKE_CASE : Tuple = tax_model["target"]["token_embedder"]["embedding"] _SCREAMING_SNAKE_CASE : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(__lowerCamelCase ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) UpperCamelCase__ =parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
249
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
262
from collections import defaultdict from math import ceil, sqrt def A__ ( SCREAMING_SNAKE_CASE_ = 1_0_0_0_0_0_0 , SCREAMING_SNAKE_CASE_ = 1_0 ) -> int: lowerCamelCase : defaultdict =defaultdict(SCREAMING_SNAKE_CASE_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCamelCase : Any =max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCamelCase : str =1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(F"""{solution() = }""")
262
1
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _a = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ _a = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ _a = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ _a = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ _a = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase( datasets.Metric ): def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''')), '''references''': datasets.Value('''string'''), }) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def UpperCAmelCase ( self , __a , __a , __a=[1, 10, 1_00] , __a=4 , __a=3.0) -> int: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0) != "1": raise ValueError(_WARNING) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''') with ThreadPoolExecutor(max_workers=__a) as executor: _UpperCamelCase = [] _UpperCamelCase = Counter() _UpperCamelCase = 0 _UpperCamelCase = defaultdict(__a) for task_id, (candidates, test_case) in enumerate(zip(__a , __a)): for candidate in candidates: _UpperCamelCase = candidate + '''\n''' + test_case _UpperCamelCase = (test_program, timeout, task_id, completion_id[task_id]) _UpperCamelCase = executor.submit(__a , *__a) futures.append(__a) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__a): _UpperCamelCase = future.result() results[result["task_id"]].append((result['''completion_id'''], result)) _UpperCamelCase , _UpperCamelCase = [], [] for result in results.values(): result.sort() _UpperCamelCase = [r[1]['''passed'''] for r in result] total.append(len(__a)) correct.append(sum(__a)) _UpperCamelCase = np.array(__a) _UpperCamelCase = np.array(__a) _UpperCamelCase = k _UpperCamelCase = {F'''pass@{k}''': estimate_pass_at_k(__a , __a , __a).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" def estimator(__snake_case, __snake_case, __snake_case ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1 ) ) if isinstance(__snake_case, __snake_case ): _UpperCamelCase = itertools.repeat(__snake_case, len(__snake_case ) ) else: assert len(__snake_case ) == len(__snake_case ) _UpperCamelCase = iter(__snake_case ) return np.array([estimator(int(__snake_case ), int(__snake_case ), __snake_case ) for n, c in zip(__snake_case, __snake_case )] )
19
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = StableDiffusionInpaintPipeline _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _lowerCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase = frozenset([] ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=_lowercase , ) snake_case_ : Dict = PNDMScheduler(skip_prk_steps=_lowercase ) torch.manual_seed(0 ) snake_case_ : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) snake_case_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""gelu""" , projection_dim=5_1_2 , ) snake_case_ : Dict = CLIPTextModel(_lowercase ) snake_case_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCAmelCase__ ( self , _lowercase , _lowercase=0 ) -> Optional[Any]: '''simple docstring''' snake_case_ : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_lowercase ) ).to(_lowercase ) snake_case_ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ : Tuple = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((6_4, 6_4) ) snake_case_ : Any = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((6_4, 6_4) ) if str(_lowercase ).startswith("""mps""" ): snake_case_ : str = torch.manual_seed(_lowercase ) else: snake_case_ : List[str] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) snake_case_ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case_ : List[str] = self.get_dummy_components() snake_case_ : Optional[Any] = StableDiffusionInpaintPipeline(**_lowercase ) snake_case_ : Dict = sd_pipe.to(_lowercase ) sd_pipe.set_progress_bar_config(disable=_lowercase ) snake_case_ : Optional[int] = self.get_dummy_inputs(_lowercase ) snake_case_ : List[str] = sd_pipe(**_lowercase ).images snake_case_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) snake_case_ : Optional[int] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) snake_case_ : str = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained(_lowercase , safety_checker=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() snake_case_ : List[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : List[str] = torch.manual_seed(0 ) snake_case_ : Dict = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , generator=_lowercase , output_type="""np""" , ) snake_case_ : Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 9E-3 def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) snake_case_ : str = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained( _lowercase , torch_dtype=torch.floataa , safety_checker=_lowercase , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() snake_case_ : Union[str, Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : Optional[Any] = torch.manual_seed(0 ) snake_case_ : Any = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , generator=_lowercase , output_type="""np""" , ) snake_case_ : str = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 5E-1 def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case_ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) snake_case_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) snake_case_ : int = """stabilityai/stable-diffusion-2-inpainting""" snake_case_ : List[str] = PNDMScheduler.from_pretrained(_lowercase , subfolder="""scheduler""" ) snake_case_ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained( _lowercase , safety_checker=_lowercase , scheduler=_lowercase , torch_dtype=torch.floataa , ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case_ : Any = """Face of a yellow cat, high resolution, sitting on a park bench""" snake_case_ : List[Any] = torch.manual_seed(0 ) snake_case_ : Any = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , generator=_lowercase , num_inference_steps=2 , output_type="""np""" , ) snake_case_ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 1_0**9
58
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_,UpperCAmelCase_,UpperCAmelCase_ =False, False, False @dataclass class __UpperCamelCase : '''simple docstring''' __a : Dict =None __a : str =True __a : List[Any] =True __a : Optional[int] =None # Automatically constructed __a : Optional[Any] ="""dict""" __a : Union[str, Any] =pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) __a : int =field(default="""Audio""" , init=__A , repr=__A ) def __call__( self ): return self.pa_type def __snake_case ( self , UpperCAmelCase_ ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return {"bytes": None, "path": value} elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowerCAmelCase = BytesIO() sf.write(UpperCAmelCase_ , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowerCAmelCase = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_27_67 else: lowerCAmelCase = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_27_67 lowerCAmelCase = BytesIO(bytes() ) sf.write(UpperCAmelCase_ , UpperCAmelCase_ , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( F"""An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.""" ) def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) lowerCAmelCase = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err lowerCAmelCase = xsplitext(UpperCAmelCase_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: lowerCAmelCase = token_per_repo_id or {} lowerCAmelCase = path.split('''::''' )[-1] try: lowerCAmelCase = string_to_dict(UpperCAmelCase_ , config.HUB_DATASETS_URL )['''repo_id'''] lowerCAmelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): lowerCAmelCase = None with xopen(UpperCAmelCase_ , '''rb''' , use_auth_token=UpperCAmelCase_ ) as f: lowerCAmelCase = sf.read(UpperCAmelCase_ ) else: lowerCAmelCase = sf.read(UpperCAmelCase_ ) lowerCAmelCase = array.T if self.mono: lowerCAmelCase = librosa.to_mono(UpperCAmelCase_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowerCAmelCase = librosa.resample(UpperCAmelCase_ , orig_sr=UpperCAmelCase_ , target_sr=self.sampling_rate ) lowerCAmelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __snake_case ( self ): from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def __snake_case ( self , UpperCAmelCase_ ): if pa.types.is_string(storage.type ): lowerCAmelCase = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.binary() ) lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCAmelCase = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.string() ) lowerCAmelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): lowerCAmelCase = pa.array([Audio().encode_example(UpperCAmelCase_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: lowerCAmelCase = storage.field('''bytes''' ) else: lowerCAmelCase = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: lowerCAmelCase = storage.field('''path''' ) else: lowerCAmelCase = pa.array([None] * len(UpperCAmelCase_ ) , type=pa.string() ) lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(UpperCAmelCase_ , self.pa_type ) def __snake_case ( self , UpperCAmelCase_ ): @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase_ ): with xopen(UpperCAmelCase_ , '''rb''' ) as f: lowerCAmelCase = f.read() return bytes_ lowerCAmelCase = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCAmelCase = pa.array( [os.path.basename(UpperCAmelCase_ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) lowerCAmelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase_ , self.pa_type )
708
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def UpperCAmelCase ( _snake_case ): lowerCAmelCase , lowerCAmelCase = analyze_text(_snake_case ) lowerCAmelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase = sum(single_char_strings.values() ) # one length string lowerCAmelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase = single_char_strings[ch] lowerCAmelCase = my_str / all_sum my_fir_sum += prob * math.loga(_snake_case ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string lowerCAmelCase = sum(two_char_strings.values() ) lowerCAmelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase = cha + cha if sequence in two_char_strings: lowerCAmelCase = two_char_strings[sequence] lowerCAmelCase = int(_snake_case ) / all_sum my_sec_sum += prob * math.loga(_snake_case ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def UpperCAmelCase ( _snake_case ): lowerCAmelCase = Counter() # type: ignore lowerCAmelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_snake_case ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def UpperCAmelCase ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
33
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ : """simple docstring""" def __init__(self: Optional[int] , __UpperCAmelCase: int , __UpperCAmelCase: List[Any]=13 , __UpperCAmelCase: Any=30 , __UpperCAmelCase: List[str]=2 , __UpperCAmelCase: Optional[int]=3 , __UpperCAmelCase: Tuple=True , __UpperCAmelCase: str=True , __UpperCAmelCase: int=32 , __UpperCAmelCase: Tuple=5 , __UpperCAmelCase: Optional[Any]=4 , __UpperCAmelCase: Dict=37 , __UpperCAmelCase: List[Any]="gelu" , __UpperCAmelCase: List[Any]=0.1 , __UpperCAmelCase: Any=0.1 , __UpperCAmelCase: Optional[Any]=10 , __UpperCAmelCase: str=0.02 , __UpperCAmelCase: Any=3 , __UpperCAmelCase: Tuple=0.6 , __UpperCAmelCase: str=None , ) -> List[Any]: '''simple docstring''' __a : int = parent __a : Any = batch_size __a : int = image_size __a : Tuple = patch_size __a : str = num_channels __a : List[Any] = is_training __a : Tuple = use_labels __a : str = hidden_size __a : List[Any] = num_hidden_layers __a : str = num_attention_heads __a : Any = intermediate_size __a : str = hidden_act __a : Union[str, Any] = hidden_dropout_prob __a : Optional[int] = attention_probs_dropout_prob __a : Tuple = type_sequence_label_size __a : Any = initializer_range __a : Dict = mask_ratio __a : Union[str, Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __a : Any = (image_size // patch_size) ** 2 __a : Optional[int] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase__ (self: Any ) -> str: '''simple docstring''' __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Optional[Any] = None if self.use_labels: __a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ (self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase__ (self: List[Any] , __UpperCAmelCase: str , __UpperCAmelCase: Tuple , __UpperCAmelCase: List[str] ) -> List[str]: '''simple docstring''' __a : str = ViTMAEModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __a : int = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self: Tuple , __UpperCAmelCase: Dict , __UpperCAmelCase: Tuple , __UpperCAmelCase: Dict ) -> Dict: '''simple docstring''' __a : Optional[Any] = ViTMAEForPreTraining(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __a : List[str] = model(__UpperCAmelCase ) __a : Union[str, Any] = (self.image_size // self.patch_size) ** 2 __a : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __a : Optional[Any] = 1 __a : int = ViTMAEForPreTraining(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __a : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a : Optional[int] = model(__UpperCAmelCase ) __a : List[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase__ (self: Optional[int] ) -> Optional[Any]: '''simple docstring''' __a : List[Any] = self.prepare_config_and_inputs() __a , __a , __a : Dict = config_and_inputs __a : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () snake_case__ = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def UpperCAmelCase__ (self: int ) -> Dict: '''simple docstring''' __a : List[str] = ViTMAEModelTester(self ) __a : str = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase__ (self: Tuple ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def UpperCAmelCase__ (self: str ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ (self: Dict ) -> str: '''simple docstring''' __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Tuple = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase__ (self: Dict ) -> Tuple: '''simple docstring''' __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(__UpperCAmelCase ) __a : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[Any] = [*signature.parameters.keys()] __a : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase__ (self: Any ) -> Optional[int]: '''simple docstring''' __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase__ (self: List[str] ) -> Tuple: '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) def UpperCAmelCase__ (self: Dict , __UpperCAmelCase: int , __UpperCAmelCase: Dict , __UpperCAmelCase: str ) -> Dict: '''simple docstring''' np.random.seed(2 ) __a : Union[str, Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __a : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __a : Tuple = torch.from_numpy(__UpperCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __a : Union[str, Any] = pt_noise super().check_pt_tf_models(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__ (self: str ) -> Dict: '''simple docstring''' __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Union[str, Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __a : Any = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __a : Dict = outputs[0].cpu().numpy() __a : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) __a : Any = model_class.from_pretrained(__UpperCAmelCase ) model.to(__UpperCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __a : Optional[int] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) # Make sure we don't have nans __a : Dict = after_outputs[0].cpu().numpy() __a : str = 0 __a : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCAmelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase__ (self: Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase__ (self: Optional[int] ) -> Dict: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase__ (self: Optional[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def UpperCAmelCase__ (self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCAmelCase__ (self: List[str] ) -> List[Any]: '''simple docstring''' pass @slow def UpperCAmelCase__ (self: Tuple ) -> int: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Tuple = ViTMAEModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def a_ () -> Optional[Any]: """simple docstring""" __a : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ (self: Optional[int] ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def UpperCAmelCase__ (self: str ) -> Union[str, Any]: '''simple docstring''' np.random.seed(2 ) __a : int = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__UpperCAmelCase ) __a : Dict = self.default_image_processor __a : List[str] = prepare_img() __a : Tuple = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __a : Optional[Any] = ViTMAEConfig() __a : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __a : int = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __a : Union[str, Any] = model(**__UpperCAmelCase , noise=torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ) ) # verify the logits __a : Optional[Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __a : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCAmelCase ) , atol=1E-4 ) )
351
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ : """simple docstring""" def __init__(self: Optional[int] , __UpperCAmelCase: int , __UpperCAmelCase: List[Any]=13 , __UpperCAmelCase: Any=30 , __UpperCAmelCase: List[str]=2 , __UpperCAmelCase: Optional[int]=3 , __UpperCAmelCase: Tuple=True , __UpperCAmelCase: str=True , __UpperCAmelCase: int=32 , __UpperCAmelCase: Tuple=5 , __UpperCAmelCase: Optional[Any]=4 , __UpperCAmelCase: Dict=37 , __UpperCAmelCase: List[Any]="gelu" , __UpperCAmelCase: List[Any]=0.1 , __UpperCAmelCase: Any=0.1 , __UpperCAmelCase: Optional[Any]=10 , __UpperCAmelCase: str=0.02 , __UpperCAmelCase: Any=3 , __UpperCAmelCase: Tuple=0.6 , __UpperCAmelCase: str=None , ) -> List[Any]: '''simple docstring''' __a : int = parent __a : Any = batch_size __a : int = image_size __a : Tuple = patch_size __a : str = num_channels __a : List[Any] = is_training __a : Tuple = use_labels __a : str = hidden_size __a : List[Any] = num_hidden_layers __a : str = num_attention_heads __a : Any = intermediate_size __a : str = hidden_act __a : Union[str, Any] = hidden_dropout_prob __a : Optional[int] = attention_probs_dropout_prob __a : Tuple = type_sequence_label_size __a : Any = initializer_range __a : Dict = mask_ratio __a : Union[str, Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __a : Any = (image_size // patch_size) ** 2 __a : Optional[int] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase__ (self: Any ) -> str: '''simple docstring''' __a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Optional[Any] = None if self.use_labels: __a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ (self: Union[str, Any] ) -> Optional[int]: '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase__ (self: List[Any] , __UpperCAmelCase: str , __UpperCAmelCase: Tuple , __UpperCAmelCase: List[str] ) -> List[str]: '''simple docstring''' __a : str = ViTMAEModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __a : int = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self: Tuple , __UpperCAmelCase: Dict , __UpperCAmelCase: Tuple , __UpperCAmelCase: Dict ) -> Dict: '''simple docstring''' __a : Optional[Any] = ViTMAEForPreTraining(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __a : List[str] = model(__UpperCAmelCase ) __a : Union[str, Any] = (self.image_size // self.patch_size) ** 2 __a : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __a : Optional[Any] = 1 __a : int = ViTMAEForPreTraining(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __a : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a : Optional[int] = model(__UpperCAmelCase ) __a : List[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase__ (self: Optional[int] ) -> Optional[Any]: '''simple docstring''' __a : List[Any] = self.prepare_config_and_inputs() __a , __a , __a : Dict = config_and_inputs __a : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () snake_case__ = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def UpperCAmelCase__ (self: int ) -> Dict: '''simple docstring''' __a : List[str] = ViTMAEModelTester(self ) __a : str = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase__ (self: Tuple ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def UpperCAmelCase__ (self: str ) -> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase__ (self: Dict ) -> str: '''simple docstring''' __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Tuple = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase__ (self: Dict ) -> Tuple: '''simple docstring''' __a , __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(__UpperCAmelCase ) __a : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[Any] = [*signature.parameters.keys()] __a : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase__ (self: Any ) -> Optional[int]: '''simple docstring''' __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase__ (self: List[str] ) -> Tuple: '''simple docstring''' __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) def UpperCAmelCase__ (self: Dict , __UpperCAmelCase: int , __UpperCAmelCase: Dict , __UpperCAmelCase: str ) -> Dict: '''simple docstring''' np.random.seed(2 ) __a : Union[str, Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __a : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __a : Tuple = torch.from_numpy(__UpperCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __a : Union[str, Any] = pt_noise super().check_pt_tf_models(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__ (self: str ) -> Dict: '''simple docstring''' __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Union[str, Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __a : Any = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __a : Dict = outputs[0].cpu().numpy() __a : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) __a : Any = model_class.from_pretrained(__UpperCAmelCase ) model.to(__UpperCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __a : Optional[int] = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) # Make sure we don't have nans __a : Dict = after_outputs[0].cpu().numpy() __a : str = 0 __a : str = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCAmelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase__ (self: Union[str, Any] ) -> Any: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase__ (self: Optional[int] ) -> Dict: '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCAmelCase__ (self: Optional[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def UpperCAmelCase__ (self: Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCAmelCase__ (self: List[str] ) -> List[Any]: '''simple docstring''' pass @slow def UpperCAmelCase__ (self: Tuple ) -> int: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Tuple = ViTMAEModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def a_ () -> Optional[Any]: """simple docstring""" __a : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ (self: Optional[int] ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def UpperCAmelCase__ (self: str ) -> Union[str, Any]: '''simple docstring''' np.random.seed(2 ) __a : int = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__UpperCAmelCase ) __a : Dict = self.default_image_processor __a : List[str] = prepare_img() __a : Tuple = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __a : Optional[Any] = ViTMAEConfig() __a : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __a : int = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __a : Union[str, Any] = model(**__UpperCAmelCase , noise=torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ) ) # verify the logits __a : Optional[Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __a : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCAmelCase ) , atol=1E-4 ) )
351
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
516
from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) def A__ ( *__A : Optional[int] , **__A : Union[str, Any] ) ->Dict: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : str , **__A : int ) ->List[Any]: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : Dict , **__A : str ) ->Tuple: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : Optional[Any] , **__A : Dict ) ->Optional[Any]: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : str , **__A : str ) ->Any: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : List[Any] , **__A : Dict ) ->Union[str, Any]: requires_backends(__A , ['''torch'''] ) def A__ ( *__A : Optional[int] , **__A : Optional[int] ) ->Any: requires_backends(__A , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) class lowerCAmelCase__ ( metaclass=__magic_name__ ): '''simple docstring''' lowercase_ = ["""torch"""] def __init__( self , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def __UpperCamelCase ( cls , *lowercase__ , **lowercase__ ): '''simple docstring''' requires_backends(cls , ['''torch'''] )
516
1
from math import pow, sqrt def SCREAMING_SNAKE_CASE ( *_UpperCAmelCase ) -> bool: _a = len(_UpperCAmelCase ) > 0 and all(value > 0.0 for value in values ) return result def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_UpperCAmelCase , _UpperCAmelCase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
562
lowercase_ = 9.80665 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = g ) -> float: if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
562
1
'''simple docstring''' A_ : Dict ={'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} A_ : List[Any] =['''a''', '''b''', '''c''', '''d''', '''e'''] def snake_case_ ( __snake_case : int , __snake_case : Optional[Any] , __snake_case : str) -> List[str]: lowerCAmelCase_ = start # add current to visited visited.append(__snake_case) lowerCAmelCase_ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCAmelCase_ = topological_sort(__snake_case , __snake_case , __snake_case) # if all neighbors visited add current to sort sort.append(__snake_case) # if all vertices haven't been visited select a new one to visit if len(__snake_case) != len(__snake_case): for vertice in vertices: if vertice not in visited: lowerCAmelCase_ = topological_sort(__snake_case , __snake_case , __snake_case) # return sort return sort if __name__ == "__main__": A_ : str =topological_sort('''a''', [], []) print(sort)
606
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu A_ : Tuple =[ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def snake_case_ ( __snake_case : List[Any] , __snake_case : List[Any]=None , __snake_case : Dict=None , __snake_case : Dict=None) -> Dict: lowerCAmelCase_ = True while ask_again: lowerCAmelCase_ = input(__snake_case) try: if default is not None and len(__snake_case) == 0: return default return convert_value(__snake_case) if convert_value is not None else result except Exception: if error_message is not None: print(__snake_case) def snake_case_ ( __snake_case : Union[str, Any] , __snake_case : int=[] , __snake_case : Any=None , __snake_case : List[str]=0) -> str: lowerCAmelCase_ = BulletMenu(__snake_case , __snake_case) lowerCAmelCase_ = menu.run(default_choice=__snake_case) return convert_value(__snake_case) if convert_value is not None else result def snake_case_ ( __snake_case : Tuple) -> Any: lowerCAmelCase_ = int(__snake_case) return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value]) def snake_case_ ( __snake_case : List[str]) -> Union[str, Any]: lowerCAmelCase_ = int(__snake_case) return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value]) def snake_case_ ( __snake_case : Tuple) -> int: lowerCAmelCase_ = int(__snake_case) return DynamoBackend(DYNAMO_BACKENDS[value]).value def snake_case_ ( __snake_case : Optional[int]) -> str: lowerCAmelCase_ = int(__snake_case) return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value]) def snake_case_ ( __snake_case : int) -> Optional[Any]: lowerCAmelCase_ = int(__snake_case) return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value]) def snake_case_ ( __snake_case : List[str]) -> Optional[Any]: return {"yes": True, "no": False}[value.lower()] class __UpperCAmelCase ( argparse.RawDescriptionHelpFormatter ): def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = super()._format_usage(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = usage.replace('''<command> [<args>] ''' , '''''' ) return usage
606
1
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration UpperCAmelCase_ : Union[str, Any] = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(lowerCamelCase , lowerCamelCase ) UpperCAmelCase_ : Optional[Any] = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =list(s_dict.keys() ) for key in keys: __magic_name__ : Optional[Any] =key for k, v in WHISPER_MAPPING.items(): if k in key: __magic_name__ : Tuple =new_key.replace(lowerCamelCase , lowerCamelCase ) print(F"{key} -> {new_key}" ) __magic_name__ : int =s_dict.pop(lowerCamelCase ) return s_dict def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ , __magic_name__ : Optional[Any] =emb.weight.shape __magic_name__ : Optional[Any] =nn.Linear(lowerCamelCase , lowerCamelCase , bias=lowerCamelCase ) __magic_name__ : Any =emb.weight.data return lin_layer def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) __magic_name__ : str =os.path.basename(lowerCamelCase ) __magic_name__ : Any =url.split("""/""" )[-2] __magic_name__ : int =os.path.join(lowerCamelCase , lowerCamelCase ) if os.path.exists(lowerCamelCase ) and not os.path.isfile(lowerCamelCase ): raise RuntimeError(F"{download_target} exists and is not a regular file" ) if os.path.isfile(lowerCamelCase ): __magic_name__ : Any =open(lowerCamelCase , """rb""" ).read() if hashlib.shaaaa(lowerCamelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(lowerCamelCase ) as source, open(lowerCamelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=lowerCamelCase , unit_divisor=1024 ) as loop: while True: __magic_name__ : List[str] =source.read(8192 ) if not buffer: break output.write(lowerCamelCase ) loop.update(len(lowerCamelCase ) ) __magic_name__ : Optional[int] =open(lowerCamelCase , """rb""" ).read() if hashlib.shaaaa(lowerCamelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): if ".pt" not in checkpoint_path: __magic_name__ : int =_download(_MODELS[checkpoint_path] ) else: __magic_name__ : Tuple =torch.load(lowerCamelCase , map_location="""cpu""" ) __magic_name__ : Dict =original_checkpoint["""dims"""] __magic_name__ : List[Any] =original_checkpoint["""model_state_dict"""] __magic_name__ : Dict =state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(lowerCamelCase ) rename_keys(lowerCamelCase ) __magic_name__ : Optional[Any] =True __magic_name__ : Dict =state_dict["""decoder.layers.0.fc1.weight"""].shape[0] __magic_name__ : Dict =WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=lowerCamelCase , decoder_ffn_dim=lowerCamelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) __magic_name__ : Tuple =WhisperForConditionalGeneration(lowerCamelCase ) __magic_name__ , __magic_name__ : Union[str, Any] =model.model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) if len(lowerCamelCase ) > 0 and not set(lowerCamelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F" but all the following weights are missing {missing}" ) if tie_embeds: __magic_name__ : List[Any] =make_linear_from_emb(model.model.decoder.embed_tokens ) else: __magic_name__ : Optional[Any] =proj_out_weights model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase_ : Dict = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
21
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a ( lowercase , unittest.TestCase ): UpperCamelCase : Any = KandinskyImgaImgPipeline UpperCamelCase : int = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] UpperCamelCase : Optional[Any] = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] UpperCamelCase : Union[str, Any] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase : List[str] = False @property def __snake_case ( self ): return 32 @property def __snake_case ( self ): return 32 @property def __snake_case ( self ): return self.time_input_dim @property def __snake_case ( self ): return self.time_input_dim * 4 @property def __snake_case ( self ): return 100 @property def __snake_case ( self ): UpperCAmelCase__ : str = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) UpperCAmelCase__ : Tuple = MultilingualCLIP(UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = text_encoder.eval() return text_encoder @property def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } UpperCAmelCase__ : Optional[Any] = UNetaDConditionModel(**UpperCamelCase_ ) return model @property def __snake_case ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __snake_case ( self ): torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __snake_case ( self ): UpperCAmelCase__ : Union[str, Any] = self.dummy_text_encoder UpperCAmelCase__ : int = self.dummy_tokenizer UpperCAmelCase__ : int = self.dummy_unet UpperCAmelCase__ : Optional[Any] = self.dummy_movq UpperCAmelCase__ : Any = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.00085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } UpperCAmelCase__ : List[Any] = DDIMScheduler(**UpperCamelCase_ ) UpperCAmelCase__ : Tuple = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_=0 ): UpperCAmelCase__ : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase_ ) # create init_image UpperCAmelCase__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) UpperCAmelCase__ : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Union[str, Any] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((256, 256) ) if str(UpperCamelCase_ ).startswith('mps' ): UpperCAmelCase__ : Dict = torch.manual_seed(UpperCamelCase_ ) else: UpperCAmelCase__ : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __snake_case ( self ): UpperCAmelCase__ : Optional[int] = 'cpu' UpperCAmelCase__ : Any = self.get_dummy_components() UpperCAmelCase__ : Any = self.pipeline_class(**UpperCamelCase_ ) UpperCAmelCase__ : Tuple = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) UpperCAmelCase__ : Optional[int] = output.images UpperCAmelCase__ : Dict = pipe( **self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0] UpperCAmelCase__ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : Any = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a ( unittest.TestCase ): def __snake_case ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ): UpperCAmelCase__ : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) UpperCAmelCase__ : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) UpperCAmelCase__ : Any = 'A red cartoon frog, 4k' UpperCAmelCase__ : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase_ ) UpperCAmelCase__ : Any = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) UpperCAmelCase__ : Optional[Any] = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCAmelCase__ : List[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = pipe_prior( UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() UpperCAmelCase__ : Optional[Any] = pipeline( UpperCamelCase_ , image=UpperCamelCase_ , image_embeds=UpperCamelCase_ , negative_image_embeds=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) UpperCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
110
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__: Union[str, Any] = { 'configuration_mobilenet_v2': [ 'MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileNetV2Config', 'MobileNetV2OnnxConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Union[str, Any] = ['MobileNetV2FeatureExtractor'] a__: List[Any] = ['MobileNetV2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: List[Any] = [ 'MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileNetV2ForImageClassification', 'MobileNetV2ForSemanticSegmentation', 'MobileNetV2Model', 'MobileNetV2PreTrainedModel', 'load_tf_weights_in_mobilenet_v2', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys a__: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
212
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__: int = '▁' a__: List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = BertGenerationTokenizer __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True def UpperCamelCase ( self ): super().setUp() A__ = BertGenerationTokenizer(__lowerCamelCase,keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self ): A__ = '''<s>''' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ),__lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ),__lowerCamelCase ) def UpperCamelCase ( self ): A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'''<unk>''' ) self.assertEqual(vocab_keys[1],'''<s>''' ) self.assertEqual(vocab_keys[-1],'''<pad>''' ) self.assertEqual(len(__lowerCamelCase ),1002 ) def UpperCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size,1000 ) def UpperCamelCase ( self ): A__ = BertGenerationTokenizer(__lowerCamelCase,keep_accents=__lowerCamelCase ) A__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCamelCase,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ),[285, 46, 10, 170, 382],) A__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCamelCase,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ],) A__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],) A__ = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ],) @cached_property def UpperCamelCase ( self ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def UpperCamelCase ( self ): A__ = '''Hello World!''' A__ = [1_8536, 2260, 101] self.assertListEqual(__lowerCamelCase,self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def UpperCamelCase ( self ): A__ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) A__ = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(__lowerCamelCase,self.big_tokenizer.encode(__lowerCamelCase ) ) @require_torch @slow def UpperCamelCase ( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:10] A__ = ''' '''.join(__lowerCamelCase ) A__ = self.big_tokenizer.encode_plus(__lowerCamelCase,return_tensors='''pt''',return_token_type_ids=__lowerCamelCase ) A__ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence],return_tensors='''pt''',return_token_type_ids=__lowerCamelCase ) A__ = BertGenerationConfig() A__ = BertGenerationEncoder(__lowerCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowerCamelCase ) model(**__lowerCamelCase ) @slow def UpperCamelCase ( self ): # fmt: off A__ = {'''input_ids''': [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase,model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''',revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''',)
212
1
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' if not arr: return None, None, 0 if low == high: return low, high, arr[low] snake_case_ = (low + high) // 2 snake_case_ , snake_case_ , snake_case_ = max_subarray(_A , _A , _A ) snake_case_ , snake_case_ , snake_case_ = max_subarray(_A , mid + 1 , _A ) snake_case_ , snake_case_ , snake_case_ = max_cross_sum(_A , _A , _A , _A ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ , snake_case_ = float("-inf" ), -1 snake_case_ , snake_case_ = float("-inf" ), -1 snake_case_ = 0 for i in range(_A , low - 1 , -1 ): summ += arr[i] if summ > left_sum: snake_case_ = summ snake_case_ = i snake_case_ = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: snake_case_ = summ snake_case_ = i return max_left, max_right, (left_sum + right_sum) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = [randint(1 , _A ) for _ in range(_A )] snake_case_ = time.time() max_subarray(_A , 0 , input_size - 1 ) snake_case_ = time.time() return end - start def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] snake_case_ = [time_max_subarray(_A ) for input_size in input_sizes] print("No of Inputs\t\tTime Taken" ) for input_size, runtime in zip(_A , _A ): print(_A , "\t\t" , _A ) plt.plot(_A , _A ) plt.xlabel("Number of Inputs" ) plt.ylabel("Time taken in seconds" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
376
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : Tuple , __lowercase : int , __lowercase : int , __lowercase : int , __lowercase : float , __lowercase : int , __lowercase : int , __lowercase : int , __lowercase : int , __lowercase : str , __lowercase : bool = False , ): """simple docstring""" super().__init__() snake_case_ = nn.Embedding(__lowercase , __lowercase ) snake_case_ = nn.Embedding(__lowercase , __lowercase ) snake_case_ = False snake_case_ = nn.Dropout(p=__lowercase ) snake_case_ = TaConfig( vocab_size=__lowercase , d_model=__lowercase , num_heads=__lowercase , d_kv=__lowercase , d_ff=__lowercase , dropout_rate=__lowercase , feed_forward_proj=__lowercase , is_decoder=__lowercase , is_encoder_decoder=__lowercase , ) snake_case_ = nn.ModuleList() for lyr_num in range(__lowercase ): snake_case_ = TaBlock(__lowercase ) self.encoders.append(__lowercase ) snake_case_ = TaLayerNorm(__lowercase ) snake_case_ = nn.Dropout(p=__lowercase ) def snake_case__ ( self : str , __lowercase : Dict , __lowercase : str ): """simple docstring""" snake_case_ = self.token_embedder(__lowercase ) snake_case_ = encoder_input_tokens.shape[1] snake_case_ = torch.arange(__lowercase , device=encoder_input_tokens.device ) x += self.position_encoding(__lowercase ) snake_case_ = self.dropout_pre(__lowercase ) # inverted the attention mask snake_case_ = encoder_input_tokens.size() snake_case_ = self.get_extended_attention_mask(__lowercase , __lowercase ) for lyr in self.encoders: snake_case_ = lyr(__lowercase , __lowercase )[0] snake_case_ = self.layer_norm(__lowercase ) return self.dropout_post(__lowercase ), encoder_inputs_mask
376
1
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( __lowerCamelCase,unittest.TestCase ): # TODO: is there an appropriate internal test set? _lowercase : List[Any] = 'ssube/stable-diffusion-x4-upscaler-onnx' def UpperCamelCase ( self : List[Any] , lowerCamelCase__ : List[str]=0 ) -> Optional[Any]: """simple docstring""" A_ = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(lowerCamelCase__ ) ) A_ = torch.manual_seed(lowerCamelCase__ ) A_ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCamelCase ( self : str ) -> Dict: """simple docstring""" A_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**lowerCamelCase__ ).images A_ = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 5_1_2, 5_1_2, 3) A_ = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def UpperCamelCase ( self : Any ) -> int: """simple docstring""" A_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) A_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**lowerCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A_ = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" A_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) A_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**lowerCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A_ = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" A_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) A_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**lowerCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A_ = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" A_ = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) A_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A_ = self.get_dummy_inputs() A_ = pipe(**lowerCamelCase__ ).images A_ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) A_ = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): @property def UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" A_ = ort.SessionOptions() A_ = False return options def UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" A_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) A_ = init_image.resize((1_2_8, 1_2_8) ) # using the PNDM scheduler by default A_ = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A_ = '''A fantasy landscape, trending on artstation''' A_ = torch.manual_seed(0 ) A_ = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowerCamelCase__ , output_type='''np''' , ) A_ = output.images A_ = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) A_ = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" A_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) A_ = init_image.resize((1_2_8, 1_2_8) ) A_ = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) A_ = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) A_ = '''A fantasy landscape, trending on artstation''' A_ = torch.manual_seed(0 ) A_ = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=lowerCamelCase__ , output_type='''np''' , ) A_ = output.images A_ = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) A_ = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
719
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _lowercase : def __init__( self : Dict , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : str=1_3 , lowerCamelCase__ : Any=7 , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Optional[Any]=True , lowerCamelCase__ : List[str]=9_9 , lowerCamelCase__ : Optional[Any]=[1, 1, 2] , lowerCamelCase__ : Optional[Any]=1 , lowerCamelCase__ : Union[str, Any]=3_2 , lowerCamelCase__ : int=4 , lowerCamelCase__ : Optional[int]=8 , lowerCamelCase__ : Union[str, Any]=3_7 , lowerCamelCase__ : List[Any]="gelu_new" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[Any]=0.0 , lowerCamelCase__ : List[Any]=5_1_2 , lowerCamelCase__ : Optional[int]=3 , lowerCamelCase__ : List[Any]=0.02 , lowerCamelCase__ : str=3 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : List[Any]=False , ) -> Union[str, Any]: """simple docstring""" A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = block_sizes A_ = num_decoder_layers A_ = d_model A_ = n_head A_ = d_head A_ = d_inner A_ = hidden_act A_ = hidden_dropout A_ = attention_dropout A_ = activation_dropout A_ = max_position_embeddings A_ = type_vocab_size A_ = 2 A_ = num_labels A_ = num_choices A_ = scope A_ = initializer_std # Used in the tests to check the size of the first attention layer A_ = n_head # Used in the tests to check the size of the first hidden state A_ = self.d_model # Used in the tests to check the number of output hidden states/attentions A_ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: A_ = self.num_hidden_layers + 2 def UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , ) -> List[Any]: """simple docstring""" A_ = TFFunnelModel(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) A_ = [input_ids, input_mask] A_ = model(lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) A_ = False A_ = TFFunnelModel(config=lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) A_ = False A_ = TFFunnelModel(config=lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def UpperCamelCase ( self : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple , ) -> Tuple: """simple docstring""" A_ = TFFunnelBaseModel(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) A_ = [input_ids, input_mask] A_ = model(lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) A_ = False A_ = TFFunnelBaseModel(config=lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) A_ = False A_ = TFFunnelBaseModel(config=lowerCamelCase__ ) A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] , ) -> List[str]: """simple docstring""" A_ = TFFunnelForPreTraining(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : List[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict , ) -> List[str]: """simple docstring""" A_ = TFFunnelForMaskedLM(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Tuple , ) -> Union[str, Any]: """simple docstring""" A_ = self.num_labels A_ = TFFunnelForSequenceClassification(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Dict , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , ) -> Optional[Any]: """simple docstring""" A_ = self.num_choices A_ = TFFunnelForMultipleChoice(config=lowerCamelCase__ ) A_ = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) A_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , ) -> Union[str, Any]: """simple docstring""" A_ = self.num_labels A_ = TFFunnelForTokenClassification(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self : Any , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : str , ) -> str: """simple docstring""" A_ = TFFunnelForQuestionAnswering(config=lowerCamelCase__ ) A_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A_ = model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self : Dict ) -> str: """simple docstring""" A_ = self.prepare_config_and_inputs() ( ( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) ,( A_ ) , ) = config_and_inputs A_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _lowercase ( __lowerCamelCase,__lowerCamelCase,unittest.TestCase ): _lowercase : Optional[Any] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _lowercase : List[Any] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _lowercase : Dict = False _lowercase : Optional[int] = False def UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" A_ = TFFunnelModelTester(self ) A_ = ConfigTester(self , config_class=lowerCamelCase__ ) def UpperCamelCase ( self : int ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) def UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> Any: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) def UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) @require_tf class _lowercase ( __lowerCamelCase,unittest.TestCase ): _lowercase : Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _lowercase : str = False _lowercase : Any = False def UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" A_ = TFFunnelModelTester(self , base=lowerCamelCase__ ) A_ = ConfigTester(self , config_class=lowerCamelCase__ ) def UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCamelCase__ ) def UpperCamelCase ( self : str ) -> Dict: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase__ )
563
0
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =(EulerDiscreteScheduler,) _lowerCamelCase =10 def __snake_case ( self : str , **a__ : Tuple ): UpperCAmelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**a__ ) return config def __snake_case ( self : Dict ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a__ ) def __snake_case ( self : Optional[int] ): for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=a__ , beta_end=a__ ) def __snake_case ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=a__ ) def __snake_case ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a__ ) def __snake_case ( self : Tuple ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase = sample.to(a__ ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2_6_7_6e-0_6 ) < 1e-3 def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**a__ , use_karras_sigmas=a__ ) scheduler.set_timesteps(self.num_inference_steps , device=a__ ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase = sample.to(a__ ) for t in scheduler.timesteps: UpperCAmelCase = scheduler.scale_model_input(a__ , a__ ) UpperCAmelCase = model(a__ , a__ ) UpperCAmelCase = scheduler.step(a__ , a__ , a__ , generator=a__ ) UpperCAmelCase = output.prev_sample UpperCAmelCase = torch.sum(torch.abs(a__ ) ) UpperCAmelCase = torch.mean(torch.abs(a__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
51
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor a__ : int = logging.get_logger(__name__) class __snake_case ( __magic_name__ ): def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
368
0
def __lowerCamelCase ( __a :int , __a :int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) A__ = str(bin(__a ) ) binary_number += "0" * shift_amount return binary_number def __lowerCamelCase ( __a :int , __a :int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) A__ = str(bin(__a ) )[2:] if shift_amount >= len(__a ): return "0b0" A__ = binary_number[: len(__a ) - shift_amount] return "0b" + shifted_binary_number def __lowerCamelCase ( __a :int , __a :int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number A__ = """0""" + str(bin(__a ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number A__ = len(bin(__a )[3:] ) # Find 2's complement of number A__ = bin(abs(__a ) - (1 << binary_number_length) )[3:] A__ = ( """1""" + """0""" * (binary_number_length - len(__a )) + binary_number ) if shift_amount >= len(__a ): return "0b" + binary_number[0] * len(__a ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(__a ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
720
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Union[str, Any] = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
247
0
'''simple docstring''' A_ : List[str] =[ 9_99, 8_00, 7_99, 6_00, 5_99, 5_00, 4_00, 3_99, 3_77, 3_55, 3_33, 3_11, 2_88, 2_66, 2_44, 2_22, 2_00, 1_99, 1_77, 1_55, 1_33, 1_11, 88, 66, 44, 22, 0, ] A_ : Optional[Any] =[ 9_99, 9_76, 9_52, 9_28, 9_05, 8_82, 8_58, 8_57, 8_10, 7_62, 7_15, 7_14, 5_72, 4_29, 4_28, 2_86, 2_85, 2_38, 1_90, 1_43, 1_42, 1_18, 95, 71, 47, 24, 0, ] A_ : List[str] =[ 9_99, 9_88, 9_77, 9_66, 9_55, 9_44, 9_33, 9_22, 9_11, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_50, 3_00, 2_99, 2_66, 2_33, 2_00, 1_99, 1_79, 1_59, 1_40, 1_20, 1_00, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] A_ : Union[str, Any] =[ 9_99, 9_95, 9_92, 9_89, 9_85, 9_81, 9_78, 9_75, 9_71, 9_67, 9_64, 9_61, 9_57, 9_56, 9_51, 9_47, 9_42, 9_37, 9_33, 9_28, 9_23, 9_19, 9_14, 9_13, 9_08, 9_03, 8_97, 8_92, 8_87, 8_81, 8_76, 8_71, 8_70, 8_64, 8_58, 8_52, 8_46, 8_40, 8_34, 8_28, 8_27, 8_20, 8_13, 8_06, 7_99, 7_92, 7_85, 7_84, 7_77, 7_70, 7_63, 7_56, 7_49, 7_42, 7_41, 7_33, 7_24, 7_16, 7_07, 6_99, 6_98, 6_88, 6_77, 6_66, 6_56, 6_55, 6_45, 6_34, 6_23, 6_13, 6_12, 5_98, 5_84, 5_70, 5_69, 5_55, 5_41, 5_27, 5_26, 5_05, 4_84, 4_83, 4_62, 4_40, 4_39, 3_96, 3_95, 3_52, 3_51, 3_08, 3_07, 2_64, 2_63, 2_20, 2_19, 1_76, 1_32, 88, 44, 0, ] A_ : Optional[int] =[ 9_99, 9_97, 9_95, 9_92, 9_90, 9_88, 9_86, 9_84, 9_81, 9_79, 9_77, 9_75, 9_72, 9_70, 9_68, 9_66, 9_64, 9_61, 9_59, 9_57, 9_56, 9_54, 9_51, 9_49, 9_46, 9_44, 9_41, 9_39, 9_36, 9_34, 9_31, 9_29, 9_26, 9_24, 9_21, 9_19, 9_16, 9_14, 9_13, 9_10, 9_07, 9_05, 9_02, 8_99, 8_96, 8_93, 8_91, 8_88, 8_85, 8_82, 8_79, 8_77, 8_74, 8_71, 8_70, 8_67, 8_64, 8_61, 8_58, 8_55, 8_52, 8_49, 8_46, 8_43, 8_40, 8_37, 8_34, 8_31, 8_28, 8_27, 8_24, 8_21, 8_17, 8_14, 8_11, 8_08, 8_04, 8_01, 7_98, 7_95, 7_91, 7_88, 7_85, 7_84, 7_80, 7_77, 7_74, 7_70, 7_66, 7_63, 7_60, 7_56, 7_52, 7_49, 7_46, 7_42, 7_41, 7_37, 7_33, 7_30, 7_26, 7_22, 7_18, 7_14, 7_10, 7_07, 7_03, 6_99, 6_98, 6_94, 6_90, 6_85, 6_81, 6_77, 6_73, 6_69, 6_64, 6_60, 6_56, 6_55, 6_50, 6_46, 6_41, 6_36, 6_32, 6_27, 6_22, 6_18, 6_13, 6_12, 6_07, 6_02, 5_96, 5_91, 5_86, 5_80, 5_75, 5_70, 5_69, 5_63, 5_57, 5_51, 5_45, 5_39, 5_33, 5_27, 5_26, 5_19, 5_12, 5_05, 4_98, 4_91, 4_84, 4_83, 4_74, 4_66, 4_57, 4_49, 4_40, 4_39, 4_28, 4_18, 4_07, 3_96, 3_95, 3_81, 3_66, 3_52, 3_51, 3_30, 3_08, 3_07, 2_86, 2_64, 2_63, 2_42, 2_20, 2_19, 1_76, 1_75, 1_32, 1_31, 88, 44, 0, ] A_ : Optional[Any] =[ 9_99, 9_91, 9_82, 9_74, 9_66, 9_58, 9_50, 9_41, 9_33, 9_25, 9_16, 9_08, 9_00, 8_99, 8_74, 8_50, 8_25, 8_00, 7_99, 7_00, 6_00, 5_00, 4_00, 3_00, 2_00, 1_00, 0, ] A_ : int =[ 9_99, 9_92, 9_85, 9_78, 9_71, 9_64, 9_57, 9_49, 9_42, 9_35, 9_28, 9_21, 9_14, 9_07, 9_00, 8_99, 8_79, 8_59, 8_40, 8_20, 8_00, 7_99, 7_66, 7_33, 7_00, 6_99, 6_50, 6_00, 5_99, 5_00, 4_99, 4_00, 3_99, 3_00, 2_99, 2_00, 1_99, 1_00, 99, 0, ] A_ : str =[ 9_99, 9_96, 9_92, 9_89, 9_85, 9_82, 9_79, 9_75, 9_72, 9_68, 9_65, 9_61, 9_58, 9_55, 9_51, 9_48, 9_44, 9_41, 9_38, 9_34, 9_31, 9_27, 9_24, 9_20, 9_17, 9_14, 9_10, 9_07, 9_03, 9_00, 8_99, 8_91, 8_84, 8_76, 8_69, 8_61, 8_53, 8_46, 8_38, 8_30, 8_23, 8_15, 8_08, 8_00, 7_99, 7_88, 7_77, 7_66, 7_55, 7_44, 7_33, 7_22, 7_11, 7_00, 6_99, 6_88, 6_77, 6_66, 6_55, 6_44, 6_33, 6_22, 6_11, 6_00, 5_99, 5_85, 5_71, 5_57, 5_42, 5_28, 5_14, 5_00, 4_99, 4_85, 4_71, 4_57, 4_42, 4_28, 4_14, 4_00, 3_99, 3_79, 3_59, 3_40, 3_20, 3_00, 2_99, 2_79, 2_59, 2_40, 2_20, 2_00, 1_99, 1_66, 1_33, 1_00, 99, 66, 33, 0, ]
274
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : '''simple docstring''' @staticmethod def UpperCamelCase__ (*UpperCamelCase : Optional[Any] , **UpperCamelCase : Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCamelCase__ (self : int , UpperCamelCase : List[str] , UpperCamelCase : List[str] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowercase__ = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = object_detector(examples[0] , threshold=0.0 ) lowercase__ = len(UpperCamelCase ) self.assertGreater(UpperCamelCase , 0 ) self.assertEqual( UpperCamelCase , [ { '''score''': ANY(UpperCamelCase ), '''label''': ANY(UpperCamelCase ), '''box''': {'''xmin''': ANY(UpperCamelCase ), '''ymin''': ANY(UpperCamelCase ), '''xmax''': ANY(UpperCamelCase ), '''ymax''': ANY(UpperCamelCase )}, } for i in range(UpperCamelCase ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCamelCase__ (self : str ): '''simple docstring''' pass @require_torch def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowercase__ = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) lowercase__ = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = pipeline('''zero-shot-object-detection''' ) lowercase__ = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) lowercase__ = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def UpperCamelCase__ (self : int ): '''simple docstring''' pass @require_torch @slow def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ = 0.2 lowercase__ = pipeline('''zero-shot-object-detection''' ) lowercase__ = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = 2 lowercase__ = pipeline('''zero-shot-object-detection''' ) lowercase__ = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase , decimals=4 ) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
460
0
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger SCREAMING_SNAKE_CASE_: List[Any] ='<<<<<<< This should probably be modified because it mentions: ' SCREAMING_SNAKE_CASE_: List[Any] ='=======\n>>>>>>>\n' SCREAMING_SNAKE_CASE_: List[str] =[ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] SCREAMING_SNAKE_CASE_: Tuple =[ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def lowerCAmelCase_ ( snake_case_ : Namespace ) -> int: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class __A ( UpperCamelCase__ ): @staticmethod def _lowercase (__a : ArgumentParser ): UpperCAmelCase_ = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=__a , required=__a , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=__a , required=__a , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=__a ) def __init__(self : Dict , __a : str , __a : str , *__a : Union[str, Any] ): UpperCAmelCase_ = get_logger("datasets-cli/converting" ) UpperCAmelCase_ = tfds_path UpperCAmelCase_ = datasets_directory def _lowercase (self : Union[str, Any] ): if os.path.isdir(self._tfds_path ): UpperCAmelCase_ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCAmelCase_ = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) UpperCAmelCase_ = os.path.abspath(self._datasets_directory ) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {} if os.path.isdir(self._tfds_path ): UpperCAmelCase_ = os.listdir(__a ) else: UpperCAmelCase_ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""" ) UpperCAmelCase_ = os.path.join(__a , __a ) UpperCAmelCase_ = os.path.join(__a , __a ) if not os.path.isfile(__a ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(__a , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [] UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = [] for line in lines: UpperCAmelCase_ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase_ = "import datasets\n" elif "import tensorflow" in out_line: # order is important here UpperCAmelCase_ = "" continue elif "from absl import logging" in out_line: UpperCAmelCase_ = "from datasets import logging\n" elif "getLogger" in out_line: UpperCAmelCase_ = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCAmelCase_ = True UpperCAmelCase_ = list(filter(lambda __a : e in out_line , __a ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__a ) + "\n" ) out_lines.append(__a ) out_lines.append(__a ) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase_ = re.sub(__a , __a , __a ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase_ = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , __a ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) UpperCAmelCase_ = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase_ = True out_lines.append(__a ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase_ = f_name.replace(".py" , "" ) UpperCAmelCase_ = os.path.join(__a , __a ) UpperCAmelCase_ = os.path.join(__a , __a ) os.makedirs(__a , exist_ok=__a ) self._logger.info(f"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__a ) if needs_manual_update: with_manual_update.append(__a ) with open(__a , "w" , encoding="utf-8" ) as f: f.writelines(__a ) self._logger.info(f"""Converted in {output_file}""" ) for utils_file in utils_files: try: UpperCAmelCase_ = os.path.basename(__a ) UpperCAmelCase_ = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(f"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(__a , __a ) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
721
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_: Optional[Any] ={ 'configuration_bloom': ['BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BloomConfig', 'BloomOnnxConfig'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Any =['BloomTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[int] =[ 'BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST', 'BloomForCausalLM', 'BloomModel', 'BloomPreTrainedModel', 'BloomForSequenceClassification', 'BloomForTokenClassification', 'BloomForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: int =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
415
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _UpperCamelCase : Optional[int] =logging.get_logger(__name__) _UpperCamelCase : Optional[int] ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase : str ={ 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } _UpperCamelCase : Optional[Any] ={ 'google/realm-cc-news-pretrained-embedder': 512, 'google/realm-cc-news-pretrained-encoder': 512, 'google/realm-cc-news-pretrained-scorer': 512, 'google/realm-cc-news-pretrained-openqa': 512, 'google/realm-orqa-nq-openqa': 512, 'google/realm-orqa-nq-reader': 512, 'google/realm-orqa-wq-openqa': 512, 'google/realm-orqa-wq-reader': 512, } _UpperCamelCase : Optional[int] ={ 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class UpperCAmelCase__ ( __snake_case ): __snake_case : Any = VOCAB_FILES_NAMES __snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case : str = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Tuple = RealmTokenizer def __init__( self ,A__=None ,A__=None ,A__=True ,A__="[UNK]" ,A__="[SEP]" ,A__="[PAD]" ,A__="[CLS]" ,A__="[MASK]" ,A__=True ,A__=None ,**A__ ,): super().__init__( A__ ,tokenizer_file=A__ ,do_lower_case=A__ ,unk_token=A__ ,sep_token=A__ ,pad_token=A__ ,cls_token=A__ ,mask_token=A__ ,tokenize_chinese_chars=A__ ,strip_accents=A__ ,**A__ ,) _A : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,A__ ) != do_lower_case or normalizer_state.get('''strip_accents''' ,A__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,A__ ) != tokenize_chinese_chars ): _A : List[Any] = getattr(A__ ,normalizer_state.pop('''type''' ) ) _A : List[Any] = do_lower_case _A : Optional[int] = strip_accents _A : List[str] = tokenize_chinese_chars _A : str = normalizer_class(**A__ ) _A : List[Any] = do_lower_case def A__ ( self ,A__ ,**A__ ): _A : Optional[Any] = PaddingStrategy.MAX_LENGTH _A : Any = text _A : List[Any] = kwargs.pop('''text_pair''' ,A__ ) _A : Optional[Any] = kwargs.pop('''return_tensors''' ,A__ ) _A : Optional[int] = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(A__ ): if batch_text_pair is not None: _A : str = batch_text_pair[idx] else: _A : Any = None _A : Optional[Any] = super().__call__(A__ ,A__ ,return_tensors=A__ ,**A__ ) _A : List[str] = encoded_candidates.get('''input_ids''' ) _A : int = encoded_candidates.get('''attention_mask''' ) _A : Optional[Any] = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(A__ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(A__ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(A__ ) _A : str = {key: item for key, item in output_data.items() if len(A__ ) != 0} return BatchEncoding(A__ ,tensor_type=A__ ) def A__ ( self ,A__ ,A__=None ): _A : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self ,A__ ,A__ = None ): _A : Optional[Any] = [self.sep_token_id] _A : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self ,A__ ,A__ = None ): _A : Union[str, Any] = self._tokenizer.model.save(A__ ,name=A__ ) return tuple(A__ )
206
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging _UpperCamelCase : Optional[Any] =logging.get_logger(__name__) def a__ () -> Any: # Get the sagemaker specific mp parameters from smp_options variable. _A : Any = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. _A : Dict = json.loads(__lowercase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. _A : Optional[int] = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". _A : Any = json.loads(__lowercase ) if not mpi_options.get('''sagemaker_mpi_enabled''' , __lowercase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCAmelCase__ ( __snake_case ): __snake_case : str = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def A__ ( self ): super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' ,A__ ,) @cached_property def A__ ( self ): logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: _A : Union[str, Any] = torch.device('''cpu''' ) _A : List[str] = 0 elif is_sagemaker_model_parallel_available(): _A : Dict = smp.local_rank() _A : Union[str, Any] = torch.device('''cuda''' ,A__ ) _A : Tuple = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' ,timeout=self.ddp_timeout_delta ) _A : int = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) _A : int = torch.device('''cuda''' ,self.local_rank ) _A : Union[str, Any] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 _A : Dict = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. _A : Union[str, Any] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' ,timeout=self.ddp_timeout_delta ) _A : Union[str, Any] = torch.device('''cuda''' ,self.local_rank ) _A : List[Any] = 1 if device.type == "cuda": torch.cuda.set_device(A__ ) return device @property def A__ ( self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ): return not is_sagemaker_model_parallel_available() @property def A__ ( self ): return False
206
1
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') a_ = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) a_ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) a_ = BeautifulSoup(res.text, 'html.parser') a_ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"https://google.com{link.get('href')}")
523
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ ) -> Tuple: __lowercase : Union[str, Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __lowercase : List[str] = len(UpperCamelCase_ ) - 1 def _lowerCamelCase ( self , UpperCamelCase_ ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCamelCase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCamelCase_ ) , 5 ) == 1 return output_values def _lowerCamelCase ( self , UpperCamelCase_ ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __lowercase : Union[str, Any] = self.basis_function(UpperCamelCase_ ) __lowercase : Dict = 0.0 __lowercase : int = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _lowerCamelCase ( self , UpperCamelCase_ = 0.0_1 ) -> Optional[int]: from matplotlib import pyplot as plt # type: ignore __lowercase : list[float] = [] # x coordinates of points to plot __lowercase : list[float] = [] # y coordinates of points to plot __lowercase : str = 0.0 while t <= 1: __lowercase : Union[str, Any] = self.bezier_curve_function(UpperCamelCase_ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __lowercase : Dict = [i[0] for i in self.list_of_points] __lowercase : Optional[int] = [i[1] for i in self.list_of_points] plt.plot( UpperCamelCase_ , UpperCamelCase_ , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(UpperCamelCase_ , UpperCamelCase_ , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
523
1
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _lowerCamelCase : Optional[Any] = HUGGINGFACE_HUB_CACHE _lowerCamelCase : str = '''config.json''' _lowerCamelCase : int = '''diffusion_pytorch_model.bin''' _lowerCamelCase : Union[str, Any] = '''diffusion_flax_model.msgpack''' _lowerCamelCase : Dict = '''model.onnx''' _lowerCamelCase : List[str] = '''diffusion_pytorch_model.safetensors''' _lowerCamelCase : Optional[Any] = '''weights.pb''' _lowerCamelCase : Optional[Any] = '''https://huggingface.co''' _lowerCamelCase : List[Any] = default_cache_path _lowerCamelCase : Union[str, Any] = '''diffusers_modules''' _lowerCamelCase : List[Any] = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) _lowerCamelCase : int = ['''fp16''', '''non-ema'''] _lowerCamelCase : Dict = '''.self_attn'''
184
import gc import threading import time import psutil import torch class lowerCAmelCase__ : '''simple docstring''' def __init__( self ): '''simple docstring''' __A =psutil.Process() __A =False def __UpperCamelCase ( self ): '''simple docstring''' __A =-1 while True: __A =max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __UpperCamelCase ( self ): '''simple docstring''' __A =True __A =threading.Thread(target=self.peak_monitor ) __A =True self.thread.start() def __UpperCamelCase ( self ): '''simple docstring''' __A =False self.thread.join() return self.cpu_memory_peak _lowerCamelCase : Union[str, Any] = PeakCPUMemory() def A__ ( ) ->Dict: # Time __A ={'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __A =psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __A =torch.cuda.memory_allocated(__A ) torch.cuda.reset_peak_memory_stats() return measures def A__ ( __A : Any ) ->Any: # Time __A ={'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem __A =(psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 __A =(cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __A =(torch.cuda.memory_allocated(__A ) - start_measures[str(__A )]) / 2**20 __A =(torch.cuda.max_memory_allocated(__A ) - start_measures[str(__A )]) / 2**20 return measures def A__ ( __A : Union[str, Any] , __A : Any ) ->Union[str, Any]: print(F'''{description}:''' ) print(F'''- Time: {measures['time']:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(F'''- GPU {i} allocated: {measures[str(__A )]:.2f}MiB''' ) __A =measures[F'''{i}-peak'''] print(F'''- GPU {i} peak: {peak:.2f}MiB''' ) print(F'''- CPU RAM allocated: {measures['cpu']:.2f}MiB''' ) print(F'''- CPU RAM peak: {measures['cpu-peak']:.2f}MiB''' )
184
1
from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Tuple = ['''image_processor''', '''feature_extractor'''] snake_case__ : Tuple = '''TvltImageProcessor''' snake_case__ : List[Any] = '''TvltFeatureExtractor''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: super().__init__(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) a_ : Any = image_processor a_ : str = feature_extractor def __call__( self : Any , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple=False , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int , ) -> Dict: if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) a_ : Tuple = None if images is not None: a_ : str = self.image_processor(SCREAMING_SNAKE_CASE__ , mask_pixel=SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if images_mixed is not None: a_ : List[str] = self.image_processor(SCREAMING_SNAKE_CASE__ , is_mixed=SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if audio is not None: a_ : int = self.feature_extractor( SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , mask_audio=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) a_ : List[str] = {} if audio is not None: output_dict.update(SCREAMING_SNAKE_CASE__ ) if images is not None: output_dict.update(SCREAMING_SNAKE_CASE__ ) if images_mixed_dict is not None: output_dict.update(SCREAMING_SNAKE_CASE__ ) return output_dict @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: a_ : Dict = self.image_processor.model_input_names a_ : Dict = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
443
def SCREAMING_SNAKE_CASE_ ( __A : int , __A : int , __A : int ) -> float: """simple docstring""" a_ : Optional[int] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: """simple docstring""" print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
443
1
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging a__ : List[str] = logging.get_logger(__name__) class __snake_case : __lowerCAmelCase = None @experimental def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Optional[int]: if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( A__ , A__ , A__ , A__ , A__ , A__ , A__ ) return _map_with_joblib(A__ , A__ , A__ , A__ , A__ , A__ , A__ ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Optional[int]: snake_case__ = num_proc if num_proc <= len(A__ ) else len(A__ ) snake_case__ = [] # We organize the splits ourselve (contiguous splits) for index in range(A__ ): snake_case__ = len(A__ ) // num_proc snake_case__ = len(A__ ) % num_proc snake_case__ = div * index + min(A__ , A__ ) snake_case__ = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(A__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( f'''Error dividing inputs iterable among processes. ''' f'''Total number of objects {len(A__ )}, ''' f'''length: {sum(len(i[1] ) for i in split_kwds )}''' ) logger.info( f'''Spawning {num_proc} processes for {len(A__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}''' ) snake_case__ = None, None if not disable_tqdm: snake_case__ = (RLock(),), tqdm.set_lock with Pool(A__ , initargs=A__ , initializer=A__ ) as pool: snake_case__ = pool.map(A__ , A__ ) logger.info(f'''Finished {num_proc} processes''' ) snake_case__ = [obj for proc_res in mapped for obj in proc_res] logger.info(f'''Unpacked {len(A__ )} objects''' ) return mapped def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Any: import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=A__ ): return joblib.Parallel()( joblib.delayed(A__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def __lowerCamelCase ( UpperCAmelCase_ ) ->Optional[Any]: snake_case__ = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: snake_case__ = None
368
import random def a ( A__ ) -> bool: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = num - 1 SCREAMING_SNAKE_CASE__ : Optional[int] = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE__ : Optional[Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE__ : int = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = pow(A__ , A__ , A__ ) if v != 1: SCREAMING_SNAKE_CASE__ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE__ : Any = i + 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = (v**2) % num return True def a ( A__ ) -> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE__ : Optional[int] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(A__ ) def a ( A__ = 1_0_2_4 ) -> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE__ : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(A__ ): return num if __name__ == "__main__": a_ :Dict = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
35
0
from __future__ import annotations UpperCAmelCase_ : Union[str, Any] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __A : def __init__( self :int , __snake_case :dict[str, list[str]] , __snake_case :str ): '''simple docstring''' __magic_name__ : List[Any] =graph # mapping node to its parent in resulting breadth first tree __magic_name__ : dict[str, str | None] ={} __magic_name__ : Optional[int] =source_vertex def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Tuple ={self.source_vertex} __magic_name__ : Tuple =None __magic_name__ : Dict =[self.source_vertex] # first in first out queue while queue: __magic_name__ : Tuple =queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__snake_case ) __magic_name__ : Dict =vertex queue.append(__snake_case ) def A__ ( self :Union[str, Any] , __snake_case :str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __magic_name__ : Dict =self.parent.get(__snake_case ) if target_vertex_parent is None: __magic_name__ : Union[str, Any] =( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__snake_case ) return self.shortest_path(__snake_case ) + f"->{target_vertex}" if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
367
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class __A ( unittest.TestCase ): def __init__( self :List[str] , __snake_case :str , __snake_case :List[Any]=7 , __snake_case :List[str]=3 , __snake_case :int=30 , __snake_case :int=4_00 , __snake_case :List[str]=True , __snake_case :List[str]=None , __snake_case :Tuple=True , __snake_case :Any=[0.5, 0.5, 0.5] , __snake_case :Any=[0.5, 0.5, 0.5] , __snake_case :Union[str, Any]=True , __snake_case :str=1 / 2_55 , __snake_case :int=True , ): '''simple docstring''' __magic_name__ : Optional[int] =size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 13_33} __magic_name__ : str =parent __magic_name__ : Tuple =batch_size __magic_name__ : Optional[Any] =num_channels __magic_name__ : Optional[int] =min_resolution __magic_name__ : Optional[Any] =max_resolution __magic_name__ : Optional[Any] =do_resize __magic_name__ : Any =size __magic_name__ : str =do_normalize __magic_name__ : str =image_mean __magic_name__ : List[Any] =image_std __magic_name__ : Optional[int] =do_rescale __magic_name__ : List[str] =rescale_factor __magic_name__ : Optional[int] =do_pad def A__ ( self :Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A__ ( self :List[str] , __snake_case :Any , __snake_case :List[Any]=False ): '''simple docstring''' if not batched: __magic_name__ : Any =image_inputs[0] if isinstance(__snake_case , Image.Image ): __magic_name__ , __magic_name__ : Dict =image.size else: __magic_name__ , __magic_name__ : Dict =image.shape[1], image.shape[2] if w < h: __magic_name__ : Any =int(self.size["""shortest_edge"""] * h / w ) __magic_name__ : Dict =self.size["""shortest_edge"""] elif w > h: __magic_name__ : Union[str, Any] =self.size["""shortest_edge"""] __magic_name__ : Optional[int] =int(self.size["""shortest_edge"""] * w / h ) else: __magic_name__ : Any =self.size["""shortest_edge"""] __magic_name__ : List[str] =self.size["""shortest_edge"""] else: __magic_name__ : List[str] =[] for image in image_inputs: __magic_name__ , __magic_name__ : Tuple =self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[int] =max(__snake_case , key=lambda __snake_case : item[0] )[0] __magic_name__ : Tuple =max(__snake_case , key=lambda __snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = DetaImageProcessor if is_vision_available() else None def A__ ( self :Optional[int] ): '''simple docstring''' __magic_name__ : int =DetaImageProcessingTester(self ) @property def A__ ( self :List[str] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[str] =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , """image_mean""" ) ) self.assertTrue(hasattr(__snake_case , """image_std""" ) ) self.assertTrue(hasattr(__snake_case , """do_normalize""" ) ) self.assertTrue(hasattr(__snake_case , """do_resize""" ) ) self.assertTrue(hasattr(__snake_case , """do_rescale""" ) ) self.assertTrue(hasattr(__snake_case , """do_pad""" ) ) self.assertTrue(hasattr(__snake_case , """size""" ) ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Optional[Any] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , __snake_case ) def A__ ( self :Any ): '''simple docstring''' pass def A__ ( self :str ): '''simple docstring''' __magic_name__ : Tuple =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input __magic_name__ : Tuple =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ : str =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ , __magic_name__ : int =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) __magic_name__ : Dict =image_processing(__snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self :List[str] ): '''simple docstring''' __magic_name__ : int =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Optional[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input __magic_name__ : str =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ : int =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : List[str] =image_processing(__snake_case , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ : Any =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Dict =prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input __magic_name__ : Tuple =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ : int =self.image_processor_tester.get_expected_values(__snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict =image_processing(__snake_case , return_tensors="""pt""" ).pixel_values __magic_name__ , __magic_name__ : Tuple =self.image_processor_tester.get_expected_values(__snake_case , batched=__snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def A__ ( self :str ): '''simple docstring''' __magic_name__ : Optional[int] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __magic_name__ : Optional[int] =json.loads(f.read() ) __magic_name__ : str ={"""image_id""": 3_97_69, """annotations""": target} # encode them __magic_name__ : Optional[Any] =DetaImageProcessor() __magic_name__ : Any =image_processing(images=__snake_case , annotations=__snake_case , return_tensors="""pt""" ) # verify pixel values __magic_name__ : Tuple =torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , __snake_case ) __magic_name__ : Optional[int] =torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area __magic_name__ : Dict =torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __snake_case ) ) # verify boxes __magic_name__ : Optional[int] =torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __snake_case ) __magic_name__ : int =torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __snake_case , atol=1E-3 ) ) # verify image_id __magic_name__ : Any =torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __snake_case ) ) # verify is_crowd __magic_name__ : Optional[Any] =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __snake_case ) ) # verify class_labels __magic_name__ : List[str] =torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __snake_case ) ) # verify orig_size __magic_name__ : Optional[Any] =torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __snake_case ) ) # verify size __magic_name__ : Tuple =torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __snake_case ) ) @slow def A__ ( self :int ): '''simple docstring''' __magic_name__ : List[str] =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __magic_name__ : str =json.loads(f.read() ) __magic_name__ : Optional[Any] ={"""file_name""": """000000039769.png""", """image_id""": 3_97_69, """segments_info""": target} __magic_name__ : List[str] =pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __magic_name__ : int =DetaImageProcessor(format="""coco_panoptic""" ) __magic_name__ : Tuple =image_processing(images=__snake_case , annotations=__snake_case , masks_path=__snake_case , return_tensors="""pt""" ) # verify pixel values __magic_name__ : Union[str, Any] =torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , __snake_case ) __magic_name__ : str =torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __snake_case , atol=1E-4 ) ) # verify area __magic_name__ : str =torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __snake_case ) ) # verify boxes __magic_name__ : Dict =torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __snake_case ) __magic_name__ : Optional[Any] =torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __snake_case , atol=1E-3 ) ) # verify image_id __magic_name__ : Dict =torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __snake_case ) ) # verify is_crowd __magic_name__ : int =torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __snake_case ) ) # verify class_labels __magic_name__ : List[Any] =torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __snake_case ) ) # verify masks __magic_name__ : List[Any] =82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __snake_case ) # verify orig_size __magic_name__ : Union[str, Any] =torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __snake_case ) ) # verify size __magic_name__ : List[Any] =torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __snake_case ) )
367
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCAmelCase ( __snake_case ): def __init__( self : int , __magic_name__ : NestedDataStructureLike[PathLike] , __magic_name__ : Optional[NamedSplit] = None , __magic_name__ : Optional[Features] = None , __magic_name__ : str = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : Optional[int] = None , **__magic_name__ : List[Any] , ): """simple docstring""" super().__init__( __magic_name__ , split=__magic_name__ , features=__magic_name__ , cache_dir=__magic_name__ , keep_in_memory=__magic_name__ , streaming=__magic_name__ , num_proc=__magic_name__ , **__magic_name__ , ) UpperCamelCase = path_or_paths if isinstance(__magic_name__ , __magic_name__ ) else {self.split: path_or_paths} UpperCamelCase = Text( cache_dir=__magic_name__ , data_files=__magic_name__ , features=__magic_name__ , **__magic_name__ , ) def lowerCamelCase_ ( self : int ): """simple docstring""" if self.streaming: UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None self.builder.download_and_prepare( download_config=__magic_name__ , download_mode=__magic_name__ , verification_mode=__magic_name__ , base_path=__magic_name__ , num_proc=self.num_proc , ) UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=__magic_name__ , in_memory=self.keep_in_memory ) return dataset
386
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) def _lowercase ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[int, Iterable[int]] , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" def constraint_to_multiple_of(SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : List[Any]=None ): UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase = math.ceil(val / multiple ) * multiple return x UpperCamelCase = (output_size, output_size) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else output_size UpperCamelCase , UpperCamelCase = get_image_size(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase = output_size # determine new height and width UpperCamelCase = output_height / input_height UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase = scale_width else: # fit height UpperCamelCase = scale_height UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=SCREAMING_SNAKE_CASE_ ) return (new_height, new_width) class UpperCAmelCase ( __snake_case ): lowercase = ["""pixel_values"""] def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = False , __magic_name__ : int = 1 , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_5_5 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : Tuple , ): """simple docstring""" super().__init__(**__magic_name__ ) UpperCamelCase = size if size is not None else {"""height""": 3_8_4, """width""": 3_8_4} UpperCamelCase = get_size_dict(__magic_name__ ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = keep_aspect_ratio UpperCamelCase = ensure_multiple_of UpperCamelCase = resample UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase_ ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : bool = False , __magic_name__ : int = 1 , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : int , ): """simple docstring""" UpperCamelCase = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) UpperCamelCase = get_resize_output_image_size( __magic_name__ , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=__magic_name__ , multiple=__magic_name__ , ) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : Any , __magic_name__ : np.ndarray , __magic_name__ : Union[int, float] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : str , ): """simple docstring""" return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Dict , ): """simple docstring""" return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def lowerCamelCase_ ( self : List[str] , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : int = None , __magic_name__ : bool = None , __magic_name__ : int = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : float = None , __magic_name__ : bool = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : int , ): """simple docstring""" UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(__magic_name__ ) UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(__magic_name__ ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images] UpperCamelCase = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] UpperCamelCase = {"""pixel_values""": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ ) def lowerCamelCase_ ( self : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[Tuple] = None ): """simple docstring""" UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__magic_name__ ): UpperCamelCase = target_sizes.numpy() UpperCamelCase = [] for idx in range(len(__magic_name__ ) ): UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__magic_name__ ) UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__magic_name__ ) else: UpperCamelCase = logits.argmax(dim=1 ) UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
386
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def lowercase ( lowerCAmelCase__ : Callable[[int | float], int | float] , lowerCAmelCase__ : int | float , lowerCAmelCase__ : int | float , lowerCAmelCase__ : int = 100 , ) -> float: '''simple docstring''' __a = x_start __a = fnc(lowerCAmelCase__ ) __a = 0.0 for _ in range(lowerCAmelCase__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area __a = (x_end - x_start) / steps + xa __a = fnc(lowerCAmelCase__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __a = xa __a = fxa return area if __name__ == "__main__": def lowercase ( lowerCAmelCase__ : int ) -> Optional[int]: '''simple docstring''' return x**3 + x**2 print("f(x) = x^3 + x^2") print("The area between the curve, x = -5, x = 5 and the x axis is:") lowercase_ = 1_0 while i <= 1_0_0_0_0_0: print(F'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 1_0
708
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase_ = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
65
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case = {'configuration_plbart': ['PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PLBartConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['PLBartTokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'PLBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'PLBartForCausalLM', 'PLBartForConditionalGeneration', 'PLBartForSequenceClassification', 'PLBartModel', 'PLBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
500
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _a ( UpperCAmelCase ) -> Any: """simple docstring""" return getitem, k def _a ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" return setitem, k, v def _a ( UpperCAmelCase ) -> Any: """simple docstring""" return delitem, k def _a ( UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ) -> Optional[int]: """simple docstring""" try: return fun(UpperCAmelCase , *UpperCAmelCase ), None except Exception as e: return None, e _A : List[str] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) _A : Optional[Any] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] _A : str = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] _A : Any = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] _A : Dict = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _A : List[Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def _a ( UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : Dict = HashMap(initial_block_size=4 ) lowerCamelCase__ : List[str] = {} for _, (fun, *args) in enumerate(UpperCAmelCase ): lowerCamelCase__ , lowerCamelCase__ : List[str] = _run_operation(UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Tuple = _run_operation(UpperCAmelCase , UpperCAmelCase , *UpperCAmelCase ) assert my_res == py_res assert str(UpperCAmelCase ) == str(UpperCAmelCase ) assert set(UpperCAmelCase ) == set(UpperCAmelCase ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ) assert set(my.items() ) == set(py.items() ) def _a ( ) -> Any: """simple docstring""" def is_public(UpperCAmelCase ) -> bool: return not name.startswith('''_''' ) lowerCamelCase__ : List[Any] = {name for name in dir({} ) if is_public(UpperCAmelCase )} lowerCamelCase__ : Dict = {name for name in dir(HashMap() ) if is_public(UpperCAmelCase )} assert dict_public_names > hash_public_names
315
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _snake_case = logging.get_logger(__name__) class lowercase ( UpperCamelCase__ ): _a = ["input_values", "padding_mask"] def __init__( self , _a = 1 , _a = 2_4000 , _a = 0.0 , _a = None , _a = None , **_a , ) -> Optional[int]: super().__init__(feature_size=_a , sampling_rate=_a , padding_value=_a , **_a ) _A : List[Any] = chunk_length_s _A : Union[str, Any] = overlap @property def a__ ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def a__ ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _a , _a = None , _a = False , _a = None , _a = None , _a = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _A : Dict = True _A : Dict = bool( isinstance(_a , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A : Optional[int] = [np.asarray(_a , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_a , np.ndarray ): _A : List[str] = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _A : Union[str, Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _A : int = [np.asarray(_a ).T] # verify inputs are valid for idx, example in enumerate(_a ): if example.ndim > 2: raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' ) _A : Any = None _A : Optional[int] = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _A : Optional[int] = min(array.shape[0] for array in raw_audio ) _A : str = int(np.floor(max_length / self.chunk_stride ) ) _A : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _A : Tuple = max(array.shape[0] for array in raw_audio ) _A : Dict = int(np.ceil(max_length / self.chunk_stride ) ) _A : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length _A : Tuple = """max_length""" else: _A : Optional[int] = input_values # normal padding on batch if padded_inputs is None: _A : Tuple = self.pad( _a , max_length=_a , truncation=_a , padding=_a , return_attention_mask=_a , ) if padding: _A : Dict = padded_inputs.pop("""attention_mask""" ) _A : Any = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _A : str = example[..., None] input_values.append(example.T ) _A : List[str] = input_values if return_tensors is not None: _A : List[str] = padded_inputs.convert_to_tensors(_a ) return padded_inputs
54
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
54
1
def _a ( a :float ) -> float: if edge <= 0 or not isinstance(a , a ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def _a ( a :float ) -> float: if edge <= 0 or not isinstance(a , a ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
117
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = KandinskyVaaInpaintPipeline __snake_case = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] __snake_case = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] __snake_case = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __snake_case = False @property def __lowerCAmelCase ( self : Optional[int] ) ->Tuple: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : Optional[Any] ) ->Dict: """simple docstring""" return 32 @property def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" return self.time_input_dim @property def __lowerCAmelCase ( self : Tuple ) ->Optional[Any]: """simple docstring""" return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : Any ) ->Optional[int]: """simple docstring""" return 100 @property def __lowerCAmelCase ( self : Tuple ) ->Optional[int]: """simple docstring""" torch.manual_seed(0 ) a = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } a = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def __lowerCAmelCase ( self : List[Any] ) ->List[Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" torch.manual_seed(0 ) a = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" a = self.dummy_unet a = self.dummy_movq a = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__UpperCAmelCase , ) a = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : int=0 ) ->Optional[int]: """simple docstring""" a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCAmelCase ) # create init_image a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) a = image.cpu().permute(0 , 2 , 3 , 1 )[0] a = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('''RGB''' ).resize((256, 256) ) # create mask a = np.ones((64, 64) , dtype=np.floataa ) a = 0 if str(__UpperCAmelCase ).startswith('''mps''' ): a = torch.manual_seed(__UpperCAmelCase ) else: a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) a = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : Dict ) ->int: """simple docstring""" a = '''cpu''' a = self.get_dummy_components() a = self.pipeline_class(**__UpperCAmelCase ) a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) a = output.images a = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] a = image[0, -3:, -3:, -1] a = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) a = np.array( [0.50775903, 0.49527195, 0.48824543, 0.50192237, 0.48644906, 0.49373814, 0.4780598, 0.47234827, 0.48327848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : List[str] ) ->str: """simple docstring""" a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) a = np.ones((768, 768) , dtype=np.floataa ) a = 0 a = '''a hat''' a = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) a = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) a = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) a = torch.Generator(device='''cpu''' ).manual_seed(0 ) a , a = pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() a = pipeline( image=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
117
1
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
531
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=2 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = scope snake_case_ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 2 def UpperCamelCase__ ( self ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = DeiTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = DeiTForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ = 1 snake_case_ = DeiTForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): snake_case_ = self.type_sequence_label_size snake_case_ = DeiTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case_ = 1 snake_case_ = DeiTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __snake_case = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase__ ( self ): snake_case_ = DeiTModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def UpperCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCAmelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ): snake_case_ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase__ ( self ): if not self.model_tester.is_training: return snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_UpperCAmelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() snake_case_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) snake_case_ = model(**_UpperCAmelCase ).loss loss.backward() def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return snake_case_ = False snake_case_ = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue snake_case_ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() snake_case_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) snake_case_ = model(**_UpperCAmelCase ).loss loss.backward() def UpperCamelCase__ ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_UpperCAmelCase ), *get_values(_UpperCAmelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): snake_case_ = problem_type['''title'''] snake_case_ = problem_type['''num_labels'''] snake_case_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() snake_case_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if problem_type["num_labels"] > 1: snake_case_ = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) snake_case_ = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_UpperCAmelCase ) as warning_list: snake_case_ = model(**_UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def UpperCamelCase__ ( self ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = DeiTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCAmelCase ()-> Optional[int]: """simple docstring""" snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase__ ( self ): return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def UpperCamelCase__ ( self ): snake_case_ = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( _UpperCAmelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**_UpperCAmelCase ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) snake_case_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCamelCase__ ( self ): snake_case_ = DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) snake_case_ = inputs.pixel_values.to(_UpperCAmelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): snake_case_ = model(_UpperCAmelCase )
531
1
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowercase : List[Any] = logging.get_logger(__name__) def lowercase_ ( _lowercase , _lowercase ) -> str: '''simple docstring''' lowerCamelCase_ : List[Any] = nn.functional.normalize(_UpperCamelCase ) lowerCamelCase_ : str = nn.functional.normalize(_UpperCamelCase ) return torch.mm(_UpperCamelCase , normalized_text_embeds.t() ) class __lowercase ( A__ ): lowerCamelCase : Optional[Any] = CLIPConfig lowerCamelCase : Optional[Any] = ["CLIPEncoderLayer"] def __init__(self , A ): super().__init__(_a ) lowerCamelCase_ : Optional[int] = CLIPVisionModel(config.vision_config ) lowerCamelCase_ : Any = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_a ) lowerCamelCase_ : Union[str, Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_a ) lowerCamelCase_ : str = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_a ) lowerCamelCase_ : Union[str, Any] = nn.Parameter(torch.ones(1_7 ) , requires_grad=_a ) lowerCamelCase_ : List[Any] = nn.Parameter(torch.ones(3 ) , requires_grad=_a ) @torch.no_grad() def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : Tuple = self.vision_model(_a )[1] # pooled_output lowerCamelCase_ : str = self.visual_projection(_a ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ : Optional[int] = cosine_distance(_a , self.special_care_embeds ).cpu().float().numpy() lowerCamelCase_ : Dict = cosine_distance(_a , self.concept_embeds ).cpu().float().numpy() lowerCamelCase_ : Tuple = [] lowerCamelCase_ : List[Any] = image_embeds.shape[0] for i in range(_a ): lowerCamelCase_ : Any = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase_ : List[Any] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCamelCase_ : Any = special_cos_dist[i][concept_idx] lowerCamelCase_ : str = self.special_care_embeds_weights[concept_idx].item() lowerCamelCase_ : Optional[int] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} ) lowerCamelCase_ : List[Any] = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCamelCase_ : Tuple = cos_dist[i][concept_idx] lowerCamelCase_ : Tuple = self.concept_embeds_weights[concept_idx].item() lowerCamelCase_ : int = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_a ) result.append(_a ) lowerCamelCase_ : List[Any] = [len(res['''bad_concepts'''] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ (self , A , A ): lowerCamelCase_ : Optional[Any] = self.vision_model(_a )[1] # pooled_output lowerCamelCase_ : Dict = self.visual_projection(_a ) lowerCamelCase_ : int = cosine_distance(_a , self.special_care_embeds ) lowerCamelCase_ : List[Any] = cosine_distance(_a , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase_ : Tuple = 0.0 lowerCamelCase_ : Any = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCamelCase_ : List[Any] = torch.any(special_scores > 0 , dim=1 ) lowerCamelCase_ : List[str] = special_care * 0.01 lowerCamelCase_ : Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowerCamelCase_ : List[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCamelCase_ : List[Any] = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
422
'''simple docstring''' from itertools import count def _lowerCAmelCase ( _UpperCamelCase : int = 50 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =[1] * min_block_length for n in count(_UpperCamelCase ): fill_count_functions.append(1 ) for block_length in range(_UpperCamelCase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(f'''{solution() = }''')
405
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): """simple docstring""" def _lowercase ( self : Dict ): snake_case__ : Optional[Any] = tempfile.mkdtemp() snake_case__ : int = 8 # DPR tok snake_case__ : Union[str, Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] snake_case__ : str = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) snake_case__ : Any = os.path.join(UpperCAmelCase_ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok snake_case__ : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] snake_case__ : Optional[int] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) snake_case__ : List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case__ : List[str] = {"unk_token": "<unk>"} snake_case__ : List[str] = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) snake_case__ : str = os.path.join(UpperCAmelCase_ , BART_VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ : int = os.path.join(UpperCAmelCase_ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase_ ) ) def _lowercase ( self : str ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def _lowercase ( self : Any ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def _lowercase ( self : List[str] ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def _lowercase ( self : str ): shutil.rmtree(self.tmpdirname ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _lowercase ( self : Union[str, Any] ): snake_case__ : List[str] = self.get_dummy_dataset() snake_case__ : Optional[Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: snake_case__ : Any = dataset snake_case__ : str = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _lowercase ( self : str , __A : List[str] ): snake_case__ : Dict = self.get_dummy_dataset() snake_case__ : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: snake_case__ : List[str] = os.path.join(self.tmpdirname , "dataset" ) snake_case__ : Union[str, Any] = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset snake_case__ : Union[str, Any] = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: snake_case__ : str = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase_ ) , ) return retriever def _lowercase ( self : Any ): snake_case__ : Union[str, Any] = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) snake_case__ : List[Any] = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) snake_case__ : List[Any] = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) snake_case__ : Union[str, Any] = {sample["id"]: [sample["text"], sample["title"]] for sample in dataset} pickle.dump(UpperCAmelCase_ , open(UpperCAmelCase_ , "wb" ) ) snake_case__ : Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) snake_case__ : Union[str, Any] = RagRetriever( UpperCAmelCase_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _lowercase ( self : Optional[int] ): snake_case__ : List[Any] = 1 snake_case__ : int = self.get_dummy_canonical_hf_index_retriever() snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__, snake_case__, snake_case__ : Any = retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , UpperCAmelCase_ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase ( self : Any ): snake_case__ : List[Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: snake_case__ : str = self.get_dummy_dataset() retriever.save_pretrained(UpperCAmelCase_ ) snake_case__ : List[str] = RagRetriever.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Tuple = retriever.retrieve(UpperCAmelCase_ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase ( self : Dict ): snake_case__ : str = 1 snake_case__ : Tuple = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) snake_case__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__, snake_case__, snake_case__ : Union[str, Any] = retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , UpperCAmelCase_ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase ( self : Dict ): snake_case__ : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_ ) snake_case__ : Union[str, Any] = RagRetriever.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case__ : Optional[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Any = retriever.retrieve(UpperCAmelCase_ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase ( self : List[str] ): snake_case__ : Optional[int] = 1 snake_case__ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) snake_case__ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__, snake_case__, snake_case__ : Optional[Any] = retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , UpperCAmelCase_ ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase ( self : Dict ): snake_case__ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_ ) snake_case__ : Optional[int] = RagRetriever.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : List[Any] = retriever.retrieve(UpperCAmelCase_ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase ( self : Optional[Any] ): snake_case__ : Tuple = 1 snake_case__ : Optional[Any] = self.get_dummy_legacy_index_retriever() snake_case__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__, snake_case__, snake_case__ : Optional[int] = retriever.retrieve(UpperCAmelCase_ , n_docs=UpperCAmelCase_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(UpperCAmelCase_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , UpperCAmelCase_ ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase ( self : List[str] ): snake_case__ : Any = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(UpperCAmelCase_ ) snake_case__ : List[Any] = RagRetriever.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Optional[Any] = retriever.retrieve(UpperCAmelCase_ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _lowercase ( self : Union[str, Any] ): import torch snake_case__ : List[str] = 1 snake_case__ : int = self.get_dummy_canonical_hf_index_retriever() snake_case__ : List[Any] = [[5, 7], [1_0, 1_1]] snake_case__ : int = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Dict = retriever(UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_ ) snake_case__, snake_case__, snake_case__ : str = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) snake_case__ : str = retriever( UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_ , return_tensors="pt" , ) snake_case__, snake_case__, snake_case__, snake_case__ : Dict = ( # noqa: F841 out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], out["doc_ids"], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _lowercase ( self : List[Any] ): snake_case__ : Tuple = self.get_dpr_ctx_encoder_tokenizer() snake_case__ : Tuple = 1 snake_case__ : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=UpperCAmelCase_ ) retriever.set_ctx_encoder_tokenizer(UpperCAmelCase_ ) snake_case__ : Optional[Any] = [[5, 7], [1_0, 1_1]] snake_case__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) snake_case__ : Union[str, Any] = retriever(UpperCAmelCase_ , UpperCAmelCase_ , prefix=retriever.config.generator.prefix , n_docs=UpperCAmelCase_ ) self.assertEqual( len(UpperCAmelCase_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , UpperCAmelCase_ ) # check for doc token related keys in dictionary.
710
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Union[str, Any] ): snake_case__ : Optional[int] = [] for part_id in partition_order: snake_case__ : List[Any] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(snake_case_ ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Tuple = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Union[str, Any] = spark.range(100 ).repartition(1 ) snake_case__ : Any = Spark(snake_case_ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[Any] = spark.range(10 ).repartition(2 ) snake_case__ : Optional[Any] = [1, 0] snake_case__ : Dict = _generate_iterable_examples(snake_case_ , snake_case_ ) # Reverse the partitions. snake_case__ : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , snake_case_ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): snake_case__, snake_case__ : Tuple = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Optional[int] = spark.range(10 ).repartition(1 ) snake_case__ : Union[str, Any] = SparkExamplesIterable(snake_case_ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(snake_case_ ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : str = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator" ) as generator_mock: snake_case__ : Union[str, Any] = lambda snake_case_ : x.reverse() snake_case__ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [2, 1, 0] ) snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 snake_case__ : List[Any] = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [0, 2] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 snake_case__ : Any = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 snake_case__ : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_ , [1, 3] ) for i, (row_id, row_dict) in enumerate(snake_case_ ): snake_case__, snake_case__ : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = pyspark.sql.SparkSession.builder.master("local[*]" ).appName("pyspark" ).getOrCreate() snake_case__ : Tuple = spark.range(100 ).repartition(1 ) snake_case__ : Union[str, Any] = Spark(snake_case_ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
0
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class a__( lowerCamelCase__ ): def lowercase_ ( self : Union[str, Any] ): a : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__snake_case , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(__snake_case , 'num_encoder_blocks' ) ) class a__: def __init__( self : str , __snake_case : List[str] , __snake_case : Union[str, Any]=13 , __snake_case : Optional[Any]=64 , __snake_case : int=3 , __snake_case : str=4 , __snake_case : Optional[int]=[2, 2, 2, 2] , __snake_case : Optional[Any]=[8, 4, 2, 1] , __snake_case : int=[16, 32, 64, 1_28] , __snake_case : Tuple=[1, 4, 8, 16] , __snake_case : Union[str, Any]=[1, 2, 4, 8] , __snake_case : Tuple=True , __snake_case : Tuple=True , __snake_case : List[str]="gelu" , __snake_case : Union[str, Any]=0.1 , __snake_case : List[str]=0.1 , __snake_case : int=0.02 , __snake_case : List[str]=3 , __snake_case : Tuple=None , ): a : Optional[Any] = parent a : List[str] = batch_size a : Dict = image_size a : Optional[int] = num_channels a : Optional[Any] = num_encoder_blocks a : Dict = sr_ratios a : Tuple = depths a : Optional[Any] = hidden_sizes a : str = downsampling_rates a : List[Any] = num_attention_heads a : List[Any] = is_training a : Tuple = use_labels a : Tuple = hidden_act a : int = hidden_dropout_prob a : Dict = attention_probs_dropout_prob a : Optional[Any] = initializer_range a : List[str] = num_labels a : Union[str, Any] = scope def lowercase_ ( self : Optional[int] ): a : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a : List[Any] = None if self.use_labels: a : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a : List[Any] = self.get_config() return config, pixel_values, labels def lowercase_ ( self : Optional[int] ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self : int , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] ): a : Union[str, Any] = SegformerModel(config=__snake_case ) model.to(__snake_case ) model.eval() a : Optional[int] = model(__snake_case ) a : Optional[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def lowercase_ ( self : Optional[int] , __snake_case : List[Any] , __snake_case : Any , __snake_case : List[Any] ): a : Optional[Any] = self.num_labels a : str = SegformerForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() a : int = model(__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) a : List[str] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def lowercase_ ( self : Any , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Any ): a : Dict = 1 a : Dict = SegformerForSemanticSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() a : List[str] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(__snake_case ) a : List[Any] = model(__snake_case , labels=__snake_case ) self.parent.assertGreater(result.loss , 0.0 ) def lowercase_ ( self : List[str] ): a : List[str] = self.prepare_config_and_inputs() a , a , a : Tuple = config_and_inputs a : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a__( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase__ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def lowercase_ ( self : Optional[int] ): a : Optional[Any] = SegformerModelTester(self ) a : List[Any] = SegformerConfigTester(self , config_class=__snake_case ) def lowercase_ ( self : Dict ): self.config_tester.run_common_tests() def lowercase_ ( self : str ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowercase_ ( self : int ): a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__snake_case ) def lowercase_ ( self : int ): a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__snake_case ) @unittest.skip('SegFormer does not use inputs_embeds' ) def lowercase_ ( self : List[str] ): pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def lowercase_ ( self : str ): pass def lowercase_ ( self : Optional[int] ): a , a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Union[str, Any] = model_class(__snake_case ) a : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a : Any = [*signature.parameters.keys()] a : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case ) def lowercase_ ( self : str ): a , a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() a : Any = True for model_class in self.all_model_classes: a : Tuple = True a : Tuple = False a : str = True a : Optional[int] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a : Dict = model(**self._prepare_for_class(__snake_case , __snake_case ) ) a : Dict = outputs.attentions a : Union[str, Any] = sum(self.model_tester.depths ) self.assertEqual(len(__snake_case ) , __snake_case ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a : List[Any] = True a : str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a : Optional[int] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) a : Union[str, Any] = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first attentions (first block, first layer) a : str = (self.model_tester.image_size // 4) ** 2 a : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a : List[Any] = (self.model_tester.image_size // 32) ** 2 a : List[str] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a : List[Any] = len(__snake_case ) # Check attention is always last and order is fine a : Optional[int] = True a : str = True a : Optional[int] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a : Dict = model(**self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + 1 , len(__snake_case ) ) a : Dict = outputs.attentions self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first attentions (first block, first layer) a : Tuple = (self.model_tester.image_size // 4) ** 2 a : Optional[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def lowercase_ ( self : List[str] ): def check_hidden_states_output(__snake_case : Optional[Any] , __snake_case : str , __snake_case : Dict ): a : List[str] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): a : Optional[int] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) a : List[str] = outputs.hidden_states a : List[str] = self.model_tester.num_encoder_blocks self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a , a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a : Any = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a : Dict = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowercase_ ( self : Dict ): if not self.model_tester.is_training: return a , a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() a : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(__snake_case ): continue a : Any = model_class(__snake_case ) model.to(__snake_case ) model.train() a : Optional[Any] = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) a : str = model(**__snake_case ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self : Dict ): pass @slow def lowercase_ ( self : Tuple ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Union[str, Any] = SegformerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def lowerCamelCase__ ( ): a : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class a__( unittest.TestCase ): @slow def lowercase_ ( self : Optional[int] ): # only resize + normalize a : List[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) a : Optional[Any] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( __snake_case ) a : Tuple = prepare_img() a : Tuple = image_processor(images=__snake_case , return_tensors='pt' ) a : int = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): a : Union[str, Any] = model(__snake_case ) a : List[str] = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , __snake_case ) a : str = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1e-4 ) ) @slow def lowercase_ ( self : str ): # only resize + normalize a : List[str] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) a : Any = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(__snake_case ) a : str = prepare_img() a : Tuple = image_processor(images=__snake_case , return_tensors='pt' ) a : Optional[int] = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): a : List[str] = model(__snake_case ) a : str = torch.Size((1, model.config.num_labels, 1_28, 1_28) ) self.assertEqual(outputs.logits.shape , __snake_case ) a : List[str] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , __snake_case , atol=1e-1 ) ) @slow def lowercase_ ( self : Optional[Any] ): # only resize + normalize a : int = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) a : Any = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( __snake_case ) a : Dict = prepare_img() a : Tuple = image_processor(images=__snake_case , return_tensors='pt' ) a : Any = encoded_inputs.pixel_values.to(__snake_case ) with torch.no_grad(): a : Optional[int] = model(__snake_case ) a : Optional[int] = outputs.logits.detach().cpu() a : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(5_00, 3_00)] ) a : str = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , __snake_case ) a : List[Any] = image_processor.post_process_semantic_segmentation(outputs=__snake_case ) a : int = torch.Size((1_28, 1_28) ) self.assertEqual(segmentation[0].shape , __snake_case )
526
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( _A , _A , _A ): a : List[str] = list(range(len(_A ) ) ) a : Union[str, Any] = [v / w for v, w in zip(_A , _A )] index.sort(key=lambda _A : ratio[i] , reverse=_A ) a : float = 0 a : list[float] = [0] * len(_A ) for i in index: if weight[i] <= capacity: a : int = 1 max_value += value[i] capacity -= weight[i] else: a : Optional[int] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
526
1
import requests from bsa import BeautifulSoup def _UpperCamelCase ( lowercase__ = "AAPL" ): __SCREAMING_SNAKE_CASE : List[str] = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' __SCREAMING_SNAKE_CASE : List[Any] = BeautifulSoup(requests.get(__snake_case ).text , '''html.parser''' ) __SCREAMING_SNAKE_CASE : Any = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
707
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __lowerCAmelCase : Any =pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) __lowerCAmelCase : Dict =dataset.iloc[:, 1:2].values __lowerCAmelCase : Any =dataset.iloc[:, 2].values __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : List[str] =train_test_split(X, y, test_size=0.2, random_state=0) __lowerCAmelCase : List[Any] =PolynomialFeatures(degree=4) __lowerCAmelCase : Any =poly_reg.fit_transform(X) __lowerCAmelCase : str =LinearRegression() pol_reg.fit(X_poly, y) def _UpperCamelCase ( ): plt.scatter(lowercase__ , lowercase__ , color='''red''' ) plt.plot(lowercase__ , pol_reg.predict(poly_reg.fit_transform(lowercase__ ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
260
0
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class lowerCamelCase_ ( __a ): def __init__( self : Tuple , _A : Distribution , _A : int=None , _A : Tuple=None , _A : Any=0 ): '''simple docstring''' UpperCAmelCase__ : List[str] = 1.0 if scale is None else scale UpperCAmelCase__ : List[str] = 0.0 if loc is None else loc super().__init__(_A , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_A )] ) @property def lowercase_ ( self : Tuple ): '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def lowercase_ ( self : Optional[int] ): '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def lowercase_ ( self : int ): '''simple docstring''' return self.variance.sqrt() class lowerCamelCase_ ( nn.Module ): def __init__( self : Tuple , _A : int , _A : Dict[str, int] , _A : Callable[..., Tuple[torch.Tensor]] , **_A : Tuple ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase__ : Optional[Any] = args_dim UpperCAmelCase__ : Optional[int] = nn.ModuleList([nn.Linear(_A , _A ) for dim in args_dim.values()] ) UpperCAmelCase__ : str = domain_map def lowercase_ ( self : Union[str, Any] , _A : torch.Tensor ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [proj(_A ) for proj in self.proj] return self.domain_map(*_A ) class lowerCamelCase_ ( nn.Module ): def __init__( self : Optional[Any] , _A : Union[str, Any] ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Optional[int] = function def lowercase_ ( self : Tuple , _A : Optional[Any] , *_A : List[str] ): '''simple docstring''' return self.function(_A , *_A ) class lowerCamelCase_ : lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self : List[str] , _A : int = 1 ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = dim UpperCAmelCase__ : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def lowercase_ ( self : Union[str, Any] , _A : str ): '''simple docstring''' if self.dim == 1: return self.distribution_class(*_A ) else: return Independent(self.distribution_class(*_A ) , 1 ) def lowercase_ ( self : Dict , _A : str , _A : Optional[torch.Tensor] = None , _A : Optional[torch.Tensor] = None , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self._base_distribution(_A ) if loc is None and scale is None: return distr else: return AffineTransformed(_A , loc=_A , scale=_A , event_dim=self.event_dim ) @property def lowercase_ ( self : List[str] ): '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return len(self.event_shape ) @property def lowercase_ ( self : int ): '''simple docstring''' return 0.0 def lowercase_ ( self : Union[str, Any] , _A : int ): '''simple docstring''' return ParameterProjection( in_features=_A , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowercase_ ( self : str , *_A : torch.Tensor ): '''simple docstring''' raise NotImplementedError() @staticmethod def lowercase_ ( _A : torch.Tensor ): '''simple docstring''' return (x + torch.sqrt(torch.square(_A ) + 4.0 )) / 2.0 class lowerCamelCase_ ( __a ): lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def lowercase_ ( cls : Union[str, Any] , _A : torch.Tensor , _A : torch.Tensor , _A : torch.Tensor ): '''simple docstring''' UpperCAmelCase__ : int = cls.squareplus(_A ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase__ : Dict = 2.0 + cls.squareplus(_A ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def lowercase_ ( cls : List[str] , _A : torch.Tensor , _A : torch.Tensor ): '''simple docstring''' UpperCAmelCase__ : List[Any] = cls.squareplus(_A ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def lowercase_ ( cls : List[Any] , _A : torch.Tensor , _A : torch.Tensor ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = cls.squareplus(_A ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowercase_ ( self : Optional[int] , _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = distr_args if self.dim == 1: return self.distribution_class(total_count=_A , logits=_A ) else: return Independent(self.distribution_class(total_count=_A , logits=_A ) , 1 ) def lowercase_ ( self : Union[str, Any] , _A : Optional[Any] , _A : Optional[torch.Tensor] = None , _A : Optional[torch.Tensor] = None ): '''simple docstring''' UpperCAmelCase__ : Any = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
75
import qiskit def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ :Union[str, Any] = qiskit.QuantumCircuit(a , a ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator SCREAMING_SNAKE_CASE_ :Any = qiskit.execute(a , a , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
631
0
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports lowerCAmelCase_ = '\nimport os\n' lowerCAmelCase_ = '\ndef foo():\n import os\n return False\n' lowerCAmelCase_ = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' lowerCAmelCase_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' lowerCAmelCase_ = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' lowerCAmelCase_ = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' lowerCAmelCase_ = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' lowerCAmelCase_ = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' lowerCAmelCase_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' lowerCAmelCase_ = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' lowerCAmelCase_ = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , __lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : int = os.path.join(__lowerCamelCase , '''test_file.py''' ) with open(__lowerCamelCase , '''w''' ) as _tmp_file: _tmp_file.write(__lowerCamelCase ) lowercase__ : Tuple = get_imports(__lowerCamelCase ) assert parsed_imports == ["os"]
122
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Tuple = ["image_processor", "tokenizer"] lowerCAmelCase : Tuple = "CLIPImageProcessor" lowerCAmelCase : Optional[Any] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self : List[str] ,_snake_case : Any=None ,_snake_case : List[Any]=None ,**_snake_case : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' ,_snake_case ,) lowercase__ : Optional[Any] = kwargs.pop('''feature_extractor''' ) lowercase__ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case ,_snake_case ) def __call__( self : List[str] ,_snake_case : Tuple=None ,_snake_case : str=None ,_snake_case : Dict=None ,**_snake_case : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase__ : Optional[Any] = self.tokenizer(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if images is not None: lowercase__ : str = self.image_processor(_snake_case ,return_tensors=_snake_case ,**_snake_case ) if text is not None and images is not None: lowercase__ : Optional[int] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) ,tensor_type=_snake_case ) def UpperCAmelCase ( self : List[Any] ,*_snake_case : Optional[int] ,**_snake_case : List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : Any ,*_snake_case : Union[str, Any] ,**_snake_case : int ) -> int: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case ) @property def UpperCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" lowercase__ : List[str] = self.tokenizer.model_input_names lowercase__ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' ,_snake_case ,) return self.image_processor_class @property def UpperCAmelCase ( self : Any ) -> Dict: """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' ,_snake_case ,) return self.image_processor
122
1
'''simple docstring''' from __future__ import annotations from typing import Any class _UpperCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float = 0 ): '''simple docstring''' _A , _A = row, column _A = [[default_value for c in range(_UpperCamelCase )] for r in range(_UpperCamelCase )] def __str__( self : Tuple ): '''simple docstring''' _A = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier _A = 0 for row_vector in self.array: for obj in row_vector: _A = max(_UpperCamelCase , len(str(_UpperCamelCase ) ) ) _A = f'''%{max_element_length}s''' # Make string and return def single_line(__UpperCAmelCase : list[float] ) -> str: nonlocal string_format_identifier _A = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_UpperCamelCase ) for row_vector in self.array ) return s def __repr__( self : Union[str, Any] ): '''simple docstring''' return str(self ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : tuple[int, int] ): '''simple docstring''' if not (isinstance(_UpperCamelCase , (list, tuple) ) and len(_UpperCamelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Any , __UpperCAmelCase : tuple[int, int] ): '''simple docstring''' assert self.validate_indicies(_UpperCamelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self : Any , __UpperCAmelCase : tuple[int, int] , __UpperCAmelCase : float ): '''simple docstring''' assert self.validate_indicies(_UpperCamelCase ) _A = value def __add__( self : Tuple , __UpperCAmelCase : Matrix ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert self.row == another.row and self.column == another.column # Add _A = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _A = self[r, c] + another[r, c] return result def __neg__( self : Optional[Any] ): '''simple docstring''' _A = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _A = -self[r, c] return result def __sub__( self : Any , __UpperCAmelCase : Matrix ): '''simple docstring''' return self + (-another) def __mul__( self : Any , __UpperCAmelCase : int | float | Matrix ): '''simple docstring''' if isinstance(_UpperCamelCase , (int, float) ): # Scalar multiplication _A = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _A = self[r, c] * another return result elif isinstance(_UpperCamelCase , _UpperCamelCase ): # Matrix multiplication assert self.column == another.row _A = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: _A = f'''Unsupported type given for another ({type(_UpperCamelCase )})''' raise TypeError(_UpperCamelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): _A = self[r, c] return result def lowerCAmelCase ( self : int , __UpperCAmelCase : Matrix , __UpperCAmelCase : Matrix ): '''simple docstring''' assert isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(_UpperCamelCase , _UpperCamelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _A = v.transpose() _A = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __lowercase ( ) -> Any: '''simple docstring''' _A = Matrix(3 , 3 , 0 ) for i in range(3 ): _A = 1 print(F'''a^(-1) is {ainv}''' ) # u, v _A = Matrix(3 , 1 , 0 ) _A , _A , _A = 1, 2, -3 _A = Matrix(3 , 1 , 0 ) _A , _A , _A = 4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(UpperCAmelCase__ , UpperCAmelCase__ )}''' ) def __lowercase ( ) -> Dict: '''simple docstring''' import doctest doctest.testmod() testa()
330
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : Optional[int] = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } _lowerCamelCase : List[str] = { '''squeezebert/squeezebert-uncased''': 5_12, '''squeezebert/squeezebert-mnli''': 5_12, '''squeezebert/squeezebert-mnli-headless''': 5_12, } _lowerCamelCase : int = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class lowercase ( a ): lowercase__ : Optional[Any] = VOCAB_FILES_NAMES lowercase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : str = SqueezeBertTokenizer def __init__( self : Dict , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : List[Any]="[UNK]" , _UpperCamelCase : List[Any]="[SEP]" , _UpperCamelCase : Tuple="[PAD]" , _UpperCamelCase : int="[CLS]" , _UpperCamelCase : Tuple="[MASK]" , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[Any]=None , **_UpperCamelCase : Any , ) -> Optional[Any]: '''simple docstring''' super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _UpperCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_lower_case def __snake_case( self : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
403
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
447
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _lowerCAmelCase ( __lowerCamelCase : str ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = analyze_text(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = list(" " + ascii_lowercase ) # what is our total sum of probabilities. __SCREAMING_SNAKE_CASE : int = sum(single_char_strings.values() ) # one length string __SCREAMING_SNAKE_CASE : str = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: __SCREAMING_SNAKE_CASE : List[Any] = single_char_strings[ch] __SCREAMING_SNAKE_CASE : str = my_str / all_sum my_fir_sum += prob * math.loga(__lowerCamelCase ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string __SCREAMING_SNAKE_CASE : Optional[int] = sum(two_char_strings.values() ) __SCREAMING_SNAKE_CASE : int = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: __SCREAMING_SNAKE_CASE : int = cha + cha if sequence in two_char_strings: __SCREAMING_SNAKE_CASE : Optional[Any] = two_char_strings[sequence] __SCREAMING_SNAKE_CASE : Union[str, Any] = int(__lowerCamelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCamelCase ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def _lowerCAmelCase ( __lowerCamelCase : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = Counter() # type: ignore __SCREAMING_SNAKE_CASE : int = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__lowerCamelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _lowerCAmelCase ( ): """simple docstring""" import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
447
1
'''simple docstring''' from __future__ import annotations import numpy as np def UpperCamelCase_ ( snake_case_ : Union[str, Any] ) -> str: '''simple docstring''' return np.maximum(0 , snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
427
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __magic_name__ =logging.get_logger(__name__) __magic_name__ =r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class _A ( __UpperCamelCase ): @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> bool: '''simple docstring''' raise NotImplementedError('''StoppingCriteria needs to be subclassed''' ) class _A ( __UpperCamelCase ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = max_length UpperCamelCase__ = max_position_embeddings @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> bool: '''simple docstring''' UpperCamelCase__ = input_ids.shape[-1] UpperCamelCase__ = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' F"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " '''exceptions, performance degradation, or nothing at all.''' ) return is_done class _A ( __UpperCamelCase ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' F"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " '''with `max_length = start_length + max_new_tokens` instead.''' , SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = start_length UpperCamelCase__ = max_new_tokens UpperCamelCase__ = start_length + max_new_tokens @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> bool: '''simple docstring''' return input_ids.shape[-1] >= self.max_length class _A ( __UpperCamelCase ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = max_time UpperCamelCase__ = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> bool: '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class _A ( __UpperCamelCase ): @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> bool: '''simple docstring''' return any(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for criteria in self ) @property def _a (self ) -> Optional[int]: '''simple docstring''' for stopping_criterium in self: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return stopping_criterium.max_length elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return stopping_criterium.max_length return None def __UpperCamelCase ( A , A ): UpperCamelCase__ = stopping_criteria.max_length UpperCamelCase__ = deepcopy(A ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , A ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=A ) ) return new_stopping_criteria
415
0
from __future__ import annotations from PIL import Image # Define glider example _lowerCAmelCase : str = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _lowerCAmelCase : List[str] = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCAmelCase ( _lowerCAmelCase : list[list[int]] ): """simple docstring""" UpperCAmelCase__ = [] for i in range(len(_lowerCAmelCase ) ): UpperCAmelCase__ = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours UpperCAmelCase__ = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_lowerCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_lowerCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(_lowerCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. UpperCAmelCase__ = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_lowerCAmelCase ) return next_generation def lowerCAmelCase ( _lowerCAmelCase : list[list[int]] , _lowerCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = [] for _ in range(_lowerCAmelCase ): # Create output image UpperCAmelCase__ = Image.new("RGB" , (len(cells[0] ), len(_lowerCAmelCase )) ) UpperCAmelCase__ = img.load() # Save cells to image for x in range(len(_lowerCAmelCase ) ): for y in range(len(cells[0] ) ): UpperCAmelCase__ = 255 - cells[y][x] * 255 UpperCAmelCase__ = (colour, colour, colour) # Save image images.append(_lowerCAmelCase ) UpperCAmelCase__ = new_generation(_lowerCAmelCase ) return images if __name__ == "__main__": _lowerCAmelCase : int = generate_images(GLIDER, 1_6) images[0].save("out.gif", save_all=True, append_images=images[1:])
364
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowerCAmelCase : Any = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = ["""input_values""", """padding_mask"""] def __init__( self :Dict , lowerCamelCase :int = 1 , lowerCamelCase :int = 2_4000 , lowerCamelCase :float = 0.0 , lowerCamelCase :float = None , lowerCamelCase :float = None , **lowerCamelCase :Optional[Any] , ) -> str: super().__init__(feature_size=lowerCamelCase , sampling_rate=lowerCamelCase , padding_value=lowerCamelCase , **lowerCamelCase ) UpperCAmelCase__ = chunk_length_s UpperCAmelCase__ = overlap @property def UpperCAmelCase_ ( self :Optional[Any] ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def UpperCAmelCase_ ( self :str ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self :List[Any] , lowerCamelCase :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase :Optional[Union[bool, str, PaddingStrategy]] = None , lowerCamelCase :Optional[bool] = False , lowerCamelCase :Optional[int] = None , lowerCamelCase :Optional[Union[str, TensorType]] = None , lowerCamelCase :Optional[int] = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs UpperCAmelCase__ = True UpperCAmelCase__ = bool( isinstance(lowerCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase__ = [np.asarray(lowerCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(lowerCamelCase , np.ndarray ): UpperCAmelCase__ = np.asarray(lowerCamelCase , dtype=np.floataa ) elif isinstance(lowerCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): UpperCAmelCase__ = raw_audio.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase__ = [np.asarray(lowerCamelCase ).T] # verify inputs are valid for idx, example in enumerate(lowerCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) UpperCAmelCase__ = None UpperCAmelCase__ = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: UpperCAmelCase__ = min(array.shape[0] for array in raw_audio ) UpperCAmelCase__ = int(np.floor(max_length / self.chunk_stride ) ) UpperCAmelCase__ = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: UpperCAmelCase__ = max(array.shape[0] for array in raw_audio ) UpperCAmelCase__ = int(np.ceil(max_length / self.chunk_stride ) ) UpperCAmelCase__ = (nb_step - 1) * self.chunk_stride + self.chunk_length UpperCAmelCase__ = "max_length" else: UpperCAmelCase__ = input_values # normal padding on batch if padded_inputs is None: UpperCAmelCase__ = self.pad( lowerCamelCase , max_length=lowerCamelCase , truncation=lowerCamelCase , padding=lowerCamelCase , return_attention_mask=lowerCamelCase , ) if padding: UpperCAmelCase__ = padded_inputs.pop("attention_mask" ) UpperCAmelCase__ = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: UpperCAmelCase__ = example[..., None] input_values.append(example.T ) UpperCAmelCase__ = input_values if return_tensors is not None: UpperCAmelCase__ = padded_inputs.convert_to_tensors(lowerCamelCase ) return padded_inputs
364
1
'''simple docstring''' def __lowercase (_lowercase = 1_000 ) -> int: """simple docstring""" return sum(e for e in range(3, _lowercase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
150
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __lowercase (_lowercase, _lowercase, _lowercase, _lowercase, _lowercase = None, _lowercase = None, _lowercase = None, ) -> Optional[Any]: """simple docstring""" if config_name_or_path is None: __lowerCamelCase : str = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: __lowerCamelCase : str = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __lowerCamelCase : Tuple = question_encoder_name_or_path __lowerCamelCase : Tuple = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. __lowerCamelCase : List[str] = RagConfig.from_pretrained(_lowercase ) __lowerCamelCase : str = AutoConfig.from_pretrained(_lowercase ) __lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(_lowercase ) __lowerCamelCase : Optional[int] = gen_config __lowerCamelCase : str = question_encoder_config __lowerCamelCase : List[str] = model_class.from_pretrained_question_encoder_generator( _lowercase, _lowercase, config=_lowercase ) rag_model.save_pretrained(_lowercase ) # Sanity check. model_class.from_pretrained(_lowercase ) # Save tokenizers. __lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(_lowercase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) __lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(_lowercase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": UpperCAmelCase__ :Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) UpperCAmelCase__ :str = parser.parse_args() UpperCAmelCase__ :Optional[int] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
150
1
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : str = {"""vocab_file""": """vocab.json"""} UpperCamelCase__ : int = { """vocab_file""": { """mgp-str""": """https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json""", } } UpperCamelCase__ : Dict = {"""mgp-str""": 27} class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowerCamelCase , _lowerCamelCase="[GO]" , _lowerCamelCase="[GO]" , _lowerCamelCase="[s]" , _lowerCamelCase="[GO]" , **_lowerCamelCase ) -> Tuple: super().__init__( unk_token=__A , bos_token=__A , eos_token=__A , pad_token=__A , **__A , ) with open(__A , encoding="""utf-8""" ) as vocab_handle: A_ : str = json.load(__A ) A_ : Optional[Any] = {v: k for k, v in self.vocab.items()} @property def UpperCAmelCase_ ( self ) -> Optional[int]: return len(self.vocab ) def UpperCAmelCase_ ( self ) -> int: return dict(self.vocab , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[int]: A_ : List[Any] = [] for s in text: char_tokens.extend(__A ) return char_tokens def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Dict: return self.vocab.get(__A , self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Dict: return self.decoder.get(__A ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Optional[int]: if not os.path.isdir(__A ): logger.error("""Vocabulary path ({}) should be a directory""".format(__A ) ) return A_ : Optional[int] = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(__A , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__A , ensure_ascii=__A ) + """\n""" ) return (vocab_file,)
703
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase=None , **_lowerCamelCase ) -> Any: warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , _lowerCamelCase , ) super().__init__(args=_lowerCamelCase , **_lowerCamelCase )
385
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : int ): A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCamelCase__ ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase__ ) A = model.generate(UpperCamelCase__ , max_new_tokens=10 , do_sample=UpperCamelCase__ ) A = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A = TextStreamer(UpperCamelCase__ ) model.generate(UpperCamelCase__ , max_new_tokens=10 , do_sample=UpperCamelCase__ , streamer=UpperCamelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A = cs.out[:-1] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Optional[Any] ): A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCamelCase__ ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase__ ) A = model.generate(UpperCamelCase__ , max_new_tokens=10 , do_sample=UpperCamelCase__ ) A = tokenizer.decode(greedy_ids[0] ) A = TextIteratorStreamer(UpperCamelCase__ ) A = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} A = Thread(target=model.generate , kwargs=UpperCamelCase__ ) thread.start() A = '' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : str ): A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCamelCase__ ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase__ ) A = model.generate(UpperCamelCase__ , max_new_tokens=10 , do_sample=UpperCamelCase__ ) A = greedy_ids[:, input_ids.shape[1] :] A = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A = TextStreamer(UpperCamelCase__ , skip_prompt=UpperCamelCase__ ) model.generate(UpperCamelCase__ , max_new_tokens=10 , do_sample=UpperCamelCase__ , streamer=UpperCamelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A = cs.out[:-1] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Dict ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them A = AutoTokenizer.from_pretrained('distilgpt2' ) A = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(UpperCamelCase__ ) A = -1 A = torch.ones((1, 5) , device=UpperCamelCase__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: A = TextStreamer(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) model.generate(UpperCamelCase__ , max_new_tokens=1 , do_sample=UpperCamelCase__ , streamer=UpperCamelCase__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A = cs.out[:-1] # Remove the final "\n" A = tokenizer(UpperCamelCase__ , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def UpperCamelCase ( self : Union[str, Any] ): A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCamelCase__ ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase__ ) A = TextIteratorStreamer(UpperCamelCase__ , timeout=0.001 ) A = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} A = Thread(target=model.generate , kwargs=UpperCamelCase__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase__ ): A = '' for new_text in streamer: streamer_text += new_text
699
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _UpperCAmelCase = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): A = WATERMARK_BITS A = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images A = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = [self.encoder.encode(UpperCamelCase__ , 'dwtDct' ) for image in images] A = torch.from_numpy(np.array(UpperCamelCase__ ) ).permute(0 , 3 , 1 , 2 ) A = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
699
1
def _lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : int ): """simple docstring""" if height >= 1: move_tower(height - 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) move_disk(__lowerCamelCase , __lowerCamelCase ) move_tower(height - 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" print("moving disk from" , __lowerCamelCase , "to" , __lowerCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = int(input("Height of hanoi: " ).strip() ) move_tower(__lowerCamelCase , "A" , "B" , "C" ) if __name__ == "__main__": main()
447
def _lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : int ): """simple docstring""" if height >= 1: move_tower(height - 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) move_disk(__lowerCamelCase , __lowerCamelCase ) move_tower(height - 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" print("moving disk from" , __lowerCamelCase , "to" , __lowerCamelCase ) def _lowerCAmelCase ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = int(input("Height of hanoi: " ).strip() ) move_tower(__lowerCamelCase , "A" , "B" , "C" ) if __name__ == "__main__": main()
447
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCAmelCase : List[str] = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
683
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase: Dict = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Optional[int] = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[Any] = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys lowerCAmelCase: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
526
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str]=1_3 , UpperCAmelCase__ : int=3_2 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Optional[int]=4 , UpperCAmelCase__ : Any=[1_0, 2_0, 3_0, 4_0] , UpperCAmelCase__ : Union[str, Any]=[2, 2, 3, 2] , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Union[str, Any]=3_7 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : List[str]=1_0 , UpperCAmelCase__ : List[str]=0.02 , UpperCAmelCase__ : Optional[int]=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : Dict=[2, 3, 4] , UpperCAmelCase__ : Optional[Any]=None , ) -> int: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = num_stages __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = out_features __SCREAMING_SNAKE_CASE = out_indices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase_ ( self : Dict ) -> Any: __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : Dict ) -> int: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = ConvNextVaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str ) -> Optional[int]: __SCREAMING_SNAKE_CASE = ConvNextVaForImageClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict ) -> int: __SCREAMING_SNAKE_CASE = ConvNextVaBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = ConvNextVaBackbone(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def UpperCAmelCase_ ( self : Any ) -> Dict: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict def UpperCAmelCase_ ( self : Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Optional[int] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) snake_case__ : Optional[int] = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) snake_case__ : Tuple = False snake_case__ : Dict = False snake_case__ : Optional[int] = False snake_case__ : str = False snake_case__ : Tuple = False def UpperCAmelCase_ ( self : Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE = ConvNextVaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=3_7 ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase_ ( self : List[str] ) -> Dict: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def UpperCAmelCase_ ( self : str ) -> Tuple: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def UpperCAmelCase_ ( self : Optional[int] ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_with_labels() __SCREAMING_SNAKE_CASE = True if model_class.__name__ in [ *get_values(UpperCAmelCase__ ), *get_values(UpperCAmelCase__ ), ]: continue __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.train() __SCREAMING_SNAKE_CASE = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ ).loss loss.backward() def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_with_labels() __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True if ( model_class.__name__ in [*get_values(UpperCAmelCase__ ), *get_values(UpperCAmelCase__ )] or not model_class.supports_gradient_checkpointing ): continue __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.gradient_checkpointing_enable() model.train() __SCREAMING_SNAKE_CASE = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ ).loss loss.backward() def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> List[str]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: def check_hidden_states_output(UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] ): __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Dict: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = ConvNextVaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @cached_property def UpperCAmelCase_ ( self : Tuple ) -> str: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : List[Any] ) -> int: __SCREAMING_SNAKE_CASE = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = preprocessor(images=UpperCAmelCase__ , return_tensors="pt" ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1E-4 ) )
553
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : str , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Tuple ) -> None: warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
553
1
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): """simple docstring""" a_ = CustomTokenizer pass
297
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType _a : Tuple = logging.get_logger(__name__) _a : int = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = '''layoutlmv3''' def __init__( self , UpperCAmelCase=5_0_2_6_5 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-5 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=1_0_2_4 , UpperCAmelCase=1_2_8 , UpperCAmelCase=1_2_8 , UpperCAmelCase=True , UpperCAmelCase=3_2 , UpperCAmelCase=1_2_8 , UpperCAmelCase=6_4 , UpperCAmelCase=2_5_6 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=2_2_4 , UpperCAmelCase=3 , UpperCAmelCase=1_6 , UpperCAmelCase=None , **UpperCAmelCase , ): super().__init__( vocab_size=UpperCAmelCase , hidden_size=UpperCAmelCase , num_hidden_layers=UpperCAmelCase , num_attention_heads=UpperCAmelCase , intermediate_size=UpperCAmelCase , hidden_act=UpperCAmelCase , hidden_dropout_prob=UpperCAmelCase , attention_probs_dropout_prob=UpperCAmelCase , max_position_embeddings=UpperCAmelCase , type_vocab_size=UpperCAmelCase , initializer_range=UpperCAmelCase , layer_norm_eps=UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase , ) __lowerCamelCase = max_ad_position_embeddings __lowerCamelCase = coordinate_size __lowerCamelCase = shape_size __lowerCamelCase = has_relative_attention_bias __lowerCamelCase = rel_pos_bins __lowerCamelCase = max_rel_pos __lowerCamelCase = has_spatial_attention_bias __lowerCamelCase = rel_ad_pos_bins __lowerCamelCase = max_rel_ad_pos __lowerCamelCase = text_embed __lowerCamelCase = visual_embed __lowerCamelCase = input_size __lowerCamelCase = num_channels __lowerCamelCase = patch_size __lowerCamelCase = classifier_dropout class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = version.parse('''1.12''' ) @property def lowerCamelCase_ ( self ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def lowerCamelCase_ ( self ): return 1E-5 @property def lowerCamelCase_ ( self ): return 1_2 def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 4_0 , UpperCAmelCase = 4_0 , ): setattr(processor.image_processor , """apply_ocr""" , UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCamelCase = compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCamelCase = processor.tokenizer.num_special_tokens_to_add(UpperCAmelCase ) __lowerCamelCase = compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowerCamelCase = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowerCamelCase = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowerCamelCase = self._generate_dummy_images(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase = dict( processor( UpperCAmelCase , text=UpperCAmelCase , boxes=UpperCAmelCase , return_tensors=UpperCAmelCase , ) ) return inputs
479
0
UpperCAmelCase ={ "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def _A ( _a : dict , _a : str , _a : Optional[int] ): """simple docstring""" A = set() # keep track of all the paths to be checked A = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue A = queue.pop(0 ) # get the last node from the path A = path[-1] if node not in explored: A = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: A = list(_a ) new_path.append(_a ) queue.append(_a ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_a ) # in case there's no path between the 2 nodes return [] def _A ( _a : dict , _a : Optional[int] , _a : Any ): """simple docstring""" if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 A = [start] A = set(_a ) # Keep tab on distances from `start` node. A = {start: 0, target: -1} while queue: A = queue.pop(0 ) if node == target: A = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_a ) queue.append(_a ) A = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
700
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCAmelCase =[ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _A ( _a : Union[str, Any] , _a : int=None , _a : List[str]=None , _a : Optional[int]=None ): """simple docstring""" A = True while ask_again: A = input(_a ) try: if default is not None and len(_a ) == 0: return default return convert_value(_a ) if convert_value is not None else result except Exception: if error_message is not None: print(_a ) def _A ( _a : List[str] , _a : str=[] , _a : Union[str, Any]=None , _a : Dict=0 ): """simple docstring""" A = BulletMenu(_a , _a ) A = menu.run(default_choice=_a ) return convert_value(_a ) if convert_value is not None else result def _A ( _a : Tuple ): """simple docstring""" A = int(_a ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def _A ( _a : Any ): """simple docstring""" A = int(_a ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def _A ( _a : str ): """simple docstring""" A = int(_a ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _A ( _a : Dict ): """simple docstring""" A = int(_a ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def _A ( _a : List[Any] ): """simple docstring""" A = int(_a ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def _A ( _a : List[Any] ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class lowerCamelCase__ ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Union[str, Any]: A = super()._format_usage(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) A = usage.replace("""<command> [<args>] """ ,"""""" ) return usage
255
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Dict = BlipImageProcessor() SCREAMING_SNAKE_CASE_ : Optional[int] = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) SCREAMING_SNAKE_CASE_ : str = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) SCREAMING_SNAKE_CASE_ : Optional[int] = InstructBlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).tokenizer def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).image_processor def UpperCamelCase__ ( self , **lowerCAmelCase__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).qformer_tokenizer def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : Optional[int] = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE_ : int = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : Any = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor.qformer_tokenizer , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : str = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : List[str] = image_processor(lowerCAmelCase__ , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Optional[int] = processor(images=lowerCAmelCase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : Any = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(text=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = qformer_tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' SCREAMING_SNAKE_CASE_ : int = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : List[str] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.batch_decode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_qformer_tokenizer() SCREAMING_SNAKE_CASE_ : Tuple = InstructBlipProcessor( tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , qformer_tokenizer=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Any = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
101
def _A ( _lowercase ) -> int: """simple docstring""" assert column_title.isupper() __UpperCamelCase = 0 __UpperCamelCase = len(_lowercase ) - 1 __UpperCamelCase = 0 while index >= 0: __UpperCamelCase = (ord(column_title[index] ) - 64) * pow(26 , _lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
1
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCAmelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" A : Optional[int] = MvpTokenizer A : Optional[int] = MvpTokenizerFast A : Optional[int] = True A : Tuple = filter_roberta_detectors def _lowerCamelCase (self ) -> Union[str, Any]: super().setUp() lowercase_ : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowercase_ : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) lowercase_ : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowercase_ : List[str] = {'unk_token': '<unk>'} lowercase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowercase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def _lowerCamelCase (self , **_a ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def _lowerCamelCase (self , **_a ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_a ) def _lowerCamelCase (self , _a ) -> Optional[int]: return "lower newer", "lower newer" @cached_property def _lowerCamelCase (self ) -> Any: return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def _lowerCamelCase (self ) -> int: return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def _lowerCamelCase (self ) -> Tuple: lowercase_ : List[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowercase_ : int = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase_ : Optional[Any] = tokenizer(_a , max_length=len(_a ) , padding=_a , return_tensors='pt' ) self.assertIsInstance(_a , _a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase_ : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(_a , _a ) # Test that special tokens are reset @require_torch def _lowerCamelCase (self ) -> Any: lowercase_ : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase_ : Optional[int] = tokenizer(_a , padding=_a , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , _a ) self.assertIn('attention_mask' , _a ) self.assertNotIn('labels' , _a ) self.assertNotIn('decoder_attention_mask' , _a ) @require_torch def _lowerCamelCase (self ) -> Optional[int]: lowercase_ : Optional[int] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase_ : str = tokenizer(text_target=_a , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def _lowerCamelCase (self ) -> str: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase_ : Any = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=_a , truncation=_a , return_tensors='pt' ) self.assertIsInstance(_a , _a ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def _lowerCamelCase (self ) -> List[str]: lowercase_ : Union[str, Any] = ['A long paragraph for summarization.'] lowercase_ : Dict = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase_ : str = tokenizer(_a , text_target=_a , return_tensors='pt' ) lowercase_ : Optional[int] = inputs['input_ids'] lowercase_ : Union[str, Any] = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def _lowerCamelCase (self ) -> str: pass def _lowerCamelCase (self ) -> Optional[int]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase_ : Tuple = self.rust_tokenizer_class.from_pretrained(_a , **_a ) lowercase_ : Optional[Any] = self.tokenizer_class.from_pretrained(_a , **_a ) lowercase_ : Dict = 'A, <mask> AllenNLP sentence.' lowercase_ : List[Any] = tokenizer_r.encode_plus(_a , add_special_tokens=_a , return_token_type_ids=_a ) lowercase_ : Any = tokenizer_p.encode_plus(_a , add_special_tokens=_a , return_token_type_ids=_a ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) lowercase_ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowercase_ : int = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _a , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
720
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : List[Any] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowercase_ : List[Any] = 128 elif "12-12" in model_name: lowercase_ : Tuple = 12 lowercase_ : List[Any] = 12 elif "14-14" in model_name: lowercase_ : List[str] = 14 lowercase_ : Optional[Any] = 14 elif "16-16" in model_name: lowercase_ : Union[str, Any] = 16 lowercase_ : List[str] = 16 else: raise ValueError('Model not supported' ) lowercase_ : Optional[Any] = 'huggingface/label-files' if "speech-commands" in model_name: lowercase_ : List[str] = 35 lowercase_ : int = 'speech-commands-v2-id2label.json' else: lowercase_ : Union[str, Any] = 527 lowercase_ : int = 'audioset-id2label.json' lowercase_ : Union[str, Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='dataset' ) , 'r' ) ) lowercase_ : Union[str, Any] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowercase_ : Optional[int] = idalabel lowercase_ : Optional[int] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): if "module.v" in name: lowercase_ : Dict = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: lowercase_ : Optional[Any] = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: lowercase_ : Any = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: lowercase_ : List[str] = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowercase_ : int = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: lowercase_ : Optional[Any] = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowercase_ : Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowercase_ : Dict = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase_ : int = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase_ : Optional[int] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase_ : Optional[int] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase_ : int = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowercase_ : int = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: lowercase_ : Dict = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: lowercase_ : List[Any] = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for key in orig_state_dict.copy().keys(): lowercase_ : List[str] = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: lowercase_ : List[str] = key.split('.' ) lowercase_ : int = int(key_split[3] ) lowercase_ : Tuple = config.hidden_size if "weight" in key: lowercase_ : Tuple = val[:dim, :] lowercase_ : Union[str, Any] = val[dim : dim * 2, :] lowercase_ : Optional[int] = val[-dim:, :] else: lowercase_ : Optional[Any] = val[:dim] lowercase_ : Any = val[dim : dim * 2] lowercase_ : Tuple = val[-dim:] else: lowercase_ : Optional[Any] = val return orig_state_dict def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : List[Any] = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): lowercase_ : Dict = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE_ ) lowercase_ : Optional[int] = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict lowercase_ : Dict = model_name_to_url[model_name] lowercase_ : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE_ ) # rename some keys lowercase_ : str = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load 🤗 model lowercase_ : Optional[Any] = ASTForAudioClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowercase_ : Tuple = -4.267_7393 if 'speech-commands' not in model_name else -6.84_5978 lowercase_ : str = 4.568_9974 if 'speech-commands' not in model_name else 5.565_4526 lowercase_ : str = 1_024 if 'speech-commands' not in model_name else 128 lowercase_ : Dict = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) if "speech-commands" in model_name: lowercase_ : Optional[Any] = load_dataset('speech_commands' , 'v0.02' , split='validation' ) lowercase_ : Any = dataset[0]['audio']['array'] else: lowercase_ : Any = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) lowercase_ ,lowercase_ : Union[str, Any] = torchaudio.load(SCREAMING_SNAKE_CASE_ ) lowercase_ : str = waveform.squeeze().numpy() lowercase_ : str = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=16_000 , return_tensors='pt' ) # forward pass lowercase_ : Tuple = model(**SCREAMING_SNAKE_CASE_ ) lowercase_ : Tuple = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowercase_ : int = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowercase_ : Optional[int] = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowercase_ : Optional[Any] = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowercase_ : List[str] = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowercase_ : List[str] = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowercase_ : Any = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowercase_ : List[str] = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowercase_ : Optional[Any] = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
438
0
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) SCREAMING_SNAKE_CASE__ = 'pytorch_model.bin' SCREAMING_SNAKE_CASE__ = 'pytorch_model.bin.index.json' SCREAMING_SNAKE_CASE__ = 'adapter_config.json' SCREAMING_SNAKE_CASE__ = 'adapter_model.bin' SCREAMING_SNAKE_CASE__ = 'adapter_model.safetensors' SCREAMING_SNAKE_CASE__ = 'tf_model.h5' SCREAMING_SNAKE_CASE__ = 'tf_model.h5.index.json' SCREAMING_SNAKE_CASE__ = 'model.ckpt' SCREAMING_SNAKE_CASE__ = 'flax_model.msgpack' SCREAMING_SNAKE_CASE__ = 'flax_model.msgpack.index.json' SCREAMING_SNAKE_CASE__ = 'model.safetensors' SCREAMING_SNAKE_CASE__ = 'model.safetensors.index.json' SCREAMING_SNAKE_CASE__ = 'config.json' SCREAMING_SNAKE_CASE__ = 'preprocessor_config.json' SCREAMING_SNAKE_CASE__ = FEATURE_EXTRACTOR_NAME SCREAMING_SNAKE_CASE__ = 'generation_config.json' SCREAMING_SNAKE_CASE__ = 'modelcard.json' SCREAMING_SNAKE_CASE__ = '▁' SCREAMING_SNAKE_CASE__ = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility SCREAMING_SNAKE_CASE__ = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. SCREAMING_SNAKE_CASE__ = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] SCREAMING_SNAKE_CASE__ = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def lowercase__ ( __UpperCamelCase )-> Tuple: if version.parse(__UpperCamelCase ) < version.parse(__UpperCamelCase ): if "dev" in min_version: UpperCamelCase = ( """This example requires a source install from HuggingFace Transformers (see """ """`https://huggingface.co/docs/transformers/installation#install-from-source`),""" ) else: UpperCamelCase = F"This example requires a minimum version of {min_version}," error_message += F" but the version found is {__version__}.\n" raise ImportError( error_message + """Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other """ """versions of HuggingFace Transformers.""" )
301
'''simple docstring''' import argparse import copy def lowercase__ ( __UpperCamelCase )-> Union[str, Any]: UpperCamelCase = {} with open(__UpperCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCamelCase = [] _list.append([line.split()[1], line.split()[2]] ) UpperCamelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCamelCase = [] _list.append([line.split()[0], line.split()[2]] ) UpperCamelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: with open(__UpperCamelCase ) as f: UpperCamelCase = f.read(1 ) UpperCamelCase = start_node UpperCamelCase = [] UpperCamelCase = start_node UpperCamelCase = 0 while visiting not in first_solution: UpperCamelCase = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__UpperCamelCase ) and k[0] not in first_solution: UpperCamelCase = k[1] UpperCamelCase = k[0] first_solution.append(__UpperCamelCase ) UpperCamelCase = distance_of_first_solution + int(__UpperCamelCase ) UpperCamelCase = best_node first_solution.append(__UpperCamelCase ) UpperCamelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCamelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[Any]: UpperCamelCase = [] for n in solution[1:-1]: UpperCamelCase = solution.index(__UpperCamelCase ) for kn in solution[1:-1]: UpperCamelCase = solution.index(__UpperCamelCase ) if n == kn: continue UpperCamelCase = copy.deepcopy(__UpperCamelCase ) UpperCamelCase = kn UpperCamelCase = n UpperCamelCase = 0 for k in _tmp[:-1]: UpperCamelCase = _tmp[_tmp.index(__UpperCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCamelCase = distance + int(i[1] ) _tmp.append(__UpperCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCamelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __UpperCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: UpperCamelCase = 1 UpperCamelCase = first_solution UpperCamelCase = [] UpperCamelCase = distance_of_first_solution UpperCamelCase = solution while count <= iters: UpperCamelCase = find_neighborhood(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase = 0 UpperCamelCase = neighborhood[index_of_best_solution] UpperCamelCase = len(__UpperCamelCase ) - 1 UpperCamelCase = False while not found: UpperCamelCase = 0 while i < len(__UpperCamelCase ): if best_solution[i] != solution[i]: UpperCamelCase = best_solution[i] UpperCamelCase = solution[i] break UpperCamelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCamelCase = True UpperCamelCase = best_solution[:-1] UpperCamelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCamelCase = cost UpperCamelCase = solution else: UpperCamelCase = index_of_best_solution + 1 UpperCamelCase = neighborhood[index_of_best_solution] if len(__UpperCamelCase ) >= size: tabu_list.pop(0 ) UpperCamelCase = count + 1 return best_solution_ever, best_cost def lowercase__ ( __UpperCamelCase=None )-> Tuple: UpperCamelCase = generate_neighbours(args.File ) UpperCamelCase ,UpperCamelCase = generate_first_solution( args.File , __UpperCamelCase ) UpperCamelCase ,UpperCamelCase = tabu_search( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
301
1
"""simple docstring""" import sys _UpperCAmelCase = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def __magic_name__ ( lowercase ): SCREAMING_SNAKE_CASE_: int =1 for digit in s: product *= int(lowercase ) return product def __magic_name__ ( lowercase = N ): SCREAMING_SNAKE_CASE_: Dict =-sys.maxsize - 1 SCREAMING_SNAKE_CASE_: Dict =n[:13] SCREAMING_SNAKE_CASE_: Dict =13 while cur_index < len(lowercase ) - 13: if int(n[cur_index] ) >= int(substr[0] ): SCREAMING_SNAKE_CASE_: int =substr[1:] + n[cur_index] cur_index += 1 else: SCREAMING_SNAKE_CASE_: Optional[int] =max(lowercase , str_eval(lowercase ) ) SCREAMING_SNAKE_CASE_: Optional[int] =n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
36
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __magic_name__ ( lowercase ): if "cls_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: SCREAMING_SNAKE_CASE_: Optional[int] =name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: str =name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE_: List[Any] =name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: SCREAMING_SNAKE_CASE_: str =name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE_: Union[str, Any] =name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE_: Optional[Any] =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_: int =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_: Dict =name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE_: Tuple =name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE_: Any =name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE_: List[str] =name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def __magic_name__ ( lowercase , lowercase ): for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_: Optional[int] =orig_state_dict.pop(lowercase ) if "qkv" in key: SCREAMING_SNAKE_CASE_: Dict =key.split(""".""" ) SCREAMING_SNAKE_CASE_: Optional[Any] =int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE_: int =config.decoder_hidden_size SCREAMING_SNAKE_CASE_: Optional[int] ="""decoder.decoder_layers.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Dict =val[:dim, :] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: str =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: List[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Tuple =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: List[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Any =config.hidden_size SCREAMING_SNAKE_CASE_: Union[str, Any] ="""vit.encoder.layer.""" if "weight" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim, :] SCREAMING_SNAKE_CASE_: Optional[Any] =val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_: Dict =val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE_: Optional[Any] =val[:dim] SCREAMING_SNAKE_CASE_: Any =val[dim : dim * 2] SCREAMING_SNAKE_CASE_: Optional[Any] =val[-dim:] else: SCREAMING_SNAKE_CASE_: Tuple =val return orig_state_dict def __magic_name__ ( lowercase , lowercase ): SCREAMING_SNAKE_CASE_: Dict =ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: List[Any] =1024 SCREAMING_SNAKE_CASE_: Dict =4096 SCREAMING_SNAKE_CASE_: Tuple =24 SCREAMING_SNAKE_CASE_: int =16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Union[str, Any] =14 SCREAMING_SNAKE_CASE_: Any =1280 SCREAMING_SNAKE_CASE_: Dict =5120 SCREAMING_SNAKE_CASE_: Optional[int] =32 SCREAMING_SNAKE_CASE_: Optional[Any] =16 SCREAMING_SNAKE_CASE_: Tuple =ViTMAEForPreTraining(lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =torch.hub.load_state_dict_from_url(lowercase , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE_: Optional[Any] =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: str =convert_state_dict(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() SCREAMING_SNAKE_CASE_: Tuple ="""https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" SCREAMING_SNAKE_CASE_: List[Any] =Image.open(requests.get(lowercase , stream=lowercase ).raw ) SCREAMING_SNAKE_CASE_: int =ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE_: int =image_processor(images=lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE_: Optional[Any] =model(**lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] =outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE_: Dict =torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE_: Tuple =torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: SCREAMING_SNAKE_CASE_: Any =torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) _UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
36
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __lowerCamelCase : Optional[Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __lowerCamelCase : Any = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __lowerCamelCase : Dict = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def __UpperCamelCase( self , A_ , A_ , A_=None , A_=True , A_=False ): '''simple docstring''' if rouge_types is None: UpperCamelCase : Optional[int] = ["rouge1", "rouge2", "rougeL", "rougeLsum"] UpperCamelCase : Union[str, Any] = rouge_scorer.RougeScorer(rouge_types=snake_case__ , use_stemmer=snake_case__ ) if use_aggregator: UpperCamelCase : int = scoring.BootstrapAggregator() else: UpperCamelCase : List[str] = [] for ref, pred in zip(snake_case__ , snake_case__ ): UpperCamelCase : Union[str, Any] = scorer.score(snake_case__ , snake_case__ ) if use_aggregator: aggregator.add_scores(snake_case__ ) else: scores.append(snake_case__ ) if use_aggregator: UpperCamelCase : Tuple = aggregator.aggregate() else: UpperCamelCase : List[str] = {} for key in scores[0]: UpperCamelCase : Optional[int] = [score[key] for score in scores] return result
629
"""simple docstring""" from pathlib import Path import fire def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : int ) -> int: lowerCamelCase_ : Any =Path(lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =Path(lowerCamelCase__ ) dest_dir.mkdir(exist_ok=lowerCamelCase__ ) for path in src_dir.iterdir(): lowerCamelCase_ : Optional[Any] =[x.rstrip() for x in list(path.open().readlines() )][:n] lowerCamelCase_ : Tuple =dest_dir.joinpath(path.name ) print(lowerCamelCase__ ) dest_path.open("w" ).write("\n".join(lowerCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
153
0
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def A_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" __A : Any = checkpoints.load_tax_checkpoint(__SCREAMING_SNAKE_CASE ) __A : Optional[Any] = flatten_dict(__SCREAMING_SNAKE_CASE ) return flax_params def A_ ( __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" __A : Any = {} __A : str = { """token_embedder""": """embeddings""", """encoder_norm""": """layernorm""", """kernel""": """weight""", """.out""": """.output""", """scale""": """weight""", """embedders_0.pos_embedding""": """row_embedder.weight""", """embedders_1.pos_embedding""": """column_embedder.weight""", } __A : List[str] = { """query""": """attention.query""", """key""": """attention.key""", """value""": """attention.value""", """output.dense""": """output""", """encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""", """pre_self_attention_layer_norm""": """self_attention.layer_norm""", """pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""", """mlp.""": """mlp.DenseReluDense.""", """pre_mlp_layer_norm""": """mlp.layer_norm""", """self_attention.o""": """self_attention.attention.o""", """decoder.embeddings.embedding""": """decoder.embed_tokens.weight""", """decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""", """decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.logits_dense.weight""": """decoder.lm_head.weight""", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __A : Optional[Any] = """.""".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __A : Optional[int] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __A : Optional[Any] = new_key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __A : List[Any] = re.sub(R"""layers_(\d+)""" , R"""layer.\1""" , __SCREAMING_SNAKE_CASE ) __A : Tuple = new_key.replace("""encoder""" , """encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __A : Union[str, Any] = re.sub(R"""layers_(\d+)""" , R"""layer.\1""" , __SCREAMING_SNAKE_CASE ) __A : Optional[Any] = flax_dict[key] __A : Optional[Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __A : Tuple = torch.from_numpy(converted_dict[key].T ) else: __A : Dict = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def A_ ( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : List[str]=False ) -> str: """simple docstring""" __A : Any = get_flax_param(__SCREAMING_SNAKE_CASE ) if not use_large: __A : List[Any] = PixaStructVisionConfig() __A : Tuple = PixaStructTextConfig() else: __A : Any = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) __A : Any = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) __A : Dict = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=__SCREAMING_SNAKE_CASE ) __A : Tuple = PixaStructForConditionalGeneration(__SCREAMING_SNAKE_CASE ) __A : Optional[int] = rename_and_convert_flax_params(__SCREAMING_SNAKE_CASE ) model.load_state_dict(__SCREAMING_SNAKE_CASE ) __A : Dict = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) __A : Union[str, Any] = PixaStructImageProcessor() __A : Dict = PixaStructProcessor(image_processor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) if use_large: __A : List[Any] = 4096 __A : Optional[Any] = True # mkdir if needed os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) print("""Model saved in {}""".format(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": A__ : Dict =argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') A__ : str =parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
706
'''simple docstring''' from collections.abc import Sequence def A_ ( __SCREAMING_SNAKE_CASE : Sequence[float] , __SCREAMING_SNAKE_CASE : bool = False ) -> float: """simple docstring""" if not arr: return 0 __A : Any = 0 if allow_empty_subarrays else float("""-inf""" ) __A : List[Any] = 0.0 for num in arr: __A : Tuple = max(0 if allow_empty_subarrays else num , curr_sum + num ) __A : Optional[int] = max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() A__ : Any =[-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
499
0
import string def _A ( _lowercase ) -> None: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __UpperCamelCase = '' for symbol in message: if symbol in string.ascii_uppercase: __UpperCamelCase = string.ascii_uppercase.find(_lowercase ) __UpperCamelCase = num - key if num < 0: __UpperCamelCase = num + len(string.ascii_uppercase ) __UpperCamelCase = translated + string.ascii_uppercase[num] else: __UpperCamelCase = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def _A ( ) -> None: """simple docstring""" __UpperCamelCase = input('Encrypted message: ' ) __UpperCamelCase = message.upper() decrypt(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
1
def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def _A ( _lowercase , _lowercase=0 ) -> Dict: """simple docstring""" return sorted(_lowercase , key=lambda _lowercase : x[column] ) def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> List[Any]: """simple docstring""" for i in range(points_counts - 1 ): for j in range(i + 1 , _lowercase ): __UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCamelCase = current_dis return min_dis def _A ( _lowercase , _lowercase , _lowercase=float('inf' ) ) -> Tuple: """simple docstring""" for i in range(min(6 , points_counts - 1 ) , _lowercase ): for j in range(max(0 , i - 6 ) , _lowercase ): __UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: __UpperCamelCase = current_dis return min_dis def _A ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: """simple docstring""" if points_counts <= 3: return dis_between_closest_pair(_lowercase , _lowercase ) # recursion __UpperCamelCase = points_counts // 2 __UpperCamelCase = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[:mid] , _lowercase ) __UpperCamelCase = closest_pair_of_points_sqr( _lowercase , points_sorted_on_y[mid:] , points_counts - mid ) __UpperCamelCase = min(_lowercase , _lowercase ) __UpperCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(_lowercase ) __UpperCamelCase = dis_between_closest_in_strip( _lowercase , len(_lowercase ) , _lowercase ) return min(_lowercase , _lowercase ) def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = column_based_sort(_lowercase , column=0 ) __UpperCamelCase = column_based_sort(_lowercase , column=1 ) return ( closest_pair_of_points_sqr( _lowercase , _lowercase , _lowercase ) ) ** 0.5 if __name__ == "__main__": __snake_case = [(2, 3), (1_2, 3_0), (4_0, 5_0), (5, 1), (1_2, 1_0), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
1
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class lowerCamelCase : def __init__( self : Optional[int] , __snake_case : int , __snake_case : Tuple=13 , __snake_case : Any=7 , __snake_case : Union[str, Any]=True , __snake_case : List[str]=True , __snake_case : Optional[int]=False , __snake_case : List[Any]=True , __snake_case : str=99 , __snake_case : Optional[int]=32 , __snake_case : Any=5 , __snake_case : Tuple=4 , __snake_case : List[Any]=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : List[str]=0.1 , __snake_case : int=0.1 , __snake_case : Any=5_12 , __snake_case : Dict=16 , __snake_case : int=2 , __snake_case : Any=0.02 , __snake_case : Any=3 , __snake_case : str=4 , __snake_case : int=None , ): '''simple docstring''' _snake_case: Dict = parent _snake_case: Optional[int] = batch_size _snake_case: List[Any] = seq_length _snake_case: Union[str, Any] = is_training _snake_case: Optional[Any] = use_input_mask _snake_case: Dict = use_token_type_ids _snake_case: Any = use_labels _snake_case: Optional[Any] = vocab_size _snake_case: List[Any] = hidden_size _snake_case: int = num_hidden_layers _snake_case: List[str] = num_attention_heads _snake_case: List[Any] = intermediate_size _snake_case: Optional[Any] = hidden_act _snake_case: str = hidden_dropout_prob _snake_case: List[str] = attention_probs_dropout_prob _snake_case: Dict = max_position_embeddings _snake_case: Optional[Any] = type_vocab_size _snake_case: List[Any] = type_sequence_label_size _snake_case: List[str] = initializer_range _snake_case: List[str] = num_labels _snake_case: Tuple = num_choices _snake_case: Dict = scope def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case: int = None if self.use_input_mask: _snake_case: List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case: List[Any] = None if self.use_token_type_ids: _snake_case: str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case: Optional[int] = None _snake_case: Tuple = None _snake_case: Union[str, Any] = None if self.use_labels: _snake_case: Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case: Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _snake_case: Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , __snake_case : List[Any] , __snake_case : Any , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : int ): '''simple docstring''' _snake_case: Optional[Any] = LlamaModel(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Optional[Any] = model(__snake_case , attention_mask=__snake_case ) _snake_case: Tuple = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : str , __snake_case : int , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : Any , ): '''simple docstring''' _snake_case: str = True _snake_case: int = LlamaModel(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: int = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) _snake_case: Optional[int] = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , ) _snake_case: List[str] = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , __snake_case : List[str] , __snake_case : Dict , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : Union[str, Any] , ): '''simple docstring''' _snake_case: Union[str, Any] = LlamaForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: str = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : int , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Any , ): '''simple docstring''' _snake_case: Any = True _snake_case: Optional[int] = True _snake_case: List[str] = LlamaForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() # first forward pass _snake_case: Dict = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , use_cache=__snake_case , ) _snake_case: Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _snake_case: Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case: str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _snake_case: Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case: Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) _snake_case: Tuple = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , output_hidden_states=__snake_case , )['hidden_states'][0] _snake_case: Dict = model( __snake_case , attention_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , past_key_values=__snake_case , output_hidden_states=__snake_case , )['hidden_states'][0] # select random slice _snake_case: List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case: str = output_from_no_past[:, -3:, random_slice_idx].detach() _snake_case: Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' _snake_case: List[str] = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ): Dict = config_and_inputs _snake_case: Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: Optional[int] = LlamaModelTester(self ) _snake_case: Dict = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case: Union[str, Any] = type self.model_tester.create_and_check_model(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case , _snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case: int = 3 _snake_case: Optional[Any] = input_dict['input_ids'] _snake_case: Tuple = input_ids.ne(1 ).to(__snake_case ) _snake_case: Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _snake_case: Union[str, Any] = LlamaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: str = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case , _snake_case: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case: Dict = 3 _snake_case: str = 'single_label_classification' _snake_case: List[str] = input_dict['input_ids'] _snake_case: Optional[int] = input_ids.ne(1 ).to(__snake_case ) _snake_case: List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _snake_case: Optional[Any] = LlamaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Optional[Any] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case: int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case: Any = 3 _snake_case: Optional[int] = 'multi_label_classification' _snake_case: Tuple = input_dict['input_ids'] _snake_case: Optional[Any] = input_ids.ne(1 ).to(__snake_case ) _snake_case: List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _snake_case: Union[str, Any] = LlamaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Optional[int] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , __snake_case : Union[str, Any] ): '''simple docstring''' _snake_case , _snake_case: int = self.model_tester.prepare_config_and_inputs_for_common() _snake_case: Optional[int] = ids_tensor([1, 10] , config.vocab_size ) _snake_case: Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _snake_case: Tuple = LlamaModel(__snake_case ) original_model.to(__snake_case ) original_model.eval() _snake_case: List[Any] = original_model(__snake_case ).last_hidden_state _snake_case: List[str] = original_model(__snake_case ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _snake_case: Tuple = {'type': scaling_type, 'factor': 10.0} _snake_case: List[Any] = LlamaModel(__snake_case ) scaled_model.to(__snake_case ) scaled_model.eval() _snake_case: Dict = scaled_model(__snake_case ).last_hidden_state _snake_case: str = scaled_model(__snake_case ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__snake_case , __snake_case , atol=1e-5 ) ) @require_torch class lowerCamelCase ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: List[str] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _snake_case: Optional[int] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) _snake_case: Optional[int] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 _snake_case: List[Any] = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , __snake_case , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _snake_case: Tuple = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __snake_case , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: Union[str, Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _snake_case: Any = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) _snake_case: int = model(torch.tensor(__snake_case ) ) # Expected mean on dim = -1 _snake_case: List[Any] = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , __snake_case , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _snake_case: Optional[Any] = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __snake_case , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: List[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _snake_case: Any = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) _snake_case: List[str] = model(torch.tensor(__snake_case ) ) # Expected mean on dim = -1 _snake_case: List[Any] = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , __snake_case , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off _snake_case: Optional[int] = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __snake_case , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: int = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] _snake_case: Any = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) _snake_case: Dict = model(torch.tensor(__snake_case ) ) _snake_case: Optional[Any] = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __snake_case , atol=1e-2 , rtol=1e-2 ) # fmt: off _snake_case: str = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __snake_case , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' _snake_case: Dict = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' _snake_case: Dict = 'Simply put, the theory of relativity states that ' _snake_case: List[str] = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) _snake_case: Optional[Any] = tokenizer.encode(__snake_case , return_tensors='pt' ) _snake_case: Optional[int] = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=__snake_case ) # greedy generation outputs _snake_case: List[Any] = model.generate(__snake_case , max_new_tokens=64 , top_p=__snake_case , temperature=1 , do_sample=__snake_case ) _snake_case: Dict = tokenizer.decode(generated_ids[0] , skip_special_tokens=__snake_case ) self.assertEqual(__snake_case , __snake_case )
273
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') A : Optional[int] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) A : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) A : List[Any] = BeautifulSoup(res.text, 'html.parser') A : List[Any] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F'https://google.com{link.get("href")}')
273
1
def lowerCamelCase_(lowerCamelCase_ ) -> float: return 10 - x * x def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(lowerCamelCase_ ) * equation(lowerCamelCase_ ) >= 0: raise ValueError("Wrong space!" ) UpperCAmelCase = a while (b - a) >= 0.01: # Find middle point UpperCAmelCase = (a + b) / 2 # Check if middle point is root if equation(lowerCamelCase_ ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCamelCase_ ) * equation(lowerCamelCase_ ) < 0: UpperCAmelCase = c else: UpperCAmelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
323
def lowerCamelCase_(lowerCamelCase_ ) -> None: UpperCAmelCase = generate_pascal_triangle(lowerCamelCase_ ) for row_idx in range(lowerCamelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def lowerCamelCase_(lowerCamelCase_ ) -> list[list[int]]: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCAmelCase = [] for current_row_idx in range(lowerCamelCase_ ): UpperCAmelCase = populate_current_row(lowerCamelCase_ , lowerCamelCase_ ) triangle.append(lowerCamelCase_ ) return triangle def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> list[int]: UpperCAmelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCAmelCase , UpperCAmelCase = 1, 1 for current_col_idx in range(1 , lowerCamelCase_ ): calculate_current_element( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return current_row def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> None: UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx - 1] UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx] UpperCAmelCase = above_to_left_elt + above_to_right_elt def lowerCamelCase_(lowerCamelCase_ ) -> list[list[int]]: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCAmelCase = [[1]] for row_index in range(1 , lowerCamelCase_ ): UpperCAmelCase = [0] + result[-1] + [0] UpperCAmelCase = row_index + 1 # Calculate the number of distinct elements in a row UpperCAmelCase = sum(divmod(lowerCamelCase_ , 2 ) ) UpperCAmelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCAmelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCAmelCase = row_first_half + row_second_half result.append(lowerCamelCase_ ) return result def lowerCamelCase_() -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) -> None: UpperCAmelCase = F'{func.__name__}({value})' UpperCAmelCase = timeit(F'__main__.{call}' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
323
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = s.rsplit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return new.join(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = {} lowercase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase = key.replace(F'''{group_key}.''' , F'''{group_key}.group.''' ) if "res_path" in key: lowercase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): lowercase = rreplace(__SCREAMING_SNAKE_CASE , '.w' , '.weight' , 1 ) if key.endswith('.b' ): lowercase = rreplace(__SCREAMING_SNAKE_CASE , '.b' , '.bias' , 1 ) lowercase = value.float() return upgrade @torch.no_grad() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True ): from dall_e import Encoder lowercase = Encoder() if os.path.exists(__SCREAMING_SNAKE_CASE ): lowercase = torch.load(__SCREAMING_SNAKE_CASE ) else: lowercase = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = ckpt.state_dict() encoder.load_state_dict(__SCREAMING_SNAKE_CASE ) if config_path is not None: lowercase = FlavaImageCodebookConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: lowercase = FlavaImageCodebookConfig() lowercase = FlavaImageCodebook(__SCREAMING_SNAKE_CASE ).eval() lowercase = encoder.state_dict() lowercase = upgrade_state_dict(__SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(__SCREAMING_SNAKE_CASE ) lowercase = hf_model.state_dict() lowercase = count_parameters(__SCREAMING_SNAKE_CASE ) lowercase = count_parameters(__SCREAMING_SNAKE_CASE ) assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(__SCREAMING_SNAKE_CASE ) else: return hf_state_dict if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') UpperCAmelCase = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
565
from bisect import bisect from itertools import accumulate def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = sorted(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , key=lambda __SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=__SCREAMING_SNAKE_CASE ) lowercase , lowercase = [i[0] for i in r], [i[1] for i in r] lowercase = list(accumulate(__SCREAMING_SNAKE_CASE ) ) lowercase = bisect(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
565
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase ={"""vocab_file""": """spiece.model"""} __UpperCAmelCase ={ """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 __UpperCAmelCase ={ """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } __UpperCAmelCase ="""▁""" class lowerCAmelCase__ ( a_ ): lowercase__ : Optional[Any] = VOCAB_FILES_NAMES lowercase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Any = ['''input_ids''', '''attention_mask'''] def __init__( self , UpperCamelCase__ , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__=1_00 , UpperCamelCase__=None , UpperCamelCase__ = None , UpperCamelCase__=True , **UpperCamelCase__ , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: A__ = [f"""<extra_id_{i}>""" for i in range(lowercase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens A__ = len(set(filter(lambda UpperCamelCase__ : bool("extra_id" in str(lowercase_ ) ) , lowercase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( f"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) A__ = legacy A__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , extra_ids=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , legacy=lowercase_ , **lowercase_ , ) A__ = vocab_file A__ = extra_ids A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @staticmethod def lowercase_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: A__ = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , lowercase_ , ) return max_model_length @property def lowercase_ ( self ): '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def lowercase_ ( self ): '''simple docstring''' A__ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase_ )) + [1] return ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] def lowercase_ ( self ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"<extra_id_\d+>" , lowercase_ ) ) is not None , self.additional_special_tokens ) ) ) def lowercase_ ( self ): '''simple docstring''' return [self._convert_token_to_id(lowercase_ ) for token in self.get_sentinel_tokens()] def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if len(lowercase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' A__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' A__ = self._add_eos_if_not_present(lowercase_ ) if token_ids_a is None: return token_ids_a else: A__ = self._add_eos_if_not_present(lowercase_ ) return token_ids_a + token_ids_a def __getstate__( self ): '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self , UpperCamelCase__ ): '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' if not self.legacy: A__ = SPIECE_UNDERLINE + text.replace(lowercase_ , " " ) return super().tokenize(lowercase_ , **lowercase_ ) def lowercase_ ( self , UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' if not self.legacy: A__ = text.startswith(lowercase_ ) if is_first: A__ = text[1:] A__ = self.sp_model.encode(lowercase_ , out_type=lowercase_ ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(lowercase_ ): A__ = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if token.startswith("<extra_id_" ): A__ = re.match(R"<extra_id_(\d+)>" , lowercase_ ) A__ = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowercase_ ) def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' if index < self.sp_model.get_piece_size(): A__ = self.sp_model.IdToPiece(lowercase_ ) else: A__ = f"""<extra_id_{self.vocab_size - 1 - index}>""" return token def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = [] A__ = "" A__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase_ ) + token A__ = True A__ = [] else: current_sub_tokens.append(lowercase_ ) A__ = False out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ): '''simple docstring''' if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , "wb" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
337
lowerCamelCase_ = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
318
0
from __future__ import annotations from collections.abc import Iterator from typing import Any class _SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowerCamelCase : int ): UpperCamelCase :Any = data UpperCamelCase :Node | None = None class _SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] ): UpperCamelCase :Union[str, Any] = None UpperCamelCase :int = None def __iter__( self : Dict ): UpperCamelCase :Tuple = self.head while self.head: yield node.data UpperCamelCase :Union[str, Any] = node.next if node == self.head: break def __len__( self : Optional[Any] ): return sum(1 for _ in self ) def __repr__( self : Any ): return "->".join(str(lowercase__ ) for item in iter(self ) ) def _A ( self : List[Any] , __lowerCamelCase : List[Any] ): self.insert_nth(len(self ) , lowercase__ ) def _A ( self : Dict , __lowerCamelCase : str ): self.insert_nth(0 , lowercase__ ) def _A ( self : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): if index < 0 or index > len(self ): raise IndexError("""list index out of range.""" ) UpperCamelCase :Union[str, Any] = Node(lowercase__ ) if self.head is None: UpperCamelCase :List[Any] = new_node # first node points itself UpperCamelCase :Union[str, Any] = new_node elif index == 0: # insert at head UpperCamelCase :int = self.head UpperCamelCase :str = new_node else: UpperCamelCase :Any = self.head for _ in range(index - 1 ): UpperCamelCase :Union[str, Any] = temp.next UpperCamelCase :Dict = temp.next UpperCamelCase :List[str] = new_node if index == len(self ) - 1: # insert at tail UpperCamelCase :Tuple = new_node def _A ( self : Any ): return self.delete_nth(0 ) def _A ( self : Any ): return self.delete_nth(len(self ) - 1 ) def _A ( self : int , __lowerCamelCase : str = 0 ): if not 0 <= index < len(self ): raise IndexError("""list index out of range.""" ) UpperCamelCase :Union[str, Any] = self.head if self.head == self.tail: # just one node UpperCamelCase :Tuple = None elif index == 0: # delete head node UpperCamelCase :List[str] = self.tail.next.next UpperCamelCase :Optional[Any] = self.head.next else: UpperCamelCase :Union[str, Any] = self.head for _ in range(index - 1 ): UpperCamelCase :Tuple = temp.next UpperCamelCase :str = temp.next UpperCamelCase :Optional[Any] = temp.next.next if index == len(self ) - 1: # delete at tail UpperCamelCase :List[str] = temp return delete_node.data def _A ( self : Optional[Any] ): return len(self ) == 0 def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: """simple docstring""" UpperCamelCase :Optional[Any] = CircularLinkedList() assert len(SCREAMING_SNAKE_CASE__ ) == 0 assert circular_linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE__ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(SCREAMING_SNAKE_CASE__ ) == i circular_linked_list.insert_nth(SCREAMING_SNAKE_CASE__ , i + 1 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
704
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : int ): # A mock response for an HTTP head request to emulate server down UpperCamelCase :List[str] = mock.Mock() UpperCamelCase :List[Any] = 500 UpperCamelCase :List[Any] = {} UpperCamelCase :Tuple = HTTPError UpperCamelCase :Union[str, Any] = {} # Download this model to make sure it's in the cache. UpperCamelCase :Union[str, Any] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=__lowerCamelCase ) as mock_head: UpperCamelCase :List[str] = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _A ( self : Union[str, Any] ): # A mock response for an HTTP head request to emulate server down UpperCamelCase :Union[str, Any] = mock.Mock() UpperCamelCase :Any = 500 UpperCamelCase :Optional[Any] = {} UpperCamelCase :Optional[int] = HTTPError UpperCamelCase :List[Any] = {} # Download this model to make sure it's in the cache. UpperCamelCase :Any = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" , return_value=__lowerCamelCase ) as mock_head: UpperCamelCase :List[str] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def _A ( self : Optional[Any] ): # This test is for deprecated behavior and can be removed in v5 try: UpperCamelCase :List[Any] = tempfile.mktemp() with open(__lowerCamelCase , """wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = AlbertTokenizer.from_pretrained(__lowerCamelCase ) finally: os.remove(__lowerCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" , """wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" , __lowerCamelCase ) UpperCamelCase :Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def _A ( self : Dict ): # This test is for deprecated behavior and can be removed in v5 UpperCamelCase :Optional[int] = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case__ : Union[str, Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def _A ( cls : Optional[Any] ): UpperCamelCase :Optional[int] = TOKEN HfFolder.save_token(__lowerCamelCase ) @classmethod def _A ( cls : Tuple ): try: delete_repo(token=cls._token , repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def _A ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :List[str] = os.path.join(__lowerCamelCase , """vocab.txt""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCamelCase :Any = BertTokenizer(__lowerCamelCase ) tokenizer.push_to_hub("""test-tokenizer""" , use_auth_token=self._token ) UpperCamelCase :Optional[int] = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase , repo_id="""test-tokenizer""" , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) UpperCamelCase :Optional[int] = BertTokenizer.from_pretrained(F"""{USER}/test-tokenizer""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _A ( self : Optional[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :List[Any] = os.path.join(__lowerCamelCase , """vocab.txt""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCamelCase :Optional[Any] = BertTokenizer(__lowerCamelCase ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" , use_auth_token=self._token ) UpperCamelCase :Optional[int] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __lowerCamelCase , repo_id="""valid_org/test-tokenizer-org""" , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) UpperCamelCase :int = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _A ( self : Tuple ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :Optional[int] = os.path.join(__lowerCamelCase , """vocab.txt""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCamelCase :Tuple = CustomTokenizer(__lowerCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase :Dict = os.path.join(__lowerCamelCase , """vocab.txt""" ) with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCamelCase :Dict = BertTokenizerFast.from_pretrained(__lowerCamelCase ) bert_tokenizer.save_pretrained(__lowerCamelCase ) UpperCamelCase :List[str] = CustomTokenizerFast.from_pretrained(__lowerCamelCase ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" , use_auth_token=self._token ) UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained(F"""{USER}/test-dynamic-tokenizer""" , trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizerFast""" ) UpperCamelCase :List[str] = AutoTokenizer.from_pretrained( F"""{USER}/test-dynamic-tokenizer""" , use_fast=__lowerCamelCase , trust_remote_code=__lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , """CustomTokenizer""" ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : int ): UpperCamelCase :Any = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data , {"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def _A ( self : List[str] ): UpperCamelCase :List[Any] = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) , ["""[CLS]""", """ This is a """, """extra_id_100"""] ) def _A ( self : List[str] ): UpperCamelCase :int = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) , ["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) , ["""BC""", """A"""] ) def _A ( self : List[Any] ): UpperCamelCase :int = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def _A ( self : Tuple ): UpperCamelCase :Dict = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) , ["""This is something """, """[SPECIAL_TOKEN]"""] ) def _A ( self : str ): UpperCamelCase :Dict = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) , ["""AB""", """C"""] ) def _A ( self : List[str] ): UpperCamelCase :Tuple = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) , ["""ABC""", """D"""] ) def _A ( self : Tuple ): # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCamelCase :List[Any] = Trie() UpperCamelCase :Dict = trie.cut_text("""ABC""" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(__lowerCamelCase , ["""AB""", """C"""] )
590
0
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="autoformer" UpperCamelCase ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = "student_t" , UpperCamelCase_ = "nll" , UpperCamelCase_ = 1 , UpperCamelCase_ = [1, 2, 3, 4, 5, 6, 7] , UpperCamelCase_ = True , UpperCamelCase_ = 0 , UpperCamelCase_ = 0 , UpperCamelCase_ = 0 , UpperCamelCase_ = 0 , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = 64 , UpperCamelCase_ = 2 , UpperCamelCase_ = 2 , UpperCamelCase_ = 2 , UpperCamelCase_ = 2 , UpperCamelCase_ = 32 , UpperCamelCase_ = 32 , UpperCamelCase_ = "gelu" , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 1_00 , UpperCamelCase_ = 0.0_2 , UpperCamelCase_ = True , UpperCamelCase_=True , UpperCamelCase_ = 10 , UpperCamelCase_ = 25 , UpperCamelCase_ = 3 , **UpperCamelCase_ , ) -> List[Any]: # time series specific configuration __lowercase : int = prediction_length __lowercase : List[str] = context_length if context_length is not None else prediction_length __lowercase : str = distribution_output __lowercase : Union[str, Any] = loss __lowercase : List[Any] = input_size __lowercase : Any = num_time_features __lowercase : Optional[Any] = lags_sequence __lowercase : Any = scaling __lowercase : List[Any] = num_dynamic_real_features __lowercase : Dict = num_static_real_features __lowercase : List[Any] = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __lowercase : List[str] = cardinality else: __lowercase : Optional[int] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(UpperCamelCase_ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __lowercase : int = embedding_dimension else: __lowercase : Any = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowercase : Tuple = num_parallel_samples # Transformer architecture configuration __lowercase : Tuple = input_size * len(self.lags_sequence ) + self._number_of_features __lowercase : str = d_model __lowercase : Tuple = encoder_attention_heads __lowercase : Optional[int] = decoder_attention_heads __lowercase : int = encoder_ffn_dim __lowercase : Union[str, Any] = decoder_ffn_dim __lowercase : Any = encoder_layers __lowercase : Optional[int] = decoder_layers __lowercase : str = dropout __lowercase : str = attention_dropout __lowercase : Optional[int] = activation_dropout __lowercase : Tuple = encoder_layerdrop __lowercase : Tuple = decoder_layerdrop __lowercase : List[str] = activation_function __lowercase : Tuple = init_std __lowercase : Optional[Any] = use_cache # Autoformer __lowercase : Union[str, Any] = label_length __lowercase : Optional[int] = moving_average __lowercase : Dict = autocorrelation_factor super().__init__(is_encoder_decoder=UpperCamelCase_ , **UpperCamelCase_ ) @property def _lowerCamelCase ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
76
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = ["image_processor", "tokenizer"] a_ = "FlavaImageProcessor" a_ = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple , __A : int=None , __A : Optional[Any]=None , **__A : Dict ): snake_case__ : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __A , ) snake_case__ : Tuple = kwargs.pop("feature_extractor" ) snake_case__ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__A , __A ) snake_case__ : Optional[int] = self.image_processor def __call__( self : Dict , __A : Optional[ImageInput] = None , __A : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __A : bool = True , __A : Union[bool, str, PaddingStrategy] = False , __A : Union[bool, str, TruncationStrategy] = False , __A : Optional[int] = None , __A : int = 0 , __A : Optional[int] = None , __A : Optional[bool] = None , __A : Optional[bool] = None , __A : Optional[bool] = None , __A : Optional[bool] = None , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = True , __A : Optional[Union[str, TensorType]] = None , **__A : Dict , ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: snake_case__ : Dict = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) if images is not None: snake_case__ : int = self.image_processor( __A , return_image_mask=__A , return_codebook_pixels=__A , return_tensors=__A , **__A , ) if text is not None and images is not None: encoding.update(__A ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _lowercase ( self : str , *__A : List[Any] , **__A : Dict ): return self.tokenizer.batch_decode(*__A , **__A ) def _lowercase ( self : Optional[Any] , *__A : Optional[int] , **__A : List[Any] ): return self.tokenizer.decode(*__A , **__A ) @property def _lowercase ( self : Optional[Any] ): snake_case__ : Any = self.tokenizer.model_input_names snake_case__ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowercase ( self : Optional[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __A , ) return self.image_processor_class @property def _lowercase ( self : List[str] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __A , ) return self.image_processor
297
0
import mpmath # for roots of unity import numpy as np class __lowercase : def __init__( self : List[str] , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[str]=None ) -> Tuple: """simple docstring""" UpperCAmelCase = list(poly_a or [0] )[:] UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product UpperCAmelCase = self.__multiply() def _lowercase ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase = [[x] for x in self.polyA] if which == """A""" else [[x] for x in self.polyB] # Corner case if len(lowerCamelCase_ ) <= 1: return dft[0] # UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: UpperCAmelCase = [[] for i in range(lowerCamelCase_ )] UpperCAmelCase = self.root**next_ncol # First half of next step UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCamelCase_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(lowerCamelCase_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update UpperCAmelCase = new_dft UpperCAmelCase = next_ncol // 2 return dft[0] def _lowercase ( self : Tuple ) -> str: """simple docstring""" UpperCAmelCase = self.__dft("""A""" ) UpperCAmelCase = self.__dft("""B""" ) UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT UpperCAmelCase = 2 while next_ncol <= self.c_max_length: UpperCAmelCase = [[] for i in range(lowerCamelCase_ )] UpperCAmelCase = self.root ** (next_ncol // 2) UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase = """A = """ + """ + """.join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyA[: self.len_A] ) ) UpperCAmelCase = """B = """ + """ + """.join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.polyB[: self.len_B] ) ) UpperCAmelCase = """A*B = """ + """ + """.join( F"""{coef}*x^{i}""" for coef, i in enumerate(self.product ) ) return F"""{a}\n{b}\n{c}""" # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
710
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowercase : def __init__( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any]=1_3 , __lowerCamelCase : Optional[Any]=3_0 , __lowerCamelCase : Any=2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : str=True , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=3_2 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : Union[str, Any]=3_7 , __lowerCamelCase : str="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=1_0 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Any=2 , ) -> Tuple: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 2 def _lowercase ( self : Tuple ) -> int: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self : Tuple ) -> str: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowercase ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : int ) -> Any: """simple docstring""" UpperCAmelCase = TFDeiTModel(config=__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = TFDeiTForMaskedImageModeling(config=__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = TFDeiTForMaskedImageModeling(__lowerCamelCase ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int ) -> Any: """simple docstring""" UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = TFDeiTForImageClassification(__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = TFDeiTForImageClassification(__lowerCamelCase ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): UpperCamelCase = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowercase ( self : str ) -> str: """simple docstring""" UpperCAmelCase = TFDeiTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _lowercase ( self : List[Any] ) -> Dict: """simple docstring""" pass def _lowercase ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , tf.keras.layers.Dense ) ) def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowercase ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase ) def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _lowercase ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any=False ) -> int: """simple docstring""" UpperCAmelCase = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFDeiTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) ->Tuple: UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowercase ( unittest.TestCase ): @cached_property def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _lowercase ( self : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=__lowerCamelCase , return_tensors="""tf""" ) # forward pass UpperCAmelCase = model(**__lowerCamelCase ) # verify the logits UpperCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) UpperCAmelCase = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
627
0
from ..utils import DummyObject, requires_backends class lowerCamelCase( metaclass=__snake_case ): '''simple docstring''' __magic_name__ = ['onnx'] def __init__( self , *snake_case_ , **snake_case_ ): requires_backends(self , ['onnx'] ) @classmethod def lowerCAmelCase__ ( cls , *snake_case_ , **snake_case_ ): requires_backends(cls , ['onnx'] ) @classmethod def lowerCAmelCase__ ( cls , *snake_case_ , **snake_case_ ): requires_backends(cls , ['onnx'] )
27
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class snake_case_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' super().__init__(*__lowerCamelCase , **__lowerCamelCase ) self.check_model_type(__lowerCamelCase ) def UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : int=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Any=None , **__lowerCamelCase : Optional[int] ) -> Any: '''simple docstring''' __lowercase , __lowercase = {}, {} if padding is not None: __lowercase = padding if truncation is not None: __lowercase = truncation if top_k is not None: __lowercase = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , __lowerCamelCase : Union["Image.Image", str] , __lowerCamelCase : str = None , **__lowerCamelCase : Dict ) -> Tuple: '''simple docstring''' if isinstance(__lowerCamelCase , (Image.Image, str) ) and isinstance(__lowerCamelCase , __lowerCamelCase ): __lowercase = {'image': image, 'question': question} else: __lowercase = image __lowercase = super().__call__(__lowerCamelCase , **__lowerCamelCase ) return results def UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=False ) -> Optional[int]: '''simple docstring''' __lowercase = load_image(inputs['image'] ) __lowercase = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=__lowerCamelCase , truncation=__lowerCamelCase ) __lowercase = self.image_processor(images=__lowerCamelCase , return_tensors=self.framework ) model_inputs.update(__lowerCamelCase ) return model_inputs def UpperCAmelCase ( self : str , __lowerCamelCase : Tuple ) -> Any: '''simple docstring''' __lowercase = self.model(**__lowerCamelCase ) return model_outputs def UpperCAmelCase ( self : int , __lowerCamelCase : Any , __lowerCamelCase : int=5 ) -> Tuple: '''simple docstring''' if top_k > self.model.config.num_labels: __lowercase = self.model.config.num_labels if self.framework == "pt": __lowercase = model_outputs.logits.sigmoid()[0] __lowercase , __lowercase = probs.topk(__lowerCamelCase ) else: raise ValueError(F"Unsupported framework: {self.framework}" ) __lowercase = scores.tolist() __lowercase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCamelCase , __lowerCamelCase )]
375
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase = 16 UpperCamelCase = 32 def _A ( lowerCAmelCase_ : Accelerator , lowerCAmelCase_ : int = 16 ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase_ : List[str] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( lowerCAmelCase_ , padding="longest" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) lowerCAmelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase = mocked_dataloaders # noqa: F811 def _A ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase_ ) == "1": lowerCAmelCase__ = 2 # Initialize accelerator lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config["lr"] lowerCAmelCase__ = int(config["num_epochs"] ) lowerCAmelCase__ = int(config["seed"] ) lowerCAmelCase__ = int(config["batch_size"] ) lowerCAmelCase__ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ = model(**lowerCAmelCase_ ) lowerCAmelCase__ = outputs.loss lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() lowerCAmelCase__ = 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**lowerCAmelCase_ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples lowerCAmelCase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCAmelCase_ ) def _A ( ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
125
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
125
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) UpperCAmelCase_ : Optional[Any] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') UpperCAmelCase_ : Union[str, Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) UpperCAmelCase_ : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) UpperCAmelCase_ : int = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) UpperCAmelCase_ : Dict = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions UpperCAmelCase_ : Optional[Any] = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) UpperCAmelCase_ : List[Any] = tf.keras.preprocessing.image.img_to_array(test_image) UpperCAmelCase_ : List[Any] = np.expand_dims(test_image, axis=0) UpperCAmelCase_ : Dict = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: UpperCAmelCase_ : Union[str, Any] = '''Normal''' if result[0][0] == 1: UpperCAmelCase_ : Tuple = '''Abnormality detected'''
17
"""simple docstring""" from collections import deque class lowercase: def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" a__ = process_name # process name a__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time a__ = arrival_time a__ = burst_time # remaining burst time a__ = 0 # total time of the process wait in ready queue a__ = 0 # time from arrival time to completion time class lowercase: def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" a__ = number_of_queues # time slice of queues that round robin algorithm applied a__ = time_slices # unfinished process is in this ready_queue a__ = queue # current time a__ = current_time # finished process is in this sequence queue a__ = deque() def lowercase__ ( self ) -> list[str]: """simple docstring""" a__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" a__ = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" a__ = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" a__ = [] for i in range(len(__SCREAMING_SNAKE_CASE ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowercase__ ( self , __SCREAMING_SNAKE_CASE ) -> deque[Process]: """simple docstring""" a__ = deque() # sequence deque of finished process while len(__SCREAMING_SNAKE_CASE ) != 0: a__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(__SCREAMING_SNAKE_CASE ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 a__ = 0 # set the process's turnaround time because it is finished a__ = self.current_time - cp.arrival_time # set the completion time a__ = self.current_time # add the process to queue that has finished queue finished.append(__SCREAMING_SNAKE_CASE ) self.finish_queue.extend(__SCREAMING_SNAKE_CASE ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> tuple[deque[Process], deque[Process]]: """simple docstring""" a__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(__SCREAMING_SNAKE_CASE ) ): a__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(__SCREAMING_SNAKE_CASE ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time a__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(__SCREAMING_SNAKE_CASE ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished a__ = 0 # set the finish time a__ = self.current_time # update the process' turnaround time because it is finished a__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(__SCREAMING_SNAKE_CASE ) self.finish_queue.extend(__SCREAMING_SNAKE_CASE ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowercase__ ( self ) -> deque[Process]: """simple docstring""" for i in range(self.number_of_queues - 1 ): a__ , a__ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest a : List[str] = Process('P1', 0, 53) a : Optional[int] = Process('P2', 0, 17) a : Union[str, Any] = Process('P3', 0, 68) a : Optional[int] = Process('P4', 0, 24) a : Optional[int] = 3 a : Optional[Any] = [17, 25] a : Union[str, Any] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) a : Union[str, Any] = Process('P1', 0, 53) a : Optional[int] = Process('P2', 0, 17) a : Optional[Any] = Process('P3', 0, 68) a : str = Process('P4', 0, 24) a : Optional[Any] = 3 a : Tuple = [17, 25] a : int = deque([Pa, Pa, Pa, Pa]) a : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) a : Optional[int] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
273
0
'''simple docstring''' def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" if len(UpperCAmelCase ) <= 1: return [tuple(UpperCAmelCase )] snake_case__ : Tuple = [] def generate(UpperCAmelCase , UpperCAmelCase ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , UpperCAmelCase ) for i in range(k - 1 ): if k % 2 == 0: # k is even snake_case__ : Any = arr[k - 1], arr[i] else: # k is odd snake_case__ : Any = arr[k - 1], arr[0] generate(k - 1 , UpperCAmelCase ) generate(len(UpperCAmelCase ) , UpperCAmelCase ) return res if __name__ == "__main__": lowerCAmelCase__ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(',')] print(heaps(arr))
708
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(UpperCAmelCase , """_dynamo""" ): return False return isinstance(UpperCAmelCase , torch._dynamo.eval_frame.OptimizedModule ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase = True ): """simple docstring""" snake_case__ : Any = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) snake_case__ : List[Any] = is_compiled_module(UpperCAmelCase ) if is_compiled: snake_case__ : List[str] = model snake_case__ : Optional[int] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCAmelCase , UpperCAmelCase ): snake_case__ : List[Any] = model.module if not keep_fpaa_wrapper: snake_case__ : List[Any] = getattr(UpperCAmelCase , """forward""" ) snake_case__ : List[str] = model.__dict__.pop("""_original_forward""" , UpperCAmelCase ) if original_forward is not None: while hasattr(UpperCAmelCase , """__wrapped__""" ): snake_case__ : str = forward.__wrapped__ if forward == original_forward: break snake_case__ : Tuple = forward if getattr(UpperCAmelCase , """_converted_to_transformer_engine""" , UpperCAmelCase ): convert_model(UpperCAmelCase , to_transformer_engine=UpperCAmelCase ) if is_compiled: snake_case__ : Dict = model snake_case__ : int = compiled_model return model def lowerCAmelCase__ ( ): """simple docstring""" PartialState().wait_for_everyone() def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCAmelCase , UpperCAmelCase ) elif PartialState().local_process_index == 0: torch.save(UpperCAmelCase , UpperCAmelCase ) @contextmanager def lowerCAmelCase__ ( **UpperCAmelCase ): """simple docstring""" for key, value in kwargs.items(): snake_case__ : List[str] = str(UpperCAmelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" if not hasattr(UpperCAmelCase , """__qualname__""" ) and not hasattr(UpperCAmelCase , """__name__""" ): snake_case__ : int = getattr(UpperCAmelCase , """__class__""" , UpperCAmelCase ) if hasattr(UpperCAmelCase , """__qualname__""" ): return obj.__qualname__ if hasattr(UpperCAmelCase , """__name__""" ): return obj.__name__ return str(UpperCAmelCase ) def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" for key, value in source.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): snake_case__ : Any = destination.setdefault(UpperCAmelCase , {} ) merge_dicts(UpperCAmelCase , UpperCAmelCase ) else: snake_case__ : Tuple = value return destination def lowerCAmelCase__ ( UpperCAmelCase = None ): """simple docstring""" if port is None: snake_case__ : int = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
172
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : List[Any] = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
405
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase : Tuple = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : Union[str, Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCamelCase : Optional[int] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase : List[Any] = re.compile(r"\[(.+?)\]\((https://huggingface\.co/.+?)\)") lowerCamelCase : str = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =None # source code of `config_class` _SCREAMING_SNAKE_CASE =inspect.getsource(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =_re_checkpoint.findall(_UpperCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): _SCREAMING_SNAKE_CASE =ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link _SCREAMING_SNAKE_CASE =f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: _SCREAMING_SNAKE_CASE =ckpt_name break return checkpoint def _lowerCAmelCase ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue _SCREAMING_SNAKE_CASE =get_checkpoint_from_config_class(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: _SCREAMING_SNAKE_CASE ='\n'.join(sorted(_UpperCamelCase ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
405
1
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowerCamelCase( unittest.TestCase ): def __init__( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = parent def UpperCamelCase ( self) -> str: """simple docstring""" return {} def UpperCamelCase_( ) -> List[str]: _lowercase : int = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' _lowercase : List[Any] = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Tuple = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = MarkupLMFeatureExtractionTester(self) @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = self.feature_extraction_class() # Test not batched input _lowercase : List[Any] = get_html_strings()[0] _lowercase : Optional[Any] = feature_extractor(lowerCamelCase) # fmt: off _lowercase : str = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] _lowercase : Dict = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes, lowerCamelCase) self.assertEqual(encoding.xpaths, lowerCamelCase) # Test batched _lowercase : Optional[int] = get_html_strings() _lowercase : Tuple = feature_extractor(lowerCamelCase) # fmt: off _lowercase : List[Any] = expected_nodes + [['My First Heading', 'My first paragraph.']] _lowercase : List[str] = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes), 2) self.assertEqual(len(encoding.xpaths), 2) self.assertEqual(encoding.nodes, lowerCamelCase) self.assertEqual(encoding.xpaths, lowerCamelCase)
354
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _lowerCamelCase( unittest.TestCase ): def __init__( self, lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Optional[int] = parent def UpperCamelCase ( self) -> str: """simple docstring""" return {} def UpperCamelCase_( ) -> List[str]: _lowercase : int = '<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' _lowercase : List[Any] = '\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Tuple = MarkupLMFeatureExtractor if is_bsa_available() else None def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = MarkupLMFeatureExtractionTester(self) @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = self.feature_extraction_class() # Test not batched input _lowercase : List[Any] = get_html_strings()[0] _lowercase : Optional[Any] = feature_extractor(lowerCamelCase) # fmt: off _lowercase : str = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] _lowercase : Dict = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes, lowerCamelCase) self.assertEqual(encoding.xpaths, lowerCamelCase) # Test batched _lowercase : Optional[int] = get_html_strings() _lowercase : Tuple = feature_extractor(lowerCamelCase) # fmt: off _lowercase : List[Any] = expected_nodes + [['My First Heading', 'My first paragraph.']] _lowercase : List[str] = expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes), 2) self.assertEqual(len(encoding.xpaths), 2) self.assertEqual(encoding.nodes, lowerCamelCase) self.assertEqual(encoding.xpaths, lowerCamelCase)
354
1
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class lowercase_ : """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=50 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ) ->int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = initializer_range lowerCAmelCase = use_labels lowerCAmelCase = scope def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) ->Optional[int]: lowerCAmelCase = BertGenerationEncoder(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) ->Union[str, Any]: lowerCAmelCase = True lowerCAmelCase = BertGenerationEncoder(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , ) lowerCAmelCase = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) ->Dict: lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = BertGenerationDecoder(config=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ).eval() # first forward pass lowerCAmelCase = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] lowerCAmelCase = model( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )['''hidden_states'''][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , ) ->Dict: lowerCAmelCase = BertGenerationDecoder(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Any = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () UpperCAmelCase_ : Any = (BertGenerationDecoder,) if is_torch_available() else () UpperCAmelCase_ : Optional[int] = ( {"""feature-extraction""": BertGenerationEncoder, """text-generation""": BertGenerationDecoder} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: lowerCAmelCase = BertGenerationEncoderTester(self ) lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() lowerCAmelCase = '''bert''' self.model_tester.create_and_check_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: # This regression test was failing with PyTorch < 1.3 ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase = None self.model_tester.create_and_check_model_as_decoder( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: lowerCAmelCase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: lowerCAmelCase = BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) lowerCAmelCase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )[0] lowerCAmelCase = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: lowerCAmelCase = BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) lowerCAmelCase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): lowerCAmelCase = model(__SCREAMING_SNAKE_CASE )[0] lowerCAmelCase = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
312
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ : List[Any] = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
312
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCAmelCase : UpperCAmelCase__ = None def A_ ( self : List[str] ) -> Dict: lowerCamelCase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) lowerCamelCase__ : Optional[int] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase__ ) def A_ ( self : List[str] ) -> int: lowerCamelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : Optional[Any] = os.path.join(UpperCamelCase__ , 'feat_extract.json' ) feat_extract_first.to_json_file(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = self.feature_extraction_class.from_json_file(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def A_ ( self : Optional[Any] ) -> List[Any]: lowerCamelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ : Optional[int] = feat_extract_first.save_pretrained(UpperCamelCase__ )[0] check_json_file_has_correct_format(UpperCamelCase__ ) lowerCamelCase__ : List[str] = self.feature_extraction_class.from_pretrained(UpperCamelCase__ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def A_ ( self : List[str] ) -> Any: lowerCamelCase__ : Any = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase__ )
700
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _UpperCAmelCase : Union[str, Any] = (3, 9, -11, 0, 7, 5, 1, -1) _UpperCAmelCase : Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowerCAmelCase : UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 class lowerCAmelCase : def __init__( self : Any , UpperCAmelCase : Iterable[int] ) -> None: lowerCamelCase__ : Node | None = None for i in sorted(UpperCAmelCase , reverse=UpperCAmelCase ): lowerCamelCase__ : Tuple = Node(UpperCAmelCase , self.head ) def __iter__( self : Optional[int] ) -> Iterator[int]: lowerCamelCase__ : str = self.head while node: yield node.data lowerCamelCase__ : List[str] = node.next_node def __len__( self : List[str] ) -> int: return sum(1 for _ in self ) def __str__( self : Any ) -> str: return " -> ".join([str(UpperCAmelCase ) for node in self] ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> SortedLinkedList: return SortedLinkedList(list(_UpperCAmelCase ) + list(_UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : Optional[Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
188
0
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _lowercase ( __lowerCamelCase ): _lowercase : Union[str, Any] = 'MCTCTFeatureExtractor' _lowercase : Optional[int] = 'AutoTokenizer' def __init__( self : Dict , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] ) -> List[Any]: """simple docstring""" super().__init__(lowerCamelCase__ , lowerCamelCase__ ) A_ = self.feature_extractor A_ = False def __call__( self : Union[str, Any] , *lowerCamelCase__ : str , **lowerCamelCase__ : List[str] ) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCamelCase__ , **lowerCamelCase__ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) A_ = kwargs.pop('''raw_speech''' ) else: A_ = kwargs.pop('''audio''' , lowerCamelCase__ ) A_ = kwargs.pop('''sampling_rate''' , lowerCamelCase__ ) A_ = kwargs.pop('''text''' , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: A_ = args[0] A_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: A_ = self.feature_extractor(lowerCamelCase__ , *lowerCamelCase__ , sampling_rate=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: A_ = self.tokenizer(lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: A_ = encodings['''input_ids'''] return inputs def UpperCamelCase ( self : Union[str, Any] , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Tuple ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , *lowerCamelCase__ : Any , **lowerCamelCase__ : Optional[int] ) -> List[str]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowerCamelCase__ , **lowerCamelCase__ ) A_ = kwargs.pop('''input_features''' , lowerCamelCase__ ) A_ = kwargs.pop('''labels''' , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: A_ = args[0] A_ = args[1:] if input_features is not None: A_ = self.feature_extractor.pad(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) if labels is not None: A_ = self.tokenizer.pad(lowerCamelCase__ , **lowerCamelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: A_ = labels['''input_ids'''] return input_features def UpperCamelCase ( self : Any , *lowerCamelCase__ : Any , **lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @contextmanager def UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) A_ = True A_ = self.tokenizer yield A_ = self.feature_extractor A_ = False
203
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __lowercase = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __lowercase = ( subprocess.check_output(f'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode("""utf-8""").split() ) __lowercase = """|""".join(sys.argv[1:]) __lowercase = re.compile(rf'^({joined_dirs}).*?\.py$') __lowercase = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
203
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class A (tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int = None , __lowerCAmelCase : int = None ) -> Tuple: """simple docstring""" super().__init__() A__ = pad_token_id A__ = max_length A__ = vocab A__ = merges A__ = BytePairTokenizer(__lowerCAmelCase , __lowerCAmelCase , sequence_length=__lowerCAmelCase ) @classmethod def a_ ( cls : Optional[Any] , __lowerCAmelCase : GPTaTokenizer , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : List[str] ) -> Any: """simple docstring""" A__ = [""" """.join(__lowerCAmelCase ) for m in tokenizer.bpe_ranks.keys()] A__ = tokenizer.get_vocab() return cls(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def a_ ( cls : Dict , __lowerCAmelCase : Union[str, os.PathLike] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" A__ = GPTaTokenizer.from_pretrained(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) return cls.from_tokenizer(__lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def a_ ( cls : Dict , __lowerCAmelCase : Any ) -> Optional[Any]: """simple docstring""" return cls(**__lowerCAmelCase ) def a_ ( self : Any ) -> Optional[int]: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def a_ ( self : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : int = None ) -> Any: """simple docstring""" A__ = self.tf_tokenizer(__lowerCAmelCase ) A__ = tf.ones_like(__lowerCAmelCase ) if self.pad_token_id is not None: # pad the tokens up to max length A__ = max_length if max_length is not None else self.max_length if max_length is not None: A__ , A__ = pad_model_inputs( __lowerCAmelCase , max_seq_length=__lowerCAmelCase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
713
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A : Dict = datasets.logging.get_logger(__name__) A : Optional[Any] = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' A : int = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' A : Union[str, Any] = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def __lowerCamelCase ( __a :Dict , __a :int , __a :int=False , __a :Optional[Any]=False , __a :int=True , __a :Optional[int]=False , __a :Dict="dummy_doc" ) -> Any: """simple docstring""" A__ = {doc: key_lines} A__ = {doc: sys_lines} A__ = {} A__ = 0 A__ = 0 A__ = 0 A__ = 0 A__ = 0 A__ = 0 A__ , A__ = reader.get_doc_mentions(__a , key_doc_lines[doc] , __a ) key_singletons_num += singletons_num if NP_only or min_span: A__ = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) A__ , A__ = reader.get_doc_mentions(__a , sys_doc_lines[doc] , __a ) sys_singletons_num += singletons_num if NP_only or min_span: A__ = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) if remove_nested: A__ , A__ = reader.remove_nested_coref_mentions(__a , __a ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters A__ , A__ = reader.remove_nested_coref_mentions(__a , __a ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters A__ = reader.get_mention_assignments(__a , __a ) A__ = reader.get_mention_assignments(__a , __a ) A__ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( """Number of removed nested coreferring mentions in the key """ F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( """Number of resulting singleton clusters in the key """ F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' """files, respectively""" ) return doc_coref_infos def __lowerCamelCase ( __a :Any , __a :Union[str, Any] , __a :List[str] , __a :Dict , __a :str , __a :Tuple , __a :Union[str, Any] ) -> Optional[int]: """simple docstring""" A__ = get_coref_infos(__a , __a , __a , __a , __a , __a ) A__ = {} A__ = 0 A__ = 0 for name, metric in metrics: A__ , A__ , A__ = evaluator.evaluate_documents(__a , __a , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(1_0 ) , F'Recall: {recall * 1_0_0:.2f}' , F' Precision: {precision * 1_0_0:.2f}' , F' F1: {fa * 1_0_0:.2f}' , ) if conll_subparts_num == 3: A__ = (conll / 3) * 1_0_0 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"""conll_score""": conll} ) return output_scores def __lowerCamelCase ( __a :int ) -> List[Any]: """simple docstring""" A__ = False for line in key_lines: if not line.startswith("""#""" ): if len(line.split() ) > 6: A__ = line.split()[5] if not parse_col == "-": A__ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A (datasets.Metric ): '''simple docstring''' def a_ ( self : int ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Sequence(datasets.Value("""string""" ) ), } ) , codebase_urls=["""https://github.com/ns-moosavi/coval"""] , reference_urls=[ """https://github.com/ns-moosavi/coval""", """https://www.aclweb.org/anthology/P16-1060""", """http://www.conll.cemantix.org/2012/data.html""", ] , ) def a_ ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : int=False ) -> Optional[int]: """simple docstring""" A__ = [ ("""mentions""", evaluator.mentions), ("""muc""", evaluator.muc), ("""bcub""", evaluator.b_cubed), ("""ceafe""", evaluator.ceafe), ("""lea""", evaluator.lea), ] if min_span: A__ = util.check_gold_parse_annotation(__lowerCAmelCase ) if not has_gold_parse: raise NotImplementedError("""References should have gold parse annotation to use 'min_span'.""" ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" A__ = evaluate( key_lines=__lowerCAmelCase , sys_lines=__lowerCAmelCase , metrics=__lowerCAmelCase , NP_only=__lowerCAmelCase , remove_nested=__lowerCAmelCase , keep_singletons=__lowerCAmelCase , min_span=__lowerCAmelCase , ) return score
247
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Tuple = "microsoft/speecht5_tts" UpperCAmelCase__ : int = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) UpperCAmelCase__ : List[Any] = "text_reader" UpperCAmelCase__ : Optional[Any] = SpeechTaProcessor UpperCAmelCase__ : Union[str, Any] = SpeechTaForTextToSpeech UpperCAmelCase__ : Union[str, Any] = SpeechTaHifiGan UpperCAmelCase__ : Dict = ["text"] UpperCAmelCase__ : str = ["audio"] def __lowercase ( self ) -> Tuple: if self.post_processor is None: _a : str = '''microsoft/speecht5_hifigan''' super().setup() def __lowercase ( self , _a , _a=None ) -> Optional[Any]: _a : Union[str, Any] = self.pre_processor(text=_a , return_tensors='''pt''' , truncation=_a ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('''Datasets needs to be installed if not passing speaker embeddings.''' ) _a : Dict = load_dataset('''Matthijs/cmu-arctic-xvectors''' , split='''validation''' ) _a : List[str] = torch.tensor(embeddings_dataset[7_3_0_5]['''xvector'''] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __lowercase ( self , _a ) -> List[str]: with torch.no_grad(): return self.model.generate_speech(**_a ) def __lowercase ( self , _a ) -> Tuple: with torch.no_grad(): return self.post_processor(_a ).cpu().detach()
14
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __a = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
374
0
"""simple docstring""" import json import sys def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' with open(lowerCAmelCase , encoding="""utf-8""" ) as f: UpperCAmelCase = json.load(lowerCAmelCase ) UpperCAmelCase = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(lowerCAmelCase ): UpperCAmelCase = results[benchmark_name] UpperCAmelCase = benchmark_name.split("""/""" )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) UpperCAmelCase = """| metric |""" UpperCAmelCase = """|--------|""" UpperCAmelCase = """| new / old (diff) |""" for metric_name in sorted(lowerCAmelCase ): UpperCAmelCase = benchmark_res[metric_name] UpperCAmelCase = metric_vals["""new"""] UpperCAmelCase = metric_vals.get("""old""" , lowerCAmelCase ) UpperCAmelCase = metric_vals.get("""diff""" , lowerCAmelCase ) UpperCAmelCase = F''' {new_val:f}''' if isinstance(lowerCAmelCase , (int, float) ) else """None""" if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(lowerCAmelCase , (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(lowerCAmelCase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(lowerCAmelCase ) ) if __name__ == "__main__": lowerCAmelCase_ : Optional[Any] = sys.argv[1] lowerCAmelCase_ : List[Any] = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
378
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase_ ( a_ ): _A : List[str] = ['pixel_values'] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = 0.9 , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = True , snake_case__ = None , snake_case__ = 1 / 2_55 , snake_case__ = True , snake_case__ = True , snake_case__ = None , snake_case__ = None , **snake_case__ , ) -> None: """simple docstring""" super().__init__(**snake_case__ ) UpperCAmelCase = size if size is not None else {"""shortest_edge""": 2_24} UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} UpperCAmelCase = get_size_dict(snake_case__ , param_name="""crop_size""" ) UpperCAmelCase = do_resize UpperCAmelCase = size UpperCAmelCase = crop_pct UpperCAmelCase = resample UpperCAmelCase = do_center_crop UpperCAmelCase = crop_size UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ) -> np.ndarray: """simple docstring""" UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: UpperCAmelCase = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: UpperCAmelCase = int(size["""height"""] / crop_pct ) else: UpperCAmelCase = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(snake_case__ ) ) UpperCAmelCase = get_resize_output_image_size(snake_case__ , size=snake_case__ , default_to_square=snake_case__ ) else: if "shortest_edge" in size: UpperCAmelCase = get_resize_output_image_size(snake_case__ , size=size["""shortest_edge"""] , default_to_square=snake_case__ ) elif "height" in size and "width" in size: UpperCAmelCase = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(snake_case__ ) ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> np.ndarray: """simple docstring""" UpperCAmelCase = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(snake_case__ , size=(size["""height"""], size["""width"""]) , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> Tuple: """simple docstring""" return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ) -> np.ndarray: """simple docstring""" return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ) -> PIL.Image.Image: """simple docstring""" UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) UpperCAmelCase = crop_size if crop_size is not None else self.crop_size UpperCAmelCase = get_size_dict(snake_case__ , param_name="""crop_size""" ) UpperCAmelCase = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(snake_case__ ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=snake_case__ , size=snake_case__ , crop_pct=snake_case__ , resample=snake_case__ ) for image in images] if do_center_crop: UpperCAmelCase = [self.center_crop(image=snake_case__ , size=snake_case__ ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] UpperCAmelCase = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
378
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Optional[Any] ) -> Union[str, Any]: # Load checkpoint __A : Union[str, Any] = torch.load(a__ ,map_location="""cpu""" ) __A : Optional[Any] = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository __A : Optional[int] = {} for k, v in state_dict.items(): if "pred_layer" in k: __A : Tuple = v else: __A : Dict = v __A : Optional[Any] = chkpt["""params"""] __A : Tuple = {n: v for n, v in config.items() if not isinstance(a__ ,(torch.FloatTensor, numpy.ndarray) )} __A : List[Any] = chkpt["""dico_word2id"""] __A : Tuple = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" ,"""""" ): i for s, i in vocab.items()} # Save pytorch-model __A : Any = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME __A : Union[str, Any] = pytorch_dump_folder_path + """/""" + CONFIG_NAME __A : Optional[Any] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(a__ ,a__ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(a__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(a__ ,indent=2 ) + """\n""" ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(a__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(a__ ,indent=2 ) + """\n""" ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
17
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params snake_case__ = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : Dict ): for pegasus_name, hf_name in PATTERNS: lowercase : int = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return k def lowerCamelCase_ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ): lowercase : Optional[int] = DEFAULTS.copy() cfg_kwargs.update(UpperCAmelCase_ ) lowercase : Optional[Any] = PegasusConfig(**UpperCAmelCase_ ) lowercase : List[Any] = PegasusForConditionalGeneration(UpperCAmelCase_ ) lowercase : Optional[Any] = torch_model.model.state_dict() lowercase : Optional[int] = {} for k, v in tf_weights.items(): lowercase : str = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in sd: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if "dense" in k or "proj" in new_k: lowercase : List[str] = v.T lowercase : str = torch.tensor(UpperCAmelCase_ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}''' # make sure embedding.padding_idx is respected lowercase : Any = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) lowercase : Union[str, Any] = mapping['''shared.weight'''] lowercase : str = mapping['''shared.weight'''] lowercase : List[Any] = {k: torch.zeros_like(UpperCAmelCase_ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**UpperCAmelCase_ ) lowercase , lowercase : int = torch_model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) lowercase : List[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any]="./ckpt/aeslc/model.ckpt-32000" ): lowercase : Dict = tf.train.list_variables(UpperCAmelCase_ ) lowercase : Optional[Any] = {} lowercase : Optional[int] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(UpperCAmelCase_ , desc='''converting tf checkpoint to dict''' ): lowercase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase : Tuple = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) lowercase : List[str] = array return tf_weights def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): # save tokenizer first lowercase : str = Path(UpperCAmelCase_ ).parent.name lowercase : List[Any] = task_specific_params[f'''summarization_{dataset}''']['''max_position_embeddings'''] lowercase : Dict = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=UpperCAmelCase_ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(UpperCAmelCase_ ) # convert model lowercase : List[str] = get_tf_weights_as_numpy(UpperCAmelCase_ ) lowercase : Any = task_specific_params[f'''summarization_{dataset}'''] if dataset == "large": lowercase : Optional[int] = task_specific_params lowercase : str = convert_pegasus(UpperCAmelCase_ , UpperCAmelCase_ ) torch_model.save_pretrained(UpperCAmelCase_ ) lowercase : Any = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(UpperCAmelCase_ , Path(UpperCAmelCase_ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") snake_case__ = parser.parse_args() if args.save_dir is None: snake_case__ = Path(args.tf_ckpt_path).parent.name snake_case__ = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
583
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : int = '''ClapFeatureExtractor''' a_ : List[Any] = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__(self , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' super().__init__(UpperCAmelCase , UpperCAmelCase) def __call__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =kwargs.pop('sampling_rate' , UpperCAmelCase) if text is None and audios is None: raise ValueError('You have to specify either text or audios. Both cannot be none.') if text is not None: __UpperCAmelCase =self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase) if audios is not None: __UpperCAmelCase =self.feature_extractor( UpperCAmelCase , sampling_rate=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase) if text is not None and audios is not None: __UpperCAmelCase =audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase) , tensor_type=UpperCAmelCase) def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase) def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase) @property def A__ (self): '''simple docstring''' __UpperCAmelCase =self.tokenizer.model_input_names __UpperCAmelCase =self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
701
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) UpperCamelCase_ = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def SCREAMING_SNAKE_CASE ( snake_case__ ) -> str: __UpperCAmelCase ={} state_dict.pop('''pixel_mean''' , snake_case__ ) state_dict.pop('''pixel_std''' , snake_case__ ) __UpperCAmelCase =r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __UpperCAmelCase =key.replace(snake_case__ , snake_case__ ) if re.match(snake_case__ , snake_case__ ): __UpperCAmelCase =int(re.match(snake_case__ , snake_case__ ).group(2 ) ) if layer_nb == 0: __UpperCAmelCase =key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: __UpperCAmelCase =key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: __UpperCAmelCase =key.replace('''layers.2''' , '''proj_out''' ) __UpperCAmelCase =value __UpperCAmelCase =model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ , snake_case__="ybelkada/segment-anything" ) -> Optional[int]: __UpperCAmelCase =hf_hub_download(snake_case__ , f"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: __UpperCAmelCase =SamConfig() elif "sam_vit_l" in model_name: __UpperCAmelCase =SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __UpperCAmelCase =SamConfig( vision_config=snake_case__ , ) elif "sam_vit_h" in model_name: __UpperCAmelCase =SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __UpperCAmelCase =SamConfig( vision_config=snake_case__ , ) __UpperCAmelCase =torch.load(snake_case__ , map_location='''cpu''' ) __UpperCAmelCase =replace_keys(snake_case__ ) __UpperCAmelCase =SamImageProcessor() __UpperCAmelCase =SamProcessor(image_processor=snake_case__ ) __UpperCAmelCase =SamModel(snake_case__ ) hf_model.load_state_dict(snake_case__ ) __UpperCAmelCase =hf_model.to('''cuda''' ) __UpperCAmelCase ='''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' __UpperCAmelCase =Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('''RGB''' ) __UpperCAmelCase =[[[400, 650]]] __UpperCAmelCase =[[1]] __UpperCAmelCase =processor(images=np.array(snake_case__ ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __UpperCAmelCase =hf_model(**snake_case__ ) __UpperCAmelCase =output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 __UpperCAmelCase =processor( images=np.array(snake_case__ ) , input_points=snake_case__ , input_labels=snake_case__ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __UpperCAmelCase =hf_model(**snake_case__ ) __UpperCAmelCase =output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 __UpperCAmelCase =((75, 275, 1725, 850),) __UpperCAmelCase =processor(images=np.array(snake_case__ ) , input_boxes=snake_case__ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __UpperCAmelCase =hf_model(**snake_case__ ) __UpperCAmelCase =output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. __UpperCAmelCase =[[[400, 650], [800, 650]]] __UpperCAmelCase =[[1, 1]] __UpperCAmelCase =processor( images=np.array(snake_case__ ) , input_points=snake_case__ , input_labels=snake_case__ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): __UpperCAmelCase =hf_model(**snake_case__ ) __UpperCAmelCase =output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) UpperCamelCase_ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
142
0
'''simple docstring''' class SCREAMING_SNAKE_CASE : # Public class to implement a graph def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = row __A : Any = col __A : Union[str, Any] = graph def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __A : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] __A : str = True # Make those cells visited for k in range(8): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): # And finally, count all islands. '''simple docstring''' __A : Tuple = [[False for j in range(self.COL)] for i in range(self.ROW)] __A : Optional[Any] = 0 for i in range(self.ROW): for j in range(self.COL): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) count += 1 return count
8
def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = len(lowercase ) __lowercase = len(lowercase ) __lowercase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __lowercase = True for i in range(lowercase ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __lowercase = True if a[i].islower(): __lowercase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
534
0
def UpperCamelCase (lowercase_: int = 10 , lowercase_: int = 22 ) -> int: A__ : Any = range(1 , lowercase_ ) A__ : str = range(1 , lowercase_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
64
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline A_ : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class _a (datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase__: Optional[datasets.Features] = None UpperCAmelCase__: str = "utf-8" UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: Optional[str] = None UpperCAmelCase__: bool = True # deprecated UpperCAmelCase__: Optional[int] = None # deprecated UpperCAmelCase__: int = 10 << 20 # 10MB UpperCAmelCase__: Optional[bool] = None class _a (datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase__: List[str] = JsonConfig def __A ( self ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) A__ : Union[str, Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def __A ( self , A__ ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) A__ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A__ , (str, list, tuple) ): A__ : Optional[Any] = data_files if isinstance(A__ , A__ ): A__ : List[str] = [files] A__ : int = [dl_manager.iter_files(A__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] A__ : List[str] = [] for split_name, files in data_files.items(): if isinstance(A__ , A__ ): A__ : Optional[int] = [files] A__ : Optional[int] = [dl_manager.iter_files(A__ ) for file in files] splits.append(datasets.SplitGenerator(name=A__ , gen_kwargs={"""files""": files} ) ) return splits def __A ( self , A__ ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A__ : Optional[Any] = self.config.features.arrow_schema.field(A__ ).type A__ : str = pa_table.append_column(A__ , pa.array([None] * len(A__ ) , type=A__ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A__ : Optional[int] = table_cast(A__ , self.config.features.arrow_schema ) return pa_table def __A ( self , A__ ): for file_idx, file in enumerate(itertools.chain.from_iterable(A__ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(A__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A__ : Optional[Any] = json.load(A__ ) # We keep only the field we are interested in A__ : Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(A__ , (list, tuple) ): A__ : Union[str, Any] = set().union(*[row.keys() for row in dataset] ) A__ : Any = {col: [row.get(A__ ) for row in dataset] for col in keys} else: A__ : Any = dataset A__ : Any = pa.Table.from_pydict(A__ ) yield file_idx, self._cast_table(A__ ) # If the file has one json object per line else: with open(A__ , """rb""" ) as f: A__ : List[str] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A__ : List[str] = max(self.config.chunksize // 32 , 16 << 10 ) A__ : Any = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: A__ : Dict = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(A__ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A__ : List[Any] = batch.decode(self.config.encoding , errors=A__ ).encode("""utf-8""" ) try: while True: try: A__ : str = paj.read_json( io.BytesIO(A__ ) , read_options=paj.ReadOptions(block_size=A__ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(A__ , pa.ArrowInvalid ) and "straddling" not in str(A__ ) or block_size > len(A__ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(A__ )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( A__ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A__ : Optional[Any] = json.load(A__ ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(A__ , A__ ): # list is the only sequence type supported in JSON try: A__ : str = set().union(*[row.keys() for row in dataset] ) A__ : List[str] = {col: [row.get(A__ ) for row in dataset] for col in keys} A__ : int = pa.Table.from_pydict(A__ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(A__ ) break else: logger.error(F"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A__ ) batch_idx += 1
64
1
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=99 , A_=13 , A_=16 , A_=7 , A_=True , A_=True , A_=True , A_=False , A_=True , A_=2 , A_=32 , A_=4 , A_=4 , A_=30 , A_=0 , A_=1 , A_=2 , A_=None , )-> str: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = decoder_seq_length # For common tests UpperCamelCase = self.decoder_seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = d_model UpperCamelCase = d_model UpperCamelCase = decoder_layers UpperCamelCase = decoder_layers UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_attention_heads UpperCamelCase = decoder_attention_heads UpperCamelCase = eos_token_id UpperCamelCase = bos_token_id UpperCamelCase = pad_token_id UpperCamelCase = decoder_start_token_id UpperCamelCase = use_cache UpperCamelCase = max_position_embeddings UpperCamelCase = None UpperCamelCase = decoder_seq_length UpperCamelCase = 2 UpperCamelCase = 1 def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) UpperCamelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , )-> Optional[int]: '''simple docstring''' UpperCamelCase = True UpperCamelCase = TrOCRDecoder(config=A_ ).to(A_ ).eval() UpperCamelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass UpperCamelCase = model(A_ , use_cache=A_ ) UpperCamelCase = model(A_ ) UpperCamelCase = model(A_ , use_cache=A_ ) self.parent.assertTrue(len(A_ ) == len(A_ ) ) self.parent.assertTrue(len(A_ ) == len(A_ ) + 1 ) UpperCamelCase = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = model(A_ )['last_hidden_state'] UpperCamelCase = model(A_ , past_key_values=A_ )['last_hidden_state'] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(A_ , A_ , atol=1e-3 ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase_ = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase_ = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase_ = True lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=A_ ) UpperCamelCase = ConfigTester(self , config_class=A_ ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> str: '''simple docstring''' pass def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*A_ ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' pass
3
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Tuple = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 128, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 142, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } __snake_case : Dict = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 128, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 142, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , x.transpose() ) ) __snake_case : Dict = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowercase_ ( self ): __snake_case : str = np.random.randn(3 , 4 ) __snake_case : str = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , transpose(_UpperCAmelCase ).numpy() ) ) __snake_case : Optional[Any] = np.random.randn(3 , 4 , 5 ) __snake_case : List[str] = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , transpose(_UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowercase_ ( self ): __snake_case : Any = np.random.randn(3 , 4 ) __snake_case : Dict = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , transpose(_UpperCAmelCase ).numpy() ) ) __snake_case : Optional[int] = np.random.randn(3 , 4 , 5 ) __snake_case : int = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , transpose(_UpperCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowercase_ ( self ): __snake_case : str = np.random.randn(3 , 4 ) __snake_case : Optional[Any] = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase ) , np.asarray(transpose(_UpperCAmelCase ) ) ) ) __snake_case : List[Any] = np.random.randn(3 , 4 , 5 ) __snake_case : Any = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(_UpperCAmelCase , axes=(1, 2, 0) ) ) ) ) def lowercase_ ( self ): __snake_case : List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , np.reshape(_UpperCAmelCase , (4, 3) ) ) ) __snake_case : Optional[int] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , np.reshape(_UpperCAmelCase , (12, 5) ) ) ) @require_torch def lowercase_ ( self ): __snake_case : Optional[int] = np.random.randn(3 , 4 ) __snake_case : Optional[int] = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , reshape(_UpperCAmelCase , (4, 3) ).numpy() ) ) __snake_case : int = np.random.randn(3 , 4 , 5 ) __snake_case : int = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , reshape(_UpperCAmelCase , (12, 5) ).numpy() ) ) @require_tf def lowercase_ ( self ): __snake_case : str = np.random.randn(3 , 4 ) __snake_case : Optional[int] = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , reshape(_UpperCAmelCase , (4, 3) ).numpy() ) ) __snake_case : Dict = np.random.randn(3 , 4 , 5 ) __snake_case : List[str] = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , reshape(_UpperCAmelCase , (12, 5) ).numpy() ) ) @require_flax def lowercase_ ( self ): __snake_case : int = np.random.randn(3 , 4 ) __snake_case : Any = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (4, 3) ) , np.asarray(reshape(_UpperCAmelCase , (4, 3) ) ) ) ) __snake_case : Optional[Any] = np.random.randn(3 , 4 , 5 ) __snake_case : Any = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(reshape(_UpperCAmelCase , (12, 5) ) , np.asarray(reshape(_UpperCAmelCase , (12, 5) ) ) ) ) def lowercase_ ( self ): __snake_case : Any = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , np.squeeze(_UpperCAmelCase ) ) ) __snake_case : List[str] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , np.squeeze(_UpperCAmelCase , axis=2 ) ) ) @require_torch def lowercase_ ( self ): __snake_case : Tuple = np.random.randn(1 , 3 , 4 ) __snake_case : int = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , squeeze(_UpperCAmelCase ).numpy() ) ) __snake_case : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) __snake_case : Tuple = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , squeeze(_UpperCAmelCase , axis=2 ).numpy() ) ) @require_tf def lowercase_ ( self ): __snake_case : List[Any] = np.random.randn(1 , 3 , 4 ) __snake_case : Optional[Any] = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , squeeze(_UpperCAmelCase ).numpy() ) ) __snake_case : Dict = np.random.randn(1 , 4 , 1 , 5 ) __snake_case : Dict = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , squeeze(_UpperCAmelCase , axis=2 ).numpy() ) ) @require_flax def lowercase_ ( self ): __snake_case : List[str] = np.random.randn(1 , 3 , 4 ) __snake_case : Optional[Any] = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase ) , np.asarray(squeeze(_UpperCAmelCase ) ) ) ) __snake_case : List[str] = np.random.randn(1 , 4 , 1 , 5 ) __snake_case : Dict = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(squeeze(_UpperCAmelCase , axis=2 ) , np.asarray(squeeze(_UpperCAmelCase , axis=2 ) ) ) ) def lowercase_ ( self ): __snake_case : Tuple = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , np.expand_dims(_UpperCAmelCase , axis=1 ) ) ) @require_torch def lowercase_ ( self ): __snake_case : Dict = np.random.randn(3 , 4 ) __snake_case : List[str] = torch.tensor(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , expand_dims(_UpperCAmelCase , axis=1 ).numpy() ) ) @require_tf def lowercase_ ( self ): __snake_case : int = np.random.randn(3 , 4 ) __snake_case : Optional[Any] = tf.constant(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , expand_dims(_UpperCAmelCase , axis=1 ).numpy() ) ) @require_flax def lowercase_ ( self ): __snake_case : Union[str, Any] = np.random.randn(3 , 4 ) __snake_case : Any = jnp.array(_UpperCAmelCase ) self.assertTrue(np.allclose(expand_dims(_UpperCAmelCase , axis=1 ) , np.asarray(expand_dims(_UpperCAmelCase , axis=1 ) ) ) )
576
0
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase_ ( lowercase_ : int ): '''simple docstring''' return np.dot(lowercase_ , lowercase_ ) class snake_case : def __init__( self :Any , *, _lowerCamelCase :float = np.inf , _lowerCamelCase :str = "linear" , _lowerCamelCase :float = 0.0 , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = regularization __SCREAMING_SNAKE_CASE : int = gamma if kernel == "linear": __SCREAMING_SNAKE_CASE : Optional[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __SCREAMING_SNAKE_CASE : int = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __SCREAMING_SNAKE_CASE : Tuple = f'''Unknown kernel: {kernel}''' raise ValueError(A_ ) def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :ndarray , _lowerCamelCase :ndarray ): return np.dot(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self :List[str] , _lowerCamelCase :ndarray , _lowerCamelCase :ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def SCREAMING_SNAKE_CASE_ ( self :Dict , _lowerCamelCase :list[ndarray] , _lowerCamelCase :ndarray ): __SCREAMING_SNAKE_CASE : Any = observations __SCREAMING_SNAKE_CASE : Union[str, Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__SCREAMING_SNAKE_CASE ) , ) : Union[str, Any] = np.shape(A_ ) def to_minimize(_lowerCamelCase :ndarray ) -> float: __SCREAMING_SNAKE_CASE : str = 0 ((__SCREAMING_SNAKE_CASE ) , ) : Tuple = np.shape(A_ ) for i in range(A_ ): for j in range(A_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(A_ ) __SCREAMING_SNAKE_CASE : Dict = LinearConstraint(A_ , 0 , 0 ) __SCREAMING_SNAKE_CASE : Dict = Bounds(0 , self.regularization ) __SCREAMING_SNAKE_CASE : Optional[Any] = minimize( A_ , np.ones(A_ ) , bounds=A_ , constraints=[ly_contraint] ).x __SCREAMING_SNAKE_CASE : List[Any] = l_star # calculating mean offset of separation plane to points __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for i in range(A_ ): for j in range(A_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __SCREAMING_SNAKE_CASE : str = s / n def SCREAMING_SNAKE_CASE_ ( self :str , _lowerCamelCase :ndarray ): __SCREAMING_SNAKE_CASE : Optional[Any] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , A_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" from ...processing_utils import ProcessorMixin class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = '''SpeechT5FeatureExtractor''' lowerCamelCase__ = '''SpeechT5Tokenizer''' def __init__( self :List[Any] , _lowerCamelCase :Optional[int] , _lowerCamelCase :str ): super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self :Optional[int] , *_lowerCamelCase :Dict , **_lowerCamelCase :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''audio''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = kwargs.pop('''text''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''text_target''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''audio_target''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: __SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) elif text is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Tuple = None if audio_target is not None: __SCREAMING_SNAKE_CASE : Tuple = self.feature_extractor(audio_target=_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = targets['''input_values'''] elif text_target is not None: __SCREAMING_SNAKE_CASE : str = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] else: __SCREAMING_SNAKE_CASE : List[Any] = None if inputs is None: return targets if targets is not None: __SCREAMING_SNAKE_CASE : int = labels __SCREAMING_SNAKE_CASE : Dict = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __SCREAMING_SNAKE_CASE : Any = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , *_lowerCamelCase :Dict , **_lowerCamelCase :Any ): __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''input_values''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''input_ids''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''labels''' , _lowerCamelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) elif input_ids is not None: __SCREAMING_SNAKE_CASE : int = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Any = None if labels is not None: if "input_ids" in labels or (isinstance(_lowerCamelCase , _lowerCamelCase ) and "input_ids" in labels[0]): __SCREAMING_SNAKE_CASE : Any = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = targets['''input_ids'''] else: __SCREAMING_SNAKE_CASE : Any = self.feature_extractor.feature_size __SCREAMING_SNAKE_CASE : Any = self.feature_extractor.num_mel_bins __SCREAMING_SNAKE_CASE : Any = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = feature_size_hack __SCREAMING_SNAKE_CASE : Any = targets['''input_values'''] else: __SCREAMING_SNAKE_CASE : Dict = None if inputs is None: return targets if targets is not None: __SCREAMING_SNAKE_CASE : List[Any] = labels __SCREAMING_SNAKE_CASE : int = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE_ ( self :Tuple , *_lowerCamelCase :Tuple , **_lowerCamelCase :Union[str, Any] ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , *_lowerCamelCase :List[Any] , **_lowerCamelCase :List[str] ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase )
401
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowercase : Optional[Any] = input("""Enter image url: """).strip() print(F"""Downloading image from {url} ...""") lowercase : List[Any] = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image lowercase : str = soup.find("""meta""", {"""property""": """og:image"""})["content"] lowercase : Any = requests.get(image_url).content lowercase : Dict = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, """wb""") as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
302
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) class __lowercase ( A ): __magic_name__ : Any = '''sequence-classification''' def __init__( self , a__ ) -> Optional[Any]: '''simple docstring''' if type(a__ ) == dict: A_ = Namespace(**a__ ) A_ = glue_output_modes[hparams.task] A_ = glue_tasks_num_labels[hparams.task] super().__init__(a__ , a__ , self.mode ) def lowerCAmelCase_ ( self , **a__ ) -> List[Any]: '''simple docstring''' return self.model(**a__ ) def lowerCAmelCase_ ( self , a__ , a__ ) -> Optional[int]: '''simple docstring''' A_ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A_ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None A_ = self(**a__ ) A_ = outputs[0] A_ = self.trainer.lr_schedulers[0]['''scheduler'''] A_ = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = self.hparams A_ = processors[args.task]() A_ = processor.get_labels() for mode in ["train", "dev"]: A_ = self._feature_file(a__ ) if os.path.exists(a__ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , a__ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) A_ = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) A_ = convert_examples_to_features( a__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , a__ ) torch.save(a__ , a__ ) def lowerCAmelCase_ ( self , a__ , a__ , a__ = False ) -> DataLoader: '''simple docstring''' A_ = '''dev''' if mode == '''test''' else mode A_ = self._feature_file(a__ ) logger.info('''Loading features from cached file %s''' , a__ ) A_ = torch.load(a__ ) A_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) A_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) A_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": A_ = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": A_ = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a__ , a__ , a__ , a__ ) , batch_size=a__ , shuffle=a__ , ) def lowerCAmelCase_ ( self , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' A_ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A_ = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None A_ = self(**a__ ) A_ , A_ = outputs[:2] A_ = logits.detach().cpu().numpy() A_ = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCAmelCase_ ( self , a__ ) -> tuple: '''simple docstring''' A_ = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() A_ = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": A_ = np.argmax(a__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": A_ = np.squeeze(a__ ) A_ = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) A_ = [[] for _ in range(out_label_ids.shape[0] )] A_ = [[] for _ in range(out_label_ids.shape[0] )] A_ = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , a__ , a__ )} A_ = dict(results.items() ) A_ = results return ret, preds_list, out_label_list def lowerCAmelCase_ ( self , a__ ) -> dict: '''simple docstring''' A_ , A_ , A_ = self._eval_end(a__ ) A_ = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCAmelCase_ ( self , a__ ) -> dict: '''simple docstring''' A_ , A_ , A_ = self._eval_end(a__ ) A_ = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCAmelCase_ ( a__ , a__ ) -> Dict: '''simple docstring''' BaseTransformer.add_model_specific_args(a__ , a__ ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=a__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=a__ , required=a__ , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=a__ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def lowerCamelCase_ ( ): A_ = argparse.ArgumentParser() add_generic_args(__UpperCamelCase , os.getcwd() ) A_ = GLUETransformer.add_model_specific_args(__UpperCamelCase , os.getcwd() ) A_ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: A_ = os.path.join( '''./results''' , F"{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}" , ) os.makedirs(args.output_dir ) A_ = GLUETransformer(__UpperCamelCase ) A_ = generic_train(__UpperCamelCase , __UpperCamelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: A_ = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=__UpperCamelCase ) ) A_ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__UpperCamelCase ) if __name__ == "__main__": main()
141
0
'''simple docstring''' def _a ( _lowercase : int , _lowercase : list[int] , _lowercase : int ): '''simple docstring''' def count_of_possible_combinations(_lowercase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowercase ) def _a ( _lowercase : int , _lowercase : list[int] , _lowercase : int ): '''simple docstring''' def count_of_possible_combinations_with_dp_array( _lowercase : int , _lowercase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __UpperCAmelCase : Optional[Any] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowercase ) for item in array ) __UpperCAmelCase : Optional[Any] = answer return answer __UpperCAmelCase : Dict = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowercase , _lowercase ) def _a ( _lowercase : int , _lowercase : list[int] , _lowercase : int ): '''simple docstring''' __UpperCAmelCase : Optional[int] = [0] * (target + 1) __UpperCAmelCase : Union[str, Any] = 1 for i in range(1 , target + 1 ): for j in range(_lowercase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase :int = 3 __UpperCAmelCase :Tuple = 5 __UpperCAmelCase :Any = [1, 2, 5] print(combination_sum_iv(n, array, target))
266
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase :List[Any] = logging.get_logger(__name__) def _a ( _lowercase : Tuple ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = '''huggingface/label-files''' __UpperCAmelCase : str = '''imagenet-1k-id2label.json''' __UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase : int = {int(_lowercase ): v for k, v in idalabel.items()} __UpperCAmelCase : int = {v: k for k, v in idalabel.items()} __UpperCAmelCase : Optional[Any] = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __UpperCAmelCase : int = BitConfig( conv_layer=_lowercase , num_labels=1000 , idalabel=_lowercase , labelaid=_lowercase , ) return config def _a ( _lowercase : Tuple ): '''simple docstring''' if "stem.conv" in name: __UpperCAmelCase : Any = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: __UpperCAmelCase : Optional[int] = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: __UpperCAmelCase : Dict = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): __UpperCAmelCase : List[Any] = '''bit.''' + name if "bit" not in name and "classifier" not in name: __UpperCAmelCase : List[str] = '''bit.encoder.''' + name return name def _a ( ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def _a ( _lowercase : Tuple , _lowercase : Dict , _lowercase : Tuple=False ): '''simple docstring''' __UpperCAmelCase : Any = get_config(_lowercase ) # load original model from timm __UpperCAmelCase : Tuple = create_model(_lowercase , pretrained=_lowercase ) timm_model.eval() # load state_dict of original model __UpperCAmelCase : List[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): __UpperCAmelCase : Optional[Any] = state_dict.pop(_lowercase ) __UpperCAmelCase : int = val.squeeze() if '''head''' in key else val # load HuggingFace model __UpperCAmelCase : Any = BitForImageClassification(_lowercase ) model.eval() model.load_state_dict(_lowercase ) # create image processor __UpperCAmelCase : Optional[int] = create_transform(**resolve_data_config({} , model=_lowercase ) ) __UpperCAmelCase : Union[str, Any] = transform.transforms __UpperCAmelCase : str = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } __UpperCAmelCase : List[Any] = BitImageProcessor( do_resize=_lowercase , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_lowercase , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=_lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : Any = transform(_lowercase ).unsqueeze(0 ) __UpperCAmelCase : List[Any] = processor(_lowercase , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(_lowercase , _lowercase ) # verify logits with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(_lowercase ) __UpperCAmelCase : Union[str, Any] = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) __UpperCAmelCase : Optional[int] = timm_model(_lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowercase , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if push_to_hub: print(F'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(F'ybelkada/{model_name}' ) processor.push_to_hub(F'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) __UpperCAmelCase :str = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
266
1
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class __UpperCAmelCase : __lowerCamelCase : List[Any] = None def UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' a__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) a__ : List[str] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self : Dict ) -> Any: '''simple docstring''' a__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : List[str] = os.path.join(_SCREAMING_SNAKE_CASE , "feat_extract.json" ) feat_extract_first.to_json_file(_SCREAMING_SNAKE_CASE ) a__ : Dict = self.feature_extraction_class.from_json_file(_SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' a__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ : int = feat_extract_first.save_pretrained(_SCREAMING_SNAKE_CASE )[0] check_json_file_has_correct_format(_SCREAMING_SNAKE_CASE ) a__ : int = self.feature_extraction_class.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCAmelCase ( self : Optional[Any] ) -> Any: '''simple docstring''' a__ : List[Any] = self.feature_extraction_class() self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
642
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
518
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = {} class UpperCAmelCase__ ( __UpperCAmelCase ): lowerCAmelCase_ : Union[str, Any] = """llama""" lowerCAmelCase_ : Union[str, Any] = ["""past_key_values"""] def __init__( self : List[Any] , snake_case : int=32_000 , snake_case : Optional[Any]=4_096 , snake_case : Dict=11_008 , snake_case : List[Any]=32 , snake_case : Any=32 , snake_case : Optional[Any]=None , snake_case : Optional[Any]="silu" , snake_case : List[Any]=2_048 , snake_case : Dict=0.02 , snake_case : str=1E-6 , snake_case : Any=True , snake_case : Optional[Any]=0 , snake_case : Tuple=1 , snake_case : str=2 , snake_case : Optional[int]=1 , snake_case : str=False , snake_case : Union[str, Any]=None , **snake_case : int , ) -> Any: '''simple docstring''' A = vocab_size A = max_position_embeddings A = hidden_size A = intermediate_size A = num_hidden_layers A = num_attention_heads # for backward compatibility if num_key_value_heads is None: A = num_attention_heads A = num_key_value_heads A = hidden_act A = initializer_range A = rms_norm_eps A = pretraining_tp A = use_cache A = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , tie_word_embeddings=snake_case , **snake_case , ) def A_ ( self : List[str] ) -> Dict: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) A = self.rope_scaling.get('type' , snake_case ) A = self.rope_scaling.get('factor' , snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(snake_case , snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}""" )
717
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A = logging.get_logger(__name__) A = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : str = field( default=UpperCamelCase ,metadata={"""help""": """Model type selected in the list: """ + """, """.join(UpperCamelCase )} ) lowerCAmelCase_ : str = field( default=UpperCamelCase ,metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) lowerCAmelCase_ : int = field( default=1_28 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) lowerCAmelCase_ : int = field( default=1_28 ,metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} ,) lowerCAmelCase_ : int = field( default=64 ,metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } ,) lowerCAmelCase_ : int = field( default=30 ,metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } ,) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) lowerCAmelCase_ : float = field( default=0.0 ,metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) lowerCAmelCase_ : int = field( default=20 ,metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) lowerCAmelCase_ : int = field( default=0 ,metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } ,) lowerCAmelCase_ : int = field(default=1 ,metadata={"""help""": """multiple threads for converting example to features"""} ) class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : str = """train""" lowerCAmelCase_ : Union[str, Any] = """dev""" class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : SquadDataTrainingArguments lowerCAmelCase_ : List[SquadFeatures] lowerCAmelCase_ : Split lowerCAmelCase_ : bool def __init__( self : List[Any] , snake_case : SquadDataTrainingArguments , snake_case : PreTrainedTokenizer , snake_case : Optional[int] = None , snake_case : Union[str, Split] = Split.train , snake_case : Optional[bool] = False , snake_case : Optional[str] = None , snake_case : Optional[str] = "pt" , ) -> Optional[Any]: '''simple docstring''' A = args A = is_language_sensitive A = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(snake_case , snake_case ): try: A = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) A = mode # Load data features from cache or dataset file A = 'v2' if args.version_2_with_negative else 'v1' A = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A = cached_features_file + '.lock' with FileLock(snake_case ): if os.path.exists(snake_case ) and not args.overwrite_cache: A = time.time() A = torch.load(snake_case ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A = self.old_features['features'] A = self.old_features.get('dataset' , snake_case ) A = self.old_features.get('examples' , snake_case ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" ' future run' ) else: if mode == Split.dev: A = self.processor.get_dev_examples(args.data_dir ) else: A = self.processor.get_train_examples(args.data_dir ) A , A = squad_convert_examples_to_features( examples=self.examples , tokenizer=snake_case , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=snake_case , ) A = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , snake_case , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Any ) -> Dict: '''simple docstring''' return len(self.features ) def __getitem__( self : Union[str, Any] , snake_case : List[str] ) -> Dict[str, torch.Tensor]: '''simple docstring''' A = self.features[i] A = torch.tensor(feature.input_ids , dtype=torch.long ) A = torch.tensor(feature.attention_mask , dtype=torch.long ) A = torch.tensor(feature.token_type_ids , dtype=torch.long ) A = torch.tensor(feature.cls_index , dtype=torch.long ) A = torch.tensor(feature.p_mask , dtype=torch.float ) A = torch.tensor(feature.is_impossible , dtype=torch.float ) A = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A = torch.tensor(feature.start_position , dtype=torch.long ) A = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
109
0
def lowercase_ ( _UpperCamelCase = 50 ): '''simple docstring''' __lowercase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
639
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES a : Union[str, Any] = '''tiny-wmt19-en-ru''' # Build # borrowed from a test a : Tuple = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] a : List[Any] = dict(zip(vocab, range(len(vocab)))) a : Optional[int] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: a : Union[str, Any] = Path(tmpdirname) a : Dict = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] a : Optional[int] = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] a : Tuple = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) a : Optional[int] = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) a : List[str] = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) a : Union[str, Any] = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test a : Dict = tokenizer(['''Making tiny model'''], return_tensors='''pt''') a : Union[str, Any] = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
639
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'BAAI/AltCLIP': 'https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json', # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): _lowerCamelCase : List[str] = """altclip_text_model""" def __init__( self , _SCREAMING_SNAKE_CASE=25_0002 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=24 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=4096 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=514 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1E-05 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=768 , **_SCREAMING_SNAKE_CASE , ): super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = initializer_factor a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = project_dim class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): _lowerCamelCase : int = """altclip_vision_model""" def __init__( self , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=3072 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE="quick_gelu" , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1.0 , **_SCREAMING_SNAKE_CASE , ): super().__init__(**_SCREAMING_SNAKE_CASE ) a_ = hidden_size a_ = intermediate_size a_ = projection_dim a_ = num_hidden_layers a_ = num_attention_heads a_ = num_channels a_ = patch_size a_ = image_size a_ = initializer_range a_ = initializer_factor a_ = attention_dropout a_ = layer_norm_eps a_ = hidden_act @classmethod def __magic_name__ ( cls , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): cls._set_token_in_kwargs(_SCREAMING_SNAKE_CASE ) a_ , a_ = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": a_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): _lowerCamelCase : Optional[int] = """altclip""" _lowerCamelCase : Any = True def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=2.6_5_9_2 , **_SCREAMING_SNAKE_CASE ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). a_ = kwargs.pop("""text_config_dict""" , _SCREAMING_SNAKE_CASE ) a_ = kwargs.pop("""vision_config_dict""" , _SCREAMING_SNAKE_CASE ) super().__init__(**_SCREAMING_SNAKE_CASE ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: a_ = {} # This is the complete result when using `text_config_dict`. a_ = AltCLIPTextConfig(**_SCREAMING_SNAKE_CASE ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: a_ = ( f"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ f"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: a_ = ( f"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ f"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(_SCREAMING_SNAKE_CASE ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: a_ = {} # This is the complete result when using `vision_config_dict`. a_ = AltCLIPVisionConfig(**_SCREAMING_SNAKE_CASE ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: a_ = { str(_SCREAMING_SNAKE_CASE ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: a_ = ( f"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ f"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: a_ = ( f"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ f"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(_SCREAMING_SNAKE_CASE ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: a_ = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: a_ = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) a_ = AltCLIPTextConfig(**_SCREAMING_SNAKE_CASE ) a_ = AltCLIPVisionConfig(**_SCREAMING_SNAKE_CASE ) a_ = projection_dim a_ = logit_scale_init_value a_ = 1.0 @classmethod def __magic_name__ ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = copy.deepcopy(self.__dict__ ) a_ = self.text_config.to_dict() a_ = self.vision_config.to_dict() a_ = self.__class__.model_type return output
403
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[int]=None ) -> Optional[Any]: """simple docstring""" a_ = argparse.ArgumentParser(add_help=UpperCamelCase , allow_abbrev=UpperCamelCase ) # The main config parser a_ = config_command_parser(UpperCamelCase ) # The subparser to add commands to a_ = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(UpperCamelCase , parents=[parent_parser] ) update_command_parser(UpperCamelCase , parents=[parent_parser] ) return config_parser def __SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" a_ = get_config_parser() a_ = config_parser.parse_args() if not hasattr(UpperCamelCase , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(UpperCamelCase ) if __name__ == "__main__": main()
403
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : List[Any] = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _lowerCamelCase : Union[str, Any] = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def _lowerCAmelCase ( __magic_name__ :Any ): UpperCAmelCase_ = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(__magic_name__ , __magic_name__ ) _lowerCamelCase : Any = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def _lowerCAmelCase ( __magic_name__ :Union[str, Any] ): UpperCAmelCase_ = list(s_dict.keys() ) for key in keys: UpperCAmelCase_ = key for k, v in WHISPER_MAPPING.items(): if k in key: UpperCAmelCase_ = new_key.replace(__magic_name__ , __magic_name__ ) print(F'''{key} -> {new_key}''' ) UpperCAmelCase_ = s_dict.pop(__magic_name__ ) return s_dict def _lowerCAmelCase ( __magic_name__ :Union[str, Any] ): UpperCAmelCase_, UpperCAmelCase_ = emb.weight.shape UpperCAmelCase_ = nn.Linear(__magic_name__ , __magic_name__ , bias=__magic_name__ ) UpperCAmelCase_ = emb.weight.data return lin_layer def _lowerCAmelCase ( __magic_name__ :str , __magic_name__ :str ): os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) UpperCAmelCase_ = os.path.basename(__magic_name__ ) UpperCAmelCase_ = url.split('''/''' )[-2] UpperCAmelCase_ = os.path.join(__magic_name__ , __magic_name__ ) if os.path.exists(__magic_name__ ) and not os.path.isfile(__magic_name__ ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(__magic_name__ ): UpperCAmelCase_ = open(__magic_name__ , '''rb''' ).read() if hashlib.shaaaa(__magic_name__ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(__magic_name__ ) as source, open(__magic_name__ , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=__magic_name__ , unit_divisor=1_0_2_4 ) as loop: while True: UpperCAmelCase_ = source.read(8_1_9_2 ) if not buffer: break output.write(__magic_name__ ) loop.update(len(__magic_name__ ) ) UpperCAmelCase_ = open(__magic_name__ , '''rb''' ).read() if hashlib.shaaaa(__magic_name__ ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def _lowerCAmelCase ( __magic_name__ :List[Any] , __magic_name__ :Any ): if ".pt" not in checkpoint_path: UpperCAmelCase_ = _download(_MODELS[checkpoint_path] ) else: UpperCAmelCase_ = torch.load(__magic_name__ , map_location='''cpu''' ) UpperCAmelCase_ = original_checkpoint['''dims'''] UpperCAmelCase_ = original_checkpoint['''model_state_dict'''] UpperCAmelCase_ = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(__magic_name__ ) rename_keys(__magic_name__ ) UpperCAmelCase_ = True UpperCAmelCase_ = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] UpperCAmelCase_ = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=__magic_name__ , decoder_ffn_dim=__magic_name__ , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) UpperCAmelCase_ = WhisperForConditionalGeneration(__magic_name__ ) UpperCAmelCase_, UpperCAmelCase_ = model.model.load_state_dict(__magic_name__ , strict=__magic_name__ ) if len(__magic_name__ ) > 0 and not set(__magic_name__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F''' but all the following weights are missing {missing}''' ) if tie_embeds: UpperCAmelCase_ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCAmelCase_ = proj_out_weights model.save_pretrained(__magic_name__ ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _lowerCamelCase : Any = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
121
1
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num <= 0: raise ValueError("""Input must be a positive integer""" ) lowerCAmelCase = [True] * (num + 1) lowerCAmelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , SCREAMING_SNAKE_CASE ): lowerCAmelCase = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
393
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int = 1_00 ): '''simple docstring''' lowerCAmelCase = (n * (n + 1) // 2) ** 2 lowerCAmelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
393
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _lowerCamelCase = False _lowerCamelCase = True _lowerCamelCase = False if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') _lowerCamelCase = parser.parse_args() _lowerCamelCase = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } _lowerCamelCase = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } _lowerCamelCase = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: _lowerCamelCase = reader.read() _lowerCamelCase = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): _lowerCamelCase = UNetaDModel(**config) else: _lowerCamelCase = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel _lowerCamelCase = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _lowerCamelCase = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _lowerCamelCase = config[key] del config[key] _lowerCamelCase = [k.replace('UNetRes', '') for k in config['down_block_types']] _lowerCamelCase = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: _lowerCamelCase = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) _lowerCamelCase = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue _lowerCamelCase = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: _lowerCamelCase = param_value _lowerCamelCase = True if not has_changed: _lowerCamelCase = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
6
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } _SCREAMING_SNAKE_CASE : List[Any] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowercase ( __lowerCamelCase : Optional[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Dict ) -> str: '''simple docstring''' for attribute in key.split('''.''' ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : List[str] = '''lm_head''' UpperCamelCase__ : Any = getattr(__lowerCamelCase ,__lowerCamelCase ) if weight_type is not None: UpperCamelCase__ : List[str] = getattr(__lowerCamelCase ,__lowerCamelCase ).shape else: UpperCamelCase__ : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : int = value elif weight_type == "weight_g": UpperCamelCase__ : int = value elif weight_type == "weight_v": UpperCamelCase__ : int = value elif weight_type == "bias": UpperCamelCase__ : Optional[Any] = value else: UpperCamelCase__ : Any = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowercase ( __lowerCamelCase : int ,__lowerCamelCase : Any ,__lowerCamelCase : Any ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Any = [] UpperCamelCase__ : Union[str, Any] = fairseq_model.state_dict() UpperCamelCase__ : List[str] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Tuple = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,hf_model.config.feat_extract_norm == '''group''' ,) UpperCamelCase__ : str = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : Dict = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCamelCase__ : Optional[int] = True if "*" in mapped_key: UpperCamelCase__ : int = name.split(__lowerCamelCase )[0].split('''.''' )[-2] UpperCamelCase__ : int = mapped_key.replace('''*''' ,__lowerCamelCase ) if "weight_g" in name: UpperCamelCase__ : str = '''weight_g''' elif "weight_v" in name: UpperCamelCase__ : Union[str, Any] = '''weight_v''' elif "bias" in name: UpperCamelCase__ : Dict = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : List[Any] = '''weight''' else: UpperCamelCase__ : Optional[Any] = None set_recursively(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def _lowercase ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Any ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Any = full_name.split('''conv_layers.''' )[-1] UpperCamelCase__ : Optional[int] = name.split('''.''' ) UpperCamelCase__ : Optional[int] = int(items[0] ) UpperCamelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : str = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : str = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : Dict = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def _lowercase ( __lowerCamelCase : Dict ,__lowerCamelCase : str ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : List[Any]=None ,__lowerCamelCase : Tuple=True ) -> Any: '''simple docstring''' if config_path is not None: UpperCamelCase__ : Optional[int] = UniSpeechConfig.from_pretrained(__lowerCamelCase ) else: UpperCamelCase__ : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : List[Any] = Dictionary.load_from_json(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[str] = target_dict.pad_index UpperCamelCase__ : Optional[Any] = target_dict.bos_index UpperCamelCase__ : str = target_dict.eos_index UpperCamelCase__ : Optional[Any] = len(target_dict.symbols ) UpperCamelCase__ : int = os.path.join(__lowerCamelCase ,'''vocab.json''' ) if not os.path.isdir(__lowerCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) UpperCamelCase__ : int = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Tuple = 42 UpperCamelCase__ : List[str] = 43 with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as vocab_handle: json.dump(__lowerCamelCase ,__lowerCamelCase ) UpperCamelCase__ : Tuple = WavaVecaPhonemeCTCTokenizer( __lowerCamelCase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token='''|''' ,do_lower_case=__lowerCamelCase ,) UpperCamelCase__ : List[str] = True if config.feat_extract_norm == '''layer''' else False UpperCamelCase__ : int = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,) UpperCamelCase__ : Dict = WavaVecaProcessor(feature_extractor=__lowerCamelCase ,tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) UpperCamelCase__ : int = UniSpeechForCTC(__lowerCamelCase ) else: UpperCamelCase__ : Any = UniSpeechForPreTraining(__lowerCamelCase ) if is_finetuned: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path} ) else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCamelCase__ : Tuple = model[0].eval() recursively_load_weights(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) hf_unispeech.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
344
0
from statistics import mean, stdev def _SCREAMING_SNAKE_CASE ( snake_case , snake_case = 3 ) -> list: _UpperCAmelCase = min(snake_case ) _UpperCAmelCase = max(snake_case ) # normalize data return [round((x - x_min) / (x_max - x_min) , snake_case ) for x in data] def _SCREAMING_SNAKE_CASE ( snake_case , snake_case = 3 ) -> list: _UpperCAmelCase = mean(snake_case ) _UpperCAmelCase = stdev(snake_case ) # standardize data return [round((x - mu) / (sigma) , snake_case ) for x in data]
175
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> int: assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case , keep_in_memory=snake_case ).read() _check_json_dataset(snake_case , snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[Any]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() _check_json_dataset(snake_case , snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> int: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Optional[int]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} _UpperCAmelCase = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} _UpperCAmelCase = features.copy() _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = JsonDatasetReader(snake_case , features=snake_case , cache_dir=snake_case ).read() assert isinstance(snake_case , snake_case ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> List[Any]: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case , split=snake_case ).read() _check_json_dataset(snake_case , snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Any: if issubclass(snake_case , snake_case ): _UpperCAmelCase = jsonl_path elif issubclass(snake_case , snake_case ): _UpperCAmelCase = [jsonl_path] _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case ).read() _check_json_dataset(snake_case , snake_case ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case=("train",) ) -> str: assert isinstance(snake_case , snake_case ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> str: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=snake_case , keep_in_memory=snake_case ).read() _check_json_datasetdict(snake_case , snake_case ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Tuple: _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader({"""train""": jsonl_path} , features=snake_case , cache_dir=snake_case ).read() _check_json_datasetdict(snake_case , snake_case ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[Any]: if split: _UpperCAmelCase = {split: jsonl_path} else: _UpperCAmelCase = """train""" _UpperCAmelCase = {"""train""": jsonl_path, """test""": jsonl_path} _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(snake_case , cache_dir=snake_case ).read() _check_json_datasetdict(snake_case , snake_case , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> List[Any]: return json.load(snake_case ) def _SCREAMING_SNAKE_CASE ( snake_case ) -> List[Any]: return [json.loads(snake_case ) for line in buffer] class _A : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(exported_content[0] , _SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , orient=_SCREAMING_SNAKE_CASE ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_SCREAMING_SNAKE_CASE , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(exported_content[0] , _SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , lines=_SCREAMING_SNAKE_CASE , orient=_SCREAMING_SNAKE_CASE , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_SCREAMING_SNAKE_CASE , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_SCREAMING_SNAKE_CASE ) == 10 def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): with pytest.raises(_SCREAMING_SNAKE_CASE ): with io.BytesIO() as buffer: JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / F"test.json.{extension}" _UpperCAmelCase = str(shared_datadir / F"test_file.json.{extension}" ) JsonDatasetWriter(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compression=_SCREAMING_SNAKE_CASE ).write() with fsspec.open(_SCREAMING_SNAKE_CASE , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase = f.read() with fsspec.open(_SCREAMING_SNAKE_CASE , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase = f.read() assert exported_content == original_content
175
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Dict = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
408
from manim import * class _a ( A__ ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase =Rectangle(height=0.5 , width=0.5 ) _UpperCAmelCase =Rectangle(height=0.25 , width=0.25 ) _UpperCAmelCase =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _UpperCAmelCase =[mem.copy() for i in range(6 )] _UpperCAmelCase =[mem.copy() for i in range(6 )] _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =VGroup(_snake_case , _snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =Text("CPU" , font_size=24 ) _UpperCAmelCase =Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_snake_case ) _UpperCAmelCase =[mem.copy() for i in range(4 )] _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =Text("GPU" , font_size=24 ) _UpperCAmelCase =Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) gpu.move_to([-1, -1, 0] ) self.add(_snake_case ) _UpperCAmelCase =[mem.copy() for i in range(6 )] _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =Text("Model" , font_size=24 ) _UpperCAmelCase =Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) model.move_to([3, -1.0, 0] ) self.add(_snake_case ) _UpperCAmelCase =[] _UpperCAmelCase =[] _UpperCAmelCase =[] for i, rect in enumerate(_snake_case ): rect.set_stroke(_snake_case ) _UpperCAmelCase =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_snake_case , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_snake_case , buff=0.0 ) self.add(_snake_case ) model_cpu_arr.append(_snake_case ) self.add(*_snake_case , *_snake_case , *_snake_case ) _UpperCAmelCase =[mem.copy() for i in range(6 )] _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =Text("Loaded Checkpoint" , font_size=24 ) _UpperCAmelCase =Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) checkpoint.move_to([3, 0.5, 0] ) self.add(_snake_case ) _UpperCAmelCase =[] _UpperCAmelCase =[] for i, rect in enumerate(_snake_case ): _UpperCAmelCase =fill.copy().set_fill(_snake_case , opacity=0.7 ) target.move_to(_snake_case ) ckpt_arr.append(_snake_case ) _UpperCAmelCase =target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_snake_case ) self.add(*_snake_case , *_snake_case ) _UpperCAmelCase =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _UpperCAmelCase =MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_snake_case , _snake_case ) _UpperCAmelCase =MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_snake_case ) _UpperCAmelCase =MarkupText( F"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) _UpperCAmelCase =[meta_mem.copy() for i in range(6 )] _UpperCAmelCase =[meta_mem.copy() for i in range(6 )] _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =VGroup(*_snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =VGroup(_snake_case , _snake_case ).arrange(_snake_case , buff=0 ) _UpperCAmelCase =Text("Disk" , font_size=24 ) _UpperCAmelCase =Group(_snake_case , _snake_case ).arrange(_snake_case , buff=0.5 , aligned_edge=_snake_case ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_snake_case , run_time=3 ) , Write(_snake_case , run_time=1 ) , Create(_snake_case , run_time=1 ) ) _UpperCAmelCase =[] for i, rect in enumerate(_snake_case ): _UpperCAmelCase =rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_snake_case , run_time=1.5 ) ) self.play(*_snake_case ) self.play(FadeOut(_snake_case ) ) _UpperCAmelCase =MarkupText(F"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_snake_case , run_time=3 ) ) self.play( FadeOut(_snake_case , _snake_case , *_snake_case , *_snake_case ) , ) self.wait()
408
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowercase ( unittest.TestCase ): def __init__( self ,A__ ,A__=1_3 ,A__=7 ,A__=True ,A__=True ,A__=True ,A__=True ,A__=9_9 ,A__=3_2 ,A__=5 ,A__=4 ,A__=3_7 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=1_6 ,A__=2 ,A__=0.02 ,A__=4 ,): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_choices def A__ ( self): lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) lowercase = None if self.use_attention_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length]) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size) lowercase = RoFormerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A__ ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def A__ ( self): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Tuple =True lowercase_ : Union[str, Any] =( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self): lowercase = FlaxRoFormerModelTester(self) @slow def A__ ( self): for model_class_name in self.all_model_classes: lowercase = model_class_name.from_pretrained('''junnyu/roformer_chinese_small''' ,from_pt=A__) lowercase = model(np.ones((1, 1))) self.assertIsNotNone(A__) @require_flax class lowercase ( unittest.TestCase ): @slow def A__ ( self): lowercase = FlaxRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''') lowercase = jnp.array([[0, 1, 2, 3, 4, 5]]) lowercase = model(A__)[0] lowercase = 5_0_0_0_0 lowercase = (1, 6, vocab_size) self.assertEqual(output.shape ,A__) lowercase = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]]) self.assertTrue(jnp.allclose(output[:, :3, :3] ,A__ ,atol=1E-4))
633
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
633
1
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = jnp.ones((batch_size, length) ) / length return scores def snake_case__ ( self ): _lowerCamelCase = None _lowerCamelCase = 2_0 _lowerCamelCase = self._get_uniform_logits(batch_size=2 , length=_lowerCAmelCase ) # tweak scores to not be uniform anymore _lowerCamelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _lowerCamelCase = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _lowerCamelCase = jax.nn.softmax(_lowerCAmelCase , axis=-1 ) _lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) _lowerCamelCase = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) _lowerCamelCase = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase , scores.copy() , cur_len=_lowerCAmelCase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def snake_case__ ( self ): _lowerCamelCase = None _lowerCamelCase = 1_0 _lowerCamelCase = 2 # create ramp distribution _lowerCamelCase = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() _lowerCamelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size _lowerCamelCase = FlaxTopKLogitsWarper(3 ) _lowerCamelCase = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case _lowerCamelCase = 5 _lowerCamelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) _lowerCamelCase = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, length) ).copy() _lowerCamelCase = top_k_warp_safety_check(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def snake_case__ ( self ): _lowerCamelCase = None _lowerCamelCase = 1_0 _lowerCamelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _lowerCamelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) _lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) _lowerCamelCase = np.exp(top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _lowerCamelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # check edge cases with negative and extreme logits _lowerCamelCase = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _lowerCamelCase = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept _lowerCamelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) _lowerCamelCase = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def snake_case__ ( self ): _lowerCamelCase = 2_0 _lowerCamelCase = 4 _lowerCamelCase = 0 _lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 _lowerCamelCase = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) _lowerCamelCase = 5 _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = 1_5 _lowerCamelCase = min_dist_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def snake_case__ ( self ): _lowerCamelCase = 2_0 _lowerCamelCase = 4 _lowerCamelCase = 0 _lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score _lowerCamelCase = ids_tensor((batch_size, 1) , vocab_size=2_0 ) _lowerCamelCase = 1 _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _lowerCamelCase = 3 _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def snake_case__ ( self ): _lowerCamelCase = 2_0 _lowerCamelCase = 4 _lowerCamelCase = 0 _lowerCamelCase = 5 _lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached _lowerCamelCase = ids_tensor((batch_size, 4) , vocab_size=2_0 ) _lowerCamelCase = 4 _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _lowerCamelCase = 3 _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = logits_processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def snake_case__ ( self ): _lowerCamelCase = 4 _lowerCamelCase = 1_0 _lowerCamelCase = 1_5 _lowerCamelCase = 2 _lowerCamelCase = 1 _lowerCamelCase = 1_5 # dummy input_ids and scores _lowerCamelCase = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) _lowerCamelCase = input_ids.copy() _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = scores.copy() # instantiate all dist processors _lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCamelCase = FlaxTopKLogitsWarper(3 ) _lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowerCAmelCase ) _lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) _lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCamelCase = 1_0 # no processor list _lowerCamelCase = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # with processor list _lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCamelCase = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def snake_case__ ( self ): _lowerCamelCase = 4 _lowerCamelCase = 1_0 _lowerCamelCase = 1_5 _lowerCamelCase = 2 _lowerCamelCase = 1 _lowerCamelCase = 1_5 # dummy input_ids and scores _lowerCamelCase = ids_tensor((batch_size, sequence_length) , _lowerCAmelCase ) _lowerCamelCase = input_ids.copy() _lowerCamelCase = self._get_uniform_logits(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = scores.copy() # instantiate all dist processors _lowerCamelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) _lowerCamelCase = FlaxTopKLogitsWarper(3 ) _lowerCamelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _lowerCamelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowerCAmelCase ) _lowerCamelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) _lowerCamelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) _lowerCamelCase = 1_0 # no processor list def run_no_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = temp_dist_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = top_k_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = top_p_warp(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = min_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = bos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) _lowerCamelCase = eos_dist_proc(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _lowerCamelCase = processor(_lowerCAmelCase , _lowerCAmelCase , cur_len=_lowerCAmelCase ) return scores _lowerCamelCase = jax.jit(_lowerCAmelCase ) _lowerCamelCase = jax.jit(_lowerCAmelCase ) _lowerCamelCase = jitted_run_no_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase = jitted_run_processor_list(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
661
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase__ : List[Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase__ : Union[str, Any] = TaTokenizerFast lowerCamelCase__ : Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase__ : int = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
31
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCamelCase_ : List[Any] = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] lowerCamelCase_ : Optional[int] = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } lowerCamelCase_ : Union[str, Any] = {F'''funnel-transformer/{name}''': 512 for name in _model_names} lowerCamelCase_ : Union[str, Any] = {F'''funnel-transformer/{name}''': {"do_lower_case": True} for name in _model_names} class a__ ( lowercase__ ): A__ : Tuple = VOCAB_FILES_NAMES A__ : Dict = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION A__ : Dict = FunnelTokenizer A__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Tuple = 2 def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase="<unk>" , UpperCAmelCase="<sep>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<cls>" , UpperCAmelCase="<mask>" , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase="##" , **UpperCAmelCase , ) -> str: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , clean_text=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , wordpieces_prefix=__lowerCamelCase , **__lowerCamelCase , ) __a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __lowerCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , __lowerCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __lowerCamelCase ) != tokenize_chinese_chars ): __a = getattr(__lowerCamelCase , normalizer_state.pop('type' ) ) __a = do_lower_case __a = strip_accents __a = tokenize_chinese_chars __a = normalizer_class(**__lowerCamelCase ) __a = do_lower_case def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase=None ) -> Any: __a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[Any]: __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Dict: __a = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
705
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : Dict = logging.get_logger() @dataclass class a__ : A__ : nn.Module A__ : List[nn.Module] = field(default_factory=__snake_case ) A__ : list = field(default_factory=__snake_case ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: __a = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase , nn.Convad ) or isinstance(UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCAmelCase ) def __call__( self , UpperCAmelCase ) -> Optional[int]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def __SCREAMING_SNAKE_CASE ( self ) -> Dict: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a__ : A__ : nn.Module A__ : nn.Module A__ : int = 0 A__ : List = field(default_factory=__snake_case ) A__ : List = field(default_factory=__snake_case ) def __call__( self , UpperCAmelCase ) -> List[str]: __a = Tracker(self.dest )(UpperCAmelCase ).parametrized __a = Tracker(self.src )(UpperCAmelCase ).parametrized __a = list(filter(lambda UpperCAmelCase : type(UpperCAmelCase ) not in self.src_skip , UpperCAmelCase ) ) __a = list(filter(lambda UpperCAmelCase : type(UpperCAmelCase ) not in self.dest_skip , UpperCAmelCase ) ) if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise Exception( f'''Numbers of operations are different. Source module has {len(UpperCAmelCase )} operations while''' f''' destination module has {len(UpperCAmelCase )}.''' ) for dest_m, src_m in zip(UpperCAmelCase , UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True ): print(f'''Converting {name}...''' ) with torch.no_grad(): __a = timm.create_model(__lowerCamelCase , pretrained=__lowerCamelCase ).eval() __a = ResNetForImageClassification(__lowerCamelCase ).eval() __a = ModuleTransfer(src=__lowerCamelCase , dest=__lowerCamelCase ) __a = torch.randn((1, 3, 224, 224) ) module_transfer(__lowerCamelCase ) assert torch.allclose(from_model(__lowerCamelCase ) , our_model(__lowerCamelCase ).logits ), "The model logits don't match the original one." __a = f'''resnet{"-".join(name.split("resnet" ) )}''' print(__lowerCamelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=__lowerCamelCase , ) # we can use the convnext one __a = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=__lowerCamelCase , ) print(f'''Pushed {checkpoint_name}''' ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True ): __a = 'imagenet-1k-id2label.json' __a = 1000 __a = (1, num_labels) __a = 'huggingface/label-files' __a = num_labels __a = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='dataset' ) , 'r' ) ) __a = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(__lowerCamelCase , num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) __a = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(__lowerCamelCase , names_to_config[model_name] , __lowerCamelCase , __lowerCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, expected_shape if __name__ == "__main__": lowerCamelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCamelCase_ : Any = parser.parse_args() lowerCamelCase_ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
246
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """nielsr/canine-s""": 20_48, } # Unicode defines 1,114,112 total “codepoints” snake_case__ = 1_11_41_12 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py snake_case__ = 0 snake_case__ = 0XE000 snake_case__ = 0XE001 snake_case__ = 0XE002 snake_case__ = 0XE003 snake_case__ = 0XE004 # Maps special codepoints to human-readable names. snake_case__ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. snake_case__ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class UpperCAmelCase ( __lowerCamelCase ): a__: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Any , lowerCAmelCase : Optional[int]=chr(lowerCAmelCase ) , lowerCAmelCase : Optional[Any]=chr(lowerCAmelCase ) , lowerCAmelCase : Optional[Any]=chr(lowerCAmelCase ) , lowerCAmelCase : Union[str, Any]=chr(lowerCAmelCase ) , lowerCAmelCase : Union[str, Any]=chr(lowerCAmelCase ) , lowerCAmelCase : Optional[int]=chr(lowerCAmelCase ) , lowerCAmelCase : Any=False , lowerCAmelCase : Any=2048 , **lowerCAmelCase : Tuple , ): lowercase : List[Any] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else bos_token lowercase : Tuple = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token lowercase : Optional[int] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else sep_token lowercase : Any = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else cls_token lowercase : str = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Dict = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , model_max_length=lowerCAmelCase , **lowerCAmelCase , ) # Creates a mapping for looking up the IDs of special symbols. lowercase : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): lowercase : List[Any] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. lowercase : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } lowercase : Dict = UNICODE_VOCAB_SIZE lowercase : Union[str, Any] = len(self._special_codepoints ) @property def _lowerCAmelCase ( self : str ): return self._unicode_vocab_size def _lowerCAmelCase ( self : int , lowerCAmelCase : str ): return list(lowerCAmelCase ) def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase : str ): try: return ord(lowerCAmelCase ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _lowerCAmelCase ( self : Dict , lowerCAmelCase : int ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowerCAmelCase ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _lowerCAmelCase ( self : str , lowerCAmelCase : List[Any] ): return "".join(lowerCAmelCase ) def _lowerCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ): lowercase : Any = [self.sep_token_id] lowercase : List[str] = [self.cls_token_id] lowercase : str = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _lowerCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) lowercase : int = [1] + ([0] * len(lowerCAmelCase )) + [1] if token_ids_a is not None: result += ([0] * len(lowerCAmelCase )) + [1] return result def _lowerCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ): lowercase : Dict = [self.sep_token_id] lowercase : List[Any] = [self.cls_token_id] lowercase : str = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _lowerCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): return ()
583
import pprint import requests snake_case__ = """https://zenquotes.io/api""" def lowerCamelCase_ ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def lowerCamelCase_ ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": snake_case__ = random_quotes() pprint.pprint(response)
583
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _lowerCAmelCase = get_tests_dir("fixtures") class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # A mock response for an HTTP head request to emulate server down _UpperCamelCase = mock.Mock() _UpperCamelCase = 500 _UpperCamelCase = {} _UpperCamelCase = HTTPError _UpperCamelCase = {} # Download this model to make sure it's in the cache. _UpperCamelCase = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=_A ) as mock_head: _UpperCamelCase = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self : Tuple ): # This test is for deprecated behavior and can be removed in v5 _UpperCamelCase = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def UpperCamelCase_ ( self : str ): with self.assertRaises(_A ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(_A ) @is_staging_test class lowerCAmelCase_ ( unittest.TestCase ): @classmethod def UpperCamelCase_ ( cls : Optional[int] ): _UpperCamelCase = TOKEN HfFolder.save_token(_A ) @classmethod def UpperCamelCase_ ( cls : Optional[int] ): try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def UpperCamelCase_ ( self : int ): _UpperCamelCase = ViTImageProcessor.from_pretrained(_A ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) _UpperCamelCase = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_A , getattr(_A , _A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _A , repo_id='''test-image-processor''' , push_to_hub=_A , use_auth_token=self._token ) _UpperCamelCase = ViTImageProcessor.from_pretrained(F"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(_A , getattr(_A , _A ) ) def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = ViTImageProcessor.from_pretrained(_A ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) _UpperCamelCase = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_A , getattr(_A , _A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( _A , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=_A , use_auth_token=self._token ) _UpperCamelCase = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(_A , getattr(_A , _A ) ) def UpperCamelCase_ ( self : List[Any] ): CustomImageProcessor.register_for_auto_class() _UpperCamelCase = CustomImageProcessor.from_pretrained(_A ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) _UpperCamelCase = AutoImageProcessor.from_pretrained( F"""{USER}/test-dynamic-image-processor""" , trust_remote_code=_A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
719
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "gpt_neox" def __init__( self : Union[str, Any] , _A : Union[str, Any]=5_0432 , _A : List[Any]=6144 , _A : int=44 , _A : int=64 , _A : Optional[Any]=2_4576 , _A : Any="gelu" , _A : Tuple=0.25 , _A : Union[str, Any]=1_0000 , _A : Tuple=0.0 , _A : Any=0.0 , _A : int=0.1 , _A : List[str]=2048 , _A : Dict=0.02 , _A : Optional[Any]=1e-5 , _A : Tuple=True , _A : List[Any]=0 , _A : Optional[int]=2 , _A : Optional[int]=False , _A : List[Any]=True , _A : Any=None , **_A : Any , ): super().__init__(bos_token_id=_A , eos_token_id=_A , **_A ) _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = rotary_pct _UpperCamelCase = rotary_emb_base _UpperCamelCase = attention_dropout _UpperCamelCase = hidden_dropout _UpperCamelCase = classifier_dropout _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = use_cache _UpperCamelCase = tie_word_embeddings _UpperCamelCase = use_parallel_residual _UpperCamelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def UpperCamelCase_ ( self : str ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _A ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""" ) _UpperCamelCase = self.rope_scaling.get('''type''' , _A ) _UpperCamelCase = self.rope_scaling.get('''factor''' , _A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_A , _A ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
71
0
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
1
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a = { 'text_branch': 'text_model', 'audio_branch': 'audio_model.audio_encoder', 'attn': 'attention.self', 'self.proj': 'output.dense', 'attention.self_mask': 'attn_mask', 'mlp.fc1': 'intermediate.dense', 'mlp.fc2': 'output.dense', 'norm1': 'layernorm_before', 'norm2': 'layernorm_after', 'bn0': 'batch_norm', } a = AutoFeatureExtractor.from_pretrained('laion/clap-htsat-unfused', truncation='rand_trunc') def a_ ( __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" snake_case: Union[str, Any] =create_model( 'HTSAT-tiny' , 'roberta' , __UpperCAmelCase , precision='fp32' , device='cuda:0' if torch.cuda.is_available() else 'cpu' , enable_fusion=__UpperCAmelCase , fusion_type='aff_2d' if enable_fusion else None , ) return model, model_cfg def a_ ( __UpperCAmelCase ) -> Any: """simple docstring""" snake_case: Any ={} snake_case: Any =R'.*sequential.(\d+).*' snake_case: List[Any] =R'.*_projection.(\d+).*' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case: Optional[int] =key.replace(__UpperCAmelCase , __UpperCAmelCase ) if re.match(__UpperCAmelCase , __UpperCAmelCase ): # replace sequential layers with list snake_case: Dict =re.match(__UpperCAmelCase , __UpperCAmelCase ).group(1 ) snake_case: Optional[int] =key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(__UpperCAmelCase )//3}.linear.''' ) elif re.match(__UpperCAmelCase , __UpperCAmelCase ): snake_case: List[str] =int(re.match(__UpperCAmelCase , __UpperCAmelCase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... snake_case: List[Any] =1 if projecton_layer == 0 else 2 snake_case: Any =key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value snake_case: List[Any] =value snake_case: Any =mixed_qkv.size(0 ) // 3 snake_case: List[Any] =mixed_qkv[:qkv_dim] snake_case: Any =mixed_qkv[qkv_dim : qkv_dim * 2] snake_case: Dict =mixed_qkv[qkv_dim * 2 :] snake_case: Union[str, Any] =query_layer snake_case: Optional[Any] =key_layer snake_case: Union[str, Any] =value_layer else: snake_case: List[str] =value return model_state_dict def a_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> List[str]: """simple docstring""" snake_case: str =init_clap(__UpperCAmelCase , enable_fusion=__UpperCAmelCase ) clap_model.eval() snake_case: Dict =clap_model.state_dict() snake_case: Any =rename_state_dict(__UpperCAmelCase ) snake_case: Tuple =ClapConfig() snake_case: List[Any] =enable_fusion snake_case: List[Any] =ClapModel(__UpperCAmelCase ) # ignore the spectrogram embedding layer model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) transformers_config.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument('--enable_fusion', action='store_true', help='Whether to enable fusion or not') a = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
700
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class a_ ( snake_case ): UpperCAmelCase : str = """xlm""" UpperCAmelCase : Dict = { """hidden_size""": """emb_dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", """n_words""": """vocab_size""", # For backward compatibility } def __init__( self : Optional[Any] , a_ : List[Any]=3_0_1_4_5 , a_ : List[Any]=2_0_4_8 , a_ : Dict=1_2 , a_ : Any=1_6 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.1 , a_ : Optional[Any]=True , a_ : Optional[int]=False , a_ : Dict=False , a_ : List[str]=False , a_ : Tuple=1 , a_ : List[Any]=True , a_ : Any=5_1_2 , a_ : Optional[int]=2_0_4_8**-0.5 , a_ : str=1E-1_2 , a_ : Any=0.0_2 , a_ : List[Any]=0 , a_ : Tuple=1 , a_ : Optional[Any]=2 , a_ : Optional[Any]=3 , a_ : Union[str, Any]=5 , a_ : List[Any]=True , a_ : Optional[int]="first" , a_ : List[str]=True , a_ : Optional[int]=None , a_ : Dict=True , a_ : Tuple=0.1 , a_ : Dict=5 , a_ : Optional[int]=5 , a_ : List[Any]=0 , a_ : int=0 , a_ : Optional[int]=2 , a_ : Tuple=0 , **a_ : Tuple , ) -> Dict: snake_case: Dict =vocab_size snake_case: Dict =emb_dim snake_case: Optional[Any] =n_layers snake_case: Dict =n_heads snake_case: int =dropout snake_case: str =attention_dropout snake_case: Optional[int] =gelu_activation snake_case: Dict =sinusoidal_embeddings snake_case: int =causal snake_case: str =asm snake_case: Dict =n_langs snake_case: List[Any] =use_lang_emb snake_case: int =layer_norm_eps snake_case: Dict =bos_index snake_case: Union[str, Any] =eos_index snake_case: Any =pad_index snake_case: List[str] =unk_index snake_case: List[Any] =mask_index snake_case: Optional[int] =is_encoder snake_case: Tuple =max_position_embeddings snake_case: int =embed_init_std snake_case: Union[str, Any] =init_std snake_case: Optional[Any] =summary_type snake_case: str =summary_use_proj snake_case: Any =summary_activation snake_case: int =summary_proj_to_labels snake_case: str =summary_first_dropout snake_case: Dict =start_n_top snake_case: Tuple =end_n_top snake_case: Union[str, Any] =mask_token_id snake_case: int =lang_id if "n_words" in kwargs: snake_case: Dict =kwargs['n_words'] super().__init__(pad_token_id=a_ , bos_token_id=a_ , **a_ ) class a_ ( snake_case ): @property def UpperCamelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case: Tuple ={0: 'batch', 1: 'choice', 2: 'sequence'} else: snake_case: int ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
347
0