code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __a : Optional[Any] = IFImgaImgSuperResolutionPipeline __a : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} __a : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) __a : Any = PipelineTesterMixin.required_optional_params - {"""latents"""} def snake_case__ ( self ) -> str: """simple docstring""" return self._get_superresolution_dummy_components() def snake_case__ ( self, snake_case__, snake_case__=0 ) -> Optional[int]: """simple docstring""" if str(snake_case__ ).startswith("""mps""" ): lowercase_ : List[Any] = torch.manual_seed(snake_case__ ) else: lowercase_ : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase_ : Any = floats_tensor((1, 3, 32, 32), rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase_ : Any = floats_tensor((1, 3, 16, 16), rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowercase_ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available(), reason="""XFormers attention is only available with CUDA and `xformers` installed""", ) def snake_case__ ( self ) -> Dict: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""", reason="""float16 requires CUDA""" ) def snake_case__ ( self ) -> List[str]: """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case__ ( self ) -> Tuple: """simple docstring""" self._test_save_load_local() def snake_case__ ( self ) -> List[str]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2, )
458
from __future__ import annotations import numpy as np def __magic_name__ ( lowercase ) -> Tuple: """simple docstring""" return np.maximum(0 , lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
458
1
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def lowercase ( _a ,_a ,_a ,_a ) -> Union[str, Any]: UpperCAmelCase_: str = s.rsplit(_a ,_a ) return new.join(_a ) def lowercase ( _a ) -> Dict: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def lowercase ( _a ) -> str: UpperCAmelCase_: Optional[int] = {} UpperCAmelCase_: Union[str, Any] = ["group_1", "group_2", "group_3", "group_4"] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: UpperCAmelCase_: int = key.replace(f"{group_key}." ,f"{group_key}.group." ) if "res_path" in key: UpperCAmelCase_: List[Any] = key.replace("res_path." ,"res_path.path." ) if key.endswith(".w" ): UpperCAmelCase_: int = rreplace(_a ,".w" ,".weight" ,1 ) if key.endswith(".b" ): UpperCAmelCase_: List[str] = rreplace(_a ,".b" ,".bias" ,1 ) UpperCAmelCase_: Optional[Any] = value.float() return upgrade @torch.no_grad() def lowercase ( _a ,_a ,_a=None ,_a=True ) -> Optional[Any]: from dall_e import Encoder UpperCAmelCase_: Optional[int] = Encoder() if os.path.exists(_a ): UpperCAmelCase_: int = torch.load(_a ) else: UpperCAmelCase_: Union[str, Any] = torch.hub.load_state_dict_from_url(_a ) if isinstance(_a ,_a ): UpperCAmelCase_: str = ckpt.state_dict() encoder.load_state_dict(_a ) if config_path is not None: UpperCAmelCase_: List[str] = FlavaImageCodebookConfig.from_pretrained(_a ) else: UpperCAmelCase_: Dict = FlavaImageCodebookConfig() UpperCAmelCase_: List[str] = FlavaImageCodebook(_a ).eval() UpperCAmelCase_: Union[str, Any] = encoder.state_dict() UpperCAmelCase_: List[str] = upgrade_state_dict(_a ) hf_model.load_state_dict(_a ) UpperCAmelCase_: Optional[int] = hf_model.state_dict() UpperCAmelCase_: Union[str, Any] = count_parameters(_a ) UpperCAmelCase_: int = count_parameters(_a ) assert torch.allclose(_a ,_a ,atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(_a ) else: return hf_state_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") _lowerCAmelCase = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
710
_lowerCAmelCase = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) _lowerCAmelCase = frozenset(["""prompt""", """negative_prompt"""]) _lowerCAmelCase = frozenset([]) _lowerCAmelCase = frozenset(["""image"""]) _lowerCAmelCase = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) _lowerCAmelCase = frozenset(["""image"""]) _lowerCAmelCase = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) _lowerCAmelCase = frozenset(["""prompt""", """image""", """negative_prompt"""]) _lowerCAmelCase = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) _lowerCAmelCase = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) _lowerCAmelCase = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) _lowerCAmelCase = frozenset(["""image""", """mask_image"""]) _lowerCAmelCase = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) _lowerCAmelCase = frozenset(["""example_image""", """image""", """mask_image"""]) _lowerCAmelCase = frozenset(["""class_labels"""]) _lowerCAmelCase = frozenset(["""class_labels"""]) _lowerCAmelCase = frozenset(["""batch_size"""]) _lowerCAmelCase = frozenset([]) _lowerCAmelCase = frozenset(["""batch_size"""]) _lowerCAmelCase = frozenset([]) _lowerCAmelCase = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) _lowerCAmelCase = frozenset(["""prompt""", """negative_prompt"""]) _lowerCAmelCase = frozenset(["""input_tokens"""]) _lowerCAmelCase = frozenset(["""input_tokens"""])
306
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCAmelCase__ : List[str] = logging.get_logger(__name__) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
223
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase__ : Optional[Any] = {'UserAgent': UserAgent().random} def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[Any] = script.contents[0] SCREAMING_SNAKE_CASE__ : Optional[int] = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCAmelCase_ : """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = F'''https://www.instagram.com/{username}/''' SCREAMING_SNAKE_CASE__ : List[str] = self.get_json() def __magic_name__ (self ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = requests.get(self.url , headers=SCREAMING_SNAKE_CASE__ ).text SCREAMING_SNAKE_CASE__ : List[str] = BeautifulSoup(SCREAMING_SNAKE_CASE__ , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ) -> str: """simple docstring""" return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__(self ) -> str: """simple docstring""" return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def __magic_name__ (self ) -> str: """simple docstring""" return self.user_data["username"] @property def __magic_name__ (self ) -> str: """simple docstring""" return self.user_data["full_name"] @property def __magic_name__ (self ) -> str: """simple docstring""" return self.user_data["biography"] @property def __magic_name__ (self ) -> str: """simple docstring""" return self.user_data["business_email"] @property def __magic_name__ (self ) -> str: """simple docstring""" return self.user_data["external_url"] @property def __magic_name__ (self ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def __magic_name__ (self ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def __magic_name__ (self ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __magic_name__ (self ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def __magic_name__ (self ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def __magic_name__ (self ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowercase_ ( _snake_case = "github" ): import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE__ : List[Any] = InstagramUser(_snake_case ) assert instagram_user.user_data assert isinstance(instagram_user.user_data ,_snake_case ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : List[str] = InstagramUser('github') print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
223
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
708
def lowerCAmelCase_ ( lowercase: float ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(lowercase , lowercase ): raise ValueError('''Length must be a positive.''' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def lowerCAmelCase_ ( lowercase: float ) -> float: '''simple docstring''' if edge <= 0 or not isinstance(lowercase , lowercase ): raise ValueError('''Length must be a positive.''' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
264
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _snake_case : Optional[Any] = 8 def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Dict=BITS ): '''simple docstring''' _a = x.device _a = (x * 255).int().clamp(0 , 255 ) _a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase ) _a = rearrange(UpperCamelCase , '''d -> d 1 1''' ) _a = rearrange(UpperCamelCase , '''b c h w -> b c 1 h w''' ) _a = ((x & mask) != 0).float() _a = rearrange(UpperCamelCase , '''b c d h w -> b (c d) h w''' ) _a = bits * 2 - 1 return bits def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : Any=BITS ): '''simple docstring''' _a = x.device _a = (x > 0).int() _a = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa ) _a = rearrange(UpperCamelCase , '''d -> d 1 1''' ) _a = rearrange(UpperCamelCase , '''b (c d) h w -> b c d h w''' , d=8 ) _a = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def snake_case_ (self : Union[str, Any] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : float = 0.0 , UpperCamelCase : bool = True , UpperCamelCase : Any=None , UpperCamelCase : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _a = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _a = self.alphas_cumprod[timestep] _a = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _a = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _a = self.bit_scale if self.config.clip_sample: _a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _a = self._get_variance(UpperCamelCase , UpperCamelCase ) _a = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _a = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _a = model_output.device if torch.is_tensor(UpperCamelCase ) else '''cpu''' _a = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase ) _a = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise _a = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) def snake_case_ (self : Any , UpperCamelCase : torch.FloatTensor , UpperCamelCase : int , UpperCamelCase : torch.FloatTensor , UpperCamelCase : str="epsilon" , UpperCamelCase : Dict=None , UpperCamelCase : bool = True , ): '''simple docstring''' _a = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _a , _a = torch.split(UpperCamelCase , sample.shape[1] , dim=1 ) else: _a = None # 1. compute alphas, betas _a = self.alphas_cumprod[t] _a = self.alphas_cumprod[t - 1] if t > 0 else self.one _a = 1 - alpha_prod_t _a = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _a = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _a = model_output else: raise ValueError(f'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" _a = self.bit_scale if self.config.clip_sample: _a = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _a = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _a = 0 if t > 0: _a = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device ) _a = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise _a = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) class A ( _a ): def __init__( self : Any , lowerCAmelCase_ : UNetaDConditionModel , lowerCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase_ : Optional[float] = 1.0 , ) -> int: """simple docstring""" super().__init__() _a = bit_scale _a = ( ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self : List[Any] , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 2_56 , lowerCAmelCase_ : Optional[int] = 50 , lowerCAmelCase_ : Optional[torch.Generator] = None , lowerCAmelCase_ : Optional[int] = 1 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , **lowerCAmelCase_ : Any , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" _a = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , ) _a = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale _a = latents.to(self.device ) self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _a = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample _a = bits_to_decimal(lowerCAmelCase_ ) if output_type == "pil": _a = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
22
from __future__ import annotations def _UpperCAmelCase ( a__): '''simple docstring''' if len(a__) == 0: return [] a_ , a_ : List[Any] = min(a__), max(a__) a_ : Tuple = int(max_value - min_value) + 1 a_ : list[list] = [[] for _ in range(a__)] for i in my_list: buckets[int(i - min_value)].append(a__) return [v for bucket in buckets for v in sorted(a__)] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
540
0
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position snake_case__ : Dict = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip snake_case__ : Optional[int] = concatenate_datasets snake_case__ : List[Any] = DownloadConfig snake_case__ : Optional[Any] = DownloadManager snake_case__ : List[str] = DownloadMode snake_case__ : Optional[int] = DownloadConfig snake_case__ : int = DownloadMode snake_case__ : List[str] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
707
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor snake_case__ : List[str] = logging.get_logger(__name__) class _a ( UpperCAmelCase__ ): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> None: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
618
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase_ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowerCAmelCase_ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowerCAmelCase_ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A (datasets.Metric ): def __a ( self ) -> MetricInfo: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def __a ( self , lowercase_ , lowercase_ , lowercase_ = 1 , lowercase_ = 4 , ) -> Dict[str, float]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowercase_ , hypotheses=lowercase_ , min_len=lowercase_ , max_len=lowercase_ ) }
326
from __future__ import annotations def A_ ( lowercase_ ) -> bool: _snake_case : Tuple = str(lowercase_ ) return len(lowercase_ ) == 9 and set(lowercase_ ) == set('''123456789''' ) def A_ ( ) -> int | None: for base_num in range(9999 , 4999 , -1 ): _snake_case : str = 100002 * base_num if is_9_pandigital(lowercase_ ): return candidate for base_num in range(333 , 99 , -1 ): _snake_case : List[str] = 1002003 * base_num if is_9_pandigital(lowercase_ ): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
326
1
"""simple docstring""" import os from datetime import datetime as dt from github import Github SCREAMING_SNAKE_CASE__ = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowerCAmelCase__ ( ) -> Optional[int]: """simple docstring""" snake_case = Github(os.environ['GITHUB_TOKEN'] ) snake_case = g.get_repo('huggingface/diffusers' ) snake_case = repo.get_issues(state='open' ) for issue in open_issues: snake_case = sorted(issue.get_comments() , key=lambda _UpperCamelCase : i.created_at , reverse=_snake_case ) snake_case = comments[0] if len(_snake_case ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
711
"""simple docstring""" import os import string import sys SCREAMING_SNAKE_CASE__ = 1 << 8 SCREAMING_SNAKE_CASE__ = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } SCREAMING_SNAKE_CASE__ = KEYMAP["up"] SCREAMING_SNAKE_CASE__ = KEYMAP["left"] if sys.platform == "win32": SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): SCREAMING_SNAKE_CASE__ = ord(str(i)) def lowerCAmelCase__ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": import msvcrt snake_case = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_UpperCamelCase ) == 0: # Read the keystroke snake_case = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): snake_case = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: snake_case = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(_UpperCamelCase ) if ord(_UpperCamelCase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) snake_case = chr(KEYMAP['esc'] ) except KeyError: snake_case = cha[1] else: snake_case = ch.decode(_UpperCamelCase ) else: snake_case = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty snake_case = sys.stdin.fileno() snake_case = termios.tcgetattr(_UpperCamelCase ) try: tty.setraw(_UpperCamelCase ) snake_case = sys.stdin.read(1 ) finally: termios.tcsetattr(_UpperCamelCase , termios.TCSADRAIN , _UpperCamelCase ) return ch def lowerCAmelCase__ ( ) -> Union[str, Any]: """simple docstring""" snake_case = get_raw_chars() if ord(_UpperCamelCase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_UpperCamelCase ) == KEYMAP["esc"]: snake_case = get_raw_chars() if ord(_UpperCamelCase ) == KEYMAP["mod_int"]: snake_case = get_raw_chars() if ord(_UpperCamelCase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_UpperCamelCase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_UpperCamelCase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
104
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __A =TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) __A =[] __A =[] __A ={'''type''': '''section''', '''text''': {'''type''': '''plain_text''', '''text''': '''No failed tests! 🤗''', '''emoji''': True}} __A =[ { '''type''': '''header''', '''text''': { '''type''': '''plain_text''', '''text''': F"""🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results""", '''emoji''': True, }, } ] __A =0 for log in Path().glob('''*.log'''): __A =0 with open(log, '''r''') as f: for line in f: __A =json.loads(line) if line.get('''nodeid''', '''''') != "": __A =line['''nodeid'''] if line.get('''duration''', None) is not None: __A =F"""{line["duration"]:.4f}""" if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __A =[] log.unlink() __A ='''''' __A =[] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" __A =[] __A ={} for test in failed_tests: __A =test[0].split('''::''') __A =data[0].split('''/''')[-1] if data[0] not in filesafailed: __A =[data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __A =[test[0] for test in failed_table] __A =list(set(files)) # Count number of instances in failed_tests __A =[] for file in individual_files: table.append([file, len(filesafailed[file])]) __A =tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: __A ='''Too many failed tests, please see the full report in the Action results.''' __A =len(err) + 1_0 __A =message[: 3_0_0_0 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: __A ='''No failed tests! 🤗''' print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient __A =WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": __A ={ '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': message, }, } payload.append(md_report) __A ={ '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': '''*For more details:*''', }, '''accessory''': { '''type''': '''button''', '''text''': { '''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True, }, '''url''': F"""https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } payload.append(action_button) __A ={ '''type''': '''context''', '''elements''': [ { '''type''': '''plain_text''', '''text''': F"""Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}""", } ], } payload.append(date_report) __A =client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) __A =response.data['''ts'''] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __A ='''''' for i, row in enumerate(test_failures): if row[0] != test_class: __A =row[0] else: __A ='''''' __A ={ '''type''': '''section''', '''text''': { '''type''': '''mrkdwn''', '''text''': F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```""", }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
463
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument UpperCAmelCase ={ "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def _A ( _a : str ): """simple docstring""" A = list(s_dict.keys() ) for key in keys: A = r""".*/layers_(\d+)""" A = key if re.match(_a , _a ): A = re.sub(r"""layers_(\d+)""" , r"""block/\1/layer""" , _a ) A = r"""(encoder|decoder)\/""" if re.match(_a , _a ): A = re.match(_a , _a ).groups() if groups[0] == "encoder": A = re.sub(r"""/mlp/""" , r"""/1/mlp/""" , _a ) A = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/1/layer_norm/""" , _a ) elif groups[0] == "decoder": A = re.sub(r"""/mlp/""" , r"""/2/mlp/""" , _a ) A = re.sub(r"""/pre_mlp_layer_norm/""" , r"""/2/layer_norm/""" , _a ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A = new_key.replace(_a , _a ) print(f'{key} -> {new_key}' ) A = s_dict.pop(_a ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A = s_dict[key].shape[0] A = s_dict[key] for idx in range(_a ): A = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(_a ) return s_dict UpperCAmelCase ={ "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def _A ( _a : Dict , _a : int ): """simple docstring""" import regex as re with open(_a , """r""" ) as f: A = f.read() A = re.findall(r"""(.*) = ([0-9.]*)""" , _a ) A = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A = float(_a ) if """.""" in value else int(_a ) A = re.findall(r"""(.*activations) = \(\'(.*)\',\)""" , _a )[0] A = str(activation[1] ) A = num_experts A = SwitchTransformersConfig(**_a ) return config def _A ( _a : Union[str, Any] , _a : Dict , _a : Optional[Any]=None , _a : Dict="./" , _a : Dict=8 ): """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) A = checkpoints.load_tax_checkpoint(_a ) if gin_file is not None: A = convert_gin_to_config(_a , _a ) else: A = SwitchTransformersConfig.from_pretrained(_a ) A = SwitchTransformersForConditionalGeneration(_a ) A = flax_params["""target"""] A = flatten_dict(_a , sep="""/""" ) A = rename_keys(_a ) A = unflatten_dict(_a , sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_a , _a ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(_a ) if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") UpperCAmelCase =parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
617
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE ( a_ , a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : str , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : float , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : bool = False , ) -> str: """simple docstring""" super().__init__() __lowerCAmelCase : str = nn.Embedding(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = nn.Embedding(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Any = False __lowerCAmelCase : Any = nn.Dropout(p=lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = TaConfig( vocab_size=lowerCAmelCase , d_model=lowerCAmelCase , num_heads=lowerCAmelCase , d_kv=lowerCAmelCase , d_ff=lowerCAmelCase , dropout_rate=lowerCAmelCase , feed_forward_proj=lowerCAmelCase , is_decoder=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , ) __lowerCAmelCase : Union[str, Any] = nn.ModuleList() for lyr_num in range(lowerCAmelCase ): __lowerCAmelCase : List[str] = TaBlock(lowerCAmelCase ) self.encoders.append(lowerCAmelCase ) __lowerCAmelCase : Dict = TaLayerNorm(lowerCAmelCase ) __lowerCAmelCase : Dict = nn.Dropout(p=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] ) -> str: """simple docstring""" __lowerCAmelCase : str = self.token_embedder(lowerCAmelCase ) __lowerCAmelCase : Dict = encoder_input_tokens.shape[1] __lowerCAmelCase : List[Any] = torch.arange(lowerCAmelCase , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCAmelCase ) __lowerCAmelCase : List[Any] = self.dropout_pre(lowerCAmelCase ) # inverted the attention mask __lowerCAmelCase : Tuple = encoder_input_tokens.size() __lowerCAmelCase : Union[str, Any] = self.get_extended_attention_mask(lowerCAmelCase , lowerCAmelCase ) for lyr in self.encoders: __lowerCAmelCase : List[str] = lyr(lowerCAmelCase , lowerCAmelCase )[0] __lowerCAmelCase : str = self.layer_norm(lowerCAmelCase ) return self.dropout_post(lowerCAmelCase ), encoder_inputs_mask
218
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """weiweishi/roc-bert-base-zh""": """https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Tuple ="roc_bert" def __init__( self : Tuple , lowerCAmelCase : Union[str, Any]=3_05_22 , lowerCAmelCase : Union[str, Any]=7_68 , lowerCAmelCase : str=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=30_72 , lowerCAmelCase : Union[str, Any]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=5_12 , lowerCAmelCase : int=2 , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1e-12 , lowerCAmelCase : Any=True , lowerCAmelCase : int=0 , lowerCAmelCase : List[Any]="absolute" , lowerCAmelCase : List[str]=None , lowerCAmelCase : str=True , lowerCAmelCase : Dict=True , lowerCAmelCase : int=7_68 , lowerCAmelCase : Union[str, Any]=9_10 , lowerCAmelCase : Tuple=5_12 , lowerCAmelCase : Tuple=2_48_58 , lowerCAmelCase : Any=True , **lowerCAmelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = vocab_size __lowerCAmelCase : Any = max_position_embeddings __lowerCAmelCase : str = hidden_size __lowerCAmelCase : List[str] = num_hidden_layers __lowerCAmelCase : List[str] = num_attention_heads __lowerCAmelCase : int = intermediate_size __lowerCAmelCase : List[str] = hidden_act __lowerCAmelCase : List[Any] = hidden_dropout_prob __lowerCAmelCase : int = attention_probs_dropout_prob __lowerCAmelCase : str = initializer_range __lowerCAmelCase : Dict = type_vocab_size __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : Union[str, Any] = use_cache __lowerCAmelCase : Dict = enable_pronunciation __lowerCAmelCase : Optional[int] = enable_shape __lowerCAmelCase : Any = pronunciation_embed_dim __lowerCAmelCase : Optional[Any] = pronunciation_vocab_size __lowerCAmelCase : Tuple = shape_embed_dim __lowerCAmelCase : Tuple = shape_vocab_size __lowerCAmelCase : List[Any] = concat_input __lowerCAmelCase : List[Any] = position_embedding_type __lowerCAmelCase : List[Any] = classifier_dropout super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase )
218
1
from __future__ import annotations def a ( A__ ) -> list[int]: '''simple docstring''' if len(A__ ) == 0: return array SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = min(A__ ), max(A__ ) # Compute the variables SCREAMING_SNAKE_CASE__ : Dict = _max - _min + 1 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: SCREAMING_SNAKE_CASE__ : List[str] = i - _min SCREAMING_SNAKE_CASE__ : Optional[Any] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 for i in range(A__ ): while holes_repeat[i] > 0: SCREAMING_SNAKE_CASE__ : str = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() a_ :Any = input('Enter numbers separated by comma:\n') a_ :Any = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
35
"""simple docstring""" def __snake_case ( ) -> Union[str, Any]: lowercase : str = 0 for i in range(1 ,1001 ): total += i**i return str(__A )[-10:] if __name__ == "__main__": print(solution())
607
0
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : list[int], _UpperCamelCase : int ) -> list[int]: A_ = 0 A_ = len(_UpperCamelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: A_ = i + 1 else: A_ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
716
'''simple docstring''' from itertools import product def _UpperCAmelCase ( _UpperCamelCase : int, _UpperCamelCase : int ) -> list[int]: A_ = sides_number A_ = max_face_number * dice_number A_ = [0] * (max_total + 1) A_ = 1 A_ = range(_UpperCamelCase, max_face_number + 1 ) for dice_numbers in product(_UpperCamelCase, repeat=_UpperCamelCase ): A_ = sum(_UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def _UpperCAmelCase ( ) -> float: A_ = total_frequency_distribution( sides_number=4, dice_number=9 ) A_ = total_frequency_distribution( sides_number=6, dice_number=6 ) A_ = 0 A_ = 9 A_ = 4 * 9 A_ = 6 for peter_total in range(_UpperCamelCase, max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) A_ = (4**9) * (6**6) A_ = peter_wins_count / total_games_number A_ = round(_UpperCamelCase, ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
174
0
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __UpperCamelCase = "bart" __UpperCamelCase = True @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Union[str, Any]: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : int = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" ) __snake_case : Tuple = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" ) __snake_case : List[Any] = qar_model.eval() else: __snake_case , __snake_case : Optional[Any] = (None, None) if MODEL_TYPE == "bart": __snake_case : List[str] = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" ) __snake_case : Any = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" ) __snake_case : int = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" ) sas_model.load_state_dict(save_dict["""model"""] ) __snake_case : int = sas_model.eval() else: __snake_case , __snake_case : Dict = make_qa_sas_model( model_name="""t5-small""" , from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""" , device="""cuda:0""" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> Tuple: """simple docstring""" if LOAD_DENSE_INDEX: __snake_case : Tuple = faiss.StandardGpuResources() __snake_case : Optional[Any] = datasets.load_dataset(path="""wiki_snippets""" , name="""wiki40b_en_100_0""" )["""train"""] __snake_case : str = np.memmap( """wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""" , dtype="""float32""" , mode="""r""" , shape=(wikiaab_passages.num_rows, 128) , ) __snake_case : Optional[int] = faiss.IndexFlatIP(128 ) __snake_case : Any = faiss.index_cpu_to_gpu(_lowerCamelCase , 1 , _lowerCamelCase ) wikiaab_gpu_index_flat.add(_lowerCamelCase ) # TODO fix for larger GPU else: __snake_case , __snake_case : Tuple = (None, None) __snake_case : List[str] = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowerCamelCase ) def _a ( ) -> List[Any]: """simple docstring""" __snake_case : Tuple = datasets.load_dataset("""eli5""" , name="""LFQA_reddit""" ) __snake_case : Dict = elia["""train_eli5"""] __snake_case : int = np.memmap( """eli5_questions_reps.dat""" , dtype="""float32""" , mode="""r""" , shape=(elia_train.num_rows, 128) ) __snake_case : Dict = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowerCamelCase ) return (elia_train, eli5_train_q_index) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_indexes() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = load_models() __UpperCamelCase , __UpperCamelCase = load_train_data() def _a ( _lowerCamelCase , _lowerCamelCase=10 ) -> int: """simple docstring""" __snake_case : Optional[int] = embed_questions_for_retrieval([question] , _lowerCamelCase , _lowerCamelCase ) __snake_case , __snake_case : Tuple = eli5_train_q_index.search(_lowerCamelCase , _lowerCamelCase ) __snake_case : Tuple = [elia_train[int(_lowerCamelCase )] for i in I[0]] return nn_examples def _a ( _lowerCamelCase , _lowerCamelCase="wiki40b" , _lowerCamelCase="dense" , _lowerCamelCase=10 ) -> Optional[Any]: """simple docstring""" if source == "none": __snake_case , __snake_case : Dict = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), []) else: if method == "dense": __snake_case , __snake_case : Dict = query_qa_dense_index( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else: __snake_case , __snake_case : str = query_es_index( _lowerCamelCase , _lowerCamelCase , index_name="""english_wiki40b_snippets_100w""" , n_results=_lowerCamelCase , ) __snake_case : Optional[int] = [ (res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst ] __snake_case : Optional[Any] = """question: {} context: {}""".format(_lowerCamelCase , _lowerCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _lowerCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _lowerCamelCase : None), } ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=64 , _lowerCamelCase=256 , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=0.95 , _lowerCamelCase=0.8 ) -> List[str]: """simple docstring""" with torch.no_grad(): __snake_case : Union[str, Any] = qa_sas_generate( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_answers=1 , num_beams=_lowerCamelCase , min_len=_lowerCamelCase , max_len=_lowerCamelCase , do_sample=_lowerCamelCase , temp=_lowerCamelCase , top_p=_lowerCamelCase , top_k=_lowerCamelCase , max_input_length=1024 , device="""cuda:0""" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __UpperCamelCase = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" __UpperCamelCase = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __UpperCamelCase = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) __UpperCamelCase = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] __UpperCamelCase = st.sidebar.checkbox("Demo options") if demo_options: __UpperCamelCase = st.sidebar.selectbox( "", action_list, index=3, ) __UpperCamelCase = action_list.index(action_st) __UpperCamelCase = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __UpperCamelCase = show_type == "Show full text of passages" else: __UpperCamelCase = 3 __UpperCamelCase = True __UpperCamelCase = st.sidebar.checkbox("Retrieval options") if retrieval_options: __UpperCamelCase = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __UpperCamelCase = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __UpperCamelCase = "wiki40b" __UpperCamelCase = "dense" __UpperCamelCase = "beam" __UpperCamelCase = 2 __UpperCamelCase = 64 __UpperCamelCase = 256 __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = st.sidebar.checkbox("Generation options") if generate_options: __UpperCamelCase = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) __UpperCamelCase = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __UpperCamelCase = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __UpperCamelCase = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __UpperCamelCase = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __UpperCamelCase = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __UpperCamelCase = None # start main text __UpperCamelCase = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] __UpperCamelCase = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __UpperCamelCase = st.text_input("Enter your question here:", "") else: __UpperCamelCase = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="dense", n_results=10) __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method="sparse", n_results=10) __UpperCamelCase = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __UpperCamelCase = support_list[:10] __UpperCamelCase = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: __UpperCamelCase , __UpperCamelCase = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __UpperCamelCase , __UpperCamelCase = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __UpperCamelCase = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) __UpperCamelCase = res[1].strip() if sec_titles == "": __UpperCamelCase = "[{}]({})".format(res[0], wiki_url) else: __UpperCamelCase = sec_titles.split(" & ") __UpperCamelCase = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __UpperCamelCase = find_nearest_training(question) __UpperCamelCase = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __UpperCamelCase = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __UpperCamelCase = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
26
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } UpperCAmelCase__ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = RealmTokenizer def __init__( self : List[Any] , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Any="[UNK]" , __UpperCAmelCase : Dict="[SEP]" , __UpperCAmelCase : List[str]="[PAD]" , __UpperCAmelCase : str="[CLS]" , __UpperCAmelCase : Optional[int]="[MASK]" , __UpperCAmelCase : str=True , __UpperCAmelCase : List[str]=None , **__UpperCAmelCase : str , ) ->Optional[int]: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[Any] , **__UpperCAmelCase : List[str] ) ->List[Any]: """simple docstring""" a = PaddingStrategy.MAX_LENGTH a = text a = kwargs.pop('''text_pair''' , __UpperCAmelCase ) a = kwargs.pop('''return_tensors''' , __UpperCAmelCase ) a = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(__UpperCAmelCase ): if batch_text_pair is not None: a = batch_text_pair[idx] else: a = None a = super().__call__(__UpperCAmelCase , __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) a = encoded_candidates.get('''input_ids''' ) a = encoded_candidates.get('''attention_mask''' ) a = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(__UpperCAmelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__UpperCAmelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__UpperCAmelCase ) a = {key: item for key, item in output_data.items() if len(__UpperCAmelCase ) != 0} return BatchEncoding(__UpperCAmelCase , tensor_type=__UpperCAmelCase ) def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict=None ) ->str: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
117
0
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : Any , __snake_case : Optional[int] , __snake_case : Optional[int]=13 , __snake_case : Optional[int]=7 , __snake_case : Union[str, Any]=True , __snake_case : str=True , __snake_case : List[Any]=True , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=99 , __snake_case : Tuple=32 , __snake_case : str=2 , __snake_case : str=4 , __snake_case : Union[str, Any]=37 , __snake_case : Dict="gelu" , __snake_case : str=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Any=512 , __snake_case : Any=16 , __snake_case : str=2 , __snake_case : List[str]=0.02 , __snake_case : Dict=3 , __snake_case : Tuple=4 , __snake_case : str=None , ): '''simple docstring''' UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Dict = 13 UpperCAmelCase_ : List[Any] = 7 UpperCAmelCase_ : str = True UpperCAmelCase_ : str = True UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : Union[str, Any] = 99 UpperCAmelCase_ : Dict = 32 UpperCAmelCase_ : Tuple = 2 UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : int = 37 UpperCAmelCase_ : Optional[Any] = '''gelu''' UpperCAmelCase_ : List[str] = 0.1 UpperCAmelCase_ : Dict = 0.1 UpperCAmelCase_ : int = 512 UpperCAmelCase_ : Tuple = 16 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : Optional[Any] = 0.02 UpperCAmelCase_ : List[Any] = 3 UpperCAmelCase_ : List[Any] = 4 UpperCAmelCase_ : Any = None def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Any = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Dict = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = TFRoFormerModel(config=__snake_case ) UpperCAmelCase_ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Dict = [input_ids, input_mask] UpperCAmelCase_ : Optional[Any] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = TFRoFormerForCausalLM(config=__snake_case ) UpperCAmelCase_ : List[str] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : Dict = model(__snake_case )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _lowerCamelCase ( self : str , __snake_case : Tuple , __snake_case : Any , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = TFRoFormerForMaskedLM(config=__snake_case ) UpperCAmelCase_ : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : Any = TFRoFormerForSequenceClassification(config=__snake_case ) UpperCAmelCase_ : Optional[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : int = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : int , __snake_case : int , __snake_case : str , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.num_choices UpperCAmelCase_ : Optional[Any] = TFRoFormerForMultipleChoice(config=__snake_case ) UpperCAmelCase_ : Union[str, Any] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : str = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : int = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : List[str] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ : Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : int , __snake_case : Any , __snake_case : int , __snake_case : str , __snake_case : List[str] , __snake_case : Dict , __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : str = TFRoFormerForTokenClassification(config=__snake_case ) UpperCAmelCase_ : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : List[str] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Dict , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = TFRoFormerForQuestionAnswering(config=__snake_case ) UpperCAmelCase_ : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : Dict = model(__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : int = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : List[str] = False def _lowerCamelCase ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : str , __snake_case : List[Any] , __snake_case : str ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = TFRoFormerModelTester(self ) UpperCAmelCase_ : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(__snake_case ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCAmelCase_ : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase_ : Dict = model(__snake_case )[0] # TODO Replace vocab size UpperCAmelCase_ : List[Any] = 50_000 UpperCAmelCase_ : Tuple = [1, 6, vocab_size] self.assertEqual(output.shape , __snake_case ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCAmelCase_ : Optional[Any] = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __snake_case , atol=1E-4 ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = 1E-4 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tf.constant([[4, 10]] ) UpperCAmelCase_ : List[str] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCAmelCase_ : Any = emba(input_ids.shape ) UpperCAmelCase_ : Optional[int] = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(__snake_case , __snake_case , atol=self.tolerance ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Any = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) UpperCAmelCase_ : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCAmelCase_ : str = emba.weight[:3, :5] tf.debugging.assert_near(__snake_case , __snake_case , atol=self.tolerance ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' A_ : Tuple = 1E-4 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' # 2,12,16,64 UpperCAmelCase_ : str = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase_ : Union[str, Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase_ : Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCAmelCase_ : Optional[int] = embed_positions([2, 16, 768] )[None, None, :, :] UpperCAmelCase_ , UpperCAmelCase_ : Dict = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : Tuple = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) UpperCAmelCase_ : Any = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __snake_case , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __snake_case , atol=self.tolerance )
641
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
from collections.abc import Sequence def UpperCamelCase ( snake_case__ , snake_case__): return sum(c * (x**i) for i, c in enumerate(lowercase_)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = 0.0 for coeff in reversed(lowercase_): lowerCAmelCase_ : List[Any] = result * x + coeff return result if __name__ == "__main__": _lowercase = (0.0, 0.0, 5.0, 9.3, 7.0) _lowercase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
659
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase_( A__, A__, A__ ): '''simple docstring''' lowercase__ : List[Any] = [r'h\.\d+\.attn\.bias', r'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = 5_0_2_5_7 , lowerCamelCase__ = 1_0_2_4 , lowerCamelCase__ = 7_6_8 , lowerCamelCase__ = 1_2 , lowerCamelCase__ = 1_2 , lowerCamelCase__ = None , lowerCamelCase__ = "gelu_new" , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 0.1 , lowerCamelCase__ = 1e-5 , lowerCamelCase__ = 0.0_2 , lowerCamelCase__ = True , lowerCamelCase__ = True , lowerCamelCase__ = False , lowerCamelCase__ = False , ): super().__init__() _lowerCamelCase = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) _lowerCamelCase = prefix_inner_dim _lowerCamelCase = prefix_hidden_dim _lowerCamelCase = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCamelCase = ( nn.Linear(self.prefix_hidden_dim , lowerCamelCase__ ) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowerCamelCase = GPTaConfig( vocab_size=lowerCamelCase__ , n_positions=lowerCamelCase__ , n_embd=lowerCamelCase__ , n_layer=lowerCamelCase__ , n_head=lowerCamelCase__ , n_inner=lowerCamelCase__ , activation_function=lowerCamelCase__ , resid_pdrop=lowerCamelCase__ , embd_pdrop=lowerCamelCase__ , attn_pdrop=lowerCamelCase__ , layer_norm_epsilon=lowerCamelCase__ , initializer_range=lowerCamelCase__ , scale_attn_weights=lowerCamelCase__ , use_cache=lowerCamelCase__ , scale_attn_by_inverse_layer_idx=lowerCamelCase__ , reorder_and_upcast_attn=lowerCamelCase__ , ) _lowerCamelCase = GPTaLMHeadModel(lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , ): _lowerCamelCase = self.transformer.transformer.wte(lowerCamelCase__ ) _lowerCamelCase = self.encode_prefix(lowerCamelCase__ ) _lowerCamelCase = self.decode_prefix(lowerCamelCase__ ) _lowerCamelCase = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _lowerCamelCase = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _lowerCamelCase = torch.cat((dummy_token, input_ids) , dim=1 ) _lowerCamelCase = self.transformer(inputs_embeds=lowerCamelCase__ , labels=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): return torch.zeros(lowerCamelCase__ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ ): return self.encode_prefix(lowerCamelCase__ ) @torch.no_grad() def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = torch.split(lowerCamelCase__ , 1 , dim=0 ) _lowerCamelCase = [] _lowerCamelCase = [] for feature in features: _lowerCamelCase = self.decode_prefix(feature.to(lowerCamelCase__ ) ) # back to the clip feature # Only support beam search for now _lowerCamelCase , _lowerCamelCase = self.generate_beam( input_embeds=lowerCamelCase__ , device=lowerCamelCase__ , eos_token_id=lowerCamelCase__ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _lowerCamelCase = torch.stack(lowerCamelCase__ ) _lowerCamelCase = torch.stack(lowerCamelCase__ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def snake_case__ ( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__ = 5 , lowerCamelCase__ = 6_7 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = None , ): _lowerCamelCase = eos_token_id _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = torch.ones(lowerCamelCase__ , device=lowerCamelCase__ , dtype=torch.int ) _lowerCamelCase = torch.zeros(lowerCamelCase__ , device=lowerCamelCase__ , dtype=torch.bool ) if input_embeds is not None: _lowerCamelCase = input_embeds else: _lowerCamelCase = self.transformer.transformer.wte(lowerCamelCase__ ) for i in range(lowerCamelCase__ ): _lowerCamelCase = self.transformer(inputs_embeds=lowerCamelCase__ ) _lowerCamelCase = outputs.logits _lowerCamelCase = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _lowerCamelCase = logits.softmax(-1 ).log() if scores is None: _lowerCamelCase , _lowerCamelCase = logits.topk(lowerCamelCase__ , -1 ) _lowerCamelCase = generated.expand(lowerCamelCase__ , *generated.shape[1:] ) _lowerCamelCase , _lowerCamelCase = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _lowerCamelCase = next_tokens else: _lowerCamelCase = tokens.expand(lowerCamelCase__ , *tokens.shape[1:] ) _lowerCamelCase = torch.cat((tokens, next_tokens) , dim=1 ) else: _lowerCamelCase = -float(np.inf ) _lowerCamelCase = 0 _lowerCamelCase = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _lowerCamelCase = scores_sum / seq_lengths[:, None] _lowerCamelCase , _lowerCamelCase = scores_sum_average.view(-1 ).topk(lowerCamelCase__ , -1 ) _lowerCamelCase = next_tokens // scores_sum.shape[1] _lowerCamelCase = seq_lengths[next_tokens_source] _lowerCamelCase = next_tokens % scores_sum.shape[1] _lowerCamelCase = next_tokens.unsqueeze(1 ) _lowerCamelCase = tokens[next_tokens_source] _lowerCamelCase = torch.cat((tokens, next_tokens) , dim=1 ) _lowerCamelCase = generated[next_tokens_source] _lowerCamelCase = scores_sum_average * seq_lengths _lowerCamelCase = is_stopped[next_tokens_source] _lowerCamelCase = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _lowerCamelCase = torch.cat((generated, next_token_embed) , dim=1 ) _lowerCamelCase = is_stopped + next_tokens.eq(lowerCamelCase__ ).squeeze() if is_stopped.all(): break _lowerCamelCase = scores / seq_lengths _lowerCamelCase = scores.argsort(descending=lowerCamelCase__ ) # tokens tensors are already padded to max_seq_length _lowerCamelCase = [tokens[i] for i in order] _lowerCamelCase = torch.stack(lowerCamelCase__ , dim=0 ) _lowerCamelCase = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
661
0
from math import factorial def __A ( _A = 100 ): """simple docstring""" return sum(int(_A ) for x in str(factorial(_A ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
525
def __A ( _A ): """simple docstring""" __a = [] for data in source_data: for i, el in enumerate(_A ): if len(_A ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_A ) ) return data_lists def __A ( _A , _A ): """simple docstring""" __a = [] for dlist, weight in zip(_A , _A ): __a = min(_A ) __a = max(_A ) __a = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __a = f"""Invalid weight of {weight:f} provided""" raise ValueError(_A ) score_lists.append(_A ) return score_lists def __A ( _A ): """simple docstring""" __a = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_A ): __a = final_scores[j] + ele return final_scores def __A ( _A , _A ): """simple docstring""" __a = get_data(_A ) __a = calculate_each_score(_A , _A ) __a = generate_final_scores(_A ) # append scores to source data for i, ele in enumerate(_A ): source_data[i].append(_A ) return source_data
525
1
from __future__ import annotations def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( __UpperCamelCase , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
141
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer SCREAMING_SNAKE_CASE : Dict = "bart" SCREAMING_SNAKE_CASE : Any = True @st.cache(allow_output_mutation=__UpperCamelCase ) def lowerCamelCase_ ( ): if LOAD_DENSE_INDEX: A_ = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) A_ = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) A_ = qar_model.eval() else: A_ , A_ = (None, None) if MODEL_TYPE == "bart": A_ = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) A_ = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) A_ = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) A_ = sas_model.eval() else: A_ , A_ = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=__UpperCamelCase ) def lowerCamelCase_ ( ): if LOAD_DENSE_INDEX: A_ = faiss.StandardGpuResources() A_ = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] A_ = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 1_28) , ) A_ = faiss.IndexFlatIP(1_28 ) A_ = faiss.index_cpu_to_gpu(__UpperCamelCase , 1 , __UpperCamelCase ) wikiaab_gpu_index_flat.add(__UpperCamelCase ) # TODO fix for larger GPU else: A_ , A_ = (None, None) A_ = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=__UpperCamelCase ) def lowerCamelCase_ ( ): A_ = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) A_ = elia['''train_eli5'''] A_ = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 1_28) ) A_ = faiss.IndexFlatIP(1_28 ) eli5_train_q_index.add(__UpperCamelCase ) return (elia_train, eli5_train_q_index) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = load_indexes() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = load_models() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = load_train_data() def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase=10 ): A_ = embed_questions_for_retrieval([question] , __UpperCamelCase , __UpperCamelCase ) A_ , A_ = eli5_train_q_index.search(__UpperCamelCase , __UpperCamelCase ) A_ = [elia_train[int(__UpperCamelCase )] for i in I[0]] return nn_examples def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase="wiki40b" , __UpperCamelCase="dense" , __UpperCamelCase=10 ): if source == "none": A_ , A_ = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": A_ , A_ = query_qa_dense_index( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: A_ , A_ = query_es_index( __UpperCamelCase , __UpperCamelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=__UpperCamelCase , ) A_ = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] A_ = '''question: {} context: {}'''.format(__UpperCamelCase , __UpperCamelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda __UpperCamelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda __UpperCamelCase : None), } ) def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=64 , __UpperCamelCase=2_56 , __UpperCamelCase=False , __UpperCamelCase=2 , __UpperCamelCase=0.95 , __UpperCamelCase=0.8 ): with torch.no_grad(): A_ = qa_sas_generate( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , num_answers=1 , num_beams=__UpperCamelCase , min_len=__UpperCamelCase , max_len=__UpperCamelCase , do_sample=__UpperCamelCase , temp=__UpperCamelCase , top_p=__UpperCamelCase , top_k=__UpperCamelCase , max_input_length=10_24 , device='''cuda:0''' , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar SCREAMING_SNAKE_CASE : Union[str, Any] = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>" SCREAMING_SNAKE_CASE : int = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia SCREAMING_SNAKE_CASE : Optional[int] = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n" st.sidebar.markdown(description, unsafe_allow_html=True) SCREAMING_SNAKE_CASE : Union[str, Any] = [ "Answer the question", "View the retrieved document only", "View the most similar ELI5 question and answer", "Show me everything, please!", ] SCREAMING_SNAKE_CASE : Optional[Any] = st.sidebar.checkbox("Demo options") if demo_options: SCREAMING_SNAKE_CASE : Optional[Any] = st.sidebar.selectbox( "", action_list, index=3, ) SCREAMING_SNAKE_CASE : Optional[Any] = action_list.index(action_st) SCREAMING_SNAKE_CASE : Union[str, Any] = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) SCREAMING_SNAKE_CASE : Optional[Any] = show_type == "Show full text of passages" else: SCREAMING_SNAKE_CASE : int = 3 SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : List[Any] = st.sidebar.checkbox("Retrieval options") if retrieval_options: SCREAMING_SNAKE_CASE : Optional[Any] = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n " st.sidebar.markdown(retriever_info) SCREAMING_SNAKE_CASE : Any = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) SCREAMING_SNAKE_CASE : Tuple = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: SCREAMING_SNAKE_CASE : Optional[Any] = "wiki40b" SCREAMING_SNAKE_CASE : Tuple = "dense" SCREAMING_SNAKE_CASE : Union[str, Any] = "beam" SCREAMING_SNAKE_CASE : Dict = 2 SCREAMING_SNAKE_CASE : str = 64 SCREAMING_SNAKE_CASE : Any = 256 SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Dict = st.sidebar.checkbox("Generation options") if generate_options: SCREAMING_SNAKE_CASE : List[Any] = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n " st.sidebar.markdown(generate_info) SCREAMING_SNAKE_CASE : int = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) SCREAMING_SNAKE_CASE : List[str] = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) SCREAMING_SNAKE_CASE : Dict = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": SCREAMING_SNAKE_CASE : List[Any] = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: SCREAMING_SNAKE_CASE : Optional[Any] = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : Dict = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) SCREAMING_SNAKE_CASE : Any = None # start main text SCREAMING_SNAKE_CASE : Tuple = [ "<MY QUESTION>", "How do people make chocolate?", "Why do we get a fever when we are sick?", "How can different animals perceive different colors?", "What is natural language processing?", "What's the best way to treat a sunburn?", "What exactly are vitamins ?", "How does nuclear energy provide electricity?", "What's the difference between viruses and bacteria?", "Why are flutes classified as woodwinds when most of them are made out of metal ?", "Why do people like drinking coffee even though it tastes so bad?", "What happens when wine ages? How does it make the wine taste better?", "If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?", "How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?", "How does New Zealand have so many large bird predators?", ] SCREAMING_SNAKE_CASE : Union[str, Any] = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": SCREAMING_SNAKE_CASE : str = st.text_input("Enter your question here:", "") else: SCREAMING_SNAKE_CASE : Tuple = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = make_support(question, source=wiki_source, method="dense", n_results=10) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = make_support(question, source=wiki_source, method="sparse", n_results=10) SCREAMING_SNAKE_CASE : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] SCREAMING_SNAKE_CASE : int = support_list[:10] SCREAMING_SNAKE_CASE : List[Any] = "<P> " + " <P> ".join([res[-1] for res in support_list]) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): SCREAMING_SNAKE_CASE : Optional[int] = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_")) SCREAMING_SNAKE_CASE : str = res[1].strip() if sec_titles == "": SCREAMING_SNAKE_CASE : str = "[{}]({})".format(res[0], wiki_url) else: SCREAMING_SNAKE_CASE : int = sec_titles.split(" & ") SCREAMING_SNAKE_CASE : Tuple = " & ".join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: SCREAMING_SNAKE_CASE : List[str] = find_nearest_training(question) SCREAMING_SNAKE_CASE : Tuple = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) SCREAMING_SNAKE_CASE : Any = [ "{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) SCREAMING_SNAKE_CASE : Tuple = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n" st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
141
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __UpperCAmelCase : Optional[Any] = (3, 9, -11, 0, 7, 5, 1, -1) __UpperCAmelCase : int = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowerCamelCase : UpperCAmelCase : int UpperCAmelCase : Node | None class lowerCamelCase : def __init__( self : Any , __snake_case : Iterable[int] ) -> None: _a : Node | None = None for i in sorted(__snake_case , reverse=__snake_case ): _a : Tuple = Node(__snake_case , self.head ) def __iter__( self : Optional[int] ) -> Iterator[int]: _a : str = self.head while node: yield node.data _a : Tuple = node.next_node def __len__( self : Optional[int] ) -> int: return sum(1 for _ in self ) def __str__( self : Tuple ) -> str: return " -> ".join([str(__snake_case ) for node in self] ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): return SortedLinkedList(list(UpperCamelCase_ ) + list(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Dict = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
712
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowerCamelCase_ ( UpperCamelCase_ = 8 ): _a : int = ascii_letters + digits + punctuation return "".join(secrets.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(UpperCamelCase_ ) _a : Dict = i // 3 _a : Union[str, Any] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) _a : Optional[Any] = ( chars_incl + random(UpperCamelCase_ , quotient + remainder ) + random(UpperCamelCase_ , UpperCamelCase_ ) + random(UpperCamelCase_ , UpperCamelCase_ ) ) _a : List[str] = list(UpperCamelCase_ ) shuffle(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) # random is a generalised function for letters, characters and numbers def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): return "".join(secrets.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): pass # Put your code here... def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): pass # Put your code here... def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): pass # Put your code here... def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 8 ): if len(UpperCamelCase_ ) < min_length: # Your Password must be at least 8 characters long return False _a : List[str] = any(char in ascii_uppercase for char in password ) _a : Optional[Any] = any(char in ascii_lowercase for char in password ) _a : int = any(char in digits for char in password ) _a : Optional[Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowerCamelCase_ ( ): _a : Any = int(input('''Please indicate the max length of your password: ''' ).strip() ) _a : Any = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(UpperCamelCase_ ) ) print( '''Alternative Password generated:''' , alternative_password_generator(UpperCamelCase_ , UpperCamelCase_ ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
249
0
"""simple docstring""" from random import randint, random def _UpperCamelCase ( A , A , A , A = False , A = False , A = 5 , ): UpperCamelCase_ =[[-1] * number_of_cells] # Create a highway without any car UpperCamelCase_ =0 UpperCamelCase_ =max(SCREAMING_SNAKE_CASE__ , 0 ) while i < number_of_cells: UpperCamelCase_ =( randint(0 , SCREAMING_SNAKE_CASE__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _UpperCamelCase ( A , A ): UpperCamelCase_ =0 UpperCamelCase_ =highway_now[car_index + 1 :] for cell in range(len(SCREAMING_SNAKE_CASE__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(SCREAMING_SNAKE_CASE__ , -1 ) def _UpperCamelCase ( A , A , A ): UpperCamelCase_ =len(SCREAMING_SNAKE_CASE__ ) # Beforce calculations, the highway is empty UpperCamelCase_ =[-1] * number_of_cells for car_index in range(SCREAMING_SNAKE_CASE__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed UpperCamelCase_ =min(highway_now[car_index] + 1 , SCREAMING_SNAKE_CASE__ ) # Number of empty cell before the next car UpperCamelCase_ =get_distance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) - 1 # We can't have the car causing an accident UpperCamelCase_ =min(next_highway[car_index] , SCREAMING_SNAKE_CASE__ ) if random() < probability: # Randomly, a driver will slow down UpperCamelCase_ =max(next_highway[car_index] - 1 , 0 ) return next_highway def _UpperCamelCase ( A , A , A , A ): UpperCamelCase_ =len(highway[0] ) for i in range(SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ =update(highway[i] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCamelCase_ =[-1] * number_of_cells for car_index in range(SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ =next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) UpperCamelCase_ =(car_index + speed) % number_of_cells # Commit the change of position UpperCamelCase_ =speed highway.append(SCREAMING_SNAKE_CASE__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
391
'''simple docstring''' from statistics import mean, stdev def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 3 ): __a : List[str] = min(SCREAMING_SNAKE_CASE__ ) __a : Tuple = max(SCREAMING_SNAKE_CASE__ ) # normalize data return [round((x - x_min) / (x_max - x_min) , SCREAMING_SNAKE_CASE__ ) for x in data] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 3 ): __a : Dict = mean(SCREAMING_SNAKE_CASE__ ) __a : str = stdev(SCREAMING_SNAKE_CASE__ ) # standardize data return [round((x - mu) / (sigma) , SCREAMING_SNAKE_CASE__ ) for x in data]
597
0
"""simple docstring""" def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" if not (isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(__lowerCamelCase , __lowerCamelCase )): raise ValueError('''longest_common_substring() takes two strings for inputs''' ) lowerCamelCase__ : Any =len(__lowerCamelCase ) lowerCamelCase__ : Any =len(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =[[0] * (texta_length + 1) for _ in range(texta_length + 1 )] lowerCamelCase__ : Dict =0 lowerCamelCase__ : Dict =0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: lowerCamelCase__ : str =1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: lowerCamelCase__ : Optional[Any] =i lowerCamelCase__ : Union[str, Any] =dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : Optional[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any = ["CLIPFeatureExtractor"] _lowercase : int = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Union[str, Any] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowercase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
625
0
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def _SCREAMING_SNAKE_CASE ( a ) -> Optional[Any]: if hor == 1_28: __A : str = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') __A : Dict = (32, 1_28, 2_56) __A : List[str] = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: __A : Optional[int] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') __A : Union[str, Any] = (32, 64, 1_28, 2_56) __A : Union[str, Any] = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') __A : int = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) __A : int = model.state_dict() __A : Optional[int] = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_55_36, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } __A : int = UNetaDModel(**a ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) __A : int = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __A : Tuple = state_dict.pop(a ) hf_value_function.load_state_dict(a ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , 'w' ) as f: json.dump(a , a ) def _SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: __A : List[str] = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 1_28, 2_56), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_55_36, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } __A : List[Any] = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) __A : Union[str, Any] = model __A : Tuple = UNetaDModel(**a ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) __A : Tuple = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __A : List[Any] = state_dict.pop(a ) hf_value_function.load_state_dict(a ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(a , a ) if __name__ == "__main__": unet(32) # unet(128) value_function()
239
from collections.abc import Iterable from typing import Any class _A: """simple docstring""" def __init__( self , _A = None ): __A : Any = value __A : Node | None = None # Added in order to delete a node easier __A : Node | None = None __A : Node | None = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 ) class _A: """simple docstring""" def __init__( self , _A = None ): __A : Union[str, Any] = root def __str__( self ): return str(self.root ) def UpperCAmelCase_ ( self , _A , _A ): if new_children is not None: # reset its kids __A : Optional[Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children __A : List[Any] = new_children else: __A : Any = new_children else: __A : Optional[int] = new_children def UpperCAmelCase_ ( self , _A ): if node.parent and node.parent.right: return node == node.parent.right return False def UpperCAmelCase_ ( self ): return self.root is None def UpperCAmelCase_ ( self , _A ): __A : Tuple = Node(_A ) # create a new Node if self.empty(): # if Tree is empty __A : Any = new_node # set its root else: # Tree is not empty __A : Union[str, Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __A : List[Any] = new_node # We insert the new node in a leaf break else: __A : Any = parent_node.left else: if parent_node.right is None: __A : Any = new_node break else: __A : List[str] = parent_node.right __A : Union[str, Any] = parent_node def UpperCAmelCase_ ( self , *_A ): for value in values: self.__insert(_A ) def UpperCAmelCase_ ( self , _A ): if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: __A : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __A : str = node.left if value < node.value else node.right return node def UpperCAmelCase_ ( self , _A = None ): if node is None: if self.root is None: return None __A : int = self.root if not self.empty(): while node.right is not None: __A : Optional[int] = node.right return node def UpperCAmelCase_ ( self , _A = None ): if node is None: __A : Optional[int] = self.root if self.root is None: return None if not self.empty(): __A : Union[str, Any] = self.root while node.left is not None: __A : Any = node.left return node def UpperCAmelCase_ ( self , _A ): __A : Union[str, Any] = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: __A : List[str] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore __A : Dict = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def UpperCAmelCase_ ( self , _A ): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def UpperCAmelCase_ ( self , _A=None ): if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def UpperCAmelCase_ ( self , _A , _A ): if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def UpperCAmelCase_ ( self , _A , _A ): __A : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def _SCREAMING_SNAKE_CASE ( a ) -> list[Node]: __A : Optional[int] = [] if curr_node is not None: __A : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _SCREAMING_SNAKE_CASE ( ) -> None: __A : int = (8, 3, 6, 1, 10, 14, 13, 4, 7) __A : List[Any] = BinarySearchTree() for i in testlist: t.insert(a ) # Prints all the elements of the list in order traversal print(a ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(a ) print(a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
239
1
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ) ->str: _UpperCAmelCase ="" for word_or_phrase in separated: if not isinstance(_lowerCamelCase , _lowerCamelCase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(_lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
592
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} snake_case__ : List[Any] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } snake_case__ : str = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } snake_case__ : Tuple = '▁' class _a ( A__ ): """simple docstring""" snake_case =VOCAB_FILES_NAMES snake_case =PRETRAINED_VOCAB_FILES_MAP snake_case =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case =["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case="<s>" , _snake_case="</s>" , _snake_case="</s>" , _snake_case="<s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<mask>" , _snake_case = None , **_snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase =AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token _UpperCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) _UpperCAmelCase =vocab_file _UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) _UpperCAmelCase ={"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _UpperCAmelCase =len(self.sp_model ) - 1 _UpperCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase =[self.cls_token_id] _UpperCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None , _snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): _UpperCAmelCase =[self.sep_token_id] _UpperCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ={self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self , _snake_case ): return self.sp_model.encode(_snake_case , out_type=_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase =self.sp_model.PieceToId(_snake_case ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self , _snake_case ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =[] _UpperCAmelCase ="" _UpperCAmelCase =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token _UpperCAmelCase =True _UpperCAmelCase =[] else: current_sub_tokens.append(_snake_case ) _UpperCAmelCase =False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def __getstate__( self ): _UpperCAmelCase =self.__dict__.copy() _UpperCAmelCase =None return state def __setstate__( self , _snake_case ): _UpperCAmelCase =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase ={} _UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): if not os.path.isdir(_snake_case ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , "wb" ) as fi: _UpperCAmelCase =self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
592
1
'''simple docstring''' import datasets UpperCAmelCase__ = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' UpperCAmelCase__ = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' UpperCAmelCase__ = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : List[str],_SCREAMING_SNAKE_CASE : str ): """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase ( self : Tuple ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def lowerCAmelCase ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] ) -> str: return {"accuracy": simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )}
186
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class a__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModel.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModel.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : int ) -> Optional[int]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) __A, __A= TFAutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) __A, __A= AutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) __A, __A= TFAutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) __A, __A= AutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) -> Dict: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) __A, __A= TFAutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) __A, __A= AutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self : int ) -> List[str]: __A= TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) __A= AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: __A= TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) __A= AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 )
186
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ): UpperCAmelCase__ = 1 @register_to_config def __init__( self : Tuple , UpperCAmelCase : str=2000 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Tuple=20 , UpperCAmelCase : int=1e-3 ) -> int: lowerCamelCase__ : Tuple = None lowerCamelCase__ : int = None lowerCamelCase__ : Any = None def A_ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, torch.device] = None ) -> Tuple: lowerCamelCase__ : Dict = torch.linspace(1 , self.config.sampling_eps , UpperCAmelCase , device=UpperCAmelCase ) def A_ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=None ) -> Union[str, Any]: if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCamelCase__ : Optional[Any] = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCamelCase__ : List[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCamelCase__ : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): lowerCamelCase__ : Any = std.unsqueeze(-1 ) lowerCamelCase__ : Union[str, Any] = -score / std # compute lowerCamelCase__ : Optional[int] = -1.0 / len(self.timesteps ) lowerCamelCase__ : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCamelCase__ : str = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCamelCase__ : str = beta_t.unsqueeze(-1 ) lowerCamelCase__ : Union[str, Any] = -0.5 * beta_t * x lowerCamelCase__ : List[str] = torch.sqrt(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = drift - diffusion**2 * score lowerCamelCase__ : Tuple = x + drift * dt # add noise lowerCamelCase__ : Any = randn_tensor(x.shape , layout=x.layout , generator=UpperCAmelCase , device=x.device , dtype=x.dtype ) lowerCamelCase__ : Union[str, Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Union[str, Any] ) -> Optional[int]: return self.config.num_train_timesteps
188
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : str=32 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Dict=10 , UpperCAmelCase : List[str]=[10, 20, 30, 40] , UpperCAmelCase : Any=[1, 1, 2, 1] , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict="relu" , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Dict=None , ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Dict = image_size lowerCamelCase__ : int = num_channels lowerCamelCase__ : int = embeddings_size lowerCamelCase__ : str = hidden_sizes lowerCamelCase__ : Any = depths lowerCamelCase__ : str = is_training lowerCamelCase__ : List[Any] = use_labels lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Dict = num_labels lowerCamelCase__ : Dict = scope lowerCamelCase__ : List[str] = len(UpperCAmelCase ) def A_ ( self : Optional[int] ) -> Optional[int]: lowerCamelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : str = self.get_config() return config, pixel_values def A_ ( self : Optional[int] ) -> Dict: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A_ ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = FlaxRegNetModel(config=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = model(UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A_ ( self : str , UpperCAmelCase : int , UpperCAmelCase : Tuple ) -> Tuple: lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : str = FlaxRegNetForImageClassification(config=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Dict ) -> str: lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ : Any = config_and_inputs lowerCamelCase__ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : List[Any] ) -> None: lowerCamelCase__ : List[Any] = FlaxRegNetModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def A_ ( self : int ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self : Any ) -> str: return def A_ ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A_ ( self : Dict ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def A_ ( self : Dict ) -> Dict: pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def A_ ( self : Any ) -> Tuple: pass def A_ ( self : Union[str, Any] ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : int = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A_ ( self : int ) -> List[str]: def check_hidden_states_output(UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ): lowerCamelCase__ : Any = model_class(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCamelCase__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : List[Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Dict ) -> int: lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase : Tuple , **UpperCAmelCase : Tuple ): return model(pixel_values=UpperCAmelCase , **UpperCAmelCase ) with self.subTest('JIT Enabled' ): lowerCamelCase__ : Dict = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowerCamelCase__ : Optional[int] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowerCAmelCase ( unittest.TestCase ): @cached_property def A_ ( self : Any ) -> List[Any]: return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def A_ ( self : Dict ) -> Tuple: lowerCamelCase__ : Union[str, Any] = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) lowerCamelCase__ : Dict = self.default_image_processor lowerCamelCase__ : List[Any] = prepare_img() lowerCamelCase__ : List[str] = image_processor(images=UpperCAmelCase , return_tensors='np' ) lowerCamelCase__ : List[Any] = model(**UpperCAmelCase ) # verify the logits lowerCamelCase__ : Union[str, Any] = (1, 1000) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCamelCase__ : Tuple = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
188
1
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
31
def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ) -> Optional[Any]: __lowerCamelCase = [1] for i in range(2 , __lowerCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __lowerCamelCase = [] __lowerCamelCase = list(range(__lowerCAmelCase ) ) # Find permutation while factorials: __lowerCamelCase = factorials.pop() __lowerCamelCase , __lowerCamelCase = divmod(__lowerCAmelCase , __lowerCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
298
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class a_ ( unittest.TestCase ): def __init__( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : List[Any]=1_8 , __lowerCAmelCase : Optional[Any]=3_0 , __lowerCAmelCase : str=4_0_0 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : List[Any]=True , ): __snake_case = size if size is not None else {'height': 1_8, 'width': 1_8} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_normalize def lowercase__ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class a_ ( UpperCAmelCase__ , unittest.TestCase ): lowercase_ : Union[str, Any] = ImageGPTImageProcessor if is_vision_available() else None def lowercase__ ( self : Dict ): __snake_case = ImageGPTImageProcessingTester(self ) @property def lowercase__ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Tuple ): __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , 'clusters' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'do_normalize' ) ) def lowercase__ ( self : Optional[int] ): __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def lowercase__ ( self : Optional[Any] ): __snake_case = self.image_processing_class(**self.image_processor_dict ) __snake_case = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , __lowerCAmelCase ) def lowercase__ ( self : Any ): __snake_case = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = os.path.join(__lowerCAmelCase , 'image_processor.json' ) image_processor_first.to_json_file(__lowerCAmelCase ) __snake_case = self.image_processing_class.from_json_file(__lowerCAmelCase ).to_dict() __snake_case = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __lowerCAmelCase ) def lowercase__ ( self : List[str] ): __snake_case = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__lowerCAmelCase ) __snake_case = self.image_processing_class.from_pretrained(__lowerCAmelCase ).to_dict() __snake_case = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __lowerCAmelCase ) @unittest.skip('ImageGPT requires clusters at initialization' ) def lowercase__ ( self : int ): pass def lowerCamelCase__ ( ): __snake_case = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) __snake_case = Image.open(dataset[4]['file'] ) __snake_case = Image.open(dataset[5]['file'] ) __snake_case = [imagea, imagea] return images @require_vision @require_torch class a_ ( unittest.TestCase ): @slow def lowercase__ ( self : List[Any] ): __snake_case = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) __snake_case = prepare_images() # test non-batched __snake_case = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) __snake_case = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , __lowerCAmelCase ) # test batched __snake_case = image_processing(__lowerCAmelCase , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) __snake_case = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __lowerCAmelCase )
427
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowercase = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCamelCase__ ( a , a=None ): require_version(deps[pkg] , a )
427
1
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput a__ = 8 def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Tuple=BITS ) -> List[str]: """simple docstring""" _a : Optional[Any] = x.device _a : int = (x * 255).int().clamp(0 ,255 ) _a : Optional[int] = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=__a ) _a : Union[str, Any] = rearrange(__a ,'''d -> d 1 1''' ) _a : Tuple = rearrange(__a ,'''b c h w -> b c 1 h w''' ) _a : int = ((x & mask) != 0).float() _a : Dict = rearrange(__a ,'''b c d h w -> b (c d) h w''' ) _a : Any = bits * 2 - 1 return bits def __UpperCAmelCase ( __a : List[str] ,__a : List[str]=BITS ) -> Optional[Any]: """simple docstring""" _a : Any = x.device _a : Union[str, Any] = (x > 0).int() _a : Dict = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=__a ,dtype=torch.intaa ) _a : Any = rearrange(__a ,'''d -> d 1 1''' ) _a : Dict = rearrange(__a ,'''b (c d) h w -> b c d h w''' ,d=8 ) _a : Optional[Any] = reduce(x * mask ,'''b c d h w -> b c h w''' ,'''sum''' ) return (dec / 255).clamp(0.0 ,1.0 ) def __UpperCAmelCase ( self : Optional[int] ,__a : torch.FloatTensor ,__a : int ,__a : torch.FloatTensor ,__a : float = 0.0 ,__a : bool = True ,__a : int=None ,__a : bool = True ,) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _a : List[str] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _a : str = self.alphas_cumprod[timestep] _a : str = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _a : Union[str, Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _a : List[str] = self.bit_scale if self.config.clip_sample: _a : Tuple = torch.clamp(__a ,-scale ,__a ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _a : List[Any] = self._get_variance(__a ,__a ) _a : List[str] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _a : Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a : List[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a : Optional[Any] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _a : Optional[Any] = model_output.device if torch.is_tensor(__a ) else '''cpu''' _a : Tuple = torch.randn(model_output.shape ,dtype=model_output.dtype ,generator=__a ).to(__a ) _a : Any = self._get_variance(__a ,__a ) ** 0.5 * eta * noise _a : Dict = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__a ,pred_original_sample=__a ) def __UpperCAmelCase ( self : List[Any] ,__a : torch.FloatTensor ,__a : int ,__a : torch.FloatTensor ,__a : str="epsilon" ,__a : Optional[Any]=None ,__a : bool = True ,) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" _a : int = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _a , _a : int = torch.split(__a ,sample.shape[1] ,dim=1 ) else: _a : List[str] = None # 1. compute alphas, betas _a : Any = self.alphas_cumprod[t] _a : Dict = self.alphas_cumprod[t - 1] if t > 0 else self.one _a : int = 1 - alpha_prod_t _a : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _a : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _a : Dict = model_output else: raise ValueError(F"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" _a : int = self.bit_scale if self.config.clip_sample: _a : Optional[Any] = torch.clamp(__a ,-scale ,__a ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a : List[Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _a : Optional[int] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _a : Tuple = 0 if t > 0: _a : Any = torch.randn( model_output.size() ,dtype=model_output.dtype ,layout=model_output.layout ,generator=__a ).to(model_output.device ) _a : str = (self._get_variance(__a ,predicted_variance=__a ) ** 0.5) * noise _a : str = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__a ,pred_original_sample=__a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a , _a , _a = 1.0 , ) -> Optional[Any]: super().__init__() _a : Optional[Any] = bit_scale _a : Dict = ( ddim_bit_scheduler_step if isinstance(_a , _a ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = 2_5_6 , _a = 2_5_6 , _a = 5_0 , _a = None , _a = 1 , _a = "pil" , _a = True , **_a , ) -> Union[Tuple, ImagePipelineOutput]: _a : Dict = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_a , ) _a : List[str] = decimal_to_bits(_a ) * self.bit_scale _a : str = latents.to(self.device ) self.scheduler.set_timesteps(_a ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _a : Any = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 _a : Dict = self.scheduler.step(_a , _a , _a ).prev_sample _a : str = bits_to_decimal(_a ) if output_type == "pil": _a : List[Any] = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
14
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = KandinskyInpaintPipeline UpperCAmelCase__ : Optional[int] = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] UpperCAmelCase__ : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] UpperCAmelCase__ : Optional[int] = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase__ : Any = False @property def __lowercase ( self ) -> Optional[int]: return 3_2 @property def __lowercase ( self ) -> int: return 3_2 @property def __lowercase ( self ) -> List[str]: return self.time_input_dim @property def __lowercase ( self ) -> List[str]: return self.time_input_dim * 4 @property def __lowercase ( self ) -> Optional[Any]: return 1_0_0 @property def __lowercase ( self ) -> Optional[Any]: _a : Any = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) _a : Optional[int] = MultilingualCLIP(_a ) _a : Tuple = text_encoder.eval() return text_encoder @property def __lowercase ( self ) -> str: torch.manual_seed(0 ) _a : List[str] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a : Dict = UNetaDConditionModel(**_a ) return model @property def __lowercase ( self ) -> Optional[int]: return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowercase ( self ) -> Tuple: torch.manual_seed(0 ) _a : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __lowercase ( self ) -> Any: _a : List[Any] = self.dummy_text_encoder _a : Optional[Any] = self.dummy_tokenizer _a : Optional[Any] = self.dummy_unet _a : Union[str, Any] = self.dummy_movq _a : Tuple = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) _a : str = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __lowercase ( self , _a , _a=0 ) -> int: _a : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _a : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _a : Tuple = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_a ) ).to(_a ) _a : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a : Optional[int] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask _a : Union[str, Any] = np.ones((6_4, 6_4) , dtype=np.floataa ) _a : List[str] = 0 if str(_a ).startswith('''mps''' ): _a : Tuple = torch.manual_seed(_a ) else: _a : Any = torch.Generator(device=_a ).manual_seed(_a ) _a : Any = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __lowercase ( self ) -> Optional[Any]: _a : Optional[Any] = '''cpu''' _a : List[Any] = self.get_dummy_components() _a : Tuple = self.pipeline_class(**_a ) _a : int = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _a : Any = pipe(**self.get_dummy_inputs(_a ) ) _a : str = output.images _a : Tuple = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _a : Union[str, Any] = image[0, -3:, -3:, -1] _a : Tuple = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) _a : str = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __lowercase ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self ) -> Union[str, Any]: _a : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) _a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) _a : Any = 0 _a : Optional[Any] = '''a hat''' _a : Optional[Any] = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _a : Tuple = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) _a : Union[str, Any] = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _a : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a : Dict = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a : Optional[int] = pipeline( _a , image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) _a : Optional[int] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(_a , _a )
14
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Tuple = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = ["PoolFormerFeatureExtractor"] UpperCamelCase__ : Tuple = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
719
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ : List[str] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } UpperCamelCase__ : str = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def _UpperCAmelCase ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ = bs[:] SCREAMING_SNAKE_CASE_ = 0 for b in range(2**8 ): if b not in bs: bs.append(_SCREAMING_SNAKE_CASE ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ = [chr(_SCREAMING_SNAKE_CASE ) for n in cs] return dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = set() SCREAMING_SNAKE_CASE_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ = char return pairs class __snake_case ( lowerCAmelCase__ ): __lowerCAmelCase : str = VOCAB_FILES_NAMES __lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : List[Any] = ['input_ids', 'attention_mask'] def __init__( self , _A , _A , _A="replace" , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A=False , **_A , ): SCREAMING_SNAKE_CASE_ = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else bos_token SCREAMING_SNAKE_CASE_ = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else eos_token SCREAMING_SNAKE_CASE_ = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else sep_token SCREAMING_SNAKE_CASE_ = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else cls_token SCREAMING_SNAKE_CASE_ = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else unk_token SCREAMING_SNAKE_CASE_ = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ = AddedToken(_A , lstrip=_A , rstrip=_A) if isinstance(_A , _A) else mask_token super().__init__( errors=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , **_A , ) with open(_A , encoding='utf-8') as vocab_handle: SCREAMING_SNAKE_CASE_ = json.load(_A) SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ = bytes_to_unicode() SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.byte_encoder.items()} with open(_A , encoding='utf-8') as merges_handle: SCREAMING_SNAKE_CASE_ = merges_handle.read().split('\n')[1:-1] SCREAMING_SNAKE_CASE_ = [tuple(merge.split()) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ = dict(zip(_A , range(len(_A)))) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property def lowerCAmelCase__ ( self): return len(self.encoder) def lowerCAmelCase__ ( self): return dict(self.encoder , **self.added_tokens_encoder) def lowerCAmelCase__ ( self , _A): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ = tuple(_A) SCREAMING_SNAKE_CASE_ = get_pairs(_A) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ = min(_A , key=lambda _A: self.bpe_ranks.get(_A , float('inf'))) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = bigram SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = 0 while i < len(_A): try: SCREAMING_SNAKE_CASE_ = word.index(_A , _A) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) SCREAMING_SNAKE_CASE_ = j if word[i] == first and i < len(_A) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 SCREAMING_SNAKE_CASE_ = tuple(_A) SCREAMING_SNAKE_CASE_ = new_word if len(_A) == 1: break else: SCREAMING_SNAKE_CASE_ = get_pairs(_A) SCREAMING_SNAKE_CASE_ = ' '.join(_A) SCREAMING_SNAKE_CASE_ = word return word def lowerCAmelCase__ ( self , _A): SCREAMING_SNAKE_CASE_ = [] for token in re.findall(self.pat , _A): SCREAMING_SNAKE_CASE_ = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A).split(' ')) return bpe_tokens def lowerCAmelCase__ ( self , _A): return self.encoder.get(_A , self.encoder.get(self.unk_token)) def lowerCAmelCase__ ( self , _A): return self.decoder.get(_A) def lowerCAmelCase__ ( self , _A): SCREAMING_SNAKE_CASE_ = ''.join(_A) SCREAMING_SNAKE_CASE_ = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def lowerCAmelCase__ ( self , _A , _A = None): if not os.path.isdir(_A): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return SCREAMING_SNAKE_CASE_ = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) SCREAMING_SNAKE_CASE_ = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(_A , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_A , ensure_ascii=_A) + '\n') SCREAMING_SNAKE_CASE_ = 0 with open(_A , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A: kv[1]): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!') SCREAMING_SNAKE_CASE_ = token_index writer.write(' '.join(_A) + '\n') index += 1 return vocab_file, merge_file def lowerCAmelCase__ ( self , _A , _A = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] SCREAMING_SNAKE_CASE_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self , _A , _A = None , _A = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A) if token_ids_a is None: return [1] + ([0] * len(_A)) + [1] return [1] + ([0] * len(_A)) + [1, 1] + ([0] * len(_A)) + [1] def lowerCAmelCase__ ( self , _A , _A = None): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def lowerCAmelCase__ ( self , _A , _A=False , **_A): SCREAMING_SNAKE_CASE_ = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(_A) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ = ' ' + text return (text, kwargs)
620
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase =logging.get_logger(__name__) def snake_case ( a_ : Optional[Any] , a_ : Optional[Any]=False , a_ : Optional[Any]=False , a_ : int=False ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"transformer.blocks.{i}.norm1.weight", f"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm1.bias", f"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.weight", f"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"transformer.blocks.{i}.attn.proj.bias", f"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.norm2.weight", f"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"transformer.blocks.{i}.norm2.bias", f"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (f"transformer.blocks.{i}.mlp.fc1.weight", f"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc1.bias", f"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.weight", f"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"transformer.blocks.{i}.mlp.fc2.bias", f"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def snake_case ( a_ : List[str] , a_ : Any ) -> int: """simple docstring""" for i in range(config.num_hidden_layers ): UpperCamelCase_ : Optional[Any] = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase_ : Any = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.weight" ) UpperCamelCase_ : List[str] = state_dict.pop(f"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ : List[str] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase_ : Optional[int] = in_proj_bias[: config.hidden_size] UpperCamelCase_ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase_ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase_ : Any = in_proj_bias[-config.hidden_size :] def snake_case ( a_ : str ) -> str: """simple docstring""" UpperCamelCase_ : int = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(a_ , a_ ) def snake_case ( a_ : Tuple , a_ : Optional[Any] , a_ : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : str = dct.pop(a_ ) UpperCamelCase_ : Optional[Any] = val @torch.no_grad() def snake_case ( a_ : Union[str, Any] , a_ : Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase_ : List[str] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=a_ ) UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Dict = False UpperCamelCase_ : List[str] = False UpperCamelCase_ : List[str] = False if "vqa" in checkpoint_url: UpperCamelCase_ : List[Any] = True UpperCamelCase_ : Union[str, Any] = 3_129 UpperCamelCase_ : Optional[int] = """huggingface/label-files""" UpperCamelCase_ : Union[str, Any] = """vqa2-id2label.json""" UpperCamelCase_ : Tuple = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase_ : Any = {int(a_ ): v for k, v in idalabel.items()} UpperCamelCase_ : int = idalabel UpperCamelCase_ : int = {v: k for k, v in idalabel.items()} UpperCamelCase_ : Tuple = ViltForQuestionAnswering(a_ ) elif "nlvr" in checkpoint_url: UpperCamelCase_ : List[str] = True UpperCamelCase_ : Tuple = 2 UpperCamelCase_ : Union[str, Any] = {0: """False""", 1: """True"""} UpperCamelCase_ : Any = {v: k for k, v in config.idalabel.items()} UpperCamelCase_ : Optional[Any] = 3 UpperCamelCase_ : List[Any] = ViltForImagesAndTextClassification(a_ ) elif "irtr" in checkpoint_url: UpperCamelCase_ : Dict = True UpperCamelCase_ : Dict = ViltForImageAndTextRetrieval(a_ ) elif "mlm_itm" in checkpoint_url: UpperCamelCase_ : Optional[Any] = True UpperCamelCase_ : Tuple = ViltForMaskedLM(a_ ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys UpperCamelCase_ : Optional[Any] = torch.hub.load_state_dict_from_url(a_ , map_location="""cpu""" )["""state_dict"""] UpperCamelCase_ : List[Any] = create_rename_keys(a_ , a_ , a_ , a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) read_in_q_k_v(a_ , a_ ) if mlm_model or irtr_model: UpperCamelCase_ : Optional[Any] = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(a_ , a_ ) # load state dict into HuggingFace model model.eval() if mlm_model: UpperCamelCase_ , UpperCamelCase_ : Optional[Any] = model.load_state_dict(a_ , strict=a_ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(a_ ) # Define processor UpperCamelCase_ : int = ViltImageProcessor(size=384 ) UpperCamelCase_ : str = BertTokenizer.from_pretrained("""bert-base-uncased""" ) UpperCamelCase_ : int = ViltProcessor(a_ , a_ ) # Forward pass on example inputs (image + text) if nlvr_model: UpperCamelCase_ : int = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=a_ ).raw ) UpperCamelCase_ : Any = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=a_ ).raw ) UpperCamelCase_ : List[str] = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) UpperCamelCase_ : Dict = processor(a_ , a_ , return_tensors="""pt""" ) UpperCamelCase_ : Union[str, Any] = processor(a_ , a_ , return_tensors="""pt""" ) UpperCamelCase_ : Optional[int] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: UpperCamelCase_ : Union[str, Any] = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=a_ ).raw ) if mlm_model: UpperCamelCase_ : int = """a bunch of [MASK] laying on a [MASK].""" else: UpperCamelCase_ : Optional[Any] = """How many cats are there?""" UpperCamelCase_ : List[Any] = processor(a_ , a_ , return_tensors="""pt""" ) UpperCamelCase_ : List[str] = model(**a_ ) # Verify outputs if mlm_model: UpperCamelCase_ : Any = torch.Size([1, 11, 30_522] ) UpperCamelCase_ : Tuple = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a_ , atol=1e-4 ) # verify masked token prediction equals "cats" UpperCamelCase_ : str = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: UpperCamelCase_ : List[str] = torch.Size([1, 3_129] ) UpperCamelCase_ : Optional[Any] = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , a_ , atol=1e-4 ) # verify vqa prediction equals "2" UpperCamelCase_ : Dict = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: UpperCamelCase_ : int = torch.Size([1, 2] ) UpperCamelCase_ : Any = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , a_ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(a_ ).mkdir(exist_ok=a_ ) print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(a_ ) processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase =parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
208
'''simple docstring''' def snake_case ( a_ : list ) -> list: """simple docstring""" UpperCamelCase_ : List[str] = False while is_sorted is False: # Until all the indices are traversed keep looping UpperCamelCase_ : Tuple = True for i in range(0 , len(a_ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: UpperCamelCase_ , UpperCamelCase_ : Optional[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase_ : Any = False for i in range(1 , len(a_ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: UpperCamelCase_ , UpperCamelCase_ : List[str] = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase_ : Dict = False return input_list if __name__ == "__main__": print("Enter list to be sorted") UpperCamelCase =[int(x) for x in input().split()] # inputing elements of the list in one line UpperCamelCase =odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
208
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : List[str]=None ): '''simple docstring''' if attention_mask is None: _lowerCAmelCase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCAmelCase_ : __lowerCamelCase : Dict = OPTConfig __lowerCamelCase : Optional[Any] = {} __lowerCamelCase : Optional[Any] = "gelu" def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=False , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=20 , _lowerCAmelCase=2 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=16 , _lowerCAmelCase=16 , ) -> Optional[int]: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = eos_token_id _lowerCAmelCase = pad_token_id _lowerCAmelCase = bos_token_id _lowerCAmelCase = embed_dim _lowerCAmelCase = word_embed_proj_dim _lowerCAmelCase = False def _snake_case ( self ) -> List[str]: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCAmelCase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_lowerCAmelCase , **self.config_updates , ) _lowerCAmelCase = prepare_opt_inputs_dict(_lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = TFOPTModel(config=_lowerCAmelCase ) _lowerCAmelCase = inputs_dict["input_ids"] _lowerCAmelCase = input_ids[:1, :] _lowerCAmelCase = inputs_dict["attention_mask"][:1, :] _lowerCAmelCase = 1 # first forward pass _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase )[0] _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx] _lowerCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCAmelCase , _lowerCAmelCase , rtol=1E-3 ) @require_tf class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __lowerCamelCase : Tuple = (TFOPTForCausalLM,) if is_tf_available() else () __lowerCamelCase : int = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) __lowerCamelCase : Tuple = False __lowerCamelCase : Optional[Any] = False __lowerCamelCase : int = False __lowerCamelCase : Tuple = 10 def _snake_case ( self ) -> Any: _lowerCAmelCase = TFOPTModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_lowerCAmelCase , _lowerCAmelCase ): if hasattr(_lowerCAmelCase , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_lowerCAmelCase , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _lowerCAmelCase = model_class(config=_lowerCAmelCase ) _lowerCAmelCase = _get_word_embedding_weight(_lowerCAmelCase , model.get_input_embeddings() ) _lowerCAmelCase = _get_word_embedding_weight(_lowerCAmelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_lowerCAmelCase ) _lowerCAmelCase = _get_word_embedding_weight(_lowerCAmelCase , model.get_input_embeddings() ) _lowerCAmelCase = _get_word_embedding_weight(_lowerCAmelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _lowerCAmelCase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _lowerCAmelCase ) # check that weights remain the same after resizing _lowerCAmelCase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCAmelCase = False self.assertTrue(_lowerCAmelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _lowerCAmelCase ) _lowerCAmelCase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _lowerCAmelCase = False self.assertTrue(_lowerCAmelCase ) def __a(SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' return tf.constant(SCREAMING_SNAKE_CASE_ , dtype=tf.intaa ) @require_tf class lowerCAmelCase_ ( unittest.TestCase ): __lowerCamelCase : List[str] = 99 def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _lowerCAmelCase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _lowerCAmelCase = input_ids.shape[0] _lowerCAmelCase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def _snake_case ( self ) -> Tuple: _lowerCAmelCase = TFOPTModel.from_pretrained("facebook/opt-350m" ) _lowerCAmelCase = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _lowerCAmelCase = tf.not_equal(_lowerCAmelCase , model.config.pad_token_id ) with tf.GradientTape(): _lowerCAmelCase = model(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ).last_hidden_state _lowerCAmelCase = (1, 11, 512) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=4E-3 ) ) _lowerCAmelCase = tf.function(_lowerCAmelCase , jit_compile=_lowerCAmelCase ) _lowerCAmelCase = xla_generate(_lowerCAmelCase , _lowerCAmelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=4E-2 ) ) @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: super().setUp() _lowerCAmelCase = "facebook/opt-350m" def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = TFOPTForCausalLM.from_pretrained(self.path_model ) _lowerCAmelCase = GPTaTokenizer.from_pretrained(self.path_model ) _lowerCAmelCase = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="tf" , padding=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _lowerCAmelCase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-4 ) ) _lowerCAmelCase = tf.function(_lowerCAmelCase , jit_compile=_lowerCAmelCase ) _lowerCAmelCase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-4 ) ) @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): @property def _snake_case ( self ) -> Union[str, Any]: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _snake_case ( self ) -> Dict: _lowerCAmelCase = "facebook/opt-125m" _lowerCAmelCase = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _lowerCAmelCase = [] _lowerCAmelCase = GPTaTokenizer.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TFOPTForCausalLM.from_pretrained(_lowerCAmelCase ) for prompt in self.prompts: _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="tf" ).input_ids _lowerCAmelCase = model.generate(_lowerCAmelCase , max_length=10 ) _lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = "facebook/opt-350m" _lowerCAmelCase = GPTaTokenizer.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TFOPTForCausalLM.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = "left" # use different length sentences to test batching _lowerCAmelCase = [ "Hello, my dog is a little", "Today, I", ] _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="tf" , padding=_lowerCAmelCase ) _lowerCAmelCase = inputs["input_ids"] _lowerCAmelCase = model.generate(input_ids=_lowerCAmelCase , attention_mask=inputs["attention_mask"] ) _lowerCAmelCase = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _lowerCAmelCase = model.generate(input_ids=_lowerCAmelCase ) _lowerCAmelCase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) _lowerCAmelCase = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _lowerCAmelCase = model.generate(input_ids=_lowerCAmelCase , max_length=model.config.max_length - num_paddings ) _lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=_lowerCAmelCase ) _lowerCAmelCase = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , [non_padded_sentence, padded_sentence] ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = "facebook/opt-350m" _lowerCAmelCase = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _lowerCAmelCase = [] _lowerCAmelCase = GPTaTokenizer.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TFOPTForCausalLM.from_pretrained(_lowerCAmelCase ) for prompt in self.prompts: _lowerCAmelCase = tokenizer(_lowerCAmelCase , return_tensors="tf" ).input_ids _lowerCAmelCase = model.generate(_lowerCAmelCase , max_length=10 ) _lowerCAmelCase = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
489
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = "▁" _SCREAMING_SNAKE_CASE = {"vocab_file": "sentencepiece.bpe.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } _SCREAMING_SNAKE_CASE = { "facebook/xglm-564M": 20_48, } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = VOCAB_FILES_NAMES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : str = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _lowerCAmelCase = 7 _lowerCAmelCase = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] _lowerCAmelCase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_lowerCAmelCase ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[str]: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None _lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a _lowerCAmelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _snake_case ( self ) -> str: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _snake_case ( self ) -> Any: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , _lowerCAmelCase ) -> List[str]: return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(_lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , _lowerCAmelCase ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
489
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def lowercase__ ( snake_case_ :list[list[float]] ): __UpperCAmelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __UpperCAmelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements __UpperCAmelCase = [[0.0, 0.0], [0.0, 0.0]] __UpperCAmelCase , __UpperCAmelCase = matrix[1][1], matrix[0][0] __UpperCAmelCase , __UpperCAmelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __UpperCAmelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix __UpperCAmelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __UpperCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __UpperCAmelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __UpperCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __UpperCAmelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __UpperCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __UpperCAmelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __UpperCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __UpperCAmelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __UpperCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __UpperCAmelCase = array(snake_case_ ) for i in range(3 ): for j in range(3 ): __UpperCAmelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __UpperCAmelCase = array(snake_case_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case_ ) # Calculate the inverse of the matrix return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
49
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' super().__init__(*lowerCamelCase , **lowerCamelCase ) __a = {} def __UpperCamelCase ( self , lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' __a = super().add_tokens(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.' ) def __UpperCamelCase ( self , lowerCamelCase , *lowerCamelCase , lowerCamelCase=1 , **lowerCamelCase ) ->List[str]: '''simple docstring''' __a = [] if num_vec_per_token == 1: self.try_adding_tokens(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) output.append(lowerCamelCase ) else: __a = [] for i in range(lowerCamelCase ): __a = placeholder_token + F"""_{i}""" self.try_adding_tokens(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) output.append(lowerCamelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) __a = output def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=1.0 ) ->int: '''simple docstring''' if isinstance(lowerCamelCase , lowerCamelCase ): __a = [] for i in range(len(lowerCamelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=lowerCamelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __a = self.token_map[placeholder_token] __a = tokens[: 1 + int(len(lowerCamelCase ) * prop_tokens_to_load )] if vector_shuffle: __a = copy.copy(lowerCamelCase ) random.shuffle(lowerCamelCase ) __a = text.replace(lowerCamelCase , ' '.join(lowerCamelCase ) ) return text def __call__( self , lowerCamelCase , *lowerCamelCase , lowerCamelCase=False , lowerCamelCase=1.0 , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( lowerCamelCase , vector_shuffle=lowerCamelCase , prop_tokens_to_load=lowerCamelCase ) , *lowerCamelCase , **lowerCamelCase , ) def __UpperCamelCase ( self , lowerCamelCase , *lowerCamelCase , lowerCamelCase=False , lowerCamelCase=1.0 , **lowerCamelCase ) ->List[Any]: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( lowerCamelCase , vector_shuffle=lowerCamelCase , prop_tokens_to_load=lowerCamelCase ) , *lowerCamelCase , **lowerCamelCase , )
448
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( """files""" , [ ["""full:README.md""", """dataset_infos.json"""], ["""empty:README.md""", """dataset_infos.json"""], ["""dataset_infos.json"""], ["""full:README.md"""], ] , ) def snake_case ( snake_case__ :Optional[int] , snake_case__ :int) -> List[Any]: _A = tmp_path_factory.mktemp("""dset_infos_dir""") if "full:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""") as f: f.write("""---\ndataset_info:\n dataset_size: 42\n---""") if "empty:README.md" in files: with open(dataset_infos_dir / """README.md""" , """w""") as f: f.write("""""") # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / """dataset_infos.json""" , """w""") as f: f.write("""{\"default\": {\"dataset_size\": 42}}""") _A = DatasetInfosDict.from_directory(snake_case__) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( """dataset_info""" , [ DatasetInfo(), DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""")}) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ), ] , ) def snake_case ( snake_case__ :Optional[Any] , snake_case__ :DatasetInfo) -> Any: _A = str(snake_case__) dataset_info.write_to_directory(snake_case__) _A = DatasetInfo.from_directory(snake_case__) assert dataset_info == reloaded assert os.path.exists(os.path.join(snake_case__ , """dataset_info.json""")) def snake_case ( ) -> str: _A = DatasetInfo( description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""")}) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1_337 , post_processing_size=442 , dataset_size=1_234 , size_in_bytes=1_337 + 442 + 1_234 , ) _A = dataset_info._to_yaml_dict() assert sorted(snake_case__) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str)) _A = yaml.safe_dump(snake_case__) _A = yaml.safe_load(snake_case__) assert dataset_info_yaml_dict == reloaded def snake_case ( ) -> Optional[Any]: _A = DatasetInfo() _A = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( """dataset_infos_dict""" , [ DatasetInfosDict(), DatasetInfosDict({"""default""": DatasetInfo()}), DatasetInfosDict({"""my_config_name""": DatasetInfo()}), DatasetInfosDict( { """default""": DatasetInfo( description="""foo""" , features=Features({"""a""": Value("""int32""")}) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ) }), DatasetInfosDict( { """v1""": DatasetInfo(dataset_size=42), """v2""": DatasetInfo(dataset_size=1_337), }), ] , ) def snake_case ( snake_case__ :Tuple , snake_case__ :DatasetInfosDict) -> List[str]: _A = str(snake_case__) dataset_infos_dict.write_to_directory(snake_case__) _A = DatasetInfosDict.from_directory(snake_case__) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _A = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _A = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict()) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(snake_case__ , """README.md"""))
83
def snake_case ( snake_case__ :int , snake_case__ :int) -> int: return int(input_a == input_a == 0) def snake_case ( ) -> None: print("""Truth Table of NOR Gate:""") print("""| Input 1 | Input 2 | Output |""") print(F'''| 0 | 0 | {nor_gate(0 , 0)} |''') print(F'''| 0 | 1 | {nor_gate(0 , 1)} |''') print(F'''| 1 | 0 | {nor_gate(1 , 0)} |''') print(F'''| 1 | 1 | {nor_gate(1 , 1)} |''') if __name__ == "__main__": import doctest doctest.testmod() main()
83
1
def __UpperCAmelCase ( __A , __A ) -> int: '''simple docstring''' return abs(__A ) if a == 0 else greatest_common_divisor(b % a , __A ) def __UpperCAmelCase ( __A , __A ) -> int: '''simple docstring''' while y: # --> when y=0 then loop will terminate and return x as final GCD. UpperCAmelCase__ = y, x % y return abs(__A ) def __UpperCAmelCase ( ) -> List[Any]: '''simple docstring''' try: UpperCAmelCase__ = input("Enter two integers separated by comma (,): " ).split("," ) UpperCAmelCase__ = int(nums[0] ) UpperCAmelCase__ = int(nums[1] ) print( F"""greatest_common_divisor({num_a}, {num_a}) = """ F"""{greatest_common_divisor(__A , __A )}""" ) print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__A , __A )}""" ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
475
def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->int: """simple docstring""" return abs(UpperCAmelCase ) if a == 0 else greatest_common_divisor(b % a, UpperCAmelCase ) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase ) ->int: """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. __magic_name__ , __magic_name__ : List[str] = y, x % y return abs(UpperCAmelCase ) def lowerCAmelCase ( ) ->List[Any]: """simple docstring""" try: __magic_name__ : List[str] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) __magic_name__ : List[str] = int(nums[0] ) __magic_name__ : int = int(nums[1] ) print( F'''greatest_common_divisor({num_a}, {num_a}) = ''' F'''{greatest_common_divisor(UpperCAmelCase, UpperCAmelCase )}''' ) print(F'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCAmelCase, UpperCAmelCase )}''' ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
154
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _SCREAMING_SNAKE_CASE = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def _snake_case (_snake_case : str) -> Dict: _lowercase =torch.load(_snake_case , map_location='cpu') return sd def _snake_case (_snake_case : Optional[int] , _snake_case : Dict , _snake_case : Optional[Any]=rename_keys_prefix) -> Any: _lowercase =OrderedDict() _lowercase =torch.arange(config.max_position_embeddings).expand((1, -1)) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _lowercase =key for name_pair in rename_keys_prefix: _lowercase =new_key.replace(name_pair[0] , name_pair[1]) _lowercase =d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _lowercase =new_d['cls.predictions.bias'] return new_d @torch.no_grad() def _snake_case (_snake_case : Any , _snake_case : Optional[int]) -> Dict: assert ( checkpoint_path.split('/')[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: _lowercase ='pretraining' if "vcr" in checkpoint_path: _lowercase ={'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: _lowercase ={'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: _lowercase ={'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: _lowercase ={'visual_embedding_dim': 1024} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''') else: if "vcr" in checkpoint_path: _lowercase ={'visual_embedding_dim': 512} _lowercase ='multichoice' elif "vqa_advanced" in checkpoint_path: _lowercase ={'visual_embedding_dim': 2048} _lowercase ='vqa_advanced' elif "vqa" in checkpoint_path: _lowercase ={'visual_embedding_dim': 2048, 'num_labels': 3129} _lowercase ='vqa' elif "nlvr" in checkpoint_path: _lowercase ={ 'visual_embedding_dim': 1024, 'num_labels': 2, } _lowercase ='nlvr' _lowercase =VisualBertConfig(**_snake_case) # Load State Dict _lowercase =load_state_dict(_snake_case) _lowercase =get_new_dict(_snake_case , _snake_case) if model_type == "pretraining": _lowercase =VisualBertForPreTraining(_snake_case) elif model_type == "vqa": _lowercase =VisualBertForQuestionAnswering(_snake_case) elif model_type == "nlvr": _lowercase =VisualBertForVisualReasoning(_snake_case) elif model_type == "multichoice": _lowercase =VisualBertForMultipleChoice(_snake_case) model.load_state_dict(_snake_case) # Save Checkpoints Path(_snake_case).mkdir(exist_ok=_snake_case) model.save_pretrained(_snake_case) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
557
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
557
1
# flake8: noqa # Lint as: python3 lowerCamelCase : Any = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
70
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ) -> None: '''simple docstring''' assert and_gate(0, 0 ) == 0 assert and_gate(0, 1 ) == 0 assert and_gate(1, 0 ) == 0 assert and_gate(1, 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
640
0
"""simple docstring""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCAmelCase__ : List[Any] = (boundary[1] - boundary[0]) / steps lowerCAmelCase__ : Optional[Any] = boundary[0] lowerCAmelCase__ : List[Any] = boundary[1] lowerCAmelCase__ : Optional[int] = make_points(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = 0.0 y += (h / 2.0) * f(__UpperCAmelCase ) for i in x_i: # print(i) y += h * f(__UpperCAmelCase ) y += (h / 2.0) * f(__UpperCAmelCase ) return y def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowerCAmelCase__ : List[Any] = a + h while x < (b - h): yield x lowerCAmelCase__ : str = x + h def lowercase_ ( __UpperCAmelCase ) -> List[Any]: # enter your function here lowerCAmelCase__ : Tuple = (x - 0) * (x - 0) return y def lowercase_ ( ) -> str: lowerCAmelCase__ : int = 0.0 # Lower bound of integration lowerCAmelCase__ : Optional[Any] = 1.0 # Upper bound of integration lowerCAmelCase__ : Optional[Any] = 10.0 # define number of steps or resolution lowerCAmelCase__ : Optional[Any] = [a, b] # define boundary of integration lowerCAmelCase__ : Tuple = method_a(__UpperCAmelCase , __UpperCAmelCase ) print(f"""y = {y}""" ) if __name__ == "__main__": main()
705
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _lowerCamelCase ( nn.Module ): def __init__( self : Optional[Any] , UpperCamelCase : int = 16 , UpperCamelCase : int = 88 , UpperCamelCase : Optional[int] = None , UpperCamelCase : int = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : int = 32 , UpperCamelCase : Optional[int] = None , UpperCamelCase : bool = False , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : str = "geglu" , UpperCamelCase : Optional[int] = None , ) -> Tuple: """simple docstring""" super().__init__() lowerCAmelCase__ : List[Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCamelCase , attention_head_dim=UpperCamelCase , in_channels=UpperCamelCase , num_layers=UpperCamelCase , dropout=UpperCamelCase , norm_num_groups=UpperCamelCase , cross_attention_dim=UpperCamelCase , attention_bias=UpperCamelCase , sample_size=UpperCamelCase , num_vector_embeds=UpperCamelCase , activation_fn=UpperCamelCase , num_embeds_ada_norm=UpperCamelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCAmelCase__ : List[str] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCAmelCase__ : List[str] = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCAmelCase__ : int = [1, 0] def _lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int=None , UpperCamelCase : Tuple=None , UpperCamelCase : Any=None , UpperCamelCase : bool = True , ) -> str: """simple docstring""" lowerCAmelCase__ : List[Any] = hidden_states lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Dict = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCAmelCase__ : str = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCAmelCase__ : int = self.transformer_index_for_condition[i] lowerCAmelCase__ : str = self.transformers[transformer_index]( UpperCamelCase , encoder_hidden_states=UpperCamelCase , timestep=UpperCamelCase , cross_attention_kwargs=UpperCamelCase , return_dict=UpperCamelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCAmelCase__ : int = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCAmelCase__ : Any = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCamelCase )
507
0
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def A__ ( __lowerCAmelCase : Tuple=32 , __lowerCAmelCase : int=10 , __lowerCAmelCase : Optional[Any]=100 , __lowerCAmelCase : Union[str, Any]=1026 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[Any]="data/tokenized_stories_train_wikitext103.jbl" , __lowerCAmelCase : Optional[int]="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set lowerCamelCase__ , lowerCamelCase__ = generate_datasets( __lowerCAmelCase , __lowerCAmelCase , number=__lowerCAmelCase , min_len=1026 , trim=__lowerCAmelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowerCamelCase__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model lowerCamelCase__ = load_gpta("""gpt2""" ).to(__lowerCAmelCase ) print("""computing perplexity on objective set""" ) lowerCamelCase__ = compute_perplexity(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).item() print("""perplexity on objective set:""" , __lowerCAmelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Any=15 , __lowerCAmelCase : List[str]=128 , __lowerCAmelCase : Any=100 , __lowerCAmelCase : Optional[int]="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model lowerCamelCase__ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model lowerCamelCase__ = SecondaryLearner(__lowerCAmelCase ) # Train secondary learner lowerCamelCase__ = train_secondary_learner( __lowerCAmelCase , __lowerCAmelCase , max_epochs=__lowerCAmelCase , batch_size=__lowerCAmelCase , eval_freq=100 , igf_model_path=__lowerCAmelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str=32 , __lowerCAmelCase : Tuple=1000 , __lowerCAmelCase : str=16 , __lowerCAmelCase : Optional[int]=1.0 , __lowerCAmelCase : List[str]=recopy_gpta , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : str=10 , __lowerCAmelCase : int="gpt2_finetuned.pt" , ): lowerCamelCase__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) lowerCamelCase__ = RandomSampler(__lowerCAmelCase ) lowerCamelCase__ = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase ) lowerCamelCase__ = max_steps // (len(__lowerCAmelCase )) + 1 lowerCamelCase__ = 0 lowerCamelCase__ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = recopy_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) model.train() if secondary_learner is not None: secondary_learner.to(__lowerCAmelCase ) secondary_learner.eval() lowerCamelCase__ = [] lowerCamelCase__ = 0 lowerCamelCase__ = [] lowerCamelCase__ = [] # Compute the performance of the transformer model at the beginning lowerCamelCase__ = compute_perplexity(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) test_perps.append(__lowerCAmelCase ) print("""Test perplexity, step""" , __lowerCAmelCase , """:""" , __lowerCAmelCase ) for epoch in range(int(__lowerCAmelCase ) ): for step, example in enumerate(__lowerCAmelCase ): torch.cuda.empty_cache() lowerCamelCase__ = random.randint(0 , example.size(2 ) - context_len - 1 ) lowerCamelCase__ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowerCamelCase__ = model(__lowerCAmelCase , labels=__lowerCAmelCase ) lowerCamelCase__ = True if secondary_learner is not None: lowerCamelCase__ = secondary_learner.forward( torch.tensor(__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(__lowerCAmelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowerCamelCase__ = -1 if predicted_q < threshold: lowerCamelCase__ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowerCamelCase__ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowerCamelCase__ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowerCamelCase__ = compute_perplexity(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) test_perps.append(__lowerCAmelCase ) print("""Test perplexity, step""" , __lowerCAmelCase , """:""" , __lowerCAmelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __lowerCAmelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def A__ ( ): lowerCamelCase__ = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=32 , type=__lowerCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=100 , type=__lowerCAmelCase , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=100 , type=__lowerCAmelCase , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1000 , type=__lowerCAmelCase , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=128 , type=__lowerCAmelCase , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=16 , type=__lowerCAmelCase , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=10 , type=__lowerCAmelCase , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=100 , type=__lowerCAmelCase , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1026 , type=__lowerCAmelCase , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=15 , type=__lowerCAmelCase , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=__lowerCAmelCase , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=__lowerCAmelCase , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowerCAmelCase , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner lowerCamelCase__ = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner lowerCamelCase__ = training_secondary_learner( __lowerCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model lowerCamelCase__ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowerCamelCase__ , lowerCamelCase__ = generate_datasets( context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1026 , trim=__lowerCAmelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowerCAmelCase , secondary_learner=__lowerCAmelCase , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
50
lowerCamelCase_ : Tuple = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) lowerCamelCase_ : Union[str, Any] = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> float: UpperCamelCase_: Any = from_type.lower().strip("""s""" ) UpperCamelCase_: int = to_type.lower().strip("""s""" ) UpperCamelCase_: Any = UNIT_SYMBOL.get(lowerCamelCase , lowerCamelCase ) UpperCamelCase_: str = UNIT_SYMBOL.get(lowerCamelCase , lowerCamelCase ) if from_sanitized not in METRIC_CONVERSION: UpperCamelCase_: Optional[int] = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {", ".join(lowerCamelCase )}''' ) raise ValueError(lowerCamelCase ) if to_sanitized not in METRIC_CONVERSION: UpperCamelCase_: Dict = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {", ".join(lowerCamelCase )}''' ) raise ValueError(lowerCamelCase ) UpperCamelCase_: Union[str, Any] = METRIC_CONVERSION[from_sanitized] UpperCamelCase_: str = METRIC_CONVERSION[to_sanitized] UpperCamelCase_: Tuple = 1 if from_exponent > to_exponent: UpperCamelCase_: Union[str, Any] = from_exponent - to_exponent else: UpperCamelCase_: Dict = -(to_exponent - from_exponent) return value * pow(10 , lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
548
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @require_torch def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) UpperCamelCase = load_dataset('ashraq/esc50' ) UpperCamelCase = dataset['train']['audio'][-1]['array'] UpperCamelCase = audio_classifier(A_ , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(A_ ) , [{'score': 0.501, 'label': 'Sound of a dog'}, {'score': 0.499, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' pass @slow @require_torch def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog UpperCamelCase = load_dataset('ashraq/esc50' ) UpperCamelCase = dataset['train']['audio'][-1]['array'] UpperCamelCase = audio_classifier(A_ , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(A_ ) , [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ] , ) UpperCamelCase = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(A_ ) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) UpperCamelCase = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(A_ ) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' pass
718
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer): def __init__( self , A_ , A_ , A_ = None , A_ = None )-> List[Any]: '''simple docstring''' super().__init__() UpperCamelCase = pad_token_id UpperCamelCase = max_length UpperCamelCase = vocab UpperCamelCase = merges UpperCamelCase = BytePairTokenizer(A_ , A_ , sequence_length=A_ ) @classmethod def UpperCAmelCase_ ( cls , A_ , *A_ , **A_ )-> Dict: '''simple docstring''' UpperCamelCase = [' '.join(A_ ) for m in tokenizer.bpe_ranks.keys()] UpperCamelCase = tokenizer.get_vocab() return cls(A_ , A_ , *A_ , **A_ ) @classmethod def UpperCAmelCase_ ( cls , A_ , *A_ , **A_ )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = GPTaTokenizer.from_pretrained(A_ , *A_ , **A_ ) return cls.from_tokenizer(A_ , *A_ , **A_ ) @classmethod def UpperCAmelCase_ ( cls , A_ )-> List[Any]: '''simple docstring''' return cls(**A_ ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def UpperCAmelCase_ ( self , A_ , A_ = None )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.tf_tokenizer(A_ ) UpperCamelCase = tf.ones_like(A_ ) if self.pad_token_id is not None: # pad the tokens up to max length UpperCamelCase = max_length if max_length is not None else self.max_length if max_length is not None: UpperCamelCase , UpperCamelCase = pad_model_inputs( A_ , max_seq_length=A_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
432
0
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase (unittest.TestCase ): """simple docstring""" def A_ ( self : Any ) -> Tuple: """simple docstring""" # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE__ : Optional[int] = mock.Mock() SCREAMING_SNAKE_CASE__ : Tuple = 5_0_0 SCREAMING_SNAKE_CASE__ : List[Any] = {} SCREAMING_SNAKE_CASE__ : Optional[int] = HTTPError SCREAMING_SNAKE_CASE__ : str = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ : Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request", return_value=_UpperCAmelCase ) as mock_head: SCREAMING_SNAKE_CASE__ : Union[str, Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A_ ( self : int ) -> str: """simple docstring""" # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE__ : int = mock.Mock() SCREAMING_SNAKE_CASE__ : Any = 5_0_0 SCREAMING_SNAKE_CASE__ : int = {} SCREAMING_SNAKE_CASE__ : int = HTTPError SCREAMING_SNAKE_CASE__ : int = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE__ : Optional[Any] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request", return_value=_UpperCAmelCase ) as mock_head: SCREAMING_SNAKE_CASE__ : Optional[Any] = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def A_ ( self : Dict ) -> str: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 try: SCREAMING_SNAKE_CASE__ : str = tempfile.mktemp() with open(_UpperCAmelCase, "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model", _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = AlbertTokenizer.from_pretrained(_UpperCAmelCase ) finally: os.remove(_UpperCAmelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json", "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json", _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size, 1_0_0_0 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def A_ ( self : str ) -> Optional[Any]: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE__ : Tuple = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class lowerCamelCase (unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def A_ ( cls : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = TOKEN HfFolder.save_token(_UpperCAmelCase ) @classmethod def A_ ( cls : Union[str, Any] ) -> Tuple: """simple docstring""" try: delete_repo(token=cls._token, repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def A_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(_UpperCAmelCase, "vocab.txt" ) with open(_UpperCAmelCase, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = BertTokenizer(_UpperCAmelCase ) tokenizer.push_to_hub("test-tokenizer", use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : str = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase, repo_id="test-tokenizer", push_to_hub=_UpperCAmelCase, use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) def A_ ( self : Union[str, Any] ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(_UpperCAmelCase, "vocab.txt" ) with open(_UpperCAmelCase, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Dict = BertTokenizer(_UpperCAmelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org", use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : str = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _UpperCAmelCase, repo_id="valid_org/test-tokenizer-org", push_to_hub=_UpperCAmelCase, use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Tuple = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) @require_tokenizers def A_ ( self : Any ) -> Optional[Any]: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(_UpperCAmelCase, "vocab.txt" ) with open(_UpperCAmelCase, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = CustomTokenizer(_UpperCAmelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer", use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''', trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(_UpperCAmelCase, "vocab.txt" ) with open(_UpperCAmelCase, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) SCREAMING_SNAKE_CASE__ : Tuple = BertTokenizerFast.from_pretrained(_UpperCAmelCase ) bert_tokenizer.save_pretrained(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = CustomTokenizerFast.from_pretrained(_UpperCAmelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer", use_auth_token=self._token ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''', trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizerFast" ) SCREAMING_SNAKE_CASE__ : int = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''', use_fast=_UpperCAmelCase, trust_remote_code=_UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, "CustomTokenizer" ) class lowerCamelCase (unittest.TestCase ): """simple docstring""" def A_ ( self : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data, {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def A_ ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ), ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ), ["[CLS]", " This is a ", "extra_id_100"] ) def A_ ( self : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ), ["A", "BC"] ) self.assertEqual(trie.split("BCA" ), ["BC", "A"] ) def A_ ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ), ["This is something ", "[SPECIAL_TOKEN]"] ) def A_ ( self : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ), ["This is something ", "[SPECIAL_TOKEN]"] ) def A_ ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ), ["AB", "C"] ) def A_ ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ), ["ABC", "D"] ) def A_ ( self : Union[str, Any] ) -> int: """simple docstring""" # Even if the offsets are wrong, we necessarily output correct string # parts. SCREAMING_SNAKE_CASE__ : Dict = Trie() SCREAMING_SNAKE_CASE__ : str = trie.cut_text("ABC", [0, 0, 2, 1, 2, 3] ) self.assertEqual(_UpperCAmelCase, ["AB", "C"] )
663
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase (__lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = GPTaTokenizer UpperCAmelCase_ = GPTaTokenizerFast UpperCAmelCase_ = True UpperCAmelCase_ = {"add_prefix_space": True} UpperCAmelCase_ = False def A_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ : Any = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] SCREAMING_SNAKE_CASE__ : int = dict(zip(_UpperCAmelCase, range(len(_UpperCAmelCase ) ) ) ) SCREAMING_SNAKE_CASE__ : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] SCREAMING_SNAKE_CASE__ : Any = {"unk_token": "<unk>"} SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(_UpperCAmelCase ) ) def A_ ( self : Tuple, **_UpperCAmelCase : str ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def A_ ( self : int, **_UpperCAmelCase : Union[str, Any] ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname, **_UpperCAmelCase ) def A_ ( self : Tuple, _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = "lower newer" SCREAMING_SNAKE_CASE__ : List[Any] = "lower newer" return input_text, output_text def A_ ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = GPTaTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) SCREAMING_SNAKE_CASE__ : Tuple = "lower newer" SCREAMING_SNAKE_CASE__ : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] SCREAMING_SNAKE_CASE__ : Dict = tokenizer.tokenize(_UpperCAmelCase, add_prefix_space=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ), _UpperCAmelCase ) def A_ ( self : Dict ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = "lower newer" # Testing tokenization SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.tokenize(_UpperCAmelCase, add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE__ : Any = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase, add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = rust_tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE__ : Tuple = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode(_UpperCAmelCase, add_prefix_space=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase, _UpperCAmelCase ) # Testing the unknown token SCREAMING_SNAKE_CASE__ : Dict = tokens + [rust_tokenizer.unk_token] SCREAMING_SNAKE_CASE__ : str = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_UpperCAmelCase ), _UpperCAmelCase ) def A_ ( self : Tuple, *_UpperCAmelCase : List[Any], **_UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def A_ ( self : Optional[Any], _UpperCAmelCase : int=1_5 ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ : Any = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase, **_UpperCAmelCase ) # Simple input SCREAMING_SNAKE_CASE__ : Optional[Any] = "This is a simple input" SCREAMING_SNAKE_CASE__ : List[str] = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE__ : Any = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE__ : List[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_UpperCAmelCase, tokenizer_r.encode, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Simple input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Simple input self.assertRaises( _UpperCAmelCase, tokenizer_r.batch_encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length", ) # Pair input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Pair input self.assertRaises(_UpperCAmelCase, tokenizer_r.encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length" ) # Pair input self.assertRaises( _UpperCAmelCase, tokenizer_r.batch_encode_plus, _UpperCAmelCase, max_length=_UpperCAmelCase, padding="max_length", ) def A_ ( self : Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname, pad_token="<pad>" ) # Simple input SCREAMING_SNAKE_CASE__ : Union[str, Any] = "This is a simple input" SCREAMING_SNAKE_CASE__ : Dict = ["This is a simple input looooooooong", "This is a simple input"] SCREAMING_SNAKE_CASE__ : List[str] = ("This is a simple input", "This is a pair") SCREAMING_SNAKE_CASE__ : int = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_UpperCAmelCase, padding="max_length", max_length=3_0, return_tensors="np" ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, truncate=_UpperCAmelCase, return_tensors="np" ) SCREAMING_SNAKE_CASE__ : Any = tokenizer(*_UpperCAmelCase, padding="max_length", max_length=6_0, return_tensors="np" ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_UpperCAmelCase, padding=_UpperCAmelCase, truncate=_UpperCAmelCase, return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1], 3_0 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1], 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1], 6_0 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1], 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def A_ ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = "$$$" SCREAMING_SNAKE_CASE__ : List[str] = GPTaTokenizer.from_pretrained(self.tmpdirname, bos_token=_UpperCAmelCase, add_bos_token=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = "This is a simple input" SCREAMING_SNAKE_CASE__ : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.bos_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(_UpperCAmelCase ) self.assertEqual(out_s.input_ids[0], _UpperCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.decode(out_s.input_ids ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0], _UpperCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def A_ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass def A_ ( self : Dict ) -> str: """simple docstring""" # TODO: change to self.get_tokenizers() when the fast version is implemented SCREAMING_SNAKE_CASE__ : Any = [self.get_tokenizer(do_lower_case=_UpperCAmelCase, add_bos_token=_UpperCAmelCase )] for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): SCREAMING_SNAKE_CASE__ : List[Any] = "Encode this." SCREAMING_SNAKE_CASE__ : Optional[Any] = "This one too please." SCREAMING_SNAKE_CASE__ : str = tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) encoded_sequence += tokenizer.encode(_UpperCAmelCase, add_special_tokens=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode_plus( _UpperCAmelCase, _UpperCAmelCase, add_special_tokens=_UpperCAmelCase, return_special_tokens_mask=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : Any = encoded_sequence_dict["input_ids"] SCREAMING_SNAKE_CASE__ : Any = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(_UpperCAmelCase ), len(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_UpperCAmelCase ) ] SCREAMING_SNAKE_CASE__ : List[Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(_UpperCAmelCase, _UpperCAmelCase ) @require_tokenizers class lowerCamelCase (unittest.TestCase ): """simple docstring""" def A_ ( self : Optional[Any] ) -> int: """simple docstring""" # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = "A photo of a cat" SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.encode( _UpperCAmelCase, ) self.assertEqual(_UpperCAmelCase, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("test_opt" ) SCREAMING_SNAKE_CASE__ : List[Any] = AutoTokenizer.from_pretrained("./test_opt" ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode( _UpperCAmelCase, ) self.assertEqual(_UpperCAmelCase, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = AutoTokenizer.from_pretrained("facebook/opt-350m", use_slow=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = "A photo of a cat" SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode( _UpperCAmelCase, ) # Same as above self.assertEqual(_UpperCAmelCase, [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def A_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("facebook/opt-350m", from_slow=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = "bos" SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.get_vocab()["bos"] SCREAMING_SNAKE_CASE__ : Tuple = "A photo of a cat" SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode( _UpperCAmelCase, ) # We changed the bos token self.assertEqual(_UpperCAmelCase, [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] ) tokenizer.save_pretrained("./tok" ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode( _UpperCAmelCase, ) self.assertEqual(_UpperCAmelCase, [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8] )
663
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return x if y == 0 else greatest_common_divisor(_UpperCamelCase , x % y ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return (x * y) // greatest_common_divisor(_UpperCamelCase , _UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 20 ): """simple docstring""" lowerCAmelCase__ : Tuple = 1 for i in range(1 , n + 1 ): lowerCAmelCase__ : Optional[Any] = lcm(_UpperCamelCase , _UpperCamelCase ) return g if __name__ == "__main__": print(F"""{solution() = }""")
721
'''simple docstring''' from math import factorial _lowerCAmelCase = {str(d): factorial(d) for d in range(10)} def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(UpperCamelCase ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Dict = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , UpperCamelCase ) if sum_of_digit_factorial(UpperCamelCase ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
160
0
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a : def __init__( self : List[Any] , lowercase_ : Tuple , lowercase_ : Optional[int]=2 , lowercase_ : Optional[Any]=3 , lowercase_ : Any=4 , lowercase_ : Dict=2 , lowercase_ : str=7 , lowercase_ : List[Any]=True , lowercase_ : List[str]=True , lowercase_ : str=True , lowercase_ : str=True , lowercase_ : Tuple=99 , lowercase_ : Union[str, Any]=36 , lowercase_ : str=2 , lowercase_ : Optional[Any]=4 , lowercase_ : List[str]=37 , lowercase_ : Optional[Any]="gelu" , lowercase_ : Dict=0.1 , lowercase_ : int=0.1 , lowercase_ : Dict=512 , lowercase_ : List[Any]=16 , lowercase_ : Union[str, Any]=2 , lowercase_ : Any=0.02 , lowercase_ : Any=6 , lowercase_ : Any=6 , lowercase_ : List[str]=3 , lowercase_ : Optional[Any]=4 , lowercase_ : Dict=None , lowercase_ : Dict=1000 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = patch_size snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = coordinate_size snake_case_ = shape_size snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) snake_case_ = text_seq_length snake_case_ = (image_size // patch_size) ** 2 + 1 snake_case_ = self.text_seq_length + self.image_seq_length def A_ ( self : Union[str, Any] ): snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) snake_case_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) snake_case_ = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case_ = bbox[i, j, 3] snake_case_ = bbox[i, j, 1] snake_case_ = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: snake_case_ = bbox[i, j, 2] snake_case_ = bbox[i, j, 0] snake_case_ = tmp_coordinate snake_case_ = tf.constant(lowerCAmelCase__ ) snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.text_seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) snake_case_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def A_ ( self : Any , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : str ): snake_case_ = TFLayoutLMvaModel(config=lowerCAmelCase__ ) # text + image snake_case_ = model(lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , training=lowerCAmelCase__ ) snake_case_ = model( lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , training=lowerCAmelCase__ , ) snake_case_ = model(lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only snake_case_ = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only snake_case_ = model({'''pixel_values''': pixel_values} , training=lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def A_ ( self : Any , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Any ): snake_case_ = self.num_labels snake_case_ = TFLayoutLMvaForSequenceClassification(config=lowerCAmelCase__ ) snake_case_ = model( lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : Any ): snake_case_ = self.num_labels snake_case_ = TFLayoutLMvaForTokenClassification(config=lowerCAmelCase__ ) snake_case_ = model( lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def A_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : Any , lowercase_ : str , lowercase_ : str , lowercase_ : List[Any] ): snake_case_ = 2 snake_case_ = TFLayoutLMvaForQuestionAnswering(config=lowerCAmelCase__ ) snake_case_ = model( lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , training=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : int ): snake_case_ = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_)) = config_and_inputs snake_case_ = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class a ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): snake_case_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) snake_case_ = ( {'''document-question-answering''': TFLayoutLMvaForQuestionAnswering, '''feature-extraction''': TFLayoutLMvaModel} if is_tf_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False def A_ ( self : Dict , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : str ): return True def A_ ( self : Optional[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : str=False ): snake_case_ = copy.deepcopy(lowerCAmelCase__ ) if model_class in get_values(lowerCAmelCase__ ): snake_case_ = { k: tf.tile(tf.expand_dims(lowerCAmelCase__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(lowerCAmelCase__ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCAmelCase__ ): snake_case_ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase__ ): snake_case_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) snake_case_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase__ ): snake_case_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(lowerCAmelCase__ ): snake_case_ = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def A_ ( self : Optional[int] ): snake_case_ = TFLayoutLMvaModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def A_ ( self : Tuple ): self.config_tester.run_common_tests() def A_ ( self : Tuple ): snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__ ) if getattr(lowerCAmelCase__ , '''hf_compute_loss''' , lowerCAmelCase__ ): # The number of elements in the loss should be the same as the number of elements in the label snake_case_ = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) snake_case_ = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=lowerCAmelCase__ )[0] ] snake_case_ = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs snake_case_ = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) snake_case_ = prepared_for_class.pop('''input_ids''' ) snake_case_ = model(lowerCAmelCase__ , **lowerCAmelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions snake_case_ = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) snake_case_ = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: snake_case_ = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: snake_case_ = -100 snake_case_ = tf.convert_to_tensor(lowerCAmelCase__ ) snake_case_ = model(lowerCAmelCase__ , **lowerCAmelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict snake_case_ = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) snake_case_ = model(lowerCAmelCase__ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple snake_case_ = self._prepare_for_class(inputs_dict.copy() , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) # Get keys that were added with the _prepare_for_class function snake_case_ = prepared_for_class.keys() - inputs_dict.keys() snake_case_ = inspect.signature(model.call ).parameters snake_case_ = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple snake_case_ = {0: '''input_ids'''} for label_key in label_keys: snake_case_ = signature_names.index(lowerCAmelCase__ ) snake_case_ = label_key snake_case_ = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple snake_case_ = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: snake_case_ = prepared_for_class[value] snake_case_ = tuple(lowerCAmelCase__ ) # Send to model snake_case_ = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def A_ ( self : List[Any] ): ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def A_ ( self : Optional[int] ): ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case_ = type self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def A_ ( self : Any ): ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def A_ ( self : Dict ): ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def A_ ( self : int ): ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @slow def A_ ( self : List[Any] ): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = TFLayoutLMvaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class a ( unittest.TestCase ): @cached_property def A_ ( self : Tuple ): return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase__ ) if is_vision_available() else None @slow def A_ ( self : Optional[int] ): snake_case_ = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=lowerCAmelCase__ , return_tensors='''tf''' ).pixel_values snake_case_ = tf.constant([[1, 2]] ) snake_case_ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass snake_case_ = model(input_ids=lowerCAmelCase__ , bbox=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , training=lowerCAmelCase__ ) # verify the logits snake_case_ = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__ ) snake_case_ = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
640
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' debug_launcher(test_script.main ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' debug_launcher(test_ops.main )
534
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __lowerCAmelCase = get_logger() __lowerCAmelCase = None class SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: super().__init__(features=__SCREAMING_SNAKE_CASE ) import jax from jaxlib.xla_client import Device if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError( f'Expected {device} to be a `str` not {type(__SCREAMING_SNAKE_CASE )}, as `jaxlib.xla_extension.Device` ' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) a_ : Union[str, Any] = device if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a_ : Optional[int] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'Device with string identifier {self.device} not listed among the available ' f'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' f'device: {str(jax.devices()[0] )}.' ) a_ : Any = str(jax.devices()[0] ) a_ : Tuple = jnp_array_kwargs @staticmethod def SCREAMING_SNAKE_CASE ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(__SCREAMING_SNAKE_CASE ): device for device in jax.devices()} def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: import jax import jax.numpy as jnp if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and column: if all( isinstance(__SCREAMING_SNAKE_CASE , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__SCREAMING_SNAKE_CASE , axis=0 ) return column def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : int ) -> Tuple: import jax import jax.numpy as jnp if isinstance(__SCREAMING_SNAKE_CASE , (str, bytes, type(__SCREAMING_SNAKE_CASE )) ): return value elif isinstance(__SCREAMING_SNAKE_CASE , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() a_ : List[Any] = {} if isinstance(__SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: a_ : str = {'''dtype''': jnp.intaa} else: a_ : Union[str, Any] = {'''dtype''': jnp.intaa} elif isinstance(__SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): a_ : Tuple = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ): a_ : Union[str, Any] = np.asarray(__SCREAMING_SNAKE_CASE ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: a_ : List[str] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__SCREAMING_SNAKE_CASE , **{**default_dtype, **self.jnp_array_kwargs} ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] ) -> Dict: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__SCREAMING_SNAKE_CASE , '''__array__''' ) and not isinstance(__SCREAMING_SNAKE_CASE , jax.Array ): a_ : str = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) return self._tensorize(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : dict ) -> int: return map_nested(self._recursive_tensorize , __SCREAMING_SNAKE_CASE , map_list=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : pa.Table ) -> Mapping: a_ : Dict = self.numpy_arrow_extractor().extract_row(__SCREAMING_SNAKE_CASE ) a_ : str = self.python_features_decoder.decode_row(__SCREAMING_SNAKE_CASE ) return self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : pa.Table ) -> "jax.Array": a_ : Optional[Any] = self.numpy_arrow_extractor().extract_column(__SCREAMING_SNAKE_CASE ) a_ : Optional[int] = self.python_features_decoder.decode_column(__SCREAMING_SNAKE_CASE , pa_table.column_names[0] ) a_ : Any = self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = self._consolidate(__SCREAMING_SNAKE_CASE ) return column def SCREAMING_SNAKE_CASE ( self : int , __SCREAMING_SNAKE_CASE : pa.Table ) -> Mapping: a_ : Optional[Any] = self.numpy_arrow_extractor().extract_batch(__SCREAMING_SNAKE_CASE ) a_ : Dict = self.python_features_decoder.decode_batch(__SCREAMING_SNAKE_CASE ) a_ : str = self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) for column_name in batch: a_ : Optional[Any] = self._consolidate(batch[column_name] ) return batch
666
'''simple docstring''' import sys __lowerCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _UpperCAmelCase ( __A : str ): a_ : Tuple = 1 for digit in s: product *= int(__A ) return product def _UpperCAmelCase ( __A : str = N ): a_ : Dict = -sys.maxsize - 1 a_ : Optional[int] = n[:13] a_ : str = 13 while cur_index < len(__A ) - 13: if int(n[cur_index] ) >= int(substr[0] ): a_ : Tuple = substr[1:] + n[cur_index] cur_index += 1 else: a_ : Dict = max(__A , str_eval(__A ) ) a_ : List[str] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
666
1
'''simple docstring''' import numpy as np import datasets lowerCAmelCase_ = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' lowerCAmelCase_ = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' lowerCAmelCase_ = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case( datasets.Metric ): def _UpperCamelCase (self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ), } ) , ) def _UpperCamelCase (self : Dict , a : str , a : str ) -> List[Any]: """simple docstring""" A__ = np.array(a ) A__ = np.array(a ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('Expected `X` to be a 2D vector' ) if len(reference_distribution.shape ) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector' ) if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' ) # Get mahalanobis distance for each prediction A__ = X - np.mean(a ) A__ = np.cov(reference_distribution.T ) try: A__ = np.linalg.inv(a ) except np.linalg.LinAlgError: A__ = np.linalg.pinv(a ) A__ = np.dot(a , a ) A__ = np.dot(a , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
531
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 1_6 lowerCAmelCase_ = 3_2 def _A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase = 16 ): '''simple docstring''' A__ = AutoTokenizer.from_pretrained('bert-base-cased' ) A__ = DatasetDict( { 'train': dataset['train'].select(UpperCAmelCase ), 'validation': dataset['train'].select(UpperCAmelCase ), 'test': dataset['validation'], } ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=UpperCAmelCase ,max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( UpperCAmelCase ,batched=UpperCAmelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 16 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( UpperCAmelCase ,padding='longest' ,max_length=UpperCAmelCase ,pad_to_multiple_of=UpperCAmelCase ,return_tensors='pt' ,) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['train'] ,shuffle=UpperCAmelCase ,collate_fn=UpperCAmelCase ,batch_size=UpperCAmelCase ) A__ = DataLoader( tokenized_datasets['validation'] ,shuffle=UpperCAmelCase ,collate_fn=UpperCAmelCase ,batch_size=UpperCAmelCase ) A__ = DataLoader( tokenized_datasets['test'] ,shuffle=UpperCAmelCase ,collate_fn=UpperCAmelCase ,batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader, test_dataloader def _A ( UpperCAmelCase ,UpperCAmelCase ): '''simple docstring''' A__ = [] # Download the dataset A__ = load_dataset('glue' ,'mrpc' ) # Create our splits A__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator A__ = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['lr'] A__ = int(config['num_epochs'] ) A__ = int(config['seed'] ) A__ = int(config['batch_size'] ) A__ = evaluate.load('glue' ,'mrpc' ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(UpperCAmelCase ) # New Code # # Create our folds: A__ = kfold.split(np.zeros(datasets['train'].num_rows ) ,datasets['train']['label'] ) A__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(UpperCAmelCase ): A__ , A__ , A__ = get_fold_dataloaders( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' ,return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() ,lr=UpperCAmelCase ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase ,num_warmup_steps=100 ,num_training_steps=(len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**UpperCAmelCase ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCAmelCase ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCAmelCase ,references=UpperCAmelCase ,) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,UpperCAmelCase ) # New Code # # We also run predictions on the test set at the very end A__ = [] for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCAmelCase ) A__ = outputs.logits A__ , A__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(UpperCAmelCase ,dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: A__ = torch.cat(UpperCAmelCase ,dim=0 ) A__ = torch.stack(UpperCAmelCase ,dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) A__ = metric.compute(predictions=UpperCAmelCase ,references=UpperCAmelCase ) accelerator.print('Average test metrics from all folds:' ,UpperCAmelCase ) def _A ( ): '''simple docstring''' A__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' ,type=UpperCAmelCase ,default=UpperCAmelCase ,choices=['no', 'fp16', 'bf16', 'fp8'] ,help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' ,) parser.add_argument('--cpu' ,action='store_true' ,help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' ,type=UpperCAmelCase ,default=3 ,help='The number of splits to perform across the dataset' ) A__ = parser.parse_args() A__ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCAmelCase ,UpperCAmelCase ) if __name__ == "__main__": main()
531
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ :Union[str, Any] = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :List[str] = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys A_ :List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
154
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) A_ :Dict = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } A_ :List[str] = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } A_ :Dict = { '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } A_ :Tuple = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } A_ :List[str] = { '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } A_ :int = { '''num_train_timesteps''': 151, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def A ( a_ ) -> Optional[Any]: if isinstance(a_ ,a_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def A ( a_ ,a_ ,a_ ,a_ ,a_=False ) -> Dict: __UpperCamelCase : str =checkpoint[F'{old_prefix}.in_layers.0.weight'] __UpperCamelCase : Optional[Any] =checkpoint[F'{old_prefix}.in_layers.0.bias'] __UpperCamelCase : Dict =checkpoint[F'{old_prefix}.in_layers.2.weight'] __UpperCamelCase : Dict =checkpoint[F'{old_prefix}.in_layers.2.bias'] __UpperCamelCase : int =checkpoint[F'{old_prefix}.emb_layers.1.weight'] __UpperCamelCase : str =checkpoint[F'{old_prefix}.emb_layers.1.bias'] __UpperCamelCase : List[Any] =checkpoint[F'{old_prefix}.out_layers.0.weight'] __UpperCamelCase : List[str] =checkpoint[F'{old_prefix}.out_layers.0.bias'] __UpperCamelCase : str =checkpoint[F'{old_prefix}.out_layers.3.weight'] __UpperCamelCase : Any =checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: __UpperCamelCase : Union[str, Any] =checkpoint[F'{old_prefix}.skip_connection.weight'] __UpperCamelCase : Dict =checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def A ( a_ ,a_ ,a_ ,a_ ,a_=None ) -> int: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] =checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 ,dim=0 ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] =checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 ,dim=0 ) __UpperCamelCase : Tuple =checkpoint[F'{old_prefix}.norm.weight'] __UpperCamelCase : Optional[Any] =checkpoint[F'{old_prefix}.norm.bias'] __UpperCamelCase : Union[str, Any] =weight_q.squeeze(-1 ).squeeze(-1 ) __UpperCamelCase : Union[str, Any] =bias_q.squeeze(-1 ).squeeze(-1 ) __UpperCamelCase : Dict =weight_k.squeeze(-1 ).squeeze(-1 ) __UpperCamelCase : Optional[int] =bias_k.squeeze(-1 ).squeeze(-1 ) __UpperCamelCase : str =weight_v.squeeze(-1 ).squeeze(-1 ) __UpperCamelCase : Optional[Any] =bias_v.squeeze(-1 ).squeeze(-1 ) __UpperCamelCase : Tuple =( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) __UpperCamelCase : Union[str, Any] =checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def A ( a_ ,a_ ) -> Union[str, Any]: __UpperCamelCase : Tuple =torch.load(a_ ,map_location='cpu' ) __UpperCamelCase : List[str] ={} __UpperCamelCase : Any =checkpoint['time_embed.0.weight'] __UpperCamelCase : int =checkpoint['time_embed.0.bias'] __UpperCamelCase : Tuple =checkpoint['time_embed.2.weight'] __UpperCamelCase : List[str] =checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: __UpperCamelCase : List[str] =checkpoint['label_emb.weight'] __UpperCamelCase : Tuple =checkpoint['input_blocks.0.0.weight'] __UpperCamelCase : str =checkpoint['input_blocks.0.0.bias'] __UpperCamelCase : Optional[Any] =unet_config['down_block_types'] __UpperCamelCase : Optional[int] =unet_config['layers_per_block'] __UpperCamelCase : int =unet_config['attention_head_dim'] __UpperCamelCase : List[str] =unet_config['block_out_channels'] __UpperCamelCase : Tuple =1 __UpperCamelCase : Union[str, Any] =channels_list[0] for i, layer_type in enumerate(a_ ): __UpperCamelCase : List[Any] =channels_list[i] __UpperCamelCase : Optional[int] =current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(a_ ): __UpperCamelCase : Dict =F'down_blocks.{i}.resnets.{j}' __UpperCamelCase : Any =F'input_blocks.{current_layer}.0' __UpperCamelCase : Any =True if j == 0 and downsample_block_has_skip else False __UpperCamelCase : Optional[int] =convert_resnet(a_ ,a_ ,a_ ,a_ ,has_skip=a_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(a_ ): __UpperCamelCase : Optional[Any] =F'down_blocks.{i}.resnets.{j}' __UpperCamelCase : Union[str, Any] =F'input_blocks.{current_layer}.0' __UpperCamelCase : Any =True if j == 0 and downsample_block_has_skip else False __UpperCamelCase : List[str] =convert_resnet(a_ ,a_ ,a_ ,a_ ,has_skip=a_ ) __UpperCamelCase : Union[str, Any] =F'down_blocks.{i}.attentions.{j}' __UpperCamelCase : Optional[Any] =F'input_blocks.{current_layer}.1' __UpperCamelCase : Optional[Any] =convert_attention( a_ ,a_ ,a_ ,a_ ,a_ ) current_layer += 1 if i != len(a_ ) - 1: __UpperCamelCase : List[Any] =F'down_blocks.{i}.downsamplers.0' __UpperCamelCase : int =F'input_blocks.{current_layer}.0' __UpperCamelCase : str =convert_resnet(a_ ,a_ ,a_ ,a_ ) current_layer += 1 __UpperCamelCase : Optional[Any] =current_channels # hardcoded the mid-block for now __UpperCamelCase : Any ='mid_block.resnets.0' __UpperCamelCase : List[str] ='middle_block.0' __UpperCamelCase : Union[str, Any] =convert_resnet(a_ ,a_ ,a_ ,a_ ) __UpperCamelCase : List[Any] ='mid_block.attentions.0' __UpperCamelCase : Optional[Any] ='middle_block.1' __UpperCamelCase : List[Any] =convert_attention(a_ ,a_ ,a_ ,a_ ,a_ ) __UpperCamelCase : str ='mid_block.resnets.1' __UpperCamelCase : Optional[Any] ='middle_block.2' __UpperCamelCase : int =convert_resnet(a_ ,a_ ,a_ ,a_ ) __UpperCamelCase : List[Any] =0 __UpperCamelCase : Optional[int] =unet_config['up_block_types'] for i, layer_type in enumerate(a_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __UpperCamelCase : Any =F'up_blocks.{i}.resnets.{j}' __UpperCamelCase : Dict =F'output_blocks.{current_layer}.0' __UpperCamelCase : Dict =convert_resnet(a_ ,a_ ,a_ ,a_ ,has_skip=a_ ) current_layer += 1 if i != len(a_ ) - 1: __UpperCamelCase : List[str] =F'up_blocks.{i}.upsamplers.0' __UpperCamelCase : Optional[Any] =F'output_blocks.{current_layer-1}.1' __UpperCamelCase : Union[str, Any] =convert_resnet(a_ ,a_ ,a_ ,a_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __UpperCamelCase : Optional[Any] =F'up_blocks.{i}.resnets.{j}' __UpperCamelCase : Optional[Any] =F'output_blocks.{current_layer}.0' __UpperCamelCase : str =convert_resnet(a_ ,a_ ,a_ ,a_ ,has_skip=a_ ) __UpperCamelCase : Optional[int] =F'up_blocks.{i}.attentions.{j}' __UpperCamelCase : Tuple =F'output_blocks.{current_layer}.1' __UpperCamelCase : str =convert_attention( a_ ,a_ ,a_ ,a_ ,a_ ) current_layer += 1 if i != len(a_ ) - 1: __UpperCamelCase : Optional[Any] =F'up_blocks.{i}.upsamplers.0' __UpperCamelCase : str =F'output_blocks.{current_layer-1}.2' __UpperCamelCase : str =convert_resnet(a_ ,a_ ,a_ ,a_ ) __UpperCamelCase : Any =checkpoint['out.0.weight'] __UpperCamelCase : Any =checkpoint['out.0.bias'] __UpperCamelCase : Optional[Any] =checkpoint['out.2.weight'] __UpperCamelCase : List[Any] =checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": A_ :int = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') A_ :List[Any] = parser.parse_args() A_ :Tuple = strabool(args.class_cond) A_ :List[str] = os.path.basename(args.unet_path) print(f"Checkpoint: {ckpt_name}") # Get U-Net config if "imagenet64" in ckpt_name: A_ :Optional[int] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A_ :List[Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: A_ :Optional[int] = TEST_UNET_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") if not args.class_cond: A_ :List[str] = None A_ :List[str] = con_pt_to_diffuser(args.unet_path, unet_config) A_ :str = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: A_ :List[str] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: A_ :Optional[int] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A_ :Dict = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f"Checkpoint type {ckpt_name} is not currently supported.") A_ :Optional[Any] = CMStochasticIterativeScheduler(**scheduler_config) A_ :int = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
154
1
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" _a = 0 while len(a__) > 1: _a = 0 # Consider two files with minimum cost to be merged for _ in range(2): _a = files.index(min(a__)) temp += files[min_index] files.pop(a__) files.append(a__) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' from collections import deque class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , snake_case : str , snake_case : int , snake_case : int ): """simple docstring""" _snake_case : Optional[Any] = process_name # process name _snake_case : int = arrival_time # arrival time of the process # completion time of finished process or last interrupted time _snake_case : List[str] = arrival_time _snake_case : Optional[Any] = burst_time # remaining burst time _snake_case : Dict = 0 # total time of the process wait in ready queue _snake_case : Optional[int] = 0 # time from arrival time to completion time class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int , snake_case : int , snake_case : list[int] , snake_case : deque[Process] , snake_case : int , ): """simple docstring""" _snake_case : Union[str, Any] = number_of_queues # time slice of queues that round robin algorithm applied _snake_case : Optional[Any] = time_slices # unfinished process is in this ready_queue _snake_case : Tuple = queue # current time _snake_case : List[Any] = current_time # finished process is in this sequence queue _snake_case : deque[Process] = deque() def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case : Optional[int] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __UpperCAmelCase ( self : Tuple , snake_case : list[Process] ): """simple docstring""" _snake_case : List[str] = [] for i in range(len(snake_case ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __UpperCAmelCase ( self : Any , snake_case : list[Process] ): """simple docstring""" _snake_case : Dict = [] for i in range(len(snake_case ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __UpperCAmelCase ( self : List[Any] , snake_case : list[Process] ): """simple docstring""" _snake_case : Union[str, Any] = [] for i in range(len(snake_case ) ): completion_times.append(queue[i].stop_time ) return completion_times def __UpperCAmelCase ( self : Union[str, Any] , snake_case : deque[Process] ): """simple docstring""" return [q.burst_time for q in queue] def __UpperCAmelCase ( self : Union[str, Any] , snake_case : Process ): """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __UpperCAmelCase ( self : Dict , snake_case : deque[Process] ): """simple docstring""" _snake_case : deque[Process] = deque() # sequence deque of finished process while len(snake_case ) != 0: _snake_case : List[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(snake_case ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _snake_case : Optional[int] = 0 # set the process's turnaround time because it is finished _snake_case : Optional[int] = self.current_time - cp.arrival_time # set the completion time _snake_case : Tuple = self.current_time # add the process to queue that has finished queue finished.append(snake_case ) self.finish_queue.extend(snake_case ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __UpperCAmelCase ( self : Tuple , snake_case : deque[Process] , snake_case : int ): """simple docstring""" _snake_case : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(snake_case ) ): _snake_case : Optional[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(snake_case ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _snake_case : Tuple = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(snake_case ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _snake_case : Dict = 0 # set the finish time _snake_case : Tuple = self.current_time # update the process' turnaround time because it is finished _snake_case : Tuple = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(snake_case ) self.finish_queue.extend(snake_case ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __UpperCAmelCase ( self : Any ): """simple docstring""" for i in range(self.number_of_queues - 1 ): _snake_case , _snake_case : Any = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest SCREAMING_SNAKE_CASE_ = Process("P1", 0, 53) SCREAMING_SNAKE_CASE_ = Process("P2", 0, 17) SCREAMING_SNAKE_CASE_ = Process("P3", 0, 68) SCREAMING_SNAKE_CASE_ = Process("P4", 0, 24) SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = [17, 25] SCREAMING_SNAKE_CASE_ = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) SCREAMING_SNAKE_CASE_ = Process("P1", 0, 53) SCREAMING_SNAKE_CASE_ = Process("P2", 0, 17) SCREAMING_SNAKE_CASE_ = Process("P3", 0, 68) SCREAMING_SNAKE_CASE_ = Process("P4", 0, 24) SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = [17, 25] SCREAMING_SNAKE_CASE_ = deque([Pa, Pa, Pa, Pa]) SCREAMING_SNAKE_CASE_ = MLFQ(number_of_queues, time_slices, queue, 0) SCREAMING_SNAKE_CASE_ = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
517
0
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins __lowerCAmelCase : Dict =["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[int] ) -> int: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ["""integration""", """unit"""] ): continue item.add_marker(pytest.mark.unit ) def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> int: '''simple docstring''' config.addinivalue_line("""markers""" , """torchaudio_latest: mark test to run with torchaudio>=0.12""" ) @pytest.fixture(autouse=lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Any: '''simple docstring''' lowercase = tmp_path_factory.getbasetemp() / """cache""" lowercase = test_hf_cache_home / """datasets""" lowercase = test_hf_cache_home / """metrics""" lowercase = test_hf_cache_home / """modules""" monkeypatch.setattr("""datasets.config.HF_DATASETS_CACHE""" , str(lowerCAmelCase__ ) ) monkeypatch.setattr("""datasets.config.HF_METRICS_CACHE""" , str(lowerCAmelCase__ ) ) monkeypatch.setattr("""datasets.config.HF_MODULES_CACHE""" , str(lowerCAmelCase__ ) ) lowercase = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("""datasets.config.DOWNLOADED_DATASETS_PATH""" , str(lowerCAmelCase__ ) ) lowercase = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowerCAmelCase__ ) ) @pytest.fixture(autouse=lowerCAmelCase__ , scope="""session""" ) def UpperCAmelCase__ ( ) -> int: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> int: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_UPDATE_DOWNLOAD_COUNTS""" , lowerCAmelCase__ ) @pytest.fixture def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] ) -> int: '''simple docstring''' monkeypatch.setattr("""sqlalchemy.util.deprecations.SILENCE_UBER_WARNING""" , lowerCAmelCase__ )
197
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple ) -> Union[str, Any]: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :List[str] ) -> int: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_sql_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase = features.copy() if features else default_expected_features lowercase = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_sql_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Optional[int]: '''simple docstring''' with contextlib.closing(sqlitea.connect(lowerCAmelCase__ ) ) as con: lowercase = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> List[Any]: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = os.path.join(lowerCAmelCase__ , """tmp.sql""" ) lowercase = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowerCAmelCase__ ).read() SqlDatasetWriter(lowerCAmelCase__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase = iter_sql_file(lowerCAmelCase__ ) lowercase = iter_sql_file(lowerCAmelCase__ ) for rowa, rowa in zip(lowerCAmelCase__ , lowerCAmelCase__ ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] ) -> Optional[int]: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = os.path.join(lowerCAmelCase__ , """tmp.sql""" ) lowercase = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowerCAmelCase__ ).read() SqlDatasetWriter(lowerCAmelCase__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase = iter_sql_file(lowerCAmelCase__ ) lowercase = iter_sql_file(lowerCAmelCase__ ) for rowa, rowa in zip(lowerCAmelCase__ , lowerCAmelCase__ ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple ) -> Any: '''simple docstring''' lowercase = tmp_path / """cache""" lowercase = os.path.join(lowerCAmelCase__ , """tmp.sql""" ) lowercase = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=lowerCAmelCase__ ).read() with pytest.raises(lowerCAmelCase__ ): SqlDatasetWriter(lowerCAmelCase__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
197
1
'''simple docstring''' def __UpperCamelCase( _A : str , _A : str = " " ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Any = 0 for index, char in enumerate(_A ): if char == separator: split_words.append(string[last_index:index] ) UpperCAmelCase__ : Union[str, Any] = index + 1 elif index + 1 == len(_A ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
614
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCamelCase( _A : Any , _A : List[str]=() , _A : List[str]=None , _A : Dict="no" , _A : List[str]="29500" ): '''simple docstring''' UpperCAmelCase__ : int = False UpperCAmelCase__ : List[str] = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase__ : List[str] = True elif "IPython" in sys.modules: UpperCAmelCase__ : List[Any] = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase__ : Tuple = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , _A ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase__ : Tuple = 8 UpperCAmelCase__ : Optional[Any] = PrepareForLaunch(_A , distributed_type='''TPU''' ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(_A , args=_A , nprocs=_A , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*_A ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_A , master_addr='''127.0.01''' , master_port=_A , mixed_precision=_A ): UpperCAmelCase__ : str = PrepareForLaunch(_A , distributed_type='''MULTI_GPU''' ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(_A , args=_A , nprocs=_A , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase__ : Union[str, Any] = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*_A ) def __UpperCamelCase( _A : List[str] , _A : Optional[Any]=() , _A : str=2 ): '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_A , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase__ : Optional[int] = PrepareForLaunch(_A , debug=_A ) start_processes(_A , args=_A , nprocs=_A , start_method='''fork''' )
614
1
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class a__( snake_case__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ) -> Optional[int]: snake_case__ =parent snake_case__ =batch_size snake_case__ =seq_length snake_case__ =is_training snake_case__ =use_input_mask snake_case__ =use_token_type_ids snake_case__ =use_labels snake_case__ =vocab_size snake_case__ =hidden_size snake_case__ =num_hidden_layers snake_case__ =num_attention_heads snake_case__ =intermediate_size snake_case__ =hidden_act snake_case__ =hidden_dropout_prob snake_case__ =attention_probs_dropout_prob snake_case__ =max_position_embeddings snake_case__ =type_vocab_size snake_case__ =type_sequence_label_size snake_case__ =initializer_range snake_case__ =num_labels snake_case__ =num_choices snake_case__ =scope def _lowercase ( self ) -> str: snake_case__ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ =None if self.use_input_mask: snake_case__ =random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ =None snake_case__ =None snake_case__ =None if self.use_labels: snake_case__ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ =ids_tensor([self.batch_size] , self.num_choices ) snake_case__ =self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self ) -> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: snake_case__ =DistilBertModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() snake_case__ =model(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case__ =model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: snake_case__ =DistilBertForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() snake_case__ =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: snake_case__ =DistilBertForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() snake_case__ =model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: snake_case__ =self.num_labels snake_case__ =DistilBertForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() snake_case__ =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: snake_case__ =self.num_labels snake_case__ =DistilBertForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() snake_case__ =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: snake_case__ =self.num_choices snake_case__ =DistilBertForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() snake_case__ =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ =model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self ) -> List[Any]: snake_case__ =self.prepare_config_and_inputs() (snake_case__) =config_and_inputs snake_case__ ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a__( snake_case__ , snake_case__ , unittest.TestCase ): a_ : Tuple = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) a_ : Union[str, Any] = ( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) a_ : str = True a_ : str = True a_ : Union[str, Any] = True a_ : List[Any] = True def _lowercase ( self ) -> Optional[Any]: snake_case__ =DistilBertModelTester(self ) snake_case__ =ConfigTester(self , config_class=UpperCAmelCase__ , dim=37 ) def _lowercase ( self ) -> int: self.config_tester.run_common_tests() def _lowercase ( self ) -> Dict: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self ) -> List[Any]: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase__ ) def _lowercase ( self ) -> List[str]: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: snake_case__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase__ ) @slow def _lowercase ( self ) -> Dict: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ =DistilBertModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @slow @require_torch_gpu def _lowercase ( self ) -> Dict: snake_case__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return snake_case__ =True snake_case__ =model_class(config=UpperCAmelCase__ ) snake_case__ =self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) snake_case__ =torch.jit.trace( UpperCAmelCase__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , 'traced_model.pt' ) ) snake_case__ =torch.jit.load(os.path.join(UpperCAmelCase__ , 'traced_model.pt' ) , map_location=UpperCAmelCase__ ) loaded(inputs_dict['input_ids'].to(UpperCAmelCase__ ) , inputs_dict['attention_mask'].to(UpperCAmelCase__ ) ) @require_torch class a__( unittest.TestCase ): @slow def _lowercase ( self ) -> Optional[Any]: snake_case__ =DistilBertModel.from_pretrained('distilbert-base-uncased' ) snake_case__ =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) snake_case__ =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case__ =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] snake_case__ =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCAmelCase__ ) snake_case__ =torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) )
718
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class a__( snake_case__ ): a_ : Dict = '''pix2struct_text_model''' a_ : Optional[int] = ['''past_key_values'''] a_ : int = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _UpperCAmelCase=5_0244 , _UpperCAmelCase=768 , _UpperCAmelCase=64 , _UpperCAmelCase=2048 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=32 , _UpperCAmelCase=128 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1E-6 , _UpperCAmelCase=1.0 , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=0 , _UpperCAmelCase=False , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ) -> int: snake_case__ =vocab_size snake_case__ =hidden_size snake_case__ =d_kv snake_case__ =d_ff snake_case__ =num_layers snake_case__ =num_heads snake_case__ =relative_attention_num_buckets snake_case__ =relative_attention_max_distance snake_case__ =dropout_rate snake_case__ =layer_norm_epsilon snake_case__ =initializer_factor snake_case__ =use_cache snake_case__ =eos_token_id snake_case__ =decoder_start_token_id # for backwards compatibility snake_case__ =dense_act_fn super().__init__( pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , is_decoder=_UpperCAmelCase , **_UpperCAmelCase , ) @classmethod def _lowercase ( cls , _UpperCAmelCase , **_UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCAmelCase ) snake_case__ , snake_case__ =cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": snake_case__ =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class a__( snake_case__ ): a_ : List[Any] = '''pix2struct_vision_model''' def __init__( self , _UpperCAmelCase=768 , _UpperCAmelCase=768 , _UpperCAmelCase=2048 , _UpperCAmelCase=64 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase="gelu_new" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=1.0 , _UpperCAmelCase=4096 , _UpperCAmelCase=32 , _UpperCAmelCase=128 , **_UpperCAmelCase , ) -> int: super().__init__(**_UpperCAmelCase ) snake_case__ =hidden_size snake_case__ =patch_embed_hidden_size snake_case__ =d_ff snake_case__ =dropout_rate snake_case__ =num_hidden_layers snake_case__ =num_attention_heads snake_case__ =initializer_range snake_case__ =initializer_factor snake_case__ =attention_dropout snake_case__ =layer_norm_eps snake_case__ =dense_act_fn snake_case__ =seq_len snake_case__ =relative_attention_num_buckets snake_case__ =relative_attention_max_distance snake_case__ =d_kv @classmethod def _lowercase ( cls , _UpperCAmelCase , **_UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(_UpperCAmelCase ) snake_case__ , snake_case__ =cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": snake_case__ =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class a__( snake_case__ ): a_ : Dict = '''pix2struct''' a_ : Optional[int] = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ) -> int: super().__init__(tie_word_embeddings=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) if text_config is None: snake_case__ ={} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: snake_case__ ={} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) snake_case__ =PixaStructTextConfig(**_UpperCAmelCase ) snake_case__ =PixaStructVisionConfig(**_UpperCAmelCase ) snake_case__ =self.text_config.decoder_start_token_id snake_case__ =self.text_config.pad_token_id snake_case__ =self.text_config.eos_token_id snake_case__ =initializer_factor snake_case__ =initializer_range snake_case__ =self.initializer_range snake_case__ =self.initializer_range snake_case__ =is_vqa @classmethod def _lowercase ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def _lowercase ( self ) -> Optional[int]: snake_case__ =copy.deepcopy(self.__dict__ ) snake_case__ =self.text_config.to_dict() snake_case__ =self.vision_config.to_dict() snake_case__ =self.__class__.model_type return output
581
0
from __future__ import annotations def UpperCamelCase ( __lowercase : list[int] ,__lowercase : int ): '''simple docstring''' if len(__lowercase ) < k or k < 0: raise ValueError('Invalid Input' ) A_ : Dict = sum(array[:k] ) for i in range(len(__lowercase ) - k ): A_ : Tuple = current_sum - array[i] + array[i + k] A_ : str = max(__lowercase ,__lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() _UpperCAmelCase = [randint(-1000, 1000) for i in range(100)] _UpperCAmelCase = randint(0, 110) print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
558
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = 42 lowerCamelCase_ = None @staticmethod def lowerCAmelCase_ ( ): """simple docstring""" raise NotImplementedError def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" raise NotImplementedError def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" raise NotImplementedError def lowerCAmelCase_ ( self ): """simple docstring""" if not self.is_available(): raise RuntimeError( F'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def lowerCAmelCase_ ( cls ): """simple docstring""" return F'''`pip install {cls.pip_package or cls.name}`''' class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''optuna''' @staticmethod def lowerCAmelCase_ ( ): """simple docstring""" return is_optuna_available() def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" return run_hp_search_optuna(lowercase , lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return default_hp_space_optuna(lowercase ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''ray''' lowerCamelCase_ = '''\'ray[tune]\'''' @staticmethod def lowerCAmelCase_ ( ): """simple docstring""" return is_ray_available() def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" return run_hp_search_ray(lowercase , lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return default_hp_space_ray(lowercase ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''sigopt''' @staticmethod def lowerCAmelCase_ ( ): """simple docstring""" return is_sigopt_available() def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" return run_hp_search_sigopt(lowercase , lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return default_hp_space_sigopt(lowercase ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''wandb''' @staticmethod def lowerCAmelCase_ ( ): """simple docstring""" return is_wandb_available() def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase , **lowercase ): """simple docstring""" return run_hp_search_wandb(lowercase , lowercase , lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" return default_hp_space_wandb(lowercase ) _UpperCAmelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def UpperCamelCase ( ): '''simple docstring''' A_ : List[str] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__lowercase ) > 0: A_ : List[str] = available_backends[0].name if len(__lowercase ) > 1: logger.info( f'''{len(__lowercase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
558
1
from __future__ import annotations def _lowerCAmelCase ( __magic_name__ :Tuple , __magic_name__ :Optional[int] ): if b == 0: return (1, 0) (UpperCAmelCase_) = extended_euclid(__magic_name__ , a % b ) UpperCAmelCase_ = a // b return (y, x - k * y) def _lowerCAmelCase ( __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] , __magic_name__ :List[str] , __magic_name__ :List[Any] ): (UpperCAmelCase_) = extended_euclid(__magic_name__ , __magic_name__ ) UpperCAmelCase_ = na * na UpperCAmelCase_ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( __magic_name__ :List[str] , __magic_name__ :Any ): (UpperCAmelCase_) = extended_euclid(__magic_name__ , __magic_name__ ) if b < 0: UpperCAmelCase_ = (b % n + n) % n return b def _lowerCAmelCase ( __magic_name__ :List[Any] , __magic_name__ :List[Any] , __magic_name__ :Optional[Any] , __magic_name__ :int ): UpperCAmelCase_ = invert_modulo(__magic_name__ , __magic_name__ ), invert_modulo(__magic_name__ , __magic_name__ ) UpperCAmelCase_ = na * na UpperCAmelCase_ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
719
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _lowerCAmelCase ( __magic_name__ :list , __magic_name__ :list , __magic_name__ :list , __magic_name__ :list , __magic_name__ :list ): UpperCAmelCase_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__magic_name__ )] ) UpperCAmelCase_ = np.array(__magic_name__ ) UpperCAmelCase_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __magic_name__ ) ) , x.transpose() ) , __magic_name__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _lowerCAmelCase ( __magic_name__ :list , __magic_name__ :list , __magic_name__ :list ): UpperCAmelCase_ = (1, 2, 1) UpperCAmelCase_ = (1, 1, 0, 7) UpperCAmelCase_ = SARIMAX( __magic_name__ , exog=__magic_name__ , order=__magic_name__ , seasonal_order=__magic_name__ ) UpperCAmelCase_ = model.fit(disp=__magic_name__ , maxiter=6_0_0 , method='''nm''' ) UpperCAmelCase_ = model_fit.predict(1 , len(__magic_name__ ) , exog=[test_match] ) return result[0] def _lowerCAmelCase ( __magic_name__ :list , __magic_name__ :list , __magic_name__ :list ): UpperCAmelCase_ = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__magic_name__ , __magic_name__ ) UpperCAmelCase_ = regressor.predict(__magic_name__ ) return y_pred[0] def _lowerCAmelCase ( __magic_name__ :list ): train_user.sort() UpperCAmelCase_ = np.percentile(__magic_name__ , 2_5 ) UpperCAmelCase_ = np.percentile(__magic_name__ , 7_5 ) UpperCAmelCase_ = qa - qa UpperCAmelCase_ = qa - (iqr * 0.1) return low_lim def _lowerCAmelCase ( __magic_name__ :list , __magic_name__ :float ): UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i in list_vote: if i > actual_result: UpperCAmelCase_ = not_safe + 1 else: if abs(abs(__magic_name__ ) - abs(__magic_name__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _lowerCamelCase : List[str] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] _lowerCamelCase : Any = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) _lowerCamelCase : Optional[Any] = Normalizer().fit_transform(data_input_df.values) # split data _lowerCamelCase : List[str] = normalize_df[:, 2].tolist() _lowerCamelCase : Dict = normalize_df[:, 0].tolist() _lowerCamelCase : Optional[Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _lowerCamelCase : Union[str, Any] = normalize_df[:, [1, 2]].tolist() _lowerCamelCase : Any = x[: len(x) - 1] _lowerCamelCase : Optional[int] = x[len(x) - 1 :] # for linear regression & sarimax _lowerCamelCase : List[str] = total_date[: len(total_date) - 1] _lowerCamelCase : Any = total_user[: len(total_user) - 1] _lowerCamelCase : Dict = total_match[: len(total_match) - 1] _lowerCamelCase : Any = total_date[len(total_date) - 1 :] _lowerCamelCase : List[str] = total_user[len(total_user) - 1 :] _lowerCamelCase : Any = total_match[len(total_match) - 1 :] # voting system with forecasting _lowerCamelCase : List[str] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _lowerCamelCase : int = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
407
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__ ( _A , _A , unittest.TestCase): """simple docstring""" a__ : List[str] = IFPipeline a__ : Optional[Any] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} a__ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS a__ : Optional[Any] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self : Dict ) -> Optional[Any]: return self._get_dummy_components() def snake_case_ ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any]=0 ) -> List[str]: if str(__lowerCAmelCase ).startswith('''mps''' ): _A = torch.manual_seed(__lowerCAmelCase ) else: _A = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _A = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def snake_case_ ( self : str ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def snake_case_ ( self : Union[str, Any] ) -> Any: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case_ ( self : Union[str, Any] ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Union[str, Any]: self._test_save_load_local() def snake_case_ ( self : Dict ) -> List[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case_ ( self : Dict ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : List[Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self : Tuple ) -> str: # if _A = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) _A = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) _A , _A = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _A = None _A = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _A = IFImgaImgPipeline(**pipe_a.components ) _A = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _A = IFInpaintingPipeline(**pipe_a.components ) _A = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] ) -> Tuple: # pipeline 1 _start_torch_memory_measurement() _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , num_inference_steps=2 , generator=__lowerCAmelCase , output_type='''np''' , ) _A = output.images[0] assert image.shape == (64, 64, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , ) _A = output.images[0] assert image.shape == (2_56, 2_56, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ) -> Dict: # pipeline 1 _start_torch_memory_measurement() _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , num_inference_steps=2 , generator=__lowerCAmelCase , output_type='''np''' , ) _A = output.images[0] assert image.shape == (64, 64, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , original_image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , ) _A = output.images[0] assert image.shape == (2_56, 2_56, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ) -> Tuple: # pipeline 1 _start_torch_memory_measurement() _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__lowerCAmelCase ) _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , num_inference_steps=2 , generator=__lowerCAmelCase , output_type='''np''' , ) _A = output.images[0] assert image.shape == (64, 64, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) # pipeline 2 _start_torch_memory_measurement() _A = torch.Generator(device='''cpu''' ).manual_seed(0 ) _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__lowerCAmelCase ) _A = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(__lowerCAmelCase ) _A = pipe_a( prompt_embeds=__lowerCAmelCase , negative_prompt_embeds=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , original_image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='''np''' , ) _A = output.images[0] assert image.shape == (2_56, 2_56, 3) _A = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _A = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
2
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __UpperCAmelCase : '''simple docstring''' def __init__( self , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden UpperCAmelCase__ : Optional[int] = deepcopy(_UpperCAmelCase ) elif os.path.exists(_UpperCAmelCase ): with io.open(_UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as f: UpperCAmelCase__ : Union[str, Any] = json.load(_UpperCAmelCase ) else: try: UpperCAmelCase__ : List[Any] = baseaa.urlsafe_baadecode(_UpperCAmelCase ).decode('''utf-8''' ) UpperCAmelCase__ : Optional[int] = json.loads(_UpperCAmelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) UpperCAmelCase__ : Optional[Any] = config self.set_stage_and_offload() def lowerCamelCase ( self ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. UpperCAmelCase__ : int = self.get_value('''zero_optimization.stage''' , -1 ) # offload UpperCAmelCase__ : List[Any] = False if self.is_zeroa() or self.is_zeroa(): UpperCAmelCase__ : Optional[Any] = set(['''cpu''', '''nvme'''] ) UpperCAmelCase__ : str = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: UpperCAmelCase__ : Tuple = True def lowerCamelCase ( self , _UpperCAmelCase ): UpperCAmelCase__ : Any = self.config # find the config node of interest if it exists UpperCAmelCase__ : str = ds_key_long.split('''.''' ) UpperCAmelCase__ : Any = nodes.pop() for node in nodes: UpperCAmelCase__ : List[Any] = config.get(_UpperCAmelCase ) if config is None: return None, ds_key return config, ds_key def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=None ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.find_config_node(_UpperCAmelCase ) if config is None: return default return config.get(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False ): UpperCAmelCase__ : List[str] = self.config # find the config node of interest if it exists UpperCAmelCase__ : Union[str, Any] = ds_key_long.split('''.''' ) for node in nodes: UpperCAmelCase__ : List[Any] = config UpperCAmelCase__ : str = config.get(_UpperCAmelCase ) if config is None: if must_exist: raise ValueError(F"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(_UpperCAmelCase ) def lowerCamelCase ( self , _UpperCAmelCase ): UpperCAmelCase__ : Union[str, Any] = self.get_value(_UpperCAmelCase ) return False if value is None else bool(_UpperCAmelCase ) def lowerCamelCase ( self , _UpperCAmelCase ): UpperCAmelCase__ : Union[str, Any] = self.get_value(_UpperCAmelCase ) return False if value is None else not bool(_UpperCAmelCase ) def lowerCamelCase ( self ): return self._stage == 2 def lowerCamelCase ( self ): return self._stage == 3 def lowerCamelCase ( self ): return self._offload class __UpperCAmelCase : '''simple docstring''' def __init__( self , _UpperCAmelCase ): UpperCAmelCase__ : int = engine def lowerCamelCase ( self , _UpperCAmelCase , **_UpperCAmelCase ): # runs backpropagation and handles mixed precision self.engine.backward(_UpperCAmelCase , **_UpperCAmelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase , device_placement=_UpperCAmelCase , scaler=_UpperCAmelCase ) UpperCAmelCase__ : Union[str, Any] = hasattr(self.optimizer , '''overflow''' ) def lowerCamelCase ( self , _UpperCAmelCase=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def lowerCamelCase ( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def lowerCamelCase ( self ): if self.__has_overflow__: return self.optimizer.overflow return False class __UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase ( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __UpperCAmelCase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=0.0_01 , _UpperCAmelCase=0 , **_UpperCAmelCase ): UpperCAmelCase__ : Union[str, Any] = params UpperCAmelCase__ : str = lr UpperCAmelCase__ : Union[str, Any] = weight_decay UpperCAmelCase__ : Any = kwargs class __UpperCAmelCase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=0 , **_UpperCAmelCase ): UpperCAmelCase__ : Dict = optimizer UpperCAmelCase__ : str = total_num_steps UpperCAmelCase__ : Dict = warmup_num_steps UpperCAmelCase__ : Any = kwargs
599
'''simple docstring''' def lowerCAmelCase__ ( a_ : float , a_ : list[float] ) -> float: if discount_rate < 0: raise ValueError('''Discount rate cannot be negative''' ) if not cash_flows: raise ValueError('''Cash flows list cannot be empty''' ) UpperCAmelCase__ : Tuple = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(a_ ) ) return round(a_ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
599
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__ : """simple docstring""" a__ : str a__ : str = None @staticmethod def snake_case_ ( ) -> List[str]: raise NotImplementedError def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : str ) -> int: raise NotImplementedError def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : int ) -> List[Any]: raise NotImplementedError def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def snake_case_ ( cls : Optional[Any] ) -> List[str]: return f'''`pip install {cls.pip_package or cls.name}`''' class lowerCamelCase__ ( _A): """simple docstring""" a__ : List[str] = "optuna" @staticmethod def snake_case_ ( ) -> int: return is_optuna_available() def snake_case_ ( self : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : int ) -> Any: return run_hp_search_optuna(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : Tuple , __lowerCAmelCase : Tuple ) -> Dict: return default_hp_space_optuna(__lowerCAmelCase ) class lowerCamelCase__ ( _A): """simple docstring""" a__ : List[str] = "ray" a__ : Tuple = "'ray[tune]'" @staticmethod def snake_case_ ( ) -> List[str]: return is_ray_available() def snake_case_ ( self : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : Optional[int] ) -> Optional[int]: return run_hp_search_ray(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple ) -> int: return default_hp_space_ray(__lowerCAmelCase ) class lowerCamelCase__ ( _A): """simple docstring""" a__ : Optional[int] = "sigopt" @staticmethod def snake_case_ ( ) -> Optional[Any]: return is_sigopt_available() def snake_case_ ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : int ) -> List[str]: return run_hp_search_sigopt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : str , __lowerCAmelCase : Dict ) -> int: return default_hp_space_sigopt(__lowerCAmelCase ) class lowerCamelCase__ ( _A): """simple docstring""" a__ : Union[str, Any] = "wandb" @staticmethod def snake_case_ ( ) -> int: return is_wandb_available() def snake_case_ ( self : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : str , **__lowerCAmelCase : List[str] ) -> Dict: return run_hp_search_wandb(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def snake_case_ ( self : List[Any] , __lowerCAmelCase : Tuple ) -> Dict: return default_hp_space_wandb(__lowerCAmelCase ) UpperCAmelCase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def SCREAMING_SNAKE_CASE_ ( ) -> str: _A = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_snake_case ) > 0: _A = available_backends[0].name if len(_snake_case ) > 1: logger.info( F'''{len(_snake_case )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
2
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Tuple ) -> Optional[int]: _A = tempfile.mkdtemp() _A = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _A = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _A = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : Dict , **__lowerCAmelCase : int ) -> Optional[int]: return BertTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : str , **__lowerCAmelCase : Optional[Any] ) -> Tuple: return BertTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Tuple , **__lowerCAmelCase : str ) -> Union[str, Any]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : int ) -> Optional[Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Dict ) -> List[str]: _A = self.get_tokenizer() _A = self.get_rust_tokenizer() _A = self.get_image_processor() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _A = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def snake_case_ ( self : List[Any] ) -> List[str]: _A = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _A = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) _A = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def snake_case_ ( self : str ) -> List[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = self.prepare_image_inputs() _A = image_processor(__lowerCAmelCase , return_tensors='''np''' ) _A = processor(images=__lowerCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case_ ( self : Union[str, Any] ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = processor(text=__lowerCAmelCase ) _A = tokenizer(__lowerCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[str] ) -> Any: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def snake_case_ ( self : Optional[Any] ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(__lowerCAmelCase ) _A = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def snake_case_ ( self : str ) -> str: _A = self.get_image_processor() _A = self.get_tokenizer() _A = AlignProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) _A = '''lower newer''' _A = self.prepare_image_inputs() _A = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
2
1
import argparse import copy def UpperCamelCase_( __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :int = {} with open(__magic_name__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _lowerCAmelCase :Any = [] _list.append([line.split()[1], line.split()[2]] ) _lowerCAmelCase :Any = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _lowerCAmelCase :str = [] _list.append([line.split()[0], line.split()[2]] ) _lowerCAmelCase :Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCamelCase_( __magic_name__ : int , __magic_name__ : Optional[Any] ): """simple docstring""" with open(__magic_name__ ) as f: _lowerCAmelCase :Dict = f.read(1 ) _lowerCAmelCase :int = start_node _lowerCAmelCase :Any = [] _lowerCAmelCase :Tuple = start_node _lowerCAmelCase :Dict = 0 while visiting not in first_solution: _lowerCAmelCase :Union[str, Any] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__magic_name__ ) and k[0] not in first_solution: _lowerCAmelCase :List[str] = k[1] _lowerCAmelCase :Union[str, Any] = k[0] first_solution.append(__magic_name__ ) _lowerCAmelCase :Any = distance_of_first_solution + int(__magic_name__ ) _lowerCAmelCase :str = best_node first_solution.append(__magic_name__ ) _lowerCAmelCase :List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _lowerCAmelCase :Union[str, Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def UpperCamelCase_( __magic_name__ : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :List[Any] = [] for n in solution[1:-1]: _lowerCAmelCase :List[str] = solution.index(__magic_name__ ) for kn in solution[1:-1]: _lowerCAmelCase :Optional[int] = solution.index(__magic_name__ ) if n == kn: continue _lowerCAmelCase :Dict = copy.deepcopy(__magic_name__ ) _lowerCAmelCase :Optional[int] = kn _lowerCAmelCase :Optional[int] = n _lowerCAmelCase :Optional[int] = 0 for k in _tmp[:-1]: _lowerCAmelCase :Tuple = _tmp[_tmp.index(__magic_name__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _lowerCAmelCase :Optional[int] = distance + int(i[1] ) _tmp.append(__magic_name__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _lowerCAmelCase :Optional[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __magic_name__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCamelCase_( __magic_name__ : Dict , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple ): """simple docstring""" _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :int = first_solution _lowerCAmelCase :Tuple = [] _lowerCAmelCase :List[str] = distance_of_first_solution _lowerCAmelCase :List[Any] = solution while count <= iters: _lowerCAmelCase :List[str] = find_neighborhood(__magic_name__ , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = 0 _lowerCAmelCase :str = neighborhood[index_of_best_solution] _lowerCAmelCase :Optional[int] = len(__magic_name__ ) - 1 _lowerCAmelCase :Tuple = False while not found: _lowerCAmelCase :Union[str, Any] = 0 while i < len(__magic_name__ ): if best_solution[i] != solution[i]: _lowerCAmelCase :Tuple = best_solution[i] _lowerCAmelCase :Tuple = solution[i] break _lowerCAmelCase :Union[str, Any] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _lowerCAmelCase :Optional[Any] = True _lowerCAmelCase :Optional[Any] = best_solution[:-1] _lowerCAmelCase :Any = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _lowerCAmelCase :List[Any] = cost _lowerCAmelCase :int = solution else: _lowerCAmelCase :Dict = index_of_best_solution + 1 _lowerCAmelCase :Tuple = neighborhood[index_of_best_solution] if len(__magic_name__ ) >= size: tabu_list.pop(0 ) _lowerCAmelCase :Dict = count + 1 return best_solution_ever, best_cost def UpperCamelCase_( __magic_name__ : Optional[Any]=None ): """simple docstring""" _lowerCAmelCase :Optional[Any] = generate_neighbours(args.File ) _lowerCAmelCase :Tuple = generate_first_solution( args.File , __magic_name__ ) _lowerCAmelCase :Union[str, Any] = tabu_search( __magic_name__ , __magic_name__ , __magic_name__ , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": a = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
708
from __future__ import annotations from math import pow, sqrt def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(__magic_name__ , 2 ) - pow(__magic_name__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__magic_name__ , 2 ) - pow(__magic_name__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__magic_name__ , 2 ) + pow(__magic_name__ , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
382
0
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCamelCase ( _a ): """simple docstring""" snake_case = ["image_processor", "tokenizer"] snake_case = "FlavaImageProcessor" snake_case = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase__ , ) A_ : Union[str, Any] = kwargs.pop('''feature_extractor''' ) A_ : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase__ , lowercase__ ) A_ : Tuple = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->Tuple: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: A_ : Optional[Any] = self.tokenizer( text=lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , stride=lowercase__ , pad_to_multiple_of=lowercase__ , return_token_type_ids=lowercase__ , return_attention_mask=lowercase__ , return_overflowing_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , return_offsets_mapping=lowercase__ , return_length=lowercase__ , verbose=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) if images is not None: A_ : int = self.image_processor( lowercase__ , return_image_mask=lowercase__ , return_codebook_pixels=lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) if text is not None and images is not None: encoding.update(lowercase__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase__ ) , tensor_type=lowercase__ ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase__ , **lowercase__ ) def _snake_case ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' return self.tokenizer.decode(*lowercase__ , **lowercase__ ) @property def _snake_case ( self )->int: '''simple docstring''' A_ : Union[str, Any] = self.tokenizer.model_input_names A_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _snake_case ( self )->List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase__ , ) return self.image_processor_class @property def _snake_case ( self )->Dict: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase__ , ) return self.image_processor
590
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : List[Any] = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
class _a : '''simple docstring''' def __init__( self ): __A : Union[str, Any] = "" __A : Optional[Any] = "" __A : Dict = [] def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase ): if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: __A : List[str] = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: __A : int = self.__min_dist_top_down_dp(__A , n - 1 ) __A : Optional[int] = self.__min_dist_top_down_dp(m - 1 , __A ) __A : str = self.__min_dist_top_down_dp(m - 1 , n - 1 ) __A : Dict = 1 + min(__A , __A , __A ) return self.dp[m][n] def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase ): __A : str = worda __A : Any = worda __A : Optional[Any] = [[-1 for _ in range(len(__A ) )] for _ in range(len(__A ) )] return self.__min_dist_top_down_dp(len(__A ) - 1 , len(__A ) - 1 ) def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase ): __A : Optional[int] = worda __A : str = worda __A : Optional[Any] = len(__A ) __A : Tuple = len(__A ) __A : Dict = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty __A : Any = j elif j == 0: # second string is empty __A : str = i elif worda[i - 1] == worda[j - 1]: # last characters are equal __A : Dict = self.dp[i - 1][j - 1] else: __A : Optional[Any] = self.dp[i][j - 1] __A : Optional[Any] = self.dp[i - 1][j] __A : int = self.dp[i - 1][j - 1] __A : List[Any] = 1 + min(__A , __A , __A ) return self.dp[m][n] if __name__ == "__main__": UpperCamelCase = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() UpperCamelCase = input('Enter the first string: ').strip() UpperCamelCase = input('Enter the second string: ').strip() print() print(F'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(F'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
714
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _a ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): super().__init__() if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=__UpperCAmelCase , speech_processor=__UpperCAmelCase , vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , ) def __UpperCAmelCase( self , __UpperCAmelCase = "auto" ): if slice_size == "auto": __A : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCAmelCase ) def __UpperCAmelCase( self ): self.enable_attention_slicing(__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase , __UpperCAmelCase=16_000 , __UpperCAmelCase = 512 , __UpperCAmelCase = 512 , __UpperCAmelCase = 50 , __UpperCAmelCase = 7.5 , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 1 , **__UpperCAmelCase , ): __A : List[str] = self.speech_processor.feature_extractor( __UpperCAmelCase , return_tensors="pt" , sampling_rate=__UpperCAmelCase ).input_features.to(self.device ) __A : Any = self.speech_model.generate(__UpperCAmelCase , max_length=480_000 ) __A : List[str] = self.speech_processor.tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , normalize=__UpperCAmelCase )[ 0 ] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __A : Optional[Any] = 1 elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): __A : Dict = len(__UpperCAmelCase ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"`callback_steps` has to be a positive integer but is {callback_steps} of type" F" {type(__UpperCAmelCase )}." ) # get prompt text embeddings __A : Optional[int] = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __A : int = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __A : List[str] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __A : Dict = text_input_ids[:, : self.tokenizer.model_max_length] __A : int = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __A , __A , __A : str = text_embeddings.shape __A : Optional[int] = text_embeddings.repeat(1 , __UpperCAmelCase , 1 ) __A : List[str] = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __A : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __A : List[str] if negative_prompt is None: __A : Dict = [""] * batch_size elif type(__UpperCAmelCase ) is not type(__UpperCAmelCase ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCAmelCase )} !=" F" {type(__UpperCAmelCase )}." ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): __A : Any = [negative_prompt] elif batch_size != len(__UpperCAmelCase ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(__UpperCAmelCase )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: __A : int = negative_prompt __A : int = text_input_ids.shape[-1] __A : Any = self.tokenizer( __UpperCAmelCase , padding="max_length" , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors="pt" , ) __A : int = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __A : Union[str, Any] = uncond_embeddings.shape[1] __A : List[str] = uncond_embeddings.repeat(1 , __UpperCAmelCase , 1 ) __A : int = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __A : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __A : Dict = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __A : Any = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __A : Tuple = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device="cpu" , dtype=__UpperCAmelCase ).to( self.device ) else: __A : List[Any] = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) __A : Tuple = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __A : Optional[int] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __A : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __A : Any = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __A : List[str] = {} if accepts_eta: __A : Tuple = eta for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance __A : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __A : Dict = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) # predict the noise residual __A : List[Any] = self.unet(__UpperCAmelCase , __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: __A , __A : str = noise_pred.chunk(2 ) __A : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __A : Union[str, Any] = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __A : int = 1 / 0.1_82_15 * latents __A : Union[str, Any] = self.vae.decode(__UpperCAmelCase ).sample __A : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __A : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __A : List[str] = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__UpperCAmelCase , nsfw_content_detected=__UpperCAmelCase )
387
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowerCAmelCase_ )] ) lowercase = np.array(lowerCAmelCase_ ) lowercase = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowerCAmelCase_ ) ) , x.transpose() ) , lowerCAmelCase_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = (1, 2, 1) lowercase = (1, 1, 0, 7) lowercase = SARIMAX( lowerCAmelCase_ , exog=lowerCAmelCase_ , order=lowerCAmelCase_ , seasonal_order=lowerCAmelCase_ ) lowercase = model.fit(disp=lowerCAmelCase_ , maxiter=600 , method="nm" ) lowercase = model_fit.predict(1 , len(lowerCAmelCase_ ) , exog=[test_match] ) return result[0] def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase = regressor.predict(lowerCAmelCase_ ) return y_pred[0] def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" train_user.sort() lowercase = np.percentile(lowerCAmelCase_ , 25 ) lowercase = np.percentile(lowerCAmelCase_ , 75 ) lowercase = qa - qa lowercase = qa - (iqr * 0.1) return low_lim def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = 0 lowercase = 0 for i in list_vote: if i > actual_result: lowercase = not_safe + 1 else: if abs(abs(lowerCAmelCase_ ) - abs(lowerCAmelCase_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __lowerCamelCase : List[Any] = [[1_8231, 0.0, 1], [2_2621, 1.0, 2], [1_5675, 0.0, 3], [2_3583, 1.0, 4]] __lowerCamelCase : Tuple = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) __lowerCamelCase : Any = Normalizer().fit_transform(data_input_df.values) # split data __lowerCamelCase : List[str] = normalize_df[:, 2].tolist() __lowerCamelCase : int = normalize_df[:, 0].tolist() __lowerCamelCase : Union[str, Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __lowerCamelCase : str = normalize_df[:, [1, 2]].tolist() __lowerCamelCase : Optional[int] = x[: len(x) - 1] __lowerCamelCase : str = x[len(x) - 1 :] # for linear regression & sarimax __lowerCamelCase : List[Any] = total_date[: len(total_date) - 1] __lowerCamelCase : Tuple = total_user[: len(total_user) - 1] __lowerCamelCase : Tuple = total_match[: len(total_match) - 1] __lowerCamelCase : Dict = total_date[len(total_date) - 1 :] __lowerCamelCase : str = total_user[len(total_user) - 1 :] __lowerCamelCase : Any = total_match[len(total_match) - 1 :] # voting system with forecasting __lowerCamelCase : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __lowerCamelCase : Dict = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
310
'''simple docstring''' from math import sqrt def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = 0 for i in range(1 , int(sqrt(lowerCAmelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(lowerCAmelCase_ ): total += i + n // i elif i == sqrt(lowerCAmelCase_ ): total += i return total - n def UpperCAmelCase_ ( lowerCAmelCase_ = 1_0000 ): """simple docstring""" lowercase = sum( i for i in range(1 , lowerCAmelCase_ ) if sum_of_divisors(sum_of_divisors(lowerCAmelCase_ ) ) == i and sum_of_divisors(lowerCAmelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
310
1
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): # Initialise PyTorch model _UpperCamelCase = BigBirdConfig.from_json_file(lowerCAmelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: _UpperCamelCase = BigBirdForQuestionAnswering(lowerCAmelCase ) else: _UpperCamelCase = BigBirdForPreTraining(lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(lowerCAmelCase , lowerCAmelCase , is_trivia_qa=lowerCAmelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) lowercase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
105
def SCREAMING_SNAKE_CASE ( lowerCAmelCase ): _UpperCamelCase = 0 for ch in input_str: _UpperCamelCase = ord(lowerCAmelCase ) _UpperCamelCase = pow(2 , lowerCAmelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
105
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 lowercase_ = None class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 2 @register_to_config def __init__( self : Optional[Any] , _lowerCAmelCase : float = 0.02 , _lowerCAmelCase : float = 100 , _lowerCAmelCase : float = 1.007 , _lowerCAmelCase : float = 80 , _lowerCAmelCase : float = 0.05 , _lowerCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE_ = sigma_max # setable values SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None # sigma(t_i) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : Optional[int] = None ): return sample def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, torch.device] = None ): SCREAMING_SNAKE_CASE_ = num_inference_steps SCREAMING_SNAKE_CASE_ = np.arange(0 , self.num_inference_steps )[::-1].copy() SCREAMING_SNAKE_CASE_ = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase , dtype=torch.floataa , device=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : float , _lowerCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: SCREAMING_SNAKE_CASE_ = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: SCREAMING_SNAKE_CASE_ = 0 # sample eps ~ N(0, S_noise^2 * I) SCREAMING_SNAKE_CASE_ = self.config.s_noise * randn_tensor(sample.shape , generator=_lowerCAmelCase ).to(sample.device ) SCREAMING_SNAKE_CASE_ = sigma + gamma * sigma SCREAMING_SNAKE_CASE_ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True , ): SCREAMING_SNAKE_CASE_ = sample_hat + sigma_hat * model_output SCREAMING_SNAKE_CASE_ = (sample_hat - pred_original_sample) / sigma_hat SCREAMING_SNAKE_CASE_ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowerCAmelCase , derivative=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : torch.FloatTensor , _lowerCAmelCase : bool = True , ): SCREAMING_SNAKE_CASE_ = sample_prev + sigma_prev * model_output SCREAMING_SNAKE_CASE_ = (sample_prev - pred_original_sample) / sigma_prev SCREAMING_SNAKE_CASE_ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowerCAmelCase , derivative=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): raise NotImplementedError()
31
from __future__ import annotations from typing import TypedDict class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = 42 def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> list[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> BWTTransformDict: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) SCREAMING_SNAKE_CASE_ = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation SCREAMING_SNAKE_CASE_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : int ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: SCREAMING_SNAKE_CASE_ = int(__UpperCAmelCase ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) SCREAMING_SNAKE_CASE_ = [''] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": lowerCamelCase__ : Optional[int] = 'Provide a string that I will generate its BWT transform: ' lowerCamelCase__ : List[str] = input(entry_msg).strip() lowerCamelCase__ : int = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) lowerCamelCase__ : Dict = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
31
1
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
715
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( _a , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Optional[int] =CTRLTokenizer __lowerCAmelCase : int =False __lowerCAmelCase : Union[str, Any] =False def UpperCamelCase__ ( self :Any): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase =['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] _lowercase =dict(zip(snake_case, range(len(snake_case)))) _lowercase =['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] _lowercase ={'unk_token': '<unk>'} _lowercase =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file']) _lowercase =os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file, 'w', encoding='utf-8') as fp: fp.write(json.dumps(snake_case) + '\n') with open(self.merges_file, 'w', encoding='utf-8') as fp: fp.write('\n'.join(snake_case)) def UpperCamelCase__ ( self :Union[str, Any], **snake_case :Optional[Any]): """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname, **snake_case) def UpperCamelCase__ ( self :Tuple, snake_case :str): """simple docstring""" _lowercase ='adapt react readapt apt' _lowercase ='adapt react readapt apt' return input_text, output_text def UpperCamelCase__ ( self :Tuple): """simple docstring""" _lowercase =CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) _lowercase ='adapt react readapt apt' _lowercase ='adapt re@@ a@@ c@@ t re@@ adapt apt'.split() _lowercase =tokenizer.tokenize(snake_case) self.assertListEqual(snake_case, snake_case) _lowercase =tokens + [tokenizer.unk_token] _lowercase =[0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case), snake_case)
557
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) def a ( A__ : np.ndarray , A__ : Union[int, Iterable[int]] , A__ : bool , A__ : int ) -> Tuple[int, int]: """simple docstring""" def constraint_to_multiple_of(A__ : int , A__ : Optional[int] , A__ : Optional[Any]=0 , A__ : str=None ): _lowercase =round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase =math.floor(val / multiple ) * multiple if x < min_val: _lowercase =math.ceil(val / multiple ) * multiple return x _lowercase =(output_size, output_size) if isinstance(_a , _a ) else output_size _lowercase , _lowercase =get_image_size(_a ) _lowercase , _lowercase =output_size # determine new height and width _lowercase =output_height / input_height _lowercase =output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase =scale_width else: # fit height _lowercase =scale_height _lowercase =constraint_to_multiple_of(scale_height * input_height , multiple=_a ) _lowercase =constraint_to_multiple_of(scale_width * input_width , multiple=_a ) return (new_height, new_width) class __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): _a = ['pixel_values'] def __init__( self , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = PILImageResampling.BILINEAR , lowerCAmelCase = False , lowerCAmelCase = 1 , lowerCAmelCase = True , lowerCAmelCase = 1 / 255 , lowerCAmelCase = True , lowerCAmelCase = None , lowerCAmelCase = None , **lowerCAmelCase , ) -> str: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) _lowercase =size if size is not None else {'height': 384, 'width': 384} _lowercase =get_size_dict(SCREAMING_SNAKE_CASE__ ) _lowercase =do_resize _lowercase =size _lowercase =keep_aspect_ratio _lowercase =ensure_multiple_of _lowercase =resample _lowercase =do_rescale _lowercase =rescale_factor _lowercase =do_normalize _lowercase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase =image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = False , lowerCAmelCase = 1 , lowerCAmelCase = PILImageResampling.BICUBIC , lowerCAmelCase = None , **lowerCAmelCase , ) -> int: '''simple docstring''' _lowercase =get_size_dict(SCREAMING_SNAKE_CASE__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _lowercase =get_resize_output_image_size( SCREAMING_SNAKE_CASE__ , output_size=(size['height'], size['width']) , keep_aspect_ratio=SCREAMING_SNAKE_CASE__ , multiple=SCREAMING_SNAKE_CASE__ , ) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ) -> List[str]: '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = None , **lowerCAmelCase , ) -> Optional[Any]: '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = None , lowerCAmelCase = ChannelDimension.FIRST , **lowerCAmelCase , ) -> str: '''simple docstring''' _lowercase =do_resize if do_resize is not None else self.do_resize _lowercase =size if size is not None else self.size _lowercase =get_size_dict(SCREAMING_SNAKE_CASE__ ) _lowercase =keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase =ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase =resample if resample is not None else self.resample _lowercase =do_rescale if do_rescale is not None else self.do_rescale _lowercase =rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase =do_normalize if do_normalize is not None else self.do_normalize _lowercase =image_mean if image_mean is not None else self.image_mean _lowercase =image_std if image_std is not None else self.image_std _lowercase =make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowercase =[to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: _lowercase =[self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: _lowercase =[self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: _lowercase =[self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] _lowercase =[to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] _lowercase ={'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ) -> Optional[int]: '''simple docstring''' _lowercase =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(SCREAMING_SNAKE_CASE__ ): _lowercase =target_sizes.numpy() _lowercase =[] for idx in range(len(SCREAMING_SNAKE_CASE__ ) ): _lowercase =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=SCREAMING_SNAKE_CASE__ ) _lowercase =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE__ ) else: _lowercase =logits.argmax(dim=1 ) _lowercase =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
291
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _a : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Any=99 , SCREAMING_SNAKE_CASE__ : str=64 , SCREAMING_SNAKE_CASE__ : Any=5 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : int=64 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=5_12 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def _UpperCamelCase ( self : Dict ): return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Optional[Any] ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = MPNetModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = MPNetForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = MPNetForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.num_choices lowerCamelCase__ = MPNetForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = MPNetForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs lowerCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Any = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) a_ : Optional[Any] = ( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) a_ : Optional[Any] = False a_ : Any = True def _UpperCamelCase ( self : str ): lowerCamelCase__ = MPNetModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : int ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*SCREAMING_SNAKE_CASE__ ) @require_torch class _a ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = MPNetModel.from_pretrained('microsoft/mpnet-base' ) lowerCamelCase__ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ )[0] lowerCamelCase__ = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
510
0
def UpperCamelCase_ ( a_ , a_ , a_ ) ->int: if exponent == 1: return base if exponent % 2 == 0: A =_modexpt(a_ , exponent // 2 , a_ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(a_ , exponent - 1 , a_ )) % modulo_value def UpperCamelCase_ ( a_ = 1777 , a_ = 1855 , a_ = 8 ) ->int: A =base for _ in range(1 , a_ ): A =_modexpt(a_ , a_ , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
689
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __a = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __a = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ __a = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: 'score' (float): The chrF (chrF++) score, 'char_order' (int): The character n-gram order, 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, 'beta' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): """simple docstring""" def _a ( self : Any ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def _a ( self : str , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : int = CHRF.CHAR_ORDER , snake_case__ : int = CHRF.WORD_ORDER , snake_case__ : int = CHRF.BETA , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , ): """simple docstring""" A =len(references[0] ) if any(len(snake_case__ ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A =[[refs[i] for refs in references] for i in range(snake_case__ )] A =CHRF(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A =sb_chrf.corpus_score(snake_case__ , snake_case__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
689
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[Any] = ["""ConvNextFeatureExtractor"""] SCREAMING_SNAKE_CASE : Dict = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
141
'''simple docstring''' import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a =["input_ids", "attention_mask"] def __init__( self , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase=125 , lowerCamelCase=None , **lowerCamelCase , ) ->None: '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __a = [F"""<extra_id_{i}>""" for i in range(lowerCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __a = len(set(filter(lambda lowerCamelCase : bool('extra_id' in str(lowerCamelCase ) ) , lowerCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token __a = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token super().__init__( eos_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , extra_ids=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) __a = extra_ids __a = 2**8 # utf is 8 bits # define special tokens dict __a = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __a = len(self.special_tokens_encoder ) __a = len(lowerCamelCase ) for i, token in enumerate(lowerCamelCase ): __a = self.vocab_size + i - n __a = {v: k for k, v in self.special_tokens_encoder.items()} @property def __UpperCamelCase ( self ) ->Any: '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCamelCase )) + [1] return ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) + [1] def __UpperCamelCase ( self , lowerCamelCase ) ->List[int]: '''simple docstring''' if len(lowerCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None ) ->List[int]: '''simple docstring''' __a = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None ) ->List[int]: '''simple docstring''' __a = self._add_eos_if_not_present(lowerCamelCase ) if token_ids_a is None: return token_ids_a else: __a = self._add_eos_if_not_present(lowerCamelCase ) return token_ids_a + token_ids_a def __UpperCamelCase ( self , lowerCamelCase ) ->List[str]: '''simple docstring''' __a = [chr(lowerCamelCase ) for i in text.encode('utf-8' )] return tokens def __UpperCamelCase ( self , lowerCamelCase ) ->Optional[Any]: '''simple docstring''' if token in self.special_tokens_encoder: __a = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __a = self.added_tokens_encoder[token] elif len(lowerCamelCase ) != 1: __a = self.unk_token_id else: __a = ord(lowerCamelCase ) + self._num_special_tokens return token_id def __UpperCamelCase ( self , lowerCamelCase ) ->Tuple: '''simple docstring''' if index in self.special_tokens_decoder: __a = self.special_tokens_decoder[index] else: __a = chr(index - self._num_special_tokens ) return token def __UpperCamelCase ( self , lowerCamelCase ) ->Optional[Any]: '''simple docstring''' __a = B'' for token in tokens: if token in self.special_tokens_decoder: __a = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: __a = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: __a = token.encode('utf-8' ) elif token in self.added_tokens_encoder: __a = token.encode('utf-8' ) else: __a = bytes([ord(lowerCamelCase )] ) bstring += tok_string __a = bstring.decode('utf-8' , errors='ignore' ) return string def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None ) ->Tuple[str]: '''simple docstring''' return ()
448
0
'''simple docstring''' def _a ( __UpperCamelCase ): if len(__UpperCamelCase ) <= 1: return [tuple(__UpperCamelCase )] a_ : List[Any] = [] def generate(__UpperCamelCase , __UpperCamelCase ): a_ : Optional[Any] = [0] * n res.append(tuple(__UpperCamelCase ) ) a_ : Optional[Any] = 0 while i < n: if c[i] < i: if i % 2 == 0: a_ : Optional[int] = arr[i], arr[0] else: a_ : Dict = arr[i], arr[c[i]] res.append(tuple(__UpperCamelCase ) ) c[i] += 1 a_ : List[str] = 0 else: a_ : List[Any] = 0 i += 1 generate(len(__UpperCamelCase ) , __UpperCamelCase ) return res if __name__ == "__main__": __lowerCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __lowerCamelCase = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
720
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowerCamelCase = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __lowerCamelCase = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __lowerCamelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __lowerCamelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __lowerCamelCase = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __lowerCamelCase = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __lowerCamelCase = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def _a ( ): a_ , a_ : List[Any] = randrange(len(__UpperCamelCase ) ), randrange(len(__UpperCamelCase ) ) a_ : List[Any] = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] a_ , a_ : Optional[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _a ( __UpperCamelCase = 1_0_0 ): return (generate_random_hand() for _ in range(__UpperCamelCase )) @pytest.mark.parametrize("""hand, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): a_ : Union[str, Any] = PokerHand(__UpperCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase ).compare_with(PokerHand(__UpperCamelCase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase ).compare_with(PokerHand(__UpperCamelCase ) ) == expected def _a ( ): a_ : int = [PokerHand(__UpperCamelCase ) for hand in SORTED_HANDS] a_ : Dict = poker_hands.copy() shuffle(__UpperCamelCase ) a_ : Dict = chain(sorted(__UpperCamelCase ) ) for index, hand in enumerate(__UpperCamelCase ): assert hand == poker_hands[index] def _a ( ): # Test that five high straights are compared correctly. a_ : str = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=__UpperCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _a ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a_ : List[str] = PokerHand("""2C 4S AS 3D 5C""" ) a_ : Dict = True a_ : List[Any] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _a ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a_ : Tuple = 0 a_ : Optional[Any] = os.path.abspath(os.path.dirname(__UpperCamelCase ) ) a_ : Optional[int] = os.path.join(__UpperCamelCase , """poker_hands.txt""" ) with open(__UpperCamelCase ) as file_hand: for line in file_hand: a_ : Dict = line[:1_4].strip() a_ : int = line[1_5:].strip() a_ , a_ : Optional[int] = PokerHand(__UpperCamelCase ), PokerHand(__UpperCamelCase ) a_ : str = player.compare_with(__UpperCamelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
478
0
UpperCAmelCase_ = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) UpperCAmelCase_ = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 1_2, """Pm""": 1_5, """Em""": 1_8, """Zm""": 2_1, """Ym""": 2_4, } def SCREAMING_SNAKE_CASE_ ( _snake_case :float , _snake_case :str , _snake_case :str ) -> float: _A = from_type.lower().strip('''s''' ) _A = to_type.lower().strip('''s''' ) _A = UNIT_SYMBOL.get(_snake_case , _snake_case ) _A = UNIT_SYMBOL.get(_snake_case , _snake_case ) if from_sanitized not in METRIC_CONVERSION: _A = ( F'''Invalid \'from_type\' value: {from_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_snake_case )}''' ) raise ValueError(_snake_case ) if to_sanitized not in METRIC_CONVERSION: _A = ( F'''Invalid \'to_type\' value: {to_type!r}.\n''' F'''Conversion abbreviations are: {', '.join(_snake_case )}''' ) raise ValueError(_snake_case ) _A = METRIC_CONVERSION[from_sanitized] _A = METRIC_CONVERSION[to_sanitized] _A = 1 if from_exponent > to_exponent: _A = from_exponent - to_exponent else: _A = -(to_exponent - from_exponent) return value * pow(10 , _snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
2
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = ["""image_processor""", """tokenizer"""] __snake_case = """CLIPImageProcessor""" __snake_case = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self: Union[str, Any] , a: int=None , a: List[str]=None , **a: str ): __lowerCamelCase : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , a , ) __lowerCamelCase : str = kwargs.pop('feature_extractor' ) __lowerCamelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(a , a ) def __call__( self: Optional[int] , a: List[Any]=None , a: List[str]=None , a: int=None , **a: List[Any] ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __lowerCamelCase : Dict = self.tokenizer(a , return_tensors=a , **a ) if images is not None: __lowerCamelCase : Tuple = self.image_processor(a , return_tensors=a , **a ) if text is not None and images is not None: __lowerCamelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a ) , tensor_type=a ) def _snake_case ( self: List[Any] , *a: Optional[Any] , **a: int ): return self.tokenizer.batch_decode(*a , **a ) def _snake_case ( self: Any , *a: Union[str, Any] , **a: Optional[Any] ): return self.tokenizer.decode(*a , **a ) @property def _snake_case ( self: List[str] ): __lowerCamelCase : Optional[Any] = self.tokenizer.model_input_names __lowerCamelCase : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
669
0
import qiskit def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = qiskit.Aer.get_backend("aer_simulator" ) lowerCamelCase_ = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator lowerCamelCase_ = qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1_0_0_0 ) # Return the histogram data of the results of the experiment return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": __A =half_adder(1, 1) print(F"""Half Adder Output Qubit Counts: {counts}""")
313
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 class _SCREAMING_SNAKE_CASE ( nn.Module ): lowerCAmelCase__ = 42 lowerCAmelCase__ = (16, 32, 96, 2_56) lowerCAmelCase__ = jnp.floataa def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase_ = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase_ = self.block_out_channels[i] lowerCamelCase_ = self.block_out_channels[i + 1] lowerCamelCase_ = nn.Conv( lowercase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase ) lowerCamelCase_ = nn.Conv( lowercase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowercase ) lowerCamelCase_ = blocks lowerCamelCase_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase ) -> Optional[Any]: lowerCamelCase_ = self.conv_in(lowercase ) lowerCamelCase_ = nn.silu(lowercase ) for block in self.blocks: lowerCamelCase_ = block(lowercase ) lowerCamelCase_ = nn.silu(lowercase ) lowerCamelCase_ = self.conv_out(lowercase ) return embedding @flax_register_to_config class _SCREAMING_SNAKE_CASE ( nn.Module , snake_case_ , snake_case_ ): lowerCAmelCase__ = 32 lowerCAmelCase__ = 4 lowerCAmelCase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCAmelCase__ = False lowerCAmelCase__ = (3_20, 6_40, 12_80, 12_80) lowerCAmelCase__ = 2 lowerCAmelCase__ = 8 lowerCAmelCase__ = None lowerCAmelCase__ = 12_80 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = False lowerCAmelCase__ = jnp.floataa lowerCAmelCase__ = True lowerCAmelCase__ = 0 lowerCAmelCase__ = "rgb" lowerCAmelCase__ = (16, 32, 96, 2_56) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> FrozenDict: # init input tensors lowerCamelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase_ = jnp.zeros(lowercase , dtype=jnp.floataa ) lowerCamelCase_ = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase_ = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase_ = jnp.zeros(lowercase , dtype=jnp.floataa ) lowerCamelCase_ , lowerCamelCase_ = jax.random.split(lowercase ) lowerCamelCase_ = {"params": params_rng, "dropout": dropout_rng} return self.init(lowercase , lowercase , lowercase , lowercase , lowercase )["params"] def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.block_out_channels lowerCamelCase_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase_ = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase_ = FlaxTimestepEmbedding(lowercase , dtype=self.dtype ) lowerCamelCase_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCamelCase_ = self.only_cross_attention if isinstance(lowercase , lowercase ): lowerCamelCase_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowercase , lowercase ): lowerCamelCase_ = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = block_out_channels[0] lowerCamelCase_ = nn.Conv( lowercase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase_ = output_channel lowerCamelCase_ = block_out_channels[i] lowerCamelCase_ = i == len(lowercase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase_ = FlaxCrossAttnDownBlockaD( in_channels=lowercase , out_channels=lowercase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCamelCase_ = FlaxDownBlockaD( in_channels=lowercase , out_channels=lowercase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowercase ) for _ in range(self.layers_per_block ): lowerCamelCase_ = nn.Conv( lowercase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase ) if not is_final_block: lowerCamelCase_ = nn.Conv( lowercase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowercase ) lowerCamelCase_ = down_blocks lowerCamelCase_ = controlnet_down_blocks # mid lowerCamelCase_ = block_out_channels[-1] lowerCamelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=lowercase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCamelCase_ = nn.Conv( lowercase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowercase , lowercase , lowercase , lowercase , lowercase = 1.0 , lowercase = True , lowercase = False , ) -> Union[FlaxControlNetOutput, Tuple]: lowerCamelCase_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase_ = jnp.flip(lowercase , axis=1 ) # 1. time if not isinstance(lowercase , jnp.ndarray ): lowerCamelCase_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowercase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase_ = jnp.expand_dims(lowercase , 0 ) lowerCamelCase_ = self.time_proj(lowercase ) lowerCamelCase_ = self.time_embedding(lowercase ) # 2. pre-process lowerCamelCase_ = jnp.transpose(lowercase , (0, 2, 3, 1) ) lowerCamelCase_ = self.conv_in(lowercase ) lowerCamelCase_ = jnp.transpose(lowercase , (0, 2, 3, 1) ) lowerCamelCase_ = self.controlnet_cond_embedding(lowercase ) sample += controlnet_cond # 3. down lowerCamelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(lowercase , lowercase ): lowerCamelCase_ , lowerCamelCase_ = down_block(lowercase , lowercase , lowercase , deterministic=not train ) else: lowerCamelCase_ , lowerCamelCase_ = down_block(lowercase , lowercase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase_ = self.mid_block(lowercase , lowercase , lowercase , deterministic=not train ) # 5. contronet blocks lowerCamelCase_ = () for down_block_res_sample, controlnet_block in zip(lowercase , self.controlnet_down_blocks ): lowerCamelCase_ = controlnet_block(lowercase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase_ = controlnet_down_block_res_samples lowerCamelCase_ = self.controlnet_mid_block(lowercase ) # 6. scaling lowerCamelCase_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowercase , mid_block_res_sample=lowercase )
313
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class a ( lowercase__ ): """simple docstring""" a : Union[List[PIL.Image.Image], np.ndarray] a : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
63
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): a__ : Tuple = ["""pixel_values"""] def __init__(self : int , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : int = 8 , **__a : int , ): super().__init__(**__a ) UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_pad UpperCAmelCase_ = pad_size def _lowercase (self : Optional[int] , __a : np.ndarray , __a : float , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] ): return rescale(__a , scale=__a , data_format=__a , **__a ) def _lowercase (self : Optional[int] , __a : np.ndarray , __a : int , __a : Optional[Union[str, ChannelDimension]] = None ): UpperCAmelCase_ , UpperCAmelCase_ = get_image_size(__a ) UpperCAmelCase_ = (old_height // size + 1) * size - old_height UpperCAmelCase_ = (old_width // size + 1) * size - old_width return pad(__a , ((0, pad_height), (0, pad_width)) , mode="symmetric" , data_format=__a ) def _lowercase (self : Tuple , __a : ImageInput , __a : Optional[bool] = None , __a : Optional[float] = None , __a : Optional[bool] = None , __a : Optional[int] = None , __a : Optional[Union[str, TensorType]] = None , __a : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__a : List[str] , ): UpperCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ = do_pad if do_pad is not None else self.do_pad UpperCAmelCase_ = pad_size if pad_size is not None else self.pad_size UpperCAmelCase_ = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase_ = [to_numpy_array(__a ) for image in images] if do_rescale: UpperCAmelCase_ = [self.rescale(image=__a , scale=__a ) for image in images] if do_pad: UpperCAmelCase_ = [self.pad(__a , size=__a ) for image in images] UpperCAmelCase_ = [to_channel_dimension_format(__a , __a ) for image in images] UpperCAmelCase_ = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
78
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""MobileViTFeatureExtractor"""] __lowerCAmelCase = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
719
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
"""simple docstring""" def lowerCAmelCase__ ( __magic_name__ = 1_0 ) ->str: if not isinstance(__magic_name__ , __magic_name__ ) or n < 0: raise ValueError("Invalid input" ) __lowercase = 1_0**n __lowercase = 2_8_4_3_3 * (pow(2 , 7_8_3_0_4_5_7 , __magic_name__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
118
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _lowercase = get_logger(__name__) class __a ( enum.Enum ): '''simple docstring''' _lowerCamelCase : Tuple = """all_checks""" _lowerCamelCase : Optional[int] = """basic_checks""" _lowerCamelCase : str = """no_checks""" class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__=None ) ->Union[str, Any]: if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(__magic_name__ ) - set(__magic_name__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__magic_name__ ) - set(__magic_name__ ) ) ) if len(set(__magic_name__ ) - set(__magic_name__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(__magic_name__ ) - set(__magic_name__ ) ) ) __lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowercase = " for " + verification_name if verification_name is not None else "" if len(__magic_name__ ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' class __a ( __a ): '''simple docstring''' def lowerCAmelCase__ ( __magic_name__ , __magic_name__ ) ->Any: if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(__magic_name__ ) - set(__magic_name__ ) ) > 0: raise ExpectedMoreSplits(str(set(__magic_name__ ) - set(__magic_name__ ) ) ) if len(set(__magic_name__ ) - set(__magic_name__ ) ) > 0: raise UnexpectedSplits(str(set(__magic_name__ ) - set(__magic_name__ ) ) ) __lowercase = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__magic_name__ ) > 0: raise NonMatchingSplitsSizesError(str(__magic_name__ ) ) logger.info("All the splits matched successfully." ) def lowerCAmelCase__ ( __magic_name__ , __magic_name__ = True ) ->dict: if record_checksum: __lowercase = shaaaa() with open(__magic_name__ , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , b"" ): m.update(__magic_name__ ) __lowercase = m.hexdigest() else: __lowercase = None return {"num_bytes": os.path.getsize(__magic_name__ ), "checksum": checksum} def lowerCAmelCase__ ( __magic_name__ ) ->List[str]: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
118
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Optional[int] = logging.get_logger() @dataclass class a : SCREAMING_SNAKE_CASE__ : nn.Module SCREAMING_SNAKE_CASE__ : List[nn.Module] = field(default_factory=__lowercase ) SCREAMING_SNAKE_CASE__ : list = field(default_factory=__lowercase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = len(list(m.modules() ) ) == 1 or isinstance(_lowerCAmelCase , nn.Convad ) or isinstance(_lowerCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(_lowerCAmelCase ) def __call__( self , _lowerCAmelCase ): """simple docstring""" for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_lowerCAmelCase ) [x.remove() for x in self.handles] return self @property def snake_case_ ( self ): """simple docstring""" return list(filter(lambda _lowerCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class a : SCREAMING_SNAKE_CASE__ : nn.Module SCREAMING_SNAKE_CASE__ : nn.Module SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : List = field(default_factory=__lowercase ) SCREAMING_SNAKE_CASE__ : List = field(default_factory=__lowercase ) def __call__( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = Tracker(self.dest )(_lowerCAmelCase ).parametrized __SCREAMING_SNAKE_CASE: Tuple = Tracker(self.src )(_lowerCAmelCase ).parametrized __SCREAMING_SNAKE_CASE: Dict = list(filter(lambda _lowerCAmelCase : type(_lowerCAmelCase ) not in self.src_skip , _lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Dict = list(filter(lambda _lowerCAmelCase : type(_lowerCAmelCase ) not in self.dest_skip , _lowerCAmelCase ) ) if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise Exception( f"""Numbers of operations are different. Source module has {len(_lowerCAmelCase )} operations while""" f""" destination module has {len(_lowerCAmelCase )}.""" ) for dest_m, src_m in zip(_lowerCAmelCase , _lowerCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : ResNetConfig , UpperCamelCase__ : Path , UpperCamelCase__ : bool = True ) -> Optional[Any]: """simple docstring""" print(F"""Converting {name}...""" ) with torch.no_grad(): __SCREAMING_SNAKE_CASE: Dict = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ).eval() __SCREAMING_SNAKE_CASE: Dict = ResNetForImageClassification(UpperCamelCase__ ).eval() __SCREAMING_SNAKE_CASE: Tuple = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: List[str] = torch.randn((1, 3, 224, 224) ) module_transfer(UpperCamelCase__ ) assert torch.allclose(from_model(UpperCamelCase__ ) , our_model(UpperCamelCase__ ).logits ), "The model logits don't match the original one." __SCREAMING_SNAKE_CASE: Tuple = F"""resnet{"-".join(name.split("resnet" ) )}""" print(UpperCamelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=UpperCamelCase__ , ) # we can use the convnext one __SCREAMING_SNAKE_CASE: Tuple = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=UpperCamelCase__ , ) print(F"""Pushed {checkpoint_name}""" ) def lowerCAmelCase ( UpperCamelCase__ : Path , UpperCamelCase__ : str = None , UpperCamelCase__ : bool = True ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = '''imagenet-1k-id2label.json''' __SCREAMING_SNAKE_CASE: Optional[int] = 1_000 __SCREAMING_SNAKE_CASE: Optional[int] = (1, num_labels) __SCREAMING_SNAKE_CASE: Any = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE: Any = num_labels __SCREAMING_SNAKE_CASE: List[str] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE: Tuple = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE: List[Any] = idalabel __SCREAMING_SNAKE_CASE: Any = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE: int = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: List[str] = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported resnet* architecture,""" """ currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCAmelCase : Dict = parser.parse_args() lowerCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
146
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class a : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=4 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase=True , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = parent __SCREAMING_SNAKE_CASE: List[str] = batch_size __SCREAMING_SNAKE_CASE: Any = seq_length __SCREAMING_SNAKE_CASE: List[str] = is_training __SCREAMING_SNAKE_CASE: int = use_input_mask __SCREAMING_SNAKE_CASE: Union[str, Any] = use_token_type_ids __SCREAMING_SNAKE_CASE: Optional[int] = use_labels __SCREAMING_SNAKE_CASE: List[str] = vocab_size __SCREAMING_SNAKE_CASE: Any = hidden_size __SCREAMING_SNAKE_CASE: Optional[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE: int = num_attention_heads __SCREAMING_SNAKE_CASE: Any = intermediate_multiple_size __SCREAMING_SNAKE_CASE: Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE: str = hidden_dropout __SCREAMING_SNAKE_CASE: Optional[Any] = attention_dropout __SCREAMING_SNAKE_CASE: Optional[int] = weight_tying __SCREAMING_SNAKE_CASE: List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE: Optional[Any] = type_vocab_size __SCREAMING_SNAKE_CASE: List[str] = type_sequence_label_size __SCREAMING_SNAKE_CASE: Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE: List[Any] = num_labels __SCREAMING_SNAKE_CASE: List[str] = num_choices __SCREAMING_SNAKE_CASE: List[Any] = scope def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE: Tuple = None if self.use_input_mask: __SCREAMING_SNAKE_CASE: Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE: Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE: Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def snake_case_ ( self ): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: int = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE: Any = True return config, input_ids, input_mask, token_labels def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: str = GPTNeoXJapaneseModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Optional[Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = True __SCREAMING_SNAKE_CASE: Union[str, Any] = GPTNeoXJapaneseModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Dict = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = GPTNeoXJapaneseForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __SCREAMING_SNAKE_CASE: Dict = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = True __SCREAMING_SNAKE_CASE: Optional[int] = GPTNeoXJapaneseForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() # first forward pass __SCREAMING_SNAKE_CASE: Union[str, Any] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , use_cache=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE: int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE: Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE: str = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE: Any = torch.cat([input_mask, next_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE: List[str] = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: List[Any] = output_from_no_past['''hidden_states'''][0] __SCREAMING_SNAKE_CASE: Optional[int] = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , output_hidden_states=_lowerCAmelCase , )['''hidden_states'''][0] # select random slice __SCREAMING_SNAKE_CASE: Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE: List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE: Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: str = config_and_inputs __SCREAMING_SNAKE_CASE: Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( __lowercase ,__lowercase ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ : List[str] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : List[str] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Tuple = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : List[Any] = False def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = GPTNeoXJapaneseModelTester(self ) __SCREAMING_SNAKE_CASE: str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def snake_case_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: int = self.model_tester.prepare_config_and_inputs_for_decoder() __SCREAMING_SNAKE_CASE: int = None self.model_tester.create_and_check_model_as_decoder(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_lowerCAmelCase ) @slow def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = '''abeja/gpt-neox-japanese-2.7b''' __SCREAMING_SNAKE_CASE: List[Any] = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] __SCREAMING_SNAKE_CASE: List[Any] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] __SCREAMING_SNAKE_CASE: List[str] = GPTNeoXJapaneseTokenizer.from_pretrained(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = GPTNeoXJapaneseForCausalLM.from_pretrained(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = [] for prompt in prompts: __SCREAMING_SNAKE_CASE: Any = tokenizer(_lowerCAmelCase , return_tensors='''pt''' ).input_ids __SCREAMING_SNAKE_CASE: int = model.generate(_lowerCAmelCase , max_length=50 ) __SCREAMING_SNAKE_CASE: str = tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) predicted_outputs += generated_string self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase )
146
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: lowerCamelCase : List[str] = None lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowerCamelCase : List[Any] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } lowerCamelCase : Tuple = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } lowerCamelCase : List[str] = "▁" class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase = BigBirdTokenizer UpperCamelCase = ['''input_ids''', '''attention_mask'''] UpperCamelCase = [] def __init__( self : Union[str, Any] , A_ : List[str]=None , A_ : Union[str, Any]=None , A_ : Tuple="<unk>" , A_ : List[Any]="<s>" , A_ : str="</s>" , A_ : Optional[int]="<pad>" , A_ : List[Any]="[SEP]" , A_ : Dict="[MASK]" , A_ : List[Any]="[CLS]" , **A_ : Tuple , ) -> int: """simple docstring""" lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , **A_ , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True def a__ ( self : Optional[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self : Optional[Any] , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def a__ ( self : Tuple , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self : List[str] , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
70
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A: '''simple docstring''' def __init__( self : List[Any] , A_ : Dict , A_ : Union[str, Any]=13 , A_ : List[Any]=30 , A_ : Optional[Any]=2 , A_ : List[str]=3 , A_ : List[str]=True , A_ : Dict=True , A_ : List[Any]=32 , A_ : Any=2 , A_ : Any=4 , A_ : Optional[int]=37 , A_ : Dict="gelu" , A_ : List[Any]=0.1 , A_ : Optional[int]=0.1 , A_ : Union[str, Any]=10 , A_ : Optional[Any]=0.02 , A_ : List[Any]=3 , A_ : str=None , ) -> str: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase_ = (image_size // patch_size) ** 2 lowerCamelCase_ = num_patches + 1 def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def a__ ( self : List[Any] ) -> Any: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , ) def a__ ( self : Any , A_ : int , A_ : int , A_ : int ) -> List[Any]: """simple docstring""" lowerCamelCase_ = TFViTModel(config=A_ ) lowerCamelCase_ = model(A_ , training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. lowerCamelCase_ = self.image_size // 2 lowerCamelCase_ = pixel_values[:, :, :image_size, :image_size] lowerCamelCase_ = model(A_ , interpolate_pos_encoding=A_ , training=A_ ) lowerCamelCase_ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def a__ ( self : List[Any] , A_ : List[Any] , A_ : Any , A_ : Any ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = TFViTForImageClassification(A_ ) lowerCamelCase_ = model(A_ , labels=A_ , training=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. lowerCamelCase_ = self.image_size // 2 lowerCamelCase_ = pixel_values[:, :, :image_size, :image_size] lowerCamelCase_ = model(A_ , interpolate_pos_encoding=A_ , training=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = TFViTForImageClassification(A_ ) lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCamelCase = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = TFViTModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def a__ ( self : int ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def a__ ( self : List[str] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" pass def a__ ( self : str ) -> List[str]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , tf.keras.layers.Layer ) ) def a__ ( self : List[Any] ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(A_ ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(A_ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A( unittest.TestCase ): '''simple docstring''' @cached_property def a__ ( self : int ) -> Tuple: """simple docstring""" return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def a__ ( self : List[str] ) -> str: """simple docstring""" lowerCamelCase_ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=A_ , return_tensors='tf' ) # forward pass lowerCamelCase_ = model(**A_ ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) lowerCamelCase_ = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , A_ , atol=1E-4 )
70
1
import os import sys import transformers __lowerCAmelCase : str = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
705
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self :List[str] , *__magic_name__ :str , __magic_name__ :Dict=None , __magic_name__ :Dict=None , **__magic_name__ :Dict ) -> str: '''simple docstring''' super().__init__(*__magic_name__ , **__magic_name__ ) a__ = eval_examples a__ = post_process_function def _UpperCamelCase ( self :Tuple , __magic_name__ :Optional[Dataset] = None , __magic_name__ :int=None , __magic_name__ :Optional[List[str]] = None , __magic_name__ :str = "eval" , **__magic_name__ :Optional[Any] , ) -> Dict[str, float]: '''simple docstring''' a__ = gen_kwargs.copy() a__ = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) a__ = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) a__ = gen_kwargs a__ = self.eval_dataset if eval_dataset is None else eval_dataset a__ = self.get_eval_dataloader(__magic_name__ ) a__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a__ = self.compute_metrics a__ = None a__ = time.time() a__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a__ = eval_loop( __magic_name__ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__magic_name__ , metric_key_prefix=__magic_name__ , ) finally: a__ = compute_metrics a__ = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( __magic_name__ , __magic_name__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a__ = self.post_process_function(__magic_name__ , __magic_name__ , __magic_name__ ) a__ = self.compute_metrics(__magic_name__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): a__ = metrics.pop(__magic_name__ ) metrics.update(output.metrics ) else: a__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__magic_name__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , __magic_name__ ) return metrics def _UpperCamelCase ( self :List[Any] , __magic_name__ :List[str] , __magic_name__ :str , __magic_name__ :Optional[int]=None , __magic_name__ :str = "test" , **__magic_name__ :Union[str, Any] ) -> Any: '''simple docstring''' a__ = gen_kwargs.copy() a__ = self.get_test_dataloader(__magic_name__ ) # Temporarily disable metric computation, we will do it in the loop here. a__ = self.compute_metrics a__ = None a__ = time.time() a__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a__ = eval_loop( __magic_name__ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__magic_name__ , metric_key_prefix=__magic_name__ , ) finally: a__ = compute_metrics a__ = self.args.eval_batch_size * self.args.world_size if F"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[F"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( __magic_name__ , __magic_name__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output a__ = self.post_process_function(__magic_name__ , __magic_name__ , __magic_name__ , '''predict''' ) a__ = self.compute_metrics(__magic_name__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): a__ = metrics.pop(__magic_name__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__magic_name__ )
158
0
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def snake_case_ ( A_ : Optional[int], A_ : str ): '''simple docstring''' _lowerCamelCase : Dict = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' _lowerCamelCase : Dict = Image.open(requests.get(A_, stream=A_ ).raw ).convert('''RGB''' ) _lowerCamelCase : Optional[int] = transforms.Compose( [ transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711) ), ] ) _lowerCamelCase : List[Any] = transform(A_ ).unsqueeze(0 ).to(A_ ) return image def snake_case_ ( A_ : Union[str, Any] ): '''simple docstring''' if "visual_encoder" in key: _lowerCamelCase : Dict = re.sub('''visual_encoder*''', '''vision_model.encoder''', A_ ) if "blocks" in key: _lowerCamelCase : Tuple = re.sub(R'''blocks''', '''layers''', A_ ) if "attn" in key: _lowerCamelCase : str = re.sub(R'''attn''', '''self_attn''', A_ ) if "norm1" in key: _lowerCamelCase : Optional[int] = re.sub(R'''norm1''', '''layer_norm1''', A_ ) if "norm2" in key: _lowerCamelCase : int = re.sub(R'''norm2''', '''layer_norm2''', A_ ) if "encoder.norm" in key: _lowerCamelCase : List[str] = re.sub(R'''encoder.norm''', '''post_layernorm''', A_ ) if "encoder.patch_embed.proj" in key: _lowerCamelCase : str = re.sub(R'''encoder.patch_embed.proj''', '''embeddings.patch_embedding''', A_ ) if "encoder.pos_embed" in key: _lowerCamelCase : List[str] = re.sub(R'''encoder.pos_embed''', '''embeddings.position_embedding''', A_ ) if "encoder.cls_token" in key: _lowerCamelCase : int = re.sub(R'''encoder.cls_token''', '''embeddings.class_embedding''', A_ ) if "self_attn" in key: _lowerCamelCase : Any = re.sub(R'''self_attn.proj''', '''self_attn.projection''', A_ ) return key @torch.no_grad() def snake_case_ ( A_ : Union[str, Any], A_ : Any=None ): '''simple docstring''' if config_path is not None: _lowerCamelCase : str = BlipConfig.from_pretrained(A_ ) else: _lowerCamelCase : Any = BlipConfig(projection_dim=5_12, text_config={}, vision_config={} ) _lowerCamelCase : Optional[int] = BlipForConditionalGeneration(A_ ).eval() _lowerCamelCase : Union[str, Any] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' _lowerCamelCase : Tuple = blip_decoder(pretrained=A_, image_size=3_84, vit='''base''' ) _lowerCamelCase : str = pt_model.eval() _lowerCamelCase : Tuple = pt_model.state_dict() for key in modified_state_dict.copy(): _lowerCamelCase : int = modified_state_dict.pop(A_ ) _lowerCamelCase : int = rename_key(A_ ) _lowerCamelCase : List[str] = value hf_model.load_state_dict(A_ ) _lowerCamelCase : Union[str, Any] = 3_84 _lowerCamelCase : Optional[int] = load_demo_image(image_size=A_, device='''cpu''' ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) _lowerCamelCase : Optional[int] = tokenizer(['''a picture of'''] ).input_ids _lowerCamelCase : int = hf_model.generate(A_, A_ ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] _lowerCamelCase : Dict = hf_model.generate(A_ ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(A_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _lowerCamelCase : Union[str, Any] = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) _lowerCamelCase : Union[str, Any] = blip_vqa(pretrained=A_, image_size=A_, vit='''base''' ) vqa_model.eval() _lowerCamelCase : Any = vqa_model.state_dict() for key in modified_state_dict.copy(): _lowerCamelCase : Any = modified_state_dict.pop(A_ ) _lowerCamelCase : Tuple = rename_key(A_ ) _lowerCamelCase : List[str] = value _lowerCamelCase : List[str] = BlipForQuestionAnswering(A_ ) hf_vqa_model.load_state_dict(A_ ) _lowerCamelCase : Optional[int] = ['''How many dogs are in this image?'''] _lowerCamelCase : Dict = tokenizer(A_, return_tensors='''pt''' ).input_ids _lowerCamelCase : List[Any] = hf_vqa_model.generate(A_, A_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) _lowerCamelCase : List[str] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' _lowerCamelCase : Optional[int] = blip_itm(pretrained=A_, image_size=A_, vit='''base''' ) itm_model.eval() _lowerCamelCase : Optional[int] = itm_model.state_dict() for key in modified_state_dict.copy(): _lowerCamelCase : Any = modified_state_dict.pop(A_ ) _lowerCamelCase : Optional[Any] = rename_key(A_ ) _lowerCamelCase : str = value _lowerCamelCase : Union[str, Any] = BlipForImageTextRetrieval(A_ ) _lowerCamelCase : int = ['''A picture of a woman with a dog sitting in a beach'''] _lowerCamelCase : Optional[Any] = tokenizer( A_, return_tensors='''pt''', padding='''max_length''', truncation=A_, max_length=35, ).input_ids hf_itm_model.load_state_dict(A_ ) hf_itm_model.eval() _lowerCamelCase : Union[str, Any] = hf_itm_model(A_, A_, use_itm_head=A_ ) _lowerCamelCase : str = hf_itm_model(A_, A_, use_itm_head=A_ ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0], dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase__ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
83
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class lowercase( __a ): '''simple docstring''' lowercase__ = "open-llama" def __init__( self: int, a_: List[str]=100_000, a_: List[str]=4_096, a_: int=11_008, a_: Tuple=32, a_: Any=32, a_: Optional[Any]="silu", a_: Any=2_048, a_: List[Any]=0.02, a_: int=1E-6, a_: Optional[int]=True, a_: List[str]=0, a_: Any=1, a_: Optional[int]=2, a_: Tuple=False, a_: List[Any]=True, a_: Optional[int]=0.1, a_: Tuple=0.1, a_: List[Any]=True, a_: Optional[int]=True, a_: Dict=None, **a_: int, ): '''simple docstring''' _snake_case : Any = vocab_size _snake_case : Tuple = max_position_embeddings _snake_case : str = hidden_size _snake_case : Dict = intermediate_size _snake_case : str = num_hidden_layers _snake_case : int = num_attention_heads _snake_case : Union[str, Any] = hidden_act _snake_case : Dict = initializer_range _snake_case : Tuple = rms_norm_eps _snake_case : Dict = use_cache _snake_case : Optional[int] = kwargs.pop( """use_memorry_efficient_attention""", a_ ) _snake_case : List[Any] = hidden_dropout_prob _snake_case : List[str] = attention_dropout_prob _snake_case : Optional[int] = use_stable_embedding _snake_case : int = shared_input_output_embedding _snake_case : List[Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=a_, bos_token_id=a_, eos_token_id=a_, tie_word_embeddings=a_, **a_, ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling, a_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"got {self.rope_scaling}" ) _snake_case : Optional[int] = self.rope_scaling.get("""type""", a_ ) _snake_case : Optional[int] = self.rope_scaling.get("""factor""", a_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(a_, a_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
609
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class snake_case__( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowercase_ ( self , __lowercase , __lowercase , __lowercase ) -> Tuple: lowerCAmelCase_ : int = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) lowerCAmelCase_ : str = VideoClassificationPipeline(model=__lowercase , image_processor=__lowercase , top_k=2 ) lowerCAmelCase_ : Dict = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def lowercase_ ( self , __lowercase , __lowercase ) -> Tuple: for example in examples: lowerCAmelCase_ : List[Any] = video_classifier(__lowercase ) self.assertEqual( __lowercase , [ {'''score''': ANY(__lowercase ), '''label''': ANY(__lowercase )}, {'''score''': ANY(__lowercase ), '''label''': ANY(__lowercase )}, ] , ) @require_torch def lowercase_ ( self ) -> Any: lowerCAmelCase_ : Dict = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' lowerCAmelCase_ : Dict = VideoMAEFeatureExtractor( size={'''shortest_edge''': 1_0} , crop_size={'''height''': 1_0, '''width''': 1_0} ) lowerCAmelCase_ : Dict = pipeline( '''video-classification''' , model=__lowercase , feature_extractor=__lowercase , frame_sampling_rate=4 ) lowerCAmelCase_ : Any = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) lowerCAmelCase_ : Dict = video_classifier(__lowercase , top_k=2 ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}] , ) lowerCAmelCase_ : Optional[Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__lowercase , decimals=4 ) , [ [{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}], [{'''score''': 0.51_99, '''label''': '''LABEL_0'''}, {'''score''': 0.48_01, '''label''': '''LABEL_1'''}], ] , ) @require_tf def lowercase_ ( self ) -> str: pass
619
from __future__ import annotations def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> tuple: if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
619
1
import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor A__ = logging.get_logger(__name__) class _lowerCAmelCase ( __lowercase ): def __init__( self : List[Any] , *__snake_case : List[Any] , **__snake_case : Optional[Any] ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
166
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class lowerCAmelCase__ ( __lowercase ): a__ : List[str] = """longformer""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[List[int], int] = 5_12 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 3_05_22 , SCREAMING_SNAKE_CASE__ : int = 7_68 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 12 , SCREAMING_SNAKE_CASE__ : int = 30_72 , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 5_12 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : float = 1e-12 , SCREAMING_SNAKE_CASE__ : bool = False , **SCREAMING_SNAKE_CASE__ : str , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = attention_window __lowerCamelCase = sep_token_id __lowerCamelCase = bos_token_id __lowerCamelCase = eos_token_id __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = onnx_export class lowerCAmelCase__ ( __lowercase ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : "PretrainedConfig" , SCREAMING_SNAKE_CASE__ : str = "default" , SCREAMING_SNAKE_CASE__ : "List[PatchingSpec]" = None ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = True @property def __A ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowerCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def __A ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: __lowerCamelCase = super().outputs if self.task == "default": __lowerCamelCase = {0: '''batch'''} return outputs @property def __A ( self : Tuple ) -> float: return 1e-4 @property def __A ( self : str ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: __lowerCamelCase = super().generate_dummy_inputs( preprocessor=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __lowerCamelCase = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global __lowerCamelCase = 1 return inputs
298
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL snake_case : Optional[int] = logging.get_logger(__name__) def __lowercase ( __lowerCAmelCase : int ): if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCAmelCase ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Union[str, Any] = ['''pixel_values'''] def __init__( self :Dict ,__snake_case :bool = True ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :bool = True ,__snake_case :Dict[str, int] = None ,__snake_case :bool = True ,__snake_case :Union[int, float] = 1 / 2_55 ,__snake_case :bool = True ,__snake_case :bool = True ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,**__snake_case :Optional[int] ,) -> None: super().__init__(**__snake_case ) a__ = size if size is not None else {'shortest_edge': 2_56} a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ) a__ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} a__ = get_size_dict(__snake_case ,param_name='crop_size' ) a__ = do_resize a__ = size a__ = do_center_crop a__ = crop_size a__ = resample a__ = do_rescale a__ = rescale_factor a__ = offset a__ = do_normalize a__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__( self :Optional[Any] ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :PILImageResampling = PILImageResampling.BILINEAR ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :str ,) -> np.ndarray: a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ) if "shortest_edge" in size: a__ = get_resize_output_image_size(__snake_case ,size['shortest_edge'] ,default_to_square=__snake_case ) elif "height" in size and "width" in size: a__ = (size['height'], size['width']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__snake_case ,size=__snake_case ,resample=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Union[str, Any] ,__snake_case :np.ndarray ,__snake_case :Dict[str, int] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :str ,) -> np.ndarray: a__ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__snake_case ,size=(size['height'], size['width']) ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :Union[int, float] ,__snake_case :bool = True ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :str ,) -> Union[str, Any]: a__ = image.astype(np.floataa ) if offset: a__ = image - (scale / 2) return rescale(__snake_case ,scale=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :List[Any] ,__snake_case :np.ndarray ,__snake_case :Union[float, List[float]] ,__snake_case :Union[float, List[float]] ,__snake_case :Optional[Union[str, ChannelDimension]] = None ,**__snake_case :Union[str, Any] ,) -> np.ndarray: return normalize(__snake_case ,mean=__snake_case ,std=__snake_case ,data_format=__snake_case ,**__snake_case ) def lowerCamelCase__( self :Optional[int] ,__snake_case :ImageInput ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :bool = None ,__snake_case :float = None ,__snake_case :bool = None ,__snake_case :bool = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[ChannelDimension] = ChannelDimension.FIRST ,) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. a__ = to_numpy_array(__snake_case ) if do_resize: a__ = self.resize(image=__snake_case ,size=__snake_case ,resample=__snake_case ) if do_center_crop: a__ = self.center_crop(__snake_case ,size=__snake_case ) if do_rescale: a__ = self.rescale(image=__snake_case ,scale=__snake_case ,offset=__snake_case ) if do_normalize: a__ = self.normalize(image=__snake_case ,mean=__snake_case ,std=__snake_case ) a__ = to_channel_dimension_format(__snake_case ,__snake_case ) return image def lowerCamelCase__( self :Any ,__snake_case :ImageInput ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :PILImageResampling = None ,__snake_case :bool = None ,__snake_case :Dict[str, int] = None ,__snake_case :bool = None ,__snake_case :float = None ,__snake_case :bool = None ,__snake_case :bool = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[float, List[float]]] = None ,__snake_case :Optional[Union[str, TensorType]] = None ,__snake_case :ChannelDimension = ChannelDimension.FIRST ,**__snake_case :Any ,) -> PIL.Image.Image: a__ = do_resize if do_resize is not None else self.do_resize a__ = resample if resample is not None else self.resample a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = offset if offset is not None else self.offset a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = size if size is not None else self.size a__ = get_size_dict(__snake_case ,default_to_square=__snake_case ) a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(__snake_case ,param_name='crop_size' ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) a__ = make_batched(__snake_case ) a__ = [ [ self._preprocess_image( image=__snake_case ,do_resize=__snake_case ,size=__snake_case ,resample=__snake_case ,do_center_crop=__snake_case ,crop_size=__snake_case ,do_rescale=__snake_case ,rescale_factor=__snake_case ,offset=__snake_case ,do_normalize=__snake_case ,image_mean=__snake_case ,image_std=__snake_case ,data_format=__snake_case ,) for img in video ] for video in videos ] a__ = {'pixel_values': videos} return BatchFeature(data=__snake_case ,tensor_type=__snake_case )
657
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore snake_case : Dict = ''' Human: <<task>> Assistant: ''' snake_case : Optional[int] = '''huggingface-tools/default-prompts''' snake_case : Tuple = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def __lowercase ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any="run" ): if prompt_or_repo_id is None: a__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('\\s' , __lowerCAmelCase ) is not None: return prompt_or_repo_id a__ = cached_file( __lowerCAmelCase , PROMPT_FILES[mode] , repo_type='dataset' , user_agent={'agent': agent_name} ) with open(__lowerCAmelCase , 'r' , encoding='utf-8' ) as f: return f.read()
657
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer A_ : Optional[int] = logging.get_logger(__name__) A_ : Optional[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} A_ : Dict = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } A_ : Optional[Any] = {'allegro/herbert-base-cased': 514} A_ : Dict = {} class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str =VOCAB_FILES_NAMES a : Tuple =PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] =PRETRAINED_INIT_CONFIGURATION a : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] =HerbertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase="</s>" , **_lowerCamelCase , ): super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , sep_token=_lowerCamelCase , **_lowerCamelCase , ) def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: List[str] = [self.cls_token_id] UpperCamelCase_: List[str] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCamelCase )) + [1] return [1] + ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: Any = [self.sep_token_id] UpperCamelCase_: Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , _lowerCamelCase , _lowerCamelCase = None ): UpperCamelCase_: Union[str, Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
57
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __lowerCAmelCase ( A_ : Optional[int] ) -> Optional[int]: return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __lowerCAmelCase ( ) -> Dict: __UpperCAmelCase = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=A_ ) __UpperCAmelCase = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(A_ ) EnvironmentCommand.register_subcommand(A_ ) TestCommand.register_subcommand(A_ ) RunBeamCommand.register_subcommand(A_ ) DummyDataCommand.register_subcommand(A_ ) # Parse args __UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args() if not hasattr(A_ , "func" ): parser.print_help() exit(1 ) __UpperCAmelCase = parse_unknown_args(A_ ) # Run __UpperCAmelCase = args.func(A_ , **A_ ) service.run() if __name__ == "__main__": main()
221
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase_ : Dict = '''<<<<<<< This should probably be modified because it mentions: ''' lowerCAmelCase_ : str = '''======= >>>>>>> ''' lowerCAmelCase_ : Union[str, Any] = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] lowerCAmelCase_ : Any = [ # (pattern, replacement) # Order is important here for some replacements (R'''tfds\.core''', R'''datasets'''), (R'''tf\.io\.gfile\.GFile''', R'''open'''), (R'''tf\.([\w\d]+)''', R'''datasets.Value(\'\1\')'''), (R'''tfds\.features\.Text\(\)''', R'''datasets.Value(\'string\')'''), (R'''tfds\.features\.Text\(''', R'''datasets.Value(\'string\'),'''), (R'''features\s*=\s*tfds.features.FeaturesDict\(''', R'''features=datasets.Features('''), (R'''tfds\.features\.FeaturesDict\(''', R'''dict('''), (R'''The TensorFlow Datasets Authors''', R'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (R'''tfds\.''', R'''datasets.'''), (R'''dl_manager\.manual_dir''', R'''self.config.data_dir'''), (R'''self\.builder_config''', R'''self.config'''), ] def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCamelCase_ ( a_ ): @staticmethod def UpperCamelCase_ ( snake_case__ ) -> Tuple: """simple docstring""" UpperCAmelCase = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=snake_case__ , required=snake_case__ , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=snake_case__ , required=snake_case__ , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=snake_case__ ) def __init__( self , snake_case__ , snake_case__ , *snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = get_logger("""datasets-cli/converting""" ) UpperCAmelCase = tfds_path UpperCAmelCase = datasets_directory def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" if os.path.isdir(self._tfds_path ): UpperCAmelCase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCAmelCase = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) UpperCAmelCase = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = {} if os.path.isdir(self._tfds_path ): UpperCAmelCase = os.listdir(snake_case__ ) else: UpperCAmelCase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) UpperCAmelCase = os.path.join(snake_case__ , snake_case__ ) UpperCAmelCase = os.path.join(snake_case__ , snake_case__ ) if not os.path.isfile(snake_case__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(snake_case__ , encoding="""utf-8""" ) as f: UpperCAmelCase = f.readlines() UpperCAmelCase = [] UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = [] for line in lines: UpperCAmelCase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase = """import datasets\n""" elif "import tensorflow" in out_line: # order is important here UpperCAmelCase = """""" continue elif "from absl import logging" in out_line: UpperCAmelCase = """from datasets import logging\n""" elif "getLogger" in out_line: UpperCAmelCase = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCAmelCase = True UpperCAmelCase = list(filter(lambda snake_case__ : e in out_line , snake_case__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case__ ) + """\n""" ) out_lines.append(snake_case__ ) out_lines.append(snake_case__ ) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase = re.sub(snake_case__ , snake_case__ , snake_case__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase = re.match(R"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , snake_case__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) UpperCAmelCase = """from . import """ + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase = True out_lines.append(snake_case__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase = f_name.replace(""".py""" , """""" ) UpperCAmelCase = os.path.join(snake_case__ , snake_case__ ) UpperCAmelCase = os.path.join(snake_case__ , snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case__ ) if needs_manual_update: with_manual_update.append(snake_case__ ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: f.writelines(snake_case__ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: UpperCAmelCase = os.path.basename(snake_case__ ) UpperCAmelCase = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(snake_case__ , snake_case__ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
378
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCamelCase_ : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=2 , snake_case__=24 , snake_case__=16 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.02 , snake_case__=None , snake_case__=2 , snake_case__=2 , ) -> List[Any]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = patch_size UpperCAmelCase = max_length UpperCAmelCase = num_mel_bins UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = frequency_stride UpperCAmelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase = frequency_out_dimension * time_out_dimension UpperCAmelCase = num_patches + 2 def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, input_values, labels def UpperCamelCase_ ( self ) -> int: """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: """simple docstring""" UpperCAmelCase = ASTModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {"""input_values""": input_values} return config, inputs_dict @require_torch class UpperCamelCase_ ( a_ , a_ , unittest.TestCase ): _A : Any = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _A : Union[str, Any] = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) _A : Any = False _A : Dict = False _A : Optional[Any] = False _A : List[str] = False def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Dict: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = ASTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" pass def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(snake_case__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""input_values"""] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) @slow def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = ASTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) UpperCAmelCase , UpperCAmelCase = torchaudio.load(lowerCAmelCase ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCamelCase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.default_feature_extractor UpperCAmelCase = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(snake_case__ ) UpperCAmelCase = self.default_feature_extractor UpperCAmelCase , UpperCAmelCase = prepare_audio() UpperCAmelCase = audio.squeeze().numpy() UpperCAmelCase = feature_extractor(snake_case__ , sampling_rate=snake_case__ , return_tensors="""pt""" ).to(snake_case__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**snake_case__ ) # verify the logits UpperCAmelCase = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , snake_case__ ) UpperCAmelCase = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
378
1
from __future__ import annotations from math import gcd def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase = 2 , __lowerCAmelCase = 1 , __lowerCAmelCase = 3 , ) -> int | None: """simple docstring""" if num < 2: raise ValueError('''The input value cannot be less than 2''' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: return (pow(__lowerCAmelCase , 2 ) + step) % modulus for _ in range(__lowerCAmelCase ): # These track the position within the cycle detection logic. snake_case__ : List[str] = seed snake_case__ : Optional[int] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. snake_case__ : Dict = rand_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ : List[Any] = rand_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ : List[str] = rand_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. snake_case__ : List[str] = gcd(hare - tortoise , __lowerCAmelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. snake_case__ : Optional[int] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse A__ = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) A__ = parser.parse_args() A__ = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: A__ = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
252
from __future__ import annotations from typing import Any class a : def __init__( self :Union[str, Any] ,__lowercase :int ,__lowercase :int ,__lowercase :float = 0 ): snake_case__ , snake_case__ : Dict = row, column snake_case__ : Tuple = [[default_value for c in range(__lowercase )] for r in range(__lowercase )] def __str__( self :List[Any] ): snake_case__ : Tuple = F"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier snake_case__ : List[str] = 0 for row_vector in self.array: for obj in row_vector: snake_case__ : int = max(__lowercase ,len(str(__lowercase ) ) ) snake_case__ : Optional[Any] = F"""%{max_element_length}s""" # Make string and return def single_line(__lowercase :list[float] ) -> str: nonlocal string_format_identifier snake_case__ : List[Any] = '''[''' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__lowercase ) for row_vector in self.array ) return s def __repr__( self :List[str] ): return str(self ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :tuple[int, int] ): if not (isinstance(__lowercase ,(list, tuple) ) and len(__lowercase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self :Tuple ,__lowercase :tuple[int, int] ): assert self.validate_indicies(__lowercase ) return self.array[loc[0]][loc[1]] def __setitem__( self :Tuple ,__lowercase :tuple[int, int] ,__lowercase :float ): assert self.validate_indicies(__lowercase ) snake_case__ : Any = value def __add__( self :Optional[int] ,__lowercase :Matrix ): assert isinstance(__lowercase ,__lowercase ) assert self.row == another.row and self.column == another.column # Add snake_case__ : Optional[Any] = Matrix(self.row ,self.column ) for r in range(self.row ): for c in range(self.column ): snake_case__ : Optional[Any] = self[r, c] + another[r, c] return result def __neg__( self :int ): snake_case__ : Optional[Any] = Matrix(self.row ,self.column ) for r in range(self.row ): for c in range(self.column ): snake_case__ : Dict = -self[r, c] return result def __sub__( self :Any ,__lowercase :Matrix ): return self + (-another) def __mul__( self :Optional[Any] ,__lowercase :int | float | Matrix ): if isinstance(__lowercase ,(int, float) ): # Scalar multiplication snake_case__ : Optional[int] = Matrix(self.row ,self.column ) for r in range(self.row ): for c in range(self.column ): snake_case__ : Dict = self[r, c] * another return result elif isinstance(__lowercase ,__lowercase ): # Matrix multiplication assert self.column == another.row snake_case__ : List[str] = Matrix(self.row ,another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: snake_case__ : Union[str, Any] = F"""Unsupported type given for another ({type(__lowercase )})""" raise TypeError(__lowercase ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : str = Matrix(self.column ,self.row ) for r in range(self.row ): for c in range(self.column ): snake_case__ : Optional[int] = self[r, c] return result def __lowerCamelCase ( self :List[Any] ,__lowercase :Matrix ,__lowercase :Matrix ): assert isinstance(__lowercase ,__lowercase ) and isinstance(__lowercase ,__lowercase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate snake_case__ : Optional[int] = v.transpose() snake_case__ : Any = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _lowerCAmelCase ( ) -> None: """simple docstring""" snake_case__ : Any = Matrix(3 , 3 , 0 ) for i in range(3 ): snake_case__ : Union[str, Any] = 1 print(f"""a^(-1) is {ainv}""" ) # u, v snake_case__ : List[Any] = Matrix(3 , 1 , 0 ) snake_case__ , snake_case__ , snake_case__ : Tuple = 1, 2, -3 snake_case__ : Any = Matrix(3 , 1 , 0 ) snake_case__ , snake_case__ , snake_case__ : Dict = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowerCAmelCase , __lowerCAmelCase )}""" ) def _lowerCAmelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
252
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available lowerCAmelCase = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
675
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __snake_case = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
658
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class UpperCAmelCase ( __lowerCamelCase ): a__: str = field(default="""automatic-speech-recognition""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a__: ClassVar[Features] = Features({"""audio""": Audio()} ) a__: ClassVar[Features] = Features({"""transcription""": Value("""string""" )} ) a__: str = "audio" a__: str = "transcription" def _lowerCAmelCase ( self : Optional[int] , lowerCAmelCase : Tuple ): if self.audio_column not in features: raise ValueError(f'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.audio_column} is not an Audio type.''' ) lowercase : str = copy.deepcopy(self ) lowercase : List[Any] = self.input_schema.copy() lowercase : Optional[Any] = features[self.audio_column] lowercase : str = input_schema return task_template @property def _lowerCAmelCase ( self : Dict ): return {self.audio_column: "audio", self.transcription_column: "transcription"}
583
0
"""simple docstring""" import gc import threading import time import psutil import torch class __snake_case: def __init__( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = psutil.Process() _SCREAMING_SNAKE_CASE = False def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = -1 while True: _SCREAMING_SNAKE_CASE = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = threading.Thread(target=self.peak_monitor ) _SCREAMING_SNAKE_CASE = True self.thread.start() def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = False self.thread.join() return self.cpu_memory_peak lowerCamelCase : int = PeakCPUMemory() def A__ ( ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _SCREAMING_SNAKE_CASE = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _SCREAMING_SNAKE_CASE = torch.cuda.memory_allocated(UpperCamelCase__ ) torch.cuda.reset_peak_memory_stats() return measures def A__ ( UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem _SCREAMING_SNAKE_CASE = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 _SCREAMING_SNAKE_CASE = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _SCREAMING_SNAKE_CASE = (torch.cuda.memory_allocated(UpperCamelCase__ ) - start_measures[str(UpperCamelCase__ )]) / 2**20 _SCREAMING_SNAKE_CASE = (torch.cuda.max_memory_allocated(UpperCamelCase__ ) - start_measures[str(UpperCamelCase__ )]) / 2**20 return measures def A__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' print(F'''{description}:''' ) print(F'''- Time: {measures["time"]:.2f}s''' ) for i in range(torch.cuda.device_count() ): print(F'''- GPU {i} allocated: {measures[str(UpperCamelCase__ )]:.2f}MiB''' ) _SCREAMING_SNAKE_CASE = measures[F'''{i}-peak'''] print(F'''- GPU {i} peak: {peak:.2f}MiB''' ) print(F'''- CPU RAM allocated: {measures["cpu"]:.2f}MiB''' ) print(F'''- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB''' )
168
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A__ ( UpperCamelCase__ ): '''simple docstring''' if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def A__ ( UpperCamelCase__ ): '''simple docstring''' for char in word: _SCREAMING_SNAKE_CASE = ord(UpperCamelCase__ ) if not _is_chinese_char(UpperCamelCase__ ): return 0 return 1 def A__ ( UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = set() for token in tokens: _SCREAMING_SNAKE_CASE = len(UpperCamelCase__ ) > 1 and is_chinese(UpperCamelCase__ ) if chinese_word: word_set.add(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = list(UpperCamelCase__ ) return word_list def A__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if not chinese_word_set: return bert_tokens _SCREAMING_SNAKE_CASE = max([len(UpperCamelCase__ ) for w in chinese_word_set] ) _SCREAMING_SNAKE_CASE = bert_tokens _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, len(UpperCamelCase__ ) while start < end: _SCREAMING_SNAKE_CASE = True if is_chinese(bert_word[start] ): _SCREAMING_SNAKE_CASE = min(end - start , UpperCamelCase__ ) for i in range(UpperCamelCase__ , 1 , -1 ): _SCREAMING_SNAKE_CASE = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _SCREAMING_SNAKE_CASE = '''##''' + bert_word[j] _SCREAMING_SNAKE_CASE = start + i _SCREAMING_SNAKE_CASE = False break if single_word: start += 1 return bert_word def A__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [] for i in range(0 , len(UpperCamelCase__ ) , 100 ): _SCREAMING_SNAKE_CASE = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws _SCREAMING_SNAKE_CASE = [get_chinese_word(UpperCamelCase__ ) for r in res] ltp_res.extend(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = [] for i in range(0 , len(UpperCamelCase__ ) , 100 ): _SCREAMING_SNAKE_CASE = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = [] for input_ids, chinese_word in zip(UpperCamelCase__ , UpperCamelCase__ ): _SCREAMING_SNAKE_CASE = [] for id in input_ids: _SCREAMING_SNAKE_CASE = bert_tokenizer._convert_id_to_token(UpperCamelCase__ ) input_tokens.append(UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = add_sub_symbol(UpperCamelCase__ , UpperCamelCase__ ) _SCREAMING_SNAKE_CASE = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase__ ): if token[:2] == "##": _SCREAMING_SNAKE_CASE = token[2:] # save chinese tokens' pos if len(UpperCamelCase__ ) == 1 and _is_chinese_char(ord(UpperCamelCase__ ) ): ref_id.append(UpperCamelCase__ ) ref_ids.append(UpperCamelCase__ ) assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) return ref_ids def A__ ( UpperCamelCase__ ): '''simple docstring''' with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: _SCREAMING_SNAKE_CASE = f.readlines() _SCREAMING_SNAKE_CASE = [line.strip() for line in data if len(UpperCamelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _SCREAMING_SNAKE_CASE = LTP(args.ltp ) # faster in GPU device _SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained(args.bert ) _SCREAMING_SNAKE_CASE = prepare_ref(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: _SCREAMING_SNAKE_CASE = [json.dumps(UpperCamelCase__ ) + '''\n''' for ref in ref_ids] f.writelines(UpperCamelCase__ ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) lowerCamelCase : str = parser.parse_args() main(args)
168
1
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( _A: Optional[int] , _A: Union[str, Any] , _A: Any ) -> str: '''simple docstring''' lowerCAmelCase = BertConfig.from_json_file(__snake_case ) print(f"Building PyTorch model from configuration: {config}" ) lowerCAmelCase = BertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_bert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
370
'''simple docstring''' from collections.abc import Sequence def a_ ( __snake_case : Sequence[float] , __snake_case : float ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(__snake_case ) ) def a_ ( __snake_case : Sequence[float] , __snake_case : float ) -> float: """simple docstring""" lowerCamelCase_ =0.0 for coeff in reversed(__snake_case ): lowerCamelCase_ =result * x + coeff return result if __name__ == "__main__": a_ : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) a_ : Tuple = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
676
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] ,_a : int ,_a : int ,_a : float ,**_a : Optional[int] ): '''simple docstring''' _a : Optional[Any] = feature_size _a : Dict = sampling_rate _a : Tuple = padding_value _a : str = kwargs.pop('padding_side' ,'right' ) _a : int = kwargs.pop('return_attention_mask' ,lowerCAmelCase_ ) super().__init__(**lowerCAmelCase_ ) def __lowercase ( self : int ,_a : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] ,_a : Union[bool, str, PaddingStrategy] = True ,_a : Optional[int] = None ,_a : bool = False ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : Optional[Union[str, TensorType]] = None ,): '''simple docstring''' if isinstance(lowerCAmelCase_ ,(list, tuple) ) and isinstance(processed_features[0] ,(dict, BatchFeature) ): _a : Tuple = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( 'You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`' F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) _a : str = processed_features[self.model_input_names[0]] _a : Optional[int] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(lowerCAmelCase_ ) == 0: if return_attention_mask: _a : int = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _a : int = required_input[0] if isinstance(lowerCAmelCase_ ,(list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _a : Union[str, Any] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(lowerCAmelCase_ ): _a : Optional[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(lowerCAmelCase_ ): _a : List[Any] = 'tf' elif is_torch_tensor(lowerCAmelCase_ ): _a : Tuple = 'pt' elif isinstance(lowerCAmelCase_ ,(int, float, list, tuple, np.ndarray) ): _a : Dict = 'np' else: raise ValueError( F"""type of {first_element} unknown: {type(lowerCAmelCase_ )}. """ 'Should be one of a python, numpy, pytorch or tensorflow object.' ) for key, value in processed_features.items(): if isinstance(value[0] ,(int, float) ): _a : Dict = to_numpy(lowerCAmelCase_ ) else: _a : str = [to_numpy(lowerCAmelCase_ ) for v in value] # Convert padding_strategy in PaddingStrategy _a : List[Any] = self._get_padding_strategies(padding=lowerCAmelCase_ ,max_length=lowerCAmelCase_ ) _a : Optional[Any] = processed_features[self.model_input_names[0]] _a : Optional[int] = len(lowerCAmelCase_ ) if not all(len(lowerCAmelCase_ ) == batch_size for v in processed_features.values() ): raise ValueError('Some items in the output dictionary have a different batch size than others.' ) _a : Union[str, Any] = [] for i in range(lowerCAmelCase_ ): _a : Tuple = {k: v[i] for k, v in processed_features.items()} # truncation _a : Tuple = self._truncate( lowerCAmelCase_ ,max_length=lowerCAmelCase_ ,pad_to_multiple_of=lowerCAmelCase_ ,truncation=lowerCAmelCase_ ,) truncated_inputs.append(lowerCAmelCase_ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _a : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _a : List[str] = PaddingStrategy.MAX_LENGTH _a : List[str] = {} for i in range(lowerCAmelCase_ ): # padding _a : Optional[int] = self._pad( truncated_inputs[i] ,max_length=lowerCAmelCase_ ,padding_strategy=lowerCAmelCase_ ,pad_to_multiple_of=lowerCAmelCase_ ,return_attention_mask=lowerCAmelCase_ ,) for key, value in outputs.items(): if key not in batch_outputs: _a : Any = [] if value.dtype is np.dtype(np.floataa ): _a : Tuple = value.astype(np.floataa ) batch_outputs[key].append(lowerCAmelCase_ ) return BatchFeature(lowerCAmelCase_ ,tensor_type=lowerCAmelCase_ ) def __lowercase ( self : Dict ,_a : Union[Dict[str, np.ndarray], BatchFeature] ,_a : Optional[int] = None ,_a : PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,_a : Optional[int] = None ,_a : Optional[bool] = None ,): '''simple docstring''' _a : str = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _a : Optional[int] = len(lowerCAmelCase_ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _a : List[str] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _a : List[Any] = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowerCAmelCase_ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _a : Any = np.ones(len(lowerCAmelCase_ ) ,dtype=np.intaa ) if needs_to_be_padded: _a : List[Any] = max_length - len(lowerCAmelCase_ ) if self.padding_side == "right": if return_attention_mask: _a : Tuple = np.pad( processed_features['attention_mask'] ,(0, difference) ) _a : Optional[int] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _a : List[Any] = np.pad( lowerCAmelCase_ ,lowerCAmelCase_ ,'constant' ,constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _a : Tuple = np.pad( processed_features['attention_mask'] ,(difference, 0) ) _a : Optional[int] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _a : int = np.pad( lowerCAmelCase_ ,lowerCAmelCase_ ,'constant' ,constant_values=self.padding_value ) else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return processed_features def __lowercase ( self : int ,_a : Union[Dict[str, np.ndarray], BatchFeature] ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : Optional[bool] = None ,): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('When setting ``truncation=True``, make sure that ``max_length`` is defined.' ) _a : List[Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _a : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _a : Union[str, Any] = len(lowerCAmelCase_ ) > max_length if needs_to_be_truncated: _a : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _a : Union[str, Any] = processed_features['attention_mask'][:max_length] return processed_features def __lowercase ( self : Union[str, Any] ,_a : Optional[Any]=False ,_a : List[Any]=None ): '''simple docstring''' if padding is not False: if padding is True: _a : Optional[int] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ): _a : Dict = PaddingStrategy(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ): _a : Any = padding else: _a : Tuple = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( 'Asking to pad but the feature_extractor does not have a padding value. Please select a value to use' ' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.' ) return padding_strategy
712
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowerCAmelCase_ ( _lowerCamelCase: Union[dict, list, tuple, torch.Tensor] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for v in tree.values(): shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: Tuple[int, ...] ): __SCREAMING_SNAKE_CASE : List[str] = [] for d in reversed(SCREAMING_SNAKE_CASE_ ): idx.append(flat_idx % d ) __SCREAMING_SNAKE_CASE : Any = flat_idx // d return tuple(reversed(SCREAMING_SNAKE_CASE_ ) ) @torch.jit.ignore def lowerCAmelCase_ ( _lowerCamelCase: Sequence[int] , _lowerCamelCase: Sequence[int] , _lowerCamelCase: Sequence[int] , _lowerCamelCase: Optional[Sequence[bool]] = None , _lowerCamelCase: Optional[Sequence[bool]] = None , ): def reduce_edge_list(_lowerCamelCase: List[bool] ) -> None: __SCREAMING_SNAKE_CASE : List[Any] = True for i in range(len(SCREAMING_SNAKE_CASE_ ) ): __SCREAMING_SNAKE_CASE : Tuple = -1 * (i + 1) l[reversed_idx] &= tally __SCREAMING_SNAKE_CASE : List[Any] = l[reversed_idx] if start_edges is None: __SCREAMING_SNAKE_CASE : Optional[Any] = [s == 0 for s in start] reduce_edge_list(SCREAMING_SNAKE_CASE_ ) if end_edges is None: __SCREAMING_SNAKE_CASE : List[str] = [e == (d - 1) for e, d in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] reduce_edge_list(SCREAMING_SNAKE_CASE_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(SCREAMING_SNAKE_CASE_ ) == 0: return [()] elif len(SCREAMING_SNAKE_CASE_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __SCREAMING_SNAKE_CASE : List[Tuple[slice, ...]] = [] __SCREAMING_SNAKE_CASE : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if s == e: path_list.append(slice(SCREAMING_SNAKE_CASE_ , s + 1 ) ) else: break __SCREAMING_SNAKE_CASE : Tuple[slice, ...] = tuple(SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : str = len(SCREAMING_SNAKE_CASE_ ) # start == end, and we're done if divergence_idx == len(SCREAMING_SNAKE_CASE_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __SCREAMING_SNAKE_CASE : List[str] = start[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __SCREAMING_SNAKE_CASE : str = end[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __SCREAMING_SNAKE_CASE : Union[str, Any] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowerCAmelCase_ ( _lowerCamelCase: torch.Tensor , _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Dict = t.shape[:no_batch_dims] __SCREAMING_SNAKE_CASE : Optional[int] = list(_flat_idx_to_idx(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # _get_minimal_slice_set is inclusive __SCREAMING_SNAKE_CASE : int = list(_flat_idx_to_idx(flat_end - 1 , SCREAMING_SNAKE_CASE_ ) ) # Get an ordered list of slices to perform __SCREAMING_SNAKE_CASE : Optional[Any] = _get_minimal_slice_set( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __SCREAMING_SNAKE_CASE : List[str] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowerCAmelCase_ ( _lowerCamelCase: Callable , _lowerCamelCase: Dict[str, Any] , _lowerCamelCase: int , _lowerCamelCase: int , _lowerCamelCase: bool = False , _lowerCamelCase: Any = None , _lowerCamelCase: bool = False , ): if not (len(SCREAMING_SNAKE_CASE_ ) > 0): raise ValueError("""Must provide at least one input""" ) __SCREAMING_SNAKE_CASE : int = [shape[:no_batch_dims] for shape in _fetch_dims(SCREAMING_SNAKE_CASE_ )] __SCREAMING_SNAKE_CASE : str = tuple([max(SCREAMING_SNAKE_CASE_ ) for s in zip(*SCREAMING_SNAKE_CASE_ )] ) def _prep_inputs(_lowerCamelCase: torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __SCREAMING_SNAKE_CASE : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __SCREAMING_SNAKE_CASE : Tuple = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __SCREAMING_SNAKE_CASE : List[str] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(_prep_inputs , SCREAMING_SNAKE_CASE_ ) __SCREAMING_SNAKE_CASE : Dict = None if _out is not None: __SCREAMING_SNAKE_CASE : List[str] = tensor_tree_map(lambda _lowerCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __SCREAMING_SNAKE_CASE : Optional[int] = 1 for d in orig_batch_dims: flat_batch_dim *= d __SCREAMING_SNAKE_CASE : List[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_lowerCamelCase: torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : List[str] = prepped_outputs for _ in range(SCREAMING_SNAKE_CASE_ ): # Chunk the input if not low_mem: __SCREAMING_SNAKE_CASE : Tuple = _select_chunk else: __SCREAMING_SNAKE_CASE : Tuple = partial( _chunk_slice , flat_start=SCREAMING_SNAKE_CASE_ , flat_end=min(SCREAMING_SNAKE_CASE_ , i + chunk_size ) , no_batch_dims=len(SCREAMING_SNAKE_CASE_ ) , ) __SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Run the layer on the chunk __SCREAMING_SNAKE_CASE : List[str] = layer(**SCREAMING_SNAKE_CASE_ ) # Allocate space for the output if out is None: __SCREAMING_SNAKE_CASE : int = tensor_tree_map(lambda _lowerCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , SCREAMING_SNAKE_CASE_ ) # Put the chunk in its pre-allocated space if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): def assign(_lowerCamelCase: dict , _lowerCamelCase: dict ) -> None: for k, v in da.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assign(SCREAMING_SNAKE_CASE_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __SCREAMING_SNAKE_CASE : List[Any] = da[k] assign(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for xa, xa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: __SCREAMING_SNAKE_CASE : Tuple = xa elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __SCREAMING_SNAKE_CASE : Union[str, Any] = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size __SCREAMING_SNAKE_CASE : List[Any] = tensor_tree_map(lambda _lowerCamelCase : t.view(orig_batch_dims + t.shape[1:] ) , SCREAMING_SNAKE_CASE_ ) return out class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase__ : Tuple = 5_1_2 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = max_chunk_size __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[tuple] = None def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __SCREAMING_SNAKE_CASE : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __SCREAMING_SNAKE_CASE : int = [c for c in candidates if c > min_chunk_size] __SCREAMING_SNAKE_CASE : Dict = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowerCAmelCase__ : Optional[Any] ) -> bool: try: with torch.no_grad(): fn(*UpperCamelCase_ , chunk_size=UpperCamelCase_ ) return True except RuntimeError: return False __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : Any = len(UpperCamelCase_ ) - 1 while i > min_viable_chunk_size_index: __SCREAMING_SNAKE_CASE : int = test_chunk_size(candidates[i] ) if not viable: __SCREAMING_SNAKE_CASE : Any = (min_viable_chunk_size_index + i) // 2 else: __SCREAMING_SNAKE_CASE : Optional[Any] = i __SCREAMING_SNAKE_CASE : Optional[int] = (i + len(UpperCamelCase_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = True for aa, aa in zip(UpperCamelCase_ , UpperCamelCase_ ): assert type(UpperCamelCase_ ) == type(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , (list, tuple) ): consistent &= self._compare_arg_caches(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE : str = [v for _, v in sorted(aa.items() , key=lambda lowerCAmelCase__ : x[0] )] __SCREAMING_SNAKE_CASE : int = [v for _, v in sorted(aa.items() , key=lambda lowerCAmelCase__ : x[0] )] consistent &= self._compare_arg_caches(UpperCamelCase_ , UpperCamelCase_ ) else: consistent &= aa == aa return consistent def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : tuple = tree_map(lambda lowerCAmelCase__ : a.shape if isinstance(UpperCamelCase_ , torch.Tensor ) else a , UpperCamelCase_ , UpperCamelCase_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE : str = self._compare_arg_caches(self.cached_arg_data , UpperCamelCase_ ) else: # Otherwise, we can reuse the precomputed value __SCREAMING_SNAKE_CASE : List[Any] = False if not consistent: __SCREAMING_SNAKE_CASE : Union[str, Any] = self._determine_favorable_chunk_size( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) __SCREAMING_SNAKE_CASE : List[str] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
578
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter SCREAMING_SNAKE_CASE : Union[str, Any] = "Create a default config file for Accelerate with only a few flags set." def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Optional[Any]="no" , SCREAMING_SNAKE_CASE_ : str = default_json_config_file , SCREAMING_SNAKE_CASE_ : bool = False ): """simple docstring""" a_ : Optional[Any] = Path(SCREAMING_SNAKE_CASE_ ) path.parent.mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False a_ : Tuple = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) a_ : str = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): a_ : Union[str, Any] = torch.cuda.device_count() a_ : Any = num_gpus a_ : Union[str, Any] = False if num_gpus > 1: a_ : str = """MULTI_GPU""" else: a_ : List[str] = """NO""" elif is_xpu_available() and use_xpu: a_ : List[Any] = torch.xpu.device_count() a_ : List[str] = num_xpus a_ : List[Any] = False if num_xpus > 1: a_ : List[str] = """MULTI_XPU""" else: a_ : Union[str, Any] = """NO""" elif is_npu_available(): a_ : Tuple = torch.npu.device_count() a_ : Union[str, Any] = num_npus a_ : List[Any] = False if num_npus > 1: a_ : List[str] = """MULTI_NPU""" else: a_ : Optional[int] = """NO""" else: a_ : List[str] = 0 a_ : Optional[int] = True a_ : Optional[Any] = 1 a_ : List[str] = """NO""" a_ : int = ClusterConfig(**SCREAMING_SNAKE_CASE_ ) config.to_json_file(SCREAMING_SNAKE_CASE_ ) return path def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" a_ : Dict = parser.add_parser("""default""" , parents=SCREAMING_SNAKE_CASE_ , help=SCREAMING_SNAKE_CASE_ , formatter_class=SCREAMING_SNAKE_CASE_ ) parser.add_argument( """--config_file""" , default=SCREAMING_SNAKE_CASE_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=SCREAMING_SNAKE_CASE_ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) return parser def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" a_ : int = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
419
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class a_ ( snake_case ): UpperCAmelCase : Any = """deformable_detr""" UpperCAmelCase : Optional[Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Dict , a_ : Optional[int]=True , a_ : Optional[int]=None , a_ : Tuple=3 , a_ : Optional[int]=3_0_0 , a_ : Tuple=1_0_2_4 , a_ : Union[str, Any]=6 , a_ : List[str]=1_0_2_4 , a_ : Union[str, Any]=8 , a_ : Any=6 , a_ : int=1_0_2_4 , a_ : Tuple=8 , a_ : Dict=0.0 , a_ : Union[str, Any]=True , a_ : Optional[int]="relu" , a_ : int=2_5_6 , a_ : Any=0.1 , a_ : Optional[int]=0.0 , a_ : Tuple=0.0 , a_ : Union[str, Any]=0.0_2 , a_ : List[Any]=1.0 , a_ : Optional[int]=True , a_ : Tuple=False , a_ : Optional[Any]="sine" , a_ : Optional[int]="resnet50" , a_ : List[str]=True , a_ : List[Any]=False , a_ : List[str]=4 , a_ : Tuple=4 , a_ : str=4 , a_ : Tuple=False , a_ : Optional[int]=3_0_0 , a_ : int=False , a_ : Optional[Any]=1 , a_ : int=5 , a_ : Optional[int]=2 , a_ : str=1 , a_ : Optional[int]=1 , a_ : Optional[Any]=5 , a_ : Optional[Any]=2 , a_ : List[Any]=0.1 , a_ : List[Any]=0.2_5 , a_ : Dict=False , **a_ : str , ) -> Dict: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) snake_case: Union[str, Any] =CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(a_ , a_ ): snake_case: Dict =backbone_config.get('model_type' ) snake_case: List[Any] =CONFIG_MAPPING[backbone_model_type] snake_case: str =config_class.from_dict(a_ ) snake_case: List[str] =use_timm_backbone snake_case: Optional[int] =backbone_config snake_case: List[Any] =num_channels snake_case: List[Any] =num_queries snake_case: List[Any] =max_position_embeddings snake_case: str =d_model snake_case: Tuple =encoder_ffn_dim snake_case: str =encoder_layers snake_case: List[Any] =encoder_attention_heads snake_case: Optional[Any] =decoder_ffn_dim snake_case: Union[str, Any] =decoder_layers snake_case: int =decoder_attention_heads snake_case: Union[str, Any] =dropout snake_case: Optional[int] =attention_dropout snake_case: Any =activation_dropout snake_case: Dict =activation_function snake_case: Union[str, Any] =init_std snake_case: Union[str, Any] =init_xavier_std snake_case: Tuple =encoder_layerdrop snake_case: List[str] =auxiliary_loss snake_case: Dict =position_embedding_type snake_case: Any =backbone snake_case: Union[str, Any] =use_pretrained_backbone snake_case: List[Any] =dilation # deformable attributes snake_case: Union[str, Any] =num_feature_levels snake_case: str =encoder_n_points snake_case: str =decoder_n_points snake_case: Any =two_stage snake_case: Dict =two_stage_num_proposals snake_case: str =with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher snake_case: Dict =class_cost snake_case: Dict =bbox_cost snake_case: int =giou_cost # Loss coefficients snake_case: Dict =mask_loss_coefficient snake_case: int =dice_loss_coefficient snake_case: List[str] =bbox_loss_coefficient snake_case: Tuple =giou_loss_coefficient snake_case: Union[str, Any] =eos_coefficient snake_case: List[Any] =focal_alpha snake_case: str =disable_custom_kernels super().__init__(is_encoder_decoder=a_ , **a_ ) @property def UpperCamelCase ( self : Optional[Any] ) -> int: return self.encoder_attention_heads @property def UpperCamelCase ( self : List[str] ) -> int: return self.d_model def UpperCamelCase ( self : str ) -> Optional[Any]: snake_case: Dict =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: snake_case: Union[str, Any] =self.backbone_config.to_dict() snake_case: Dict =self.__class__.model_type return output
347
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class a_ ( snake_case ): UpperCAmelCase : Optional[torch.FloatTensor] = None UpperCAmelCase : torch.FloatTensor = None UpperCAmelCase : Optional[Tuple[torch.FloatTensor]] = None UpperCAmelCase : Optional[Tuple[torch.FloatTensor]] = None class a_ ( snake_case ): def __init__( self : int , a_ : str=1 , a_ : Any=0 , a_ : List[str]=2 , a_ : List[Any]=5_1_2 , a_ : Union[str, Any]="cls" , a_ : Dict=False , a_ : Optional[int]=True , **a_ : int , ) -> Union[str, Any]: super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) snake_case: Any =project_dim snake_case: Optional[Any] =pooler_fn snake_case: List[str] =learn_encoder snake_case: Optional[Any] =use_attention_mask class a_ ( snake_case ): UpperCAmelCase : int = [r"""pooler""", r"""logit_scale"""] UpperCAmelCase : List[Any] = [r"""position_ids""", r"""predictions.decoder.bias"""] UpperCAmelCase : Union[str, Any] = """roberta""" UpperCAmelCase : Tuple = RobertaSeriesConfig def __init__( self : int , a_ : int ) -> Any: super().__init__(a_ ) snake_case: List[str] =XLMRobertaModel(a_ ) snake_case: Optional[int] =nn.Linear(config.hidden_size , config.project_dim ) snake_case: Optional[Any] =getattr(a_ , 'has_pre_transformation' , a_ ) if self.has_pre_transformation: snake_case: str =nn.Linear(config.hidden_size , config.project_dim ) snake_case: Optional[int] =nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def UpperCamelCase ( self : Dict , a_ : Optional[torch.Tensor] = None , a_ : Optional[torch.Tensor] = None , a_ : Optional[torch.Tensor] = None , a_ : Optional[torch.Tensor] = None , a_ : Optional[torch.Tensor] = None , a_ : Optional[torch.Tensor] = None , a_ : Optional[torch.Tensor] = None , a_ : Optional[torch.Tensor] = None , a_ : Optional[bool] = None , a_ : Optional[bool] = None , a_ : Optional[bool] = None , ) -> Tuple: snake_case: Dict =return_dict if return_dict is not None else self.config.use_return_dict snake_case: List[str] =self.base_model( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , output_attentions=a_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=a_ , ) if self.has_pre_transformation: snake_case: Union[str, Any] =outputs['hidden_states'][-2] snake_case: List[str] =self.pre_LN(a_ ) snake_case: Optional[int] =self.transformation_pre(a_ ) return TransformationModelOutput( projection_state=a_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: snake_case: str =self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=a_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
347
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _A = logging.get_logger(__name__) def A_ ( __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[int, Iterable[int]] , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : int ) -> Tuple[int, int]: def constraint_to_multiple_of(__SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : Optional[int]=None ): __SCREAMING_SNAKE_CASE : Optional[Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: __SCREAMING_SNAKE_CASE : Optional[Any] = math.floor(val / multiple ) * multiple if x < min_val: __SCREAMING_SNAKE_CASE : Tuple = math.ceil(val / multiple ) * multiple return x __SCREAMING_SNAKE_CASE : Dict = (output_size, output_size) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else output_size __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = get_image_size(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = output_size # determine new height and width __SCREAMING_SNAKE_CASE : Optional[int] = output_height / input_height __SCREAMING_SNAKE_CASE : str = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __SCREAMING_SNAKE_CASE : List[str] = scale_width else: # fit height __SCREAMING_SNAKE_CASE : int = scale_height __SCREAMING_SNAKE_CASE : Dict = constraint_to_multiple_of(scale_height * input_height , multiple=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__SCREAMING_SNAKE_CASE ) return (new_height, new_width) class SCREAMING_SNAKE_CASE_ ( snake_case ): __a : Union[str, Any] = ['''pixel_values'''] def __init__( self , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = False , lowercase = 1 , lowercase = True , lowercase = 1 / 2_5_5 , lowercase = True , lowercase = None , lowercase = None , **lowercase , ) -> None: '''simple docstring''' super().__init__(**lowercase ) __SCREAMING_SNAKE_CASE : int = size if size is not None else {'''height''': 3_8_4, '''width''': 3_8_4} __SCREAMING_SNAKE_CASE : int = get_size_dict(lowercase ) __SCREAMING_SNAKE_CASE : List[str] = do_resize __SCREAMING_SNAKE_CASE : Any = size __SCREAMING_SNAKE_CASE : List[str] = keep_aspect_ratio __SCREAMING_SNAKE_CASE : int = ensure_multiple_of __SCREAMING_SNAKE_CASE : Union[str, Any] = resample __SCREAMING_SNAKE_CASE : Tuple = do_rescale __SCREAMING_SNAKE_CASE : List[Any] = rescale_factor __SCREAMING_SNAKE_CASE : Dict = do_normalize __SCREAMING_SNAKE_CASE : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self , lowercase , lowercase , lowercase = False , lowercase = 1 , lowercase = PILImageResampling.BICUBIC , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __SCREAMING_SNAKE_CASE : List[Any] = get_resize_output_image_size( lowercase , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=lowercase , multiple=lowercase , ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase = None , **lowercase , ) -> Optional[int]: '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def _snake_case ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE : List[str] = size if size is not None else self.size __SCREAMING_SNAKE_CASE : Dict = get_size_dict(lowercase ) __SCREAMING_SNAKE_CASE : List[str] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __SCREAMING_SNAKE_CASE : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __SCREAMING_SNAKE_CASE : List[Any] = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE : str = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE : Any = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE : str = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE : str = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE : Union[str, Any] = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE : str = [to_numpy_array(lowercase ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE : Optional[int] = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE : Dict = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE : List[str] = [self.normalize(image=lowercase , mean=lowercase , std=lowercase ) for image in images] __SCREAMING_SNAKE_CASE : Optional[int] = [to_channel_dimension_format(lowercase , lowercase ) for image in images] __SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def _snake_case ( self , lowercase , lowercase = None ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowercase ): __SCREAMING_SNAKE_CASE : Dict = target_sizes.numpy() __SCREAMING_SNAKE_CASE : Tuple = [] for idx in range(len(lowercase ) ): __SCREAMING_SNAKE_CASE : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowercase ) __SCREAMING_SNAKE_CASE : int = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: __SCREAMING_SNAKE_CASE : Any = logits.argmax(dim=1 ) __SCREAMING_SNAKE_CASE : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
158
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class SCREAMING_SNAKE_CASE_ : def __init__( self , lowercase , lowercase=1_3 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=9_9 , lowercase=3_2 , lowercase=5 , lowercase=4 , lowercase=3_7 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=5_1_2 , lowercase=1_6 , lowercase=2 , lowercase=0.0_2 , lowercase=3 , lowercase=4 , lowercase=None , ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : Optional[int] = batch_size __SCREAMING_SNAKE_CASE : Any = seq_length __SCREAMING_SNAKE_CASE : Optional[int] = is_training __SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids __SCREAMING_SNAKE_CASE : Optional[int] = use_labels __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : str = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : Dict = type_vocab_size __SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : str = num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = num_choices __SCREAMING_SNAKE_CASE : Optional[int] = scope __SCREAMING_SNAKE_CASE : Optional[Any] = self.vocab_size - 1 def _snake_case ( self ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : int = None if self.use_labels: __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Any = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __SCREAMING_SNAKE_CASE : str = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = OpenAIGPTModel(config=lowercase ) model.to(lowercase ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(lowercase , token_type_ids=lowercase , head_mask=lowercase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowercase , token_type_ids=lowercase ) __SCREAMING_SNAKE_CASE : str = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = OpenAIGPTLMHeadModel(lowercase ) model.to(lowercase ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = OpenAIGPTDoubleHeadsModel(lowercase ) model.to(lowercase ) model.eval() __SCREAMING_SNAKE_CASE : int = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels __SCREAMING_SNAKE_CASE : Dict = OpenAIGPTForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : List[Any] = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : Union[str, Any] = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( snake_case , snake_case , snake_case , unittest.TestCase ): __a : str = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __a : Dict = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __a : Dict = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> str: '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _snake_case ( self , lowercase , lowercase , lowercase=False ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __SCREAMING_SNAKE_CASE : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase , ) __SCREAMING_SNAKE_CASE : Any = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : List[str] = inputs_dict['''labels'''] __SCREAMING_SNAKE_CASE : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def _snake_case ( self ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = OpenAIGPTModelTester(self ) __SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowercase , n_embd=3_7 ) def _snake_case ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowercase ) def _snake_case ( self ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowercase ) def _snake_case ( self ) -> Optional[int]: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowercase ) def _snake_case ( self ) -> Dict: '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase ) @slow def _snake_case ( self ) -> str: '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Union[str, Any] = OpenAIGPTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @slow def _snake_case ( self ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(lowercase ) __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=lowercase ) # the president is __SCREAMING_SNAKE_CASE : Any = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the __SCREAMING_SNAKE_CASE : List[Any] = model.generate(lowercase , do_sample=lowercase ) self.assertListEqual(output_ids[0].tolist() , lowercase )
158
1
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( a ): __UpperCAmelCase : Optional[Any] = (DPMSolverSinglestepScheduler,) __UpperCAmelCase : Dict = (("""num_inference_steps""", 25),) def __lowerCAmelCase ( self , **snake_case_ ) -> List[str]: _a = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf" ), "variance_type": None, } config.update(**snake_case_ ) return config def __lowerCAmelCase ( self , snake_case_=0 , **snake_case_ ) -> Union[str, Any]: _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , snake_case_ ) _a = self.dummy_sample _a = 0.1 * sample _a = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config(**snake_case_ ) _a = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals _a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) _a = scheduler_class.from_pretrained(snake_case_ ) new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals _a = dummy_past_residuals[: new_scheduler.config.solver_order] _a , _a = sample, sample for t in range(snake_case_ , time_step + scheduler.config.solver_order + 1 ): _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample _a = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self ) -> Tuple: pass def __lowerCAmelCase ( self , snake_case_=0 , **snake_case_ ) -> str: _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , snake_case_ ) _a = self.dummy_sample _a = 0.1 * sample _a = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config() _a = scheduler_class(**snake_case_ ) scheduler.set_timesteps(snake_case_ ) # copy over dummy past residuals (must be after setting timesteps) _a = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case_ ) _a = scheduler_class.from_pretrained(snake_case_ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case_ ) # copy over dummy past residual (must be after setting timesteps) _a = dummy_past_residuals[: new_scheduler.config.solver_order] _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample _a = new_scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self , snake_case_=None , **snake_case_ ) -> Union[str, Any]: if scheduler is None: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**snake_case_ ) _a = scheduler_class(**snake_case_ ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**snake_case_ ) _a = scheduler_class(**snake_case_ ) _a = 1_0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _a = model(snake_case_ , snake_case_ ) _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample return sample def __lowerCAmelCase ( self ) -> Tuple: _a = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _a = 5_0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(snake_case_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _a = model(snake_case_ , snake_case_ ) _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_574 ) < 1E-3 def __lowerCAmelCase ( self ) -> Dict: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults _a = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _a = self.full_loop(scheduler=snake_case_ ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 _a = DEISMultistepScheduler.from_config(scheduler.config ) _a = DPMSolverMultistepScheduler.from_config(scheduler.config ) _a = UniPCMultistepScheduler.from_config(scheduler.config ) _a = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _a = self.full_loop(scheduler=snake_case_ ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def __lowerCAmelCase ( self ) -> List[Any]: self.check_over_configs(thresholding=snake_case_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case_ , prediction_type=snake_case_ , sample_max_value=snake_case_ , algorithm_type="dpmsolver++" , solver_order=snake_case_ , solver_type=snake_case_ , ) def __lowerCAmelCase ( self ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[Any]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case_ , solver_type=snake_case_ , prediction_type=snake_case_ , algorithm_type=snake_case_ , ) _a = self.full_loop( solver_order=snake_case_ , solver_type=snake_case_ , prediction_type=snake_case_ , algorithm_type=snake_case_ , ) assert not torch.isnan(snake_case_ ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self ) -> List[Any]: self.check_over_configs(lower_order_final=snake_case_ ) self.check_over_configs(lower_order_final=snake_case_ ) def __lowerCAmelCase ( self ) -> int: self.check_over_configs(lambda_min_clipped=-float("inf" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def __lowerCAmelCase ( self ) -> List[str]: self.check_over_configs(variance_type=snake_case_ ) self.check_over_configs(variance_type="learned_range" ) def __lowerCAmelCase ( self ) -> Tuple: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=snake_case_ , time_step=0 ) def __lowerCAmelCase ( self ) -> Tuple: _a = self.full_loop() _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def __lowerCAmelCase ( self ) -> List[str]: _a = self.full_loop(use_karras_sigmas=snake_case_ ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.2_248 ) < 1E-3 def __lowerCAmelCase ( self ) -> Tuple: _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.1_453 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.full_loop(prediction_type="v_prediction" , use_karras_sigmas=snake_case_ ) _a = torch.mean(torch.abs(snake_case_ ) ) assert abs(result_mean.item() - 0.0_649 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[int]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(thresholding=snake_case_ , dynamic_thresholding_ratio=0 ) _a = scheduler_class(**snake_case_ ) _a = 1_0 _a = self.dummy_model() _a = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _a = model(snake_case_ , snake_case_ ) _a = scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample assert sample.dtype == torch.floataa
691
'''simple docstring''' __snake_case : List[str] = "Tobias Carryer" from time import time class A : def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=int(time() ) ) -> str: # noqa: B008 _a = multiplier _a = increment _a = modulo _a = seed def __lowerCAmelCase ( self ) -> str: _a = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __snake_case : Union[str, Any] = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
691
1
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowerCamelCase_ = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' lowerCamelCase_ = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' lowerCamelCase_ = r''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = 0.0 for i, j in zip(lowerCAmelCase_ , lowerCAmelCase_ ): n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase_ , lowerCAmelCase_ ) else 0.0 UpperCAmelCase_ : Any = n_correct / len(lowerCAmelCase_ ) return { "accuracy": accuracy, }
95
'''simple docstring''' import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __magic_name__ ( lowerCAmelCase ): def __init__( self , *snake_case , snake_case=None , snake_case=None , **snake_case) -> Tuple: '''simple docstring''' super().__init__(*snake_case , **snake_case) _UpperCAmelCase : Any =eval_examples _UpperCAmelCase : Optional[int] =post_process_function def lowerCAmelCase ( self , snake_case = None , snake_case=None , snake_case = None , snake_case = "eval" , **snake_case , ) -> Dict[str, float]: '''simple docstring''' _UpperCAmelCase : Tuple =gen_kwargs.copy() _UpperCAmelCase : int =( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) _UpperCAmelCase : Dict =( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) _UpperCAmelCase : Dict =gen_kwargs _UpperCAmelCase : Tuple =self.eval_dataset if eval_dataset is None else eval_dataset _UpperCAmelCase : Union[str, Any] =self.get_eval_dataloader(snake_case) _UpperCAmelCase : Tuple =self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _UpperCAmelCase : Dict =self.compute_metrics _UpperCAmelCase : Optional[Any] =None _UpperCAmelCase : str =time.time() _UpperCAmelCase : int =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCAmelCase : str =eval_loop( snake_case , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case , metric_key_prefix=snake_case , ) finally: _UpperCAmelCase : str =compute_metrics _UpperCAmelCase : Optional[int] =self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( snake_case , snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _UpperCAmelCase : Tuple =self.post_process_function(snake_case , snake_case , snake_case) _UpperCAmelCase : Union[str, Any] =self.compute_metrics(snake_case) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): _UpperCAmelCase : Any =metrics.pop(snake_case) metrics.update(output.metrics) else: _UpperCAmelCase : str =output.metrics if self.args.should_log: # Only the main node log the results by default self.log(snake_case) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) _UpperCAmelCase : Any =self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case) return metrics def lowerCAmelCase ( self , snake_case , snake_case , snake_case=None , snake_case = "test" , **snake_case) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] =gen_kwargs.copy() _UpperCAmelCase : int =self.get_test_dataloader(snake_case) # Temporarily disable metric computation, we will do it in the loop here. _UpperCAmelCase : str =self.compute_metrics _UpperCAmelCase : Union[str, Any] =None _UpperCAmelCase : Union[str, Any] =time.time() _UpperCAmelCase : Tuple =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCAmelCase : Any =eval_loop( snake_case , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case , metric_key_prefix=snake_case , ) finally: _UpperCAmelCase : Any =compute_metrics _UpperCAmelCase : Dict =self.args.eval_batch_size * self.args.world_size if f"{metric_key_prefix}_jit_compilation_time" in output.metrics: start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"] output.metrics.update( speed_metrics( snake_case , snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output _UpperCAmelCase : Tuple =self.post_process_function(snake_case , snake_case , snake_case , 'predict') _UpperCAmelCase : Union[str, Any] =self.compute_metrics(snake_case) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f"{metric_key_prefix}_"): _UpperCAmelCase : Any =metrics.pop(snake_case) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case)
446
0
"""simple docstring""" from functools import lru_cache def a__ ( __lowercase ) -> set: _A = 2 _A = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowercase ) if n > 1: factors.add(__lowercase ) return factors @lru_cache def a__ ( __lowercase ) -> int: return len(unique_prime_factors(__lowercase ) ) def a__ ( __lowercase ) -> bool: return len(set(__lowercase ) ) in (0, 1) def a__ ( __lowercase ) -> list: _A = 2 while True: # Increment each value of a generated range _A = [base + i for i in range(__lowercase )] # Run elements through out unique_prime_factors function # Append our target number to the end. _A = [upf_len(__lowercase ) for x in group] checker.append(__lowercase ) # If all numbers in the list are equal, return the group variable. if equality(__lowercase ): return group # Increment our base variable by 1 base += 1 def a__ ( __lowercase = 4 ) -> int: _A = run(__lowercase ) return results[0] if len(__lowercase ) else None if __name__ == "__main__": print(solution())
718
"""simple docstring""" import numpy as np def a__ ( __lowercase , __lowercase ) -> np.ndarray: return np.where(vector > 0 , __lowercase , (alpha * (np.exp(__lowercase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
621
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def a ( self : Tuple ): """simple docstring""" for model_name in ["bert-base-uncased"]: _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = TFAutoModel.from_pretrained(__lowerCAmelCase , from_pt=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = AutoModel.from_pretrained(__lowerCAmelCase , from_tf=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def a ( self : List[str] ): """simple docstring""" for model_name in ["bert-base-uncased"]: _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = TFAutoModelForPreTraining.from_pretrained(__lowerCAmelCase , from_pt=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = AutoModelForPreTraining.from_pretrained(__lowerCAmelCase , from_tf=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def a ( self : Dict ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained(__lowerCAmelCase , from_pt=__lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForCausalLM.from_pretrained( __lowerCAmelCase , output_loading_info=__lowerCAmelCase , from_pt=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__lowerCAmelCase , from_tf=__lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = AutoModelForCausalLM.from_pretrained( __lowerCAmelCase , output_loading_info=__lowerCAmelCase , from_tf=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def a ( self : List[str] ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__lowerCAmelCase , from_pt=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__lowerCAmelCase , from_tf=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def a ( self : Tuple ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained(__lowerCAmelCase , from_pt=__lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForMaskedLM.from_pretrained( __lowerCAmelCase , output_loading_info=__lowerCAmelCase , from_pt=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = AutoModelForMaskedLM.from_pretrained(__lowerCAmelCase , from_tf=__lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( __lowerCAmelCase , output_loading_info=__lowerCAmelCase , from_tf=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def a ( self : List[Any] ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase , from_pt=__lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained( __lowerCAmelCase , output_loading_info=__lowerCAmelCase , from_pt=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase , from_tf=__lowerCAmelCase ) _lowerCAmelCase , _lowerCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( __lowerCAmelCase , output_loading_info=__lowerCAmelCase , from_tf=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def a ( self : Union[str, Any] ): """simple docstring""" for model_name in ["bert-base-uncased"]: _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = TFAutoModelForSequenceClassification.from_pretrained(__lowerCAmelCase , from_pt=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained(__lowerCAmelCase , from_tf=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow def a ( self : str ): """simple docstring""" for model_name in ["bert-base-uncased"]: _lowerCAmelCase = AutoConfig.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = TFAutoModelForQuestionAnswering.from_pretrained(__lowerCAmelCase , from_pt=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = AutoModelForQuestionAnswering.from_pretrained(__lowerCAmelCase , from_tf=__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) def a ( self : Tuple ): """simple docstring""" _lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__lowerCAmelCase , from_pt=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCAmelCase ) , 1_4410 ) _lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__lowerCAmelCase , from_tf=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCAmelCase ) , 1_4410 ) def a ( self : Any ): """simple docstring""" _lowerCAmelCase = TFAutoModelWithLMHead.from_pretrained(__lowerCAmelCase , from_pt=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCAmelCase ) , 1_4410 ) _lowerCAmelCase = AutoModelWithLMHead.from_pretrained(__lowerCAmelCase , from_tf=__lowerCAmelCase ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCAmelCase ) , 1_4410 )
309
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE ( __a , __a , __a , unittest.TestCase ): """simple docstring""" __A = StableUnCLIPPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __A = False def a ( self : int ): """simple docstring""" _lowerCAmelCase = 32 _lowerCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=__lowerCAmelCase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _lowerCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=__lowerCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) _lowerCAmelCase = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=__lowerCAmelCase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) _lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=__lowerCAmelCase ) _lowerCAmelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__lowerCAmelCase , layers_per_block=1 , upcast_attention=__lowerCAmelCase , use_linear_projection=__lowerCAmelCase , ) torch.manual_seed(0 ) _lowerCAmelCase = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='v_prediction' , set_alpha_to_one=__lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def a ( self : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any]=0 ): """simple docstring""" if str(__lowerCAmelCase ).startswith('mps' ): _lowerCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def a ( self : List[str] ): """simple docstring""" _lowerCAmelCase = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=__lowerCAmelCase ) def a ( self : Union[str, Any] ): """simple docstring""" _lowerCAmelCase = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__lowerCAmelCase ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def a ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : Union[str, Any] ): """simple docstring""" _lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) _lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase = pipe('anime turle' , generator=__lowerCAmelCase , output_type='np' ) _lowerCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase ) def a ( self : Tuple ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) _lowerCAmelCase = pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowerCAmelCase = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
309
1
"""simple docstring""" snake_case_ : List[str] = 6_5_5_2_1 def lowercase_ ( _lowercase : str ): '''simple docstring''' UpperCAmelCase : Dict = 1 UpperCAmelCase : Optional[int] = 0 for plain_chr in plain_text: UpperCAmelCase : int = (a + ord(_lowercase )) % MOD_ADLER UpperCAmelCase : str = (b + a) % MOD_ADLER return (b << 16) | a
712
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class snake_case__ : def __init__( self : Optional[Any] , lowercase : int , lowercase : List[Any]=13 , lowercase : List[str]=2 , lowercase : Tuple=24 , lowercase : Dict=16 , lowercase : Optional[int]=True , lowercase : Any=True , lowercase : Dict=32 , lowercase : List[str]=5 , lowercase : Union[str, Any]=4 , lowercase : Tuple=37 , lowercase : Tuple="gelu" , lowercase : Dict=0.1 , lowercase : Any=0.1 , lowercase : Any=10 , lowercase : List[str]=0.0_2 , lowercase : int=None , lowercase : Optional[Any]=2 , lowercase : str=2 , ): '''simple docstring''' UpperCAmelCase : int = parent UpperCAmelCase : Optional[int] = batch_size UpperCAmelCase : str = patch_size UpperCAmelCase : Dict = max_length UpperCAmelCase : Dict = num_mel_bins UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : str = use_labels UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Tuple = num_attention_heads UpperCAmelCase : Optional[Any] = intermediate_size UpperCAmelCase : Tuple = hidden_act UpperCAmelCase : Optional[int] = hidden_dropout_prob UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase : Any = type_sequence_label_size UpperCAmelCase : Dict = initializer_range UpperCAmelCase : Optional[int] = scope UpperCAmelCase : List[Any] = frequency_stride UpperCAmelCase : Tuple = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase : List[str] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase : List[str] = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase : Dict = frequency_out_dimension * time_out_dimension UpperCAmelCase : int = num_patches + 2 def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCAmelCase : Optional[Any] = None if self.use_labels: UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[str] = self.get_config() return config, input_values, labels def __lowerCAmelCase ( self : str ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def __lowerCAmelCase ( self : List[Any] , lowercase : Optional[int] , lowercase : Any , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase : Tuple = ASTModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase : Optional[int] = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Tuple = config_and_inputs UpperCAmelCase : int = {"input_values": input_values} return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self : Optional[Any] , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : Any , lowercase : str ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def __lowerCAmelCase ( self : str ): '''simple docstring''' UpperCAmelCase : int = ASTModelTester(self ) UpperCAmelCase : Union[str, Any] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def __lowerCAmelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass def __lowerCAmelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear ) ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(lowercase ) UpperCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : List[str] = [*signature.parameters.keys()] UpperCAmelCase : List[str] = ["input_values"] self.assertListEqual(arg_names[:1] , lowercase ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) @slow def __lowerCAmelCase ( self : str ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Dict = ASTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : List[str] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) UpperCAmelCase , UpperCAmelCase : str = torchaudio.load(_lowercase ) return audio, sampling_rate @require_torch @require_torchaudio class snake_case__ ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.default_feature_extractor UpperCAmelCase : Union[str, Any] = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(lowercase ) UpperCAmelCase : Any = self.default_feature_extractor UpperCAmelCase , UpperCAmelCase : Optional[int] = prepare_audio() UpperCAmelCase : str = audio.squeeze().numpy() UpperCAmelCase : List[Any] = feature_extractor(lowercase , sampling_rate=lowercase , return_tensors="pt" ).to(lowercase ) # forward pass with torch.no_grad(): UpperCAmelCase : Dict = model(**lowercase ) # verify the logits UpperCAmelCase : Dict = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape , lowercase ) UpperCAmelCase : Optional[Any] = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
292
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase: Any = logging.get_logger(__name__) _lowercase: List[Any] = {"""vocab_file""": """sentencepiece.model"""} _lowercase: Dict = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } _lowercase: List[Any] = { """google/rembert""": 2_5_6, } class lowerCamelCase__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ =VOCAB_FILES_NAMES UpperCamelCase__ =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Tuple , lowercase__ : Tuple , lowercase__ : Any=False , lowercase__ : Tuple=True , lowercase__ : Union[str, Any]=True , lowercase__ : Union[str, Any]="[CLS]" , lowercase__ : Optional[int]="[SEP]" , lowercase__ : int="[UNK]" , lowercase__ : Any="[SEP]" , lowercase__ : str="[PAD]" , lowercase__ : int="[CLS]" , lowercase__ : Optional[int]="[MASK]" , **lowercase__ : List[str] , ): super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , **_A , ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(_A ) @property def SCREAMING_SNAKE_CASE__ ( self : str ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : int ): _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self : Any , lowercase__ : str ): _lowerCAmelCase = d _lowerCAmelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , lowercase__ : Optional[Any] , lowercase__ : str=False ): _lowerCAmelCase = self.sp_model.EncodeAsPieces(_A ) return pieces def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : Union[str, Any] ): return self.sp_model.PieceToId(_A ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : Optional[Any] ): return self.sp_model.IdToPiece(_A ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : List[Any] ): _lowerCAmelCase = self.sp_model.decode_pieces(_A ) return out_string def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : Dict , lowercase__ : List[str] = None ): _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self : Any , lowercase__ : Dict , lowercase__ : Dict = None , lowercase__ : Optional[int] = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : List[str] = None ): _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : List[str] , lowercase__ : Union[str, Any] = None ): if not os.path.isdir(_A ): logger.error('Vocabulary path ({}) should be a directory'.format(_A ) ) return _lowerCAmelCase = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ): copyfile(self.vocab_file , _A ) return (out_vocab_file,)
192
"""simple docstring""" import colorsys from PIL import Image # type: ignore def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = x UpperCamelCase : str = y for step in range(SCREAMING_SNAKE_CASE ): # noqa: B007 UpperCamelCase : str = a * a - b * b + x UpperCamelCase : Any = 2 * a * b + y UpperCamelCase : List[str] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def UpperCamelCase (SCREAMING_SNAKE_CASE ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def UpperCamelCase (SCREAMING_SNAKE_CASE ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(SCREAMING_SNAKE_CASE , 1 , 1 ) ) def UpperCamelCase (SCREAMING_SNAKE_CASE = 800 , SCREAMING_SNAKE_CASE = 600 , SCREAMING_SNAKE_CASE = -0.6 , SCREAMING_SNAKE_CASE = 0 , SCREAMING_SNAKE_CASE = 3.2 , SCREAMING_SNAKE_CASE = 50 , SCREAMING_SNAKE_CASE = True , ): UpperCamelCase : Tuple = Image.new("""RGB""" , (image_width, image_height) ) UpperCamelCase : Dict = img.load() # loop through the image-coordinates for image_x in range(SCREAMING_SNAKE_CASE ): for image_y in range(SCREAMING_SNAKE_CASE ): # determine the figure-coordinates based on the image-coordinates UpperCamelCase : Dict = figure_width / image_width * image_height UpperCamelCase : Tuple = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase : Dict = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase : Union[str, Any] = get_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase : int = get_color_coded_rgb(SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[int] = get_black_and_white_rgb(SCREAMING_SNAKE_CASE ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __magic_name__ : int = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
102
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ ) -> list[tuple[int, int]]: A , A = position A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] A = [] for position in positions: A , A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowerCamelCase__ ) return permissible_positions def lowerCAmelCase__ ( lowerCamelCase__ ) -> bool: return not any(elem == 0 for row in board for elem in row ) def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: if is_complete(lowerCamelCase__ ): return True for position in get_valid_pos(lowerCamelCase__ , len(lowerCamelCase__ ) ): A , A = position if board[y][x] == 0: A = curr + 1 if open_knight_tour_helper(lowerCamelCase__ , lowerCamelCase__ , curr + 1 ): return True A = 0 return False def lowerCAmelCase__ ( lowerCamelCase__ ) -> list[list[int]]: A = [[0 for i in range(lowerCamelCase__ )] for j in range(lowerCamelCase__ )] for i in range(lowerCamelCase__ ): for j in range(lowerCamelCase__ ): A = 1 if open_knight_tour_helper(lowerCamelCase__ , (i, j) , 1 ): return board A = 0 A = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
109
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCAmelCase__ ( ) -> Optional[Any]: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join A = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , lowerCamelCase__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCAmelCase__ ( ) -> str: assert _test_patching.open is open A = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , lowerCamelCase__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCAmelCase__ ( ) -> List[Any]: # pandas.read_csv is not present in _test_patching A = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , lowerCamelCase__ ): pass def lowerCAmelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point A = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , lowerCamelCase__ ) is None with patch_submodule(_test_patching , 'len' , lowerCamelCase__ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCAmelCase__ ( ) -> Union[str, Any]: A = '__test_patch_submodule_start_and_stop_mock__' A = patch_submodule(_test_patching , 'open' , lowerCamelCase__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCAmelCase__ ( ) -> int: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join A = '__test_patch_submodule_successive_join__' A = '__test_patch_submodule_successive_dirname__' A = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , lowerCamelCase__ ): with patch_submodule(_test_patching , 'os.rename' , lowerCamelCase__ ): with patch_submodule(_test_patching , 'os.path.dirname' , lowerCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , lowerCamelCase__ ): with patch_submodule(_test_patching , 'os.path.join' , lowerCamelCase__ ): with patch_submodule(_test_patching , 'os.path.dirname' , lowerCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCAmelCase__ ( ) -> Optional[Any]: A = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , lowerCamelCase__ ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , lowerCamelCase__ ): pass
109
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
116
'''simple docstring''' def lowerCamelCase__ ( __lowercase ): if not isinstance(__lowercase , __lowercase ): snake_case : int = F'''Input value of [number={number}] must be an integer''' raise TypeError(__lowercase ) if number < 0: return False snake_case : Optional[int] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
116
1
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch _UpperCAmelCase = random.Random() def UpperCamelCase ( __lowercase : List[str] ,__lowercase : Any=1.0 ,__lowercase : str=None ,__lowercase : Dict=None ): '''simple docstring''' if rng is None: A_ : Any = global_rng A_ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase , lowercase=7 , lowercase=4_0_0 , lowercase=2_0_0_0 , lowercase=1 , lowercase=0.0 , lowercase=1_6_0_0_0 , lowercase=True , lowercase=8_0 , lowercase=1_6 , lowercase=6_4 , lowercase="hann_window" , lowercase=8_0 , lowercase=7_6_0_0 , lowercase=1E-10 , lowercase=True , ): """simple docstring""" A_ : str = parent A_ : Tuple = batch_size A_ : int = min_seq_length A_ : Optional[int] = max_seq_length A_ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ : int = feature_size A_ : int = padding_value A_ : Dict = sampling_rate A_ : Tuple = do_normalize A_ : int = num_mel_bins A_ : Dict = hop_length A_ : Optional[int] = win_length A_ : Tuple = win_function A_ : Dict = fmin A_ : Optional[Any] = fmax A_ : List[str] = mel_floor A_ : List[str] = return_attention_mask def lowerCAmelCase_ ( self ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowerCAmelCase_ ( self , lowercase=False , lowercase=False ): """simple docstring""" def _flatten(lowercase ): return list(itertools.chain(*_snake_case ) ) if equal_length: A_ : Union[str, Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A_ : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ : List[Any] = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs def lowerCAmelCase_ ( self , lowercase=False , lowercase=False ): """simple docstring""" if equal_length: A_ : int = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A_ : List[str] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ : int = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs @require_torch class UpperCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ = SpeechTaFeatureExtractor def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = SpeechTaFeatureExtractionTester(self ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" self.assertTrue(np.all(np.mean(_snake_case , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_snake_case , axis=0 ) - 1 ) < 1E-3 ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A_ : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A_ : Any = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test not batched input A_ : str = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values A_ : Any = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) ) # Test batched A_ : Tuple = feat_extract(_snake_case , return_tensors='np' ).input_values A_ : Tuple = feat_extract(_snake_case , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case , _snake_case ): self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : int = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A_ : Any = ['longest', 'max_length', 'do_not_pad'] A_ : List[Any] = [None, 1_6_0_0, None] for max_length, padding in zip(_snake_case , _snake_case ): A_ : int = feat_extract(_snake_case , padding=_snake_case , max_length=_snake_case , return_tensors='np' ) A_ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : List[str] = range(8_0_0 , 1_4_0_0 , 2_0_0 ) A_ : str = [floats_list((1, x) )[0] for x in lengths] A_ : int = ['longest', 'max_length', 'do_not_pad'] A_ : int = [None, 1_6_0_0, None] for max_length, padding in zip(_snake_case , _snake_case ): A_ : List[str] = feat_extract(_snake_case , max_length=_snake_case , padding=_snake_case ) A_ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A_ : str = feat_extract( _snake_case , truncation=_snake_case , max_length=1_0_0_0 , padding='max_length' , return_tensors='np' ) A_ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : Dict = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A_ : Any = feat_extract( _snake_case , truncation=_snake_case , max_length=1_0_0_0 , padding='longest' , return_tensors='np' ) A_ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) A_ : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A_ : Union[str, Any] = feat_extract( _snake_case , truncation=_snake_case , max_length=2_0_0_0 , padding='longest' , return_tensors='np' ) A_ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ : Tuple = np.random.rand(1_0_0 ).astype(np.floataa ) A_ : Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A_ : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A_ : int = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A_ : Any = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A_ : List[Any] = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test feature size A_ : Tuple = feature_extractor(audio_target=_snake_case , padding=_snake_case , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input A_ : int = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values A_ : int = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) ) # Test batched A_ : Dict = feature_extractor(_snake_case , return_tensors='np' ).input_values A_ : Optional[Any] = feature_extractor(_snake_case , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case , _snake_case ): self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. A_ : Any = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] A_ : str = np.asarray(_snake_case ) A_ : List[Any] = feature_extractor(_snake_case , return_tensors='np' ).input_values A_ : Tuple = feature_extractor(_snake_case , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case , _snake_case ): self.assertTrue(np.allclose(_snake_case , _snake_case , atol=1E-3 ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[str] = self.feat_extract_tester.prepare_inputs_for_target() A_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) A_ : List[Any] = feat_extract.model_input_names[0] A_ : str = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_snake_case ) == len(_snake_case ) for x, y in zip(_snake_case , processed_features[input_name] ) ) ) A_ : Dict = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_snake_case ) A_ : List[str] = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) A_ : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: A_ : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_snake_case ) A_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) A_ : Tuple = feat_extract.model_input_names[0] A_ : Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) A_ : str = processed_features[input_name] if len(batch_features_input.shape ) < 3: A_ : Union[str, Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) A_ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() A_ : Tuple = feat_extract.model_input_names[0] A_ : Tuple = BatchFeature({input_name: speech_inputs} ) A_ : Union[str, Any] = feat_extract.num_mel_bins # hack! A_ : Dict = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' )[input_name] A_ : Union[str, Any] = feat_extract.pad(_snake_case , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = self.feat_extract_dict A_ : str = True A_ : List[str] = self.feature_extraction_class(**_snake_case ) A_ : int = self.feat_extract_tester.prepare_inputs_for_target() A_ : Optional[Any] = [len(_snake_case ) for x in speech_inputs] A_ : Dict = feat_extract.model_input_names[0] A_ : int = BatchFeature({input_name: speech_inputs} ) A_ : List[str] = feat_extract.num_mel_bins # hack! A_ : str = feat_extract.pad(_snake_case , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , _snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _snake_case ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[str] = self.feat_extract_dict A_ : Optional[int] = True A_ : Any = self.feature_extraction_class(**_snake_case ) A_ : Any = self.feat_extract_tester.prepare_inputs_for_target() A_ : str = [len(_snake_case ) for x in speech_inputs] A_ : str = feat_extract.model_input_names[0] A_ : int = BatchFeature({input_name: speech_inputs} ) A_ : Any = min(_snake_case ) A_ : Union[str, Any] = feat_extract.num_mel_bins # hack! A_ : List[str] = feat_extract.pad( _snake_case , padding='max_length' , max_length=_snake_case , truncation=_snake_case , return_tensors='np' ) self.assertIn('attention_mask' , _snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" from datasets import load_dataset A_ : int = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech A_ : Dict = ds.sort('id' ).select(range(_snake_case ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = torch.tensor( [2.38_04E-03, 2.07_52E-03, 1.98_36E-03, 2.10_57E-03, 1.61_74E-03, 3.05_18E-04, 9.15_53E-05, 3.35_69E-04, 9.76_56E-04, 1.83_11E-03, 2.01_42E-03, 2.10_57E-03, 1.73_95E-03, 4.57_76E-04, -3.96_73E-04, 4.57_76E-04, 1.00_71E-03, 9.15_53E-05, 4.88_28E-04, 1.15_97E-03, 7.32_42E-04, 9.46_04E-04, 1.80_05E-03, 1.83_11E-03, 8.85_01E-04, 4.27_25E-04, 4.88_28E-04, 7.32_42E-04, 1.09_86E-03, 2.10_57E-03] ) # fmt: on A_ : str = self._load_datasamples(1 ) A_ : Union[str, Any] = SpeechTaFeatureExtractor() A_ : Tuple = feature_extractor(_snake_case , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , _snake_case , atol=1E-6 ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Optional[Any] = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on A_ : Union[str, Any] = self._load_datasamples(1 ) A_ : Optional[Any] = SpeechTaFeatureExtractor() A_ : Any = feature_extractor(audio_target=_snake_case , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , _snake_case , atol=1E-4 ) )
708
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''wavlm''' def __init__( self , lowercase=3_2 , lowercase=7_6_8 , lowercase=1_2 , lowercase=1_2 , lowercase=3_0_7_2 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-5 , lowercase="group" , lowercase="gelu" , lowercase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowercase=(5, 2, 2, 2, 2, 2, 2) , lowercase=(1_0, 3, 3, 3, 3, 2, 2) , lowercase=False , lowercase=1_2_8 , lowercase=1_6 , lowercase=3_2_0 , lowercase=8_0_0 , lowercase=False , lowercase=True , lowercase=0.05 , lowercase=1_0 , lowercase=2 , lowercase=0.0 , lowercase=1_0 , lowercase=3_2_0 , lowercase=2 , lowercase=0.1 , lowercase=1_0_0 , lowercase=2_5_6 , lowercase=2_5_6 , lowercase=0.1 , lowercase="mean" , lowercase=False , lowercase=False , lowercase=2_5_6 , lowercase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowercase=(5, 3, 3, 1, 1) , lowercase=(1, 2, 3, 1, 1) , lowercase=5_1_2 , lowercase=8_0 , lowercase=0 , lowercase=1 , lowercase=2 , lowercase=False , lowercase=3 , lowercase=2 , lowercase=3 , lowercase=None , **lowercase , ): """simple docstring""" super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) A_ : List[Any] = hidden_size A_ : Tuple = feat_extract_norm A_ : Dict = feat_extract_activation A_ : Optional[Any] = list(lowercase ) A_ : Union[str, Any] = list(lowercase ) A_ : List[str] = list(lowercase ) A_ : str = conv_bias A_ : Tuple = num_buckets A_ : Union[str, Any] = max_bucket_distance A_ : int = num_conv_pos_embeddings A_ : str = num_conv_pos_embedding_groups A_ : str = len(self.conv_dim ) A_ : Tuple = num_hidden_layers A_ : Tuple = intermediate_size A_ : Optional[Any] = hidden_act A_ : Optional[Any] = num_attention_heads A_ : str = hidden_dropout A_ : Optional[int] = attention_dropout A_ : Optional[Any] = activation_dropout A_ : Optional[int] = feat_proj_dropout A_ : List[Any] = final_dropout A_ : Union[str, Any] = layerdrop A_ : Dict = layer_norm_eps A_ : Optional[Any] = initializer_range A_ : str = num_ctc_classes A_ : Any = vocab_size A_ : str = do_stable_layer_norm A_ : int = use_weighted_layer_sum A_ : int = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ : List[str] = apply_spec_augment A_ : Optional[Any] = mask_time_prob A_ : int = mask_time_length A_ : Any = mask_time_min_masks A_ : Optional[int] = mask_feature_prob A_ : Tuple = mask_feature_length # parameters for pretraining with codevector quantized representations A_ : int = num_codevectors_per_group A_ : Any = num_codevector_groups A_ : List[Any] = contrastive_logits_temperature A_ : Optional[Any] = num_negatives A_ : Optional[Any] = codevector_dim A_ : int = proj_codevector_dim A_ : int = diversity_loss_weight # ctc loss A_ : Union[str, Any] = ctc_loss_reduction A_ : Any = ctc_zero_infinity # adapter A_ : int = add_adapter A_ : Optional[Any] = adapter_kernel_size A_ : Optional[int] = adapter_stride A_ : Dict = num_adapter_layers A_ : str = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. A_ : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A_ : Tuple = list(lowercase ) A_ : Optional[Any] = list(lowercase ) A_ : Dict = list(lowercase ) A_ : Dict = xvector_output_dim @property def lowerCAmelCase_ ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
70
0
def lowerCamelCase_ ( UpperCamelCase__ : str, UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = (boundary[1] - boundary[0]) / steps UpperCamelCase__ = boundary[0] UpperCamelCase__ = boundary[1] UpperCamelCase__ = make_points(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase__ = 0.0 y += (h / 2.0) * f(UpperCamelCase__ ) for i in x_i: # print(i) y += h * f(UpperCamelCase__ ) y += (h / 2.0) * f(UpperCamelCase__ ) return y def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = a + h while x < (b - h): yield x UpperCamelCase__ = x + h def lowerCamelCase_ ( UpperCamelCase__ : List[Any] ): # enter your function here '''simple docstring''' UpperCamelCase__ = (x - 0) * (x - 0) return y def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = 0.0 # Lower bound of integration UpperCamelCase__ = 1.0 # Upper bound of integration UpperCamelCase__ = 10.0 # define number of steps or resolution UpperCamelCase__ = [a, b] # define boundary of integration UpperCamelCase__ = method_a(UpperCamelCase__, UpperCamelCase__ ) print(F"""y = {y}""" ) if __name__ == "__main__": main()
240
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : List[str] ): UpperCamelCase__ = tempfile.mkdtemp() # fmt: off UpperCamelCase__ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on UpperCamelCase__ = dict(zip(_a , range(len(_a ) ) ) ) UpperCamelCase__ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] UpperCamelCase__ = {'''unk_token''': '''<unk>'''} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) UpperCamelCase__ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } UpperCamelCase__ = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def A_ ( self : Optional[Any] , **_a : Dict ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **_a ) def A_ ( self : Dict , **_a : List[Any] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def A_ ( self : Union[str, Any] , **_a : Union[str, Any] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_a ) def A_ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def A_ ( self : List[str] ): UpperCamelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : List[Any] ): UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_rust_tokenizer() UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def A_ ( self : int ): UpperCamelCase__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase__ = self.get_image_processor(do_normalize=_a , padding_value=1.0 ) UpperCamelCase__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def A_ ( self : List[Any] ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(_a , return_tensors='''np''' ) UpperCamelCase__ = processor(images=_a , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def A_ ( self : List[Any] ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = '''lower newer''' UpperCamelCase__ = processor(text=_a ) UpperCamelCase__ = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A_ ( self : Any ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = '''lower newer''' UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def A_ ( self : Dict ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ = processor.batch_decode(_a ) UpperCamelCase__ = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def A_ ( self : Optional[int] ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = CLIPProcessor(tokenizer=_a , image_processor=_a ) UpperCamelCase__ = '''lower newer''' UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
240
1
"""simple docstring""" from bisect import bisect from itertools import accumulate def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = sorted(zip(__UpperCamelCase , __UpperCamelCase ) , key=lambda __UpperCamelCase : x[0] / x[1] , reverse=__UpperCamelCase ) __A , __A = [i[0] for i in r], [i[1] for i in r] __A = list(accumulate(__UpperCamelCase ) ) __A = bisect(__UpperCamelCase , __UpperCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" lowercase_ = 8.31_4462 # Unit - J mol-1 K-1 def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
215
0
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase : Dict = transforms.Compose( [ transforms.Resize((2_56, 2_56)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase__ ( _a : List[str] ): if isinstance(lowerCAmelCase_ , torch.Tensor ): return image elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): snake_case_ : Any = [image] snake_case_ : Union[str, Any] = [trans(img.convert("RGB" ) ) for img in image] snake_case_ : List[str] = torch.stack(lowerCAmelCase_ ) return image class UpperCAmelCase_ ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: super().__init__() # make sure scheduler can always be converted to DDIM snake_case_ : Tuple = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: # get the original timestep using init_timestep snake_case_ : Optional[int] = min(int(num_inference_steps * strength ) , lowerCAmelCase_ ) snake_case_ : List[Any] = max(num_inference_steps - init_timestep , 0 ) snake_case_ : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Any: if not isinstance(lowerCAmelCase_ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase_ )}''' ) snake_case_ : List[str] = image.to(device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCAmelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ : Dict = init_latents.shape snake_case_ : str = randn_tensor(lowerCAmelCase_ , generator=lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=lowerCAmelCase_ ) # get latents print("add noise to latents at timestep" , lowerCAmelCase_ ) snake_case_ : str = self.scheduler.add_noise(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : Optional[Any] = init_latents return latents @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0.8 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = 50 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(lowerCAmelCase_ ) # 2. Preprocess image snake_case_ : Union[str, Any] = preprocess(lowerCAmelCase_ ) # 3. set timesteps self.scheduler.set_timesteps(lowerCAmelCase_ , device=self.device ) snake_case_ , snake_case_ : Optional[int] = self.get_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , self.device ) snake_case_ : Optional[Any] = timesteps[:1].repeat(lowerCAmelCase_ ) # 4. Prepare latent variables snake_case_ : Union[str, Any] = self.prepare_latents(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , self.unet.dtype , self.device , lowerCAmelCase_ ) snake_case_ : List[Any] = latents # 5. Denoising loop for t in self.progress_bar(lowerCAmelCase_ ): # 1. predict noise model_output snake_case_ : Optional[int] = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case_ : List[str] = self.scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , eta=lowerCAmelCase_ , use_clipped_model_output=lowerCAmelCase_ , generator=lowerCAmelCase_ , ).prev_sample snake_case_ : Any = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ : Tuple = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=lowerCAmelCase_ )
568
from __future__ import annotations def a_ ( lowerCAmelCase_ : list[float] ): if len(lowerCAmelCase_ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
53
0
"""simple docstring""" def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" _UpperCamelCase : List[str] = [] if len(lowercase_ ) == 1: return [nums.copy()] for _ in range(len(lowercase_ ) ): _UpperCamelCase : Dict = nums.pop(0 ) _UpperCamelCase : Any = permute(lowercase_ ) for perm in permutations: perm.append(lowercase_ ) result.extend(lowercase_ ) nums.append(lowercase_ ) return result def lowercase__ ( lowercase_ ) -> int: """simple docstring""" def backtrack(lowercase_ ): if start == len(lowercase_ ) - 1: output.append(nums[:] ) else: for i in range(lowercase_ ,len(lowercase_ ) ): _UpperCamelCase : Tuple = nums[i], nums[start] backtrack(start + 1 ) _UpperCamelCase : Any = nums[i], nums[start] # backtrack _UpperCamelCase : str = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function lowerCamelCase__ = permutea([1, 2, 3]) print(res) doctest.testmod()
710
"""simple docstring""" from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :torch.FloatTensor class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Dict=3 , __a : Any=3 , __a : Union[str, Any]=("DownEncoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Tuple=32 , __a : int="silu" , __a : str=True , ) -> Dict: super().__init__() _UpperCamelCase : List[str] = layers_per_block _UpperCamelCase : Dict = torch.nn.Convad( __a , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : int = None _UpperCamelCase : Any = nn.ModuleList([] ) # down _UpperCamelCase : List[str] = block_out_channels[0] for i, down_block_type in enumerate(__a ): _UpperCamelCase : Tuple = output_channel _UpperCamelCase : int = block_out_channels[i] _UpperCamelCase : int = i == len(__a ) - 1 _UpperCamelCase : Dict = get_down_block( __a , num_layers=self.layers_per_block , in_channels=__a , out_channels=__a , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , ) self.down_blocks.append(__a ) # mid _UpperCamelCase : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # out _UpperCamelCase : Any = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : Any = nn.SiLU() _UpperCamelCase : Union[str, Any] = 2 * out_channels if double_z else out_channels _UpperCamelCase : Tuple = nn.Convad(block_out_channels[-1] , __a , 3 , padding=1 ) _UpperCamelCase : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Dict ) -> List[str]: _UpperCamelCase : int = x _UpperCamelCase : Optional[int] = self.conv_in(__a ) if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Tuple ): def custom_forward(*__a : Any ): return module(*__a ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , use_reentrant=__a ) # middle _UpperCamelCase : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , use_reentrant=__a ) else: for down_block in self.down_blocks: _UpperCamelCase : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a ) # middle _UpperCamelCase : int = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __a ) else: # down for down_block in self.down_blocks: _UpperCamelCase : int = down_block(__a ) # middle _UpperCamelCase : int = self.mid_block(__a ) # post-process _UpperCamelCase : Any = self.conv_norm_out(__a ) _UpperCamelCase : Any = self.conv_act(__a ) _UpperCamelCase : Optional[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : int=3 , __a : Any=3 , __a : str=("UpDecoderBlock2D",) , __a : Optional[int]=(64,) , __a : int=2 , __a : Optional[int]=32 , __a : Tuple="silu" , __a : Union[str, Any]="group" , ) -> str: super().__init__() _UpperCamelCase : List[Any] = layers_per_block _UpperCamelCase : Tuple = nn.Convad( __a , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = nn.ModuleList([] ) _UpperCamelCase : List[Any] = in_channels if norm_type == "spatial" else None # mid _UpperCamelCase : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__a , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__a , temb_channels=__a , ) # up _UpperCamelCase : List[str] = list(reversed(__a ) ) _UpperCamelCase : int = reversed_block_out_channels[0] for i, up_block_type in enumerate(__a ): _UpperCamelCase : int = output_channel _UpperCamelCase : Union[str, Any] = reversed_block_out_channels[i] _UpperCamelCase : Optional[Any] = i == len(__a ) - 1 _UpperCamelCase : Union[str, Any] = get_up_block( __a , num_layers=self.layers_per_block + 1 , in_channels=__a , out_channels=__a , prev_output_channel=__a , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__a , resnet_groups=__a , attention_head_dim=__a , temb_channels=__a , resnet_time_scale_shift=__a , ) self.up_blocks.append(__a ) _UpperCamelCase : Optional[Any] = output_channel # out if norm_type == "spatial": _UpperCamelCase : Optional[int] = SpatialNorm(block_out_channels[0] , __a ) else: _UpperCamelCase : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__a , eps=1e-6 ) _UpperCamelCase : str = nn.SiLU() _UpperCamelCase : str = nn.Convad(block_out_channels[0] , __a , 3 , padding=1 ) _UpperCamelCase : Dict = False def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=None ) -> Tuple: _UpperCamelCase : List[str] = z _UpperCamelCase : Dict = self.conv_in(__a ) _UpperCamelCase : Any = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__a : Any ): def custom_forward(*__a : Tuple ): return module(*__a ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle _UpperCamelCase : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a , use_reentrant=__a ) _UpperCamelCase : Optional[int] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(__a ) , __a , __a , use_reentrant=__a ) else: # middle _UpperCamelCase : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __a , __a ) _UpperCamelCase : Union[str, Any] = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__a ) , __a , __a ) else: # middle _UpperCamelCase : str = self.mid_block(__a , __a ) _UpperCamelCase : int = sample.to(__a ) # up for up_block in self.up_blocks: _UpperCamelCase : Any = up_block(__a , __a ) # post-process if latent_embeds is None: _UpperCamelCase : List[str] = self.conv_norm_out(__a ) else: _UpperCamelCase : Optional[int] = self.conv_norm_out(__a , __a ) _UpperCamelCase : Tuple = self.conv_act(__a ) _UpperCamelCase : List[Any] = self.conv_out(__a ) return sample class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __a : Tuple , __a : List[str] , __a : List[str] , __a : str=None , __a : Optional[int]="random" , __a : Any=False , __a : Optional[Any]=True ) -> List[Any]: super().__init__() _UpperCamelCase : Tuple = n_e _UpperCamelCase : Tuple = vq_embed_dim _UpperCamelCase : Union[str, Any] = beta _UpperCamelCase : str = legacy _UpperCamelCase : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) _UpperCamelCase : Any = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) _UpperCamelCase : Dict = self.used.shape[0] _UpperCamelCase : Optional[int] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": _UpperCamelCase : Optional[int] = self.re_embed _UpperCamelCase : Any = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: _UpperCamelCase : Union[str, Any] = n_e _UpperCamelCase : List[str] = sane_index_shape def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : Optional[Any] ) -> Optional[int]: _UpperCamelCase : str = inds.shape assert len(__a ) > 1 _UpperCamelCase : Union[str, Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[Any] = self.used.to(__a ) _UpperCamelCase : List[str] = (inds[:, :, None] == used[None, None, ...]).long() _UpperCamelCase : Optional[Any] = match.argmax(-1 ) _UpperCamelCase : Any = match.sum(2 ) < 1 if self.unknown_index == "random": _UpperCamelCase : Optional[int] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: _UpperCamelCase : Dict = self.unknown_index return new.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Optional[int] ) -> Optional[int]: _UpperCamelCase : int = inds.shape assert len(__a ) > 1 _UpperCamelCase : List[Any] = inds.reshape(ishape[0] , -1 ) _UpperCamelCase : Optional[int] = self.used.to(__a ) if self.re_embed > self.used.shape[0]: # extra token _UpperCamelCase : int = 0 # simply set to zero _UpperCamelCase : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __a ) return back.reshape(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : str ) -> Optional[int]: # reshape z -> (batch, height, width, channel) and flatten _UpperCamelCase : List[str] = z.permute(0 , 2 , 3 , 1 ).contiguous() _UpperCamelCase : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z _UpperCamelCase : Optional[int] = torch.argmin(torch.cdist(__a , self.embedding.weight ) , dim=1 ) _UpperCamelCase : int = self.embedding(__a ).view(z.shape ) _UpperCamelCase : str = None _UpperCamelCase : Any = None # compute loss for embedding if not self.legacy: _UpperCamelCase : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: _UpperCamelCase : str = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients _UpperCamelCase : List[str] = z + (z_q - z).detach() # reshape back to match original input shape _UpperCamelCase : Optional[Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: _UpperCamelCase : Tuple = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis _UpperCamelCase : Dict = self.remap_to_used(__a ) _UpperCamelCase : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: _UpperCamelCase : str = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : List[str] , __a : str ) -> Any: # shape specifying (batch, height, width, channel) if self.remap is not None: _UpperCamelCase : str = indices.reshape(shape[0] , -1 ) # add batch axis _UpperCamelCase : str = self.unmap_to_all(__a ) _UpperCamelCase : int = indices.reshape(-1 ) # flatten again # get quantized latent vectors _UpperCamelCase : Optional[int] = self.embedding(__a ) if shape is not None: _UpperCamelCase : Tuple = z_q.view(__a ) # reshape back to match original input shape _UpperCamelCase : Tuple = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , __a : List[str] , __a : Optional[Any]=False ) -> int: _UpperCamelCase : Dict = parameters _UpperCamelCase, _UpperCamelCase : str = torch.chunk(__a , 2 , dim=1 ) _UpperCamelCase : Tuple = torch.clamp(self.logvar , -30.0 , 20.0 ) _UpperCamelCase : Union[str, Any] = deterministic _UpperCamelCase : Dict = torch.exp(0.5 * self.logvar ) _UpperCamelCase : Any = torch.exp(self.logvar ) if self.deterministic: _UpperCamelCase : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[torch.Generator] = None ) -> torch.FloatTensor: # make sure sample is on the same device as the parameters and has same dtype _UpperCamelCase : List[Any] = randn_tensor( self.mean.shape , generator=__a , device=self.parameters.device , dtype=self.parameters.dtype ) _UpperCamelCase : List[Any] = self.mean + self.std * sample return x def __SCREAMING_SNAKE_CASE ( self : Any , __a : List[str]=None ) -> List[Any]: if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __SCREAMING_SNAKE_CASE ( self : str , __a : Tuple , __a : List[str]=[1, 2, 3] ) -> int: if self.deterministic: return torch.Tensor([0.0] ) _UpperCamelCase : List[str] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[int]: return self.mean
51
0