code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a ) class lowercase_ ( a ): '''simple docstring''' __lowerCAmelCase : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} ) __lowerCAmelCase : ClassVar[Features] = Features({"text": Value("string" )} ) __lowerCAmelCase : ClassVar[Features] = Features({} ) __lowerCAmelCase : str = "text" @property def snake_case_ ( self ) -> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
447
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _a : List[Any] = logging.get_logger(__name__) @add_end_docstrings(a ) class lowercase_ ( a ): '''simple docstring''' def __init__( self , *a_ , **a_ ) -> str: """simple docstring""" super().__init__(*a_ , **a_ ) requires_backends(self , 'decord' ) self.check_model_type(a_ ) def snake_case_ ( self , a_=None , a_=None , a_=None ) -> int: """simple docstring""" UpperCAmelCase = {} if frame_sampling_rate is not None: UpperCAmelCase = frame_sampling_rate if num_frames is not None: UpperCAmelCase = num_frames UpperCAmelCase = {} if top_k is not None: UpperCAmelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , a_ , **a_ ) -> Union[str, Any]: """simple docstring""" return super().__call__(a_ , **a_ ) def snake_case_ ( self , a_ , a_=None , a_=1 ) -> Tuple: """simple docstring""" if num_frames is None: UpperCAmelCase = self.model.config.num_frames if video.startswith('http://' ) or video.startswith('https://' ): UpperCAmelCase = BytesIO(requests.get(a_ ).content ) UpperCAmelCase = VideoReader(a_ ) videoreader.seek(0 ) UpperCAmelCase = 0 UpperCAmelCase = num_frames * frame_sampling_rate - 1 UpperCAmelCase = np.linspace(a_ , a_ , num=a_ , dtype=np.intaa ) UpperCAmelCase = videoreader.get_batch(a_ ).asnumpy() UpperCAmelCase = list(a_ ) UpperCAmelCase = self.image_processor(a_ , return_tensors=self.framework ) return model_inputs def snake_case_ ( self , a_ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model(**a_ ) return model_outputs def snake_case_ ( self , a_ , a_=5 ) -> Union[str, Any]: """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase , UpperCAmelCase = probs.topk(a_ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) UpperCAmelCase = scores.tolist() UpperCAmelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(a_ , a_ )]
447
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer UpperCamelCase : Dict = logging.get_logger(__name__) UpperCamelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : str = [ """small""", """small-base""", """medium""", """medium-base""", """intermediate""", """intermediate-base""", """large""", """large-base""", """xlarge""", """xlarge-base""", ] UpperCamelCase : List[Any] = { """vocab_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json""", """funnel-transformer/small-base""": ( """https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json""" ), """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json""", """funnel-transformer/medium-base""": ( """https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json""", """funnel-transformer/large-base""": ( """https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json""" ), """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json""", """funnel-transformer/xlarge-base""": ( """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json""" ), }, } UpperCamelCase : List[str] = {f'''funnel-transformer/{name}''': 512 for name in _model_names} UpperCamelCase : List[Any] = {f'''funnel-transformer/{name}''': {"""do_lower_case""": True} for name in _model_names} class UpperCamelCase ( a_ ): """simple docstring""" A : int = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_INIT_CONFIGURATION A : Optional[Any] = FunnelTokenizer A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = 2 def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Union[str, Any]="<sep>" , UpperCAmelCase_ : Union[str, Any]="<pad>" , UpperCAmelCase_ : Tuple="<cls>" , UpperCAmelCase_ : List[str]="<mask>" , UpperCAmelCase_ : Dict="<s>" , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[int]="##" , **UpperCAmelCase_ : Optional[int] , ): """simple docstring""" super().__init__( UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , clean_text=UpperCAmelCase_ , tokenize_chinese_chars=UpperCAmelCase_ , strip_accents=UpperCAmelCase_ , wordpieces_prefix=UpperCAmelCase_ , **UpperCAmelCase_ , ) a : str = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('lowercase' , UpperCAmelCase_) != do_lower_case or normalizer_state.get('strip_accents' , UpperCAmelCase_) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCAmelCase_) != tokenize_chinese_chars ): a : Optional[Any] = getattr(UpperCAmelCase_ , normalizer_state.pop('type')) a : Any = do_lower_case a : List[str] = strip_accents a : List[Any] = tokenize_chinese_chars a : Dict = normalizer_class(**UpperCAmelCase_) a : Union[str, Any] = do_lower_case def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str=None): """simple docstring""" a : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): """simple docstring""" a : Any = [self.sep_token_id] a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls) * [self.cls_token_type_id] + len(token_ids_a + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): """simple docstring""" a : List[str] = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_)
610
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : Tuple = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = "yolos" def __init__( self : str , UpperCAmelCase_ : List[Any]=7_6_8 , UpperCAmelCase_ : str=1_2 , UpperCAmelCase_ : Optional[Any]=1_2 , UpperCAmelCase_ : Dict=3_0_7_2 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : List[str]=1e-12 , UpperCAmelCase_ : Union[str, Any]=[5_1_2, 8_6_4] , UpperCAmelCase_ : str=1_6 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : int=1_0_0 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Dict=5 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(**UpperCAmelCase_) a : Union[str, Any] = hidden_size a : int = num_hidden_layers a : Dict = num_attention_heads a : Dict = intermediate_size a : int = hidden_act a : Union[str, Any] = hidden_dropout_prob a : Any = attention_probs_dropout_prob a : Dict = initializer_range a : Union[str, Any] = layer_norm_eps a : str = image_size a : Any = patch_size a : Union[str, Any] = num_channels a : int = qkv_bias a : Union[str, Any] = num_detection_tokens a : Optional[int] = use_mid_position_embeddings a : str = auxiliary_loss # Hungarian matcher a : Optional[Any] = class_cost a : Union[str, Any] = bbox_cost a : List[str] = giou_cost # Loss coefficients a : Any = bbox_loss_coefficient a : Optional[Any] = giou_loss_coefficient a : Union[str, Any] = eos_coefficient class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE_ ( self : Tuple): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return 1e-4 @property def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" return 1_2
610
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase_ : str = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class lowerCAmelCase ( lowerCAmelCase_): __lowercase : Any = '''retribert''' def __init__( self , __SCREAMING_SNAKE_CASE=3_0522 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-12 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=_snake_case , **_snake_case ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = share_encoders __snake_case = projection_dim
24
def lowercase_ (A : list , A : int = 0 ): snake_case__ : List[str] = length or len(A ) snake_case__ : Any = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: snake_case__ , snake_case__ : List[str] = list_data[i + 1], list_data[i] snake_case__ : Tuple = True return list_data if not swapped else bubble_sort(A , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
478
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _a : Optional[Any] = logging.get_logger(__name__) class __A (__magic_name__ ): def __init__( self , **UpperCamelCase_ ): requires_backends(self , ["bs4"] ) super().__init__(**UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Optional[int] = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __UpperCAmelCase : Tuple = parent.find_all(child.name , recursive=UpperCamelCase_ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(UpperCamelCase_ ) else next(i for i, s in enumerate(UpperCamelCase_ , 1 ) if s is child ) ) __UpperCAmelCase : Tuple = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Any = BeautifulSoup(UpperCamelCase_ , "html.parser" ) __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Any = [] for element in html_code.descendants: if type(UpperCamelCase_ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __UpperCAmelCase : Dict = html.unescape(UpperCamelCase_ ).strip() if not text_in_this_tag: continue all_doc_strings.append(UpperCamelCase_ ) __UpperCAmelCase : int = self.xpath_soup(UpperCamelCase_ ) stringaxtag_seq.append(UpperCamelCase_ ) stringaxsubs_seq.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError("Number of doc strings and xtags does not correspond" ) if len(UpperCamelCase_ ) != len(UpperCamelCase_ ): raise ValueError("Number of doc strings and xsubs does not correspond" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = "" for tagname, subs in zip(UpperCamelCase_ , UpperCamelCase_ ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = False # Check that strings has a valid type if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = True elif isinstance(UpperCamelCase_ , (list, tuple) ): if len(UpperCamelCase_ ) == 0 or isinstance(html_strings[0] , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = True if not valid_strings: raise ValueError( "HTML strings must of type `str`, `List[str]` (batch of examples), " f"""but is of type {type(UpperCamelCase_ )}.""" ) __UpperCAmelCase : Any = bool(isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(html_strings[0] , UpperCamelCase_ )) ) if not is_batched: __UpperCAmelCase : Any = [html_strings] # Get nodes + xpaths __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[int] = [] for html_string in html_strings: __UpperCAmelCase : Union[str, Any] = self.get_three_from_single(UpperCamelCase_ ) nodes.append(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = [] for node, tag_list, sub_list in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Optional[Any] = self.construct_xpath(UpperCamelCase_ , UpperCamelCase_ ) xpath_strings.append(UpperCamelCase_ ) xpaths.append(UpperCamelCase_ ) # return as Dict __UpperCAmelCase : int = {"nodes": nodes, "xpaths": xpaths} __UpperCAmelCase : Tuple = BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ ) return encoded_inputs
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a : Dict = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
218
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase__ : '''simple docstring''' snake_case_ =None snake_case_ =False snake_case_ =False snake_case_ =False snake_case_ =None snake_case_ =None snake_case_ =False snake_case_ =False snake_case_ =False snake_case_ =True snake_case_ =None snake_case_ =1 snake_case_ =None snake_case_ =False snake_case_ =None snake_case_ =None def lowerCAmelCase__ (self ) -> "DownloadConfig": """simple docstring""" return self.__class__(**{k: copy.deepcopy(__lowerCamelCase ) for k, v in self.__dict__.items()} )
647
0
import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCamelCase : int = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCamelCase : str = [0, 25, 50] UpperCamelCase : Any = [25, 50, 75] UpperCamelCase : Optional[int] = fuzz.membership.trimf(X, abca) UpperCamelCase : int = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCamelCase : List[Any] = np.ones(75) UpperCamelCase : Dict = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCamelCase : Optional[int] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCamelCase : int = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCamelCase : Optional[int] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCamelCase : Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCamelCase : Dict = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCamelCase : Union[str, Any] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCamelCase : Optional[int] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCamelCase : str = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
151
from copy import deepcopy class A__ : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase__ : list[int] | None = None , lowerCamelCase__ : int | None = None ): if arr is None and size is not None: a__ : Union[str, Any] = size a__ : Optional[Any] = [0] * size elif arr is not None: self.init(lowerCamelCase__ ) else: raise ValueError("Either arr or size must be specified" ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : list[int] ): a__ : Any = len(lowerCamelCase__ ) a__ : List[Any] = deepcopy(lowerCamelCase__ ) for i in range(1 , self.size ): a__ : Union[str, Any] = self.next_(lowerCamelCase__ ) if j < self.size: self.tree[j] += self.tree[i] def _UpperCamelCase( self : Tuple ): a__ : List[str] = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): a__ : Optional[Any] = self.next_(lowerCamelCase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def _UpperCamelCase( lowerCamelCase__ : int ): return index + (index & (-index)) @staticmethod def _UpperCamelCase( lowerCamelCase__ : int ): return index - (index & (-index)) def _UpperCamelCase( self : str , lowerCamelCase__ : int , lowerCamelCase__ : int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value a__ : Optional[int] = self.next_(lowerCamelCase__ ) def _UpperCamelCase( self : List[str] , lowerCamelCase__ : int , lowerCamelCase__ : int ): self.add(lowerCamelCase__ , value - self.get(lowerCamelCase__ ) ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int ): if right == 0: return 0 a__ : Tuple = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] a__ : List[Any] = self.prev(lowerCamelCase__ ) return result def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ): return self.prefix(lowerCamelCase__ ) - self.prefix(lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int ): return self.query(lowerCamelCase__ , index + 1 ) def _UpperCamelCase( self : int , lowerCamelCase__ : int ): value -= self.tree[0] if value < 0: return -1 a__ : Union[str, Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 a__ : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
151
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ : Optional[int] = logging.get_logger(__name__) UpperCamelCase_ : str = {"""vocab_file""": """spm_char.model"""} UpperCamelCase_ : Dict = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } UpperCamelCase_ : Dict = { """microsoft/speecht5_asr""": 1024, """microsoft/speecht5_tts""": 1024, """microsoft/speecht5_vc""": 1024, } class __lowercase ( __snake_case ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] def __init__(self : List[Any] , snake_case : Any , snake_case : Dict="<s>" , snake_case : List[Any]="</s>" , snake_case : int="<unk>" , snake_case : List[Any]="<pad>" , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Optional[int] , ) -> None: _lowercase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , pad_token=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) _lowercase : Optional[Any] = vocab_file _lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def _a(self : Any ) -> Optional[Any]: return self.sp_model.get_piece_size() def _a(self : Dict ) -> Any: _lowercase : Dict = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self : str ) -> Dict: _lowercase : int = self.__dict__.copy() _lowercase : Dict = None return state def __setstate__(self : Optional[Any] , snake_case : Tuple ) -> str: _lowercase : Dict = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowercase : Optional[Any] = {} _lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a(self : Tuple , snake_case : str ) -> List[str]: return self.sp_model.encode(snake_case , out_type=snake_case ) def _a(self : Tuple , snake_case : List[str] ) -> Tuple: return self.sp_model.piece_to_id(snake_case ) def _a(self : Optional[int] , snake_case : Optional[int] ) -> Tuple: _lowercase : Optional[Any] = self.sp_model.IdToPiece(snake_case ) return token def _a(self : Union[str, Any] , snake_case : Dict ) -> Tuple: _lowercase : Union[str, Any] = [] _lowercase : List[Any] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case ) + token _lowercase : Any = [] else: current_sub_tokens.append(snake_case ) out_string += self.sp_model.decode(snake_case ) return out_string.strip() def _a(self : Dict , snake_case : Union[str, Any] , snake_case : int=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a(self : str , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) _lowercase : Union[str, Any] = [1] if token_ids_a is None: return ([0] * len(snake_case )) + suffix_ones return ([0] * len(snake_case )) + ([0] * len(snake_case )) + suffix_ones def _a(self : Tuple , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowercase : int = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , "wb" ) as fi: _lowercase : str = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
461
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ : int = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Any = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Tuple = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
461
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class __magic_name__ : lowerCamelCase__ = LEDConfig lowerCamelCase__ = {} lowerCamelCase__ = '''gelu''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , _a=4 , ) -> Tuple: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after lowerCAmelCase_ = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests lowerCAmelCase_ = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) lowerCAmelCase_ = prepare_led_inputs_dict(_a , _a , _a ) lowerCAmelCase_ = tf.concat( [tf.zeros_like(_a )[:, :-1], tf.ones_like(_a )[:, -1:]] , axis=-1 , ) lowerCAmelCase_ = global_attention_mask return config, inputs_dict def __a ( self , _a , _a ) -> Tuple: lowerCAmelCase_ = TFLEDModel(config=_a ).get_decoder() lowerCAmelCase_ = inputs_dict["input_ids"] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict["attention_mask"][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(_a , attention_mask=_a , use_cache=_a ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(_a , attention_mask=_a )[0] lowerCAmelCase_ = model(_a , attention_mask=_a , past_key_values=_a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_a , _a , rtol=1E-3 ) def A(__a: Union[str, Any] , __a: List[Any] , __a: Union[str, Any] , __a: int=None , __a: int=None , __a: Union[str, Any]=None , __a: Tuple=None , ): if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(__a , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> List[str]: lowerCAmelCase_ = TFLEDModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_a ) def __a ( self ) -> List[Any]: self.config_tester.run_common_tests() def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) def __a ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ = tf.zeros_like(inputs_dict["attention_mask"] ) lowerCAmelCase_ = 2 lowerCAmelCase_ = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) lowerCAmelCase_ = True lowerCAmelCase_ = self.model_tester.seq_length lowerCAmelCase_ = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_a ): lowerCAmelCase_ = outputs.decoder_attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_a ): lowerCAmelCase_ = [t.numpy() for t in outputs.encoder_attentions] lowerCAmelCase_ = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = model_class(_a ) lowerCAmelCase_ = model(self._prepare_for_class(_a , _a ) ) lowerCAmelCase_ = len(_a ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) if self.is_encoder_decoder: lowerCAmelCase_ = model_class(_a ) lowerCAmelCase_ = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_decoder_attentions_output(_a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCAmelCase_ = True lowerCAmelCase_ = model_class(_a ) lowerCAmelCase_ = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) # Check attention is always last and order is fine lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = model_class(_a ) lowerCAmelCase_ = model(self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_a ) ) self.assertEqual(model.config.output_hidden_states , _a ) check_encoder_attentions_output(_a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def __a ( self ) -> Dict: pass def __a ( self ) -> Union[str, Any]: # TODO: Head-masking not yet implement pass def A(__a: Union[str, Any] ): return tf.constant(__a , dtype=tf.intaa ) lowerCamelCase__ = 1e-4 @slow @require_tf class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Any: lowerCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here lowerCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCAmelCase_ = prepare_led_inputs_dict(model.config , _a , _a ) lowerCAmelCase_ = model(**_a )[0] lowerCAmelCase_ = (1, 1024, 768) self.assertEqual(output.shape , _a ) # change to expected output here lowerCAmelCase_ = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1E-3 ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here lowerCAmelCase_ = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCAmelCase_ = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) lowerCAmelCase_ = prepare_led_inputs_dict(model.config , _a , _a ) lowerCAmelCase_ = model(**_a )[0] lowerCAmelCase_ = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , _a ) # change to expected output here lowerCAmelCase_ = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1E-3 , rtol=1E-3 )
226
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = '''RegNetConfig''' # Base docstring lowerCamelCase__ = '''facebook/regnet-y-040''' lowerCamelCase__ = [1, 10_88, 7, 7] # Image classification docstring lowerCamelCase__ = '''facebook/regnet-y-040''' lowerCamelCase__ = '''tabby, tabby cat''' lowerCamelCase__ = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class __magic_name__ (nn.Module ): def __init__( self , _a , _a , _a = 3 , _a = 1 , _a = 1 , _a = "relu" , ) -> int: super().__init__() lowerCAmelCase_ = nn.Convad( _a , _a , kernel_size=_a , stride=_a , padding=kernel_size // 2 , groups=_a , bias=_a , ) lowerCAmelCase_ = nn.BatchNormad(_a ) lowerCAmelCase_ = ACTaFN[activation] if activation is not None else nn.Identity() def __a ( self , _a ) -> str: lowerCAmelCase_ = self.convolution(_a ) lowerCAmelCase_ = self.normalization(_a ) lowerCAmelCase_ = self.activation(_a ) return hidden_state class __magic_name__ (nn.Module ): def __init__( self , _a ) -> Dict: super().__init__() lowerCAmelCase_ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) lowerCAmelCase_ = config.num_channels def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) lowerCAmelCase_ = self.embedder(_a ) return hidden_state class __magic_name__ (nn.Module ): def __init__( self , _a , _a , _a = 2 ) -> int: super().__init__() lowerCAmelCase_ = nn.Convad(_a , _a , kernel_size=1 , stride=_a , bias=_a ) lowerCAmelCase_ = nn.BatchNormad(_a ) def __a ( self , _a ) -> Tensor: lowerCAmelCase_ = self.convolution(_a ) lowerCAmelCase_ = self.normalization(_a ) return hidden_state class __magic_name__ (nn.Module ): def __init__( self , _a , _a ) -> str: super().__init__() lowerCAmelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) lowerCAmelCase_ = nn.Sequential( nn.Convad(_a , _a , kernel_size=1 ) , nn.ReLU() , nn.Convad(_a , _a , kernel_size=1 ) , nn.Sigmoid() , ) def __a ( self , _a ) -> int: # b c h w -> b c 1 1 lowerCAmelCase_ = self.pooler(_a ) lowerCAmelCase_ = self.attention(_a ) lowerCAmelCase_ = hidden_state * attention return hidden_state class __magic_name__ (nn.Module ): def __init__( self , _a , _a , _a , _a = 1 ) -> Union[str, Any]: super().__init__() lowerCAmelCase_ = in_channels != out_channels or stride != 1 lowerCAmelCase_ = max(1 , out_channels // config.groups_width ) lowerCAmelCase_ = ( RegNetShortCut(_a , _a , stride=_a ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase_ = nn.Sequential( RegNetConvLayer(_a , _a , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_a , _a , stride=_a , groups=_a , activation=config.hidden_act ) , RegNetConvLayer(_a , _a , kernel_size=1 , activation=_a ) , ) lowerCAmelCase_ = ACTaFN[config.hidden_act] def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = hidden_state lowerCAmelCase_ = self.layer(_a ) lowerCAmelCase_ = self.shortcut(_a ) hidden_state += residual lowerCAmelCase_ = self.activation(_a ) return hidden_state class __magic_name__ (nn.Module ): def __init__( self , _a , _a , _a , _a = 1 ) -> int: super().__init__() lowerCAmelCase_ = in_channels != out_channels or stride != 1 lowerCAmelCase_ = max(1 , out_channels // config.groups_width ) lowerCAmelCase_ = ( RegNetShortCut(_a , _a , stride=_a ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase_ = nn.Sequential( RegNetConvLayer(_a , _a , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_a , _a , stride=_a , groups=_a , activation=config.hidden_act ) , RegNetSELayer(_a , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_a , _a , kernel_size=1 , activation=_a ) , ) lowerCAmelCase_ = ACTaFN[config.hidden_act] def __a ( self , _a ) -> Union[str, Any]: lowerCAmelCase_ = hidden_state lowerCAmelCase_ = self.layer(_a ) lowerCAmelCase_ = self.shortcut(_a ) hidden_state += residual lowerCAmelCase_ = self.activation(_a ) return hidden_state class __magic_name__ (nn.Module ): def __init__( self , _a , _a , _a , _a = 2 , _a = 2 , ) -> Any: super().__init__() lowerCAmelCase_ = RegNetXLayer if config.layer_type == "x" else RegNetYLayer lowerCAmelCase_ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _a , _a , _a , stride=_a , ) , *[layer(_a , _a , _a ) for _ in range(depth - 1 )] , ) def __a ( self , _a ) -> Tuple: lowerCAmelCase_ = self.layers(_a ) return hidden_state class __magic_name__ (nn.Module ): def __init__( self , _a ) -> Optional[int]: super().__init__() lowerCAmelCase_ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowerCAmelCase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_a , config.depths[1:] ): self.stages.append(RegNetStage(_a , _a , _a , depth=_a ) ) def __a ( self , _a , _a = False , _a = True ) -> BaseModelOutputWithNoAttention: lowerCAmelCase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase_ = hidden_states + (hidden_state,) lowerCAmelCase_ = stage_module(_a ) if output_hidden_states: lowerCAmelCase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_a , hidden_states=_a ) class __magic_name__ (__lowercase ): lowerCamelCase__ = RegNetConfig lowerCamelCase__ = '''regnet''' lowerCamelCase__ = '''pixel_values''' lowerCamelCase__ = True def __a ( self , _a ) -> str: if isinstance(_a , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __a ( self , _a , _a=False ) -> str: if isinstance(_a , _a ): lowerCAmelCase_ = value lowerCamelCase__ = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowerCamelCase__ = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , __lowercase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __magic_name__ (__lowercase ): def __init__( self , _a ) -> int: super().__init__(_a ) lowerCAmelCase_ = config lowerCAmelCase_ = RegNetEmbeddings(_a ) lowerCAmelCase_ = RegNetEncoder(_a ) lowerCAmelCase_ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_a , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __a ( self , _a , _a = None , _a = None ) -> BaseModelOutputWithPoolingAndNoAttention: lowerCAmelCase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ = self.embedder(_a ) lowerCAmelCase_ = self.encoder( _a , output_hidden_states=_a , return_dict=_a ) lowerCAmelCase_ = encoder_outputs[0] lowerCAmelCase_ = self.pooler(_a ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_a , pooler_output=_a , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __lowercase , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __magic_name__ (__lowercase ): def __init__( self , _a ) -> List[str]: super().__init__(_a ) lowerCAmelCase_ = config.num_labels lowerCAmelCase_ = RegNetModel(_a ) # classification head lowerCAmelCase_ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __a ( self , _a = None , _a = None , _a = None , _a = None , ) -> ImageClassifierOutputWithNoAttention: lowerCAmelCase_ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ = self.regnet(_a , output_hidden_states=_a , return_dict=_a ) lowerCAmelCase_ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase_ = self.classifier(_a ) lowerCAmelCase_ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase_ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase_ = "single_label_classification" else: lowerCAmelCase_ = "multi_label_classification" if self.config.problem_type == "regression": lowerCAmelCase_ = MSELoss() if self.num_labels == 1: lowerCAmelCase_ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase_ = loss_fct(_a , _a ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase_ = CrossEntropyLoss() lowerCAmelCase_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase_ = BCEWithLogitsLoss() lowerCAmelCase_ = loss_fct(_a , _a ) if not return_dict: lowerCAmelCase_ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_a , logits=_a , hidden_states=outputs.hidden_states )
226
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : List[Any] = 'timm_backbone' def __init__( self : List[Any] , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Optional[Any] , ): super().__init__(**__lowerCAmelCase ) _UpperCAmelCase = backbone _UpperCAmelCase = num_channels _UpperCAmelCase = features_only _UpperCAmelCase = use_pretrained_backbone _UpperCAmelCase = True _UpperCAmelCase = out_indices if out_indices is not None else (-1,)
277
"""simple docstring""" from collections.abc import Generator def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = 0, 1 while True: _UpperCAmelCase , _UpperCAmelCase = b, a + b yield b def __UpperCAmelCase ( lowercase = 10_00 ): """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = fibonacci_generator() while len(str(next(lowercase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
277
1
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class A__ ( unittest.TestCase ): def a__ ( self : int ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __lowercase = 'xvjiarui/stable-diffusion-2-inpainting' __lowercase , __lowercase = FlaxStableDiffusionInpaintPipeline.from_pretrained(UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) __lowercase = 'Face of a yellow cat, high resolution, sitting on a park bench' __lowercase = jax.random.PRNGKey(0 ) __lowercase = 50 __lowercase = jax.device_count() __lowercase = num_samples * [prompt] __lowercase = num_samples * [init_image] __lowercase = num_samples * [mask_image] __lowercase , __lowercase , __lowercase = pipeline.prepare_inputs(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # shard inputs and rng __lowercase = replicate(UpperCAmelCase__ ) __lowercase = jax.random.split(UpperCAmelCase__ , jax.device_count() ) __lowercase = shard(UpperCAmelCase__ ) __lowercase = shard(UpperCAmelCase__ ) __lowercase = shard(UpperCAmelCase__ ) __lowercase = pipeline( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , jit=UpperCAmelCase__ ) __lowercase = output.images.reshape(UpperCAmelCase__ , 5_12 , 5_12 , 3 ) __lowercase = images[0, 2_53:2_56, 2_53:2_56, -1] __lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowercase = jnp.array( [0.3_611_307, 0.37_649_736, 0.3_757_408, 0.38_213_953, 0.39_295_167, 0.3_841_631, 0.41_554_978, 0.4_137_475, 0.4_217_084] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
721
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """google/umt5-small""": """https://huggingface.co/google/umt5-small/resolve/main/config.json""", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[int] = "umt5" lowerCAmelCase__ : Tuple = ["past_key_values"] def __init__( self : str , _UpperCAmelCase : int=25_01_12 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : List[str]=64 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : str=8 , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=1_28 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str=1e-6 , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str="gated-gelu" , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Tuple="T5Tokenizer" , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=0 , _UpperCAmelCase : int=1 , _UpperCAmelCase : List[str]=0 , **_UpperCAmelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = self.feed_forward_proj.split('-' ) __lowercase = act_info[-1] __lowercase = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __lowercase = 'gelu_new' @property def a__ ( self : Tuple ) -> Any: """simple docstring""" return self.d_model @property def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" return self.num_heads @property def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" return self.num_layers class A__ ( lowerCAmelCase__ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowercase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowercase = 'past_encoder_sequence + sequence' __lowercase = {0: 'batch'} __lowercase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowercase = {0: 'batch', 1: 'decoder_sequence'} __lowercase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a__ ( self : List[str] ) -> int: """simple docstring""" return 13 @property def a__ ( self : Dict ) -> float: """simple docstring""" return 5e-4
688
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES _lowerCamelCase = 'tiny-wmt19-en-ru' # Build # borrowed from a test _lowerCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _lowerCamelCase = dict(zip(vocab, range(len(vocab)))) _lowerCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = Path(tmpdirname) _lowerCamelCase = build_dir / VOCAB_FILES_NAMES['src_vocab_file'] _lowerCamelCase = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file'] _lowerCamelCase = build_dir / VOCAB_FILES_NAMES['merges_file'] with open(src_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, 'w') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, 'w') as fp: fp.write('\n'.join(merges)) _lowerCamelCase = FSMTTokenizer( langs=['en', 'ru'], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) _lowerCamelCase = FSMTConfig( langs=['ru', 'en'], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) _lowerCamelCase = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _lowerCamelCase = tokenizer(['Making tiny model'], return_tensors='pt') _lowerCamelCase = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
6
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _lowerCamelCase ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): """simple docstring""" def __init__( self , UpperCAmelCase=None , **UpperCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__(features=UpperCAmelCase ) __snake_case : Optional[int] = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' import torch if isinstance(UpperCAmelCase , UpperCAmelCase ) and column: if all( isinstance(UpperCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCAmelCase ) return column def UpperCAmelCase ( self , UpperCAmelCase ) -> List[Any]: '''simple docstring''' import torch if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase )) ): return value elif isinstance(UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __snake_case : Optional[Any] = {} if isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __snake_case : List[Any] = {"dtype": torch.intaa} elif isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __snake_case : Union[str, Any] = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase , PIL.Image.Image ): __snake_case : Optional[int] = np.asarray(UpperCAmelCase ) return torch.tensor(UpperCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCAmelCase ( self , UpperCAmelCase ) -> str: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(UpperCAmelCase , "__array__" ) and not isinstance(UpperCAmelCase , torch.Tensor ): __snake_case : List[str] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Mapping: '''simple docstring''' __snake_case : Any = self.numpy_arrow_extractor().extract_row(UpperCAmelCase ) __snake_case : Dict = self.python_features_decoder.decode_row(UpperCAmelCase ) return self.recursive_tensorize(UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> "torch.Tensor": '''simple docstring''' __snake_case : Optional[Any] = self.numpy_arrow_extractor().extract_column(UpperCAmelCase ) __snake_case : List[str] = self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0] ) __snake_case : Union[str, Any] = self.recursive_tensorize(UpperCAmelCase ) __snake_case : Union[str, Any] = self._consolidate(UpperCAmelCase ) return column def UpperCAmelCase ( self , UpperCAmelCase ) -> Mapping: '''simple docstring''' __snake_case : str = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase ) __snake_case : List[str] = self.python_features_decoder.decode_batch(UpperCAmelCase ) __snake_case : Union[str, Any] = self.recursive_tensorize(UpperCAmelCase ) for column_name in batch: __snake_case : Dict = self._consolidate(batch[column_name] ) return batch
243
0
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __A = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" def __init__( self: Tuple , *__A: Optional[Any] , **__A: int ) -> Any: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __A , ) super().__init__(*__A , **__A )
716
import flax.linen as nn import jax import jax.numpy as jnp class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" A_ = 42 A_ = jnp.floataa def __A ( self: Tuple ) -> Tuple: _A = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __A: Dict ) -> Tuple: _A ,_A ,_A ,_A = hidden_states.shape _A = jax.image.resize( __A , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) _A = self.conv(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" A_ = 42 A_ = jnp.floataa def __A ( self: List[str] ) -> Tuple: _A = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Union[str, Any] , __A: List[Any] ) -> Union[str, Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _A = self.conv(__A ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" A_ = 42 A_ = None A_ = 0.0 A_ = None A_ = jnp.floataa def __A ( self: Dict ) -> Dict: _A = self.in_channels if self.out_channels is None else self.out_channels _A = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _A = nn.Conv( __A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _A = nn.Dense(__A , dtype=self.dtype ) _A = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _A = nn.Dropout(self.dropout_prob ) _A = nn.Conv( __A , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _A = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _A = None if use_nin_shortcut: _A = nn.Conv( __A , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self: Dict , __A: List[Any] , __A: List[Any] , __A: Any=True ) -> List[Any]: _A = hidden_states _A = self.norma(__A ) _A = nn.swish(__A ) _A = self.conva(__A ) _A = self.time_emb_proj(nn.swish(__A ) ) _A = jnp.expand_dims(jnp.expand_dims(__A , 1 ) , 1 ) _A = hidden_states + temb _A = self.norma(__A ) _A = nn.swish(__A ) _A = self.dropout(__A , __A ) _A = self.conva(__A ) if self.conv_shortcut is not None: _A = self.conv_shortcut(__A ) return hidden_states + residual
62
0
import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __lowerCAmelCase : str = True except ImportError: __lowerCAmelCase : Optional[Any] = False try: from torch.hub import _get_torch_home __lowerCAmelCase : Dict = _get_torch_home() except ImportError: __lowerCAmelCase : Union[str, Any] = os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) __lowerCAmelCase : int = os.path.join(torch_cache_home, "transformers") __lowerCAmelCase : Optional[int] = "https://cdn.huggingface.co" __lowerCAmelCase : str = "https://s3.amazonaws.com/models.huggingface.co/bert" __lowerCAmelCase : Tuple = "/".join(str(Path(__file__).resolve()).split("/")[:-1]) __lowerCAmelCase : Any = os.path.join(PATH, "config.yaml") __lowerCAmelCase : int = os.path.join(PATH, "attributes.txt") __lowerCAmelCase : Union[str, Any] = os.path.join(PATH, "objects.txt") __lowerCAmelCase : List[Any] = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) __lowerCAmelCase : Tuple = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) __lowerCAmelCase : Optional[int] = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) __lowerCAmelCase : Optional[Any] = "pytorch_model.bin" __lowerCAmelCase : List[str] = "config.yaml" def UpperCAmelCase_ ( __lowerCAmelCase=OBJECTS , __lowerCAmelCase=ATTRIBUTES ) -> int: __lowercase : List[Any] = [] with open(__lowerCAmelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(''',''' )[0].lower().strip() ) __lowercase : Dict = [] with open(__lowerCAmelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(''',''' )[0].lower().strip() ) return vg_classes, vg_attrs def UpperCAmelCase_ ( __lowerCAmelCase ) -> Tuple: __lowercase : Any = OrderedDict() with open(__lowerCAmelCase , '''rb''' ) as f: __lowercase : Optional[Any] = pkl.load(__lowerCAmelCase )['''model'''] for k in copy.deepcopy(list(ckp.keys() ) ): __lowercase : int = ckp.pop(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , np.ndarray ): __lowercase : int = torch.tensor(__lowerCAmelCase ) else: assert isinstance(__lowerCAmelCase , torch.tensor ), type(__lowerCAmelCase ) __lowercase : int = v return r class __lowerCAmelCase : """simple docstring""" A__ : Union[str, Any] = {} def __init__( self : Union[str, Any] , _snake_case : dict , _snake_case : str = "root" , _snake_case : List[Any]=0 ): __lowercase : Tuple = name __lowercase : Tuple = level __lowercase : Tuple = {} for k, v in dictionary.items(): if v is None: raise ValueError() __lowercase : Dict = copy.deepcopy(_snake_case ) __lowercase : Any = copy.deepcopy(_snake_case ) if isinstance(_snake_case , _snake_case ): __lowercase : List[str] = Config(_snake_case , name=_snake_case , level=level + 1 ) __lowercase : Optional[Any] = v setattr(self , _snake_case , _snake_case ) __lowercase : Optional[Any] = d def __repr__( self : str ): return str(list((self._pointer.keys()) ) ) def __setattr__( self : Optional[Any] , _snake_case : Optional[int] , _snake_case : Union[str, Any] ): __lowercase : Dict = val __lowercase : Dict = val __lowercase : Tuple = key.split('''.''' ) __lowercase : str = len(_snake_case ) - 1 __lowercase : List[Any] = self._pointer if len(_snake_case ) > 1: for i, l in enumerate(_snake_case ): if hasattr(self , _snake_case ) and isinstance(getattr(self , _snake_case ) , _snake_case ): setattr(getattr(self , _snake_case ) , '''.'''.join(levels[i:] ) , _snake_case ) if l == last_level: __lowercase : List[str] = val else: __lowercase : Optional[int] = pointer[l] def snake_case_ ( self : Union[str, Any] ): return self._pointer def snake_case_ ( self : Optional[Any] , _snake_case : Optional[int] , _snake_case : Union[str, Any] ): with open(F'{file_name}' , '''w''' ) as stream: dump(_snake_case , _snake_case ) def snake_case_ ( self : Dict , _snake_case : int , _snake_case : Dict ): with open(F'{file_name}' , '''w''' ) as stream: json.dump(_snake_case , _snake_case ) @staticmethod def snake_case_ ( _snake_case : int ): with open(_snake_case ) as stream: __lowercase : Tuple = load(_snake_case , Loader=_snake_case ) return data def __str__( self : Optional[int] ): __lowercase : int = ''' ''' if self._name != "root": __lowercase : Dict = F'{t * (self._level-1)}{self._name}:\n' else: __lowercase : Optional[int] = '''''' __lowercase : Optional[Any] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_snake_case , _snake_case ): r += F'{t * (self._level)}{v}\n' self._level += 1 else: r += F'{t * (self._level)}{k}: {v} ({type(_snake_case ).__name__})\n' __lowercase : Dict = level return r[:-1] @classmethod def snake_case_ ( cls : Dict , _snake_case : str , **_snake_case : Union[str, Any] ): __lowercase , __lowercase : Union[str, Any] = cls.get_config_dict(_snake_case , **_snake_case ) return cls(_snake_case ) @classmethod def snake_case_ ( cls : Union[str, Any] , _snake_case : str , **_snake_case : int ): __lowercase : Dict = kwargs.pop('''cache_dir''' , _snake_case ) __lowercase : str = kwargs.pop('''force_download''' , _snake_case ) __lowercase : int = kwargs.pop('''resume_download''' , _snake_case ) __lowercase : Any = kwargs.pop('''proxies''' , _snake_case ) __lowercase : Dict = kwargs.pop('''local_files_only''' , _snake_case ) if os.path.isdir(_snake_case ): __lowercase : List[Any] = os.path.join(_snake_case , _snake_case ) elif os.path.isfile(_snake_case ) or is_remote_url(_snake_case ): __lowercase : Optional[int] = pretrained_model_name_or_path else: __lowercase : Tuple = hf_bucket_url(_snake_case , filename=_snake_case , use_cdn=_snake_case ) try: # Load from URL or cache if already cached __lowercase : List[str] = cached_path( _snake_case , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , ) # Load config dict if resolved_config_file is None: raise EnvironmentError __lowercase : int = Config.load_yaml(_snake_case ) except EnvironmentError: __lowercase : Union[str, Any] = '''Can\'t load config for''' raise EnvironmentError(_snake_case ) if resolved_config_file == config_file: print('''loading configuration file from path''' ) else: print('''loading configuration file cache''' ) return Config.load_yaml(_snake_case ), kwargs def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: __lowercase : List[Any] = torch.load('''dump.pt''' , map_location=in_tensor.device ) __lowercase : List[str] = in_tensor.numpy() __lowercase : List[str] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(__lowerCAmelCase , __lowerCAmelCase , rtol=0.01 , atol=0.1 ), ( F'{sum([1 for x in np.isclose(__lowerCAmelCase , __lowerCAmelCase , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %' " element-wise mismatch" ) raise Exception('''tensors are all good''' ) # Hugging face functions below def UpperCAmelCase_ ( __lowerCAmelCase ) -> Optional[Any]: __lowercase : Dict = urlparse(__lowerCAmelCase ) return parsed.scheme in ("http", "https") def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=True ) -> str: __lowercase : List[Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX __lowercase : List[Any] = '''/''' not in model_id if legacy_format: return F'{endpoint}/{model_id}-{filename}' else: return F'{endpoint}/{model_id}/{filename}' def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=0 , __lowerCAmelCase=None , ) -> Any: __lowercase : Union[str, Any] = '''python/{}'''.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): ua += "; " + "; ".join('''{}/{}'''.format(__lowerCAmelCase , __lowerCAmelCase ) for k, v in user_agent.items() ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): ua += "; " + user_agent __lowercase : Optional[int] = {'''user-agent''': ua} if resume_size > 0: __lowercase : Dict = '''bytes=%d-''' % (resume_size,) __lowercase : Dict = requests.get(__lowerCAmelCase , stream=__lowerCAmelCase , proxies=__lowerCAmelCase , headers=__lowerCAmelCase ) if response.status_code == 416: # Range not satisfiable return __lowercase : List[str] = response.headers.get('''Content-Length''' ) __lowercase : Union[str, Any] = resume_size + int(__lowerCAmelCase ) if content_length is not None else None __lowercase : int = tqdm( unit='''B''' , unit_scale=__lowerCAmelCase , total=__lowerCAmelCase , initial=__lowerCAmelCase , desc='''Downloading''' , ) for chunk in response.iter_content(chunk_size=1_024 ): if chunk: # filter out keep-alive new chunks progress.update(len(__lowerCAmelCase ) ) temp_file.write(__lowerCAmelCase ) progress.close() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=10 , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=False , ) -> List[Any]: if cache_dir is None: __lowercase : Dict = TRANSFORMERS_CACHE if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowercase : Tuple = str(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) __lowercase : int = None if not local_files_only: try: __lowercase : Optional[int] = requests.head(__lowerCAmelCase , allow_redirects=__lowerCAmelCase , proxies=__lowerCAmelCase , timeout=__lowerCAmelCase ) if response.status_code == 200: __lowercase : Union[str, Any] = response.headers.get('''ETag''' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass __lowercase : Any = url_to_filename(__lowerCAmelCase , __lowerCAmelCase ) # get cache path to put the file __lowercase : Dict = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__lowerCAmelCase ): return cache_path else: __lowercase : str = [ file for file in fnmatch.filter(os.listdir(__lowerCAmelCase ) , filename + '''.*''' ) if not file.endswith('''.json''' ) and not file.endswith('''.lock''' ) ] if len(__lowerCAmelCase ) > 0: return os.path.join(__lowerCAmelCase , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( '''Cannot find the requested files in the cached path and outgoing traffic has been''' ''' disabled. To enable model look-ups and downloads online, set \'local_files_only\'''' ''' to False.''' ) return None # From now on, etag is not None. if os.path.exists(__lowerCAmelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. __lowercase : List[Any] = cache_path + '''.lock''' with FileLock(__lowerCAmelCase ): # If the download just completed while the lock was activated. if os.path.exists(__lowerCAmelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: __lowercase : str = cache_path + '''.incomplete''' @contextmanager def _resumable_file_manager(): with open(__lowerCAmelCase , '''a+b''' ) as f: yield f __lowercase : List[Any] = _resumable_file_manager if os.path.exists(__lowerCAmelCase ): __lowercase : Union[str, Any] = os.stat(__lowerCAmelCase ).st_size else: __lowercase : Optional[Any] = 0 else: __lowercase : List[str] = partial(tempfile.NamedTemporaryFile , dir=__lowerCAmelCase , delete=__lowerCAmelCase ) __lowercase : str = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '''%s not found in cache or force_download set to True, downloading to %s''' , __lowerCAmelCase , temp_file.name , ) http_get( __lowerCAmelCase , __lowerCAmelCase , proxies=__lowerCAmelCase , resume_size=__lowerCAmelCase , user_agent=__lowerCAmelCase , ) os.replace(temp_file.name , __lowerCAmelCase ) __lowercase : List[str] = {'''url''': url, '''etag''': etag} __lowercase : Tuple = cache_path + '''.json''' with open(__lowerCAmelCase , '''w''' ) as meta_file: json.dump(__lowerCAmelCase , __lowerCAmelCase ) return cache_path def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=None ) -> List[str]: __lowercase : str = url.encode('''utf-8''' ) __lowercase : List[Any] = shaaaa(__lowerCAmelCase ) __lowercase : Optional[Any] = url_hash.hexdigest() if etag: __lowercase : Dict = etag.encode('''utf-8''' ) __lowercase : Optional[Any] = shaaaa(__lowerCAmelCase ) filename += "." + etag_hash.hexdigest() if url.endswith('''.h5''' ): filename += ".h5" return filename def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , ) -> Optional[int]: if cache_dir is None: __lowercase : List[str] = TRANSFORMERS_CACHE if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowercase : Union[str, Any] = str(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): __lowercase : List[Any] = str(__lowerCAmelCase ) if is_remote_url(__lowerCAmelCase ): # URL, so get it from the cache (downloading if necessary) __lowercase : int = get_from_cache( __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , user_agent=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) elif os.path.exists(__lowerCAmelCase ): # File, and it exists. __lowercase : Optional[Any] = url_or_filename elif urlparse(__lowerCAmelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('''file {} not found'''.format(__lowerCAmelCase ) ) else: # Something unknown raise ValueError('''unable to parse {} as a URL or as a local path'''.format(__lowerCAmelCase ) ) if extract_compressed_file: if not is_zipfile(__lowerCAmelCase ) and not tarfile.is_tarfile(__lowerCAmelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" __lowercase , __lowercase : int = os.path.split(__lowerCAmelCase ) __lowercase : Tuple = output_file.replace('''.''' , '''-''' ) + '''-extracted''' __lowercase : Optional[int] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isdir(__lowerCAmelCase ) and os.listdir(__lowerCAmelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions __lowercase : int = output_path + '''.lock''' with FileLock(__lowerCAmelCase ): shutil.rmtree(__lowerCAmelCase , ignore_errors=__lowerCAmelCase ) os.makedirs(__lowerCAmelCase ) if is_zipfile(__lowerCAmelCase ): with ZipFile(__lowerCAmelCase , '''r''' ) as zip_file: zip_file.extractall(__lowerCAmelCase ) zip_file.close() elif tarfile.is_tarfile(__lowerCAmelCase ): __lowercase : Any = tarfile.open(__lowerCAmelCase ) tar_file.extractall(__lowerCAmelCase ) tar_file.close() else: raise EnvironmentError('''Archive format of {} could not be identified'''.format(__lowerCAmelCase ) ) return output_path_extracted return output_path def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase="," ) -> int: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase ) as f: __lowercase : List[str] = eval(f.read() ) else: __lowercase : Optional[int] = requests.get(__lowerCAmelCase ) try: __lowercase : List[str] = requests.json() except Exception: __lowercase : List[str] = req.content.decode() assert data is not None, "could not connect" try: __lowercase : str = eval(__lowerCAmelCase ) except Exception: __lowercase : Tuple = data.split('''\n''' ) req.close() return data def UpperCAmelCase_ ( __lowerCAmelCase ) -> Tuple: __lowercase : List[Any] = requests.get(__lowerCAmelCase ) __lowercase : Dict = np.array(Image.open(BytesIO(response.content ) ) ) return img def UpperCAmelCase_ ( __lowerCAmelCase ) -> Optional[Any]: __lowercase : Union[str, Any] = url.split('''/''' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__lowerCAmelCase ) with open(__lowerCAmelCase , '''rb''' ) as stream: __lowercase : List[Any] = pkl.load(__lowerCAmelCase ) __lowercase : Tuple = weights.pop('''model''' ) __lowercase : Optional[Any] = {} for k, v in model.items(): __lowercase : Any = torch.from_numpy(__lowerCAmelCase ) if "running_var" in k: __lowercase : Optional[int] = torch.tensor([0] ) __lowercase : Any = k.replace('''running_var''' , '''num_batches_tracked''' ) __lowercase : int = zero return new def UpperCAmelCase_ ( ) -> List[Any]: print(F'{os.path.abspath(os.path.join(__lowerCAmelCase , os.pardir ) )}/demo.ipynb' ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase="RGB" ) -> List[str]: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ): __lowercase : Any = cva.imread(__lowerCAmelCase ) else: __lowercase : int = get_image_from_url(__lowerCAmelCase ) assert img is not None, F'could not connect to: {im}' __lowercase : str = cva.cvtColor(__lowerCAmelCase , cva.COLOR_BGR2RGB ) if input_format == "RGB": __lowercase : Tuple = img[:, :, ::-1] return img def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=1 ) -> Tuple: return (images[i : i + batch] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ))
509
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = '''data2vec-vision''' def __init__( self : str , _snake_case : str=768 , _snake_case : Tuple=12 , _snake_case : Any=12 , _snake_case : Optional[int]=3072 , _snake_case : Tuple="gelu" , _snake_case : Dict=0.0 , _snake_case : Any=0.0 , _snake_case : Tuple=0.02 , _snake_case : List[Any]=1E-1_2 , _snake_case : int=224 , _snake_case : List[str]=16 , _snake_case : List[str]=3 , _snake_case : Optional[int]=False , _snake_case : str=False , _snake_case : Tuple=False , _snake_case : Tuple=False , _snake_case : Any=0.1 , _snake_case : Any=0.1 , _snake_case : List[Any]=True , _snake_case : List[Any]=[3, 5, 7, 11] , _snake_case : List[Any]=[1, 2, 3, 6] , _snake_case : Tuple=True , _snake_case : str=0.4 , _snake_case : Any=256 , _snake_case : Any=1 , _snake_case : str=False , _snake_case : str=255 , **_snake_case : Dict , ): super().__init__(**_snake_case ) __lowercase : int = hidden_size __lowercase : Optional[int] = num_hidden_layers __lowercase : str = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : Optional[int] = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Dict = initializer_range __lowercase : List[str] = layer_norm_eps __lowercase : str = image_size __lowercase : List[str] = patch_size __lowercase : Dict = num_channels __lowercase : Optional[Any] = use_mask_token __lowercase : Optional[int] = use_absolute_position_embeddings __lowercase : Tuple = use_relative_position_bias __lowercase : Dict = use_shared_relative_position_bias __lowercase : List[Any] = layer_scale_init_value __lowercase : Union[str, Any] = drop_path_rate __lowercase : Tuple = use_mean_pooling # decode head attributes (semantic segmentation) __lowercase : List[str] = out_indices __lowercase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) __lowercase : Dict = use_auxiliary_head __lowercase : str = auxiliary_loss_weight __lowercase : Union[str, Any] = auxiliary_channels __lowercase : Dict = auxiliary_num_convs __lowercase : Dict = auxiliary_concat_input __lowercase : Dict = semantic_loss_ignore_index class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : int = version.parse('''1.11''' ) @property def snake_case_ ( self : str ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case_ ( self : Tuple ): return 1E-4
509
1
"""simple docstring""" from __future__ import annotations def _lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : list[str] | None = None ) -> list[list[str]]: '''simple docstring''' __A : int = word_bank or [] # create a table __A : int = len(_SCREAMING_SNAKE_CASE ) + 1 __A : list[list[list[str]]] = [] for _ in range(_SCREAMING_SNAKE_CASE ): table.append([] ) # seed value __A : Optional[Any] = [[]] # because empty string has empty combination # iterate through the indices for i in range(_SCREAMING_SNAKE_CASE ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_SCREAMING_SNAKE_CASE )] == word: __A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_SCREAMING_SNAKE_CASE )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_SCREAMING_SNAKE_CASE )]: combination.reverse() return table[len(_SCREAMING_SNAKE_CASE )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
237
"""simple docstring""" lowerCamelCase : int =[0, 2, 4, 6, 8] lowerCamelCase : List[str] =[1, 3, 5, 7, 9] def _lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> int: '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __A : Union[str, Any] = 0 for digit in range(10 ): __A : Dict = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return result __A : Union[str, Any] = 0 for digita in range(10 ): __A : Tuple = digita if (remainder + digita) % 2 == 0: __A : Union[str, Any] = ODD_DIGITS else: __A : Optional[int] = EVEN_DIGITS for digita in other_parity_digits: __A : Union[str, Any] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) return result def _lowercase ( _SCREAMING_SNAKE_CASE : int = 9 ) -> int: '''simple docstring''' __A : Tuple = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(_SCREAMING_SNAKE_CASE , 0 , [0] * length , _SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(F'{solution() = }')
237
1
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = ['torch', 'torchsde'] def __init__( self : Any , *UpperCAmelCase : int , **UpperCAmelCase : int ): requires_backends(self , ["torch", "torchsde"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "torchsde"] ) @classmethod def __A ( cls : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "torchsde"] )
86
def A__ ( snake_case_ : int ): if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) SCREAMING_SNAKE_CASE__: List[Any]= [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 SCREAMING_SNAKE_CASE__: List[str]= 1 if upper_limit > 0: SCREAMING_SNAKE_CASE__: List[str]= 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(snake_case_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: lowercase_ : Any = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
64
0
from functools import lru_cache def A(__a: int ): lowerCAmelCase_ = 2 lowerCAmelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__a ) if n > 1: factors.add(__a ) return factors @lru_cache def A(__a: int ): return len(unique_prime_factors(__a ) ) def A(__a: list ): return len(set(__a ) ) in (0, 1) def A(__a: int ): lowerCAmelCase_ = 2 while True: # Increment each value of a generated range lowerCAmelCase_ = [base + i for i in range(__a )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCAmelCase_ = [upf_len(__a ) for x in group] checker.append(__a ) # If all numbers in the list are equal, return the group variable. if equality(__a ): return group # Increment our base variable by 1 base += 1 def A(__a: int = 4 ): lowerCAmelCase_ = run(__a ) return results[0] if len(__a ) else None if __name__ == "__main__": print(solution())
226
def A(__a: int ): lowerCAmelCase_ = abs(__a ) lowerCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def A(__a: int ): lowerCAmelCase_ = abs(__a ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def A(__a: int ): return sum(int(__a ) for c in str(abs(__a ) ) ) def A(): from collections.abc import Callable from timeit import timeit def benchmark_a_function(__a: Callable , __a: int ) -> None: lowerCAmelCase_ = F"{func.__name__}({value})" lowerCAmelCase_ = timeit(F"__main__.{call}" , setup="import __main__" ) print(F"{call:56} = {func(__a )} -- {timing:.4f} seconds" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__a , __a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
226
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging A__: int = logging.get_logger(__name__) A__: List[Any] = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class _a ( __A): """simple docstring""" UpperCamelCase__ = """codegen""" UpperCamelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self: Any , __lowerCamelCase: Dict=5_0400 , __lowerCamelCase: str=2048 , __lowerCamelCase: Any=2048 , __lowerCamelCase: Tuple=4096 , __lowerCamelCase: List[str]=28 , __lowerCamelCase: str=16 , __lowerCamelCase: Optional[Any]=64 , __lowerCamelCase: str=None , __lowerCamelCase: List[str]="gelu_new" , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: List[Any]=0.0 , __lowerCamelCase: Optional[int]=1e-5 , __lowerCamelCase: int=0.02 , __lowerCamelCase: Dict=True , __lowerCamelCase: str=5_0256 , __lowerCamelCase: int=5_0256 , __lowerCamelCase: Any=False , **__lowerCamelCase: List[str] , ): '''simple docstring''' UpperCamelCase__: List[Any] = vocab_size UpperCamelCase__: int = n_ctx UpperCamelCase__: Optional[int] = n_positions UpperCamelCase__: int = n_embd UpperCamelCase__: str = n_layer UpperCamelCase__: Dict = n_head UpperCamelCase__: List[str] = n_inner UpperCamelCase__: List[Any] = rotary_dim UpperCamelCase__: Union[str, Any] = activation_function UpperCamelCase__: str = resid_pdrop UpperCamelCase__: Optional[int] = embd_pdrop UpperCamelCase__: Union[str, Any] = attn_pdrop UpperCamelCase__: Dict = layer_norm_epsilon UpperCamelCase__: Union[str, Any] = initializer_range UpperCamelCase__: List[Any] = use_cache UpperCamelCase__: Tuple = bos_token_id UpperCamelCase__: str = eos_token_id super().__init__( bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase ) class _a ( __A): """simple docstring""" def __init__( self: List[str] , __lowerCamelCase: PretrainedConfig , __lowerCamelCase: str = "default" , __lowerCamelCase: List[PatchingSpec] = None , __lowerCamelCase: bool = False , ): '''simple docstring''' super().__init__(__lowerCamelCase , task=__lowerCamelCase , patching_specs=__lowerCamelCase , use_past=__lowerCamelCase ) if not getattr(self._config , "pad_token_id" , __lowerCamelCase ): # TODO: how to do that better? UpperCamelCase__: List[Any] = 0 @property def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: str = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) UpperCamelCase__: Tuple = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCamelCase__: Tuple = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' return self._config.n_layer @property def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' return self._config.n_head def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: PreTrainedTokenizer , __lowerCamelCase: int = -1 , __lowerCamelCase: int = -1 , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[TensorType] = None , ): '''simple docstring''' UpperCamelCase__: Dict = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() UpperCamelCase__: List[str] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase__: Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCamelCase__: Tuple = seqlen + 2 UpperCamelCase__: int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase__: str = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] UpperCamelCase__: List[Any] = common_inputs['''attention_mask'''] if self.use_past: UpperCamelCase__: Any = ordered_inputs['''attention_mask'''].dtype UpperCamelCase__: Union[str, Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return 13
380
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = MvpTokenizer UpperCamelCase_ = MvpTokenizerFast UpperCamelCase_ = True UpperCamelCase_ = filter_roberta_detectors def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' super().setUp() lowercase : Dict =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowercase : Tuple =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[Any] =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowercase : List[Any] ={'''unk_token''': '''<unk>'''} lowercase : Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Dict =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase ) ) def A__ ( self : Union[str, Any] , **UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : List[str] , **UpperCAmelCase : Any ) -> Tuple: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def A__ ( self : Tuple , UpperCAmelCase : Any ) -> Union[str, Any]: '''simple docstring''' return "lower newer", "lower newer" @cached_property def A__ ( self : Tuple ) -> List[Any]: '''simple docstring''' return MvpTokenizer.from_pretrained('''RUCAIBox/mvp''' ) @cached_property def A__ ( self : Any ) -> int: '''simple docstring''' return MvpTokenizerFast.from_pretrained('''RUCAIBox/mvp''' ) @require_torch def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowercase : List[str] =[0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Union[str, Any] =tokenizer(UpperCAmelCase , max_length=len(UpperCAmelCase ) , padding=UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowercase : Union[str, Any] =batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # Test that special tokens are reset @require_torch def A__ ( self : Tuple ) -> Any: '''simple docstring''' lowercase : Any =['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Dict =tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) # check if input_ids are returned and no labels self.assertIn('''input_ids''' , UpperCAmelCase ) self.assertIn('''attention_mask''' , UpperCAmelCase ) self.assertNotIn('''labels''' , UpperCAmelCase ) self.assertNotIn('''decoder_attention_mask''' , UpperCAmelCase ) @require_torch def A__ ( self : Dict ) -> int: '''simple docstring''' lowercase : int =[ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Optional[Any] =tokenizer(text_target=UpperCAmelCase , max_length=32 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) @require_torch def A__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : Union[str, Any] =tokenizer( ['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def A__ ( self : str ) -> List[Any]: '''simple docstring''' lowercase : Optional[Any] =['''A long paragraph for summarization.'''] lowercase : List[Any] =[ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowercase : List[str] =tokenizer(UpperCAmelCase , text_target=UpperCAmelCase , return_tensors='''pt''' ) lowercase : Optional[int] =inputs['''input_ids'''] lowercase : Optional[Any] =inputs['''labels'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def A__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase : Union[str, Any] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowercase : Tuple =self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowercase : Optional[Any] ='''A, <mask> AllenNLP sentence.''' lowercase : int =tokenizer_r.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) lowercase : List[Any] =tokenizer_p.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowercase : Any =tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowercase : str =tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
94
0
from __future__ import annotations class a__ : def __init__( self : Optional[int] , lowerCamelCase_ : int = 0 ): a_ : str = key def UpperCAmelCase( self : Optional[Any] , lowerCamelCase_ : str , lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) a_ : Tuple = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(lowerCamelCase_ ) ^ key ) for ch in content] def UpperCAmelCase( self : List[str] , lowerCamelCase_ : str , lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) a_ : str = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(lowerCamelCase_ ) ^ key ) for ch in content] def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : int = 0 ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) a_ : Optional[int] = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned a_ : Optional[int] = """""" for ch in content: ans += chr(ord(lowerCamelCase_ ) ^ key ) return ans def UpperCAmelCase( self : int , lowerCamelCase_ : str , lowerCamelCase_ : int = 0 ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) a_ : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned a_ : Dict = """""" for ch in content: ans += chr(ord(lowerCamelCase_ ) ^ key ) return ans def UpperCAmelCase( self : int , lowerCamelCase_ : str , lowerCamelCase_ : int = 0 ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) try: with open(lowerCamelCase_ ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCamelCase_ , lowerCamelCase_ ) ) except OSError: return False return True def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : int ): assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) and isinstance(lowerCamelCase_ , lowerCamelCase_ ) try: with open(lowerCamelCase_ ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCamelCase_ , lowerCamelCase_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
718
from heapq import heappop, heappush import numpy as np def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ): a_ , a_ : Any = grid.shape a_ : Dict = [-1, 1, 0, 0] a_ : List[Any] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ : int = [(0, source)], set() a_ : Optional[Any] = np.full((rows, cols) , np.inf ) a_ : Tuple = 0 a_ : Optional[Any] = np.empty((rows, cols) , dtype=__UpperCamelCase ) a_ : Optional[Any] = None while queue: ((a_) , (a_)) : Any = heappop(__UpperCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ : Tuple = [] while (x, y) != source: path.append((x, y) ) a_ , a_ : Any = predecessors[x, y] path.append(__UpperCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__UpperCamelCase ) ): a_ , a_ : Dict = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__UpperCamelCase , (dist + 1, (nx, ny)) ) a_ : List[str] = dist + 1 a_ : Union[str, Any] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
478
0
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING __a :Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[int] ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type(UpperCAmelCase ) def __call__( self : List[Any] , UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase : str ): return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def __A ( self : int , **UpperCAmelCase : Optional[Any] ): return {}, {}, {} def __A ( self : Any , UpperCAmelCase : int ): A_ = load_image(UpperCAmelCase ) A_ = image.size A_ = self.image_processor(images=UpperCAmelCase , return_tensors=self.framework ) return model_inputs def __A ( self : Tuple , UpperCAmelCase : str ): A_ = self.model(**UpperCAmelCase ) return model_outputs def __A ( self : List[str] , UpperCAmelCase : Optional[int] ): A_ = model_outputs.predicted_depth A_ = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=UpperCAmelCase ) A_ = prediction.squeeze().cpu().numpy() A_ = (output * 255 / np.max(UpperCAmelCase )).astype("uint8" ) A_ = Image.fromarray(UpperCAmelCase ) A_ = {} A_ = predicted_depth A_ = depth return output_dict
86
"""simple docstring""" from __future__ import annotations lowerCamelCase__ : Optional[int] = [True] * 1_00_00_01 lowerCamelCase__ : List[Any] = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): lowerCamelCase__ : Optional[Any] = False i += 1 def UpperCamelCase ( _lowerCAmelCase : int ) -> bool: return seive[n] def UpperCamelCase ( _lowerCAmelCase : int ) -> bool: return any(digit in """02468""" for digit in str(_lowerCAmelCase ) ) def UpperCamelCase ( _lowerCAmelCase : int = 1000000 ) -> list[int]: _UpperCAmelCase : List[Any] = [2] # result already includes the number 2. for num in range(3, limit + 1, 2 ): if is_prime(_lowerCAmelCase ) and not contains_an_even_digit(_lowerCAmelCase ): _UpperCAmelCase : List[Any] = str(_lowerCAmelCase ) _UpperCAmelCase : Optional[int] = [int(str_num[j:] + str_num[:j] ) for j in range(len(_lowerCAmelCase ) )] if all(is_prime(_lowerCAmelCase ) for i in list_nums ): result.append(_lowerCAmelCase ) return result def UpperCamelCase ( ) -> int: return len(find_circular_primes() ) if __name__ == "__main__": print(F'''{len(find_circular_primes()) = }''')
238
0
from __future__ import annotations import pandas as pd def UpperCamelCase ( snake_case__ : list[int] ,snake_case__ : list[int] ,snake_case__ : int ): '''simple docstring''' __snake_case :Optional[int] = [0] * no_of_processes __snake_case :Tuple = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(snake_case__ ): __snake_case :Optional[int] = burst_time[i] __snake_case :Tuple = 0 __snake_case :List[str] = 0 __snake_case :int = 9_9999_9999 __snake_case :Optional[int] = 0 __snake_case :Optional[int] = False # Process until all processes are completed while complete != no_of_processes: for j in range(snake_case__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __snake_case :Optional[int] = remaining_time[j] __snake_case :int = j __snake_case :str = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __snake_case :str = remaining_time[short] if minm == 0: __snake_case :List[str] = 9_9999_9999 if remaining_time[short] == 0: complete += 1 __snake_case :Optional[Any] = False # Find finish time of current process __snake_case :List[Any] = increment_time + 1 # Calculate waiting time __snake_case :Optional[int] = finish_time - arrival_time[short] __snake_case :int = finar - burst_time[short] if waiting_time[short] < 0: __snake_case :str = 0 # Increment time increment_time += 1 return waiting_time def UpperCamelCase ( snake_case__ : list[int] ,snake_case__ : int ,snake_case__ : list[int] ): '''simple docstring''' __snake_case :Tuple = [0] * no_of_processes for i in range(snake_case__ ): __snake_case :List[Any] = burst_time[i] + waiting_time[i] return turn_around_time def UpperCamelCase ( snake_case__ : list[int] ,snake_case__ : list[int] ,snake_case__ : int ): '''simple docstring''' __snake_case :Optional[Any] = 0 __snake_case :Dict = 0 for i in range(snake_case__ ): __snake_case :Optional[int] = total_waiting_time + waiting_time[i] __snake_case :Optional[int] = total_turn_around_time + turn_around_time[i] print(f'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("""Average turn around time =""" ,total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("""Enter how many process you want to analyze""") lowerCamelCase__ = int(input()) lowerCamelCase__ = [0] * no_of_processes lowerCamelCase__ = [0] * no_of_processes lowerCamelCase__ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("""Enter the arrival time and burst time for process:--""" + str(i + 1)) lowerCamelCase__ , lowerCamelCase__ = map(int, input().split()) lowerCamelCase__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ = burst_time lowerCamelCase__ = no_of_processes lowerCamelCase__ = waiting_time lowerCamelCase__ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowerCamelCase__ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ """Process""", """BurstTime""", """ArrivalTime""", """WaitingTime""", """TurnAroundTime""", ], ) # Printing the dataFrame pd.set_option("""display.max_rows""", fcfs.shape[0] + 1) print(fcfs)
291
from __future__ import annotations import time import numpy as np lowerCamelCase__ = [8, 5, 9, 7] lowerCamelCase__ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCamelCase__ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case__ : '''simple docstring''' def __init__( self , a__ , a__ , a__ , ) -> None: '''simple docstring''' __snake_case :Dict = claim_vector __snake_case :Optional[int] = allocated_resources_table __snake_case :Optional[int] = maximum_claim_table def __lowercase ( self ) -> list[int]: '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowercase ( self ) -> list[int]: '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowercase ( self ) -> list[list[int]]: '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(a__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowercase ( self ) -> dict[int, list[int]]: '''simple docstring''' return {self.__need().index(a__ ): i for i in self.__need()} def __lowercase ( self , **a__ ) -> None: '''simple docstring''' __snake_case :Optional[int] = self.__need() __snake_case :List[Any] = self.__allocated_resources_table __snake_case :str = self.__available_resources() __snake_case :List[Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: __snake_case :Dict = False for each_need in need_list: __snake_case :Dict = True for index, need in enumerate(a__ ): if need > available_resources[index]: __snake_case :Dict = False break if execution: __snake_case :Any = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __snake_case :List[str] = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(a__ ) # update available/freed resources stack __snake_case :Tuple = np.array(a__ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(a__ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def __lowercase ( self ) -> Dict: '''simple docstring''' print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(a__ ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(a__ ) + 1}''' + """ """.join(F'''{it:>8}''' for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(a__ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(a__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
291
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A : Tuple = logging.get_logger() def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True ) -> Union[str, Any]: '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": UpperCAmelCase = timm.create_model('''levit_128s''' , pretrained=UpperCamelCase__ ) else: UpperCAmelCase = timm.create_model('''levit_128''' , pretrained=UpperCamelCase__ ) if hidden_sizes == 192: UpperCAmelCase = timm.create_model('''levit_192''' , pretrained=UpperCamelCase__ ) if hidden_sizes == 256: UpperCAmelCase = timm.create_model('''levit_256''' , pretrained=UpperCamelCase__ ) if hidden_sizes == 384: UpperCAmelCase = timm.create_model('''levit_384''' , pretrained=UpperCamelCase__ ) from_model.eval() UpperCAmelCase = LevitForImageClassificationWithTeacher(UpperCamelCase__ ).eval() UpperCAmelCase = OrderedDict() UpperCAmelCase = from_model.state_dict() UpperCAmelCase = list(from_model.state_dict().keys() ) UpperCAmelCase = list(our_model.state_dict().keys() ) print(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for i in range(len(UpperCamelCase__ ) ): UpperCAmelCase = weights[og_keys[i]] our_model.load_state_dict(UpperCamelCase__ ) UpperCAmelCase = torch.randn((2, 3, 224, 224) ) UpperCAmelCase = from_model(UpperCamelCase__ ) UpperCAmelCase = our_model(UpperCamelCase__ ).logits assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ), "The model logits don't match the original one." UpperCAmelCase = name print(UpperCamelCase__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) UpperCAmelCase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = '''imagenet-1k-id2label.json''' UpperCAmelCase = 1000 UpperCAmelCase = (1, num_labels) UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = num_labels UpperCAmelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) UpperCAmelCase = { '''levit-128S''': 128, '''levit-128''': 128, '''levit-192''': 192, '''levit-256''': 256, '''levit-384''': 384, } UpperCAmelCase = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) __A : List[Any] = parser.parse_args() __A : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
130
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> str: '''simple docstring''' UpperCAmelCase = [] for line in lines: UpperCAmelCase = re.sub(R'''#.*''' , '''''' , UpperCamelCase__ ) # remove comments if line: filtered_lines.append(UpperCamelCase__ ) UpperCAmelCase = '''\n'''.join(UpperCamelCase__ ) # Make a hash from all this code UpperCAmelCase = full_str.encode('''utf-8''' ) return shaaaa(UpperCamelCase__ ).hexdigest() # get importable module names and hash for caching __A : List[str] = { "csv": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), "json": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), "pandas": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), "parquet": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), "arrow": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), "text": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), "imagefolder": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), "audiofolder": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions __A : Tuple = { ".csv": ("csv", {}), ".tsv": ("csv", {"sep": "\t"}), ".json": ("json", {}), ".jsonl": ("json", {}), ".parquet": ("parquet", {}), ".arrow": ("arrow", {}), ".txt": ("text", {}), } _EXTENSION_TO_MODULE.update({ext: ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("imagefolder", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("audiofolder", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) __A : int = {"imagefolder", "audiofolder"} # Used to filter data files based on extensions given a module name __A : Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(".zip") _MODULE_TO_EXTENSIONS["audiofolder"].append(".zip")
130
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase () -> Any: A__ : Any = HfArgumentParser(lowercase_ ) A__ : List[Any] = parser.parse_args_into_dataclasses()[0] A__ : str = TensorFlowBenchmark(args=lowercase_ ) try: A__ : str = parser.parse_args_into_dataclasses()[0] except ValueError as e: A__ : List[Any] = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" A__ : Tuple = """ """.join(str(lowercase_ ).split(""" """ )[:-1] ) A__ : str = """""" A__ : Tuple = eval(str(lowercase_ ).split(""" """ )[-1] ) A__ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase_ ) if len(lowercase_ ) > 0: A__ : str = full_error_msg + begin_error_msg + str(lowercase_ ) raise ValueError(lowercase_ ) benchmark.run() if __name__ == "__main__": main()
64
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _a : '''simple docstring''' UpperCAmelCase__: List[Any] = PegasusConfig UpperCAmelCase__: Optional[int] = {} UpperCAmelCase__: List[str] = '''gelu''' def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=False , A__=99 , A__=32 , A__=2 , A__=4 , A__=37 , A__=0.1 , A__=0.1 , A__=40 , A__=2 , A__=1 , A__=0 , ): A__ : Dict = parent A__ : Dict = batch_size A__ : Any = seq_length A__ : Optional[Any] = is_training A__ : int = use_labels A__ : Any = vocab_size A__ : Union[str, Any] = hidden_size A__ : Tuple = num_hidden_layers A__ : Tuple = num_attention_heads A__ : List[Any] = intermediate_size A__ : Union[str, Any] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : List[Any] = max_position_embeddings A__ : Any = eos_token_id A__ : List[Any] = pad_token_id A__ : List[Any] = bos_token_id def __A ( self ): A__ : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A__ : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A__ : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) A__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A__ : str = prepare_pegasus_inputs_dict(A__ , A__ , A__ ) return config, inputs_dict def __A ( self , A__ , A__ ): A__ : int = TFPegasusModel(config=A__ ).get_decoder() A__ : List[Any] = inputs_dict["""input_ids"""] A__ : Any = input_ids[:1, :] A__ : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] A__ : Optional[int] = inputs_dict["""head_mask"""] A__ : Any = 1 # first forward pass A__ : Tuple = model(A__ , attention_mask=A__ , head_mask=A__ , use_cache=A__ ) A__ , A__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A__ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A__ : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) A__ : Tuple = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A__ : Optional[Any] = model(A__ , attention_mask=A__ )[0] A__ : Any = model(A__ , attention_mask=A__ , past_key_values=A__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A__ : int = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A__ : Any = output_from_no_past[:, -3:, random_slice_idx] A__ : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A__ , A__ , rtol=1e-3 ) def UpperCamelCase (lowercase_: Union[str, Any] , lowercase_: Dict , lowercase_: List[Any] , lowercase_: Dict=None , lowercase_: int=None , lowercase_: List[Any]=None , lowercase_: List[Any]=None , lowercase_: str=None , ) -> int: if attention_mask is None: A__ : List[str] = tf.cast(tf.math.not_equal(lowercase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A__ : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A__ : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A__ : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A__ : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a (__magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () UpperCAmelCase__: Tuple = (TFPegasusForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase__: Tuple = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase__: int = True UpperCAmelCase__: Union[str, Any] = False UpperCAmelCase__: List[str] = False def __A ( self ): A__ : Optional[Any] = TFPegasusModelTester(self ) A__ : Tuple = ConfigTester(self , config_class=A__ ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A__ ) @require_sentencepiece @require_tokenizers @require_tf class _a (unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: Optional[int] = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] UpperCAmelCase__: Any = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers UpperCAmelCase__: List[str] = '''google/pegasus-xsum''' @cached_property def __A ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __A ( self ): A__ : int = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __A ( self , **A__ ): A__ : str = self.translate_src_text(**A__ ) assert self.expected_text == generated_words def __A ( self , **A__ ): A__ : List[str] = self.tokenizer(self.src_text , **A__ , padding=A__ , return_tensors="""tf""" ) A__ : Optional[int] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=A__ , ) A__ : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A__ ) return generated_words @slow def __A ( self ): self._assert_generated_batch_equal_expected()
64
1
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase__ = ['''image_processor''', '''tokenizer'''] UpperCamelCase__ = '''BlipImageProcessor''' UpperCamelCase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : List[str] ,a__ : Dict ,a__ : Any ): a__ = False super().__init__(a__ ,a__ ) a__ = self.image_processor def __call__( self : Tuple ,a__ : ImageInput = None ,a__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,a__ : bool = True ,a__ : Union[bool, str, PaddingStrategy] = False ,a__ : Union[bool, str, TruncationStrategy] = None ,a__ : Optional[int] = None ,a__ : int = 0 ,a__ : Optional[int] = None ,a__ : Optional[bool] = None ,a__ : bool = False ,a__ : bool = False ,a__ : bool = False ,a__ : bool = False ,a__ : bool = False ,a__ : bool = True ,a__ : Optional[Union[str, TensorType]] = None ,**a__ : Optional[Any] ,): if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: a__ = self.tokenizer a__ = self.tokenizer( text=a__ ,add_special_tokens=a__ ,padding=a__ ,truncation=a__ ,max_length=a__ ,stride=a__ ,pad_to_multiple_of=a__ ,return_attention_mask=a__ ,return_overflowing_tokens=a__ ,return_special_tokens_mask=a__ ,return_offsets_mapping=a__ ,return_token_type_ids=a__ ,return_length=a__ ,verbose=a__ ,return_tensors=a__ ,**a__ ,) return text_encoding # add pixel_values a__ = self.image_processor(a__ ,return_tensors=a__ ) if text is not None: a__ = self.tokenizer( text=a__ ,add_special_tokens=a__ ,padding=a__ ,truncation=a__ ,max_length=a__ ,stride=a__ ,pad_to_multiple_of=a__ ,return_attention_mask=a__ ,return_overflowing_tokens=a__ ,return_special_tokens_mask=a__ ,return_offsets_mapping=a__ ,return_token_type_ids=a__ ,return_length=a__ ,verbose=a__ ,return_tensors=a__ ,**a__ ,) else: a__ = None if text_encoding is not None: encoding_image_processor.update(a__ ) return encoding_image_processor def lowerCAmelCase_ ( self : Any ,*a__ : Union[str, Any] ,**a__ : Optional[Any] ): return self.tokenizer.batch_decode(*a__ ,**a__ ) def lowerCAmelCase_ ( self : Optional[int] ,*a__ : List[Any] ,**a__ : Union[str, Any] ): return self.tokenizer.decode(*a__ ,**a__ ) @property def lowerCAmelCase_ ( self : int ): a__ = self.tokenizer.model_input_names a__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
331
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : Optional[int] = logging.get_logger(__name__) UpperCamelCase_ : str = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase__ = '''gpt_neox_japanese''' def __init__( self : Tuple ,a__ : str=3_20_00 ,a__ : Union[str, Any]=25_60 ,a__ : Optional[Any]=32 ,a__ : Tuple=32 ,a__ : str=4 ,a__ : int="gelu" ,a__ : Tuple=1.00 ,a__ : Optional[int]=1_00_00 ,a__ : Union[str, Any]=20_48 ,a__ : List[str]=0.02 ,a__ : Optional[int]=1e-5 ,a__ : Union[str, Any]=True ,a__ : int=3_19_96 ,a__ : List[Any]=3_19_99 ,a__ : str=0.1 ,a__ : Dict=0.0 ,**a__ : List[Any] ,): super().__init__(bos_token_id=a__ ,eos_token_id=a__ ,**a__ ) a__ = vocab_size a__ = max_position_embeddings a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_multiple_size a__ = hidden_act a__ = rotary_pct a__ = rotary_emb_base a__ = initializer_range a__ = layer_norm_eps a__ = use_cache a__ = attention_dropout a__ = hidden_dropout
331
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Any: __magic_name__ = state_dict.pop(__UpperCamelCase ) __magic_name__ = val def lowercase ( __UpperCamelCase ) -> Union[str, Any]: __magic_name__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __magic_name__ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __magic_name__ = value else: __magic_name__ = value return new_state_dict def lowercase ( __UpperCamelCase , __UpperCamelCase=False ) -> Tuple: __magic_name__ = '''''' if is_panoptic: __magic_name__ = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __magic_name__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __magic_name__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[:256, :] __magic_name__ = in_proj_bias[:256] __magic_name__ = in_proj_weight[256:512, :] __magic_name__ = in_proj_bias[256:512] __magic_name__ = in_proj_weight[-256:, :] __magic_name__ = in_proj_bias[-256:] def lowercase ( ) -> List[Any]: __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: __magic_name__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __magic_name__ = '''resnet101''' if "dc5" in model_name: __magic_name__ = True __magic_name__ = '''panoptic''' in model_name if is_panoptic: __magic_name__ = 250 else: __magic_name__ = 91 __magic_name__ = '''huggingface/label-files''' __magic_name__ = '''coco-detection-id2label.json''' __magic_name__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __magic_name__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} # load image processor __magic_name__ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __magic_name__ = ConditionalDetrImageProcessor(format=__UpperCamelCase ) # prepare image __magic_name__ = prepare_img() __magic_name__ = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ) __magic_name__ = encoding['''pixel_values'''] logger.info(f'''Converting model {model_name}...''' ) # load original model from torch hub __magic_name__ = torch.hub.load('''DeppMeng/ConditionalDETR''' , __UpperCamelCase , pretrained=__UpperCamelCase ).eval() __magic_name__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __magic_name__ = '''conditional_detr.''' + src rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __magic_name__ = rename_backbone_keys(__UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCamelCase , is_panoptic=__UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __magic_name__ = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __magic_name__ = state_dict.pop(__UpperCamelCase ) __magic_name__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __magic_name__ = state_dict.pop(__UpperCamelCase ) __magic_name__ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __magic_name__ = state_dict.pop(__UpperCamelCase ) __magic_name__ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __magic_name__ = state_dict.pop(__UpperCamelCase ) __magic_name__ = val # finally, create HuggingFace model and load state dict __magic_name__ = ConditionalDetrForSegmentation(__UpperCamelCase ) if is_panoptic else ConditionalDetrForObjectDetection(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() model.push_to_hub(repo_id=__UpperCamelCase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion __magic_name__ = conditional_detr(__UpperCamelCase ) __magic_name__ = model(__UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCamelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
190
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = (EulerDiscreteScheduler,) _lowerCamelCase = 10 def lowerCAmelCase__ ( self , **UpperCamelCase_ ): __magic_name__ = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**UpperCamelCase_ ) return config def lowerCAmelCase__ ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ = torch.manual_seed(0 ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ = sample.to(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(UpperCamelCase_ ) ) __magic_name__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1E-3 def lowerCAmelCase__ ( self ): __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config(prediction_type='''v_prediction''' ) __magic_name__ = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ = torch.manual_seed(0 ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ = sample.to(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(UpperCamelCase_ ) ) __magic_name__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1E-2 assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3 def lowerCAmelCase__ ( self ): __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase_ ) __magic_name__ = torch.manual_seed(0 ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __magic_name__ = sample.to(UpperCamelCase_ ) for t in scheduler.timesteps: __magic_name__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(UpperCamelCase_ ) ) __magic_name__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1E-3 def lowerCAmelCase__ ( self ): __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**UpperCamelCase_ , use_karras_sigmas=UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase_ ) __magic_name__ = torch.manual_seed(0 ) __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() __magic_name__ = sample.to(UpperCamelCase_ ) for t in scheduler.timesteps: __magic_name__ = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ) __magic_name__ = output.prev_sample __magic_name__ = torch.sum(torch.abs(UpperCamelCase_ ) ) __magic_name__ = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1E-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1E-3
190
1
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __lowerCamelCase (_a ): _lowercase = ["""image_processor"""] _lowercase = """SamImageProcessor""" def __init__( self: Dict,A_: Union[str, Any] ): '''simple docstring''' super().__init__(A_ ) __UpperCamelCase = self.image_processor __UpperCamelCase = -10 __UpperCamelCase = self.image_processor.size['longest_edge'] def __call__( self: Optional[Any],A_: Optional[int]=None,A_: int=None,A_: str=None,A_: str=None,A_: Optional[Union[str, TensorType]] = None,**A_: Optional[int],): '''simple docstring''' __UpperCamelCase = self.image_processor( A_,return_tensors=A_,**A_,) # pop arguments that are not used in the foward but used nevertheless __UpperCamelCase = encoding_image_processor['original_sizes'] if hasattr(A_,'numpy' ): # Checks if Torch or TF tensor __UpperCamelCase = original_sizes.numpy() __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = self._check_and_preprocess_points( input_points=A_,input_labels=A_,input_boxes=A_,) __UpperCamelCase = self._normalize_and_convert( A_,A_,input_points=A_,input_labels=A_,input_boxes=A_,return_tensors=A_,) return encoding_image_processor def snake_case_ ( self: Tuple,A_: Any,A_: str,A_: Dict=None,A_: Dict=None,A_: int=None,A_: List[Any]="pt",): '''simple docstring''' if input_points is not None: if len(A_ ) != len(A_ ): __UpperCamelCase = [ self._normalize_coordinates(self.target_size,A_,original_sizes[0] ) for point in input_points ] else: __UpperCamelCase = [ self._normalize_coordinates(self.target_size,A_,A_ ) for point, original_size in zip(A_,A_ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __UpperCamelCase, __UpperCamelCase = self._pad_points_and_labels(A_,A_ ) __UpperCamelCase = np.array(A_ ) if input_labels is not None: __UpperCamelCase = np.array(A_ ) if input_boxes is not None: if len(A_ ) != len(A_ ): __UpperCamelCase = [ self._normalize_coordinates(self.target_size,A_,original_sizes[0],is_bounding_box=A_ ) for box in input_boxes ] else: __UpperCamelCase = [ self._normalize_coordinates(self.target_size,A_,A_,is_bounding_box=A_ ) for box, original_size in zip(A_,A_ ) ] __UpperCamelCase = np.array(A_ ) if input_boxes is not None: if return_tensors == "pt": __UpperCamelCase = torch.from_numpy(A_ ) # boxes batch size of 1 by default __UpperCamelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __UpperCamelCase = tf.convert_to_tensor(A_ ) # boxes batch size of 1 by default __UpperCamelCase = tf.expand_dims(A_,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes} ) if input_points is not None: if return_tensors == "pt": __UpperCamelCase = torch.from_numpy(A_ ) # point batch size of 1 by default __UpperCamelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __UpperCamelCase = tf.convert_to_tensor(A_ ) # point batch size of 1 by default __UpperCamelCase = tf.expand_dims(A_,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'input_points': input_points} ) if input_labels is not None: if return_tensors == "pt": __UpperCamelCase = torch.from_numpy(A_ ) # point batch size of 1 by default __UpperCamelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __UpperCamelCase = tf.convert_to_tensor(A_ ) # point batch size of 1 by default __UpperCamelCase = tf.expand_dims(A_,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels} ) return encoding_image_processor def snake_case_ ( self: List[str],A_: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = max([point.shape[0] for point in input_points] ) __UpperCamelCase = [] for i, point in enumerate(A_ ): if point.shape[0] != expected_nb_points: __UpperCamelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __UpperCamelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(A_ ) __UpperCamelCase = processed_input_points return input_points, input_labels def snake_case_ ( self: Optional[int],A_: int,A_: np.ndarray,A_: Union[str, Any],A_: int=False ): '''simple docstring''' __UpperCamelCase, __UpperCamelCase = original_size __UpperCamelCase, __UpperCamelCase = self.image_processor._get_preprocess_shape(A_,longest_edge=A_ ) __UpperCamelCase = deepcopy(A_ ).astype(A_ ) if is_bounding_box: __UpperCamelCase = coords.reshape(-1,2,2 ) __UpperCamelCase = coords[..., 0] * (new_w / old_w) __UpperCamelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __UpperCamelCase = coords.reshape(-1,4 ) return coords def snake_case_ ( self: Dict,A_: Optional[Any]=None,A_: List[str]=None,A_: Tuple=None,): '''simple docstring''' if input_points is not None: if hasattr(A_,'numpy' ): # Checks for TF or Torch tensor __UpperCamelCase = input_points.numpy().tolist() if not isinstance(A_,A_ ) or not isinstance(input_points[0],A_ ): raise ValueError('Input points must be a list of list of floating points.' ) __UpperCamelCase = [np.array(A_ ) for input_point in input_points] else: __UpperCamelCase = None if input_labels is not None: if hasattr(A_,'numpy' ): __UpperCamelCase = input_labels.numpy().tolist() if not isinstance(A_,A_ ) or not isinstance(input_labels[0],A_ ): raise ValueError('Input labels must be a list of list integers.' ) __UpperCamelCase = [np.array(A_ ) for label in input_labels] else: __UpperCamelCase = None if input_boxes is not None: if hasattr(A_,'numpy' ): __UpperCamelCase = input_boxes.numpy().tolist() if ( not isinstance(A_,A_ ) or not isinstance(input_boxes[0],A_ ) or not isinstance(input_boxes[0][0],A_ ) ): raise ValueError('Input boxes must be a list of list of list of floating points.' ) __UpperCamelCase = [np.array(A_ ).astype(np.floataa ) for box in input_boxes] else: __UpperCamelCase = None return input_points, input_labels, input_boxes @property def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(A_ ) ) def snake_case_ ( self: int,*A_: int,**A_: Tuple ): '''simple docstring''' return self.image_processor.post_process_masks(*A_,**A_ )
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "xlnet" a__ : Dict = ["mems"] a__ : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __lowerCAmelCase : Dict=3_20_00 , __lowerCAmelCase : List[str]=10_24 , __lowerCAmelCase : Dict=24 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=40_96 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]="bi" , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Union[str, Any]=1E-12 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any="last" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="tanh" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=5 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=2 , **__lowerCAmelCase : List[str] , ) -> Tuple: _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs['''use_cache'''] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
2
0
'''simple docstring''' a__ : Optional[Any] ={ '''a''': '''AAAAA''', '''b''': '''AAAAB''', '''c''': '''AAABA''', '''d''': '''AAABB''', '''e''': '''AABAA''', '''f''': '''AABAB''', '''g''': '''AABBA''', '''h''': '''AABBB''', '''i''': '''ABAAA''', '''j''': '''BBBAA''', '''k''': '''ABAAB''', '''l''': '''ABABA''', '''m''': '''ABABB''', '''n''': '''ABBAA''', '''o''': '''ABBAB''', '''p''': '''ABBBA''', '''q''': '''ABBBB''', '''r''': '''BAAAA''', '''s''': '''BAAAB''', '''t''': '''BAABA''', '''u''': '''BAABB''', '''v''': '''BBBAB''', '''w''': '''BABAA''', '''x''': '''BABAB''', '''y''': '''BABBA''', '''z''': '''BABBB''', ''' ''': ''' ''', } a__ : List[Any] ={value: key for key, value in encode_dict.items()} def lowercase__ ( __lowercase : str ) -> str: """simple docstring""" __UpperCamelCase = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__ ( __lowercase : str ) -> str: """simple docstring""" if set(__lowercase ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) __UpperCamelCase = '' for word in coded.split(): while len(__lowercase ) != 0: decoded += decode_dict[word[:5]] __UpperCamelCase = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
434
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) SCREAMING_SNAKE_CASE_ : ClassVar[Features] =Features({"question": Value("string" ), "context": Value("string" )} ) SCREAMING_SNAKE_CASE_ : ClassVar[Features] =Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) SCREAMING_SNAKE_CASE_ : str ="question" SCREAMING_SNAKE_CASE_ : str ="context" SCREAMING_SNAKE_CASE_ : str ="answers" @property def _lowerCamelCase ( self : List[Any] ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
434
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class _a : """simple docstring""" def __init__( self , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = data UpperCamelCase_ = [0x6745_2301, 0xEFCD_AB89, 0x98BA_DCFE, 0x1032_5476, 0xC3D2_E1F0] @staticmethod def _UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: return ((n << b) | (n >> (32 - b))) & 0xFFFF_FFFF def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64) UpperCamelCase_ = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def _UpperCAmelCase ( self ) -> Optional[int]: return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = list(struct.unpack('>16L' , _UpperCAmelCase ) ) + [0] * 64 for i in range(16 , 80 ): UpperCamelCase_ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = self.padding() UpperCamelCase_ = self.split_blocks() for block in self.blocks: UpperCamelCase_ = self.expand_block(_UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCamelCase_ = (b & c) | ((~b) & d) UpperCamelCase_ = 0x5A82_7999 elif 20 <= i < 40: UpperCamelCase_ = b ^ c ^ d UpperCamelCase_ = 0x6ED9_EBA1 elif 40 <= i < 60: UpperCamelCase_ = (b & c) | (b & d) | (c & d) UpperCamelCase_ = 0x8F1B_BCDC elif 60 <= i < 80: UpperCamelCase_ = b ^ c ^ d UpperCamelCase_ = 0xCA62_C1D6 UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = ( self.rotate(_UpperCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0xFFFF_FFFF, a, self.rotate(_UpperCAmelCase , 30 ), c, d, ) UpperCamelCase_ = ( self.h[0] + a & 0xFFFF_FFFF, self.h[1] + b & 0xFFFF_FFFF, self.h[2] + c & 0xFFFF_FFFF, self.h[3] + d & 0xFFFF_FFFF, self.h[4] + e & 0xFFFF_FFFF, ) return ("{:08x}" * 5).format(*self.h ) def _snake_case (): UpperCamelCase_ = B'Test String' assert SHAaHash(__lowercase).final_hash() == hashlib.shaa(__lowercase).hexdigest() # noqa: S324 def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser(description='Process some strings or files') parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase_ = f.read() else: UpperCamelCase_ = bytes(__lowercase , 'utf-8') print(SHAaHash(__lowercase).final_hash()) if __name__ == "__main__": main() import doctest doctest.testmod()
23
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'canine' def __init__(self , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3_072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=16_384 , lowerCamelCase=16 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=0 , lowerCamelCase=0Xe_0_0_0 , lowerCamelCase=0Xe_0_0_1 , lowerCamelCase=4 , lowerCamelCase=4 , lowerCamelCase=8 , lowerCamelCase=16_384 , lowerCamelCase=128 , **lowerCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = type_vocab_size _lowerCAmelCase = layer_norm_eps # Character config: _lowerCAmelCase = downsampling_rate _lowerCAmelCase = upsampling_kernel_size _lowerCAmelCase = num_hash_functions _lowerCAmelCase = num_hash_buckets _lowerCAmelCase = local_transformer_stride
156
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __a = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") __a = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() __a = """|""".join(sys.argv[1:]) __a = re.compile(rF'''^({joined_dirs}).*?\.py$''') __a = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
689
def UpperCamelCase_ ( a_ = 6008_5147_5143 ) ->int: try: A =int(a_ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A =2 A =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A =i while n % i == 0: A =n // i i += 1 return int(a_ ) if __name__ == "__main__": print(F'''{solution() = }''')
689
1
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a : List[str] = logging.get_logger(__name__) a : List[Any] = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''} a : Dict = { '''vocab_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''', }, '''emoji_file''': { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''', }, } a : Tuple = { '''abeja/gpt-neox-japanese-2.7b''': 2048, } def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] , _lowercase : List[Any] ) ->Tuple: '''simple docstring''' with open(_lowercase , "r" , encoding="utf-8" ) as f: a : List[str] = json.loads(f.read() ) a : str = collections.OrderedDict() a : Any = collections.OrderedDict() a : List[Any] = collections.OrderedDict() with open(_lowercase , "r" , encoding="utf-8" ) as f: a : int = f.readlines() a : Any = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(_lowercase ): a : str = b a : List[str] = idx for wd in b: a : Any = idx return vocab, raw_vocab, ids_to_tokens, emoji class __UpperCamelCase ( a__ ): lowerCamelCase : Any =VOCAB_FILES_NAMES lowerCamelCase : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Any =["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|startoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Union[str, Any]: super().__init__( unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , do_clean_text=lowerCAmelCase__ , **lowerCAmelCase__ , ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(lowerCAmelCase__ ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) a : Optional[int] = do_clean_text a, a, a, a : Tuple = load_vocab_and_emoji(lowerCAmelCase__ , lowerCAmelCase__ ) a : Any = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __a ( self ) -> Any: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __a ( self ) -> int: return dict(self.raw_vocab , **self.added_tokens_encoder ) def __a ( self , lowerCAmelCase__ ) -> List[Any]: return self.subword_tokenizer.tokenize(lowerCAmelCase__ , clean=self.do_clean_text ) def __a ( self , lowerCAmelCase__ ) -> List[Any]: return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) ) def __a ( self , lowerCAmelCase__ ) -> Union[str, Any]: return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ ) -> int: a : Tuple = "".join(lowerCAmelCase__ ).strip() return out_string def __a ( self , lowerCAmelCase__ ) -> List[int]: a : Tuple = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] ) if len(lowerCAmelCase__ ) > self.model_max_length: a : List[str] = input_ids[-self.model_max_length :] return input_ids def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: a : List[Any] = 0 if os.path.isdir(lowerCAmelCase__ ): a : int = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) a : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: a : List[Any] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) a : Tuple = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) a : int = token_index writer.write(",".join(lowerCAmelCase__ ) + "\n" ) index += 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , lowerCAmelCase__ ) return vocab_file, emoji_file class __UpperCamelCase ( a__ ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: a : Union[str, Any] = vocab # same as swe a : str = ids_to_tokens # same as bpe a : str = emoji a : Tuple = np.max([len(lowerCAmelCase__ ) for w in self.vocab.keys()] ) a : List[str] = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) a : Optional[int] = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) a : Dict = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) a : Tuple = re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) a : str = re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) a : Optional[int] = re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) a : Optional[Any] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" a : Union[str, Any] = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" a : Any = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self ) -> Dict: return len(self.ids_to_tokens ) def __a ( self , lowerCAmelCase__ ) -> Optional[int]: a : List[Any] = self.content_repattera.sub("<URL>" , lowerCAmelCase__ ) a : Dict = self.content_repattera.sub("<EMAIL>" , lowerCAmelCase__ ) a : Tuple = self.content_repattera.sub("<TEL>" , lowerCAmelCase__ ) a : Union[str, Any] = self.content_repattera.sub("<DATE>" , lowerCAmelCase__ ) a : Optional[int] = self.content_repattera.sub("<DATE>" , lowerCAmelCase__ ) a : Any = self.content_repattera.sub("<PRICE>" , lowerCAmelCase__ ) a : Optional[int] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: a : Any = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def __a ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Optional[int]: a : Optional[int] = text.replace(" " , "<SP>" ) a : int = text.replace(" " , "<SP>" ) a : Optional[Any] = text.replace("\r\n" , "<BR>" ) a : str = text.replace("\n" , "<BR>" ) a : str = text.replace("\r" , "<BR>" ) a : str = text.replace("\t" , "<TAB>" ) a : Any = text.replace("—" , "ー" ) a : List[str] = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: a : int = text.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if clean: a : Optional[int] = self.clean_text(lowerCAmelCase__ ) def check_simbol(lowerCAmelCase__ ): a : List[str] = x.encode() if len(lowerCAmelCase__ ) == 1 and len(lowerCAmelCase__ ) == 2: a : Any = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc_2a1 and c <= 0xc_2bf) or (c >= 0xc_780 and c <= 0xc_783) or (c >= 0xc_ab9 and c <= 0xc_bbf) or (c >= 0xc_c80 and c <= 0xc_da2) ): return True return False def checkuae(lowerCAmelCase__ ): a : str = x.encode() if len(lowerCAmelCase__ ) == 1 and len(lowerCAmelCase__ ) == 3: a : Tuple = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28_080 and c <= 0xe2b_07f: return True return False a : Optional[Any] = 0 a : Tuple = [] while pos < len(lowerCAmelCase__ ): a : Optional[Any] = min(len(lowerCAmelCase__ ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 a : Union[str, Any] = [] # (token_id, token, pos) for e in range(lowerCAmelCase__ , lowerCAmelCase__ , -1 ): a : List[Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCAmelCase__ ) > 2: a : Dict = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowerCAmelCase__ ) > 0: # the smallest token_id is adopted a, a, a : List[Any] = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[0] )[0] result.append(lowerCAmelCase__ ) a : Dict = e else: a : Tuple = pos + 1 a : List[str] = text[pos:end] if check_simbol(lowerCAmelCase__ ): result.append("<KIGOU>" ) elif checkuae(lowerCAmelCase__ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) a : Tuple = end return result def __a ( self , lowerCAmelCase__ , lowerCAmelCase__="\n" ) -> Any: a : Dict = [] a : List[str] = [] a : List[str] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowerCAmelCase__ ) > 0: words.append(bytearray(lowerCAmelCase__ ).decode("utf-8" , errors="replace" ) ) a : List[str] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(lowerCAmelCase__ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: words.append(bytearray(lowerCAmelCase__ ).decode("utf-8" , errors="replace" ) ) a : Dict = "".join(lowerCAmelCase__ ) return text
633
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class __UpperCamelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=33 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> List[str]: a : List[str] = parent a : Optional[int] = batch_size a : Optional[int] = seq_length a : Tuple = is_training a : Optional[int] = use_input_mask a : List[Any] = use_token_type_ids a : Tuple = use_labels a : Union[str, Any] = vocab_size a : str = hidden_size a : List[Any] = num_hidden_layers a : Dict = num_attention_heads a : int = intermediate_size a : str = hidden_act a : Optional[int] = hidden_dropout_prob a : str = attention_probs_dropout_prob a : str = max_position_embeddings a : List[str] = type_vocab_size a : List[str] = type_sequence_label_size a : Union[str, Any] = initializer_range a : int = num_labels a : Optional[int] = num_choices a : Union[str, Any] = scope def __a ( self ) -> Optional[Any]: a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a : Dict = None if self.use_input_mask: a : str = random_attention_mask([self.batch_size, self.seq_length] ) a : Union[str, Any] = None a : int = None a : int = None if self.use_labels: a : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) a : str = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self ) -> Optional[int]: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: a : Union[str, Any] = EsmModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a : List[str] = model(lowerCAmelCase__ ) a : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : int = EsmForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: a : str = self.num_labels a : int = EsmForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a : int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self ) -> Union[str, Any]: a : str = self.prepare_config_and_inputs() ( ( a ), ( a ), ( a ), ( a ), ( a ), ( a ), ) : Optional[int] = config_and_inputs a : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( a__ , a__ , unittest.TestCase ): lowerCamelCase : Optional[Any] =False lowerCamelCase : Tuple =( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase : Tuple =() lowerCamelCase : Optional[int] =( { """feature-extraction""": EsmModel, """fill-mask""": EsmForMaskedLM, """text-classification""": EsmForSequenceClassification, """token-classification""": EsmForTokenClassification, """zero-shot""": EsmForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : Any =True def __a ( self ) -> Tuple: a : str = EsmModelTester(self ) a : Union[str, Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def __a ( self ) -> Dict: self.config_tester.run_common_tests() def __a ( self ) -> Union[str, Any]: a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __a ( self ) -> List[str]: a : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a : List[str] = type self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __a ( self ) -> Optional[Any]: a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def __a ( self ) -> Dict: a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def __a ( self ) -> Optional[Any]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Tuple = EsmModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __a ( self ) -> Optional[int]: a : List[str] = self.model_tester.prepare_config_and_inputs()[0] a : str = EsmEmbeddings(config=lowerCAmelCase__ ) a : Optional[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) a : Tuple = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) a : str = create_position_ids_from_input_ids(lowerCAmelCase__ , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) def __a ( self ) -> List[Any]: a : int = self.model_tester.prepare_config_and_inputs()[0] a : Dict = EsmEmbeddings(config=lowerCAmelCase__ ) a : Any = torch.empty(2 , 4 , 30 ) a : str = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] a : Optional[Any] = torch.as_tensor([expected_single_positions, expected_single_positions] ) a : str = embeddings.create_position_ids_from_inputs_embeds(lowerCAmelCase__ ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) @unittest.skip("Esm does not support embedding resizing" ) def __a ( self ) -> Any: pass @unittest.skip("Esm does not support embedding resizing" ) def __a ( self ) -> Dict: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __a ( self ) -> str: pass @require_torch class __UpperCamelCase ( a__ ): @slow def __a ( self ) -> int: with torch.no_grad(): a : str = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() a : List[str] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) a : Any = model(lowerCAmelCase__ )[0] a : Union[str, Any] = 33 a : str = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase__ ) a : Optional[int] = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) ) @slow def __a ( self ) -> str: with torch.no_grad(): a : Optional[int] = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() a : str = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) a : Tuple = model(lowerCAmelCase__ )[0] # compare the actual values for a slice. a : Union[str, Any] = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) )
633
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A: List[str] = logging.get_logger(__name__) def _UpperCAmelCase ( a : str , a : str ) -> Optional[Any]: """simple docstring""" lowercase_ : Dict = b.T lowercase_ : str = np.sum(np.square(a ) , axis=1 ) lowercase_ : Optional[Any] = np.sum(np.square(a ) , axis=0 ) lowercase_ : Optional[int] = np.matmul(a , a ) lowercase_ : Any = aa[:, None] - 2 * ab + ba[None, :] return d def _UpperCAmelCase ( a : Dict , a : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase_ : List[Any] = x.reshape(-1 , 3 ) lowercase_ : Union[str, Any] = squared_euclidean_distance(a , a ) return np.argmin(a , axis=1 ) class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = ['pixel_values'] def __init__( self , _lowercase = None , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BILINEAR , _lowercase = True , _lowercase = True , **_lowercase , ) -> None: super().__init__(**_lowercase ) lowercase_ : Optional[Any] = size if size is not None else {'height': 256, 'width': 256} lowercase_ : Optional[Any] = get_size_dict(_lowercase ) lowercase_ : List[str] = np.array(_lowercase ) if clusters is not None else None lowercase_ : Dict = do_resize lowercase_ : Dict = size lowercase_ : Optional[int] = resample lowercase_ : Dict = do_normalize lowercase_ : Tuple = do_color_quantize def lowerCamelCase__ ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BILINEAR , _lowercase = None , **_lowercase , ) -> np.ndarray: lowercase_ : List[Any] = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( _lowercase , size=(size['height'], size['width']) , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ ( self , _lowercase , _lowercase = None , ) -> np.ndarray: lowercase_ : Optional[Any] = rescale(image=_lowercase , scale=1 / 127.5 , data_format=_lowercase ) lowercase_ : Optional[Any] = image - 1 return image def lowerCamelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , ) -> PIL.Image.Image: lowercase_ : Optional[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ : Optional[Any] = size if size is not None else self.size lowercase_ : Any = get_size_dict(_lowercase ) lowercase_ : Any = resample if resample is not None else self.resample lowercase_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize lowercase_ : Union[str, Any] = clusters if clusters is not None else self.clusters lowercase_ : Dict = np.array(_lowercase ) lowercase_ : str = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. lowercase_ : Tuple = [to_numpy_array(_lowercase ) for image in images] if do_resize: lowercase_ : Dict = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_normalize: lowercase_ : str = [self.normalize(image=_lowercase ) for image in images] if do_color_quantize: lowercase_ : Tuple = [to_channel_dimension_format(_lowercase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) lowercase_ : List[Any] = np.array(_lowercase ) lowercase_ : Optional[int] = color_quantize(_lowercase , _lowercase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) lowercase_ : Optional[int] = images.shape[0] lowercase_ : Optional[Any] = images.reshape(_lowercase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. lowercase_ : List[str] = list(_lowercase ) else: lowercase_ : List[str] = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] lowercase_ : int = {'input_ids': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
702
'''simple docstring''' class __magic_name__ : """simple docstring""" def __init__( self , _lowercase ) -> Union[str, Any]: lowercase_ : Dict = n lowercase_ : Dict = [None] * self.n lowercase_ : Tuple = 0 # index of the first element lowercase_ : List[Any] = 0 lowercase_ : List[Any] = 0 def __len__( self ) -> int: return self.size def lowerCamelCase__ ( self ) -> bool: return self.size == 0 def lowerCamelCase__ ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self , _lowercase ) -> Any: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) lowercase_ : Tuple = data lowercase_ : List[Any] = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) lowercase_ : Dict = self.array[self.front] lowercase_ : Tuple = None lowercase_ : int = (self.front + 1) % self.n self.size -= 1 return temp
7
0
"""simple docstring""" import os import sys import unittest __UpperCamelCase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __UpperCamelCase : Tuple = os.path.join(git_repo_path, '''src''', '''diffusers''') class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Any = find_backend(''' if not is_torch_available():''' ) self.assertEqual(lowercase_ ,'''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") lowerCAmelCase__ : Optional[Any] = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(lowercase_ ,'''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") lowerCAmelCase__ : List[Any] = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(lowercase_ ,'''torch_and_transformers_and_onnx''' ) def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : List[str] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' ,lowercase_ ) self.assertIn('''torch_and_transformers''' ,lowercase_ ) self.assertIn('''flax_and_transformers''' ,lowercase_ ) self.assertIn('''torch_and_transformers_and_onnx''' ,lowercase_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' ,objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' ,objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' ,objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' ,objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' ,objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' ,objects['''torch_and_transformers_and_onnx'''] ) def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : List[Any] = create_dummy_object('''CONSTANT''' ,'''\'torch\'''' ) self.assertEqual(lowercase_ ,'''\nCONSTANT = None\n''' ) lowerCAmelCase__ : Optional[Any] = create_dummy_object('''function''' ,'''\'torch\'''' ) self.assertEqual( lowercase_ ,'''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) lowerCAmelCase__ : Tuple = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' lowerCAmelCase__ : Union[str, Any] = create_dummy_object('''FakeClass''' ,'''\'torch\'''' ) self.assertEqual(lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Any = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' lowerCAmelCase__ : Optional[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] ,lowercase_ )
450
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node __UpperCamelCase : str = 4 __UpperCamelCase : List[str] = 3 class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( A_ ): for shard in shards: for i in range(A_ ): yield {"i": i, "shard": shard} def __SCREAMING_SNAKE_CASE ( ): lowerCAmelCase__ : List[str] = int(os.environ['''RANK'''] ) lowerCAmelCase__ : Union[str, Any] = int(os.environ['''WORLD_SIZE'''] ) lowerCAmelCase__ : Tuple = ArgumentParser() parser.add_argument('''--streaming''' , type=A_ ) parser.add_argument('''--local_rank''' , type=A_ ) parser.add_argument('''--num_workers''' , type=A_ , default=0 ) lowerCAmelCase__ : Tuple = parser.parse_args() lowerCAmelCase__ : Tuple = args.streaming lowerCAmelCase__ : Any = args.num_workers lowerCAmelCase__ : Dict = {'''shards''': [f'shard_{shard_idx}' for shard_idx in range(A_ )]} lowerCAmelCase__ : Optional[int] = IterableDataset.from_generator(A_ , gen_kwargs=A_ ) if not streaming: lowerCAmelCase__ : Dict = Dataset.from_list(list(A_ ) ) lowerCAmelCase__ : Optional[Any] = split_dataset_by_node(A_ , rank=A_ , world_size=A_ ) lowerCAmelCase__ : List[Any] = torch.utils.data.DataLoader(A_ , num_workers=A_ ) lowerCAmelCase__ : Optional[int] = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowerCAmelCase__ : List[str] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) lowerCAmelCase__ : int = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
450
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase_ : lowerCamelCase_ = LEDConfig lowerCamelCase_ = {} lowerCamelCase_ = 'gelu' def __init__( self : Union[str, Any] , __A : Optional[Any] , __A : str=13 , __A : Any=7 , __A : Union[str, Any]=True , __A : Dict=False , __A : Any=99 , __A : str=32 , __A : Union[str, Any]=2 , __A : Optional[Any]=4 , __A : List[str]=37 , __A : Any=0.1 , __A : Dict=0.1 , __A : Any=20 , __A : List[str]=2 , __A : Any=1 , __A : int=0 , __A : Optional[int]=4 , ) ->Optional[int]: """simple docstring""" a__ :Optional[int] = parent a__ :str = batch_size a__ :Dict = seq_length a__ :Optional[int] = is_training a__ :Tuple = use_labels a__ :Dict = vocab_size a__ :Any = hidden_size a__ :Tuple = num_hidden_layers a__ :Union[str, Any] = num_attention_heads a__ :str = intermediate_size a__ :str = hidden_dropout_prob a__ :Dict = attention_probs_dropout_prob a__ :Any = max_position_embeddings a__ :Optional[int] = eos_token_id a__ :Optional[int] = pad_token_id a__ :str = bos_token_id a__ :Optional[Any] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after a__ :Optional[Any] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests a__ :int = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _snake_case ( self : Union[str, Any] ) ->Tuple: """simple docstring""" a__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a__ :Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a__ :Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) a__ :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ :List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) a__ :Any = prepare_led_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) a__ :List[str] = tf.concat( [tf.zeros_like(_UpperCAmelCase )[:, :-1], tf.ones_like(_UpperCAmelCase )[:, -1:]] , axis=-1 , ) a__ :Dict = global_attention_mask return config, inputs_dict def _snake_case ( self : Optional[int] , __A : int , __A : Any ) ->str: """simple docstring""" a__ :Dict = TFLEDModel(config=_UpperCAmelCase ).get_decoder() a__ :Optional[int] = inputs_dict["input_ids"] a__ :Optional[Any] = input_ids[:1, :] a__ :Optional[int] = inputs_dict["attention_mask"][:1, :] a__ :Tuple = 1 # first forward pass a__ :List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) a__ , a__ :List[str] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a__ :Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) a__ :List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a__ :List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) a__ :Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a__ :Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] a__ :Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a__ :Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a__ :int = output_from_no_past[:, -3:, random_slice_idx] a__ :Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1E-3 ) def lowerCamelCase__ ( a : List[Any] , a : List[str] , a : Tuple , a : Union[str, Any]=None , a : Union[str, Any]=None , a : Any=None , a : Union[str, Any]=None , ) -> str: """simple docstring""" if attention_mask is None: a__ :Optional[int] = tf.cast(tf.math.not_equal(lowerCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a__ :List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a__ :Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a__ :Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase_ ( _a ,_a ,unittest.TestCase): lowerCamelCase_ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCamelCase_ = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCamelCase_ = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def _snake_case ( self : str ) ->Optional[Any]: """simple docstring""" a__ :str = TFLEDModelTester(self ) a__ :List[Any] = ConfigTester(self , config_class=_UpperCAmelCase ) def _snake_case ( self : Tuple ) ->str: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self : Union[str, Any] ) ->Any: """simple docstring""" a__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def _snake_case ( self : Any ) ->Union[str, Any]: """simple docstring""" a__ , a__ :Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() a__ :Dict = tf.zeros_like(inputs_dict["attention_mask"] ) a__ :List[Any] = 2 a__ :Optional[Any] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) a__ :int = True a__ :Optional[int] = self.model_tester.seq_length a__ :List[Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__A : Optional[int] ): a__ :str = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__A : List[str] ): a__ :int = [t.numpy() for t in outputs.encoder_attentions] a__ :Union[str, Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: a__ :List[Any] = True a__ :str = False a__ :str = False a__ :Optional[Any] = model_class(_UpperCAmelCase ) a__ :Tuple = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) a__ :str = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: a__ :Optional[int] = model_class(_UpperCAmelCase ) a__ :str = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] a__ :Optional[Any] = True a__ :List[str] = model_class(_UpperCAmelCase ) a__ :List[Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine a__ :int = True a__ :List[Any] = True a__ :Any = model_class(_UpperCAmelCase ) a__ :Tuple = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _snake_case ( self : Dict ) ->Union[str, Any]: """simple docstring""" pass def _snake_case ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" pass def lowerCamelCase__ ( a : int ) -> str: """simple docstring""" return tf.constant(lowerCAmelCase__ , dtype=tf.intaa ) snake_case__ = 1e-4 @slow @require_tf class lowerCAmelCase_ ( unittest.TestCase): def _snake_case ( self : Union[str, Any] ) ->str: """simple docstring""" a__ :List[str] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here a__ :Tuple = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) a__ :Union[str, Any] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) a__ :List[Any] = prepare_led_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) a__ :List[str] = model(**_UpperCAmelCase )[0] a__ :List[str] = (1, 1024, 768) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here a__ :List[Any] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1E-3 ) def _snake_case ( self : str ) ->List[Any]: """simple docstring""" a__ :Optional[Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here a__ :Tuple = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) a__ :Optional[Any] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) a__ :str = prepare_led_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) a__ :List[str] = model(**_UpperCAmelCase )[0] a__ :List[Any] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here a__ :Tuple = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1E-3 , rtol=1E-3 )
714
import numpy as np def lowerCamelCase__ ( a : np.ndarray , a : np.ndarray , a : float = 1e-12 , a : int = 100 , ) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(a )[0] == np.shape(a )[1] # Ensure proper dimensionality. assert np.shape(a )[0] == np.shape(a )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(a ) == np.iscomplexobj(a ) a__ :List[str] = np.iscomplexobj(a ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(a , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. a__ :List[str] = False a__ :str = 0 a__ :Dict = 0 a__ :Tuple = 1e12 while not convergence: # Multiple matrix by the vector. a__ :Tuple = np.dot(a , a ) # Normalize the resulting output vector. a__ :List[Any] = w / np.linalg.norm(a ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) a__ :List[str] = vector.conj().T if is_complex else vector.T a__ :Any = np.dot(a , np.dot(a , a ) ) # Check convergence. a__ :Optional[Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: a__ :List[str] = True a__ :Optional[int] = lambda_ if is_complex: a__ :Union[str, Any] = np.real(lambda_ ) return lambda_, vector def lowerCamelCase__ ( ) -> None: """simple docstring""" a__ :List[str] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) a__ :Dict = np.array([41, 4, 20] ) a__ :Union[str, Any] = real_input_matrix.astype(np.complexaaa ) a__ :Optional[Any] = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T a__ :Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": a__ :Union[str, Any] = real_input_matrix a__ :int = real_vector elif problem_type == "complex": a__ :Optional[Any] = complex_input_matrix a__ :List[Any] = complex_vector # Our implementation. a__ , a__ :Any = power_iteration(a , a ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). a__ , a__ :int = np.linalg.eigh(a ) # Last eigenvalue is the maximum one. a__ :int = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. a__ :Optional[Any] = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(a ) - np.abs(a ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
373
0
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _A ( __lowercase , __lowercase , __lowercase = None ): """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path lowerCamelCase__ = quote(__lowercase ) return hfh.hf_hub_url(__lowercase , __lowercase , repo_type="""dataset""" , revision=__lowercase )
129
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
129
1
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list[list] ): """simple docstring""" _snake_case : Optional[int] = current_set.copy() for row_index, row in enumerate(_lowerCamelCase ): _snake_case : Any = row[0] for column_index, column in enumerate(_lowerCamelCase ): if magnitude == 0: _snake_case : str = column continue _snake_case : List[Any] = column / magnitude # Subtract to cancel term _snake_case : List[Any] = current_set[0] _snake_case : int = [first_row] _snake_case : Optional[int] = current_set[1::] for row in current_set: _snake_case : List[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_lowerCamelCase ) continue for column_index in range(len(_lowerCamelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_lowerCamelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: _snake_case : str = final_set[0] _snake_case : Any = [] _snake_case : int = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _snake_case : Dict = simplify(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , _lowerCamelCase ) _snake_case : Dict = resultant return final_set def UpperCAmelCase__ (snake_case__ : list[list] ): """simple docstring""" if len(_lowerCamelCase ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) _snake_case : Dict = len(_lowerCamelCase ) + 1 if any(len(_lowerCamelCase ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(_lowerCamelCase , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(_lowerCamelCase ) == 1: return [equations[0][-1] / equations[0][0]] _snake_case : Any = equations.copy() if any(0 in row for row in data_set ): _snake_case : Optional[int] = data_set.copy() _snake_case : Union[str, Any] = [] for row_index, row in enumerate(_lowerCamelCase ): if 0 not in row: _snake_case : List[Any] = data_set.pop(_lowerCamelCase ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , _lowerCamelCase ) _snake_case : int = data_set.copy() _snake_case : List[str] = simplify(_lowerCamelCase ) _snake_case : List[Any] = simplified[::-1] _snake_case : list = [] for row in simplified: _snake_case : int = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _snake_case : Optional[Any] = row.copy()[: len(_lowerCamelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_lowerCamelCase ) == 0: solutions.append(0 ) continue _snake_case : int = temp_row[1::] _snake_case : Tuple = temp_row[::-1] for column_index, column in enumerate(_lowerCamelCase ): current_solution -= column * solutions[column_index] solutions.append(_lowerCamelCase ) _snake_case : str = [] for item in solutions: final.append(float(round(_lowerCamelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() A_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
705
"""simple docstring""" import os import sys import unittest A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A_ = os.path.join(git_repo_path, '''src''', '''diffusers''') class lowercase( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = find_backend(""" if not is_torch_available():""" ) self.assertEqual(a_, """torch""" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _snake_case : Any = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" ) self.assertEqual(a_, """torch_and_transformers""" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _snake_case : Union[str, Any] = find_backend( """ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" ) self.assertEqual(a_, """torch_and_transformers_and_onnx""" ) def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", a_ ) self.assertIn("""torch_and_transformers""", a_ ) self.assertIn("""flax_and_transformers""", a_ ) self.assertIn("""torch_and_transformers_and_onnx""", a_ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""UNet2DModel""", objects["""torch"""] ) self.assertIn("""FlaxUNet2DConditionModel""", objects["""flax"""] ) self.assertIn("""StableDiffusionPipeline""", objects["""torch_and_transformers"""] ) self.assertIn("""FlaxStableDiffusionPipeline""", objects["""flax_and_transformers"""] ) self.assertIn("""LMSDiscreteScheduler""", objects["""torch_and_scipy"""] ) self.assertIn("""OnnxStableDiffusionPipeline""", objects["""torch_and_transformers_and_onnx"""] ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(a_, """\nCONSTANT = None\n""" ) _snake_case : Optional[int] = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( a_, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) _snake_case : List[Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ _snake_case : Union[str, Any] = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(a_, a_ ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Union[str, Any] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, [\"torch\"]) """ _snake_case : List[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], a_ )
28
0
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __UpperCamelCase : List[Any] = 50000 __UpperCamelCase : str = 5000 __UpperCamelCase , __UpperCamelCase : Tuple = os.path.split(__file__) __UpperCamelCase : Union[str, Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _UpperCAmelCase ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ): """simple docstring""" for i in range(A__ ): __lowerCamelCase : List[Any] = dataset[i] @get_duration def _UpperCAmelCase ( UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int ): """simple docstring""" for i in range(0 , len(A__ ) , A__ ): __lowerCamelCase : int = dataset[i : i + batch_size] @get_duration def _UpperCAmelCase ( UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple ): """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(A__ ): __lowerCamelCase : Optional[int] = dataset[i] @get_duration def _UpperCAmelCase ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ): """simple docstring""" with dataset.formatted_as(type=A__ ): for i in range(0 , A__ , A__ ): __lowerCamelCase : Tuple = dataset[i : i + batch_size] def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : Tuple = {"""num examples""": SPEED_TEST_N_EXAMPLES} __lowerCamelCase : List[str] = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """pandas""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """torch""", """length""": SMALL_TEST}), (read_formatted, {"""type""": """tensorflow""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}), ] __lowerCamelCase : Dict = [ (read, {"""length""": SMALL_TEST}), (read, {"""length""": SPEED_TEST_N_EXAMPLES}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 10}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 100}), (read_batch, {"""length""": SPEED_TEST_N_EXAMPLES, """batch_size""": 1_000}), (read_formatted, {"""type""": """numpy""", """length""": SMALL_TEST}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 10}), (read_formatted_batch, {"""type""": """numpy""", """length""": SMALL_TEST, """batch_size""": 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("""generating dataset""" ) __lowerCamelCase : Tuple = datasets.Features( {"""list""": datasets.Sequence(datasets.Value("""float32""" ) ), """numbers""": datasets.Value("""float32""" )} ) __lowerCamelCase : List[Any] = generate_example_dataset( os.path.join(A__ , """dataset.arrow""" ) , A__ , num_examples=A__ , seq_shapes={"""list""": (100,)} , ) print("""first set of iterations""" ) for func, kwargs in functions: print(func.__name__ , str(A__ ) ) __lowerCamelCase : Dict = func(A__ , **A__ ) print("""shuffling dataset""" ) __lowerCamelCase : Tuple = dataset.shuffle() print("""Second set of iterations (after shuffling""" ) for func, kwargs in functions_shuffled: print("""shuffled """ , func.__name__ , str(A__ ) ) __lowerCamelCase : str = func( A__ , **A__ ) with open(A__ , """wb""" ) as f: f.write(json.dumps(A__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
519
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = TextToVideoSDPipeline SCREAMING_SNAKE_CASE : List[str] = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. SCREAMING_SNAKE_CASE : Optional[int] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,) __lowercase = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='''scaled_linear''' ,clip_sample=lowercase__ ,set_alpha_to_one=lowercase__ ,) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,) __lowercase = CLIPTextModel(lowercase__ ) __lowercase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowercase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : int ,lowercase__ : List[str]=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = TextToVideoSDPipeline(**lowercase__ ) __lowercase = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = '''np''' __lowercase = sd_pipe(**lowercase__ ).frames __lowercase = frames[0][-3:, -3:, -1] assert frames[0].shape == (6_4, 6_4, 3) __lowercase = np.array([1_5_8.0, 1_6_0.0, 1_5_3.0, 1_2_5.0, 1_0_0.0, 1_2_1.0, 1_1_1.0, 9_3.0, 1_1_3.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def SCREAMING_SNAKE_CASE ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowercase__ ,expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2_5 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) __lowercase = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) __lowercase = pipe.to('''cuda''' ) __lowercase = '''Spiderman is surfing''' __lowercase = torch.Generator(device='''cpu''' ).manual_seed(0 ) __lowercase = pipe(lowercase__ ,generator=lowercase__ ,num_inference_steps=2 ,output_type='''pt''' ).frames __lowercase = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
41
0
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _lowerCAmelCase :Optional[int] = """true""" def __lowerCAmelCase ( a_ , a_=82 , a_=16 ) -> Union[str, Any]: '''simple docstring''' set_seed(42 ) SCREAMING_SNAKE_CASE : List[Any] = RegressionModel() SCREAMING_SNAKE_CASE : List[Any] = deepcopy(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = RegressionDataset(length=a_ ) SCREAMING_SNAKE_CASE : Tuple = DataLoader(a_ , batch_size=a_ ) model.to(accelerator.device ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.prepare(a_ , a_ ) return model, ddp_model, dataloader def __lowerCAmelCase ( a_ , a_=False ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) SCREAMING_SNAKE_CASE : Any = load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(a_ ): SCREAMING_SNAKE_CASE : Dict = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=a_ , max_length=a_ ) return outputs with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : int = dataset.map( a_ , batched=a_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) SCREAMING_SNAKE_CASE : Optional[int] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(a_ ): if use_longest: return tokenizer.pad(a_ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(a_ , padding='max_length' , max_length=128 , return_tensors='pt' ) return DataLoader(a_ , shuffle=a_ , collate_fn=a_ , batch_size=16 ) def __lowerCAmelCase ( a_ , a_ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = Accelerator(dispatch_batches=a_ , split_batches=a_ ) SCREAMING_SNAKE_CASE : Any = get_dataloader(a_ , not dispatch_batches ) SCREAMING_SNAKE_CASE : Any = AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=a_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare(a_ , a_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __lowerCAmelCase ( a_ , a_ , a_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for batch in dataloader: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = batch.values() with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(a_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = [], [] for logit, targ in logits_and_targets: logits.append(a_ ) targs.append(a_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = torch.cat(a_ ), torch.cat(a_ ) return logits, targs def __lowerCAmelCase ( a_ , a_=82 , a_=False , a_=False , a_=16 ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = get_basic_setup(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = generate_predictions(a_ , a_ , a_ ) assert ( len(a_ ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(a_ )}""" def __lowerCAmelCase ( a_ = False , a_ = False ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load('glue' , 'mrpc' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = get_mrpc_setup(a_ , a_ ) # First do baseline SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = setup['no'] model.to(a_ ) model.eval() for batch in dataloader: batch.to(a_ ) with torch.inference_mode(): SCREAMING_SNAKE_CASE : Optional[int] = model(**a_ ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=a_ , references=batch['labels'] ) SCREAMING_SNAKE_CASE : str = metric.compute() # Then do distributed SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): SCREAMING_SNAKE_CASE : List[str] = model(**a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE : int = batch['labels'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=a_ , references=a_ ) SCREAMING_SNAKE_CASE : Any = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = Accelerator(split_batches=a_ , dispatch_batches=a_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(a_ , a_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: SCREAMING_SNAKE_CASE : Dict = Accelerator(split_batches=a_ , dispatch_batches=a_ ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(a_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) SCREAMING_SNAKE_CASE : Dict = Accelerator() test_torch_metrics(a_ , 512 ) accelerator.state._reset_state() def __lowerCAmelCase ( a_ ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
179
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self , lowercase__ , lowercase__=13 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=99 , lowercase__=64 , lowercase__=5 , lowercase__=4 , lowercase__=64 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=16 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ) -> int: SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Any = use_input_mask SCREAMING_SNAKE_CASE : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Dict = num_choices SCREAMING_SNAKE_CASE : Optional[Any] = scope def _UpperCamelCase ( self ) -> Union[str, Any]: return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : str = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ) -> Tuple: return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : List[str] = MPNetModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = MPNetForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model( lowercase__ , attention_mask=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Tuple = MPNetForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_choices SCREAMING_SNAKE_CASE : Any = MPNetForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = model( lowercase__ , attention_mask=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : str = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = MPNetForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) : str = config_and_inputs SCREAMING_SNAKE_CASE : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Optional[int] = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) snake_case__ : Optional[int] = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : int = True def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : int = MPNetModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowercase__ , hidden_size=37 ) def _UpperCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase__ ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase__ ) @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE : Tuple = MPNetModel.from_pretrained('microsoft/mpnet-base' ) SCREAMING_SNAKE_CASE : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowercase__ )[0] SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase__ ) SCREAMING_SNAKE_CASE : str = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1E-4 ) )
179
1
import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def lowerCamelCase__ (_UpperCAmelCase): if hor == 128: SCREAMING_SNAKE_CASE = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') SCREAMING_SNAKE_CASE = (32, 128, 256) SCREAMING_SNAKE_CASE = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: SCREAMING_SNAKE_CASE = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') SCREAMING_SNAKE_CASE = (32, 64, 128, 256) SCREAMING_SNAKE_CASE = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') SCREAMING_SNAKE_CASE = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''') SCREAMING_SNAKE_CASE = model.state_dict() SCREAMING_SNAKE_CASE = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_5536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } SCREAMING_SNAKE_CASE = UNetaDModel(**_UpperCAmelCase) print(F'''length of state dict: {len(state_dict.keys())}''') print(F'''length of value function dict: {len(hf_value_function.state_dict().keys())}''') SCREAMING_SNAKE_CASE = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys())) for k, v in mapping.items(): SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase) hf_value_function.load_state_dict(_UpperCAmelCase) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''') with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w') as f: json.dump(_UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_5536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } SCREAMING_SNAKE_CASE = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch') SCREAMING_SNAKE_CASE = model SCREAMING_SNAKE_CASE = UNetaDModel(**_UpperCAmelCase) print(F'''length of state dict: {len(state_dict.keys())}''') print(F'''length of value function dict: {len(hf_value_function.state_dict().keys())}''') SCREAMING_SNAKE_CASE = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys())) for k, v in mapping.items(): SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase) hf_value_function.load_state_dict(_UpperCAmelCase) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin') with open('hub/hopper-medium-v2/value_function/config.json' , 'w') as f: json.dump(_UpperCAmelCase , _UpperCAmelCase) if __name__ == "__main__": unet(32) # unet(128) value_function()
73
'''simple docstring''' SCREAMING_SNAKE_CASE__ = {str(digit): digit**5 for digit in range(1_0)} def lowercase__ ( __UpperCamelCase )-> int: return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__UpperCamelCase ) ) def lowercase__ ( )-> int: return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(__UpperCamelCase ) ) if __name__ == "__main__": print(solution())
301
0
def snake_case_ ( lowercase__ : list , lowercase__ : int = 0 ) -> List[Any]: '''simple docstring''' _lowerCAmelCase =length or len(_A ) _lowerCAmelCase =False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _lowerCAmelCase =list_data[i + 1], list_data[i] _lowerCAmelCase =True return list_data if not swapped else bubble_sort(_A , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
705
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __SCREAMING_SNAKE_CASE : List[str] = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } __SCREAMING_SNAKE_CASE : Dict = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def snake_case_ ( lowercase__ : Any , lowercase__ : Union[str, Any]=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =create_model( """HTSAT-tiny""" , """roberta""" , lowercase__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowercase__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def snake_case_ ( lowercase__ : str ): '''simple docstring''' _lowerCAmelCase ={} _lowerCAmelCase =r""".*sequential.(\d+).*""" _lowerCAmelCase =r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _lowerCAmelCase =key.replace(lowercase__ , lowercase__ ) if re.match(lowercase__ , lowercase__ ): # replace sequential layers with list _lowerCAmelCase =re.match(lowercase__ , lowercase__ ).group(1 ) _lowerCAmelCase =key.replace(f"sequential.{sequential_layer}." , f"layers.{int(lowercase__ )//3}.linear." ) elif re.match(lowercase__ , lowercase__ ): _lowerCAmelCase =int(re.match(lowercase__ , lowercase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _lowerCAmelCase =1 if projecton_layer == 0 else 2 _lowerCAmelCase =key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value _lowerCAmelCase =value _lowerCAmelCase =mixed_qkv.size(0 ) // 3 _lowerCAmelCase =mixed_qkv[:qkv_dim] _lowerCAmelCase =mixed_qkv[qkv_dim : qkv_dim * 2] _lowerCAmelCase =mixed_qkv[qkv_dim * 2 :] _lowerCAmelCase =query_layer _lowerCAmelCase =key_layer _lowerCAmelCase =value_layer else: _lowerCAmelCase =value return model_state_dict def snake_case_ ( lowercase__ : int , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Optional[Any]=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =init_clap(lowercase__ , enable_fusion=lowercase__ ) clap_model.eval() _lowerCAmelCase =clap_model.state_dict() _lowerCAmelCase =rename_state_dict(lowercase__ ) _lowerCAmelCase =ClapConfig() _lowerCAmelCase =enable_fusion _lowerCAmelCase =ClapModel(lowercase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowercase__ , strict=lowercase__ ) model.save_pretrained(lowercase__ ) transformers_config.save_pretrained(lowercase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
149
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE: """simple docstring""" lowerCamelCase__ = 42 # setable values lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = None @classmethod def A ( cls : List[str] , __snake_case : CommonSchedulerState , __snake_case : jnp.ndarray , __snake_case : jnp.ndarray ) -> List[str]: return cls(common=__snake_case , init_noise_sigma=__snake_case , timesteps=__snake_case ) @dataclass class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 class SCREAMING_SNAKE_CASE( A__ , A__ ): """simple docstring""" lowerCamelCase__ = [e.name for e in FlaxKarrasDiffusionSchedulers] lowerCamelCase__ = 42 @property def A ( self : List[Any] ) -> Tuple: return True @register_to_config def __init__( self : Dict , __snake_case : int = 1000 , __snake_case : float = 0.00_01 , __snake_case : float = 0.02 , __snake_case : str = "linear" , __snake_case : Optional[jnp.ndarray] = None , __snake_case : str = "fixed_small" , __snake_case : bool = True , __snake_case : str = "epsilon" , __snake_case : jnp.dtype = jnp.floataa , ) -> Optional[Any]: UpperCAmelCase : Any = dtype def A ( self : Optional[Any] , __snake_case : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: if common is None: UpperCAmelCase : Optional[Any] = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution UpperCAmelCase : int = jnp.array(1.0 , dtype=self.dtype ) UpperCAmelCase : Union[str, Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__snake_case , init_noise_sigma=__snake_case , timesteps=__snake_case , ) def A ( self : Tuple , __snake_case : DDPMSchedulerState , __snake_case : jnp.ndarray , __snake_case : Optional[int] = None ) -> jnp.ndarray: return sample def A ( self : int , __snake_case : DDPMSchedulerState , __snake_case : int , __snake_case : Tuple = () ) -> DDPMSchedulerState: UpperCAmelCase : Tuple = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase : List[str] = (jnp.arange(0 , __snake_case ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__snake_case , timesteps=__snake_case , ) def A ( self : Optional[int] , __snake_case : DDPMSchedulerState , __snake_case : int , __snake_case : Union[str, Any]=None , __snake_case : List[str]=None ) -> List[Any]: UpperCAmelCase : List[str] = state.common.alphas_cumprod[t] UpperCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase : Optional[int] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase : Optional[int] = jnp.clip(__snake_case , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase : Dict = jnp.log(jnp.clip(__snake_case , a_min=1E-20 ) ) elif variance_type == "fixed_large": UpperCAmelCase : int = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase : int = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase : Dict = variance UpperCAmelCase : int = state.common.betas[t] UpperCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 UpperCAmelCase : Optional[int] = frac * max_log + (1 - frac) * min_log return variance def A ( self : str , __snake_case : DDPMSchedulerState , __snake_case : jnp.ndarray , __snake_case : int , __snake_case : jnp.ndarray , __snake_case : Optional[jax.random.KeyArray] = None , __snake_case : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: UpperCAmelCase : Optional[int] = timestep if key is None: UpperCAmelCase : Dict = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase , UpperCAmelCase : List[Any] = jnp.split(__snake_case , sample.shape[1] , axis=1 ) else: UpperCAmelCase : Optional[Any] = None # 1. compute alphas, betas UpperCAmelCase : List[Any] = state.common.alphas_cumprod[t] UpperCAmelCase : Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) UpperCAmelCase : Union[str, Any] = 1 - alpha_prod_t UpperCAmelCase : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase : List[str] = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase : Optional[Any] = jnp.clip(__snake_case , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : Optional[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase : Tuple = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase : Tuple = jax.random.split(__snake_case , num=1 ) UpperCAmelCase : str = jax.random.normal(__snake_case , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__snake_case , __snake_case , predicted_variance=__snake_case ) ** 0.5) * noise UpperCAmelCase : Dict = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) UpperCAmelCase : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__snake_case , state=__snake_case ) def A ( self : List[str] , __snake_case : DDPMSchedulerState , __snake_case : jnp.ndarray , __snake_case : jnp.ndarray , __snake_case : jnp.ndarray , ) -> jnp.ndarray: return add_noise_common(state.common , __snake_case , __snake_case , __snake_case ) def A ( self : str , __snake_case : DDPMSchedulerState , __snake_case : jnp.ndarray , __snake_case : jnp.ndarray , __snake_case : jnp.ndarray , ) -> jnp.ndarray: return get_velocity_common(state.common , __snake_case , __snake_case , __snake_case ) def __len__( self : str ) -> List[str]: return self.config.num_train_timesteps
127
'''simple docstring''' import argparse import hashlib # hashlib is only used inside the Test class import struct class SCREAMING_SNAKE_CASE: """simple docstring""" def __init__( self : List[str] , __snake_case : Any ) -> List[Any]: UpperCAmelCase : Any = data UpperCAmelCase : Optional[Any] = [0X6745_2301, 0Xefcd_ab89, 0X98ba_dcfe, 0X1032_5476, 0Xc3d2_e1f0] @staticmethod def A ( __snake_case : List[str] , __snake_case : Any ) -> int: return ((n << b) | (n >> (32 - b))) & 0Xffff_ffff def A ( self : Optional[int] ) -> Tuple: UpperCAmelCase : Dict = b'''\x80''' + b'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase : int = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def A ( self : str ) -> List[Any]: return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def A ( self : List[str] , __snake_case : int ) -> Optional[Any]: UpperCAmelCase : List[Any] = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase : Any = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Tuple = self.padding() UpperCAmelCase : Optional[Any] = self.split_blocks() for block in self.blocks: UpperCAmelCase : str = self.expand_block(__snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[int] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase : Optional[int] = (b & c) | ((~b) & d) UpperCAmelCase : List[str] = 0X5a82_7999 elif 20 <= i < 40: UpperCAmelCase : List[str] = b ^ c ^ d UpperCAmelCase : List[Any] = 0X6ed9_eba1 elif 40 <= i < 60: UpperCAmelCase : Union[str, Any] = (b & c) | (b & d) | (c & d) UpperCAmelCase : Dict = 0X8f1b_bcdc elif 60 <= i < 80: UpperCAmelCase : Optional[int] = b ^ c ^ d UpperCAmelCase : Optional[int] = 0Xca62_c1d6 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xffff_ffff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase : Tuple = ( self.h[0] + a & 0Xffff_ffff, self.h[1] + b & 0Xffff_ffff, self.h[2] + c & 0Xffff_ffff, self.h[3] + d & 0Xffff_ffff, self.h[4] + e & 0Xffff_ffff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ) -> List[str]: UpperCAmelCase : int = b'''Test String''' assert SHAaHash(_lowerCAmelCase ).final_hash() == hashlib.shaa(_lowerCAmelCase ).hexdigest() # noqa: S324 def snake_case_ ( ) -> List[str]: UpperCAmelCase : Tuple = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase : List[str] = parser.parse_args() UpperCAmelCase : Dict = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase : Dict = f.read() else: UpperCAmelCase : Optional[Any] = bytes(_lowerCAmelCase , '''utf-8''' ) print(SHAaHash(_lowerCAmelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
127
1
'''simple docstring''' import torch from diffusers import DiffusionPipeline class a__( lowerCamelCase__ ): def __init__( self : List[str] , __snake_case : List[Any] , __snake_case : int ): super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) def __call__( self : List[Any] ): a : Optional[int] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) a : List[str] = 1 a : Any = self.unet(__snake_case , __snake_case ).sample a : Any = self.scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample a : Optional[int] = scheduler_output - scheduler_output + torch.ones_like(__snake_case ) return result
195
'''simple docstring''' class a__: def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Tuple ): a : List[str] = name a : Dict = value a : List[str] = weight def __repr__( self : int ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowercase_ ( self : Optional[int] ): return self.value def lowercase_ ( self : List[str] ): return self.name def lowercase_ ( self : int ): return self.weight def lowercase_ ( self : List[str] ): return self.value / self.weight def lowerCamelCase__ ( _A , _A , _A ): a : Optional[int] = [] for i in range(len(_A ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def lowerCamelCase__ ( _A , _A , _A ): a : Optional[Any] = sorted(_A , key=_A , reverse=_A ) a : Optional[int] = [] a , a : str = 0.0, 0.0 for i in range(len(_A ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def lowerCamelCase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
195
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :str =logging.get_logger(__name__) __snake_case :int ={ """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class lowerCAmelCase__ ( _lowerCamelCase ): A_ : Optional[Any] = "falcon" A_ : List[Any] = ["past_key_values"] def __init__( self : List[Any] , __UpperCamelCase : List[str]=65_024 , __UpperCamelCase : int=4_544 , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : int=71 , __UpperCamelCase : Optional[int]=1e-5 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : str=True , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : str=0.0 , __UpperCamelCase : Any=None , __UpperCamelCase : int=False , __UpperCamelCase : List[str]=False , __UpperCamelCase : Tuple=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : int=False , __UpperCamelCase : Union[str, Any]=11 , __UpperCamelCase : str=11 , **__UpperCamelCase : Any , ) -> Tuple: A = vocab_size # Backward compatibility with n_embed kwarg A = kwargs.pop('n_embed' , UpperCamelCase__ ) A = hidden_size if n_embed is None else n_embed A = num_hidden_layers A = num_attention_heads A = layer_norm_epsilon A = initializer_range A = use_cache A = hidden_dropout A = attention_dropout A = bos_token_id A = eos_token_id A = num_attention_heads if num_kv_heads is None else num_kv_heads A = alibi A = new_decoder_architecture A = multi_query # Ignored when new_decoder_architecture is True A = parallel_attn A = bias super().__init__(bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Dict: return self.hidden_size // self.num_attention_heads @property def __UpperCamelCase ( self : Optional[Any] ) -> str: return not self.alibi
106
"""simple docstring""" import os def lowerCamelCase_ ( ): lowerCamelCase_ = os.path.dirname(os.path.realpath(_lowerCamelCase ) ) lowerCamelCase_ = os.path.join(_lowerCamelCase , '''triangle.txt''' ) with open(_lowerCamelCase ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = [] for line in triangle: lowerCamelCase_ = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(_lowerCamelCase ) ) a.append(_lowerCamelCase ) for i in range(1 , len(_lowerCamelCase ) ): for j in range(len(a[i] ) ): lowerCamelCase_ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCamelCase_ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_lowerCamelCase , _lowerCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
142
0
from __future__ import annotations from math import gcd def __SCREAMING_SNAKE_CASE ( UpperCamelCase : int , UpperCamelCase : int = 2 , UpperCamelCase : int = 1 , UpperCamelCase : int = 3 , ) -> int | None: """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int ) -> int: return (pow(UpperCamelCase , 2 ) + step) % modulus for _ in range(UpperCamelCase ): # These track the position within the cycle detection logic. a_ = seed a_ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. a_ = rand_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase ) a_ = rand_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase ) a_ = rand_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. a_ = gcd(hare - tortoise , UpperCamelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. a_ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _A = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) _A = parser.parse_args() _A = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'{args.num} is probably prime') else: _A = args.num // divisor print(f'{args.num} = {divisor} * {quotient}')
705
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _A = logging.getLogger() def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" a_ = argparse.ArgumentParser() parser.add_argument("""-f""" ) a_ = parser.parse_args() return args.f def __SCREAMING_SNAKE_CASE ( UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" a_ = {} a_ = os.path.join(UpperCamelCase , """all_results.json""" ) if os.path.exists(UpperCamelCase ): with open(UpperCamelCase , """r""" ) as f: a_ = json.load(UpperCamelCase ) else: raise ValueError(F"""can't find {path}""" ) return results def __SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" a_ = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() _A = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): @classmethod def __magic_name__ ( cls ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU a_ = tempfile.mkdtemp() a_ = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) a_ = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def __magic_name__ ( cls ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["""perplexity"""] , 100 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu a_ = 7 if get_gpu_count() > 1 else 2 a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """translation_no_trainer""" ) ) ) @slow def __magic_name__ ( self ): a_ = logging.StreamHandler(sys.stdout ) logger.addHandler(_SCREAMING_SNAKE_CASE ) a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.1_0 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """image_classification_no_trainer""" ) ) )
403
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase : Dict = logging.get_logger(__name__) lowercase : List[str] = torch.device("cpu") def snake_case__ ( ): A : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A : Any = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im def snake_case__ ( lowerCamelCase_ ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): A : Tuple = dct.pop(lowerCamelCase_ ) A : Tuple = val def snake_case__ ( lowerCamelCase_ ): A : Optional[int] = [] for k in state_dict.keys(): A : Any = k if ".pwconv" in k: A : str = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: A : Union[str, Any] = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: A : List[Any] = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: A : int = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: A : str = k_new.split('''.''' ) if ls[2].isdigit(): A : int = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: A : str = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): A : List[str] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size A : Dict = 1000 A : int = '''huggingface/label-files''' A : Any = '''imagenet-1k-id2label.json''' A : int = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='''dataset''' ) , '''r''' ) ) A : Union[str, Any] = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} A : str = idalabel A : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": A : Tuple = [3, 3, 6, 4] A : str = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": A : Any = [3, 3, 9, 6] A : Tuple = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": A : int = [4, 3, 10, 5] A : List[Any] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": A : List[str] = [4, 4, 12, 6] A : str = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): A : Optional[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='''cpu''' , check_hash=lowerCamelCase_ ) else: A : Dict = torch.load(lowerCamelCase_ , map_location='''cpu''' ) A : Any = checkpoint A : Any = create_rename_keys(lowerCamelCase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # load HuggingFace model A : Dict = SwiftFormerForImageClassification(lowerCamelCase_ ).eval() hf_model.load_state_dict(lowerCamelCase_ ) # prepare test inputs A : Optional[Any] = prepare_img() A : Optional[int] = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) A : Optional[int] = processor(images=lowerCamelCase_ , return_tensors='''pt''' ) # compare outputs from both models A : Union[str, Any] = get_expected_output(lowerCamelCase_ ) A : Tuple = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , lowerCamelCase_ , atol=1E-3 ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") lowercase : Any = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
542
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Optional[int] = StableDiffusionInstructPixaPixPipeline UpperCAmelCase_ : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} UpperCAmelCase_ : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase_ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase_ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) A : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) A : Any = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) torch.manual_seed(0 ) A : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) A : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) A : Dict = CLIPTextModel(__UpperCAmelCase ) A : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) A : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Dict: A : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) A : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] A : Optional[Any] = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('''RGB''' ) if str(__UpperCAmelCase ).startswith('''mps''' ): A : str = torch.manual_seed(__UpperCAmelCase ) else: A : Optional[Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def snake_case ( self ) -> Union[str, Any]: A : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A : Dict = self.get_dummy_components() A : str = StableDiffusionInstructPixaPixPipeline(**__UpperCAmelCase ) A : Any = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) A : int = sd_pipe(**__UpperCAmelCase ).images A : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A : Optional[Any] = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case ( self ) -> int: A : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator A : Optional[Any] = self.get_dummy_components() A : Any = StableDiffusionInstructPixaPixPipeline(**__UpperCAmelCase ) A : str = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A : str = self.get_dummy_inputs(__UpperCAmelCase ) A : Optional[int] = '''french fries''' A : Any = sd_pipe(**__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) A : Optional[int] = output.images A : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A : Any = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case ( self ) -> Tuple: A : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator A : List[Any] = self.get_dummy_components() A : Optional[int] = StableDiffusionInstructPixaPixPipeline(**__UpperCAmelCase ) A : Tuple = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A : str = self.get_dummy_inputs(__UpperCAmelCase ) A : int = [inputs['''prompt''']] * 2 A : List[str] = np.array(inputs['''image'''] ).astype(np.floataa ) / 2_5_5.0 A : Any = torch.from_numpy(__UpperCAmelCase ).unsqueeze(0 ).to(__UpperCAmelCase ) A : Union[str, Any] = image / 2 + 0.5 A : str = image.permute(0 , 3 , 1 , 2 ) A : List[str] = image.repeat(2 , 1 , 1 , 1 ) A : Union[str, Any] = sd_pipe(**__UpperCAmelCase ).images A : int = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A : Any = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case ( self ) -> Dict: A : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator A : List[Any] = self.get_dummy_components() A : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) A : int = StableDiffusionInstructPixaPixPipeline(**__UpperCAmelCase ) A : Tuple = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A : Tuple = self.get_dummy_inputs(__UpperCAmelCase ) A : Optional[Any] = sd_pipe(**__UpperCAmelCase ).images A : Dict = image[0, -3:, -3:, -1] A : Optional[int] = [round(__UpperCAmelCase , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(__UpperCAmelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A : Dict = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case ( self ) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def snake_case ( self ) -> Union[str, Any]: A : int = self.get_dummy_components() A : int = StableDiffusionInstructPixaPixPipeline(**__UpperCAmelCase ) A : Any = VaeImageProcessor(do_resize=__UpperCAmelCase , do_normalize=__UpperCAmelCase ) A : Optional[Any] = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A : Union[str, Any] = pipe(**self.get_dummy_inputs_by_type(__UpperCAmelCase , input_image_type='''pt''' ) )[0] A : Optional[Any] = components['''vae'''] A : Dict = self.get_dummy_inputs_by_type(__UpperCAmelCase , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A : Optional[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() A : List[str] = pipe(**__UpperCAmelCase )[0] A : Any = np.abs(out - out_latents_inputs ).max() self.assertLess(__UpperCAmelCase , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self , __UpperCAmelCase=0 ) -> Tuple: A : List[str] = torch.manual_seed(__UpperCAmelCase ) A : List[str] = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) A : Dict = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def snake_case ( self ) -> Optional[int]: A : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__UpperCAmelCase ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() A : Optional[int] = self.get_inputs() A : Any = pipe(**__UpperCAmelCase ).images A : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A : Dict = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def snake_case ( self ) -> Dict: A : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__UpperCAmelCase ) A : List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() A : Union[str, Any] = self.get_inputs() A : Union[str, Any] = pipe(**__UpperCAmelCase ).images A : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A : Dict = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def snake_case ( self ) -> List[Any]: A : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__UpperCAmelCase ) A : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() A : str = self.get_inputs() A : List[Any] = pipe(**__UpperCAmelCase ).images A : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A : Any = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def snake_case ( self ) -> Optional[Any]: A : Optional[Any] = 0 def callback_fn(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None: A : List[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A : Optional[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A : Union[str, Any] = latents[0, -3:, -3:, -1] A : List[str] = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: A : int = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A : Optional[int] = latents[0, -3:, -3:, -1] A : str = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 A : Optional[Any] = False A : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa ) A : List[str] = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() A : List[Any] = self.get_inputs() pipe(**__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def snake_case ( self ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa ) A : Dict = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A : Optional[Any] = self.get_inputs() A : str = pipe(**__UpperCAmelCase ) A : Dict = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def snake_case ( self ) -> int: A : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A : Union[str, Any] = inputs['''image'''].resize((5_04, 5_04) ) A : str = '''timbrooks/instruct-pix2pix''' A : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( __UpperCAmelCase , safety_checker=__UpperCAmelCase , ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() A : Tuple = pipe(**__UpperCAmelCase ) A : List[str] = output.images[0] A : List[Any] = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) A : Any = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
542
1
from string import ascii_uppercase __a : Optional[Any] = {char: i for i, char in enumerate(ascii_uppercase)} __a : Optional[int] = dict(enumerate(ascii_uppercase)) def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = len(lowercase ) __lowercase = 0 while True: if x == i: __lowercase = 0 if len(lowercase ) == len(lowercase ): break key += key[i] i += 1 return key def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = '''''' __lowercase = 0 for letter in message: if letter == " ": cipher_text += " " else: __lowercase = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = '''''' __lowercase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __lowercase = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def UpperCAmelCase ( ): """simple docstring""" __lowercase = '''THE GERMAN ATTACK''' __lowercase = '''SECRET''' __lowercase = generate_key(lowercase , lowercase ) __lowercase = cipher_text(lowercase , lowercase ) print(F"Encrypted Text = {s}" ) print(F"Original Text = {original_text(lowercase , lowercase )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
522
from __future__ import annotations __a : str = """Muhammad Umer Farooq""" __a : Optional[Any] = """MIT""" __a : int = """1.0.0""" __a : Optional[int] = """Muhammad Umer Farooq""" __a : Dict = """contact@muhammadumerfarooq.me""" __a : Optional[Any] = """Alpha""" import re from html.parser import HTMLParser from urllib import parse import requests class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ ) -> None: '''simple docstring''' super().__init__() __lowercase = [] __lowercase = domain def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: __lowercase = parse.urljoin(self.domain , lowerCAmelCase__ ) self.urls.append(lowerCAmelCase__ ) def UpperCAmelCase ( lowercase ): """simple docstring""" return ".".join(get_sub_domain_name(lowercase ).split('''.''' )[-2:] ) def UpperCAmelCase ( lowercase ): """simple docstring""" return parse.urlparse(lowercase ).netloc def UpperCAmelCase ( lowercase = "https://github.com" ): """simple docstring""" __lowercase = get_domain_name(lowercase ) # Initialize the parser __lowercase = Parser(lowercase ) try: # Open URL __lowercase = requests.get(lowercase ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through __lowercase = set() for link in parser.urls: # open URL. # read = requests.get(link) try: __lowercase = requests.get(lowercase ) # Get the valid email. __lowercase = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(lowercase ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowercase ) if __name__ == "__main__": __a : Union[str, Any] = emails_from_url("""https://github.com""") print(F'''{len(emails)} emails found:''') print("""\n""".join(sorted(emails)))
522
1
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float , lowerCAmelCase : int ): """simple docstring""" if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(lowerCAmelCase , lowerCAmelCase ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate __magic_name__ : Optional[Any] = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __magic_name__ : Tuple = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
561
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowerCAmelCase :Dict = datasets.utils.logging.get_logger(__name__) class _lowerCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' A_ : bool = None A_ : bool = None class _lowerCamelCase ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' A_ : Union[str, Any] = datasets.Audio() A_ : Tuple = """audio""" A_ : Optional[Any] = AudioFolderConfig A_ : List[str] # definition at the bottom of the script A_ : Any = AudioClassification(audio_column="""audio""" , label_column="""label""" ) lowerCAmelCase :List[str] = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] lowerCAmelCase :str = AUDIO_EXTENSIONS
561
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def UpperCamelCase_ ( ) ->Dict: A =ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) A =parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(a_ ) DownloadCommand.register_subcommand(a_ ) EnvironmentCommand.register_subcommand(a_ ) RunCommand.register_subcommand(a_ ) ServeCommand.register_subcommand(a_ ) UserCommands.register_subcommand(a_ ) AddNewModelCommand.register_subcommand(a_ ) AddNewModelLikeCommand.register_subcommand(a_ ) LfsCommands.register_subcommand(a_ ) PTtoTFCommand.register_subcommand(a_ ) # Let's go A =parser.parse_args() if not hasattr(a_ , "func" ): parser.print_help() exit(1 ) # Run A =args.func(a_ ) service.run() if __name__ == "__main__": main()
719
from __future__ import annotations import math def UpperCamelCase_ ( a_ , a_ ) ->float: A =u for i in range(1 , a_ ): A =temp * (u - i) return temp def UpperCamelCase_ ( ) ->None: A =int(input("enter the numbers of values: " ) ) A =[] for _ in range(a_ ): y.append([] ) for i in range(a_ ): for j in range(a_ ): y[i].append(a_ ) A =0 print("enter the values of parameters in a list: " ) A =list(map(a_ , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(a_ ): A =float(input() ) A =int(input("enter the value to interpolate: " ) ) A =(value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a_ ): for j in range(n - i ): A =y[j + 1][i - 1] - y[j][i - 1] A =y[0][0] for i in range(1 , a_ ): summ += (ucal(a_ , a_ ) * y[0][i]) / math.factorial(a_ ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
689
0
import math import tensorflow as tf from packaging import version def snake_case__ ( lowerCamelCase_ ): A : Optional[int] = tf.convert_to_tensor(lowerCamelCase_ ) A : Union[str, Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def snake_case__ ( lowerCamelCase_ ): A : List[str] = tf.convert_to_tensor(lowerCamelCase_ ) A : Any = tf.cast(math.pi , x.dtype ) A : int = tf.cast(0.044_715 , x.dtype ) A : Tuple = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase_ , 3 )) )) return x * cdf def snake_case__ ( lowerCamelCase_ ): A : Union[str, Any] = tf.convert_to_tensor(lowerCamelCase_ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase_ ) ) def snake_case__ ( lowerCamelCase_ ): A : Optional[int] = tf.convert_to_tensor(lowerCamelCase_ ) A : List[Any] = tf.cast(0.044_715 , x.dtype ) A : str = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def snake_case__ ( lowerCamelCase_ ): A : List[str] = tf.convert_to_tensor(lowerCamelCase_ ) A : Any = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def snake_case__ ( lowerCamelCase_ ): return tf.clip_by_value(_gelu(lowerCamelCase_ ) , -10 , 10 ) def snake_case__ ( lowerCamelCase_ , lowerCamelCase_=-1 ): A , A : Dict = tf.split(lowerCamelCase_ , 2 , axis=lowerCamelCase_ ) return a * tf.math.sigmoid(lowerCamelCase_ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def snake_case__ ( lowerCamelCase_ ): return tf.keras.activations.gelu(lowerCamelCase_ , approximate=lowerCamelCase_ ) lowercase : Tuple = tf.keras.activations.gelu lowercase : Union[str, Any] = approximate_gelu_wrap else: lowercase : str = _gelu lowercase : Dict = _gelu_new lowercase : Union[str, Any] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def snake_case__ ( lowerCamelCase_ ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
542
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowercase : Dict = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class __lowercase ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase_ : Optional[datasets.Features] = None def snake_case__ ( lowerCamelCase_ , lowerCamelCase_ , ): import pyspark def generate_fn(): A : Dict = df.select('''*''' , pyspark.sql.functions.spark_partition_id().alias('''part_id''' ) ) for partition_id in partition_order: A : Optional[Any] = df_with_partition_id.select('''*''' ).where(F'part_id = {partition_id}' ).drop('''part_id''' ) A : Dict = partition_df.collect() A : List[str] = 0 for row in rows: yield F'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class __lowercase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , ) -> List[str]: A : List[Any] = df A : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) A : Optional[int] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> str: yield from self.generate_examples_fn() def snake_case ( self , __UpperCAmelCase ) -> "SparkExamplesIterable": A : Tuple = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__UpperCAmelCase ) return SparkExamplesIterable(self.df , partition_order=__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ) -> "SparkExamplesIterable": A : Tuple = self.split_shard_indices_by_worker(__UpperCAmelCase , __UpperCAmelCase ) return SparkExamplesIterable(self.df , partition_order=__UpperCAmelCase ) @property def snake_case ( self ) -> int: return len(self.partition_order ) class __lowercase ( datasets.DatasetBuilder ): """simple docstring""" UpperCAmelCase_ : List[str] = SparkConfig def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: import pyspark A : Tuple = pyspark.sql.SparkSession.builder.getOrCreate() A : List[Any] = df A : List[Any] = working_dir super().__init__( cache_dir=__UpperCAmelCase , config_name=str(self.df.semanticHash() ) , **__UpperCAmelCase , ) def snake_case ( self ) -> Optional[Any]: # Returns the path of the created file. def create_cache_and_write_probe(__UpperCAmelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__UpperCAmelCase ) A : Optional[Any] = os.path.join(self._cache_dir , '''fs_test''' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__UpperCAmelCase , '''a''' ) return [probe_file] if self._spark.conf.get('''spark.master''' , '''''' ).startswith('''local''' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: A : Optional[int] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__UpperCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( '''When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir''' ) def snake_case ( self ) -> List[Any]: return datasets.DatasetInfo(features=self.config.features ) def snake_case ( self , __UpperCAmelCase ) -> str: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def snake_case ( self , __UpperCAmelCase ) -> List[Any]: import pyspark def get_arrow_batch_size(__UpperCAmelCase ): for batch in it: yield pa.RecordBatch.from_pydict({'''batch_bytes''': [batch.nbytes]} ) A : Any = self.df.count() A : Tuple = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. A : Dict = ( self.df.limit(__UpperCAmelCase ) .repartition(1 ) .mapInArrow(__UpperCAmelCase , '''batch_bytes: long''' ) .agg(pyspark.sql.functions.sum('''batch_bytes''' ).alias('''sample_bytes''' ) ) .collect()[0] .sample_bytes / sample_num_rows ) A : str = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. A : Union[str, Any] = min(__UpperCAmelCase , int(approx_total_size / max_shard_size ) ) A : List[Any] = self.df.repartition(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark A : Dict = ParquetWriter if file_format == '''parquet''' else ArrowWriter A : Optional[Any] = os.path.join(self._working_dir , os.path.basename(__UpperCAmelCase ) ) if self._working_dir else fpath A : int = file_format == '''parquet''' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. A : Any = self.config.features A : Any = self._writer_batch_size A : int = self._fs.storage_options def write_arrow(__UpperCAmelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. A : List[Any] = pyspark.TaskContext().taskAttemptId() A : Union[str, Any] = next(__UpperCAmelCase , __UpperCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) A : Optional[int] = 0 A : Optional[int] = writer_class( features=__UpperCAmelCase , path=working_fpath.replace('''SSSSS''' , f'{shard_id:05d}' ).replace('''TTTTT''' , f'{task_id:05d}' ) , writer_batch_size=__UpperCAmelCase , storage_options=__UpperCAmelCase , embed_local_files=__UpperCAmelCase , ) A : Tuple = pa.Table.from_batches([first_batch] ) writer.write_table(__UpperCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: A , A : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) shard_id += 1 A : List[str] = writer_class( features=writer._features , path=working_fpath.replace('''SSSSS''' , f'{shard_id:05d}' ).replace('''TTTTT''' , f'{task_id:05d}' ) , writer_batch_size=__UpperCAmelCase , storage_options=__UpperCAmelCase , embed_local_files=__UpperCAmelCase , ) A : str = pa.Table.from_batches([batch] ) writer.write_table(__UpperCAmelCase ) if writer._num_bytes > 0: A , A : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['''task_id''', '''num_examples''', '''num_bytes'''] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__UpperCAmelCase ) ): A : Union[str, Any] = os.path.join(os.path.dirname(__UpperCAmelCase ) , os.path.basename(__UpperCAmelCase ) ) shutil.move(__UpperCAmelCase , __UpperCAmelCase ) A : Union[str, Any] = ( self.df.mapInArrow(__UpperCAmelCase , '''task_id: long, num_examples: long, num_bytes: long''' ) .groupBy('''task_id''' ) .agg( pyspark.sql.functions.sum('''num_examples''' ).alias('''total_num_examples''' ) , pyspark.sql.functions.sum('''num_bytes''' ).alias('''total_num_bytes''' ) , pyspark.sql.functions.count('''num_bytes''' ).alias('''num_shards''' ) , pyspark.sql.functions.collect_list('''num_examples''' ).alias('''shard_lengths''' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = "arrow" , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]: self._validate_cache_dir() A : int = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__UpperCAmelCase ) A : Any = not is_remote_filesystem(self._fs ) A : Union[str, Any] = os.path.join if is_local else posixpath.join A : Any = '''-TTTTT-SSSSS-of-NNNNN''' A : Any = f'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' A : List[Any] = path_join(self._output_dir , __UpperCAmelCase ) A : Union[str, Any] = 0 A : Any = 0 A : Tuple = 0 A : Union[str, Any] = [] A : List[str] = [] for task_id, content in self._prepare_split_single(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): ( ( A ) , ( A ) , ( A ) , ( A ) , ) : List[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__UpperCAmelCase ) A : List[str] = total_num_examples A : List[str] = total_num_bytes # should rename everything at the end logger.debug(f'Renaming {total_shards} shards.' ) if total_shards > 1: A : Tuple = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. A : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): rename( __UpperCAmelCase , fpath.replace('''SSSSS''' , f'{shard_id:05d}' ).replace('''TTTTT''' , f'{task_id:05d}' ) , fpath.replace('''TTTTT-SSSSS''' , f'{global_shard_id:05d}' ).replace('''NNNNN''' , f'{total_shards:05d}' ) , ) A : Tuple = [] A : Optional[int] = 0 for i in range(len(__UpperCAmelCase ) ): A , A : Tuple = task_id_and_num_shards[i] for shard_id in range(__UpperCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__UpperCAmelCase , len(__UpperCAmelCase ) ).map(lambda __UpperCAmelCase : _rename_shard(*__UpperCAmelCase ) ).collect() else: # don't use any pattern A : int = 0 A : Tuple = task_id_and_num_shards[0][0] self._rename( fpath.replace('''SSSSS''' , f'{shard_id:05d}' ).replace('''TTTTT''' , f'{task_id:05d}' ) , fpath.replace(__UpperCAmelCase , '''''' ) , ) def snake_case ( self , __UpperCAmelCase , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
542
1
import os import re import shutil import sys import tempfile import unittest import black _A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _A = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class _lowerCAmelCase ( unittest.TestCase ): def __a ( self ) -> Any: lowerCAmelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) lowerCAmelCase_ = self.transformer_dir shutil.copy( os.path.join(_UpperCamelCase , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = "src/transformers" shutil.rmtree(self.transformer_dir ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Optional[int]: lowerCAmelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase_ = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase_ = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) lowerCAmelCase_ = os.path.join(self.transformer_dir , "new_code.py" ) with open(_UpperCamelCase , "w" , newline="\n" ) as f: f.write(_UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCamelCase ) with open(_UpperCamelCase , "r" ) as f: self.assertTrue(f.read() , _UpperCamelCase ) def __a ( self ) -> Any: lowerCAmelCase_ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> Any: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , _UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , _UpperCamelCase ) , ) # Copy consistency with a really long name lowerCAmelCase_ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub("Bert" , _UpperCamelCase , _UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , _UpperCamelCase , overwrite_result=re.sub("Bert" , "TestModel" , _UpperCamelCase ) , ) def __a ( self ) -> Any: lowerCAmelCase_ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) lowerCAmelCase_ , lowerCAmelCase_ = check_copies.convert_to_localized_md( _UpperCamelCase , _UpperCamelCase , localized_readme["format_model_list"] ) self.assertFalse(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ = check_copies.convert_to_localized_md( _UpperCamelCase , _UpperCamelCase , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_UpperCamelCase ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase_ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) lowerCAmelCase_ , lowerCAmelCase_ = check_copies.convert_to_localized_md( _UpperCamelCase , _UpperCamelCase , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(_UpperCamelCase , _UpperCamelCase )
717
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): _lowercase =StableUnCLIPPipeline _lowercase =TEXT_TO_IMAGE_PARAMS _lowercase =TEXT_TO_IMAGE_BATCH_PARAMS _lowercase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowercase =TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _lowercase =False def __a ( self ) -> Dict: lowerCAmelCase_ = 32 lowerCAmelCase_ = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCamelCase , projection_dim=_UpperCamelCase , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) lowerCAmelCase_ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_UpperCamelCase , num_layers=1 , ) torch.manual_seed(0 ) lowerCAmelCase_ = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_000 , clip_sample=_UpperCamelCase , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase_ = StableUnCLIPImageNormalizer(embedding_dim=_UpperCamelCase ) lowerCAmelCase_ = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_UpperCamelCase , layers_per_block=1 , upcast_attention=_UpperCamelCase , use_linear_projection=_UpperCamelCase , ) torch.manual_seed(0 ) lowerCAmelCase_ = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=_UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL() lowerCAmelCase_ = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def __a ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Tuple: if str(_UpperCamelCase ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_UpperCamelCase ) else: lowerCAmelCase_ = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) lowerCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def __a ( self ) -> List[Any]: lowerCAmelCase_ = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=_UpperCamelCase ) def __a ( self ) -> str: lowerCAmelCase_ = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=_UpperCamelCase ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def __a ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Optional[int]: lowerCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) lowerCAmelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase_ = pipe("anime turle" , generator=_UpperCamelCase , output_type="np" ) lowerCAmelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase ) def __a ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) lowerCAmelCase_ = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase_ = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
279
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: return round(float(moles / volume ) * nfactor ) def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: return round(float((moles * 0.0821 * temperature) / (volume) ) ) def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
69
"""simple docstring""" from __future__ import annotations from random import random from typing import Generic, TypeVar __lowerCAmelCase : int = TypeVar('''KT''') __lowerCAmelCase : Union[str, Any] = TypeVar('''VT''') class _lowerCAmelCase ( Generic[KT, VT] ): """simple docstring""" def __init__( self , _lowercase = "root" , _lowercase = None ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Tuple = key snake_case_ : Tuple = value snake_case_ : list[Node[KT, VT]] = [] def __repr__( self ) -> str: '''simple docstring''' return f'Node({self.key}: {self.value})' @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return len(self.forward ) class _lowerCAmelCase ( Generic[KT, VT] ): """simple docstring""" def __init__( self , _lowercase = 0.5 , _lowercase = 1_6 ) -> int: '''simple docstring''' snake_case_ : Node[KT, VT] = Node[KT, VT]() snake_case_ : Union[str, Any] = 0 snake_case_ : Optional[int] = p snake_case_ : Any = max_level def __str__( self ) -> str: '''simple docstring''' snake_case_ : str = list(self ) if len(_lowercase ) == 0: return f'SkipList(level={self.level})' snake_case_ : List[Any] = max((len(str(_lowercase ) ) for item in items) , default=4 ) snake_case_ : str = max(_lowercase , 4 ) + 4 snake_case_ : Union[str, Any] = self.head snake_case_ : Dict = [] snake_case_ : List[str] = node.forward.copy() lines.append(f'[{node.key}]'.ljust(_lowercase , """-""" ) + """* """ * len(_lowercase ) ) lines.append(""" """ * label_size + """| """ * len(_lowercase ) ) while len(node.forward ) != 0: snake_case_ : Optional[Any] = node.forward[0] lines.append( f'[{node.key}]'.ljust(_lowercase , """-""" ) + """ """.join(str(n.key ) if n.key == node.key else """|""" for n in forwards ) ) lines.append(""" """ * label_size + """| """ * len(_lowercase ) ) snake_case_ : List[str] = node.forward lines.append("""None""".ljust(_lowercase ) + """* """ * len(_lowercase ) ) return f'SkipList(level={self.level})\n' + "\n".join(_lowercase ) def __iter__( self ) -> Optional[int]: '''simple docstring''' snake_case_ : Dict = self.head while len(node.forward ) != 0: yield node.forward[0].key snake_case_ : Dict = node.forward[0] def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Optional[int] = 1 while random() < self.p and level < self.max_level: level += 1 return level def UpperCAmelCase__ ( self , _lowercase ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: '''simple docstring''' snake_case_ : Optional[Any] = [] snake_case_ : int = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: snake_case_ : List[Any] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(_lowercase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def UpperCAmelCase__ ( self , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ , snake_case_ : Dict = self._locate_node(_lowercase ) if node is not None: for i, update_node in enumerate(_lowercase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: snake_case_ : List[str] = node.forward[i] else: snake_case_ : Tuple = update_node.forward[:i] def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> str: '''simple docstring''' snake_case_ , snake_case_ : Dict = self._locate_node(_lowercase ) if node is not None: snake_case_ : List[Any] = value else: snake_case_ : Optional[int] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , _lowercase ): update_vector.append(self.head ) snake_case_ : Any = level snake_case_ : Optional[int] = Node(_lowercase , _lowercase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(_lowercase ) else: snake_case_ : Optional[Any] = new_node def UpperCAmelCase__ ( self , _lowercase ) -> VT | None: '''simple docstring''' snake_case_ , snake_case_ : Dict = self._locate_node(_lowercase ) if node is not None: return node.value return None def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : List[str] = SkipList() skip_list.insert("""Key1""" , 3 ) skip_list.insert("""Key2""" , 1_2 ) skip_list.insert("""Key3""" , 4_1 ) skip_list.insert("""Key4""" , -1_9 ) snake_case_ : Optional[int] = skip_list.head snake_case_ : List[Any] = {} while node.level != 0: snake_case_ : List[str] = node.forward[0] snake_case_ : Union[str, Any] = node.value assert len(__UpperCamelCase ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[int] = SkipList() skip_list.insert("""Key1""" , 1_0 ) skip_list.insert("""Key1""" , 1_2 ) skip_list.insert("""Key5""" , 7 ) skip_list.insert("""Key7""" , 1_0 ) skip_list.insert("""Key10""" , 5 ) skip_list.insert("""Key7""" , 7 ) skip_list.insert("""Key5""" , 5 ) skip_list.insert("""Key10""" , 1_0 ) snake_case_ : str = skip_list.head snake_case_ : str = {} while node.level != 0: snake_case_ : Optional[Any] = node.forward[0] snake_case_ : int = node.value if len(__UpperCamelCase ) != 4: print() assert len(__UpperCamelCase ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : str = SkipList() assert skip_list.find("""Some key""" ) is None def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[Any] = SkipList() skip_list.insert("""Key2""" , 2_0 ) assert skip_list.find("""Key2""" ) == 2_0 skip_list.insert("""Some Key""" , 1_0 ) skip_list.insert("""Key2""" , 8 ) skip_list.insert("""V""" , 1_3 ) assert skip_list.find("""Y""" ) is None assert skip_list.find("""Key2""" ) == 8 assert skip_list.find("""Some Key""" ) == 1_0 assert skip_list.find("""V""" ) == 1_3 def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Any = SkipList() skip_list.delete("""Some key""" ) assert len(skip_list.head.forward ) == 0 def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = SkipList() skip_list.insert("""Key1""" , 1_2 ) skip_list.insert("""V""" , 1_3 ) skip_list.insert("""X""" , 1_4 ) skip_list.insert("""Key2""" , 1_5 ) skip_list.delete("""V""" ) skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""Key2""" ) is None def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Optional[int] = SkipList() skip_list.insert("""Key1""" , 1_2 ) skip_list.insert("""V""" , 1_3 ) skip_list.insert("""X""" , 1_4 ) skip_list.insert("""Key2""" , 1_5 ) skip_list.delete("""V""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) == 1_4 assert skip_list.find("""Key1""" ) == 1_2 assert skip_list.find("""Key2""" ) == 1_5 skip_list.delete("""X""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) == 1_2 assert skip_list.find("""Key2""" ) == 1_5 skip_list.delete("""Key1""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) == 1_5 skip_list.delete("""Key2""" ) assert skip_list.find("""V""" ) is None assert skip_list.find("""X""" ) is None assert skip_list.find("""Key1""" ) is None assert skip_list.find("""Key2""" ) is None def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Union[str, Any] = SkipList() skip_list.insert("""Key1""" , 1_2 ) skip_list.insert("""V""" , 1_3 ) skip_list.insert("""X""" , 1_4_2 ) skip_list.insert("""Key2""" , 1_5 ) skip_list.delete("""X""" ) def traverse_keys(__UpperCamelCase : str ): yield node.key for forward_node in node.forward: yield from traverse_keys(__UpperCamelCase ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __lowerCAmelCase ( ): '''simple docstring''' def is_sorted(__UpperCamelCase : List[Any] ): return all(next_item >= item for item, next_item in zip(__UpperCamelCase , lst[1:] ) ) snake_case_ : str = SkipList() for i in range(1_0 ): skip_list.insert(__UpperCamelCase , __UpperCamelCase ) assert is_sorted(list(__UpperCamelCase ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(__UpperCamelCase ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(__UpperCamelCase ) ) def __lowerCAmelCase ( ): '''simple docstring''' for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Dict = SkipList() skip_list.insert(2 , """2""" ) skip_list.insert(4 , """4""" ) skip_list.insert(6 , """4""" ) skip_list.insert(4 , """5""" ) skip_list.insert(8 , """4""" ) skip_list.insert(9 , """4""" ) skip_list.delete(4 ) print(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
58
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCamelCase (__lowerCAmelCase , unittest.TestCase ): _snake_case = KandinskyVaaControlnetImgaImgPipeline _snake_case = ["image_embeds", "negative_image_embeds", "image", "hint"] _snake_case = ["image_embeds", "negative_image_embeds", "image", "hint"] _snake_case = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] _snake_case = False @property def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return 3_2 @property def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" return 3_2 @property def __UpperCAmelCase ( self : Dict ): """simple docstring""" return self.time_input_dim @property def __UpperCAmelCase ( self : Dict ): """simple docstring""" return self.time_input_dim * 4 @property def __UpperCAmelCase ( self : Dict ): """simple docstring""" return 1_0_0 @property def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) _lowercase : Optional[Any] = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowercase : List[Any] = UNetaDConditionModel(**_UpperCamelCase ) return model @property def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" torch.manual_seed(0 ) _lowercase : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCAmelCase ( self : str ): """simple docstring""" _lowercase : Union[str, Any] = self.dummy_unet _lowercase : Dict = self.dummy_movq _lowercase : List[str] = { """num_train_timesteps""": 1_0_0_0, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowercase : Dict = DDIMScheduler(**_UpperCamelCase ) _lowercase : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any=0 ): """simple docstring""" _lowercase : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _lowercase : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCamelCase ) # create init_image _lowercase : int = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) _lowercase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase : int = Image.fromarray(np.uinta(_UpperCamelCase ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint _lowercase : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(_UpperCamelCase ) ).to(_UpperCamelCase ) if str(_UpperCamelCase ).startswith('mps' ): _lowercase : Any = torch.manual_seed(_UpperCamelCase ) else: _lowercase : Any = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) _lowercase : List[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 6_4, """width""": 6_4, """num_inference_steps""": 1_0, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _lowercase : str = """cpu""" _lowercase : Tuple = self.get_dummy_components() _lowercase : Union[str, Any] = self.pipeline_class(**_UpperCamelCase ) _lowercase : str = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : List[str] = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) _lowercase : Any = output.images _lowercase : Dict = pipe( **self.get_dummy_inputs(_UpperCamelCase ) , return_dict=_UpperCamelCase , )[0] _lowercase : Optional[int] = image[0, -3:, -3:, -1] _lowercase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _lowercase : str = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowerCamelCase (unittest.TestCase ): def __UpperCAmelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _lowercase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) _lowercase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowercase : Optional[int] = init_image.resize((5_1_2, 5_1_2) ) _lowercase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) _lowercase : int = torch.from_numpy(np.array(_UpperCamelCase ) ).float() / 2_5_5.0 _lowercase : Dict = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _lowercase : Tuple = """A robot, 4k photo""" _lowercase : Optional[int] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCamelCase ) _lowercase : str = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) _lowercase : List[str] = pipeline.to(_UpperCamelCase ) pipeline.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : str = torch.Generator(device='cpu' ).manual_seed(0 ) _lowercase : Union[str, Any] = pipe_prior( _UpperCamelCase , image=_UpperCamelCase , strength=0.85 , generator=_UpperCamelCase , negative_prompt='' , ).to_tuple() _lowercase : Optional[Any] = pipeline( image=_UpperCamelCase , image_embeds=_UpperCamelCase , negative_image_embeds=_UpperCamelCase , hint=_UpperCamelCase , generator=_UpperCamelCase , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type='np' , ) _lowercase : List[Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(_UpperCamelCase , _UpperCamelCase )
715
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" _lowercase : Optional[int] = int(__UpperCAmelCase ) _lowercase , _lowercase , _lowercase : Union[str, Any] = t // 3_600, (t // 60) % 60, t % 60 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=300 ): """simple docstring""" return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" _lowercase : List[Any] = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _lowercase : Optional[Any] = F'''{elt:.6f}''' if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else str(__UpperCAmelCase ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _lowerCamelCase : _snake_case = 5 _snake_case = 0.2 def __init__( self : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional["NotebookTrainingTracker"] = None , lowerCamelCase_ : int = 3_0_0 , ): """simple docstring""" _lowercase : int = total _lowercase : Dict = '' if prefix is None else prefix _lowercase : List[Any] = leave _lowercase : Dict = parent _lowercase : str = width _lowercase : Any = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = None def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : bool = False , lowerCamelCase_ : str = None ): """simple docstring""" _lowercase : Dict = value if comment is not None: _lowercase : List[str] = comment if self.last_value is None: _lowercase : List[Any] = time.time() _lowercase : str = value _lowercase : Any = None _lowercase : List[Any] = self.warmup _lowercase : Union[str, Any] = 1 self.update_bar(lowerCamelCase_ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _lowercase : Tuple = time.time() _lowercase : List[str] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _lowercase : List[Any] = self.elapsed_time / (value - self.start_value) else: _lowercase : List[Any] = None if value >= self.total: _lowercase : Optional[Any] = self.total _lowercase : str = None if not self.leave: self.close() elif self.average_time_per_item is not None: _lowercase : int = self.average_time_per_item * (self.total - value) self.update_bar(lowerCamelCase_ ) _lowercase : Optional[int] = value _lowercase : Dict = current_time if self.average_time_per_item is None: _lowercase : Union[str, Any] = 1 else: _lowercase : Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : int , lowerCamelCase_ : Optional[Any]=None ): """simple docstring""" _lowercase : str = ' ' * (len(str(self.total ) ) - len(str(lowerCamelCase_ ) )) + str(lowerCamelCase_ ) if self.elapsed_time is None: _lowercase : Dict = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: _lowercase : Optional[int] = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: _lowercase : int = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def __UpperCAmelCase ( self : int ): """simple docstring""" _lowercase : int = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _lowercase : List[str] = disp.display(disp.HTML(self.html_code ) , display_id=lowerCamelCase_ ) else: self.output.update(disp.HTML(self.html_code ) ) def __UpperCAmelCase ( self : Any ): """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class _lowerCamelCase (__lowerCamelCase ): def __init__( self : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple=None ): """simple docstring""" super().__init__(lowerCamelCase_ ) _lowercase : Tuple = None if column_names is None else [column_names] _lowercase : Optional[int] = None def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _lowercase : Union[str, Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _lowercase : Dict = disp.display(disp.HTML(self.html_code ) , display_id=lowerCamelCase_ ) else: self.output.update(disp.HTML(self.html_code ) ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[int] ): """simple docstring""" if self.inner_table is None: _lowercase : Optional[int] = [list(values.keys() ), list(values.values() )] else: _lowercase : str = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCamelCase_ ) _lowercase : List[Any] = columns self.inner_table.append([values[c] for c in columns] ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : int=3_0_0 ): """simple docstring""" _lowercase : List[str] = NotebookProgressBar(lowerCamelCase_ , prefix=lowerCamelCase_ , parent=self , width=lowerCamelCase_ ) return self.child_bar def __UpperCAmelCase ( self : Any ): """simple docstring""" _lowercase : Any = None self.display() class _lowerCamelCase (__lowerCamelCase ): def __init__( self : Optional[Any] ): """simple docstring""" _lowercase : int = None _lowercase : Any = None _lowercase : Optional[int] = False def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Union[str, Any] ): """simple docstring""" _lowercase : Any = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' _lowercase : Dict = 0 _lowercase : Optional[Any] = 0 _lowercase : Union[str, Any] = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) _lowercase : Tuple = NotebookTrainingTracker(state.max_steps , lowerCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Dict ): """simple docstring""" _lowercase : Optional[Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) _lowercase : Tuple = False def __UpperCAmelCase ( self : int , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any]=None , **lowerCamelCase_ : str ): """simple docstring""" if not has_length(lowerCamelCase_ ): return if self.prediction_bar is None: if self.training_tracker is not None: _lowercase : Tuple = self.training_tracker.add_child(len(lowerCamelCase_ ) ) else: _lowercase : Optional[Any] = NotebookProgressBar(len(lowerCamelCase_ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , **lowerCamelCase_ : List[str] ): """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() _lowercase : Union[str, Any] = None def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : int=None , **lowerCamelCase_ : List[Any] ): """simple docstring""" if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _lowercase : Any = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy _lowercase : Any = state.global_step self.training_tracker.write_line(lowerCamelCase_ ) def __UpperCAmelCase ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : List[str] , lowerCamelCase_ : str=None , **lowerCamelCase_ : List[Any] ): """simple docstring""" if self.training_tracker is not None: _lowercase : List[str] = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: _lowercase : Union[str, Any] = log['loss'] break if self.first_column == "Epoch": _lowercase : Optional[int] = int(state.epoch ) else: _lowercase : Optional[Any] = state.global_step _lowercase : int = 'eval' for k in metrics: if k.endswith('_loss' ): _lowercase : Tuple = re.sub(r'\_loss$' , '' , lowerCamelCase_ ) _lowercase : Optional[Any] = metrics.pop('total_flos' , lowerCamelCase_ ) _lowercase : List[str] = metrics.pop('epoch' , lowerCamelCase_ ) _lowercase : List[Any] = metrics.pop(F'''{metric_key_prefix}_runtime''' , lowerCamelCase_ ) _lowercase : Tuple = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , lowerCamelCase_ ) _lowercase : Any = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , lowerCamelCase_ ) _lowercase : Union[str, Any] = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , lowerCamelCase_ ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': _lowercase : Optional[Any] = v else: _lowercase : Tuple = k.split('_' ) _lowercase : List[Any] = ' '.join([part.capitalize() for part in splits[1:]] ) _lowercase : List[Any] = v self.training_tracker.write_line(lowerCamelCase_ ) self.training_tracker.remove_child() _lowercase : Any = None # Evaluation takes a long time so we should force the next update. _lowercase : Dict = True def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Any ): """simple docstring""" self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=lowerCamelCase_ ) _lowercase : List[Any] = None
283
0
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> list[int]: """simple docstring""" A : Optional[int] = int(_lowerCAmelCase ) # Initialize Result A : int = [] # Traverse through all denomination for denomination in reversed(_lowerCAmelCase ): # Find denominations while int(_lowerCAmelCase ) >= int(_lowerCAmelCase ): total_value -= int(_lowerCAmelCase ) answer.append(_lowerCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": SCREAMING_SNAKE_CASE_:List[Any] = [] SCREAMING_SNAKE_CASE_:Dict = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): SCREAMING_SNAKE_CASE_:Optional[int] = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) SCREAMING_SNAKE_CASE_:Optional[Any] = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter SCREAMING_SNAKE_CASE_:Tuple = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] SCREAMING_SNAKE_CASE_:Optional[Any] = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F"""Following is minimal change for {value}: """) SCREAMING_SNAKE_CASE_:str = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
662
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_:int = { """configuration_blenderbot""": [ """BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotConfig""", """BlenderbotOnnxConfig""", ], """tokenization_blenderbot""": ["""BlenderbotTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Union[str, Any] = ["""BlenderbotTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Optional[int] = [ """BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotForCausalLM""", """BlenderbotForConditionalGeneration""", """BlenderbotModel""", """BlenderbotPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Union[str, Any] = [ """TFBlenderbotForConditionalGeneration""", """TFBlenderbotModel""", """TFBlenderbotPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Any = [ """FlaxBlenderbotForConditionalGeneration""", """FlaxBlenderbotModel""", """FlaxBlenderbotPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
662
1
"""simple docstring""" __UpperCAmelCase = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def _snake_case ( lowercase__ : int ) -> int: '''simple docstring''' lowerCAmelCase_ :str = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __UpperCAmelCase = [None] * 10_00_00_00 __UpperCAmelCase = True __UpperCAmelCase = False def _snake_case ( lowercase__ : int ) -> bool: '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowerCAmelCase_ :Optional[int] = chain(next_number(lowercase__ ) ) lowerCAmelCase_ :Tuple = number_chain while number < 1_0_0_0_0_0_0_0: lowerCAmelCase_ :List[Any] = number_chain number *= 1_0 return number_chain def _snake_case ( lowercase__ : int = 1_0_0_0_0_0_0_0 ) -> int: '''simple docstring''' for i in range(1 , lowercase__ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution() = }""")
256
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): UpperCAmelCase_ :Dict = AudioLDMPipeline UpperCAmelCase_ :Optional[int] = TEXT_TO_AUDIO_PARAMS UpperCAmelCase_ :Optional[Any] = TEXT_TO_AUDIO_BATCH_PARAMS UpperCAmelCase_ :Union[str, Any] = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def __lowerCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) lowerCAmelCase_ :List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__A , ) lowerCAmelCase_ :Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , ) torch.manual_seed(0 ) lowerCAmelCase_ :int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ :int = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) lowerCAmelCase_ :int = ClapTextModelWithProjection(__A ) lowerCAmelCase_ :Tuple = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) lowerCAmelCase_ :Optional[Any] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__A , ) lowerCAmelCase_ :List[str] = SpeechTaHifiGan(__A ) lowerCAmelCase_ :List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def __lowerCAmelCase ( self , __A , __A=0 ) -> List[Any]: if str(__A ).startswith("""mps""" ): lowerCAmelCase_ :int = torch.manual_seed(__A ) else: lowerCAmelCase_ :int = torch.Generator(device=__A ).manual_seed(__A ) lowerCAmelCase_ :List[str] = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ :Optional[Any] = self.get_dummy_components() lowerCAmelCase_ :Tuple = AudioLDMPipeline(**__A ) lowerCAmelCase_ :int = audioldm_pipe.to(__A ) audioldm_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :int = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Any = audioldm_pipe(**__A ) lowerCAmelCase_ :Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(__A ) == 256 lowerCAmelCase_ :Optional[int] = audio[:10] lowerCAmelCase_ :str = np.array( [-0.0_0_5_0, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_3, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_3] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Any = self.get_dummy_components() lowerCAmelCase_ :str = AudioLDMPipeline(**__A ) lowerCAmelCase_ :Optional[Any] = audioldm_pipe.to(__A ) lowerCAmelCase_ :List[Any] = audioldm_pipe.to(__A ) audioldm_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Any = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Tuple = 3 * [inputs["""prompt"""]] # forward lowerCAmelCase_ :Dict = audioldm_pipe(**__A ) lowerCAmelCase_ :Optional[Any] = output.audios[0] lowerCAmelCase_ :Any = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Optional[int] = 3 * [inputs.pop("""prompt""" )] lowerCAmelCase_ :Union[str, Any] = audioldm_pipe.tokenizer( __A , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__A , return_tensors="""pt""" , ) lowerCAmelCase_ :str = text_inputs["""input_ids"""].to(__A ) lowerCAmelCase_ :List[str] = audioldm_pipe.text_encoder( __A , ) lowerCAmelCase_ :Tuple = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCAmelCase_ :Any = F.normalize(__A , dim=-1 ) lowerCAmelCase_ :Tuple = prompt_embeds # forward lowerCAmelCase_ :Tuple = audioldm_pipe(**__A ) lowerCAmelCase_ :int = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Optional[Any] = self.get_dummy_components() lowerCAmelCase_ :List[Any] = AudioLDMPipeline(**__A ) lowerCAmelCase_ :str = audioldm_pipe.to(__A ) lowerCAmelCase_ :Union[str, Any] = audioldm_pipe.to(__A ) audioldm_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Optional[Any] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :List[Any] = 3 * ["""this is a negative prompt"""] lowerCAmelCase_ :str = negative_prompt lowerCAmelCase_ :Optional[Any] = 3 * [inputs["""prompt"""]] # forward lowerCAmelCase_ :Dict = audioldm_pipe(**__A ) lowerCAmelCase_ :Tuple = output.audios[0] lowerCAmelCase_ :int = self.get_dummy_inputs(__A ) lowerCAmelCase_ :List[str] = 3 * [inputs.pop("""prompt""" )] lowerCAmelCase_ :Any = [] for p in [prompt, negative_prompt]: lowerCAmelCase_ :Any = audioldm_pipe.tokenizer( __A , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__A , return_tensors="""pt""" , ) lowerCAmelCase_ :Tuple = text_inputs["""input_ids"""].to(__A ) lowerCAmelCase_ :Optional[Any] = audioldm_pipe.text_encoder( __A , ) lowerCAmelCase_ :Dict = text_embeds.text_embeds # additional L_2 normalization over each hidden-state lowerCAmelCase_ :str = F.normalize(__A , dim=-1 ) embeds.append(__A ) lowerCAmelCase_ , lowerCAmelCase_ :Optional[int] = embeds # forward lowerCAmelCase_ :Tuple = audioldm_pipe(**__A ) lowerCAmelCase_ :int = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :int = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ :str = self.get_dummy_components() lowerCAmelCase_ :Dict = PNDMScheduler(skip_prk_steps=__A ) lowerCAmelCase_ :Dict = AudioLDMPipeline(**__A ) lowerCAmelCase_ :int = audioldm_pipe.to(__A ) audioldm_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :List[str] = self.get_dummy_inputs(__A ) lowerCAmelCase_ :Union[str, Any] = """egg cracking""" lowerCAmelCase_ :Tuple = audioldm_pipe(**__A , negative_prompt=__A ) lowerCAmelCase_ :Dict = output.audios[0] assert audio.ndim == 1 assert len(__A ) == 256 lowerCAmelCase_ :List[Any] = audio[:10] lowerCAmelCase_ :Tuple = np.array( [-0.0_0_5_1, 0.0_0_5_0, -0.0_0_6_0, 0.0_0_3_4, -0.0_0_2_6, 0.0_0_3_3, -0.0_0_2_7, 0.0_0_3_3, -0.0_0_2_8, 0.0_0_3_2] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :str = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ :Optional[int] = self.get_dummy_components() lowerCAmelCase_ :List[Any] = PNDMScheduler(skip_prk_steps=__A ) lowerCAmelCase_ :Union[str, Any] = AudioLDMPipeline(**__A ) lowerCAmelCase_ :Optional[Any] = audioldm_pipe.to(__A ) audioldm_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Tuple = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) lowerCAmelCase_ :int = audioldm_pipe(__A , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts lowerCAmelCase_ :List[str] = 2 lowerCAmelCase_ :Optional[int] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt lowerCAmelCase_ :List[Any] = 2 lowerCAmelCase_ :Dict = audioldm_pipe(__A , num_inference_steps=2 , num_waveforms_per_prompt=__A ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts lowerCAmelCase_ :str = 2 lowerCAmelCase_ :str = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__A ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ :List[str] = self.get_dummy_components() lowerCAmelCase_ :List[Any] = AudioLDMPipeline(**__A ) lowerCAmelCase_ :Union[str, Any] = audioldm_pipe.to(__A ) audioldm_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Optional[Any] = audioldm_pipe.vocoder.config.sampling_rate lowerCAmelCase_ :int = self.get_dummy_inputs(__A ) lowerCAmelCase_ :str = audioldm_pipe(audio_length_in_s=0.0_1_6 , **__A ) lowerCAmelCase_ :Dict = output.audios[0] assert audio.ndim == 1 assert len(__A ) / vocoder_sampling_rate == 0.0_1_6 lowerCAmelCase_ :List[str] = audioldm_pipe(audio_length_in_s=0.0_3_2 , **__A ) lowerCAmelCase_ :Any = output.audios[0] assert audio.ndim == 1 assert len(__A ) / vocoder_sampling_rate == 0.0_3_2 def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Any = self.get_dummy_components() lowerCAmelCase_ :List[str] = AudioLDMPipeline(**__A ) lowerCAmelCase_ :Dict = audioldm_pipe.to(__A ) audioldm_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Tuple = ["""hey"""] lowerCAmelCase_ :Any = audioldm_pipe(__A , num_inference_steps=1 ) lowerCAmelCase_ :List[Any] = output.audios.shape assert audio_shape == (1, 256) lowerCAmelCase_ :Optional[Any] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 lowerCAmelCase_ :Optional[int] = SpeechTaHifiGan(__A ).to(__A ) lowerCAmelCase_ :Optional[int] = audioldm_pipe(__A , num_inference_steps=1 ) lowerCAmelCase_ :str = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def __lowerCAmelCase ( self ) -> List[Any]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__A ) def __lowerCAmelCase ( self ) -> Optional[int]: self._test_inference_batch_single_identical(test_mean_pixel_difference=__A ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __lowerCAmelCase ( self ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__A ) @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self , __A , __A="cpu" , __A=torch.floataa , __A=0 ) -> str: lowerCAmelCase_ :Tuple = torch.Generator(device=__A ).manual_seed(__A ) lowerCAmelCase_ :Tuple = np.random.RandomState(__A ).standard_normal((1, 8, 128, 16) ) lowerCAmelCase_ :Optional[Any] = torch.from_numpy(__A ).to(device=__A , dtype=__A ) lowerCAmelCase_ :Any = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :Optional[int] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) lowerCAmelCase_ :Optional[Any] = audioldm_pipe.to(__A ) audioldm_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Tuple = self.get_inputs(__A ) lowerCAmelCase_ :Any = 25 lowerCAmelCase_ :Optional[Any] = audioldm_pipe(**__A ).audios[0] assert audio.ndim == 1 assert len(__A ) == 8_1920 lowerCAmelCase_ :List[Any] = audio[7_7230:7_7240] lowerCAmelCase_ :List[str] = np.array( [-0.4_8_8_4, -0.4_6_0_7, 0.0_0_2_3, 0.5_0_0_7, 0.5_8_9_6, 0.5_1_5_1, 0.3_8_1_3, -0.0_2_0_8, -0.3_6_8_7, -0.4_3_1_5] ) lowerCAmelCase_ :Dict = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :List[Any] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) lowerCAmelCase_ :List[Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) lowerCAmelCase_ :Optional[Any] = audioldm_pipe.to(__A ) audioldm_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Any = self.get_inputs(__A ) lowerCAmelCase_ :Union[str, Any] = audioldm_pipe(**__A ).audios[0] assert audio.ndim == 1 assert len(__A ) == 8_1920 lowerCAmelCase_ :List[str] = audio[2_7780:2_7790] lowerCAmelCase_ :str = np.array([-0.2_1_3_1, -0.0_8_7_3, -0.0_1_2_4, -0.0_1_8_9, 0.0_5_6_9, 0.1_3_7_3, 0.1_8_8_3, 0.2_8_8_6, 0.3_2_9_7, 0.2_2_1_2] ) lowerCAmelCase_ :int = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
256
1
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ConsistencyModelPipeline __UpperCamelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def __lowerCAmelCase ( self : Dict ) -> str: '''simple docstring''' a__ : Union[str, Any] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def __lowerCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' a__ : Any = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def __lowerCAmelCase ( self : Any , A__ : str=False ) -> Optional[Any]: '''simple docstring''' if class_cond: a__ : List[str] = self.dummy_cond_unet else: a__ : Any = self.dummy_uncond_unet # Default to CM multistep sampler a__ : int = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=8_0.0 , ) a__ : Dict = { '''unet''': unet, '''scheduler''': scheduler, } return components def __lowerCAmelCase ( self : List[Any] , A__ : Tuple , A__ : Dict=0 ) -> List[Any]: '''simple docstring''' if str(SCREAMING_SNAKE_CASE__ ).startswith('''mps''' ): a__ : Optional[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: a__ : Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) a__ : Optional[Any] = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [2_2, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' a__ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator a__ : Dict = self.get_dummy_components() a__ : Dict = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) a__ : List[str] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a__ : Optional[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) a__ : Optional[Any] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 3_2, 3_2, 3) a__ : Tuple = image[0, -3:, -3:, -1] a__ : List[Any] = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCAmelCase ( self : Dict ) -> List[Any]: '''simple docstring''' a__ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator a__ : Optional[Any] = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE__ ) a__ : Tuple = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) a__ : Any = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a__ : Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) a__ : int = 0 a__ : Optional[int] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 3_2, 3_2, 3) a__ : Optional[Any] = image[0, -3:, -3:, -1] a__ : Tuple = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCAmelCase ( self : int ) -> Tuple: '''simple docstring''' a__ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator a__ : List[str] = self.get_dummy_components() a__ : Any = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) a__ : List[str] = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a__ : str = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) a__ : Union[str, Any] = 1 a__ : Union[str, Any] = None a__ : str = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 3_2, 3_2, 3) a__ : Tuple = image[0, -3:, -3:, -1] a__ : Dict = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCAmelCase ( self : List[Any] ) -> Any: '''simple docstring''' a__ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator a__ : Optional[Any] = self.get_dummy_components(class_cond=SCREAMING_SNAKE_CASE__ ) a__ : List[Any] = ConsistencyModelPipeline(**SCREAMING_SNAKE_CASE__ ) a__ : str = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a__ : List[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) a__ : Optional[Any] = 1 a__ : Optional[int] = None a__ : Optional[Any] = 0 a__ : Optional[int] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 3_2, 3_2, 3) a__ : List[str] = image[0, -3:, -3:, -1] a__ : Any = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : List[str] , A__ : Optional[Any]=0 , A__ : Tuple=False , A__ : Any="cpu" , A__ : Any=torch.floataa , A__ : List[Any]=(1, 3, 6_4, 6_4) ) -> Union[str, Any]: '''simple docstring''' a__ : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) a__ : Optional[int] = { '''num_inference_steps''': None, '''timesteps''': [2_2, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: a__ : Optional[Any] = self.get_fixed_latents(seed=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , shape=SCREAMING_SNAKE_CASE__ ) a__ : List[str] = latents return inputs def __lowerCAmelCase ( self : Optional[Any] , A__ : str=0 , A__ : Union[str, Any]="cpu" , A__ : List[str]=torch.floataa , A__ : str=(1, 3, 6_4, 6_4) ) -> Optional[int]: '''simple docstring''' if type(SCREAMING_SNAKE_CASE__ ) == str: a__ : List[str] = torch.device(SCREAMING_SNAKE_CASE__ ) a__ : List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) a__ : List[Any] = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) return latents def __lowerCAmelCase ( self : str ) -> Tuple: '''simple docstring''' a__ : List[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) a__ : int = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=8_0.0 , ) a__ : int = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a__ : Any = self.get_inputs() a__ : List[Any] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 6_4, 6_4, 3) a__ : List[Any] = image[0, -3:, -3:, -1] a__ : Dict = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __lowerCAmelCase ( self : Tuple ) -> int: '''simple docstring''' a__ : Optional[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) a__ : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=8_0.0 , ) a__ : Optional[Any] = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a__ : List[Any] = self.get_inputs() a__ : Dict = 1 a__ : Optional[Any] = None a__ : Optional[Any] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 6_4, 6_4, 3) a__ : Union[str, Any] = image[0, -3:, -3:, -1] a__ : Optional[Any] = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' a__ : Any = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) a__ : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=8_0.0 , ) a__ : List[Any] = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a__ : List[Any] = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE__ , enable_math=SCREAMING_SNAKE_CASE__ , enable_mem_efficient=SCREAMING_SNAKE_CASE__ ): a__ : List[str] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 6_4, 6_4, 3) a__ : Union[str, Any] = image[0, -3:, -3:, -1] a__ : Any = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def __lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' a__ : Optional[int] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) a__ : Dict = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=8_0.0 , ) a__ : str = ConsistencyModelPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(torch_device=SCREAMING_SNAKE_CASE__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) a__ : str = self.get_inputs(get_fixed_latents=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) a__ : str = 1 a__ : int = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=SCREAMING_SNAKE_CASE__ , enable_math=SCREAMING_SNAKE_CASE__ , enable_mem_efficient=SCREAMING_SNAKE_CASE__ ): a__ : Optional[int] = pipe(**SCREAMING_SNAKE_CASE__ ).images assert image.shape == (1, 6_4, 6_4, 3) a__ : Optional[int] = image[0, -3:, -3:, -1] a__ : Tuple = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
688
"""simple docstring""" from collections.abc import Callable import numpy as np def A_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> np.ndarray: _UpperCamelCase :str = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase :Union[str, Any] = np.zeros((n + 1,) ) _UpperCamelCase :List[str] = ya _UpperCamelCase :Any = xa for k in range(snake_case__ ): _UpperCamelCase :Union[str, Any] = y[k] + step_size * ode_func(snake_case__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
355
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _A : '''simple docstring''' def __init__( self : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int]=3 , lowerCamelCase : List[Any]=32 , lowerCamelCase : List[Any]=3 , lowerCamelCase : List[str]=10 , lowerCamelCase : int=[10, 20, 30, 40] , lowerCamelCase : List[str]=[1, 1, 2, 1] , lowerCamelCase : Tuple=True , lowerCamelCase : Optional[Any]=True , lowerCamelCase : int="relu" , lowerCamelCase : Optional[int]=3 , lowerCamelCase : Optional[Any]=None , )-> Any: snake_case__ : Union[str, Any] = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Dict = image_size snake_case__ : Union[str, Any] = num_channels snake_case__ : List[str] = embeddings_size snake_case__ : List[str] = hidden_sizes snake_case__ : str = depths snake_case__ : Any = is_training snake_case__ : List[Any] = use_labels snake_case__ : int = hidden_act snake_case__ : Dict = num_labels snake_case__ : Dict = scope snake_case__ : Union[str, Any] = len(lowerCamelCase ) def __lowerCAmelCase ( self : Any )-> List[str]: snake_case__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : List[str] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] , self.num_labels ) snake_case__ : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : str )-> int: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __lowerCAmelCase ( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str] )-> Optional[int]: snake_case__ : Optional[int] = TFRegNetModel(config=lowerCamelCase ) snake_case__ : Optional[int] = model(lowerCamelCase , training=lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCAmelCase ( self : Optional[Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] )-> Any: snake_case__ : Optional[Any] = self.num_labels snake_case__ : Union[str, Any] = TFRegNetForImageClassification(lowerCamelCase ) snake_case__ : Dict = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] )-> Any: snake_case__ : List[Any] = self.prepare_config_and_inputs() snake_case__ : Any = config_and_inputs snake_case__ : int = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _A ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): '''simple docstring''' _lowercase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _lowercase = ( {'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification} if is_tf_available() else {} ) _lowercase = False _lowercase = False _lowercase = False _lowercase = False _lowercase = False def __lowerCAmelCase ( self : List[str] )-> Dict: snake_case__ : List[str] = TFRegNetModelTester(self ) snake_case__ : str = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase ) def __lowerCAmelCase ( self : List[Any] )-> Optional[int]: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def __lowerCAmelCase ( self : int )-> int: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def __lowerCAmelCase ( self : List[str] )-> Tuple: super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def __lowerCAmelCase ( self : List[str] )-> List[Any]: pass def __lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(lowerCamelCase ) snake_case__ : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __lowerCAmelCase ( self : Dict )-> str: snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __lowerCAmelCase ( self : Any )-> Any: def check_hidden_states_output(lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : Optional[int] ): snake_case__ : Dict = model_class(lowerCamelCase ) snake_case__ : Tuple = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) , training=lowerCamelCase ) snake_case__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case__ : str = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Optional[int] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case__ : Optional[Any] = layer_type snake_case__ : List[Any] = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ : Union[str, Any] = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __lowerCAmelCase ( self : List[Any] )-> List[str]: snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(lowerCamelCase : Dict , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : str={} ): snake_case__ : Any = model(lowerCamelCase , return_dict=lowerCamelCase , **lowerCamelCase ) snake_case__ : Optional[Any] = model(lowerCamelCase , return_dict=lowerCamelCase , **lowerCamelCase ).to_tuple() def recursive_check(lowerCamelCase : str , lowerCamelCase : Optional[Any] ): if isinstance(lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCamelCase , lowerCamelCase ): recursive_check(lowerCamelCase , lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowerCamelCase , lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(lowerCamelCase , lowerCamelCase ) for model_class in self.all_model_classes: snake_case__ : str = model_class(lowerCamelCase ) snake_case__ : Tuple = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) snake_case__ : Union[str, Any] = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case__ : Tuple = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) snake_case__ : int = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase ) snake_case__ : Tuple = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[Any] = self._prepare_for_class(lowerCamelCase , lowerCamelCase ) check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase , {"""output_hidden_states""": True} ) snake_case__ : str = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) snake_case__ : List[Any] = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) check_equivalence(lowerCamelCase , lowerCamelCase , lowerCamelCase , {"""output_hidden_states""": True} ) def __lowerCAmelCase ( self : Optional[int] )-> Union[str, Any]: snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def __lowerCAmelCase ( self : Tuple )-> Union[str, Any]: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : List[str] = TFRegNetModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowerCAmelCase__ ( ): """simple docstring""" snake_case__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _A ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : Any )-> List[str]: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case__ : List[str] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case__ : Any = self.default_image_processor snake_case__ : List[str] = prepare_img() snake_case__ : Optional[int] = image_processor(images=lowerCamelCase , return_tensors="""tf""" ) # forward pass snake_case__ : List[Any] = model(**lowerCamelCase , training=lowerCamelCase ) # verify the logits snake_case__ : Optional[Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) snake_case__ : int = tf.constant([-0.4_180, -1.5_051, -3.4_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCamelCase , atol=1e-4 )
707
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCAmelCase__ = 2 class _A : '''simple docstring''' def __init__( self : List[Any] , *, # begin keyword-only arguments lowerCamelCase : Optional[int]="<s>" , lowerCamelCase : str="<pad>" , lowerCamelCase : str="</s>" , lowerCamelCase : int="<unk>" , lowerCamelCase : Tuple=None , )-> str: snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = bos, unk, pad, eos snake_case__ : Dict = [] snake_case__ : int = [] snake_case__ : Optional[int] = {} snake_case__ : int = self.add_symbol(lowerCamelCase ) snake_case__ : Optional[int] = self.add_symbol(lowerCamelCase ) snake_case__ : List[str] = self.add_symbol(lowerCamelCase ) snake_case__ : int = self.add_symbol(lowerCamelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCamelCase ) snake_case__ : int = len(self.symbols ) def __eq__( self : str , lowerCamelCase : Tuple )-> Optional[Any]: return self.indices == other.indices def __getitem__( self : Optional[int] , lowerCamelCase : Any )-> Tuple: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Any )-> Union[str, Any]: return len(self.symbols ) def __contains__( self : Tuple , lowerCamelCase : int )-> int: return sym in self.indices @classmethod def __lowerCAmelCase ( cls : Dict , lowerCamelCase : Union[str, Any] )-> str: snake_case__ : List[str] = cls() d.add_from_file(lowerCamelCase ) return d def __lowerCAmelCase ( self : int , lowerCamelCase : int , lowerCamelCase : List[Any]=1 , lowerCamelCase : Union[str, Any]=False )-> Any: if word in self.indices and not overwrite: snake_case__ : Union[str, Any] = self.indices[word] snake_case__ : str = self.count[idx] + n return idx else: snake_case__ : Any = len(self.symbols ) snake_case__ : Optional[int] = idx self.symbols.append(lowerCamelCase ) self.count.append(lowerCamelCase ) return idx def __lowerCAmelCase ( self : Any , lowerCamelCase : List[Any] )-> Dict: return 0 def __lowerCAmelCase ( self : int , lowerCamelCase : str )-> Optional[int]: if isinstance(lowerCamelCase , lowerCamelCase ): try: with open(lowerCamelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(lowerCamelCase ) ) return snake_case__ : Union[str, Any] = f.readlines() snake_case__ : Optional[Any] = self._load_meta(lowerCamelCase ) for line in lines[indices_start_line:]: try: snake_case__ , snake_case__ : Optional[int] = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": snake_case__ : str = True snake_case__ , snake_case__ : Any = line.rsplit(""" """ , 1 ) else: snake_case__ : Dict = False snake_case__ : Optional[int] = int(lowerCamelCase ) snake_case__ : List[str] = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(lowerCamelCase ) ) self.add_symbol(lowerCamelCase , n=lowerCamelCase , overwrite=lowerCamelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : List[str] = dict((re.sub(R"""@@$""" , """""" , UpperCAmelCase ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , UpperCAmelCase ), v) for k, v in d.items() ) snake_case__ : str = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] snake_case__ : Optional[Any] = d[k] # restore return da def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" if not os.path.exists(UpperCAmelCase ): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models snake_case__ : Tuple = os.path.join(UpperCAmelCase , """checkpoint.pt""" ) if not os.path.isfile(UpperCAmelCase ): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" ) snake_case__ : str = torch.load(UpperCAmelCase , map_location="""cpu""" ) snake_case__ : List[Any] = chkpt["""cfg"""]["""model"""] # dicts snake_case__ : Optional[Any] = os.path.join(UpperCAmelCase , """dict.txt""" ) if not os.path.isfile(UpperCAmelCase ): raise ValueError(f"""path to the file {dict_file} does not exist!""" ) snake_case__ : List[str] = Dictionary.load(UpperCAmelCase ) snake_case__ : Optional[int] = rewrite_dict_keys(src_dict.indices ) snake_case__ : Tuple = len(UpperCAmelCase ) snake_case__ : Optional[Any] = os.path.join(UpperCAmelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) ) # merges_file (bpecodes) snake_case__ : Union[str, Any] = os.path.join(UpperCAmelCase , """bpecodes""" ) if not os.path.isfile(UpperCAmelCase ): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" ) snake_case__ : Tuple = os.path.join(UpperCAmelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(UpperCAmelCase , UpperCAmelCase ) # model config snake_case__ : str = os.path.join(UpperCAmelCase , """config.json""" ) snake_case__ : Dict = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.0_2, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1E-1_2, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""" ) with open(UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) ) # tokenizer config snake_case__ : int = os.path.join(UpperCAmelCase , UpperCAmelCase ) snake_case__ : List[str] = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(f"""Generating {biogpt_tokenizer_config_file}""" ) with open(UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCAmelCase , ensure_ascii=UpperCAmelCase , indent=UpperCAmelCase ) ) # model snake_case__ : int = chkpt["""model"""] # remove unneeded keys snake_case__ : List[Any] = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(UpperCAmelCase , UpperCAmelCase ) snake_case__ : List[Any] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): snake_case__ : str = model_state_dict.pop(UpperCAmelCase ) else: snake_case__ : Optional[int] = model_state_dict.pop(UpperCAmelCase ) snake_case__ : Tuple = BioGptConfig.from_pretrained(UpperCAmelCase ) snake_case__ : Optional[int] = BioGptForCausalLM(UpperCAmelCase ) # check that it loads ok model_new.load_state_dict(UpperCAmelCase ) # save snake_case__ : Dict = os.path.join(UpperCAmelCase , UpperCAmelCase ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(UpperCAmelCase , UpperCAmelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase__ = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
172
0
'''simple docstring''' def UpperCamelCase__ ( _lowercase : list[int] , _lowercase : int ) -> bool: __UpperCAmelCase: int = len(_lowercase ) __UpperCAmelCase: Optional[int] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCAmelCase: List[str] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCAmelCase: Tuple = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCAmelCase: Union[str, Any] = subset[i - 1][j] if arr[i - 1] <= j: __UpperCAmelCase: Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
523
'''simple docstring''' class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[Any] = None __UpperCAmelCase: Tuple = None __UpperCAmelCase: List[Any] = graph self._normalize_graph(snake_case_ , snake_case_ ) __UpperCAmelCase: Union[str, Any] = len(snake_case_ ) __UpperCAmelCase: List[str] = None def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' if sources is int: __UpperCAmelCase: List[Any] = [sources] if sinks is int: __UpperCAmelCase: Optional[Any] = [sinks] if len(snake_case_ ) == 0 or len(snake_case_ ) == 0: return __UpperCAmelCase: Any = sources[0] __UpperCAmelCase: int = sinks[0] # make fake vertex if there are more # than one source or sink if len(snake_case_ ) > 1 or len(snake_case_ ) > 1: __UpperCAmelCase: Union[str, Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __UpperCAmelCase: List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __UpperCAmelCase: Tuple = max_input_flow __UpperCAmelCase: Any = 0 __UpperCAmelCase: Tuple = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __UpperCAmelCase: Tuple = max_input_flow __UpperCAmelCase: Tuple = size - 1 def lowercase_ ( self ): '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = algorithm(self ) class a : """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Tuple = flow_network __UpperCAmelCase: Dict = flow_network.verticesCount __UpperCAmelCase: List[Any] = flow_network.sourceIndex __UpperCAmelCase: int = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __UpperCAmelCase: Dict = flow_network.graph __UpperCAmelCase: Optional[int] = False def lowercase_ ( self ): '''simple docstring''' if not self.executed: self._algorithm() __UpperCAmelCase: str = True def lowercase_ ( self ): '''simple docstring''' pass class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' super().__init__(snake_case_ ) # use this to save your result __UpperCAmelCase: int = -1 def lowercase_ ( self ): '''simple docstring''' if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class a ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' super().__init__(snake_case_ ) __UpperCAmelCase: Optional[int] = [[0] * self.verticies_count for i in range(self.verticies_count )] __UpperCAmelCase: Union[str, Any] = [0] * self.verticies_count __UpperCAmelCase: Tuple = [0] * self.verticies_count def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __UpperCAmelCase: int = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __UpperCAmelCase: List[Any] = 0 while i < len(snake_case_ ): __UpperCAmelCase: Optional[int] = vertices_list[i] __UpperCAmelCase: Optional[int] = self.heights[vertex_index] self.process_vertex(snake_case_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(snake_case_ ) ) __UpperCAmelCase: Union[str, Any] = 0 else: i += 1 __UpperCAmelCase: Tuple = sum(self.preflow[self.source_index] ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(snake_case_ , snake_case_ ) self.relabel(snake_case_ ) def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __UpperCAmelCase: str = self.heights[to_index] if min_height is not None: __UpperCAmelCase: Optional[Any] = min_height + 1 if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = [0] SCREAMING_SNAKE_CASE_ = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] SCREAMING_SNAKE_CASE_ = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network SCREAMING_SNAKE_CASE_ = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate SCREAMING_SNAKE_CASE_ = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
523
1
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : List[Any] , a__ : str , a__ : str=3 , a__ : Any=32 , a__ : List[Any]=3 , a__ : Union[str, Any]=10 , a__ : Any=[10, 20, 30, 40] , a__ : int=[1, 1, 2, 1] , a__ : List[str]=True , a__ : Optional[int]=True , a__ : Any="relu" , a__ : Union[str, Any]=3 , a__ : Optional[Any]=None , ): __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = num_channels __magic_name__ = embeddings_size __magic_name__ = hidden_sizes __magic_name__ = depths __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_act __magic_name__ = num_labels __magic_name__ = scope __magic_name__ = len(a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = self.get_config() return config, pixel_values def snake_case__ ( self : List[str] ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case__ ( self : str , a__ : List[Any] , a__ : Dict ): __magic_name__ = FlaxRegNetModel(config=a__ ) __magic_name__ = model(a__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case__ ( self : Optional[int] , a__ : Optional[int] , a__ : Any ): __magic_name__ = self.num_labels __magic_name__ = FlaxRegNetForImageClassification(config=a__ ) __magic_name__ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Dict ): __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __SCREAMING_SNAKE_CASE :str = False __SCREAMING_SNAKE_CASE :List[str] = False __SCREAMING_SNAKE_CASE :Any = False def snake_case__ ( self : int ): __magic_name__ = FlaxRegNetModelTester(self ) __magic_name__ = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def snake_case__ ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : Union[str, Any] ): return def snake_case__ ( self : List[str] ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def snake_case__ ( self : Tuple ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def snake_case__ ( self : str ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def snake_case__ ( self : Optional[Any] ): pass def snake_case__ ( self : Tuple ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(a__ ) __magic_name__ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def snake_case__ ( self : Tuple ): def check_hidden_states_output(a__ : str , a__ : Union[str, Any] , a__ : Tuple ): __magic_name__ = model_class(a__ ) __magic_name__ = model(**self._prepare_for_class(a__ , a__ ) ) __magic_name__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__ = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ = True check_hidden_states_output(a__ , a__ , a__ ) def snake_case__ ( self : Union[str, Any] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __magic_name__ = self._prepare_for_class(a__ , a__ ) __magic_name__ = model_class(a__ ) @jax.jit def model_jitted(a__ : int , **a__ : Optional[Any] ): return model(pixel_values=a__ , **a__ ) with self.subTest('''JIT Enabled''' ): __magic_name__ = model_jitted(**a__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __magic_name__ = model_jitted(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) ) for jitted_output, output in zip(a__ , a__ ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCamelCase ( ) -> Any: '''simple docstring''' __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def snake_case__ ( self : Tuple ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def snake_case__ ( self : Tuple ): __magic_name__ = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=a__ , return_tensors='''np''' ) __magic_name__ = model(**a__ ) # verify the logits __magic_name__ = (1, 1000) self.assertEqual(outputs.logits.shape , a__ ) __magic_name__ = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) )
703
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def UpperCamelCase ( a ) -> Optional[int]: '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) _lowerCAmelCase = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class _SCREAMING_SNAKE_CASE ( __a ): @staticmethod def snake_case__ ( a__ : ArgumentParser ): __magic_name__ = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=a__ , required=a__ , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=a__ , required=a__ , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=a__ , required=a__ , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=a__ , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=a__ , default=a__ , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=a__ ) def __init__( self : List[str] , a__ : str , a__ : str , a__ : str , a__ : str , a__ : str , *a__ : Optional[Any] , ): __magic_name__ = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F'''Loading model {model_type}''' ) __magic_name__ = model_type __magic_name__ = tf_checkpoint __magic_name__ = pytorch_dump_output __magic_name__ = config __magic_name__ = finetuning_task_name def snake_case__ ( self : Optional[Any] ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(a__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) if "ckpt" in self._tf_checkpoint.lower(): __magic_name__ = self._tf_checkpoint __magic_name__ = '''''' else: __magic_name__ = self._tf_checkpoint __magic_name__ = '''''' convert_transfo_xl_checkpoint_to_pytorch( a__ , self._config , self._pytorch_dump_output , a__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
245
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[int] = "ZinengTang/tvlt-base" lowerCamelCase : List[str] = tempfile.mkdtemp() def _snake_case ( self , **__A ): """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__A ) def _snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Tuple = self.get_image_processor() lowerCamelCase : Tuple = self.get_feature_extractor() lowerCamelCase : Any = TvltProcessor(image_processor=__A , feature_extractor=__A ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase : List[Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __A ) self.assertIsInstance(processor.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : str = self.get_feature_extractor() lowerCamelCase : str = TvltProcessor(image_processor=__A , feature_extractor=__A ) lowerCamelCase : List[Any] = np.ones([1_2000] ) lowerCamelCase : Dict = feature_extractor(__A , return_tensors="np" ) lowerCamelCase : Any = processor(audio=__A , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : Any = self.get_feature_extractor() lowerCamelCase : List[Any] = TvltProcessor(image_processor=__A , feature_extractor=__A ) lowerCamelCase : Any = np.ones([3, 224, 224] ) lowerCamelCase : Any = image_processor(__A , return_tensors="np" ) lowerCamelCase : int = processor(images=__A , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = self.get_image_processor() lowerCamelCase : List[Any] = self.get_feature_extractor() lowerCamelCase : Union[str, Any] = TvltProcessor(image_processor=__A , feature_extractor=__A ) lowerCamelCase : str = np.ones([1_2000] ) lowerCamelCase : int = np.ones([3, 224, 224] ) lowerCamelCase : Optional[int] = processor(audio=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = self.get_image_processor() lowerCamelCase : Any = self.get_feature_extractor() lowerCamelCase : str = TvltProcessor(image_processor=__A , feature_extractor=__A ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
340
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): # initialize config if "resnet-50" in model_name: snake_case__ : List[Any] = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: snake_case__ : Dict = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) snake_case__ : str = DetrConfig(use_timm_backbone=snake_case_ , backbone_config=snake_case_ ) # set label attributes snake_case__ : Optional[int] = "panoptic" in model_name if is_panoptic: snake_case__ : Any = 250 else: snake_case__ : str = 91 snake_case__ : str = "huggingface/label-files" snake_case__ : Union[str, Any] = "coco-detection-id2label.json" snake_case__ : List[Any] = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) snake_case__ : Union[str, Any] = {int(snake_case_ ): v for k, v in idalabel.items()} snake_case__ : Dict = idalabel snake_case__ : str = {v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ : Dict = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : str ): snake_case__ : str = state_dict.pop(snake_case_ ) snake_case__ : str = val def SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : str=False ): snake_case__ : List[Any] = "" if is_panoptic: snake_case__ : Union[str, Any] = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case__ : List[Any] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : str = in_proj_weight[:256, :] snake_case__ : str = in_proj_bias[:256] snake_case__ : Dict = in_proj_weight[256:512, :] snake_case__ : List[str] = in_proj_bias[256:512] snake_case__ : int = in_proj_weight[-256:, :] snake_case__ : List[str] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention snake_case__ : Tuple = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case__ : List[str] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Dict = in_proj_weight[:256, :] snake_case__ : Union[str, Any] = in_proj_bias[:256] snake_case__ : Optional[int] = in_proj_weight[256:512, :] snake_case__ : Dict = in_proj_bias[256:512] snake_case__ : int = in_proj_weight[-256:, :] snake_case__ : Dict = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention snake_case__ : Dict = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) snake_case__ : Dict = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict snake_case__ : Tuple = in_proj_weight_cross_attn[:256, :] snake_case__ : List[str] = in_proj_bias_cross_attn[:256] snake_case__ : Dict = in_proj_weight_cross_attn[256:512, :] snake_case__ : Optional[Any] = in_proj_bias_cross_attn[256:512] snake_case__ : Optional[int] = in_proj_weight_cross_attn[-256:, :] snake_case__ : Optional[int] = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE ( ): snake_case__ : Dict = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case__ : List[Any] = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Dict=None , snake_case_ : str=False ): snake_case__, snake_case__ : Optional[int] = get_detr_config(snake_case_ ) # load original model from torch hub snake_case__ : Tuple = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) snake_case__ : int = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=snake_case_ ).eval() snake_case__ : List[Any] = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case_ ): if is_panoptic: snake_case__ : Any = "detr." + src rename_key(snake_case_ , snake_case_ , snake_case_ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case_ , is_panoptic=snake_case_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : Union[str, Any] = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): snake_case__ : Tuple = state_dict.pop(snake_case_ ) snake_case__ : Optional[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : Optional[Any] = state_dict.pop(snake_case_ ) snake_case__ : Optional[int] = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: snake_case__ : str = state_dict.pop(snake_case_ ) snake_case__ : Dict = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): snake_case__ : Any = state_dict.pop(snake_case_ ) snake_case__ : Any = val # finally, create HuggingFace model and load state dict snake_case__ : str = DetrForSegmentation(snake_case_ ) if is_panoptic else DetrForObjectDetection(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # verify our conversion on an image snake_case__ : Tuple = "coco_panoptic" if is_panoptic else "coco_detection" snake_case__ : List[Any] = DetrImageProcessor(format=snake_case_ ) snake_case__ : str = processor(images=prepare_img() , return_tensors="pt" ) snake_case__ : List[str] = encoding["pixel_values"] snake_case__ : Union[str, Any] = detr(snake_case_ ) snake_case__ : str = model(snake_case_ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") __lowerCamelCase : Dict = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
297
0
"""simple docstring""" import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __snake_case ( __lowerCamelCase , unittest.TestCase ): a__ = FlaxAutoencoderKL @property def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Any = 4 a__: Union[str, Any] = 3 a__: Union[str, Any] = (32, 32) a__: Optional[int] = jax.random.PRNGKey(0) a__: List[Any] = jax.random.uniform(UpperCamelCase_ , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Dict = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } a__: List[str] = self.dummy_input return init_dict, inputs_dict
714
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
217
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
63
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : Tuple = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def lowerCamelCase__ ( __lowerCamelCase : Dict ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __UpperCAmelCase : Union[str, Any] = k.replace(__lowerCamelCase , __lowerCamelCase ) if k.startswith("""encoder""" ): __UpperCAmelCase : List[str] = k.replace(""".attn""" , """.self_attn""" ) __UpperCAmelCase : Optional[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __UpperCAmelCase : Union[str, Any] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __UpperCAmelCase : Optional[int] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __UpperCAmelCase : List[Any] = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __UpperCAmelCase : Any = k.replace("""norm3""" , """final_layer_norm""" ) return k def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): __UpperCAmelCase : Optional[Any] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __UpperCAmelCase : Dict = sd.pop(__lowerCamelCase ) __UpperCAmelCase : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __UpperCAmelCase : List[str] = v a : Optional[int] = ["START"] @torch.no_grad() def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : str ): __UpperCAmelCase : str = torch.load(__lowerCamelCase , map_location="""cpu""" ) __UpperCAmelCase : Tuple = model["""model"""] __UpperCAmelCase : int = BlenderbotConfig.from_json_file(__lowerCamelCase ) __UpperCAmelCase : List[str] = BlenderbotForConditionalGeneration(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = m.model.state_dict().keys() __UpperCAmelCase : Any = [] __UpperCAmelCase : Any = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __UpperCAmelCase : int = rename_state_dict_key(__lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __UpperCAmelCase : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__lowerCamelCase ) m.model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) m.half() m.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) a : Any = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
63
1
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _SCREAMING_SNAKE_CASE = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _SCREAMING_SNAKE_CASE = [0, 2_5, 5_0] _SCREAMING_SNAKE_CASE = [2_5, 5_0, 7_5] _SCREAMING_SNAKE_CASE = fuzz.membership.trimf(X, abca) _SCREAMING_SNAKE_CASE = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _SCREAMING_SNAKE_CASE = np.ones(7_5) _SCREAMING_SNAKE_CASE = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) _SCREAMING_SNAKE_CASE = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _SCREAMING_SNAKE_CASE = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _SCREAMING_SNAKE_CASE = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _SCREAMING_SNAKE_CASE = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _SCREAMING_SNAKE_CASE = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _SCREAMING_SNAKE_CASE = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _SCREAMING_SNAKE_CASE = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _SCREAMING_SNAKE_CASE = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
239
"""simple docstring""" class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : List[str] = size _UpperCamelCase : Optional[int] = [0] * size _UpperCamelCase : List[str] = [0] * size @staticmethod def lowercase_ (lowerCAmelCase__ ): '''simple docstring''' return index | (index + 1) @staticmethod def lowercase_ (lowerCAmelCase__ ): '''simple docstring''' return (index & (index + 1)) - 1 def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Dict = value while index < self.size: _UpperCamelCase : Any = self.get_prev(lowerCAmelCase__ ) + 1 if current_left_border == index: _UpperCamelCase : List[str] = value else: _UpperCamelCase : List[str] = max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase : List[str] = self.get_next(lowerCAmelCase__ ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' right -= 1 # Because of right is exclusive _UpperCamelCase : Tuple = 0 while left <= right: _UpperCamelCase : List[str] = self.get_prev(lowerCAmelCase__ ) if left <= current_left: _UpperCamelCase : Optional[Any] = max(lowerCAmelCase__ , self.tree[right] ) _UpperCamelCase : Tuple = current_left else: _UpperCamelCase : Optional[int] = max(lowerCAmelCase__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
239
1
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def lowercase ( lowerCAmelCase__ ): for param in module.parameters(): lowerCamelCase_ = False def lowercase ( ): lowerCamelCase_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowerCamelCase_ = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def lowercase ( lowerCAmelCase__ ): lowerCamelCase_ = plt.imshow(lowerCAmelCase__ ) fig.axes.get_xaxis().set_visible(lowerCAmelCase__ ) fig.axes.get_yaxis().set_visible(lowerCAmelCase__ ) plt.show() def lowercase ( ): lowerCamelCase_ = datetime.now() lowerCamelCase_ = current_time.strftime('''%H:%M:%S''' ) return timestamp
29
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __a ( lowerCAmelCase_ : int = 8 ) -> str: '''simple docstring''' UpperCAmelCase_= ascii_letters + digits + punctuation return "".join(secrets.choice(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ) ) def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : int ) -> str: '''simple docstring''' i -= len(lowerCAmelCase_ ) UpperCAmelCase_= i // 3 UpperCAmelCase_= i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) UpperCAmelCase_= ( chars_incl + random(lowerCAmelCase_ ,quotient + remainder ) + random(lowerCAmelCase_ ,lowerCAmelCase_ ) + random(lowerCAmelCase_ ,lowerCAmelCase_ ) ) UpperCAmelCase_= list(lowerCAmelCase_ ) shuffle(lowerCAmelCase_ ) return "".join(lowerCAmelCase_ ) # random is a generalised function for letters, characters and numbers def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : int ) -> str: '''simple docstring''' return "".join(secrets.choice(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ) ) def __a ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass # Put your code here... def __a ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : Dict ) -> Optional[int]: '''simple docstring''' pass # Put your code here... def __a ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : List[str] ) -> str: '''simple docstring''' pass # Put your code here... def __a ( lowerCAmelCase_ : str ,lowerCAmelCase_ : int = 8 ) -> bool: '''simple docstring''' if len(lowerCAmelCase_ ) < min_length: # Your Password must be at least 8 characters long return False UpperCAmelCase_= any(char in ascii_uppercase for char in password ) UpperCAmelCase_= any(char in ascii_lowercase for char in password ) UpperCAmelCase_= any(char in digits for char in password ) UpperCAmelCase_= any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __a ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_= int(input("""Please indicate the max length of your password: """ ).strip() ) UpperCAmelCase_= input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" ,password_generator(lowerCAmelCase_ ) ) print( """Alternative Password generated:""" ,alternative_password_generator(lowerCAmelCase_ ,lowerCAmelCase_ ) ,) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
593
0
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class UpperCamelCase_ (snake_case__ ): def __init__( self : Optional[int] , lowerCAmelCase_ : Union[str, "sqlalchemy.sql.Selectable"] , lowerCAmelCase_ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCAmelCase_ : Optional[Features] = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : bool = False , **lowerCAmelCase_ : Optional[Any] , ) -> int: super().__init__(features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , **UpperCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = Sql( cache_dir=UpperCAmelCase_ , features=UpperCAmelCase_ , sql=UpperCAmelCase_ , con=UpperCAmelCase_ , **UpperCAmelCase_ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: UpperCAmelCase_ : str = None UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Optional[Any] = None self.builder.download_and_prepare( download_config=UpperCAmelCase_ , download_mode=UpperCAmelCase_ , verification_mode=UpperCAmelCase_ , base_path=UpperCAmelCase_ , ) # Build dataset for splits UpperCAmelCase_ : int = self.builder.as_dataset( split="train" , verification_mode=UpperCAmelCase_ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase_ : def __init__( self : Any , lowerCAmelCase_ : Dataset , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , **lowerCAmelCase_ : Tuple , ) -> Dict: if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) UpperCAmelCase_ : Optional[int] = dataset UpperCAmelCase_ : Optional[int] = name UpperCAmelCase_ : str = con UpperCAmelCase_ : List[str] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE UpperCAmelCase_ : Dict = num_proc UpperCAmelCase_ : List[Any] = to_sql_kwargs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: UpperCAmelCase_ : List[str] = self.to_sql_kwargs.pop("sql" , UpperCAmelCase_ ) UpperCAmelCase_ : List[Any] = self.to_sql_kwargs.pop("con" , UpperCAmelCase_ ) UpperCAmelCase_ : Tuple = self.to_sql_kwargs.pop("index" , UpperCAmelCase_ ) UpperCAmelCase_ : Dict = self._write(index=UpperCAmelCase_ , **self.to_sql_kwargs ) return written def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Dict ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = args UpperCAmelCase_ : int = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs UpperCAmelCase_ : Dict = query_table( table=self.dataset.data , key=slice(UpperCAmelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) UpperCAmelCase_ : List[str] = batch.to_pandas() UpperCAmelCase_ : List[str] = df.to_sql(self.name , self.con , index=UpperCAmelCase_ , **UpperCAmelCase_ ) return num_rows or len(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Optional[int] ) -> int: UpperCAmelCase_ : List[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: UpperCAmelCase_ , UpperCAmelCase_ : int = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , UpperCAmelCase_ , UpperCAmelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
702
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES lowerCamelCase_ = '''tiny-wmt19-en-ru''' # Build # borrowed from a test lowerCamelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowerCamelCase_ = dict(zip(vocab, range(len(vocab)))) lowerCamelCase_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = Path(tmpdirname) lowerCamelCase_ = build_dir / VOCAB_FILES_NAMES['''src_vocab_file'''] lowerCamelCase_ = build_dir / VOCAB_FILES_NAMES['''tgt_vocab_file'''] lowerCamelCase_ = build_dir / VOCAB_FILES_NAMES['''merges_file'''] with open(src_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, '''w''') as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, '''w''') as fp: fp.write('''\n'''.join(merges)) lowerCamelCase_ = FSMTTokenizer( langs=['''en''', '''ru'''], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) lowerCamelCase_ = FSMTConfig( langs=['''ru''', '''en'''], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) lowerCamelCase_ = FSMTForConditionalGeneration(config) print(f'num of params {tiny_model.num_parameters()}') # Test lowerCamelCase_ = tokenizer(['''Making tiny model'''], return_tensors='''pt''') lowerCamelCase_ = tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-ru
463
0
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __lowerCamelCase : Dict = TypeVar('''KEY''') __lowerCamelCase : int = TypeVar('''VAL''') @dataclass(frozen=a_ , slots=a_ ) class A_ (Generic[KEY, VAL] ): """simple docstring""" a__ = 42 a__ = 42 class A_ (_Item ): """simple docstring""" def __init__( self :List[Any] ) -> None: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __bool__( self :Optional[int] ) -> bool: '''simple docstring''' return False __lowerCamelCase : Dict = _DeletedItem() class A_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self :Dict , lowerCAmelCase__ :int = 8 , lowerCAmelCase__ :float = 0.7_5 ) -> None: '''simple docstring''' snake_case_ : Any = initial_block_size snake_case_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 snake_case_ : Tuple = capacity_factor snake_case_ : List[Any] = 0 def _A ( self :Tuple , lowerCAmelCase__ :KEY ) -> int: '''simple docstring''' return hash(lowerCAmelCase__ ) % len(self._buckets ) def _A ( self :Any , lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def _A ( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :KEY , lowerCAmelCase__ :VAL ) -> bool: '''simple docstring''' snake_case_ : Optional[int] = self._buckets[ind] if not stored: snake_case_ : int = _Item(lowerCAmelCase__ , lowerCAmelCase__ ) self._len += 1 return True elif stored.key == key: snake_case_ : Optional[int] = _Item(lowerCAmelCase__ , lowerCAmelCase__ ) return True else: return False def _A ( self :int ) -> bool: '''simple docstring''' snake_case_ : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCAmelCase__ ) def _A ( self :Any ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False snake_case_ : Optional[int] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _A ( self :Tuple , lowerCAmelCase__ :int ) -> None: '''simple docstring''' snake_case_ : Tuple = self._buckets snake_case_ : int = [None] * new_size snake_case_ : Any = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _A ( self :Optional[int] ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def _A ( self :str ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def _A ( self :Optional[int] , lowerCAmelCase__ :KEY ) -> Iterator[int]: '''simple docstring''' snake_case_ : str = self._get_bucket_index(lowerCAmelCase__ ) for _ in range(len(self._buckets ) ): yield ind snake_case_ : List[Any] = self._get_next_ind(lowerCAmelCase__ ) def _A ( self :Union[str, Any] , lowerCAmelCase__ :KEY , lowerCAmelCase__ :VAL ) -> None: '''simple docstring''' for ind in self._iterate_buckets(lowerCAmelCase__ ): if self._try_set(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): break def __setitem__( self :Optional[int] , lowerCAmelCase__ :KEY , lowerCAmelCase__ :VAL ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCAmelCase__ , lowerCAmelCase__ ) def __delitem__( self :List[Any] , lowerCAmelCase__ :KEY ) -> None: '''simple docstring''' for ind in self._iterate_buckets(lowerCAmelCase__ ): snake_case_ : int = self._buckets[ind] if item is None: raise KeyError(lowerCAmelCase__ ) if item is _deleted: continue if item.key == key: snake_case_ : List[str] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self :List[str] , lowerCAmelCase__ :KEY ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(lowerCAmelCase__ ): snake_case_ : Optional[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCAmelCase__ ) def __len__( self :Optional[Any] ) -> int: '''simple docstring''' return self._len def __iter__( self :List[Any] ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self :Any ) -> str: '''simple docstring''' snake_case_ : Dict = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
653
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase : Any = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''ViTFeatureExtractor'''] __lowerCamelCase : Any = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
653
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class lowerCAmelCase__ ( snake_case__ ): __a = """mobilenet_v2""" def __init__( self : int , _lowerCamelCase : Any=3 , _lowerCamelCase : Dict=224 , _lowerCamelCase : List[Any]=1.0 , _lowerCamelCase : Optional[int]=8 , _lowerCamelCase : Dict=8 , _lowerCamelCase : Dict=6 , _lowerCamelCase : Dict=32 , _lowerCamelCase : int=True , _lowerCamelCase : str=True , _lowerCamelCase : List[Any]="relu6" , _lowerCamelCase : Any=True , _lowerCamelCase : Tuple=0.8 , _lowerCamelCase : Dict=0.0_2 , _lowerCamelCase : Dict=0.0_0_1 , _lowerCamelCase : str=255 , **_lowerCamelCase : Tuple , ): super().__init__(**UpperCAmelCase_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) _snake_case = num_channels _snake_case = image_size _snake_case = depth_multiplier _snake_case = depth_divisible_by _snake_case = min_depth _snake_case = expand_ratio _snake_case = output_stride _snake_case = first_layer_is_expansion _snake_case = finegrained_output _snake_case = hidden_act _snake_case = tf_padding _snake_case = classifier_dropout_prob _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = semantic_loss_ignore_index class lowerCAmelCase__ ( snake_case__ ): __a = version.parse("""1.11""" ) @property def lowercase ( self : Any ): return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def lowercase ( self : List[str] ): if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def lowercase ( self : int ): return 1e-4
702
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : int ) -> bool: if num < 0: return False _snake_case = num _snake_case = 0 while num > 0: _snake_case = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
430
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) A_ = Features({'''image''': Image()} ) A_ = Features({'''labels''': ClassLabel} ) A_ = "image" A_ = "labels" def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.') if not isinstance(features[self.label_column] , lowerCamelCase_): raise ValueError(F'Column {self.label_column} is not a ClassLabel.') UpperCamelCase = copy.deepcopy(self) UpperCamelCase = self.label_schema.copy() UpperCamelCase = features[self.label_column] UpperCamelCase = label_schema return task_template @property def UpperCAmelCase__ ( self) -> Dict[str, str]: return { self.image_column: "image", self.label_column: "labels", }
34
"""simple docstring""" from itertools import permutations def lowerCamelCase ( _snake_case ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False UpperCAmelCase__ : List[str] = [7, 11, 13, 17] for i, test in enumerate(_snake_case ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCamelCase ( _snake_case = 10 ): return sum( int(''.join(map(_snake_case ,_snake_case ) ) ) for num in permutations(range(_snake_case ) ) if is_substring_divisible(_snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
110
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _A ( __snake_case :Union[str, Any] , __snake_case :Tuple , __snake_case :List[str] ) -> str: """simple docstring""" return params[f'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def _A ( __snake_case :str , __snake_case :List[str] , __snake_case :Any , __snake_case :Optional[int]="attention" ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) __SCREAMING_SNAKE_CASE = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) __SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) __SCREAMING_SNAKE_CASE = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) __SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) __SCREAMING_SNAKE_CASE = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) __SCREAMING_SNAKE_CASE = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) __SCREAMING_SNAKE_CASE = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _A ( __snake_case :Optional[int] , __snake_case :int , __snake_case :str , __snake_case :Dict=False ) -> List[Any]: """simple docstring""" if split_mlp_wi: __SCREAMING_SNAKE_CASE = params[f'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] __SCREAMING_SNAKE_CASE = params[f'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] __SCREAMING_SNAKE_CASE = (wi_a, wi_a) else: __SCREAMING_SNAKE_CASE = params[f'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] __SCREAMING_SNAKE_CASE = params[f'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def _A ( __snake_case :Optional[Any] , __snake_case :str , __snake_case :Optional[Any] , __snake_case :List[str] ) -> List[str]: """simple docstring""" return params[f'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def _A ( __snake_case :dict , *, __snake_case :int , __snake_case :bool , __snake_case :bool = False ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = traverse_util.flatten_dict(variables["target"] ) __SCREAMING_SNAKE_CASE = {"/".join(__snake_case ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __SCREAMING_SNAKE_CASE = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __snake_case ) __SCREAMING_SNAKE_CASE = collections.OrderedDict() # Shared embeddings. __SCREAMING_SNAKE_CASE = old["token_embedder/embedding"] # Encoder. for i in range(__snake_case ): # Block i, layer 0 (Self Attention). __SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(__snake_case , __snake_case , "encoder" , "pre_attention_layer_norm" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tax_attention_lookup(__snake_case , __snake_case , "encoder" , "attention" ) __SCREAMING_SNAKE_CASE = layer_norm __SCREAMING_SNAKE_CASE = k.T __SCREAMING_SNAKE_CASE = o.T __SCREAMING_SNAKE_CASE = q.T __SCREAMING_SNAKE_CASE = v.T # Block i, layer 1 (MLP). __SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(__snake_case , __snake_case , "encoder" , "pre_mlp_layer_norm" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tax_mlp_lookup(__snake_case , __snake_case , "encoder" , __snake_case ) __SCREAMING_SNAKE_CASE = layer_norm if split_mlp_wi: __SCREAMING_SNAKE_CASE = wi[0].T __SCREAMING_SNAKE_CASE = wi[1].T else: __SCREAMING_SNAKE_CASE = wi.T __SCREAMING_SNAKE_CASE = wo.T if scalable_attention: # convert the rel_embedding of each layer __SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( __snake_case , __snake_case , "encoder" ).T __SCREAMING_SNAKE_CASE = old["encoder/encoder_norm/scale"] if not scalable_attention: __SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( __snake_case , 0 , "encoder" ).T __SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup( __snake_case , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__snake_case ): # Block i, layer 0 (Self Attention). __SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(__snake_case , __snake_case , "decoder" , "pre_self_attention_layer_norm" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tax_attention_lookup(__snake_case , __snake_case , "decoder" , "self_attention" ) __SCREAMING_SNAKE_CASE = layer_norm __SCREAMING_SNAKE_CASE = k.T __SCREAMING_SNAKE_CASE = o.T __SCREAMING_SNAKE_CASE = q.T __SCREAMING_SNAKE_CASE = v.T # Block i, layer 1 (Cross Attention). __SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(__snake_case , __snake_case , "decoder" , "pre_cross_attention_layer_norm" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tax_attention_lookup(__snake_case , __snake_case , "decoder" , "encoder_decoder_attention" ) __SCREAMING_SNAKE_CASE = layer_norm __SCREAMING_SNAKE_CASE = k.T __SCREAMING_SNAKE_CASE = o.T __SCREAMING_SNAKE_CASE = q.T __SCREAMING_SNAKE_CASE = v.T # Block i, layer 2 (MLP). __SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(__snake_case , __snake_case , "decoder" , "pre_mlp_layer_norm" ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = tax_mlp_lookup(__snake_case , __snake_case , "decoder" , __snake_case ) __SCREAMING_SNAKE_CASE = layer_norm if split_mlp_wi: __SCREAMING_SNAKE_CASE = wi[0].T __SCREAMING_SNAKE_CASE = wi[1].T else: __SCREAMING_SNAKE_CASE = wi.T __SCREAMING_SNAKE_CASE = wo.T if scalable_attention: # convert the rel_embedding of each layer __SCREAMING_SNAKE_CASE = tax_relpos_bias_lookup(__snake_case , __snake_case , "decoder" ).T __SCREAMING_SNAKE_CASE = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __SCREAMING_SNAKE_CASE = old["decoder/logits_dense/kernel"].T return new def _A ( __snake_case :List[str] , __snake_case :bool ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __SCREAMING_SNAKE_CASE = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __SCREAMING_SNAKE_CASE = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) __SCREAMING_SNAKE_CASE = state_dict["shared.weight"] return state_dict def _A ( __snake_case :int , __snake_case :List[Any] , __snake_case :str , __snake_case :Tuple , __snake_case :str ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(__snake_case ) __SCREAMING_SNAKE_CASE = convert_tax_to_pytorch( __snake_case , num_layers=config.num_layers , is_encoder_only=__snake_case , scalable_attention=__snake_case ) __SCREAMING_SNAKE_CASE = make_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case , strict=__snake_case ) def _A ( __snake_case :Optional[int] , __snake_case :int , __snake_case :List[Any] , __snake_case :bool = False , __snake_case :bool = False , ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = MTaConfig.from_json_file(__snake_case ) print(f'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __SCREAMING_SNAKE_CASE = UMTaEncoderModel(__snake_case ) else: __SCREAMING_SNAKE_CASE = UMTaForConditionalGeneration(__snake_case ) # Load weights from tf checkpoint load_tax_weights_in_ta(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__snake_case ) # Verify that we can load the checkpoint. model.from_pretrained(__snake_case ) print("Done" ) if __name__ == "__main__": _snake_case : Any = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) _snake_case : Any = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
214
def _A ( __snake_case :int ) -> bool: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError("check_bouncy() accepts only integer arguments" ) __SCREAMING_SNAKE_CASE = str(__snake_case ) __SCREAMING_SNAKE_CASE = "".join(sorted(__snake_case ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _A ( __snake_case :float = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 while True: if check_bouncy(__snake_case ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
214
1
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCAmelCase_ = logging.getLogger(__name__) def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase: List[str] = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=lowercase , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=lowercase , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=lowercase , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=lowercase , default=1_000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=lowercase , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=lowercase , type=lowercase , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=lowercase , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=lowercase , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) _UpperCamelCase: str = parser.parse_args() return args def lowerCAmelCase_ ( lowercase: Optional[int] ) -> Optional[Any]: '''simple docstring''' def fn(lowercase: List[Any] ): return tokenizer(examples['''text'''] ) return fn def lowerCAmelCase_ ( lowercase: List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase: int = [] for i in range(len(tokenized_data['''input_ids'''] ) ): _UpperCamelCase: Tuple = { '''input_ids''': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), '''attention_mask''': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } _UpperCamelCase: Optional[int] = tf.train.Features(feature=lowercase ) _UpperCamelCase: Optional[int] = tf.train.Example(features=lowercase ) _UpperCamelCase: List[Any] = example.SerializeToString() records.append(lowercase ) return records def lowerCAmelCase_ ( lowercase: List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase: Tuple = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _UpperCamelCase: str = min(len(lowercase ) , args.limit ) _UpperCamelCase: Optional[Any] = dataset.select(range(lowercase ) ) print(F"""Limiting the dataset to {args.limit} entries.""" ) _UpperCamelCase: List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _UpperCamelCase: Any = os.path.join(args.output_dir , args.split ) if not os.path.exists(lowercase ): os.makedirs(lowercase ) else: _UpperCamelCase: str = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _UpperCamelCase: Union[str, Any] = tokenize_function(lowercase ) _UpperCamelCase: List[Any] = dataset.map(lowercase , batched=lowercase , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(lowercase: int ): # Concatenate all texts. _UpperCamelCase: List[str] = {k: sum(examples[k] , [] ) for k in examples.keys()} _UpperCamelCase: Any = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _UpperCamelCase: Optional[int] = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _UpperCamelCase: Tuple = { k: [t[i : i + args.max_length] for i in range(0 , lowercase , args.max_length )] for k, t in concatenated_examples.items() } return result _UpperCamelCase: Dict = dataset_tokenized.map(lowercase , batched=lowercase , batch_size=1_000 , num_proc=4 ) _UpperCamelCase: List[str] = 0 _UpperCamelCase: Tuple = 0 for shard in range(0 , len(lowercase ) , args.shard_size ): _UpperCamelCase: List[str] = grouped_dataset[shard : shard + args.shard_size] _UpperCamelCase: Optional[Any] = len(dataset_snapshot['''input_ids'''] ) _UpperCamelCase: str = os.path.join(lowercase , F"""dataset-{shard_count}-{records_containing}.tfrecord""" ) _UpperCamelCase: Any = get_serialized_examples(lowercase ) with tf.io.TFRecordWriter(lowercase ) as out_file: for i in range(len(lowercase ) ): _UpperCamelCase: List[Any] = serialized_examples[i] out_file.write(lowercase ) print('''Wrote file {} containing {} records'''.format(lowercase , lowercase ) ) shard_count += 1 total_records += records_containing with open(F"""split-{args.split}-records-count.txt""" , '''w''' ) as f: print(F"""Total {args.split} records: {total_records}""" , file=lowercase ) if __name__ == "__main__": UpperCAmelCase_ = parse_args() main(args)
271
from pathlib import Path import fire def lowerCAmelCase_ ( lowercase: str , lowercase: str , lowercase: int ) -> int: '''simple docstring''' _UpperCamelCase: Any = Path(lowercase ) _UpperCamelCase: int = Path(lowercase ) dest_dir.mkdir(exist_ok=lowercase ) for path in src_dir.iterdir(): _UpperCamelCase: List[str] = [x.rstrip() for x in list(path.open().readlines() )][:n] _UpperCamelCase: int = dest_dir.joinpath(path.name ) print(lowercase ) dest_path.open('''w''' ).write('''\n'''.join(lowercase ) ) if __name__ == "__main__": fire.Fire(minify)
271
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :Tuple, snake_case :Tuple=False, snake_case :Optional[int]=False, snake_case :Optional[Any]=6.0, snake_case :Optional[Any]=None, snake_case :Optional[Any]=False, snake_case :List[str]=False, snake_case :Optional[int]=None, snake_case :List[Any]="fp4", snake_case :Dict=False, **snake_case :Optional[int], ): """simple docstring""" _lowercase =load_in_abit _lowercase =load_in_abit _lowercase =llm_inta_threshold _lowercase =llm_inta_skip_modules _lowercase =llm_inta_enable_fpaa_cpu_offload _lowercase =llm_inta_has_fpaa_weight _lowercase =bnb_abit_quant_type _lowercase =bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: _lowercase =torch.floataa elif isinstance(snake_case, snake_case): _lowercase =getattr(snake_case, snake_case) elif isinstance(snake_case, torch.dtype): _lowercase =bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype') self.post_init() def UpperCamelCase__ ( self :int): """simple docstring""" if not isinstance(self.llm_inta_threshold, snake_case): raise ValueError('llm_int8_threshold must be a float') if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules, snake_case): raise ValueError('llm_int8_skip_modules must be a list of strings') if not isinstance(self.llm_inta_enable_fpaa_cpu_offload, snake_case): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean') if not isinstance(self.llm_inta_has_fpaa_weight, snake_case): raise ValueError('llm_int8_has_fp16_weight must be a boolean') if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype, torch.dtype): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype') if not isinstance(self.bnb_abit_quant_type, snake_case): raise ValueError('bnb_4bit_quant_type must be a string') if not isinstance(self.bnb_abit_use_double_quant, snake_case): raise ValueError('bnb_4bit_use_double_quant must be a boolean') if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes')) >= version.parse( '0.39.0'): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version') def UpperCamelCase__ ( self :int): """simple docstring""" return self.load_in_abit or self.load_in_abit def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def UpperCamelCase__ ( cls :Optional[int], snake_case :List[Any], snake_case :List[Any], **snake_case :Tuple): """simple docstring""" _lowercase =cls(**snake_case) _lowercase =[] for key, value in kwargs.items(): if hasattr(snake_case, snake_case): setattr(snake_case, snake_case, snake_case) to_remove.append(snake_case) for key in to_remove: kwargs.pop(snake_case, snake_case) if return_unused_kwargs: return config, kwargs else: return config def UpperCamelCase__ ( self :Any, snake_case :Union[str, os.PathLike]): """simple docstring""" with open(snake_case, 'w', encoding='utf-8') as writer: _lowercase =self.to_dict() _lowercase =json.dumps(snake_case, indent=2, sort_keys=snake_case) + '\n' writer.write(snake_case) def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase =copy.deepcopy(self.__dict__) _lowercase =str(output['bnb_4bit_compute_dtype']).split('.')[1] return output def __repr__( self :List[Any]): """simple docstring""" return f'''{self.__class__.__name__} {self.to_json_string()}''' def UpperCamelCase__ ( self :Dict, snake_case :bool = True): """simple docstring""" if use_diff is True: _lowercase =self.to_diff_dict() else: _lowercase =self.to_dict() return json.dumps(snake_case, indent=2, sort_keys=snake_case) + "\n" def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =self.to_dict() # get the default config dict _lowercase =BitsAndBytesConfig().to_dict() _lowercase ={} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: _lowercase =value return serializable_config_dict
719
def _snake_case (_snake_case : int) -> bool: if p < 2: raise ValueError('p should not be less than 2!') elif p == 2: return True _lowercase =4 _lowercase =(1 << p) - 1 for _ in range(p - 2): _lowercase =((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
557
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowerCamelCase = logging.get_logger(__name__) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : str , *_UpperCAmelCase : Any , **_UpperCAmelCase : int ) -> None: '''simple docstring''' warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
82
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a__ ( UpperCamelCase_ ): snake_case__ = 42 class a__ ( UpperCamelCase_ , UpperCamelCase_ ): @register_to_config def __init__( self : Optional[int] ,a__ : int = 32 ,a__ : int = 64 ,a__ : int = 20 ,a__ : int = 768 ,a__ : Union[str, Any]=77 ,a__ : Union[str, Any]=4 ,a__ : float = 0.0 ,a__ : str = "silu" ,a__ : Optional[str] = None ,a__ : Optional[str] = None ,a__ : Optional[str] = "linear" ,a__ : Optional[str] = "prd" ,a__ : Optional[int] = None ,a__ : Optional[int] = None ,a__ : Optional[int] = None ,) -> Optional[Any]: """simple docstring""" super().__init__() _lowerCAmelCase:str = num_attention_heads _lowerCAmelCase:Any = attention_head_dim _lowerCAmelCase:str = num_attention_heads * attention_head_dim _lowerCAmelCase:Any = additional_embeddings _lowerCAmelCase:Any = time_embed_dim or inner_dim _lowerCAmelCase:Optional[int] = embedding_proj_dim or embedding_dim _lowerCAmelCase:Any = clip_embed_dim or embedding_dim _lowerCAmelCase:str = Timesteps(a__ ,a__ ,0) _lowerCAmelCase:Tuple = TimestepEmbedding(a__ ,a__ ,out_dim=a__ ,act_fn=a__) _lowerCAmelCase:str = nn.Linear(a__ ,a__) if embedding_proj_norm_type is None: _lowerCAmelCase:str = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase:Any = nn.LayerNorm(a__) else: raise ValueError(F'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}') _lowerCAmelCase:Tuple = nn.Linear(a__ ,a__) if encoder_hid_proj_type is None: _lowerCAmelCase:Tuple = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase:int = nn.Linear(a__ ,a__) else: raise ValueError(F'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}') _lowerCAmelCase:Union[str, Any] = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,a__)) if added_emb_type == "prd": _lowerCAmelCase:str = nn.Parameter(torch.zeros(1 ,1 ,a__)) elif added_emb_type is None: _lowerCAmelCase:Optional[Any] = None else: raise ValueError( F'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.') _lowerCAmelCase:Dict = nn.ModuleList( [ BasicTransformerBlock( a__ ,a__ ,a__ ,dropout=a__ ,activation_fn='''gelu''' ,attention_bias=a__ ,) for d in range(a__) ]) if norm_in_type == "layer": _lowerCAmelCase:Dict = nn.LayerNorm(a__) elif norm_in_type is None: _lowerCAmelCase:List[Any] = None else: raise ValueError(F'Unsupported norm_in_type: {norm_in_type}.') _lowerCAmelCase:Dict = nn.LayerNorm(a__) _lowerCAmelCase:Optional[int] = nn.Linear(a__ ,a__) _lowerCAmelCase:Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-10000.0) causal_attention_mask.triu_(1) _lowerCAmelCase:int = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' ,a__ ,persistent=a__) _lowerCAmelCase:Tuple = nn.Parameter(torch.zeros(1 ,a__)) _lowerCAmelCase:Tuple = nn.Parameter(torch.zeros(1 ,a__)) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCamelCase ( self : List[str]) -> Dict[str, AttentionProcessor]: """simple docstring""" _lowerCAmelCase:Union[str, Any] = {} def fn_recursive_add_processors(a__ : str ,a__ : torch.nn.Module ,a__ : Dict[str, AttentionProcessor]): if hasattr(a__ ,'''set_processor'''): _lowerCAmelCase:int = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' ,a__ ,a__) return processors for name, module in self.named_children(): fn_recursive_add_processors(a__ ,a__ ,a__) return processors def __UpperCamelCase ( self : Any ,a__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]]) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Tuple = len(self.attn_processors.keys()) if isinstance(a__ ,a__) and len(a__) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(a__)} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.') def fn_recursive_attn_processor(a__ : str ,a__ : torch.nn.Module ,a__ : Tuple): if hasattr(a__ ,'''set_processor'''): if not isinstance(a__ ,a__): module.set_processor(a__) else: module.set_processor(processor.pop(F'{name}.processor')) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' ,a__ ,a__) for name, module in self.named_children(): fn_recursive_attn_processor(a__ ,a__ ,a__) def __UpperCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.set_attn_processor(AttnProcessor()) def __UpperCamelCase ( self : Optional[int] ,a__ : List[str] ,a__ : Union[torch.Tensor, float, int] ,a__ : torch.FloatTensor ,a__ : Optional[torch.FloatTensor] = None ,a__ : Optional[torch.BoolTensor] = None ,a__ : bool = True ,) -> Dict: """simple docstring""" _lowerCAmelCase:Dict = hidden_states.shape[0] _lowerCAmelCase:Any = timestep if not torch.is_tensor(a__): _lowerCAmelCase:List[str] = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device) elif torch.is_tensor(a__) and len(timesteps.shape) == 0: _lowerCAmelCase:Tuple = timesteps[None].to(hidden_states.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase:str = timesteps * torch.ones(a__ ,dtype=timesteps.dtype ,device=timesteps.device) _lowerCAmelCase:List[str] = self.time_proj(a__) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase:Optional[Any] = timesteps_projected.to(dtype=self.dtype) _lowerCAmelCase:str = self.time_embedding(a__) if self.embedding_proj_norm is not None: _lowerCAmelCase:Tuple = self.embedding_proj_norm(a__) _lowerCAmelCase:Optional[int] = self.embedding_proj(a__) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase:List[str] = self.encoder_hidden_states_proj(a__) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''') _lowerCAmelCase:Dict = self.proj_in(a__) _lowerCAmelCase:Union[str, Any] = self.positional_embedding.to(hidden_states.dtype) _lowerCAmelCase:List[str] = [] _lowerCAmelCase:str = 0 if encoder_hidden_states is not None: additional_embeds.append(a__) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape) == 2: _lowerCAmelCase:Optional[Any] = proj_embeddings[:, None, :] if len(hidden_states.shape) == 2: _lowerCAmelCase:Optional[Any] = hidden_states[:, None, :] _lowerCAmelCase:Optional[int] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase:Union[str, Any] = self.prd_embedding.to(hidden_states.dtype).expand(a__ ,-1 ,-1) additional_embeds.append(a__) _lowerCAmelCase:Dict = torch.cat( a__ ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase:Optional[int] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase:Optional[int] = F.pad( a__ ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase:List[str] = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase:int = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 _lowerCAmelCase:str = F.pad(a__ ,(0, self.additional_embeddings) ,value=0.0) _lowerCAmelCase:Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype) _lowerCAmelCase:str = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0) if self.norm_in is not None: _lowerCAmelCase:Union[str, Any] = self.norm_in(a__) for block in self.transformer_blocks: _lowerCAmelCase:Any = block(a__ ,attention_mask=a__) _lowerCAmelCase:int = self.norm_out(a__) if self.prd_embedding is not None: _lowerCAmelCase:List[str] = hidden_states[:, -1] else: _lowerCAmelCase:Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase:int = self.proj_to_clip_embeddings(a__) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=a__) def __UpperCamelCase ( self : Tuple ,a__ : Optional[int]) -> Dict: """simple docstring""" _lowerCAmelCase:Dict = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
227
0
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ ( a__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase_ , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase_ , '''num_heads''' ) ) class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=64 , lowerCamelCase_=3 , lowerCamelCase_=[16, 48, 96] , lowerCamelCase_=[1, 3, 6] , lowerCamelCase_=[1, 2, 10] , lowerCamelCase_=[7, 3, 3] , lowerCamelCase_=[4, 2, 2] , lowerCamelCase_=[2, 1, 1] , lowerCamelCase_=[2, 2, 2] , lowerCamelCase_=[False, False, True] , lowerCamelCase_=[0.0, 0.0, 0.0] , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=2 , ) -> Optional[int]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_sizes lowerCAmelCase__ = patch_stride lowerCAmelCase__ = patch_padding lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_channels lowerCAmelCase__ = embed_dim lowerCAmelCase__ = num_heads lowerCAmelCase__ = stride_kv lowerCAmelCase__ = depth lowerCAmelCase__ = cls_token lowerCAmelCase__ = attention_drop_rate lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: lowerCAmelCase__ = CvtModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = model(lowerCamelCase_ ) lowerCAmelCase__ = (self.image_size, self.image_size) lowerCAmelCase__ , lowerCAmelCase__ = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowerCAmelCase__ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowerCAmelCase__ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = CvtForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Tuple = (CvtModel, CvtForImageClassification) if is_torch_available() else () lowercase__ : List[Any] = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) lowercase__ : Optional[Any] = False lowercase__ : Union[str, Any] = False lowercase__ : List[Any] = False lowercase__ : Dict = False lowercase__ : List[Any] = False def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = CvtModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: return @unittest.skip(reason='''Cvt does not output attentions''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: pass def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: def check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = len(self.model_tester.depth ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: pass @slow def __SCREAMING_SNAKE_CASE ( self ) -> int: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = CvtModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def _snake_case ( ) -> List[Any]: lowerCAmelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> str: lowerCAmelCase__ = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**lowerCamelCase_ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) lowerCAmelCase__ = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) )
98
'''simple docstring''' from manim import * class a__ ( a__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase__ = [mem.copy() for i in range(6 )] lowerCAmelCase__ = [mem.copy() for i in range(6 )] lowerCAmelCase__ = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCAmelCase__ = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCAmelCase__ = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCAmelCase__ = Text('''CPU''' , font_size=24 ) lowerCAmelCase__ = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) lowerCAmelCase__ = [mem.copy() for i in range(1 )] lowerCAmelCase__ = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCAmelCase__ = Text('''GPU''' , font_size=24 ) lowerCAmelCase__ = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.align_to(lowerCamelCase_ , lowerCamelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(lowerCamelCase_ ) lowerCAmelCase__ = [mem.copy() for i in range(6 )] lowerCAmelCase__ = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) lowerCAmelCase__ = Text('''Model''' , font_size=24 ) lowerCAmelCase__ = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) , Create(lowerCamelCase_ , run_time=1 ) , ) lowerCAmelCase__ = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) lowerCAmelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase__ = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=2.5 ) , Write(lowerCamelCase_ ) , Write(lowerCamelCase_ ) ) self.add(lowerCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i, rect in enumerate(lowerCamelCase_ ): lowerCAmelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.7 ) cpu_target.move_to(lowerCamelCase_ ) cpu_target.generate_target() lowerCAmelCase__ = 0.46 / 4 lowerCAmelCase__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCamelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=lowerCamelCase_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=lowerCamelCase_ , buff=0.0 ) cpu_targs.append(lowerCamelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(lowerCamelCase_ ) ) second_animations.append(MoveToTarget(lowerCamelCase_ , run_time=1.5 ) ) self.play(*lowerCamelCase_ ) self.play(*lowerCamelCase_ ) self.wait()
98
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case ( UpperCamelCase_ ): def __init__( self : str , a_ : Optional[Any] , a_ : Optional[Any]=13 , a_ : List[Any]=7 , a_ : Optional[int]=True , a_ : Any=True , a_ : Dict=True , a_ : Tuple=True , a_ : str=True , a_ : Tuple=False , a_ : Optional[int]=False , a_ : Union[str, Any]=False , a_ : int=2 , a_ : Dict=99 , a_ : Union[str, Any]=0 , a_ : str=32 , a_ : Union[str, Any]=5 , a_ : Any=4 , a_ : int=0.1 , a_ : Any=0.1 , a_ : List[str]=512 , a_ : Optional[int]=12 , a_ : Union[str, Any]=2 , a_ : List[Any]=0.02 , a_ : Tuple=3 , a_ : int=4 , a_ : Optional[int]="last" , a_ : List[str]=None , a_ : List[Any]=None , )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Optional[int] = batch_size SCREAMING_SNAKE_CASE__ : Optional[int] = seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] = is_training SCREAMING_SNAKE_CASE__ : str = use_input_lengths SCREAMING_SNAKE_CASE__ : Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE__ : List[str] = gelu_activation SCREAMING_SNAKE_CASE__ : str = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ : Any = causal SCREAMING_SNAKE_CASE__ : Optional[Any] = asm SCREAMING_SNAKE_CASE__ : Union[str, Any] = n_langs SCREAMING_SNAKE_CASE__ : Dict = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = n_special SCREAMING_SNAKE_CASE__ : Any = hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Dict = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : int = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : str = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Dict = initializer_range SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : List[Any] = num_choices SCREAMING_SNAKE_CASE__ : List[Any] = summary_type SCREAMING_SNAKE_CASE__ : Optional[Any] = use_proj SCREAMING_SNAKE_CASE__ : List[str] = scope def __lowercase( self : Optional[int] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Dict = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowercase( self : int )-> Any: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __lowercase( self : List[Any] , a_ : Union[str, Any] , a_ : Any , a_ : Union[str, Any] , a_ : Any , a_ : Union[str, Any] , a_ : List[str] , a_ : List[Any] , a_ : int , a_ : Any , )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = FlaubertModel(config=a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = model(a_ , lengths=a_ , langs=a_ ) SCREAMING_SNAKE_CASE__ : int = model(a_ , langs=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase( self : str , a_ : str , a_ : int , a_ : Union[str, Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : Any , a_ : int , a_ : Tuple , a_ : str , )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaubertWithLMHeadModel(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase( self : Any , a_ : Optional[Any] , a_ : Union[str, Any] , a_ : str , a_ : int , a_ : Union[str, Any] , a_ : List[Any] , a_ : Any , a_ : Any , a_ : Union[str, Any] , )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = FlaubertForQuestionAnsweringSimple(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = model(a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase( self : Tuple , a_ : Tuple , a_ : int , a_ : Optional[Any] , a_ : Optional[int] , a_ : Tuple , a_ : List[Any] , a_ : int , a_ : Optional[int] , a_ : int , )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaubertForQuestionAnswering(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = model( a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , p_mask=a_ , ) SCREAMING_SNAKE_CASE__ : List[Any] = model( a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , ) ((SCREAMING_SNAKE_CASE__) , ) : Optional[Any] = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ , start_positions=a_ , end_positions=a_ ) ((SCREAMING_SNAKE_CASE__) , ) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowercase( self : Dict , a_ : int , a_ : Optional[int] , a_ : Tuple , a_ : Dict , a_ : Any , a_ : List[str] , a_ : str , a_ : List[Any] , a_ : int , )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = FlaubertForSequenceClassification(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = model(a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase( self : List[str] , a_ : Tuple , a_ : str , a_ : Optional[Any] , a_ : List[Any] , a_ : Tuple , a_ : List[Any] , a_ : List[Any] , a_ : Optional[int] , a_ : List[str] , )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.num_labels SCREAMING_SNAKE_CASE__ : Any = FlaubertForTokenClassification(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase( self : Optional[int] , a_ : Union[str, Any] , a_ : str , a_ : List[str] , a_ : Any , a_ : Any , a_ : Any , a_ : List[Any] , a_ : Optional[Any] , a_ : Any , )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_choices SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaubertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Dict = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase( self : Optional[Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE__ : Optional[int] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class snake_case ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): lowercase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowercase_ = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __lowercase( self : Union[str, Any] , a_ : str , a_ : List[Any] , a_ : int , a_ : str , a_ : Union[str, Any] )-> int: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowercase( self : Optional[Any] , a_ : List[Any] , a_ : int , a_ : List[str]=False )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def __lowercase( self : List[str] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[int] = ConfigTester(self , config_class=a_ , emb_dim=37 ) def __lowercase( self : Dict )-> Any: """simple docstring""" self.config_tester.run_common_tests() def __lowercase( self : Tuple )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a_ ) def __lowercase( self : Optional[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a_ ) def __lowercase( self : Union[str, Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a_ ) def __lowercase( self : Union[str, Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a_ ) def __lowercase( self : List[Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a_ ) def __lowercase( self : Dict )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a_ ) def __lowercase( self : Tuple )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a_ ) @slow def __lowercase( self : int )-> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Tuple = FlaubertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def __lowercase( self : str )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : Any = model_class(config=a_ ) SCREAMING_SNAKE_CASE__ : int = self._prepare_for_class(a_ , a_ ) SCREAMING_SNAKE_CASE__ : str = torch.jit.trace( a_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , 'traced_model.pt' ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.jit.load(os.path.join(a_ , 'traced_model.pt' ) , map_location=a_ ) loaded(inputs_dict['input_ids'].to(a_ ) , inputs_dict['attention_mask'].to(a_ ) ) @require_torch class snake_case ( unittest.TestCase ): @slow def __lowercase( self : Union[str, Any] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a_ )[0] SCREAMING_SNAKE_CASE__ : Dict = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a_ ) SCREAMING_SNAKE_CASE__ : str = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a_ , atol=1e-4 ) )
85
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin UpperCamelCase ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class A ( unittest.TestCase, SCREAMING_SNAKE_CASE__ ): """simple docstring""" def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[Any] = load_tool("""text-question-answering""" ) self.tool.setup() UpperCamelCase_ : List[str] = load_tool("""text-question-answering""" , remote=__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = self.tool(__lowerCAmelCase , """What did Hugging Face do in April 2021?""" ) self.assertEqual(__lowerCAmelCase , """launched the BigScience Research Workshop""" ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[Any] = self.remote_tool(__lowerCAmelCase , """What did Hugging Face do in April 2021?""" ) self.assertEqual(__lowerCAmelCase , """launched the BigScience Research Workshop""" ) def _UpperCAmelCase ( self ): UpperCamelCase_ : List[Any] = self.tool(text=__lowerCAmelCase , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(__lowerCAmelCase , """launched the BigScience Research Workshop""" ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Dict = self.remote_tool(text=__lowerCAmelCase , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(__lowerCAmelCase , """launched the BigScience Research Workshop""" )
208
0
from typing import Union import fire import torch from tqdm import tqdm def _snake_case ( __snake_case , __snake_case = "cpu" , __snake_case = None ) -> Any: '''simple docstring''' UpperCAmelCase_ : Dict = torch.load(lowercase__ , map_location=lowercase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowercase__ , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) UpperCAmelCase_ : Dict = v.half() if save_path is None: # overwrite src_path UpperCAmelCase_ : List[Any] = src_path torch.save(lowercase__ , lowercase__ ) if __name__ == "__main__": fire.Fire(convert)
702
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = """ClapFeatureExtractor""" _lowerCamelCase = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self ,lowercase ,lowercase): """simple docstring""" super().__init__(lowercase ,lowercase) def __call__( self ,lowercase=None ,lowercase=None ,lowercase=None ,**lowercase): """simple docstring""" UpperCAmelCase_ : Dict = kwargs.pop("sampling_rate" ,lowercase) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none.") if text is not None: UpperCAmelCase_ : List[str] = self.tokenizer(lowercase ,return_tensors=lowercase ,**lowercase) if audios is not None: UpperCAmelCase_ : str = self.feature_extractor( lowercase ,sampling_rate=lowercase ,return_tensors=lowercase ,**lowercase) if text is not None and audios is not None: UpperCAmelCase_ : Optional[int] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase) ,tensor_type=lowercase) def A_ ( self ,*lowercase ,**lowercase): """simple docstring""" return self.tokenizer.batch_decode(*lowercase ,**lowercase) def A_ ( self ,*lowercase ,**lowercase): """simple docstring""" return self.tokenizer.decode(*lowercase ,**lowercase) @property def A_ ( self): """simple docstring""" UpperCAmelCase_ : str = self.tokenizer.model_input_names UpperCAmelCase_ : str = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
455
0
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="%(message)s") def lowerCamelCase__ ( __lowerCamelCase : int ): return input_array.reshape((input_array.size, 1) ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Dict = np.nan for i in range(__lowerCamelCase ): __UpperCAmelCase : str = features[:, labels == i] __UpperCAmelCase : int = data.mean(1 ) # Centralize the data of class i __UpperCAmelCase : List[Any] = data - column_reshape(__lowerCamelCase ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(__lowerCamelCase , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __UpperCAmelCase : Union[str, Any] = np.dot(__lowerCamelCase , centered_data.T ) return covariance_sum / features.shape[1] def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict ): __UpperCAmelCase : Any = features.mean(1 ) __UpperCAmelCase : Optional[int] = np.nan for i in range(__lowerCamelCase ): __UpperCAmelCase : Any = features[:, labels == i] __UpperCAmelCase : List[str] = data.shape[1] __UpperCAmelCase : str = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(__lowerCamelCase ) - column_reshape(__lowerCamelCase ) , (column_reshape(__lowerCamelCase ) - column_reshape(__lowerCamelCase )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) __UpperCAmelCase : Union[str, Any] = device_data * np.dot( column_reshape(__lowerCamelCase ) - column_reshape(__lowerCamelCase ) , (column_reshape(__lowerCamelCase ) - column_reshape(__lowerCamelCase )).T , ) return covariance_sum / features.shape[1] def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ): if features.any(): __UpperCAmelCase : Tuple = features.mean(1 ) # Center the dataset __UpperCAmelCase : Any = features - np.reshape(__lowerCamelCase , (data_mean.size, 1) ) __UpperCAmelCase : int = np.dot(__lowerCamelCase , centered_data.T ) / features.shape[1] __UpperCAmelCase : Tuple = np.linalg.eigh(__lowerCamelCase ) # Take all the columns in the reverse order (-1), and then takes only the first __UpperCAmelCase : str = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __UpperCAmelCase : Optional[Any] = np.dot(filtered_eigenvectors.T , __lowerCamelCase ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=__lowerCamelCase ) logging.error("""Dataset empty""" ) raise AssertionError def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : str ): assert classes > dimensions # Check if features have been already loaded if features.any: __UpperCAmelCase : Optional[int] = eigh( covariance_between_classes(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , covariance_within_classes(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) __UpperCAmelCase : Optional[int] = eigenvectors[:, ::-1][:, :dimensions] __UpperCAmelCase : Tuple = np.linalg.svd(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = svd_matrix[:, 0:dimensions] __UpperCAmelCase : Dict = np.dot(filtered_svd_matrix.T , __lowerCamelCase ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=__lowerCamelCase ) logging.error("""Dataset empty""" ) raise AssertionError def lowerCamelCase__ ( ): __UpperCAmelCase : Optional[Any] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __UpperCAmelCase : int = np.array([0, 0, 0, 1, 1] ) __UpperCAmelCase : str = 2 __UpperCAmelCase : Union[str, Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(__lowerCamelCase ) as error_info: __UpperCAmelCase : Union[str, Any] = linear_discriminant_analysis( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if isinstance(__lowerCamelCase , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def lowerCamelCase__ ( ): __UpperCAmelCase : List[Any] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __UpperCAmelCase : int = 2 __UpperCAmelCase : List[Any] = np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(__lowerCamelCase ) as error_info: __UpperCAmelCase : Dict = principal_component_analysis(__lowerCamelCase , __lowerCamelCase ) if not np.allclose(__lowerCamelCase , __lowerCamelCase ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
63
"""simple docstring""" def lowercase__(A ) ->str: """simple docstring""" if isinstance(A , A ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(A , A ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" lowercase__ : Tuple= False if num < 0: lowercase__ : str= True lowercase__ : Dict= -num lowercase__ : list[int]= [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(A ) for e in binary ) return "0b" + "".join(str(A ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
218
0
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCamelCase ) , 'Tatoeba directory does not exist.' ) class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCamelCase ) @slow def lowercase__ ( self ) -> Any: """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def lowercase__ ( self ) -> Tuple: """simple docstring""" snake_case__ ,snake_case__ : Union[str, Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=lowerCamelCase ) assert mmeta["long_pair"] == "heb-eng"
694
'''simple docstring''' from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=0 ) -> Tuple: """simple docstring""" snake_case__ : Optional[Any] = 1.0 if scale is None else scale snake_case__ : Dict = 0.0 if loc is None else loc super().__init__(lowerCamelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase )] ) @property def lowercase__ ( self ) -> Dict: """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" return self.base_dist.variance * self.scale**2 @property def lowercase__ ( self ) -> List[str]: """simple docstring""" return self.variance.sqrt() class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> None: """simple docstring""" super().__init__(**lowerCamelCase ) snake_case__ : Tuple = args_dim snake_case__ : str = nn.ModuleList([nn.Linear(lowerCamelCase , lowerCamelCase ) for dim in args_dim.values()] ) snake_case__ : Optional[int] = domain_map def lowercase__ ( self , lowerCamelCase ) -> Tuple[torch.Tensor]: """simple docstring""" snake_case__ : Any = [proj(lowerCamelCase ) for proj in self.proj] return self.domain_map(*lowerCamelCase ) class snake_case ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" super().__init__() snake_case__ : Tuple = function def lowercase__ ( self , lowerCamelCase , *lowerCamelCase ) -> Union[str, Any]: """simple docstring""" return self.function(lowerCamelCase , *lowerCamelCase ) class snake_case : """simple docstring""" _lowerCAmelCase = 42 _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self , lowerCamelCase = 1 ) -> None: """simple docstring""" snake_case__ : Optional[Any] = dim snake_case__ : Tuple = {k: dim * self.args_dim[k] for k in self.args_dim} def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" if self.dim == 1: return self.distribution_class(*lowerCamelCase ) else: return Independent(self.distribution_class(*lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , ) -> Distribution: """simple docstring""" snake_case__ : List[Any] = self._base_distribution(lowerCamelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase , loc=lowerCamelCase , scale=lowerCamelCase , event_dim=self.event_dim ) @property def lowercase__ ( self ) -> Tuple: """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def lowercase__ ( self ) -> int: """simple docstring""" return len(self.event_shape ) @property def lowercase__ ( self ) -> float: """simple docstring""" return 0.0 def lowercase__ ( self , lowerCamelCase ) -> nn.Module: """simple docstring""" return ParameterProjection( in_features=lowerCamelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowercase__ ( self , *lowerCamelCase ) -> Any: """simple docstring""" raise NotImplementedError() @staticmethod def lowercase__ ( lowerCamelCase ) -> torch.Tensor: """simple docstring""" return (x + torch.sqrt(torch.square(lowerCamelCase ) + 4.0 )) / 2.0 class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"df": 1, "loc": 1, "scale": 1} _lowerCAmelCase = StudentT @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: """simple docstring""" snake_case__ : Tuple = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) snake_case__ : Optional[int] = 2.0 + cls.squareplus(lowerCamelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"loc": 1, "scale": 1} _lowerCAmelCase = Normal @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = {"total_count": 1, "logits": 1} _lowerCAmelCase = NegativeBinomial @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase ) -> Dict: """simple docstring""" snake_case__ : List[str] = cls.squareplus(lowerCamelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowercase__ ( self , lowerCamelCase ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : str = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) else: return Independent(self.distribution_class(total_count=lowerCamelCase , logits=lowerCamelCase ) , 1 ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ) -> Distribution: """simple docstring""" snake_case__ ,snake_case__ : Optional[Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
694
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def snake_case_ (UpperCamelCase : Tuple ): '''simple docstring''' _a = os.path.join(args.tf_model_dir , '''parameters.json''' ) _a = json.loads(open(UpperCamelCase ).read() ) if not params: raise ValueError( f'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith('''.pt''' ): _a = args.output + '''.pt''' _a = OrderedDict() with tf.device('''/CPU:0''' ): _a = tf.train.load_checkpoint(args.tf_model_dir ) _a = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _a = reader.get_tensor(UpperCamelCase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): _a = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): _a = 8 _a = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name.startswith('''model/moe''' ): _a = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): _a = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/softmlp/kernel''' ): _a = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): _a = key_name[-9:-7] for i in range(16 ): _a = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) _a = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _a = torch.tensor(UpperCamelCase ) elif key_name.startswith('''model/mlp''' ): _a = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): _a = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/p1/bias''' ): _a = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/p2/kernel''' ): _a = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/p2/bias''' ): _a = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) elif key_name.startswith('''model/ln''' ): _a = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): _a = '''model.blocks.%d.feed_forward.norm.bias''' % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/g''' ): _a = '''model.blocks.%d.feed_forward.norm.weight''' % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) elif key_name.startswith('''model/att''' ): _a = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): _a = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _a = state[:, 0, :, :] _a = state[:, 1, :, :] _a = state[:, 2, :, :] _a = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player _a = torch.tensor(UpperCamelCase ) _a = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player _a = torch.tensor(UpperCamelCase ) _a = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/o/kernel''' ): _a = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player _a = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name.startswith('''model/an''' ): _a = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): _a = '''model.blocks.%d.self_attn.norm.bias''' % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) elif key_name.endswith('''/g''' ): _a = '''model.blocks.%d.self_attn.norm.weight''' % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): _a = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] _a = '''model.%s.weight''' % nlayer _a = vnp.copy() # same in embedded _a = torch.tensor(UpperCamelCase ) if key_name.startswith('''model/wte''' ): _a = '''lm_head.weight''' _a = vnp.copy() # same in embedded _a = torch.tensor(UpperCamelCase ) elif key_name.startswith('''model/wob''' ): _a = '''final_logits_bias''' _a = vnp.copy() # same in embedded _a = state.reshape((1, -1) ) _a = torch.tensor(UpperCamelCase ) elif key_name == "model/dense/kernel": _a = '''model.last_project.weight''' _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase ) elif key_name == "model/dense_1/bias": _a = '''model.last_project.bias''' _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase ) torch.save(UpperCamelCase , args.output ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') _snake_case : List[str] = parser.parse_args() convert_tf_gptsan_to_pt(args)
22
def _lowerCamelCase ( __A : str ) -> list: return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__A ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('doctest').testmod()
485
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup snake_case_ = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def _lowerCamelCase( UpperCamelCase__ : str = "mumbai" ): A : Any = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): A : int = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() A : List[str] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("""Bangalore"""), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
717
'''simple docstring''' from math import pi def _lowerCamelCase( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
537
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = (3, 32, 128) __SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE : List[Any] = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on __SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(_A , range(len(_A ) ) ) ) __SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } __SCREAMING_SNAKE_CASE : Dict = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_A , _A ) def UpperCAmelCase__ ( self : Optional[Any] , **_A : Optional[Any] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : int , **_A : List[str] ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __SCREAMING_SNAKE_CASE : Dict = Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) return image_input def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Tuple = MgpstrProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Any = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : int = self.get_image_processor() __SCREAMING_SNAKE_CASE : str = MgpstrProcessor(tokenizer=_A , image_processor=_A ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : int = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : str = self.get_image_processor(do_normalize=_A , padding_value=1.0 ) __SCREAMING_SNAKE_CASE : Optional[int] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_A , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : str = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : Tuple = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Any = image_processor(_A , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : int = processor(images=_A , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : int = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : str = '''test''' __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=_A ) __SCREAMING_SNAKE_CASE : Any = tokenizer(_A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : str = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''test''' __SCREAMING_SNAKE_CASE : str = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : str = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : Dict = processor.char_decode(_A ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.batch_decode(_A ) __SCREAMING_SNAKE_CASE : Tuple = [seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : List[str] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = MgpstrProcessor(tokenizer=_A , image_processor=_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(1 , 27 , 38 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(1 , 27 , 5_0257 ) __SCREAMING_SNAKE_CASE : str = torch.randn(1 , 27 , 3_0522 ) __SCREAMING_SNAKE_CASE : str = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
74
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case : List[Any] = logging.get_logger(__name__) def a_ ( __a , __a=False ): A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" A__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def a_ ( __a , __a , __a=False ): for i in range(config.num_hidden_layers ): if base_model: A__ = '''''' else: A__ = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) A__ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[ : config.hidden_size, : ] A__ = in_proj_bias[: config.hidden_size] A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = in_proj_bias[-config.hidden_size :] def a_ ( __a , __a , __a ): A__ = dct.pop(__a ) A__ = val def a_ ( ): A__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A__ = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def a_ ( __a , __a ): A__ = DeiTConfig() # all deit models have fine-tuned heads A__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size A__ = 1000 A__ = '''huggingface/label-files''' A__ = '''imagenet-1k-id2label.json''' A__ = json.load(open(hf_hub_download(__a , __a , repo_type='''dataset''' ) , '''r''' ) ) A__ = {int(__a ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = int(deit_name[-6:-4] ) A__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): A__ = 192 A__ = 768 A__ = 12 A__ = 3 elif deit_name[9:].startswith('''small''' ): A__ = 384 A__ = 1536 A__ = 12 A__ = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): A__ = 1024 A__ = 4096 A__ = 24 A__ = 16 # load original model from timm A__ = timm.create_model(__a , pretrained=__a ) timm_model.eval() # load state_dict of original model, remove and rename some keys A__ = timm_model.state_dict() A__ = create_rename_keys(__a , __a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , __a ) # load HuggingFace model A__ = DeiTForImageClassificationWithTeacher(__a ).eval() model.load_state_dict(__a ) # Check outputs on an image, prepared by DeiTImageProcessor A__ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 A__ = DeiTImageProcessor(size=__a , crop_size=config.image_size ) A__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) A__ = encoding['''pixel_values'''] A__ = model(__a ) A__ = timm_model(__a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__a , outputs.logits , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__a ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__a ) if __name__ == "__main__": __snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __snake_case : List[Any] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
571
0
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version UpperCamelCase__ : Dict = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize UpperCamelCase__ : Dict = "\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n" UpperCamelCase__ : Optional[int] = "\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n" UpperCamelCase__ : Tuple = "\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n 'meteor': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric('meteor')\n >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"]\n >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results[\"meteor\"], 4))\n 0.6944\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def snake_case ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence' ), 'references': datasets.Value('string' ,id='sequence' ), } ) ,codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] ,reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] ,) def snake_case ( self ,snake_case__ ): import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def snake_case ( self ,snake_case__ ,snake_case__ ,snake_case__=0.9 ,snake_case__=3 ,snake_case__=0.5 ): if NLTK_VERSION >= version.Version('3.6.5' ): SCREAMING_SNAKE_CASE_ : List[Any] = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase_ ) ,word_tokenize(lowerCamelCase_ ) ,alpha=lowerCamelCase_ ,beta=lowerCamelCase_ ,gamma=lowerCamelCase_ ) for ref, pred in zip(lowerCamelCase_ ,lowerCamelCase_ ) ] else: SCREAMING_SNAKE_CASE_ : Dict = [ meteor_score.single_meteor_score(lowerCamelCase_ ,lowerCamelCase_ ,alpha=lowerCamelCase_ ,beta=lowerCamelCase_ ,gamma=lowerCamelCase_ ) for ref, pred in zip(lowerCamelCase_ ,lowerCamelCase_ ) ] return {"meteor": np.mean(lowerCamelCase_ )}
718
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : int=() , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[int]="no" , lowerCamelCase_ : Optional[Any]="29500" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : str = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : Dict = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : Optional[int] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , lowerCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='TPU' ) print(F'Launching a training on {num_processes} TPU cores.' ) xmp.spawn(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*lowerCamelCase_ ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port=lowerCamelCase_ , mixed_precision=lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : int = PrepareForLaunch(lowerCamelCase_ , distributed_type='MULTI_GPU' ) print(F'Launching training on {num_processes} GPUs.' ) try: start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : Optional[Any] = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple=() , lowerCamelCase_ : str=2 ) -> Union[str, Any]: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCamelCase_ , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ): SCREAMING_SNAKE_CASE_ : Tuple = PrepareForLaunch(lowerCamelCase_ , debug=lowerCamelCase_ ) start_processes(lowerCamelCase_ , args=lowerCamelCase_ , nprocs=lowerCamelCase_ , start_method='fork' )
685
0
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline __lowerCamelCase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( A__ ): def __init__( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ) -> Any: '''simple docstring''' super().__init__() self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 1_00 , UpperCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : bool = True , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if audio_length_in_s is None: UpperCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate UpperCAmelCase = audio_length_in_s * self.unet.config.sample_rate UpperCAmelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' F' {3 * down_scale_factor / self.unet.config.sample_rate}.' ) UpperCAmelCase = int(UpperCamelCase__ ) if sample_size % down_scale_factor != 0: UpperCAmelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' F' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' " process." ) UpperCAmelCase = int(UpperCamelCase__ ) UpperCAmelCase = next(iter(self.unet.parameters() ) ).dtype UpperCAmelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(UpperCamelCase__ )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) UpperCAmelCase = randn_tensor(UpperCamelCase__ , generator=UpperCamelCase__ , device=self.device , dtype=UpperCamelCase__ ) # set step values self.scheduler.set_timesteps(UpperCamelCase__ , device=audio.device ) UpperCAmelCase = self.scheduler.timesteps.to(UpperCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # 2. compute previous image: x_t -> t_t-1 UpperCAmelCase = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample UpperCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() UpperCAmelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=UpperCamelCase__ )
323
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __lowerCamelCase : List[Any] = random.Random() def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_=1.0 , lowerCamelCase_=None , lowerCamelCase_=None ) -> Tuple: if rng is None: UpperCAmelCase = global_rng UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __magic_name__ ( unittest.TestCase ): def __init__( self : Union[str, Any] , UpperCamelCase__ : int , UpperCamelCase__ : Any=7 , UpperCamelCase__ : Union[str, Any]=4_00 , UpperCamelCase__ : Optional[Any]=20_00 , UpperCamelCase__ : str=1 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : int=1_60_00 , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Dict=80 , UpperCamelCase__ : List[str]=16 , UpperCamelCase__ : int=64 , UpperCamelCase__ : Dict="hann_window" , UpperCamelCase__ : Dict=80 , UpperCamelCase__ : Any=76_00 , UpperCamelCase__ : List[str]=1e-1_0 , UpperCamelCase__ : Optional[int]=True , ) -> List[str]: '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = min_seq_length UpperCAmelCase = max_seq_length UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase = feature_size UpperCAmelCase = padding_value UpperCAmelCase = sampling_rate UpperCAmelCase = do_normalize UpperCAmelCase = num_mel_bins UpperCAmelCase = hop_length UpperCAmelCase = win_length UpperCAmelCase = win_function UpperCAmelCase = fmin UpperCAmelCase = fmax UpperCAmelCase = mel_floor UpperCAmelCase = return_attention_mask def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : List[str]=False ) -> Tuple: '''simple docstring''' def _flatten(UpperCamelCase__ : List[Any] ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: UpperCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : int=False ) -> Dict: '''simple docstring''' if equal_length: UpperCAmelCase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch class __magic_name__ ( A__, unittest.TestCase ): lowercase : Optional[Any] =SpeechTaFeatureExtractor def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = SpeechTaFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCamelCase__ : Dict ) -> Union[str, Any]: '''simple docstring''' self.assertTrue(np.all(np.mean(UpperCamelCase__ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase__ , axis=0 ) - 1 ) < 1e-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCAmelCase = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values UpperCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test batched UpperCAmelCase = feat_extract(UpperCamelCase__ , return_tensors="np" ).input_values UpperCAmelCase = feat_extract(UpperCamelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCAmelCase = ["longest", "max_length", "do_not_pad"] UpperCAmelCase = [None, 16_00, None] for max_length, padding in zip(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase = feat_extract(UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors="np" ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = range(8_00 , 14_00 , 2_00 ) UpperCAmelCase = [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase = ["longest", "max_length", "do_not_pad"] UpperCAmelCase = [None, 16_00, None] for max_length, padding in zip(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase = feat_extract(UpperCamelCase__ , max_length=UpperCamelCase__ , padding=UpperCamelCase__ ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCAmelCase = feat_extract( UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=10_00 , padding="max_length" , return_tensors="np" ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCAmelCase = feat_extract( UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=10_00 , padding="longest" , return_tensors="np" ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCAmelCase = feat_extract( UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=20_00 , padding="longest" , return_tensors="np" ) UpperCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str: '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase = np.random.rand(1_00 ).astype(np.floataa ) UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Any: '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] UpperCAmelCase = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase = feature_extractor(audio_target=UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test batched UpperCAmelCase = feature_extractor(UpperCamelCase__ , return_tensors="np" ).input_values UpperCAmelCase = feature_extractor(UpperCamelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] UpperCAmelCase = np.asarray(UpperCamelCase__ ) UpperCAmelCase = feature_extractor(UpperCamelCase__ , return_tensors="np" ).input_values UpperCAmelCase = feature_extractor(UpperCamelCase__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(UpperCamelCase__ ) == len(UpperCamelCase__ ) for x, y in zip(UpperCamelCase__ , processed_features[input_name] ) ) ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=UpperCamelCase__ ) UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=UpperCamelCase__ ) UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) UpperCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase = feat_extract.num_mel_bins # hack! UpperCAmelCase = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="np" )[input_name] UpperCAmelCase = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase = self.feat_extract_dict UpperCAmelCase = True UpperCAmelCase = self.feature_extraction_class(**UpperCamelCase__ ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = [len(UpperCamelCase__ ) for x in speech_inputs] UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase = feat_extract.num_mel_bins # hack! UpperCAmelCase = feat_extract.pad(UpperCamelCase__ , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , UpperCamelCase__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = self.feat_extract_dict UpperCAmelCase = True UpperCAmelCase = self.feature_extraction_class(**UpperCamelCase__ ) UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase = [len(UpperCamelCase__ ) for x in speech_inputs] UpperCAmelCase = feat_extract.model_input_names[0] UpperCAmelCase = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase = min(UpperCamelCase__ ) UpperCAmelCase = feat_extract.num_mel_bins # hack! UpperCAmelCase = feat_extract.pad( UpperCamelCase__ , padding="max_length" , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="np" ) self.assertIn("attention_mask" , UpperCamelCase__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : str ) -> Any: '''simple docstring''' from datasets import load_dataset UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCAmelCase = ds.sort("id" ).select(range(UpperCamelCase__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase = torch.tensor( [2.3_8_0_4e-0_3, 2.0_7_5_2e-0_3, 1.9_8_3_6e-0_3, 2.1_0_5_7e-0_3, 1.6_1_7_4e-0_3, 3.0_5_1_8e-0_4, 9.1_5_5_3e-0_5, 3.3_5_6_9e-0_4, 9.7_6_5_6e-0_4, 1.8_3_1_1e-0_3, 2.0_1_4_2e-0_3, 2.1_0_5_7e-0_3, 1.7_3_9_5e-0_3, 4.5_7_7_6e-0_4, -3.9_6_7_3e-0_4, 4.5_7_7_6e-0_4, 1.0_0_7_1e-0_3, 9.1_5_5_3e-0_5, 4.8_8_2_8e-0_4, 1.1_5_9_7e-0_3, 7.3_2_4_2e-0_4, 9.4_6_0_4e-0_4, 1.8_0_0_5e-0_3, 1.8_3_1_1e-0_3, 8.8_5_0_1e-0_4, 4.2_7_2_5e-0_4, 4.8_8_2_8e-0_4, 7.3_2_4_2e-0_4, 1.0_9_8_6e-0_3, 2.1_0_5_7e-0_3] ) # fmt: on UpperCAmelCase = self._load_datasamples(1 ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = feature_extractor(UpperCamelCase__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 9_36_80) ) self.assertTrue(torch.allclose(input_values[0, :30] , UpperCamelCase__ , atol=1e-6 ) ) def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]: '''simple docstring''' UpperCAmelCase = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on UpperCAmelCase = self._load_datasamples(1 ) UpperCAmelCase = SpeechTaFeatureExtractor() UpperCAmelCase = feature_extractor(audio_target=UpperCamelCase__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 3_66, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , UpperCamelCase__ , atol=1e-4 ) )
323
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , *, lowerCAmelCase : int = 4 , lowerCAmelCase : int = 768 , lowerCAmelCase : int , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : str = nn.Parameter(torch.zeros(lowerCAmelCase)) # parameters for additional clip time embeddings _snake_case : List[str] = nn.Linear(lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.Linear(lowerCAmelCase , lowerCAmelCase) # parameters for encoder hidden states _snake_case : int = clip_extra_context_tokens _snake_case : Any = nn.Linear( lowerCAmelCase , self.clip_extra_context_tokens * cross_attention_dim) _snake_case : Dict = nn.Linear(lowerCAmelCase , lowerCAmelCase) _snake_case : Union[str, Any] = nn.LayerNorm(lowerCAmelCase) def UpperCamelCase_ ( self : str , *, lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict) -> int: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _snake_case : Dict = image_embeddings.shape[0] _snake_case : int = self.learned_classifier_free_guidance_embeddings.unsqueeze(0) _snake_case : str = classifier_free_guidance_embeddings.expand( lowerCAmelCase , -1) _snake_case : Union[str, Any] = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _snake_case : List[Any] = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _snake_case : List[Any] = self.embedding_proj(lowerCAmelCase) _snake_case : Union[str, Any] = self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase) _snake_case : Optional[Any] = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _snake_case : Tuple = self.clip_extra_context_tokens_proj(lowerCAmelCase) _snake_case : Union[str, Any] = clip_extra_context_tokens.reshape(lowerCAmelCase , -1 , self.clip_extra_context_tokens) _snake_case : str = clip_extra_context_tokens.permute(0 , 2 , 1) _snake_case : str = self.encoder_hidden_states_proj(lowerCAmelCase) _snake_case : Optional[int] = self.text_encoder_hidden_states_norm(lowerCAmelCase) _snake_case : Optional[Any] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1) return text_encoder_hidden_states, additive_clip_time_embeddings
198
import sys a__ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowercase ( SCREAMING_SNAKE_CASE__ : str = N ) -> int: _snake_case : int = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE__ ) - 12 ): _snake_case : Optional[int] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _snake_case : List[str] = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
198
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _lowercase : '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_=13 ,lowerCamelCase_=7 ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=99 ,lowerCamelCase_=64 ,lowerCamelCase_=5 ,lowerCamelCase_=4 ,lowerCamelCase_=37 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=512 ,lowerCamelCase_=16 ,lowerCamelCase_=2 ,lowerCamelCase_=0.02 ,lowerCamelCase_=3 ,lowerCamelCase_=4 ,lowerCamelCase_=None ,) -> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = parent UpperCAmelCase__ : int = batch_size UpperCAmelCase__ : int = seq_length UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Optional[Any] = use_input_mask UpperCAmelCase__ : Union[str, Any] = use_token_type_ids UpperCAmelCase__ : Tuple = use_labels UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : Tuple = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : List[Any] = hidden_act UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase__ : Optional[Any] = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Union[str, Any] = type_sequence_label_size UpperCAmelCase__ : str = initializer_range UpperCAmelCase__ : Union[str, Any] = num_labels UpperCAmelCase__ : Optional[Any] = num_choices UpperCAmelCase__ : List[Any] = scope UpperCAmelCase__ : Tuple = vocab_size - 1 def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ : Dict = None if self.use_input_mask: UpperCAmelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase__ : List[str] = self.get_config() return config, input_ids, input_mask, token_labels def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,pad_token_id=self.pad_token_id ,) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.prepare_config_and_inputs() UpperCAmelCase__ : List[str] = True return config, input_ids, input_mask, token_labels def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : List[str] = GPTNeoXModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase__ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ) UpperCAmelCase__ : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> int: '''simple docstring''' UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Dict = GPTNeoXModel(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase__ : Tuple = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase__ : Dict = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Union[str, Any] = GPTNeoXForQuestionAnswering(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase__ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : int = self.num_labels UpperCAmelCase__ : Optional[int] = GPTNeoXForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase__ : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase__ : Dict = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.num_labels UpperCAmelCase__ : Dict = GPTNeoXForTokenClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase__ : Dict = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> int: '''simple docstring''' UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : List[str] = GPTNeoXForCausalLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # first forward pass UpperCAmelCase__ : str = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,use_cache=lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase__ : Optional[int] = ids_tensor((self.batch_size, 3) ,config.vocab_size ) UpperCAmelCase__ : List[str] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and UpperCAmelCase__ : Optional[int] = torch.cat([input_ids, next_tokens] ,dim=-1 ) UpperCAmelCase__ : int = torch.cat([input_mask, next_mask] ,dim=-1 ) UpperCAmelCase__ : Tuple = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,output_hidden_states=lowerCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = output_from_no_past['''hidden_states'''][0] UpperCAmelCase__ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,past_key_values=lowerCamelCase_ ,output_hidden_states=lowerCamelCase_ ,)['''hidden_states'''][0] # select random slice UpperCAmelCase__ : Optional[int] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() UpperCAmelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase__ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-3 ) ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : List[str] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = config_and_inputs UpperCAmelCase__ : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase_ : Any = (GPTNeoXForCausalLM,) if is_torch_available() else () UpperCAmelCase_ : Dict = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : Dict = False UpperCAmelCase_ : Union[str, Any] = False def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = GPTNeoXModelTester(self ) UpperCAmelCase__ : int = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=64 ,num_attention_heads=8 ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase__ : List[str] = None self.model_tester.create_and_check_model_as_decoder(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Tuple = ids_tensor([1, 10] ,config.vocab_size ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase__ : Union[str, Any] = GPTNeoXModel(lowerCamelCase_ ) original_model.to(lowerCamelCase_ ) original_model.eval() UpperCAmelCase__ : Optional[int] = original_model(lowerCamelCase_ ).last_hidden_state UpperCAmelCase__ : int = original_model(lowerCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase__ : Union[str, Any] = {'''type''': scaling_type, '''factor''': 10.0} UpperCAmelCase__ : Union[str, Any] = GPTNeoXModel(lowerCamelCase_ ) scaled_model.to(lowerCamelCase_ ) scaled_model.eval() UpperCAmelCase__ : int = scaled_model(lowerCamelCase_ ).last_hidden_state UpperCAmelCase__ : str = scaled_model(lowerCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-5 ) ) else: self.assertFalse(torch.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCamelCase_ ,lowerCamelCase_ ,atol=1e-5 ) ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: UpperCAmelCase__ : str = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCamelCase_ ) UpperCAmelCase__ : Any = tokenizer('''My favorite food is''' ,return_tensors='''pt''' ).to(lowerCamelCase_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 UpperCAmelCase__ : Tuple = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' UpperCAmelCase__ : Any = model.generate(**lowerCamelCase_ ,do_sample=lowerCamelCase_ ,max_new_tokens=20 ) UpperCAmelCase__ : Optional[int] = tokenizer.batch_decode(lowerCamelCase_ )[0] self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ )
614
'''simple docstring''' # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCamelCase__ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model UpperCamelCase__ : str = { # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.15}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names UpperCamelCase__ : Tuple = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCamelCase__ : Tuple = 'facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: UpperCamelCase__ : Tuple = 'allenai' def __UpperCamelCase( _A : int ): '''simple docstring''' # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase__ : int = dict((re.sub(R'''@@$''' , '''''' , _A ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , _A ), v) for k, v in d.items() ) UpperCAmelCase__ : List[str] = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] UpperCAmelCase__ : Optional[Any] = d[k] # restore return da def __UpperCamelCase( _A : Tuple , _A : List[Any] ): '''simple docstring''' # prep assert os.path.exists(_A ) os.makedirs(_A , exist_ok=_A ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCAmelCase__ : Dict = basename(_A ) UpperCAmelCase__ : List[str] = dirname(_A ) UpperCAmelCase__ : Union[str, Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel UpperCAmelCase__ : Dict = cls.hub_models() UpperCAmelCase__ : Dict = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} UpperCAmelCase__ : int = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) UpperCAmelCase__ : Union[str, Any] = hub_utils.from_pretrained( _A , _A , _A , archive_map=_A , **_A ) UpperCAmelCase__ : List[Any] = vars(chkpt['''args''']['''model'''] ) UpperCAmelCase__ : str = args['''source_lang'''] UpperCAmelCase__ : Tuple = args['''target_lang'''] UpperCAmelCase__ : Optional[int] = dirname(_A ) UpperCAmelCase__ : int = basename(_A ) # dicts UpperCAmelCase__ : List[Any] = os.path.join(_A , F'''dict.{src_lang}.txt''' ) UpperCAmelCase__ : Tuple = os.path.join(_A , F'''dict.{tgt_lang}.txt''' ) UpperCAmelCase__ : int = Dictionary.load(_A ) UpperCAmelCase__ : Optional[int] = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase__ : List[Any] = len(_A ) UpperCAmelCase__ : str = os.path.join(_A , '''vocab-src.json''' ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab UpperCAmelCase__ : Tuple = True for k in src_vocab.keys(): if not k.islower(): UpperCAmelCase__ : int = False break UpperCAmelCase__ : str = Dictionary.load(_A ) UpperCAmelCase__ : Tuple = rewrite_dict_keys(tgt_dict.indices ) UpperCAmelCase__ : List[str] = len(_A ) UpperCAmelCase__ : Dict = os.path.join(_A , '''vocab-tgt.json''' ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # merges_file (bpecodes) UpperCAmelCase__ : Tuple = os.path.join(_A , VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" UpperCAmelCase__ : Dict = os.path.join(_A , _A ) if os.path.exists(_A ): break with open(_A , encoding='''utf-8''' ) as fin: UpperCAmelCase__ : Optional[Any] = fin.read() UpperCAmelCase__ : List[str] = re.sub(R''' \d+$''' , '''''' , _A , 0 , re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as fout: fout.write(_A ) # model config UpperCAmelCase__ : Optional[int] = os.path.join(_A , '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}''' UpperCAmelCase__ : Optional[Any] = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.0_2, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with UpperCAmelCase__ : Optional[int] = 5 UpperCAmelCase__ : Optional[Any] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: UpperCAmelCase__ : str = best_score_hparams[model_dir]['''length_penalty'''] else: UpperCAmelCase__ : Dict = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # tokenizer config UpperCAmelCase__ : List[str] = os.path.join(_A , _A ) UpperCAmelCase__ : Any = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 10_24, '''do_lower_case''': do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_A , ensure_ascii=_A , indent=_A ) ) # model UpperCAmelCase__ : Dict = chkpt['''models'''][0] UpperCAmelCase__ : Any = model.state_dict() # rename keys to start with 'model.' UpperCAmelCase__ : Tuple = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys UpperCAmelCase__ : Union[str, Any] = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(_A , _A ) UpperCAmelCase__ : List[str] = FSMTConfig.from_pretrained(_A ) UpperCAmelCase__ : int = FSMTForConditionalGeneration(_A ) # check that it loads ok model_new.load_state_dict(_A , strict=_A ) # save UpperCAmelCase__ : List[str] = os.path.join(_A , _A ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(_A , _A ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase__ : List[str] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
614
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( snake_case_ ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_, scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__(self, lowerCamelCase_ = 1, lowerCamelCase_ = 1_0_0, lowerCamelCase_ = None, lowerCamelCase_ = None, lowerCamelCase_ = True, ): '''simple docstring''' if audio_length_in_s is None: lowerCamelCase__ : str = self.unet.config.sample_size / self.unet.config.sample_rate lowerCamelCase__ : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate lowerCamelCase__ : str = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' f''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) lowerCamelCase__ : Dict = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: lowerCamelCase__ : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' f''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ' process.' ) lowerCamelCase__ : Optional[Any] = int(lowerCamelCase_ ) lowerCamelCase__ : List[str] = next(iter(self.unet.parameters() ) ).dtype lowerCamelCase__ : Union[str, Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_, lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase__ : Union[str, Any] = randn_tensor(lowerCamelCase_, generator=lowerCamelCase_, device=self.device, dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_, device=audio.device ) lowerCamelCase__ : int = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowerCamelCase__ : List[Any] = self.unet(lowerCamelCase_, lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 lowerCamelCase__ : List[str] = self.scheduler.step(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ).prev_sample lowerCamelCase__ : Union[str, Any] = audio.clamp(-1, 1 ).float().cpu().numpy() lowerCamelCase__ : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
711
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase_ : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=10 , _UpperCAmelCase=[8, 16, 32, 64] , _UpperCAmelCase=[1, 1, 2, 1] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=["stage2", "stage3", "stage4"] , _UpperCAmelCase=[2, 3, 4] , _UpperCAmelCase=1 , ): """simple docstring""" a_ = parent a_ = batch_size a_ = image_size a_ = num_channels a_ = embeddings_size a_ = hidden_sizes a_ = depths a_ = is_training a_ = use_labels a_ = hidden_act a_ = num_labels a_ = scope a_ = len(_UpperCAmelCase ) a_ = out_features a_ = out_indices a_ = num_groups def lowercase__ ( self ): """simple docstring""" a_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.num_labels ) a_ = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = BitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() a_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = self.num_labels a_ = BitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() a_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = BitBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() a_ = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None a_ = None a_ = BitBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() a_ = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase__ ( self ): """simple docstring""" a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase_ ( UpperCamelCase__ ,UpperCamelCase__ ,unittest.TestCase): """simple docstring""" snake_case_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () snake_case_ = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def lowercase__ ( self ): """simple docstring""" a_ = BitModelTester(self ) a_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="""Bit does not output attentions""" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(_UpperCAmelCase ) a_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ = [*signature.parameters.keys()] a_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self ): """simple docstring""" a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self ): """simple docstring""" a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def lowercase__ ( self ): """simple docstring""" a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ = model_class(config=_UpperCAmelCase ) for name, module in model.named_modules(): if isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): a_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): a_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) a_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a_ = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: a_ = layer_type a_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = BitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowerCamelCase_ ( ): """simple docstring""" a_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" a_ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCAmelCase ) a_ = self.default_image_processor a_ = prepare_img() a_ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): a_ = model(**_UpperCAmelCase ) # verify the logits a_ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) a_ = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @require_torch class lowercase_ ( UpperCamelCase__ ,unittest.TestCase): """simple docstring""" snake_case_ = (BitBackbone,) if is_torch_available() else () snake_case_ = BitConfig snake_case_ = False def lowercase__ ( self ): """simple docstring""" a_ = BitModelTester(self )
483
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[str] =logging.get_logger(__name__) A_ : Union[str, Any] ={} class lowercase_ ( UpperCamelCase__): """simple docstring""" snake_case_ = '''llama''' snake_case_ = ['''past_key_values'''] def __init__( self , _UpperCAmelCase=32_000 , _UpperCAmelCase=4_096 , _UpperCAmelCase=11_008 , _UpperCAmelCase=32 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase="silu" , _UpperCAmelCase=2_048 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-6 , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=None , **_UpperCAmelCase , ): """simple docstring""" a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = intermediate_size a_ = num_hidden_layers a_ = num_attention_heads # for backward compatibility if num_key_value_heads is None: a_ = num_attention_heads a_ = num_key_value_heads a_ = hidden_act a_ = initializer_range a_ = rms_norm_eps a_ = pretraining_tp a_ = use_cache a_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , ) def lowercase__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f"got {self.rope_scaling}" ) a_ = self.rope_scaling.get("""type""" , _UpperCAmelCase ) a_ = self.rope_scaling.get("""factor""" , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
483
1
import glob import os import random from string import ascii_lowercase, digits import cva __a : str = "" __a : List[Any] = "" __a : Union[str, Any] = "" __a : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def _SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" __A , __A = get_dataset(__lowercase , __lowercase ) print("""Processing...""" ) __A , __A , __A = update_image_and_anno(__lowercase , __lowercase , __lowercase ) for index, image in enumerate(__lowercase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __A = random_chars(3_2 ) __A = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] __A = f"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}" cva.imwrite(f"/{file_root}.jpg" , __lowercase , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f"Success {index+1}/{len(__lowercase )} with {file_name}" ) __A = [] for anno in new_annos[index]: __A = f"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}" annos_list.append(__lowercase ) with open(f"/{file_root}.txt" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : str ) -> tuple[list, list]: """simple docstring""" __A = [] __A = [] for label_file in glob.glob(os.path.join(__lowercase , """*.txt""" ) ): __A = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__lowercase ) as in_file: __A = in_file.readlines() __A = os.path.join(__lowercase , f"{label_name}.jpg" ) __A = [] for obj_list in obj_lists: __A = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(__lowercase ) labels.append(__lowercase ) return img_paths, labels def _SCREAMING_SNAKE_CASE ( __lowercase : list , __lowercase : list , __lowercase : int = 1 ) -> tuple[list, list, list]: """simple docstring""" __A = [] __A = [] __A = [] for idx in range(len(__lowercase ) ): __A = [] __A = img_list[idx] path_list.append(__lowercase ) __A = anno_list[idx] __A = cva.imread(__lowercase ) if flip_type == 1: __A = cva.flip(__lowercase , __lowercase ) for bbox in img_annos: __A = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __A = cva.flip(__lowercase , __lowercase ) for bbox in img_annos: __A = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(__lowercase ) new_imgs_list.append(__lowercase ) return new_imgs_list, new_annos_lists, path_list def _SCREAMING_SNAKE_CASE ( __lowercase : int = 3_2 ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __A = ascii_lowercase + digits return "".join(random.choice(__lowercase ) for _ in range(__lowercase ) ) if __name__ == "__main__": main() print("DONE ✅")
716
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def _SCREAMING_SNAKE_CASE ( __lowercase : str ) -> str: """simple docstring""" if "cls_token" in name: __A = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: __A = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: __A = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __A = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __A = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __A = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: __A = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __A = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: __A = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: __A = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: __A = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __A = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __A = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __A = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __A = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __A = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __A = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: __A = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: __A = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def _SCREAMING_SNAKE_CASE ( __lowercase : Any , __lowercase : Dict ) -> str: """simple docstring""" for key in orig_state_dict.copy().keys(): __A = orig_state_dict.pop(__lowercase ) if "qkv" in key: __A = key.split(""".""" ) __A = int(key_split[1] ) if "decoder_blocks" in key: __A = config.decoder_hidden_size __A = """decoder.decoder_layers.""" if "weight" in key: __A = val[:dim, :] __A = val[dim : dim * 2, :] __A = val[-dim:, :] elif "bias" in key: __A = val[:dim] __A = val[dim : dim * 2] __A = val[-dim:] else: __A = config.hidden_size __A = """vit.encoder.layer.""" if "weight" in key: __A = val[:dim, :] __A = val[dim : dim * 2, :] __A = val[-dim:, :] elif "bias" in key: __A = val[:dim] __A = val[dim : dim * 2] __A = val[-dim:] else: __A = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( __lowercase : Tuple , __lowercase : str ) -> Optional[Any]: """simple docstring""" __A = ViTMAEConfig() if "large" in checkpoint_url: __A = 1_0_2_4 __A = 4_0_9_6 __A = 2_4 __A = 1_6 elif "huge" in checkpoint_url: __A = 1_4 __A = 1_2_8_0 __A = 5_1_2_0 __A = 3_2 __A = 1_6 __A = ViTMAEForPreTraining(__lowercase ) __A = torch.hub.load_state_dict_from_url(__lowercase , map_location="""cpu""" )["""model"""] __A = ViTMAEImageProcessor(size=config.image_size ) __A = convert_state_dict(__lowercase , __lowercase ) model.load_state_dict(__lowercase ) model.eval() __A = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" __A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) __A = ViTMAEImageProcessor(size=config.image_size ) __A = image_processor(images=__lowercase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) __A = model(**__lowercase ) __A = outputs.logits if "large" in checkpoint_url: __A = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: __A = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: __A = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1E-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowercase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__lowercase ) if __name__ == "__main__": __a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a : List[str] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
199
0
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __snake_case = logging.get_logger(__name__) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = to_pil_image(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = pil_image.size SCREAMING_SNAKE_CASE__ = pytesseract.image_to_data(UpperCamelCase_ , lang=UpperCamelCase_ , output_type='dict' , config=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates SCREAMING_SNAKE_CASE__ = [idx for idx, word in enumerate(UpperCamelCase_ ) if not word.strip()] SCREAMING_SNAKE_CASE__ = [word for idx, word in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] SCREAMING_SNAKE_CASE__ = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format SCREAMING_SNAKE_CASE__ = [] for x, y, w, h in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = [x, y, x + w, y + h] actual_boxes.append(UpperCamelCase_ ) # finally, normalize the bounding boxes SCREAMING_SNAKE_CASE__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowercase__ ( _UpperCAmelCase ): A__ : List[str] =["""pixel_values"""] def __init__( self : Any , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : float = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[float, Iterable[float]] = None , UpperCAmelCase_ : Union[float, Iterable[float]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = "" , **UpperCAmelCase_ : List[Any] , ): super().__init__(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = size if size is not None else {'height': 224, 'width': 224} SCREAMING_SNAKE_CASE__ = get_size_dict(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = resample SCREAMING_SNAKE_CASE__ = do_rescale SCREAMING_SNAKE_CASE__ = rescale_value SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else IMAGENET_STANDARD_STD SCREAMING_SNAKE_CASE__ = apply_ocr SCREAMING_SNAKE_CASE__ = ocr_lang SCREAMING_SNAKE_CASE__ = tesseract_config def A_ ( self : Dict , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : str , ): SCREAMING_SNAKE_CASE__ = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) SCREAMING_SNAKE_CASE__ = (size['height'], size['width']) return resize(UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : str , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any] , ): return rescale(UpperCAmelCase_ , scale=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, Iterable[float]] , UpperCAmelCase_ : Union[float, Iterable[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : int , ): return normalize(UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Union[float, Iterable[float]] = None , UpperCAmelCase_ : Union[float, Iterable[float]] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Dict , ): SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = size if size is not None else self.size SCREAMING_SNAKE_CASE__ = get_size_dict(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE__ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE__ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE__ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE__ = apply_ocr if apply_ocr is not None else self.apply_ocr SCREAMING_SNAKE_CASE__ = ocr_lang if ocr_lang is not None else self.ocr_lang SCREAMING_SNAKE_CASE__ = tesseract_config if tesseract_config is not None else self.tesseract_config SCREAMING_SNAKE_CASE__ = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(UpperCAmelCase_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract' ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for image in images: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = apply_tesseract(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) words_batch.append(UpperCAmelCase_ ) boxes_batch.append(UpperCAmelCase_ ) if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE__ = [self.rescale(image=UpperCAmelCase_ , scale=UpperCAmelCase_ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ = [self.normalize(image=UpperCAmelCase_ , mean=UpperCAmelCase_ , std=UpperCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_ ) for image in images] SCREAMING_SNAKE_CASE__ = BatchFeature(data={'pixel_values': images} , tensor_type=UpperCAmelCase_ ) if apply_ocr: SCREAMING_SNAKE_CASE__ = words_batch SCREAMING_SNAKE_CASE__ = boxes_batch return data
472
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _lowercase ( *UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_=True , UpperCamelCase_=2 ) -> Optional[int]: '''simple docstring''' from .. import __version__ SCREAMING_SNAKE_CASE__ = take_from SCREAMING_SNAKE_CASE__ = () if not isinstance(args[0] , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCamelCase_ ).base_version ) >= version.parse(UpperCamelCase_ ): raise ValueError( F'The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'' F' version {__version__} is >= {version_name}' ) SCREAMING_SNAKE_CASE__ = None if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCamelCase_ ),) SCREAMING_SNAKE_CASE__ = F'The `{attribute}` argument is deprecated and will be removed in version {version_name}.' elif hasattr(UpperCamelCase_ , UpperCamelCase_ ): values += (getattr(UpperCamelCase_ , UpperCamelCase_ ),) SCREAMING_SNAKE_CASE__ = F'The `{attribute}` attribute is deprecated and will be removed in version {version_name}.' elif deprecated_kwargs is None: SCREAMING_SNAKE_CASE__ = F'`{attribute}` is deprecated and will be removed in version {version_name}.' if warning is not None: SCREAMING_SNAKE_CASE__ = warning + ' ' if standard_warn else '' warnings.warn(warning + message , UpperCamelCase_ , stacklevel=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = inspect.getouterframes(inspect.currentframe() )[1] SCREAMING_SNAKE_CASE__ = call_frame.filename SCREAMING_SNAKE_CASE__ = call_frame.lineno SCREAMING_SNAKE_CASE__ = call_frame.function SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`' ) if len(UpperCamelCase_ ) == 0: return elif len(UpperCamelCase_ ) == 1: return values[0] return values
472
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[Any]=7 , lowerCamelCase_ : str=3 , lowerCamelCase_ : str=18 , lowerCamelCase_ : Any=30 , lowerCamelCase_ : int=400 , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Any=None , lowerCamelCase_ : int=True , lowerCamelCase_ : Optional[int]=None , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Tuple=[0.5, 0.5, 0.5] , lowerCamelCase_ : Optional[int]=[0.5, 0.5, 0.5] , ): _lowerCAmelCase =size if size is not None else {"""shortest_edge""": 18} _lowerCAmelCase =crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowerCAmelCase =parent _lowerCAmelCase =batch_size _lowerCAmelCase =num_channels _lowerCAmelCase =image_size _lowerCAmelCase =min_resolution _lowerCAmelCase =max_resolution _lowerCAmelCase =do_resize _lowerCAmelCase =size _lowerCAmelCase =do_center_crop _lowerCAmelCase =crop_size _lowerCAmelCase =do_normalize _lowerCAmelCase =image_mean _lowerCAmelCase =image_std def lowerCAmelCase__ ( self : str ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" a_: Union[str, Any] = LevitImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : int ): _lowerCAmelCase =LevitImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Union[str, Any] ): _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_center_crop""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) def lowerCAmelCase__ ( self : Dict ): _lowerCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowerCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCAmelCase__ ( self : Union[str, Any] ): pass def lowerCAmelCase__ ( self : int ): # Initialize image_processing _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase =image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase__ ( self : str ): # Initialize image_processing _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase =image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCAmelCase__ ( self : Optional[int] ): # Initialize image_processing _lowerCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input _lowerCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase =image_processing(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
149
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __SCREAMING_SNAKE_CASE : List[str] = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } __SCREAMING_SNAKE_CASE : Dict = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def snake_case_ ( lowercase__ : Any , lowercase__ : Union[str, Any]=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =create_model( """HTSAT-tiny""" , """roberta""" , lowercase__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowercase__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def snake_case_ ( lowercase__ : str ): '''simple docstring''' _lowerCAmelCase ={} _lowerCAmelCase =r""".*sequential.(\d+).*""" _lowerCAmelCase =r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _lowerCAmelCase =key.replace(lowercase__ , lowercase__ ) if re.match(lowercase__ , lowercase__ ): # replace sequential layers with list _lowerCAmelCase =re.match(lowercase__ , lowercase__ ).group(1 ) _lowerCAmelCase =key.replace(f"sequential.{sequential_layer}." , f"layers.{int(lowercase__ )//3}.linear." ) elif re.match(lowercase__ , lowercase__ ): _lowerCAmelCase =int(re.match(lowercase__ , lowercase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _lowerCAmelCase =1 if projecton_layer == 0 else 2 _lowerCAmelCase =key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value _lowerCAmelCase =value _lowerCAmelCase =mixed_qkv.size(0 ) // 3 _lowerCAmelCase =mixed_qkv[:qkv_dim] _lowerCAmelCase =mixed_qkv[qkv_dim : qkv_dim * 2] _lowerCAmelCase =mixed_qkv[qkv_dim * 2 :] _lowerCAmelCase =query_layer _lowerCAmelCase =key_layer _lowerCAmelCase =value_layer else: _lowerCAmelCase =value return model_state_dict def snake_case_ ( lowercase__ : int , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Optional[Any]=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =init_clap(lowercase__ , enable_fusion=lowercase__ ) clap_model.eval() _lowerCAmelCase =clap_model.state_dict() _lowerCAmelCase =rename_state_dict(lowercase__ ) _lowerCAmelCase =ClapConfig() _lowerCAmelCase =enable_fusion _lowerCAmelCase =ClapModel(lowercase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowercase__ , strict=lowercase__ ) model.save_pretrained(lowercase__ ) transformers_config.save_pretrained(lowercase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
149
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase ( a , a=False ): '''simple docstring''' try: SCREAMING_SNAKE_CASE_ :Tuple = os.environ[key] except KeyError: # KEY isn't set, default to `default`. SCREAMING_SNAKE_CASE_ :Any = default else: # KEY is set, convert it to True or False. try: SCREAMING_SNAKE_CASE_ :Optional[int] = strtobool(a ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"If set, {key} must be yes or no." ) return _value SCREAMING_SNAKE_CASE__ = parse_flag_from_env("RUN_SLOW", default=False) def lowercase ( a ): '''simple docstring''' return unittest.skip("Test was skipped" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(_run_slow_tests , "test is slow" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , "test requires only a CPU" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , "test requires a GPU" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(is_xpu_available() , "test requires a XPU" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(is_mps_available() , "test requires a `mps` backend support in `torch`" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , "test requires the Hugging Face suite" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(is_bnb_available() , "test requires the bitsandbytes library" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(is_tpu_available() , "test requires TPU" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , "test requires a GPU" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , "test requires a XPU" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , "test requires multiple GPUs" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , "test requires multiple XPUs" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , "test requires safetensors" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , "test requires DeepSpeed" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(is_torch_version(">=" , "1.12.0" ) , "test requires torch version >= 1.12.0" )(a ) def lowercase ( a=None , a=None ): '''simple docstring''' if test_case is None: return partial(a , version=a ) return unittest.skipUnless(is_torch_version(">=" , a ) , F"test requires torch version >= {version}" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , "test requires Tensorboard" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(is_wandb_available() , "test requires wandb" )(a ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , "test requires comet_ml" )(a ) SCREAMING_SNAKE_CASE__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase ( a ): '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , "test requires at least one tracker to be available and for `comet_ml` to not be installed" , )(a ) class _UpperCAmelCase ( unittest.TestCase ): lowerCamelCase_ : str = True @classmethod def _snake_case ( cls : Union[str, Any]): SCREAMING_SNAKE_CASE_ :List[str] = tempfile.mkdtemp() @classmethod def _snake_case ( cls : Union[str, Any]): if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def _snake_case ( self : int): if self.clear_on_setup: for path in Path(self.tmpdir).glob("**/*"): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCAmelCase) class _UpperCAmelCase ( unittest.TestCase ): def _snake_case ( self : Optional[Any]): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _UpperCAmelCase ( unittest.TestCase ): def _snake_case ( self : Any , UpperCAmelCase : Union[mock.Mock, List[mock.Mock]]): SCREAMING_SNAKE_CASE_ :List[str] = mocks if isinstance(UpperCAmelCase , (tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def lowercase ( a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :List[Any] = AcceleratorState() SCREAMING_SNAKE_CASE_ :Any = tensor[None].clone().to(state.device ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = gather(a ).cpu() SCREAMING_SNAKE_CASE_ :Tuple = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , a ): return False return True class _UpperCAmelCase : def __init__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any]): SCREAMING_SNAKE_CASE_ :Any = returncode SCREAMING_SNAKE_CASE_ :List[str] = stdout SCREAMING_SNAKE_CASE_ :Dict = stderr async def lowercase ( a , a ): '''simple docstring''' while True: SCREAMING_SNAKE_CASE_ :Optional[int] = await stream.readline() if line: callback(a ) else: break async def lowercase ( a , a=None , a=None , a=None , a=False , a=False ): '''simple docstring''' if echo: print("\nRunning: " , " ".join(a ) ) SCREAMING_SNAKE_CASE_ :str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=a , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=a , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) SCREAMING_SNAKE_CASE_ :Optional[Any] = [] SCREAMING_SNAKE_CASE_ :Dict = [] def tee(a , a , a , a="" ): SCREAMING_SNAKE_CASE_ :Optional[Any] = line.decode("utf-8" ).rstrip() sink.append(a ) if not quiet: print(a , a , file=a ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda a : tee(a , a , sys.stdout , label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda a : tee(a , a , sys.stderr , label="stderr:" ) ) ), ] , timeout=a , ) return _RunOutput(await p.wait() , a , a ) def lowercase ( a , a=None , a=None , a=180 , a=False , a=True ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Union[str, Any] = asyncio.get_event_loop() SCREAMING_SNAKE_CASE_ :Dict = loop.run_until_complete( _stream_subprocess(a , env=a , stdin=a , timeout=a , quiet=a , echo=a ) ) SCREAMING_SNAKE_CASE_ :Optional[int] = " ".join(a ) if result.returncode > 0: SCREAMING_SNAKE_CASE_ :Optional[int] = "\n".join(result.stderr ) raise RuntimeError( F"'{cmd_str}' failed with returncode {result.returncode}\n\n" F"The combined stderr from workers follows:\n{stderr}" ) return result class _UpperCAmelCase ( lowercase ): pass def lowercase ( a , a=False ): '''simple docstring''' try: SCREAMING_SNAKE_CASE_ :Union[str, Any] = subprocess.check_output(a , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(a , "decode" ): SCREAMING_SNAKE_CASE_ :List[str] = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"Command `{' '.join(a )}` failed with the following error:\n\n{e.output.decode()}" ) from e
631
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters SCREAMING_SNAKE_CASE__ = (720, 1_280) # Height, Width SCREAMING_SNAKE_CASE__ = (0.4, 0.6) # if height or width lower than this scale, drop it. SCREAMING_SNAKE_CASE__ = 1 / 100 SCREAMING_SNAKE_CASE__ = "" SCREAMING_SNAKE_CASE__ = "" SCREAMING_SNAKE_CASE__ = "" SCREAMING_SNAKE_CASE__ = 250 def lowercase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :str = get_dataset(a , a ) for index in range(a ): SCREAMING_SNAKE_CASE_ :Any = random.sample(range(len(a ) ) , 4 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Optional[Any] = update_image_and_anno( a , a , a , a , a , filter_scale=a , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' SCREAMING_SNAKE_CASE_ :int = random_chars(32 ) SCREAMING_SNAKE_CASE_ :Dict = path.split(os.sep )[-1].rsplit("." , 1 )[0] SCREAMING_SNAKE_CASE_ :Dict = F"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(F"{file_root}.jpg" , a , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = [] for anno in new_annos: SCREAMING_SNAKE_CASE_ :Any = anno[3] - anno[1] SCREAMING_SNAKE_CASE_ :Union[str, Any] = anno[4] - anno[2] SCREAMING_SNAKE_CASE_ :Any = anno[1] + width / 2 SCREAMING_SNAKE_CASE_ :Optional[int] = anno[2] + height / 2 SCREAMING_SNAKE_CASE_ :Optional[int] = F"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(a ) with open(F"{file_root}.txt" , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowercase ( a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = [] SCREAMING_SNAKE_CASE_ :Optional[Any] = [] for label_file in glob.glob(os.path.join(a , "*.txt" ) ): SCREAMING_SNAKE_CASE_ :List[str] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(a ) as in_file: SCREAMING_SNAKE_CASE_ :List[Any] = in_file.readlines() SCREAMING_SNAKE_CASE_ :Optional[Any] = os.path.join(a , F"{label_name}.jpg" ) SCREAMING_SNAKE_CASE_ :Dict = [] for obj_list in obj_lists: SCREAMING_SNAKE_CASE_ :Dict = obj_list.rstrip("\n" ).split(" " ) SCREAMING_SNAKE_CASE_ :Optional[Any] = float(obj[1] ) - float(obj[3] ) / 2 SCREAMING_SNAKE_CASE_ :Dict = float(obj[2] ) - float(obj[4] ) / 2 SCREAMING_SNAKE_CASE_ :List[Any] = float(obj[1] ) + float(obj[3] ) / 2 SCREAMING_SNAKE_CASE_ :List[str] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(a ) labels.append(a ) return img_paths, labels def lowercase ( a , a , a , a , a , a = 0.0 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :int = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) SCREAMING_SNAKE_CASE_ :Tuple = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE_ :List[str] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) SCREAMING_SNAKE_CASE_ :Any = int(scale_x * output_size[1] ) SCREAMING_SNAKE_CASE_ :List[Any] = int(scale_y * output_size[0] ) SCREAMING_SNAKE_CASE_ :Any = [] SCREAMING_SNAKE_CASE_ :Optional[Any] = [] for i, index in enumerate(a ): SCREAMING_SNAKE_CASE_ :Optional[int] = all_img_list[index] path_list.append(a ) SCREAMING_SNAKE_CASE_ :Tuple = all_annos[index] SCREAMING_SNAKE_CASE_ :Any = cva.imread(a ) if i == 0: # top-left SCREAMING_SNAKE_CASE_ :int = cva.resize(a , (divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE_ :Any = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ :Tuple = bbox[1] * scale_x SCREAMING_SNAKE_CASE_ :Optional[Any] = bbox[2] * scale_y SCREAMING_SNAKE_CASE_ :List[Any] = bbox[3] * scale_x SCREAMING_SNAKE_CASE_ :Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right SCREAMING_SNAKE_CASE_ :Dict = cva.resize(a , (output_size[1] - divid_point_x, divid_point_y) ) SCREAMING_SNAKE_CASE_ :Optional[int] = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ :Optional[Any] = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE_ :Dict = bbox[2] * scale_y SCREAMING_SNAKE_CASE_ :Optional[int] = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE_ :Tuple = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left SCREAMING_SNAKE_CASE_ :List[str] = cva.resize(a , (divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE_ :int = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ :Tuple = bbox[1] * scale_x SCREAMING_SNAKE_CASE_ :Dict = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE_ :Union[str, Any] = bbox[3] * scale_x SCREAMING_SNAKE_CASE_ :List[str] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right SCREAMING_SNAKE_CASE_ :Optional[Any] = cva.resize( a , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) SCREAMING_SNAKE_CASE_ :Optional[Any] = img for bbox in img_annos: SCREAMING_SNAKE_CASE_ :Optional[int] = scale_x + bbox[1] * (1 - scale_x) SCREAMING_SNAKE_CASE_ :Optional[Any] = scale_y + bbox[2] * (1 - scale_y) SCREAMING_SNAKE_CASE_ :Dict = scale_x + bbox[3] * (1 - scale_x) SCREAMING_SNAKE_CASE_ :List[Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: SCREAMING_SNAKE_CASE_ :Optional[int] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowercase ( a ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" SCREAMING_SNAKE_CASE_ :Dict = ascii_lowercase + digits return "".join(random.choice(a ) for _ in range(a ) ) if __name__ == "__main__": main() print("DONE ✅")
631
1
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" return "\n".join( f"{number} * {i} = {number * i}" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
487
"""simple docstring""" import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class a__ : lowercase_ = None def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict) __UpperCAmelCase : Any = json.loads(feat_extract.to_json_string()) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , UpperCamelCase_) def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Dict = os.path.join(UpperCamelCase_ , "feat_extract.json") feat_extract_first.to_json_file(UpperCamelCase_) __UpperCAmelCase : Optional[Any] = self.feature_extraction_class.from_json_file(UpperCamelCase_) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Tuple = feat_extract_first.save_pretrained(UpperCamelCase_)[0] check_json_file_has_correct_format(UpperCamelCase_) __UpperCAmelCase : List[Any] = self.feature_extraction_class.from_pretrained(UpperCamelCase_) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict()) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Union[str, Any] = self.feature_extraction_class() self.assertIsNotNone(UpperCamelCase_)
487
1
"""simple docstring""" import tensorflow as tf from ...tf_utils import shape_list class lowercase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , _A , _A , _A , _A , _A=1 , _A=False , **_A ): '''simple docstring''' super().__init__(**_A ) UpperCamelCase : List[str] = vocab_size UpperCamelCase : Optional[Any] = d_embed UpperCamelCase : List[Any] = d_proj UpperCamelCase : List[Any] = cutoffs + [vocab_size] UpperCamelCase : Any = [0] + self.cutoffs UpperCamelCase : Union[str, Any] = div_val UpperCamelCase : Dict = self.cutoffs[0] UpperCamelCase : Any = len(self.cutoffs ) - 1 UpperCamelCase : Optional[Any] = self.shortlist_size + self.n_clusters UpperCamelCase : int = keep_order UpperCamelCase : Any = [] UpperCamelCase : Optional[int] = [] def _a ( self , _A ): '''simple docstring''' if self.n_clusters > 0: UpperCamelCase : int = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=_A , name="""cluster_weight""" ) UpperCamelCase : Optional[int] = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=_A , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCamelCase : Optional[int] = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=_A , name=f"""out_projs_._{i}""" , ) self.out_projs.append(_A ) else: self.out_projs.append(_A ) UpperCamelCase : List[str] = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=_A , name=f"""out_layers_._{i}_._weight""" , ) UpperCamelCase : int = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=_A , name=f"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase : int = self.d_embed // (self.div_val**i) UpperCamelCase : Any = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=_A , name=f"""out_projs_._{i}""" ) self.out_projs.append(_A ) UpperCamelCase : int = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=_A , name=f"""out_layers_._{i}_._weight""" , ) UpperCamelCase : Optional[Any] = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=_A , name=f"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(_A ) @staticmethod def _a ( _A , _A , _A , _A=None ): '''simple docstring''' UpperCamelCase : List[str] = x if proj is not None: UpperCamelCase : List[str] = tf.einsum("""ibd,ed->ibe""" , _A , _A ) return tf.einsum("""ibd,nd->ibn""" , _A , _A ) + b @staticmethod def _a ( _A , _A ): '''simple docstring''' UpperCamelCase : Optional[Any] = shape_list(_A ) UpperCamelCase : Any = tf.range(lp_size[0] , dtype=target.dtype ) UpperCamelCase : str = tf.stack([r, target] , 1 ) return tf.gather_nd(_A , _A ) def _a ( self , _A , _A , _A=True , _A=False ): '''simple docstring''' UpperCamelCase : int = 0 if self.n_clusters == 0: UpperCamelCase : Dict = self._logit(_A , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCamelCase : Optional[Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_A , logits=_A ) UpperCamelCase : List[str] = tf.nn.log_softmax(_A , axis=-1 ) else: UpperCamelCase : Any = shape_list(_A ) UpperCamelCase : Any = [] UpperCamelCase : Optional[int] = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCamelCase : List[str] = (target >= l_idx) & (target < r_idx) UpperCamelCase : List[str] = tf.where(_A ) UpperCamelCase : Union[str, Any] = tf.boolean_mask(_A , _A ) - l_idx if self.div_val == 1: UpperCamelCase : str = self.out_layers[0][0][l_idx:r_idx] UpperCamelCase : Union[str, Any] = self.out_layers[0][1][l_idx:r_idx] else: UpperCamelCase : Tuple = self.out_layers[i][0] UpperCamelCase : Optional[Any] = self.out_layers[i][1] if i == 0: UpperCamelCase : str = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCamelCase : List[Any] = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCamelCase : Optional[int] = self._logit(_A , _A , _A , self.out_projs[0] ) UpperCamelCase : Optional[int] = tf.nn.log_softmax(_A ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCamelCase : Dict = tf.boolean_mask(_A , _A ) UpperCamelCase : Optional[Any] = self._gather_logprob(_A , _A ) else: UpperCamelCase : Tuple = self._logit(_A , _A , _A , self.out_projs[i] ) UpperCamelCase : str = tf.nn.log_softmax(_A ) UpperCamelCase : List[str] = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCamelCase : Tuple = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_A ) if target is not None: UpperCamelCase : List[Any] = tf.boolean_mask(_A , _A ) UpperCamelCase : int = tf.boolean_mask(_A , _A ) UpperCamelCase : Optional[Any] = self._gather_logprob(_A , _A ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_A , -cur_logprob , shape_list(_A ) ) UpperCamelCase : int = tf.concat(_A , axis=-1 ) if target is not None: if return_mean: UpperCamelCase : Union[str, Any] = tf.reduce_mean(_A ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_A ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_A , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
102
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCamelCase_ = logging.get_logger(__name__) class a_ (_a ): __lowerCAmelCase : List[str] = ["""audio_values""", """audio_mask"""] def __init__( self , snake_case_=2_0_4_8 , snake_case_=1 , snake_case_=[1_6, 1_6] , snake_case_=1_2_8 , snake_case_=4_4_1_0_0 , snake_case_=8_6 , snake_case_=2_0_4_8 , snake_case_=0.0 , **snake_case_ , ): super().__init__( feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Optional[int] = spectrogram_length _lowerCAmelCase : str = num_channels _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : Tuple = feature_size // self.patch_size[1] _lowerCAmelCase : Optional[int] = n_fft _lowerCAmelCase : Union[str, Any] = sampling_rate // hop_length_to_sampling_rate _lowerCAmelCase : Optional[Any] = sampling_rate _lowerCAmelCase : Any = padding_value _lowerCAmelCase : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=snake_case_ , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=snake_case_ , norm="""slaney""" , mel_scale="""slaney""" , ).T def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : int = spectrogram( snake_case_ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) _lowerCAmelCase : int = log_spec[:, :-1] _lowerCAmelCase : List[Any] = log_spec - 20.0 _lowerCAmelCase : Any = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = True , snake_case_ = None , snake_case_ = False , snake_case_ = False , **snake_case_ , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _lowerCAmelCase : List[Any] = isinstance(snake_case_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) _lowerCAmelCase : List[str] = is_batched_numpy or ( isinstance(snake_case_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase : Dict = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(snake_case_ , np.ndarray ): _lowerCAmelCase : Optional[Any] = np.asarray(snake_case_ , dtype=np.floataa ) elif isinstance(snake_case_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowerCAmelCase : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase : Tuple = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _lowerCAmelCase : Optional[Any] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , snake_case_ ): _lowerCAmelCase : Optional[Any] = [np.asarray(snake_case_ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _lowerCAmelCase : Any = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _lowerCAmelCase : Union[str, Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _lowerCAmelCase : Optional[int] = np.array(snake_case_ ).astype(np.floataa ) # convert into correct format for padding _lowerCAmelCase : Union[str, Any] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _lowerCAmelCase : Union[str, Any] = np.ones([len(snake_case_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _lowerCAmelCase : int = padded_audio_features * self.padding_value for i in range(len(snake_case_ ) ): _lowerCAmelCase : Union[str, Any] = audio_features[i] _lowerCAmelCase : List[str] = feature # return as BatchFeature if return_attention_mask: _lowerCAmelCase : str = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: _lowerCAmelCase : List[Any] = {"""audio_values""": padded_audio_features} _lowerCAmelCase : Dict = BatchFeature(data=snake_case_ , tensor_type=snake_case_ ) return encoded_inputs
384
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Any: if "cls_token" in name: A_ = name.replace("""cls_token""", """vit.embeddings.cls_token""" ) if "mask_token" in name: A_ = name.replace("""mask_token""", """decoder.mask_token""" ) if "decoder_pos_embed" in name: A_ = name.replace("""decoder_pos_embed""", """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: A_ = name.replace("""pos_embed""", """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: A_ = name.replace("""patch_embed.proj""", """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: A_ = name.replace("""patch_embed.norm""", """vit.embeddings.norm""" ) if "decoder_blocks" in name: A_ = name.replace("""decoder_blocks""", """decoder.decoder_layers""" ) if "blocks" in name: A_ = name.replace("""blocks""", """vit.encoder.layer""" ) if "attn.proj" in name: A_ = name.replace("""attn.proj""", """attention.output.dense""" ) if "attn" in name: A_ = name.replace("""attn""", """attention.self""" ) if "norm1" in name: A_ = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: A_ = name.replace("""norm2""", """layernorm_after""" ) if "mlp.fc1" in name: A_ = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: A_ = name.replace("""mlp.fc2""", """output.dense""" ) if "decoder_embed" in name: A_ = name.replace("""decoder_embed""", """decoder.decoder_embed""" ) if "decoder_norm" in name: A_ = name.replace("""decoder_norm""", """decoder.decoder_norm""" ) if "decoder_pred" in name: A_ = name.replace("""decoder_pred""", """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: A_ = name.replace("""norm.weight""", """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: A_ = name.replace("""norm.bias""", """vit.layernorm.bias""" ) return name def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): A_ = orig_state_dict.pop(UpperCAmelCase__ ) if "qkv" in key: A_ = key.split(""".""" ) A_ = int(key_split[1] ) if "decoder_blocks" in key: A_ = config.decoder_hidden_size A_ = """decoder.decoder_layers.""" if "weight" in key: A_ = val[:dim, :] A_ = val[dim : dim * 2, :] A_ = val[-dim:, :] elif "bias" in key: A_ = val[:dim] A_ = val[dim : dim * 2] A_ = val[-dim:] else: A_ = config.hidden_size A_ = """vit.encoder.layer.""" if "weight" in key: A_ = val[:dim, :] A_ = val[dim : dim * 2, :] A_ = val[-dim:, :] elif "bias" in key: A_ = val[:dim] A_ = val[dim : dim * 2] A_ = val[-dim:] else: A_ = val return orig_state_dict def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: A_ = ViTMAEConfig() if "large" in checkpoint_url: A_ = 10_24 A_ = 40_96 A_ = 24 A_ = 16 elif "huge" in checkpoint_url: A_ = 14 A_ = 12_80 A_ = 51_20 A_ = 32 A_ = 16 A_ = ViTMAEForPreTraining(UpperCAmelCase__ ) A_ = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" )["""model"""] A_ = ViTMAEImageProcessor(size=config.image_size ) A_ = convert_state_dict(UpperCAmelCase__, UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() A_ = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" A_ = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) A_ = ViTMAEImageProcessor(size=config.image_size ) A_ = image_processor(images=UpperCAmelCase__, return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) A_ = model(**UpperCAmelCase__ ) A_ = outputs.logits if "large" in checkpoint_url: A_ = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: A_ = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: A_ = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3], UpperCAmelCase__, atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCamelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
667
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __lowerCamelCase = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model A_ = list(s_dict.keys() ) for key in keys: A_ = r""".*/layers_(\d+)""" A_ = key if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.sub(r"""layers_(\d+)""", r"""block/\1/layer""", UpperCAmelCase__ ) A_ = r"""(encoder|decoder)\/""" if re.match(UpperCAmelCase__, UpperCAmelCase__ ): A_ = re.match(UpperCAmelCase__, UpperCAmelCase__ ).groups() if groups[0] == "encoder": A_ = re.sub(r"""/mlp/""", r"""/1/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/1/layer_norm/""", UpperCAmelCase__ ) elif groups[0] == "decoder": A_ = re.sub(r"""/mlp/""", r"""/2/mlp/""", UpperCAmelCase__ ) A_ = re.sub(r"""/pre_mlp_layer_norm/""", r"""/2/layer_norm/""", UpperCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A_ = new_key.replace(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''{key} -> {new_key}''' ) A_ = s_dict.pop(UpperCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A_ = s_dict[ """decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight""" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A_ = s_dict[key].shape[0] A_ = s_dict[key] for idx in range(UpperCAmelCase__ ): A_ = expert_weihts[idx] print(F'''{key} -> {key.replace("expert/", "nested fstring" )}''' ) s_dict.pop(UpperCAmelCase__ ) return s_dict __lowerCamelCase = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> List[Any]: # Convert a google style config to the hugging face fromat import regex as re with open(UpperCAmelCase__, """r""" ) as f: A_ = f.read() A_ = re.findall(r"""(.*) = ([0-9.]*)""", UpperCAmelCase__ ) A_ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A_ = float(UpperCAmelCase__ ) if """.""" in value else int(UpperCAmelCase__ ) A_ = re.findall(r"""(.*activations) = \(\'(.*)\',\)""", UpperCAmelCase__ )[0] A_ = str(activation[1] ) A_ = num_experts A_ = SwitchTransformersConfig(**UpperCAmelCase__ ) return config def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__=None, UpperCAmelCase__="./", UpperCAmelCase__=8 ) -> List[str]: # Initialise PyTorch model print(F'''Loading flax weights from : {flax_checkpoint_path}''' ) A_ = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) if gin_file is not None: A_ = convert_gin_to_config(UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = SwitchTransformersConfig.from_pretrained(UpperCAmelCase__ ) A_ = SwitchTransformersForConditionalGeneration(UpperCAmelCase__ ) A_ = flax_params["""target"""] A_ = flatten_dict(UpperCAmelCase__, sep="""/""" ) A_ = rename_keys(UpperCAmelCase__ ) A_ = unflatten_dict(UpperCAmelCase__, sep="""/""" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(UpperCAmelCase__, UpperCAmelCase__ ) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) pt_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __lowerCamelCase = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
667
1
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels a_ : List[str] = object() # For specifying empty leaf dict `{}` a_ : str = object() def a_ ( __snake_case : Any , __snake_case : Dict ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ =tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(__snake_case ) - len(__snake_case ) + 1 ): lowerCamelCase_ =[x.match(__snake_case ) for x, y in zip(__snake_case , ks[i:] )] if matches and all(__snake_case ): return True return False def a_ ( __snake_case : Tuple ) -> Optional[Any]: """simple docstring""" def replace(__snake_case : int , __snake_case : Optional[Any] ): for rule, replacement in rules: if _match(__snake_case , __snake_case ): return replacement return val return replace def a_ ( ) -> Dict: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , __snake_case )), (("transformer", "wte", "embedding"), P('''mp''' , __snake_case )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__snake_case , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , __snake_case )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__snake_case , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , __snake_case )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a_ ( __snake_case : str ) -> Tuple: """simple docstring""" lowerCamelCase_ =_get_partition_rules() lowerCamelCase_ =_replacement_rules(__snake_case ) lowerCamelCase_ ={k: _unmatched for k in flatten_dict(__snake_case )} lowerCamelCase_ ={k: replace(__snake_case , __snake_case ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__snake_case ) )
676
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
0
import qiskit def lowerCamelCase ( SCREAMING_SNAKE_CASE = 2 ): '''simple docstring''' __UpperCamelCase :Tuple = qubits # Using Aer's simulator __UpperCamelCase :Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register __UpperCamelCase :Union[str, Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , SCREAMING_SNAKE_CASE ): # Adding CX (CNOT) gate circuit.cx(i - 1 , SCREAMING_SNAKE_CASE ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(SCREAMING_SNAKE_CASE ) ) , list(range(SCREAMING_SNAKE_CASE ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __UpperCamelCase :Optional[int] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F'Total count for various states are: {quantum_entanglement(3)}')
452
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="attention" ): '''simple docstring''' __UpperCamelCase :int = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] __UpperCamelCase :Optional[int] = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] __UpperCamelCase :List[str] = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] __UpperCamelCase :Union[str, Any] = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' if split_mlp_wi: __UpperCamelCase :List[str] = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] __UpperCamelCase :Dict = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] __UpperCamelCase :Optional[Any] = (wi_a, wi_a) else: __UpperCamelCase :List[str] = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""] __UpperCamelCase :int = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""] def lowerCamelCase ( SCREAMING_SNAKE_CASE , *, SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = traverse_util.flatten_dict(variables['''target'''] ) __UpperCamelCase :Optional[int] = {'''/'''.join(SCREAMING_SNAKE_CASE ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCamelCase :Union[str, Any] = '''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[Any] = collections.OrderedDict() # Shared embeddings. __UpperCamelCase :Any = old['''token_embedder/embedding'''] # Encoder. for i in range(SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). __UpperCamelCase :Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''pre_attention_layer_norm''' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Dict = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''attention''' ) __UpperCamelCase :str = layer_norm __UpperCamelCase :str = k.T __UpperCamelCase :Optional[Any] = o.T __UpperCamelCase :Optional[int] = q.T __UpperCamelCase :Any = v.T # Block i, layer 1 (MLP). __UpperCamelCase :Union[str, Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , '''pre_mlp_layer_norm''' ) __UpperCamelCase , __UpperCamelCase :Optional[int] = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''encoder''' , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = layer_norm if split_mlp_wi: __UpperCamelCase :Optional[Any] = wi[0].T __UpperCamelCase :int = wi[1].T else: __UpperCamelCase :Dict = wi.T __UpperCamelCase :str = wo.T __UpperCamelCase :Optional[Any] = old[ '''encoder/relpos_bias/rel_embedding''' ].T __UpperCamelCase :Optional[int] = old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE ): # Block i, layer 0 (Self Attention). __UpperCamelCase :int = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_self_attention_layer_norm''' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Dict = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''self_attention''' ) __UpperCamelCase :str = layer_norm __UpperCamelCase :Optional[Any] = k.T __UpperCamelCase :List[str] = o.T __UpperCamelCase :Union[str, Any] = q.T __UpperCamelCase :int = v.T # Block i, layer 1 (Cross Attention). __UpperCamelCase :Optional[Any] = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_cross_attention_layer_norm''' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :int = tax_attention_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''encoder_decoder_attention''' ) __UpperCamelCase :List[str] = layer_norm __UpperCamelCase :Any = k.T __UpperCamelCase :Any = o.T __UpperCamelCase :Optional[int] = q.T __UpperCamelCase :Union[str, Any] = v.T # Block i, layer 2 (MLP). __UpperCamelCase :Tuple = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , '''pre_mlp_layer_norm''' ) __UpperCamelCase , __UpperCamelCase :Optional[Any] = tax_mlp_lookup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''decoder''' , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[Any] = layer_norm if split_mlp_wi: __UpperCamelCase :int = wi[0].T __UpperCamelCase :Any = wi[1].T else: __UpperCamelCase :Optional[Any] = wi.T __UpperCamelCase :Dict = wo.T __UpperCamelCase :Optional[int] = old['''decoder/decoder_norm/scale'''] __UpperCamelCase :Optional[Any] = old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCamelCase :List[str] = old['''decoder/logits_dense/kernel'''].T return new def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCamelCase :Union[str, Any] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCamelCase :Any = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) __UpperCamelCase :Optional[int] = state_dict['''shared.weight'''] return state_dict def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = convert_tax_to_pytorch(SCREAMING_SNAKE_CASE , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = make_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = TaConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCamelCase :Dict = TaEncoderModel(SCREAMING_SNAKE_CASE ) else: __UpperCamelCase :str = TaForConditionalGeneration(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE ) print('''Done''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) __lowercase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
452
1
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __a : def __init__( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : int=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Dict=19 , UpperCAmelCase_ : str=32 , UpperCAmelCase_ : str=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Any=None , )-> List[Any]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Any: """simple docstring""" UpperCamelCase = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=SCREAMING_SNAKE_CASE__ , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , ) return config def _SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = EsmForProteinFolding(config=SCREAMING_SNAKE_CASE__ ).float() model.to(SCREAMING_SNAKE_CASE__ ) model.eval() UpperCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = model(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def _SCREAMING_SNAKE_CASE ( self : str )-> List[Any]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : List[str] = (EsmForProteinFolding,) if is_torch_available() else () UpperCamelCase_ : int = () UpperCamelCase_ : int = {} if is_torch_available() else {} UpperCamelCase_ : Dict = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Tuple: """simple docstring""" UpperCamelCase = EsmFoldModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) @unittest.skip("Does not support attention outputs" ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> str: """simple docstring""" pass @unittest.skip def _SCREAMING_SNAKE_CASE ( self : str )-> Any: """simple docstring""" pass @unittest.skip("Esm does not support embedding resizing" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> List[str]: """simple docstring""" pass @unittest.skip("Esm does not support embedding resizing" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Optional[int]: """simple docstring""" pass @unittest.skip("ESMFold does not support passing input embeds!" ) def _SCREAMING_SNAKE_CASE ( self : int )-> List[str]: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> List[Any]: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> str: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def _SCREAMING_SNAKE_CASE ( self : List[str] )-> Any: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Dict: """simple docstring""" pass @unittest.skip("ESMFold does not support head pruning." ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Optional[int]: """simple docstring""" pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Dict: """simple docstring""" pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Any: """simple docstring""" pass @unittest.skip("ESMFold only has one output format." ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Union[str, Any]: """simple docstring""" pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" pass @unittest.skip("ESMFold does not support input chunking." ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> str: """simple docstring""" pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Any: """simple docstring""" pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def _SCREAMING_SNAKE_CASE ( self : int )-> Union[str, Any]: """simple docstring""" pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def _SCREAMING_SNAKE_CASE ( self : int )-> List[str]: """simple docstring""" pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def _SCREAMING_SNAKE_CASE ( self : Dict )-> List[Any]: """simple docstring""" pass @unittest.skip("ESMFold doesn't support data parallel." ) def _SCREAMING_SNAKE_CASE ( self : List[str] )-> List[str]: """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _SCREAMING_SNAKE_CASE ( self : List[str] )-> int: """simple docstring""" pass @require_torch class __a ( UpperCAmelCase__ ): @slow def _SCREAMING_SNAKE_CASE ( self : Dict )-> Union[str, Any]: """simple docstring""" UpperCamelCase = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() UpperCamelCase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase = model(SCREAMING_SNAKE_CASE__ )["positions"] UpperCamelCase = torch.tensor([2.5828, 0.7993, -10.9_334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
554
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowercase : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=10 , SCREAMING_SNAKE_CASE__ : Tuple=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE__ : Any=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="relu" , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : Any=None , ) -> Optional[int]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = embeddings_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = scope __lowerCAmelCase = len(SCREAMING_SNAKE_CASE__ ) def a ( self : Any ) -> Any: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Union[str, Any] ) -> Optional[Any]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: __lowerCAmelCase = RegNetModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> Any: __lowerCAmelCase = self.num_labels __lowerCAmelCase = RegNetForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Tuple = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Any = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : int = False def a ( self : Union[str, Any] ) -> List[Any]: __lowerCAmelCase = RegNetModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : Union[str, Any] ) -> str: return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def a ( self : str ) -> Union[str, Any]: pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def a ( self : List[str] ) -> int: pass def a ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(config=SCREAMING_SNAKE_CASE__ ) for name, module in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def a ( self : Union[str, Any] ) -> Any: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): __lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCAmelCase = layer_type __lowerCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : Any ) -> Optional[Any]: for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = RegNetModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase_ ( ) -> Dict: '''simple docstring''' __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def a ( self : List[Any] ) -> Dict: return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def a ( self : Union[str, Any] ) -> Optional[Any]: __lowerCAmelCase = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits __lowerCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
427
0
"""simple docstring""" import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __A : Any = get_logger(__name__) __A : Union[str, Any] = Path(__file__).parent / "model_card_template.md" __A : int = uuida().hex __A : Optional[Any] = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES __A : Union[str, Any] = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES __A : Union[str, Any] = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def lowercase ( _SCREAMING_SNAKE_CASE : Union[Dict, str, None] = None ): '''simple docstring''' _UpperCAmelCase = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): ua += "; " + user_agent return ua def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if token is None: _UpperCAmelCase = HfFolder.get_token() if organization is None: _UpperCAmelCase = whoami(_SCREAMING_SNAKE_CASE )['''name'''] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(_SCREAMING_SNAKE_CASE , '''local_rank''' ) and args.local_rank not in [-1, 0]: return _UpperCAmelCase = args.hub_token if hasattr(_SCREAMING_SNAKE_CASE , '''hub_token''' ) else None _UpperCAmelCase = get_full_repo_name(_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_SCREAMING_SNAKE_CASE , model_name=_SCREAMING_SNAKE_CASE , repo_name=_SCREAMING_SNAKE_CASE , dataset_name=args.dataset_name if hasattr(_SCREAMING_SNAKE_CASE , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_SCREAMING_SNAKE_CASE , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(_SCREAMING_SNAKE_CASE , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(_SCREAMING_SNAKE_CASE , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_SCREAMING_SNAKE_CASE , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(_SCREAMING_SNAKE_CASE , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(_SCREAMING_SNAKE_CASE , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_SCREAMING_SNAKE_CASE , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_SCREAMING_SNAKE_CASE , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(_SCREAMING_SNAKE_CASE , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(_SCREAMING_SNAKE_CASE , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) _UpperCAmelCase = os.path.join(args.output_dir , '''README.md''' ) model_card.save(_SCREAMING_SNAKE_CASE ) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[str] , _SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash _UpperCAmelCase = str(Path(_SCREAMING_SNAKE_CASE ).as_posix() ) _UpperCAmelCase = re.search(r'''snapshots/([^/]+)/''' , _SCREAMING_SNAKE_CASE ) if search is None: return None _UpperCAmelCase = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_SCREAMING_SNAKE_CASE ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __A : Dict = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) __A : Optional[int] = os.path.join(hf_cache_home, "diffusers") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if new_cache_dir is None: _UpperCAmelCase = DIFFUSERS_CACHE if old_cache_dir is None: _UpperCAmelCase = old_diffusers_cache _UpperCAmelCase = Path(_SCREAMING_SNAKE_CASE ).expanduser() _UpperCAmelCase = Path(_SCREAMING_SNAKE_CASE ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): _UpperCAmelCase = new_cache_dir / old_blob_path.relative_to(_SCREAMING_SNAKE_CASE ) new_blob_path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) os.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) try: os.symlink(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __A : Optional[Any] = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): __A : Optional[Any] = 0 else: with open(cache_version_file) as f: try: __A : Tuple = int(f.read()) except ValueError: __A : int = 0 if cache_version < 1: __A : List[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: __A : Optional[int] = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' "the directory exists and can be written to." ) def lowercase ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if variant is not None: _UpperCAmelCase = weights_name.split('''.''' ) _UpperCAmelCase = splits[:-1] + [variant] + splits[-1:] _UpperCAmelCase = '''.'''.join(_SCREAMING_SNAKE_CASE ) return weights_name def lowercase ( _SCREAMING_SNAKE_CASE : str , *, _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any]=None , ): '''simple docstring''' _UpperCAmelCase = str(_SCREAMING_SNAKE_CASE ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): return pretrained_model_name_or_path elif os.path.isdir(_SCREAMING_SNAKE_CASE ): if os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): # Load from a PyTorch checkpoint _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_SCREAMING_SNAKE_CASE ).base_version ) >= version.parse('''0.20.0''' ) ): try: _UpperCAmelCase = hf_hub_download( _SCREAMING_SNAKE_CASE , filename=_add_variant(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , user_agent=_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , _SCREAMING_SNAKE_CASE , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}\' so that the correct variant file can be added.' , _SCREAMING_SNAKE_CASE , ) try: # 2. Load model file as usual _UpperCAmelCase = hf_hub_download( _SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , user_agent=_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' '''this model name. Check the model page at ''' f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}' )
718
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """bit""" UpperCamelCase__ = ["""preactivation""", """bottleneck"""] UpperCamelCase__ = ["""SAME""", """VALID"""] def __init__( self : List[Any] , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Optional[int]=6_4 , __UpperCamelCase : List[Any]=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __UpperCamelCase : Any=[3, 4, 6, 3] , __UpperCamelCase : str="preactivation" , __UpperCamelCase : Union[str, Any]="relu" , __UpperCamelCase : str=None , __UpperCamelCase : Dict=3_2 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : Any=False , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : List[str]=1 , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : List[str] , )->List[Any]: super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(F'layer_type={layer_type} is not one of {",".join(self.layer_types )}' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _UpperCAmelCase = global_padding.upper() else: raise ValueError(F'Padding strategy {global_padding} not supported' ) _UpperCAmelCase = num_channels _UpperCAmelCase = embedding_size _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = layer_type _UpperCAmelCase = hidden_act _UpperCAmelCase = global_padding _UpperCAmelCase = num_groups _UpperCAmelCase = drop_path_rate _UpperCAmelCase = embedding_dynamic_padding _UpperCAmelCase = output_stride _UpperCAmelCase = width_factor _UpperCAmelCase = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(__UpperCamelCase ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
95
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType _lowercase = logging.get_logger(__name__) _lowercase = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class a_ ( UpperCAmelCase__ ): lowercase_ : List[str] = '''layoutlmv3''' def __init__( self : List[Any] , __lowerCAmelCase : Tuple=5_0_2_6_5 , __lowerCAmelCase : int=7_6_8 , __lowerCAmelCase : List[Any]=1_2 , __lowerCAmelCase : Optional[Any]=1_2 , __lowerCAmelCase : List[str]=3_0_7_2 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : List[Any]=5_1_2 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : Optional[Any]=1E-5 , __lowerCAmelCase : Tuple=1 , __lowerCAmelCase : str=0 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Any=1_0_2_4 , __lowerCAmelCase : Dict=1_2_8 , __lowerCAmelCase : Union[str, Any]=1_2_8 , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=3_2 , __lowerCAmelCase : Dict=1_2_8 , __lowerCAmelCase : Optional[int]=6_4 , __lowerCAmelCase : Dict=2_5_6 , __lowerCAmelCase : int=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Any=2_2_4 , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : Tuple=1_6 , __lowerCAmelCase : str=None , **__lowerCAmelCase : Union[str, Any] , ): super().__init__( vocab_size=__lowerCAmelCase , hidden_size=__lowerCAmelCase , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , intermediate_size=__lowerCAmelCase , hidden_act=__lowerCAmelCase , hidden_dropout_prob=__lowerCAmelCase , attention_probs_dropout_prob=__lowerCAmelCase , max_position_embeddings=__lowerCAmelCase , type_vocab_size=__lowerCAmelCase , initializer_range=__lowerCAmelCase , layer_norm_eps=__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase , ) __snake_case = max_ad_position_embeddings __snake_case = coordinate_size __snake_case = shape_size __snake_case = has_relative_attention_bias __snake_case = rel_pos_bins __snake_case = max_rel_pos __snake_case = has_spatial_attention_bias __snake_case = rel_ad_pos_bins __snake_case = max_rel_ad_pos __snake_case = text_embed __snake_case = visual_embed __snake_case = input_size __snake_case = num_channels __snake_case = patch_size __snake_case = classifier_dropout class a_ ( UpperCAmelCase__ ): lowercase_ : Any = version.parse('''1.12''' ) @property def lowercase__ ( self : Dict ): # The order of inputs is different for question answering and sequence classification if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def lowercase__ ( self : Dict ): return 1E-5 @property def lowercase__ ( self : Union[str, Any] ): return 1_2 def lowercase__ ( self : int , __lowerCAmelCase : "ProcessorMixin" , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional["TensorType"] = None , __lowerCAmelCase : int = 3 , __lowerCAmelCase : int = 4_0 , __lowerCAmelCase : int = 4_0 , ): setattr(processor.image_processor , 'apply_ocr' , __lowerCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __snake_case = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __snake_case = processor.tokenizer.num_special_tokens_to_add(__lowerCAmelCase ) __snake_case = compute_effective_axis_dimension( __lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence __snake_case = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __snake_case = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __snake_case = self._generate_dummy_images(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __snake_case = dict( processor( __lowerCAmelCase , text=__lowerCAmelCase , boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) ) return inputs
356
'''simple docstring''' def lowerCamelCase__ ( a ): __snake_case = [0] * len(a ) __snake_case = [] __snake_case = [] __snake_case = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(a ) ): if indegree[i] == 0: queue.append(a ) while queue: __snake_case = queue.pop(0 ) cnt += 1 topo.append(a ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(a ) if cnt != len(a ): print('Cycle exists' ) else: print(a ) # Adjacency List of Graph _lowercase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
356
1
def snake_case_ ( __lowercase ): if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) UpperCAmelCase_ : List[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCAmelCase_ : Optional[Any] = 1 if upper_limit > 0: UpperCAmelCase_ : List[str] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__lowercase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: __UpperCamelCase : Optional[Any] = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F'The Catalan numbers from 0 through {N} are:') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
641
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class __SCREAMING_SNAKE_CASE( __lowerCamelCase ): _UpperCAmelCase = 'switch_transformers' _UpperCAmelCase = ['past_key_values'] _UpperCAmelCase = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self: Union[str, Any] , UpperCamelCase: Union[str, Any]=3_21_28 , UpperCamelCase: Dict=7_68 , UpperCamelCase: Any=64 , UpperCamelCase: Optional[Any]=20_48 , UpperCamelCase: List[Any]=64 , UpperCamelCase: Optional[Any]=12 , UpperCamelCase: List[Any]=3 , UpperCamelCase: Any=12 , UpperCamelCase: Optional[int]=3 , UpperCamelCase: List[str]=12 , UpperCamelCase: Optional[Any]=8 , UpperCamelCase: Dict=False , UpperCamelCase: str=0.01 , UpperCamelCase: List[Any]="float32" , UpperCamelCase: Union[str, Any]=False , UpperCamelCase: Any=32 , UpperCamelCase: int=1_28 , UpperCamelCase: Tuple=0.1 , UpperCamelCase: List[str]=1e-6 , UpperCamelCase: Union[str, Any]=0.001 , UpperCamelCase: Dict=0.001 , UpperCamelCase: Optional[Any]=1.0 , UpperCamelCase: Optional[Any]="relu" , UpperCamelCase: Union[str, Any]=True , UpperCamelCase: str=False , UpperCamelCase: Optional[Any]=True , UpperCamelCase: Any=0 , UpperCamelCase: Union[str, Any]=1 , **UpperCamelCase: Optional[Any] , ) -> List[str]: snake_case__ = vocab_size snake_case__ = d_model snake_case__ = d_kv snake_case__ = d_ff snake_case__ = num_sparse_encoder_layers snake_case__ = num_layers snake_case__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry snake_case__ = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: snake_case__ = self.num_layers // self.num_sparse_encoder_layers else: snake_case__ = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: snake_case__ = self.num_decoder_layers // self.num_sparse_decoder_layers else: snake_case__ = self.num_decoder_layers # HACK: this will create 0 sparse layers snake_case__ = num_heads snake_case__ = num_experts snake_case__ = expert_capacity snake_case__ = router_bias snake_case__ = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) snake_case__ = router_dtype snake_case__ = router_ignore_padding_tokens snake_case__ = relative_attention_num_buckets snake_case__ = relative_attention_max_distance snake_case__ = dropout_rate snake_case__ = layer_norm_epsilon snake_case__ = initializer_factor snake_case__ = feed_forward_proj snake_case__ = use_cache snake_case__ = add_router_probs snake_case__ = router_z_loss_coef snake_case__ = router_aux_loss_coef snake_case__ = self.feed_forward_proj.split('-' ) snake_case__ = act_info[-1] snake_case__ = act_info[0] == 'gated' if len(UpperCamelCase ) > 1 and act_info[0] != "gated" or len(UpperCamelCase ) > 2: raise ValueError( F'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": snake_case__ = 'gelu_new' super().__init__( pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , is_encoder_decoder=UpperCamelCase , **UpperCamelCase , )
328
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCamelCase ( __lowerCamelCase ): UpperCamelCase_ : Union[str, Any] = 'biogpt' def __init__( self :Tuple , lowercase :Union[str, Any]=4_2_3_8_4 , lowercase :str=1_0_2_4 , lowercase :Any=2_4 , lowercase :List[str]=1_6 , lowercase :List[str]=4_0_9_6 , lowercase :int="gelu" , lowercase :List[Any]=0.1 , lowercase :int=0.1 , lowercase :int=1_0_2_4 , lowercase :Optional[Any]=0.02 , lowercase :Union[str, Any]=1e-12 , lowercase :Tuple=True , lowercase :int=True , lowercase :Optional[int]=0.0 , lowercase :Any=0.0 , lowercase :str=1 , lowercase :Any=0 , lowercase :int=2 , **lowercase :Tuple , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = scale_embedding SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = layerdrop SCREAMING_SNAKE_CASE = activation_dropout super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
201
0
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class A ( unittest.TestCase ): def __init__( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : List[str]=18 , lowerCAmelCase_ : Optional[int]=30 , lowerCAmelCase_ : int=4_00 , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCAmelCase_ : Any=[0.5, 0.5, 0.5] , ) -> Tuple: """simple docstring""" _a = size if size is not None else {"""height""": 18, """width""": 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def __lowerCAmelCase ( self : str ) -> Any: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A ( UpperCamelCase__ ,unittest.TestCase ): lowercase_ = DPTImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : str ) -> Any: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def __lowerCAmelCase ( self : int ) -> List[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
710
'''simple docstring''' def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if n == 1 or not isinstance(UpperCamelCase , UpperCamelCase ): return 0 elif n == 2: return 1 else: _a = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def snake_case_ (UpperCamelCase : int ): '''simple docstring''' _a = 0 _a = 2 while digits < n: index += 1 _a = len(str(fibonacci(UpperCamelCase ) ) ) return index def snake_case_ (UpperCamelCase : int = 1000 ): '''simple docstring''' return fibonacci_digits_index(UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
377
0
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def _lowerCamelCase ( UpperCAmelCase_ : Tuple="ro", UpperCAmelCase_ : Any="en", UpperCAmelCase_ : List[str]="wmt16", UpperCAmelCase_ : Dict=None ) -> None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) A__ = F"""{src_lang}-{tgt_lang}""" print(F"""Converting {dataset}-{pair}""" ) A__ = datasets.load_dataset(UpperCAmelCase_, UpperCAmelCase_ ) if save_dir is None: A__ = F"""{dataset}-{pair}""" A__ = Path(UpperCAmelCase_ ) save_dir.mkdir(exist_ok=UpperCAmelCase_ ) for split in ds.keys(): print(F"""Splitting {split} with {ds[split].num_rows} records""" ) # to save to val.source, val.target like summary datasets A__ = "val" if split == "validation" else split A__ = save_dir.joinpath(F"""{fn}.source""" ) A__ = save_dir.joinpath(F"""{fn}.target""" ) A__ = src_path.open("w+" ) A__ = tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): A__ = x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(F"""Saved {dataset} dataset to {save_dir}""" ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
104
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase__ : '''simple docstring''' snake_case_ =None snake_case_ =False snake_case_ =False snake_case_ =False snake_case_ =None snake_case_ =None snake_case_ =False snake_case_ =False snake_case_ =False snake_case_ =True snake_case_ =None snake_case_ =1 snake_case_ =None snake_case_ =False snake_case_ =None snake_case_ =None def lowerCAmelCase__ (self ) -> "DownloadConfig": """simple docstring""" return self.__class__(**{k: copy.deepcopy(__lowerCamelCase ) for k, v in self.__dict__.items()} )
647
0
import os import numpy import onnx def lowerCAmelCase_ ( __UpperCAmelCase: Any , __UpperCAmelCase: Tuple ) -> List[Any]: UpperCamelCase__ : str = a.name UpperCamelCase__ : str = b.name UpperCamelCase__ : Tuple = '''''' UpperCamelCase__ : Optional[Any] = '''''' UpperCamelCase__ : str = a == b UpperCamelCase__ : int = name_a UpperCamelCase__ : Any = name_b return res def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: List[Any] , __UpperCAmelCase: List[Any] ) -> Tuple: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__UpperCAmelCase , __UpperCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __UpperCAmelCase , __UpperCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , __UpperCAmelCase , __UpperCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: Optional[Any] , __UpperCAmelCase: Dict ) -> Tuple: for n in graph_proto.node: _node_replace_input_with(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: str , __UpperCAmelCase: Union[str, Any] , __UpperCAmelCase: Tuple ) -> int: UpperCamelCase__ : Union[str, Any] = list(model.graph.initializer ) UpperCamelCase__ : Union[str, Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCamelCase__ : List[Any] = inits[i].name UpperCamelCase__ : Optional[int] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: Any ) -> List[str]: UpperCamelCase__ : Any = os.path.dirname(__UpperCAmelCase ) UpperCamelCase__ : int = os.path.basename(__UpperCAmelCase ) UpperCamelCase__ : Tuple = onnx.load(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCamelCase__ : int = list(model.graph.initializer ) UpperCamelCase__ : Union[str, Any] = set() UpperCamelCase__ : Optional[int] = {} UpperCamelCase__ : Any = [] UpperCamelCase__ : Tuple = 0 for i in range(len(__UpperCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(__UpperCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__UpperCAmelCase ) dup_set.add(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = inits[j].data_type UpperCamelCase__ : List[str] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , __UpperCAmelCase ) total_reduced_size += mem_size UpperCamelCase__ : int = inits[i].name UpperCamelCase__ : int = inits[j].name if name_i in dup_map: dup_map[name_i].append(__UpperCAmelCase ) else: UpperCamelCase__ : Any = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1024 / 1024 / 1024 , '''GB''' ) UpperCamelCase__ : str = sorted(__UpperCAmelCase ) _remove_dup_initializers_from_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : List[Any] = '''optimized_''' + model_file_name UpperCamelCase__ : Tuple = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) onnx.save(__UpperCAmelCase , __UpperCAmelCase ) return new_model
715
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Any = "upernet" def __init__( self, __magic_name__=None, __magic_name__=512, __magic_name__=0.02, __magic_name__=[1, 2, 3, 6], __magic_name__=True, __magic_name__=0.4, __magic_name__=384, __magic_name__=256, __magic_name__=1, __magic_name__=False, __magic_name__=255, **__magic_name__, ) -> Dict: """simple docstring""" super().__init__(**__magic_name__ ) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase__ : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) elif isinstance(__magic_name__, __magic_name__ ): UpperCamelCase__ : Tuple = backbone_config.get('''model_type''' ) UpperCamelCase__ : List[str] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ : Optional[int] = config_class.from_dict(__magic_name__ ) UpperCamelCase__ : Dict = backbone_config UpperCamelCase__ : int = hidden_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Dict = pool_scales UpperCamelCase__ : Tuple = use_auxiliary_head UpperCamelCase__ : Tuple = auxiliary_loss_weight UpperCamelCase__ : Optional[int] = auxiliary_in_channels UpperCamelCase__ : Optional[Any] = auxiliary_channels UpperCamelCase__ : Any = auxiliary_num_convs UpperCamelCase__ : Union[str, Any] = auxiliary_concat_input UpperCamelCase__ : List[str] = loss_ignore_index def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : List[str] = copy.deepcopy(self.__dict__ ) UpperCamelCase__ : int = self.backbone_config.to_dict() UpperCamelCase__ : Any = self.__class__.model_type return output
369
0