code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from PIL import Image def _a ( UpperCAmelCase , UpperCAmelCase ) -> Image: """simple docstring""" def brightness(UpperCAmelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(UpperCAmelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _A : int = change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
315
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a_ : int =BioGptTokenizer a_ : Any =False def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _snake_case : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _snake_case : List[str] = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) _snake_case : Tuple = ['l o 123', 'lo w 1456', 'e r</w> 1789', ''] _snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(UpperCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def UpperCamelCase_ ( self : Any , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = 'lower newer' _snake_case : Optional[int] = 'lower newer' return input_text, output_text def UpperCamelCase_ ( self : Any ): '''simple docstring''' _snake_case : List[str] = BioGptTokenizer(self.vocab_file , self.merges_file ) _snake_case : Tuple = 'lower' _snake_case : Optional[Any] = ['low', 'er</w>'] _snake_case : Any = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = tokens + ['<unk>'] _snake_case : List[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) , UpperCamelCase ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' _snake_case : Optional[int] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _snake_case : Any = tokenizer.encode('sequence builders' , add_special_tokens=UpperCamelCase ) _snake_case : Union[str, Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCamelCase ) _snake_case : Dict = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) _snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase , UpperCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
411
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github A_ : Optional[Any] =[ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def snake_case_ ( ) -> str: lowerCAmelCase_ = Github(os.environ['''GITHUB_TOKEN''']) lowerCAmelCase_ = g.get_repo('''huggingface/diffusers''') lowerCAmelCase_ = repo.get_issues(state='''open''') for issue in open_issues: lowerCAmelCase_ = sorted(issue.get_comments() , key=lambda __snake_case: i.created_at , reverse=__a) lowerCAmelCase_ = comments[0] if len(__a) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''') elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''') issue.remove_from_labels('''stale''') elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''') issue.add_to_labels('''stale''') if __name__ == "__main__": main()
720
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : str =16 A_ : Any =32 def snake_case_ ( __snake_case : Accelerator , __snake_case : int = 16) -> List[Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained('''bert-base-cased''') lowerCAmelCase_ = load_dataset('''glue''' , '''mrpc''') def tokenize_function(__snake_case : Optional[Any]): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ = datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''') def collate_fn(__snake_case : int): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ = 8 else: lowerCAmelCase_ = None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case) lowerCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A_ : Any =mocked_dataloaders # noqa: F811 def snake_case_ ( __snake_case : int , __snake_case : int) -> int: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case) == "1": lowerCAmelCase_ = 2 # New Code # lowerCAmelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator lowerCAmelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__snake_case) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ = config['''lr'''] lowerCAmelCase_ = int(config['''num_epochs''']) lowerCAmelCase_ = int(config['''seed''']) lowerCAmelCase_ = int(config['''batch_size''']) lowerCAmelCase_ = evaluate.load('''glue''' , '''mrpc''') set_seed(__snake_case) lowerCAmelCase_ ,lowerCAmelCase_ = get_dataloaders(__snake_case , __snake_case) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ = model.to(accelerator.device) # Instantiate optimizer lowerCAmelCase_ = AdamW(params=model.parameters() , lr=__snake_case) # Instantiate scheduler lowerCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case) # Now we train the model for epoch in range(__snake_case): model.train() for step, batch in enumerate(__snake_case): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__snake_case): lowerCAmelCase_ = model(**__snake_case) lowerCAmelCase_ = output.loss accelerator.backward(__snake_case) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): lowerCAmelCase_ = model(**__snake_case) lowerCAmelCase_ = outputs.logits.argmax(dim=-1) lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['''labels'''])) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case) def snake_case_ ( ) -> Optional[Any]: lowerCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script.''') parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__snake_case , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case) if __name__ == "__main__": main()
606
0
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) SCREAMING_SNAKE_CASE__ : Optional[int] = logging.getLogger(__name__) def lowercase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = { 'repo_id': str(SCREAMING_SNAKE_CASE ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(SCREAMING_SNAKE_CASE , 'git_log.json' ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=4 ) def lowercase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if params.n_gpu <= 0: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = -1 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 SCREAMING_SNAKE_CASE_ = int(os.environ['WORLD_SIZE'] ) SCREAMING_SNAKE_CASE_ = int(os.environ['N_GPU_NODE'] ) SCREAMING_SNAKE_CASE_ = int(os.environ['RANK'] ) # number of nodes / node ID SCREAMING_SNAKE_CASE_ = params.world_size // params.n_gpu_per_node SCREAMING_SNAKE_CASE_ = params.global_rank // params.n_gpu_per_node SCREAMING_SNAKE_CASE_ = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode SCREAMING_SNAKE_CASE_ = params.node_id == 0 and params.local_rank == 0 SCREAMING_SNAKE_CASE_ = params.n_nodes > 1 # summary SCREAMING_SNAKE_CASE_ = F'--- Global rank: {params.global_rank} - ' logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def lowercase ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
205
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { "google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json", "google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json", "google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json", "google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class a_ ( SCREAMING_SNAKE_CASE__ ): A = '''mobilenet_v2''' def __init__( self , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=224 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="relu6" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.8 , SCREAMING_SNAKE_CASE=0.0_2 , SCREAMING_SNAKE_CASE=0.0_0_1 , SCREAMING_SNAKE_CASE=255 , **SCREAMING_SNAKE_CASE , ) -> Dict: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = depth_multiplier SCREAMING_SNAKE_CASE_ = depth_divisible_by SCREAMING_SNAKE_CASE_ = min_depth SCREAMING_SNAKE_CASE_ = expand_ratio SCREAMING_SNAKE_CASE_ = output_stride SCREAMING_SNAKE_CASE_ = first_layer_is_expansion SCREAMING_SNAKE_CASE_ = finegrained_output SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = tf_padding SCREAMING_SNAKE_CASE_ = classifier_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = semantic_loss_ignore_index class a_ ( SCREAMING_SNAKE_CASE__ ): A = version.parse('''1.11''' ) @property def A_( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def A_( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def A_( self ) -> float: """simple docstring""" return 1e-4
205
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a( __A ): def __init__( self , *__snake_case , __snake_case=None , __snake_case=None , **__snake_case ) -> Optional[Any]: '''simple docstring''' super().__init__(*__snake_case , **__snake_case ) _snake_case : str = eval_examples _snake_case : int = post_process_function def lowercase ( self , __snake_case = None , __snake_case=None , __snake_case = None , __snake_case = "eval" , **__snake_case , ) -> Dict[str, float]: '''simple docstring''' _snake_case : Tuple = gen_kwargs.copy() _snake_case : Optional[int] = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) _snake_case : Optional[int] = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) _snake_case : str = gen_kwargs _snake_case : Union[str, Any] = self.eval_dataset if eval_dataset is None else eval_dataset _snake_case : Any = self.get_eval_dataloader(__snake_case ) _snake_case : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _snake_case : List[str] = self.compute_metrics _snake_case : Dict = None _snake_case : Optional[Any] = time.time() _snake_case : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _snake_case : Any = eval_loop( __snake_case , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , metric_key_prefix=__snake_case , ) finally: _snake_case : List[str] = compute_metrics _snake_case : str = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __snake_case , __snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _snake_case : int = self.post_process_function(__snake_case , __snake_case , __snake_case ) _snake_case : Union[str, Any] = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): _snake_case : Tuple = metrics.pop(__snake_case ) metrics.update(output.metrics ) else: _snake_case : Tuple = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__snake_case ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _snake_case : str = self.callback_handler.on_evaluate(self.args , self.state , self.control , __snake_case ) return metrics def lowercase ( self , __snake_case , __snake_case , __snake_case=None , __snake_case = "test" , **__snake_case ) -> Tuple: '''simple docstring''' _snake_case : Optional[Any] = gen_kwargs.copy() _snake_case : Tuple = self.get_test_dataloader(__snake_case ) # Temporarily disable metric computation, we will do it in the loop here. _snake_case : List[Any] = self.compute_metrics _snake_case : List[str] = None _snake_case : Optional[int] = time.time() _snake_case : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _snake_case : Union[str, Any] = eval_loop( __snake_case , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , metric_key_prefix=__snake_case , ) finally: _snake_case : Optional[int] = compute_metrics _snake_case : Any = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __snake_case , __snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _snake_case : List[Any] = self.post_process_function(__snake_case , __snake_case , __snake_case , "predict" ) _snake_case : Union[str, Any] = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): _snake_case : Optional[int] = metrics.pop(__snake_case ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__snake_case )
278
import numpy as np __lowerCAmelCase :Dict = [ ['a', 'b', 'c', 'd', 'e'], ['f', 'g', 'h', 'i', 'k'], ['l', 'm', 'n', 'o', 'p'], ['q', 'r', 's', 't', 'u'], ['v', 'w', 'x', 'y', 'z'], ] class _a: def __init__( self ) -> None: '''simple docstring''' _snake_case : Optional[Any] = np.array(__snake_case ) def lowercase ( self , __snake_case ) -> np.ndarray: '''simple docstring''' _snake_case , _snake_case : List[Any] = np.where(letter == self.SQUARE ) _snake_case : Any = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowercase ( self , __snake_case , __snake_case ) -> str: '''simple docstring''' _snake_case : int = self.SQUARE[indexa - 1, indexa - 1] return letter def lowercase ( self , __snake_case ) -> str: '''simple docstring''' _snake_case : Optional[Any] = message.lower() _snake_case : List[Any] = message.replace(" " , "" ) _snake_case : Any = message.replace("j" , "i" ) _snake_case : Tuple = np.empty((2, len(__snake_case )) ) for letter_index in range(len(__snake_case ) ): _snake_case : Dict = self.letter_to_numbers(message[letter_index] ) _snake_case : Tuple = numbers[0] _snake_case : List[Any] = numbers[1] _snake_case : Any = first_step.reshape(2 * len(__snake_case ) ) _snake_case : Optional[Any] = "" for numbers_index in range(len(__snake_case ) ): _snake_case : Optional[int] = int(second_step[numbers_index * 2] ) _snake_case : List[str] = int(second_step[(numbers_index * 2) + 1] ) _snake_case : Any = self.numbers_to_letter(__snake_case , __snake_case ) _snake_case : Any = encoded_message + letter return encoded_message def lowercase ( self , __snake_case ) -> str: '''simple docstring''' _snake_case : Union[str, Any] = message.lower() message.replace(" " , "" ) _snake_case : Tuple = np.empty(2 * len(__snake_case ) ) for letter_index in range(len(__snake_case ) ): _snake_case : Union[str, Any] = self.letter_to_numbers(message[letter_index] ) _snake_case : Tuple = numbers[0] _snake_case : Any = numbers[1] _snake_case : Optional[Any] = first_step.reshape((2, len(__snake_case )) ) _snake_case : Union[str, Any] = "" for numbers_index in range(len(__snake_case ) ): _snake_case : Dict = int(second_step[0, numbers_index] ) _snake_case : Optional[Any] = int(second_step[1, numbers_index] ) _snake_case : Union[str, Any] = self.numbers_to_letter(__snake_case , __snake_case ) _snake_case : str = decoded_message + letter return decoded_message
278
1
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _lowercase : '''simple docstring''' def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = UNetaDConditionModel( sample_size=32 ,layers_per_block=1 ,block_out_channels=[32, 64] ,down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] ,mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' ,up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] ,in_channels=3 ,out_channels=6 ,cross_attention_dim=32 ,encoder_hid_dim=32 ,attention_head_dim=8 ,addition_embed_type='''text''' ,addition_embed_type_num_heads=2 ,cross_attention_norm='''group_norm''' ,resnet_time_scale_shift='''scale_shift''' ,act_fn='''gelu''' ,) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase__ : str = DDPMScheduler( num_train_timesteps=1000 ,beta_schedule='''squaredcos_cap_v2''' ,beta_start=0.0001 ,beta_end=0.02 ,thresholding=_SCREAMING_SNAKE_CASE ,dynamic_thresholding_ratio=0.95 ,sample_max_value=1.0 ,prediction_type='''epsilon''' ,variance_type='''learned_range''' ,) torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Any = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCAmelCase__ : str = UNetaDConditionModel( sample_size=32 ,layers_per_block=[1, 2] ,block_out_channels=[32, 64] ,down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] ,mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' ,up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] ,in_channels=6 ,out_channels=6 ,cross_attention_dim=32 ,encoder_hid_dim=32 ,attention_head_dim=8 ,addition_embed_type='''text''' ,addition_embed_type_num_heads=2 ,cross_attention_norm='''group_norm''' ,resnet_time_scale_shift='''scale_shift''' ,act_fn='''gelu''' ,class_embed_type='''timestep''' ,mid_block_scale_factor=1.414 ,time_embedding_act_fn='''gelu''' ,time_embedding_dim=32 ,) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCAmelCase__ : Any = DDPMScheduler( num_train_timesteps=1000 ,beta_schedule='''squaredcos_cap_v2''' ,beta_start=0.0001 ,beta_end=0.02 ,thresholding=_SCREAMING_SNAKE_CASE ,dynamic_thresholding_ratio=0.95 ,sample_max_value=1.0 ,prediction_type='''epsilon''' ,variance_type='''learned_range''' ,) torch.manual_seed(0 ) UpperCAmelCase__ : List[Any] = DDPMScheduler( num_train_timesteps=1000 ,beta_schedule='''squaredcos_cap_v2''' ,beta_start=0.0001 ,beta_end=0.02 ,) torch.manual_seed(0 ) UpperCAmelCase__ : List[str] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_dummy_components() UpperCAmelCase__ : str = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : List[str] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Dict = inputs["prompt"] UpperCAmelCase__ : Dict = inputs["generator"] UpperCAmelCase__ : int = inputs["num_inference_steps"] UpperCAmelCase__ : str = inputs["output_type"] if "image" in inputs: UpperCAmelCase__ : Union[str, Any] = inputs["image"] else: UpperCAmelCase__ : Tuple = None if "mask_image" in inputs: UpperCAmelCase__ : int = inputs["mask_image"] else: UpperCAmelCase__ : List[Any] = None if "original_image" in inputs: UpperCAmelCase__ : Dict = inputs["original_image"] else: UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : int = pipe.encode_prompt(_SCREAMING_SNAKE_CASE ) # inputs with prompt converted to embeddings UpperCAmelCase__ : int = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: UpperCAmelCase__ : Optional[Any] = image if mask_image is not None: UpperCAmelCase__ : Optional[int] = mask_image if original_image is not None: UpperCAmelCase__ : Optional[int] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Optional[int] = pipe(**_SCREAMING_SNAKE_CASE )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Union[str, Any] = self.pipeline_class.from_pretrained(_SCREAMING_SNAKE_CASE ) pipe_loaded.to(_SCREAMING_SNAKE_CASE ) pipe_loaded.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) is None ,f'''`{optional_component}` did not stay set to None after loading.''' ,) UpperCAmelCase__ : List[Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Any = inputs["generator"] UpperCAmelCase__ : Any = inputs["num_inference_steps"] UpperCAmelCase__ : List[str] = inputs["output_type"] # inputs with prompt converted to embeddings UpperCAmelCase__ : List[Any] = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: UpperCAmelCase__ : Tuple = image if mask_image is not None: UpperCAmelCase__ : str = mask_image if original_image is not None: UpperCAmelCase__ : List[str] = original_image UpperCAmelCase__ : Optional[Any] = pipe_loaded(**_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase__ : str = np.abs(to_np(_SCREAMING_SNAKE_CASE ) - to_np(_SCREAMING_SNAKE_CASE ) ).max() self.assertLess(_SCREAMING_SNAKE_CASE ,1e-4 ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase__ : Tuple = self.get_dummy_components() UpperCAmelCase__ : List[Any] = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : List[Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : int = pipe(**_SCREAMING_SNAKE_CASE )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : int = self.pipeline_class.from_pretrained(_SCREAMING_SNAKE_CASE ) pipe_loaded.to(_SCREAMING_SNAKE_CASE ) pipe_loaded.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCAmelCase__ : Optional[int] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : List[str] = pipe_loaded(**_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase__ : int = np.abs(to_np(_SCREAMING_SNAKE_CASE ) - to_np(_SCREAMING_SNAKE_CASE ) ).max() self.assertLess(_SCREAMING_SNAKE_CASE ,1e-4 )
614
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'sentencepiece.model'} UpperCamelCase = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } UpperCamelCase = { 'google/rembert': 2_56, } class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , **_SCREAMING_SNAKE_CASE , ) -> int: super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) a_ : List[str] = do_lower_case a_ : List[Any] = remove_space a_ : int = keep_accents a_ : str = vocab_file a_ : Union[str, Any] = spm.SentencePieceProcessor() self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def A ( self ) -> str: return len(self.sp_model ) def A ( self ) -> str: a_ : Optional[int] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: a_ : Optional[Any] = self.__dict__.copy() a_ : int = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> Any: a_ : int = d a_ : Optional[int] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> List[Any]: a_ : Optional[int] = self.sp_model.EncodeAsPieces(_SCREAMING_SNAKE_CASE ) return pieces def A ( self , _SCREAMING_SNAKE_CASE ) -> int: return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def A ( self , _SCREAMING_SNAKE_CASE ) -> Dict: return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def A ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: a_ : Tuple = self.sp_model.decode_pieces(_SCREAMING_SNAKE_CASE ) return out_string def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: a_ : Union[str, Any] = [self.sep_token_id] a_ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: a_ : Optional[int] = [self.sep_token_id] a_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("Vocabulary path ({}) should be a directory".format(_SCREAMING_SNAKE_CASE ) ) return a_ : Tuple = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
473
0
from __future__ import annotations from cmath import sqrt def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int ) -> tuple[complex, complex]: if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) _UpperCAmelCase : Dict = b * b - 4 * a * c _UpperCAmelCase : int = (-b + sqrt(lowerCAmelCase )) / (2 * a) _UpperCAmelCase : List[str] = (-b - sqrt(lowerCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: _UpperCAmelCase , _UpperCAmelCase : str = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
467
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = os.path.join(args.tf_model_dir , "parameters.json" ) _UpperCAmelCase : List[str] = json.loads(open(lowerCAmelCase ).read() ) if not params: raise ValueError( F'It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.' ) if not args.output.endswith(".pt" ): _UpperCAmelCase : Union[str, Any] = args.output + ".pt" _UpperCAmelCase : Dict = OrderedDict() with tf.device("/CPU:0" ): _UpperCAmelCase : int = tf.train.load_checkpoint(args.tf_model_dir ) _UpperCAmelCase : int = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _UpperCAmelCase : Dict = reader.get_tensor(lowerCAmelCase ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): _UpperCAmelCase : int = int(key_name[9] ) elif key_name.startswith("pasts/out" ): _UpperCAmelCase : Any = 8 _UpperCAmelCase : str = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _UpperCAmelCase : Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _UpperCAmelCase : str = torch.tensor(lowerCAmelCase ) elif key_name.startswith("model/moe" ): _UpperCAmelCase : List[str] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): _UpperCAmelCase : Union[str, Any] = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player _UpperCAmelCase : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _UpperCAmelCase : Tuple = torch.tensor(lowerCAmelCase ) elif key_name.endswith("/softmlp/kernel" ): _UpperCAmelCase : List[str] = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player _UpperCAmelCase : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _UpperCAmelCase : Union[str, Any] = torch.tensor(lowerCAmelCase ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): _UpperCAmelCase : str = key_name[-9:-7] for i in range(16 ): _UpperCAmelCase : Optional[int] = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) _UpperCAmelCase : Optional[int] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _UpperCAmelCase : Dict = torch.tensor(lowerCAmelCase ) elif key_name.startswith("model/mlp" ): _UpperCAmelCase : Tuple = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): _UpperCAmelCase : Any = "model.blocks.%d.feed_forward.mlp.wi.weight" % player _UpperCAmelCase : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase ) elif key_name.endswith("/p1/bias" ): _UpperCAmelCase : Optional[Any] = "model.blocks.%d.feed_forward.mlp.wi.bias" % player _UpperCAmelCase : Tuple = vnp.copy() # same because it is one dimensional _UpperCAmelCase : Any = torch.tensor(lowerCAmelCase ) elif key_name.endswith("/p2/kernel" ): _UpperCAmelCase : str = "model.blocks.%d.feed_forward.mlp.wo.weight" % player _UpperCAmelCase : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _UpperCAmelCase : List[Any] = torch.tensor(lowerCAmelCase ) elif key_name.endswith("/p2/bias" ): _UpperCAmelCase : int = "model.blocks.%d.feed_forward.mlp.wo.bias" % player _UpperCAmelCase : Optional[int] = vnp.copy() # same because it is one dimensional _UpperCAmelCase : str = torch.tensor(lowerCAmelCase ) elif key_name.startswith("model/ln" ): _UpperCAmelCase : Union[str, Any] = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _UpperCAmelCase : Union[str, Any] = "model.blocks.%d.feed_forward.norm.bias" % player _UpperCAmelCase : int = vnp.copy() # same because it is one dimensional _UpperCAmelCase : Union[str, Any] = torch.tensor(lowerCAmelCase ) elif key_name.endswith("/g" ): _UpperCAmelCase : Optional[Any] = "model.blocks.%d.feed_forward.norm.weight" % player _UpperCAmelCase : Union[str, Any] = vnp.copy() # same because it is one dimensional _UpperCAmelCase : List[Any] = torch.tensor(lowerCAmelCase ) elif key_name.startswith("model/att" ): _UpperCAmelCase : Optional[Any] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): _UpperCAmelCase : List[Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _UpperCAmelCase : Dict = state[:, 0, :, :] _UpperCAmelCase : List[Any] = state[:, 1, :, :] _UpperCAmelCase : Tuple = state[:, 2, :, :] _UpperCAmelCase : List[str] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _UpperCAmelCase : int = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _UpperCAmelCase : Tuple = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _UpperCAmelCase : int = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player _UpperCAmelCase : Any = torch.tensor(lowerCAmelCase ) _UpperCAmelCase : List[Any] = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player _UpperCAmelCase : Any = torch.tensor(lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player _UpperCAmelCase : str = torch.tensor(lowerCAmelCase ) elif key_name.endswith("/o/kernel" ): _UpperCAmelCase : Dict = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player _UpperCAmelCase : Tuple = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase ) elif key_name.startswith("model/an" ): _UpperCAmelCase : Optional[int] = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _UpperCAmelCase : Any = "model.blocks.%d.self_attn.norm.bias" % player _UpperCAmelCase : Any = vnp.copy() # same because it is one dimensional _UpperCAmelCase : Dict = torch.tensor(lowerCAmelCase ) elif key_name.endswith("/g" ): _UpperCAmelCase : Dict = "model.blocks.%d.self_attn.norm.weight" % player _UpperCAmelCase : Any = vnp.copy() # same because it is one dimensional _UpperCAmelCase : Tuple = torch.tensor(lowerCAmelCase ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): _UpperCAmelCase : Optional[Any] = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] _UpperCAmelCase : Dict = "model.%s.weight" % nlayer _UpperCAmelCase : Optional[Any] = vnp.copy() # same in embedded _UpperCAmelCase : List[Any] = torch.tensor(lowerCAmelCase ) if key_name.startswith("model/wte" ): _UpperCAmelCase : List[str] = "lm_head.weight" _UpperCAmelCase : Optional[int] = vnp.copy() # same in embedded _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase ) elif key_name.startswith("model/wob" ): _UpperCAmelCase : Dict = "final_logits_bias" _UpperCAmelCase : Optional[Any] = vnp.copy() # same in embedded _UpperCAmelCase : str = state.reshape((1, -1) ) _UpperCAmelCase : Dict = torch.tensor(lowerCAmelCase ) elif key_name == "model/dense/kernel": _UpperCAmelCase : List[Any] = "model.last_project.weight" _UpperCAmelCase : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _UpperCAmelCase : str = torch.tensor(lowerCAmelCase ) elif key_name == "model/dense_1/bias": _UpperCAmelCase : List[Any] = "model.last_project.bias" _UpperCAmelCase : Any = vnp.copy() # same because it is one dimensional _UpperCAmelCase : Any = torch.tensor(lowerCAmelCase ) torch.save(lowerCAmelCase , args.output ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
467
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = ["""model.decoder.embed_positions.weights"""] def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] ) -> List[Any]: if "emb" in name: _A = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: _A = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: _A = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: _A = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: _A = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: _A = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: _A = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: _A = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: _A = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: _A = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: _A = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def SCREAMING_SNAKE_CASE_ ( _snake_case :OrderedDict , _snake_case :int ) -> Tuple[Dict, Dict]: _A = list(state_dict.keys() ) _A = {} for key in keys: _A = state_dict.pop(_snake_case ) _A = rename_keys(_snake_case ) if "in_proj_weight" in key: # split fused qkv proj _A = val[:hidden_size, :] _A = val[hidden_size : 2 * hidden_size, :] _A = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: _A = val else: _A = val return state_dict, enc_dec_proj_state_dict def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values _A = 1_024 _A = 24 _A = 16 elif checkpoint == "medium": _A = 1_536 _A = 48 _A = 24 elif checkpoint == "large": _A = 2_048 _A = 48 _A = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) _A = MusicgenDecoderConfig( hidden_size=_snake_case , ffn_dim=hidden_size * 4 , num_hidden_layers=_snake_case , num_attention_heads=_snake_case , ) return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[int] , _snake_case :int=None , _snake_case :int=None , _snake_case :Optional[int]="cpu" ) -> List[str]: _A = MusicGen.get_pretrained(_snake_case , device=_snake_case ) _A = decoder_config_from_checkpoint(_snake_case ) _A = fairseq_model.lm.state_dict() _A , _A = rename_state_dict( _snake_case , hidden_size=decoder_config.hidden_size ) _A = TaEncoderModel.from_pretrained('''t5-base''' ) _A = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) _A = MusicgenForCausalLM(_snake_case ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection _A , _A = decoder.load_state_dict(_snake_case , strict=_snake_case ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(_snake_case ) if len(_snake_case ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(_snake_case ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model _A = MusicgenForConditionalGeneration(text_encoder=_snake_case , audio_encoder=_snake_case , decoder=_snake_case ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(_snake_case ) # check we can do a forward pass _A = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) _A = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): _A = model(input_ids=_snake_case , decoder_input_ids=_snake_case ).logits if logits.shape != (8, 1, 2_048): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor _A = AutoTokenizer.from_pretrained('''t5-base''' ) _A = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) _A = MusicgenProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) # set the appropriate bos/pad token ids _A = 2_048 _A = 2_048 # set other default generation config params _A = int(30 * audio_encoder.config.frame_rate ) _A = True _A = 3.0 if pytorch_dump_folder is not None: Path(_snake_case ).mkdir(exist_ok=_snake_case ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(_snake_case ) processor.push_to_hub(_snake_case ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint""", default="""small""", type=str, help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""", ) parser.add_argument( """--pytorch_dump_folder""", required=True, default=None, type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) parser.add_argument( """--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda.""" ) UpperCAmelCase_ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
2
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ : Optional[Any] = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } snake_case_ : Tuple = { '''squeezebert/squeezebert-uncased''': 512, '''squeezebert/squeezebert-mnli''': 512, '''squeezebert/squeezebert-mnli-headless''': 512, } snake_case_ : Tuple = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class A_ ( lowerCAmelCase_ ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = SqueezeBertTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ): super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) _UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , A_ ) != do_lower_case or normalizer_state.get("strip_accents" , A_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , A_ ) != tokenize_chinese_chars ): _UpperCamelCase = getattr(A_ , normalizer_state.pop("type" ) ) _UpperCamelCase = do_lower_case _UpperCamelCase = strip_accents _UpperCamelCase = tokenize_chinese_chars _UpperCamelCase = normalizer_class(**A_ ) _UpperCamelCase = do_lower_case def a ( self , A_ , A_=None ): _UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self , A_ , A_ = None ): _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self , A_ , A_ = None ): _UpperCamelCase = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
138
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=3 , _lowerCamelCase=224 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , ) ->Dict: SCREAMING_SNAKE_CASE : Any = size if size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : Optional[Any] = min_resolution SCREAMING_SNAKE_CASE : Union[str, Any] = max_resolution SCREAMING_SNAKE_CASE : Tuple = do_resize SCREAMING_SNAKE_CASE : int = size SCREAMING_SNAKE_CASE : str = do_normalize SCREAMING_SNAKE_CASE : Any = image_mean SCREAMING_SNAKE_CASE : Any = image_std def __lowerCAmelCase ( self ) ->Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = ViTImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Dict = EfficientFormerImageProcessorTester(self ) @property def __lowerCAmelCase ( self ) ->List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) def __lowerCAmelCase ( self ) ->Tuple: pass def __lowerCAmelCase ( self ) ->Union[str, Any]: # Initialize image_processor SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : str = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : Tuple = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self ) ->Tuple: # Initialize image_processor SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Dict = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : List[str] = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def __lowerCAmelCase ( self ) ->Optional[Any]: # Initialize image_processor SCREAMING_SNAKE_CASE : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE : List[str] = image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
333
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=[30, 30] , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=8 , _lowerCamelCase=10 , ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = scope SCREAMING_SNAKE_CASE : Any = n_targets SCREAMING_SNAKE_CASE : Optional[Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens SCREAMING_SNAKE_CASE : Dict = (image_size[1] // patch_size) * (image_size[0] // patch_size) SCREAMING_SNAKE_CASE : int = num_patches + 1 + self.num_detection_tokens def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) SCREAMING_SNAKE_CASE : Optional[Any] = [] for i in range(self.batch_size ): SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : Any = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.rand(self.n_targets , 4 , device=_lowerCamelCase ) labels.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) ->int: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : Union[str, Any] = YolosModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(_lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = YolosForObjectDetection(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE : Any = model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) SCREAMING_SNAKE_CASE : Optional[Any] = model(pixel_values=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __SCREAMING_SNAKE_CASE : List[str] = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": SCREAMING_SNAKE_CASE : Any = [] for i in range(self.model_tester.batch_size ): SCREAMING_SNAKE_CASE : List[str] = {} SCREAMING_SNAKE_CASE : List[str] = torch.ones( size=(self.model_tester.n_targets,) , device=_lowerCamelCase , dtype=torch.long ) SCREAMING_SNAKE_CASE : List[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_lowerCamelCase , dtype=torch.float ) labels.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = labels return inputs_dict def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : Union[str, Any] = YolosModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def __lowerCAmelCase ( self ) ->Tuple: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) ->Optional[int]: # YOLOS does not use inputs_embeds pass def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Any = True # in YOLOS, the seq_len is different SCREAMING_SNAKE_CASE : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = len(_lowerCamelCase ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : int = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = 1 self.assertEqual(out_len + added_hidden_states , len(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __lowerCAmelCase ( self ) ->Optional[int]: def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Any = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = outputs.hidden_states SCREAMING_SNAKE_CASE : Optional[int] = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowerCamelCase ) , _lowerCamelCase ) # YOLOS has a different seq_length SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[str] = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_lowerCamelCase ) @slow def __lowerCAmelCase ( self ) ->List[Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Tuple = YolosModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ) ->Dict: return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : Optional[int] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(inputs.pixel_values ) # verify outputs SCREAMING_SNAKE_CASE : int = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _lowerCamelCase , atol=1e-4 ) ) # verify postprocessing SCREAMING_SNAKE_CASE : List[str] = image_processor.post_process_object_detection( _lowerCamelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] SCREAMING_SNAKE_CASE : int = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = [75, 75, 17, 63, 17] SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(_lowerCamelCase ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , _lowerCamelCase , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , _lowerCamelCase ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , _lowerCamelCase ) )
333
1
from ...configuration_utils import PretrainedConfig A : Optional[int] = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = '''tapas''' def __init__(self : Optional[int] , _UpperCAmelCase : int=3_0522 , _UpperCAmelCase : str=768 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Tuple=3072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=1024 , _UpperCAmelCase : Any=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Union[str, Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : List[str]=10.0 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : List[Any]=1.0 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Dict=1.0 , _UpperCAmelCase : str=False , _UpperCAmelCase : int=None , _UpperCAmelCase : List[str]=1.0 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Any="ratio" , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Any=None , **_UpperCAmelCase : Dict , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_sizes lowercase__ = initializer_range lowercase__ = layer_norm_eps # Fine-tuning task hyperparameters lowercase__ = positive_label_weight lowercase__ = num_aggregation_labels lowercase__ = aggregation_loss_weight lowercase__ = use_answer_as_supervision lowercase__ = answer_loss_importance lowercase__ = use_normalized_answer_loss lowercase__ = huber_loss_delta lowercase__ = temperature lowercase__ = aggregation_temperature lowercase__ = use_gumbel_for_cells lowercase__ = use_gumbel_for_aggregation lowercase__ = average_approximation_function lowercase__ = cell_selection_preference lowercase__ = answer_loss_cutoff lowercase__ = max_num_rows lowercase__ = max_num_columns lowercase__ = average_logits_per_cell lowercase__ = select_one_column lowercase__ = allow_empty_column_selection lowercase__ = init_cell_selection_weights_to_zero lowercase__ = reset_position_index_per_cell lowercase__ = disable_per_token_loss # Aggregation hyperparameters lowercase__ = aggregation_labels lowercase__ = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase ): lowercase__ = {int(_UpperCAmelCase ): v for k, v in aggregation_labels.items()}
15
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class a ( UpperCAmelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCamelCase : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) UpperCamelCase : ClassVar[Features] = Features({'text': Value('string' )} ) UpperCamelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) UpperCamelCase : str = "text" UpperCamelCase : str = "labels" def lowerCamelCase__ ( self : str , lowerCAmelCase : List[Any] ) -> Any: '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE_: List[str] =copy.deepcopy(self ) SCREAMING_SNAKE_CASE_: int =self.label_schema.copy() SCREAMING_SNAKE_CASE_: Tuple =features[self.label_column] SCREAMING_SNAKE_CASE_: Any =label_schema return task_template @property def lowerCamelCase__ ( self : List[Any] ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
409
0
def _lowerCAmelCase (_lowerCAmelCase): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _lowerCAmelCase (_lowerCAmelCase): UpperCamelCase_ = 0 UpperCamelCase_ = len(_lowerCAmelCase) # No of vertices in graph UpperCamelCase_ = [0] * n UpperCamelCase_ = [False] * n def dfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = True UpperCamelCase_ = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , id_) UpperCamelCase_ = min(low[at] , low[to]) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at)) else: # This edge is a back edge and cannot be a bridge UpperCamelCase_ = min(low[at] , low[to]) UpperCamelCase_ = [] for i in range(_lowerCAmelCase): if not visited[i]: dfs(_lowerCAmelCase , -1 , _lowerCAmelCase , id_) return bridges if __name__ == "__main__": import doctest doctest.testmod()
504
import sys UpperCAmelCase : Union[str, Any] =( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _lowerCAmelCase (_lowerCAmelCase = N): UpperCamelCase_ = -sys.maxsize - 1 for i in range(len(_lowerCAmelCase) - 12): UpperCamelCase_ = 1 for j in range(13): product *= int(n[i + j]) if product > largest_product: UpperCamelCase_ = product return largest_product if __name__ == "__main__": print(F"{solution() = }")
504
1
import requests from bsa import BeautifulSoup def lowercase ( __A : str = "AAPL" ) -> str: '''simple docstring''' snake_case : List[Any] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" snake_case : Dict = BeautifulSoup(requests.get(__A ).text , """html.parser""" ) snake_case : Optional[int] = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
36
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _snake_case : List[Any] = "\\n Text data.\n Second line of data." _snake_case : Tuple = "file" @pytest.fixture(scope="session" ) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") __snake_case : Optional[Any] = bytes(__lowerCamelCase , "utf-8" ) with zstd.open(__lowerCamelCase , "wb" ) as f: f.write(__lowerCamelCase ) return path @pytest.fixture def lowerCAmelCase_ ( __lowerCamelCase ): with open(os.path.join(tmpfs.local_root_dir , __lowerCamelCase ) , "w" ) as f: f.write(__lowerCamelCase ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[int] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} __snake_case : str = input_paths[compression_format] __snake_case : Optional[Any] = tmp_path / "cache" __snake_case : Optional[int] = DownloadConfig(cache_dir=__lowerCamelCase , extract_compressed_file=__lowerCamelCase ) __snake_case : Union[str, Any] = cached_path(__lowerCamelCase , download_config=__lowerCamelCase ) with open(__lowerCamelCase ) as f: __snake_case : Dict = f.read() with open(__lowerCamelCase ) as f: __snake_case : Tuple = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : Tuple = "custom_cache" __snake_case : List[str] = "custom_extracted_dir" __snake_case : Any = tmp_path / "custom_extracted_path" if default_extracted: __snake_case : List[Any] = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , __lowerCamelCase ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(__lowerCamelCase ) ) __snake_case : Optional[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __snake_case : Optional[int] = xz_file __snake_case : Optional[int] = ( DownloadConfig(extract_compressed_file=__lowerCamelCase ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__lowerCamelCase ) ) __snake_case : str = cached_path(__lowerCamelCase , download_config=__lowerCamelCase ) assert Path(__lowerCamelCase ).parent.parts[-2:] == expected def lowerCAmelCase_ ( __lowerCamelCase ): # absolute path __snake_case : Optional[Any] = str(Path(__lowerCamelCase ).resolve() ) assert cached_path(__lowerCamelCase ) == text_file # relative path __snake_case : Any = str(Path(__lowerCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__lowerCamelCase ) == text_file def lowerCAmelCase_ ( __lowerCamelCase ): # absolute path __snake_case : List[Any] = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(__lowerCamelCase ): cached_path(__lowerCamelCase ) # relative path __snake_case : Optional[int] = "./__missing_file__.txt" with pytest.raises(__lowerCamelCase ): cached_path(__lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : str = get_from_cache(F'tmp://{tmpfs_file}' ) with open(__lowerCamelCase ) as f: __snake_case : Union[str, Any] = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCamelCase ) def lowerCAmelCase_ ( ): with pytest.raises(__lowerCamelCase ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : List[Any] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(__lowerCamelCase ): http_get("https://huggingface.co" , temp_file=__lowerCamelCase ) with pytest.raises(__lowerCamelCase ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : List[str] = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(__lowerCamelCase ): ftp_get("ftp://huggingface.co" , temp_file=__lowerCamelCase ) with pytest.raises(__lowerCamelCase ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(__lowerCamelCase ): fsspec_get("s3://huggingface.co" , temp_file=__lowerCamelCase ) with pytest.raises(__lowerCamelCase ): fsspec_head("s3://huggingface.co" )
81
0
import numpy as np snake_case__ : Tuple = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _A : '''simple docstring''' def __init__( self : Dict ): '''simple docstring''' __lowercase = np.array(lowerCamelCase ) def _snake_case ( self : Union[str, Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase , __lowercase = np.where(letter == self.SQUARE ) __lowercase = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _snake_case ( self : List[Any] , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.SQUARE[indexa - 1, indexa - 1] return letter def _snake_case ( self : int , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() __lowercase = message.replace(" " , "" ) __lowercase = message.replace("j" , "i" ) __lowercase = np.empty((2, len(lowerCamelCase )) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape(2 * len(lowerCamelCase ) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[numbers_index * 2] ) __lowercase = int(second_step[(numbers_index * 2) + 1] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = encoded_message + letter return encoded_message def _snake_case ( self : Optional[Any] , lowerCamelCase : str ): '''simple docstring''' __lowercase = message.lower() message.replace(" " , "" ) __lowercase = np.empty(2 * len(lowerCamelCase ) ) for letter_index in range(len(lowerCamelCase ) ): __lowercase = self.letter_to_numbers(message[letter_index] ) __lowercase = numbers[0] __lowercase = numbers[1] __lowercase = first_step.reshape((2, len(lowerCamelCase )) ) __lowercase = "" for numbers_index in range(len(lowerCamelCase ) ): __lowercase = int(second_step[0, numbers_index] ) __lowercase = int(second_step[1, numbers_index] ) __lowercase = self.numbers_to_letter(lowerCamelCase , lowerCamelCase ) __lowercase = decoded_message + letter return decoded_message
701
def snake_case_ ( _SCREAMING_SNAKE_CASE ): # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError("The given input must be positive" ) # get the generated string sequence __lowercase = gray_code_sequence_string(_SCREAMING_SNAKE_CASE ) # # convert them to integers for i in range(len(_SCREAMING_SNAKE_CASE ) ): __lowercase = int(sequence[i] , 2 ) return sequence def snake_case_ ( _SCREAMING_SNAKE_CASE ): # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __lowercase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __lowercase = gray_code_sequence_string(bit_count - 1 ) __lowercase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __lowercase = "0" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __lowercase = "1" + smaller_sequence[i] sequence.append(_SCREAMING_SNAKE_CASE ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
655
0
def UpperCamelCase( __UpperCamelCase : Tuple ,__UpperCamelCase : List[str] ): print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(a__ ): for j in range(a__ ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) ,end='''\t''' ) else: print('''INF''' ,end='''\t''' ) print() def UpperCamelCase( __UpperCamelCase : Optional[int] ,__UpperCamelCase : int ): lowerCAmelCase_ : Optional[Any] = [[float('''inf''' ) for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): for j in range(a__ ): lowerCAmelCase_ : Union[str, Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a__ ): # looping through rows of graph array for i in range(a__ ): # looping through columns of graph array for j in range(a__ ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowerCAmelCase_ : Any = dist[i][k] + dist[k][j] _print_dist(a__ ,a__ ) return dist, v if __name__ == "__main__": A__ : str = int(input('''Enter number of vertices: ''')) A__ : List[Any] = int(input('''Enter number of edges: ''')) A__ : int = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): A__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) A__ : int = int(input('''Enter source:''')) A__ : Tuple = int(input('''Enter destination:''')) A__ : int = float(input('''Enter weight:''')) A__ : List[Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
171
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} UpperCamelCase = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } UpperCamelCase = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def lowerCamelCase_ ( _lowercase , _lowercase ) -> Tuple: with open(lowerCAmelCase_ , "r" , encoding="utf-8" ) as f: __A : Dict = json.loads(f.read() ) __A : List[Any] = collections.OrderedDict() __A : Tuple = collections.OrderedDict() __A : List[Any] = collections.OrderedDict() with open(lowerCAmelCase_ , "r" , encoding="utf-8" ) as f: __A : List[Any] = f.readlines() __A : Dict = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowerCAmelCase_ ): __A : Tuple = b __A : List[Any] = idx for wd in b: __A : int = idx return vocab, raw_vocab, ids_to_tokens, emoji class _a ( _UpperCamelCase ): '''simple docstring''' lowerCamelCase_ : Tuple = VOCAB_FILES_NAMES lowerCamelCase_ : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|startoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): super().__init__( unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , do_clean_text=lowerCAmelCase_ , **lowerCAmelCase_ , ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) __A : Any = do_clean_text __A , __A , __A , __A : Union[str, Any] = load_vocab_and_emoji(lowerCAmelCase_ , lowerCAmelCase_ ) __A : Union[str, Any] = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __UpperCAmelCase( self ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __UpperCAmelCase( self ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def __UpperCAmelCase( self , __UpperCAmelCase ): return self.subword_tokenizer.tokenize(lowerCAmelCase_ , clean=self.do_clean_text ) def __UpperCAmelCase( self , __UpperCAmelCase ): return self.vocab.get(lowerCAmelCase_ , self.vocab.get(self.unk_token ) ) def __UpperCAmelCase( self , __UpperCAmelCase ): return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase_ ) def __UpperCAmelCase( self , __UpperCAmelCase ): __A : List[Any] = "".join(lowerCAmelCase_ ).strip() return out_string def __UpperCAmelCase( self , __UpperCAmelCase ): __A : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [self.eos_token_id] ) if len(lowerCAmelCase_ ) > self.model_max_length: __A : Dict = input_ids[-self.model_max_length :] return input_ids def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase = None ): __A : Tuple = 0 if os.path.isdir(lowerCAmelCase_ ): __A : Dict = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __A : int = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: __A : Optional[int] = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) __A : Tuple = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) __A : List[str] = token_index writer.write(",".join(lowerCAmelCase_ ) + "\n" ) index += 1 with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , lowerCAmelCase_ ) return vocab_file, emoji_file class _a ( _UpperCamelCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __A : Optional[int] = vocab # same as swe __A : Tuple = ids_to_tokens # same as bpe __A : int = emoji __A : int = np.max([len(lowerCAmelCase_ ) for w in self.vocab.keys()] ) __A : str = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) __A : Union[str, Any] = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) __A : Tuple = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) __A : List[Any] = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) __A : Any = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) __A : Any = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) __A : Union[str, Any] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" __A : str = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" __A : Any = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self ): return len(self.ids_to_tokens ) def __UpperCAmelCase( self , __UpperCAmelCase ): __A : List[str] = self.content_repattera.sub("<URL>" , lowerCAmelCase_ ) __A : Dict = self.content_repattera.sub("<EMAIL>" , lowerCAmelCase_ ) __A : Optional[int] = self.content_repattera.sub("<TEL>" , lowerCAmelCase_ ) __A : Tuple = self.content_repattera.sub("<DATE>" , lowerCAmelCase_ ) __A : List[str] = self.content_repattera.sub("<DATE>" , lowerCAmelCase_ ) __A : Tuple = self.content_repattera.sub("<PRICE>" , lowerCAmelCase_ ) __A : List[str] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __A : List[str] = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase=False ): __A : Dict = text.replace(" " , "<SP>" ) __A : int = text.replace(" " , "<SP>" ) __A : str = text.replace("\r\n" , "<BR>" ) __A : int = text.replace("\n" , "<BR>" ) __A : str = text.replace("\r" , "<BR>" ) __A : Dict = text.replace("\t" , "<TAB>" ) __A : Union[str, Any] = text.replace("—" , "ー" ) __A : List[str] = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: __A : Dict = text.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if clean: __A : Dict = self.clean_text(lowerCAmelCase_ ) def check_simbol(__UpperCAmelCase ): __A : Any = x.encode() if len(lowerCAmelCase_ ) == 1 and len(lowerCAmelCase_ ) == 2: __A : Dict = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC2A1 and c <= 0XC2BF) or (c >= 0XC780 and c <= 0XC783) or (c >= 0XCAB9 and c <= 0XCBBF) or (c >= 0XCC80 and c <= 0XCDA2) ): return True return False def checkuae(__UpperCAmelCase ): __A : Any = x.encode() if len(lowerCAmelCase_ ) == 1 and len(lowerCAmelCase_ ) == 3: __A : Tuple = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28080 and c <= 0XE2B07F: return True return False __A : List[Any] = 0 __A : int = [] while pos < len(lowerCAmelCase_ ): __A : int = min(len(lowerCAmelCase_ ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 __A : Any = [] # (token_id, token, pos) for e in range(lowerCAmelCase_ , lowerCAmelCase_ , -1 ): __A : Optional[int] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCAmelCase_ ) > 2: __A : List[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowerCAmelCase_ ) > 0: # the smallest token_id is adopted __A , __A , __A : List[str] = sorted(lowerCAmelCase_ , key=lambda __UpperCAmelCase : x[0] )[0] result.append(lowerCAmelCase_ ) __A : Union[str, Any] = e else: __A : Any = pos + 1 __A : str = text[pos:end] if check_simbol(lowerCAmelCase_ ): result.append("<KIGOU>" ) elif checkuae(lowerCAmelCase_ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) __A : Optional[Any] = end return result def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase="\n" ): __A : List[str] = [] __A : Union[str, Any] = [] __A : Union[str, Any] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowerCAmelCase_ ) > 0: words.append(bytearray(lowerCAmelCase_ ).decode("utf-8" , errors="replace" ) ) __A : Union[str, Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(lowerCAmelCase_ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: words.append(bytearray(lowerCAmelCase_ ).decode("utf-8" , errors="replace" ) ) __A : Optional[int] = "".join(lowerCAmelCase_ ) return text
520
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
0
'''simple docstring''' import math def A__ ( A : list , A : int): '''simple docstring''' UpperCamelCase : List[Any] = len(A) UpperCamelCase : int = int(math.floor(math.sqrt(A))) UpperCamelCase : Optional[int] = 0 while arr[min(A , A) - 1] < x: UpperCamelCase : List[Any] = step step += int(math.floor(math.sqrt(A))) if prev >= n: return -1 while arr[prev] < x: UpperCamelCase : Dict = prev + 1 if prev == min(A , A): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase_ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase_ = [int(item) for item in user_input.split(',')] lowerCAmelCase_ = int(input('Enter the number to be searched:\n')) lowerCAmelCase_ = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f"""Number {x} is at index {res}""")
711
'''simple docstring''' def A__ ( A : str , A : str): '''simple docstring''' if not (isinstance(A , A) and isinstance(A , A)): raise ValueError("longest_common_substring() takes two strings for inputs") UpperCamelCase : Optional[int] = len(A) UpperCamelCase : int = len(A) UpperCamelCase : Dict = [[0] * (texta_length + 1) for _ in range(texta_length + 1)] UpperCamelCase : Any = 0 UpperCamelCase : Any = 0 for i in range(1 , texta_length + 1): for j in range(1 , texta_length + 1): if texta[i - 1] == texta[j - 1]: UpperCamelCase : Dict = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: UpperCamelCase : Optional[int] = i UpperCamelCase : int = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
435
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self) -> Union[str, Any]: UpperCamelCase = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 1_2_8, '''min_length''': 1_2, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 1_4_2, '''min_length''': 5_6, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 6_2, '''min_length''': 1_1, '''num_beams''': 6}, } } UpperCamelCase = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 1_2_8, '''task_specific_params.summarization.min_length''': 1_2, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 1_4_2, '''task_specific_params.summarization_cnn.min_length''': 5_6, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 6_2, '''task_specific_params.summarization_xsum.min_length''': 1_1, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(lowerCamelCase_) , lowerCamelCase_) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = np.random.randn(3 , 4) self.assertTrue(np.allclose(transpose(lowerCamelCase_) , x.transpose())) UpperCamelCase = np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(transpose(lowerCamelCase_ , axes=(1, 2, 0)) , x.transpose((1, 2, 0)))) @require_torch def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(transpose(lowerCamelCase_) , transpose(lowerCamelCase_).numpy())) UpperCamelCase = np.random.randn(3 , 4 , 5) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(transpose(lowerCamelCase_ , axes=(1, 2, 0)) , transpose(lowerCamelCase_ , axes=(1, 2, 0)).numpy())) @require_tf def UpperCAmelCase__ ( self) -> Any: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(transpose(lowerCamelCase_) , transpose(lowerCamelCase_).numpy())) UpperCamelCase = np.random.randn(3 , 4 , 5) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(transpose(lowerCamelCase_ , axes=(1, 2, 0)) , transpose(lowerCamelCase_ , axes=(1, 2, 0)).numpy())) @require_flax def UpperCAmelCase__ ( self) -> Dict: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(transpose(lowerCamelCase_) , np.asarray(transpose(lowerCamelCase_)))) UpperCamelCase = np.random.randn(3 , 4 , 5) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(transpose(lowerCamelCase_ , axes=(1, 2, 0)) , np.asarray(transpose(lowerCamelCase_ , axes=(1, 2, 0))))) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = np.random.randn(3 , 4) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (4, 3)) , np.reshape(lowerCamelCase_ , (4, 3)))) UpperCamelCase = np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (1_2, 5)) , np.reshape(lowerCamelCase_ , (1_2, 5)))) @require_torch def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (4, 3)) , reshape(lowerCamelCase_ , (4, 3)).numpy())) UpperCamelCase = np.random.randn(3 , 4 , 5) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (1_2, 5)) , reshape(lowerCamelCase_ , (1_2, 5)).numpy())) @require_tf def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (4, 3)) , reshape(lowerCamelCase_ , (4, 3)).numpy())) UpperCamelCase = np.random.randn(3 , 4 , 5) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (1_2, 5)) , reshape(lowerCamelCase_ , (1_2, 5)).numpy())) @require_flax def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (4, 3)) , np.asarray(reshape(lowerCamelCase_ , (4, 3))))) UpperCamelCase = np.random.randn(3 , 4 , 5) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(reshape(lowerCamelCase_ , (1_2, 5)) , np.asarray(reshape(lowerCamelCase_ , (1_2, 5))))) def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = np.random.randn(1 , 3 , 4) self.assertTrue(np.allclose(squeeze(lowerCamelCase_) , np.squeeze(lowerCamelCase_))) UpperCamelCase = np.random.randn(1 , 4 , 1 , 5) self.assertTrue(np.allclose(squeeze(lowerCamelCase_ , axis=2) , np.squeeze(lowerCamelCase_ , axis=2))) @require_torch def UpperCAmelCase__ ( self) -> int: UpperCamelCase = np.random.randn(1 , 3 , 4) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(squeeze(lowerCamelCase_) , squeeze(lowerCamelCase_).numpy())) UpperCamelCase = np.random.randn(1 , 4 , 1 , 5) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(squeeze(lowerCamelCase_ , axis=2) , squeeze(lowerCamelCase_ , axis=2).numpy())) @require_tf def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = np.random.randn(1 , 3 , 4) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(squeeze(lowerCamelCase_) , squeeze(lowerCamelCase_).numpy())) UpperCamelCase = np.random.randn(1 , 4 , 1 , 5) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(squeeze(lowerCamelCase_ , axis=2) , squeeze(lowerCamelCase_ , axis=2).numpy())) @require_flax def UpperCAmelCase__ ( self) -> str: UpperCamelCase = np.random.randn(1 , 3 , 4) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(squeeze(lowerCamelCase_) , np.asarray(squeeze(lowerCamelCase_)))) UpperCamelCase = np.random.randn(1 , 4 , 1 , 5) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(squeeze(lowerCamelCase_ , axis=2) , np.asarray(squeeze(lowerCamelCase_ , axis=2)))) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = np.random.randn(3 , 4) self.assertTrue(np.allclose(expand_dims(lowerCamelCase_ , axis=1) , np.expand_dims(lowerCamelCase_ , axis=1))) @require_torch def UpperCAmelCase__ ( self) -> List[str]: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = torch.tensor(lowerCamelCase_) self.assertTrue(np.allclose(expand_dims(lowerCamelCase_ , axis=1) , expand_dims(lowerCamelCase_ , axis=1).numpy())) @require_tf def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = tf.constant(lowerCamelCase_) self.assertTrue(np.allclose(expand_dims(lowerCamelCase_ , axis=1) , expand_dims(lowerCamelCase_ , axis=1).numpy())) @require_flax def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = np.random.randn(3 , 4) UpperCamelCase = jnp.array(lowerCamelCase_) self.assertTrue(np.allclose(expand_dims(lowerCamelCase_ , axis=1) , np.asarray(expand_dims(lowerCamelCase_ , axis=1))))
34
"""simple docstring""" def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[str]: """simple docstring""" if index == r: for j in range(UpperCAmelCase_ ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __UpperCAmelCase : Optional[Any] = arr[i] combination_util(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , index + 1 , UpperCAmelCase_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Tuple: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , 0 , UpperCAmelCase_ , 0 ) if __name__ == "__main__": # Driver code to check the function above lowercase__ :int = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
522
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): '''simple docstring''' lowercase_ = GPTSanJapaneseTokenizer lowercase_ = False lowercase_ = {"""do_clean_text""": False, """add_prefix_space""": False} def __UpperCamelCase ( self ): '''simple docstring''' super().setUp() # fmt: off __A =['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on __A ={'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 __A ={'''unk_token''': '''<unk>'''} __A =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __A =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(lowercase__ ) ) def __UpperCamelCase ( self , **lowercase__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' __A ='''こんにちは、世界。 \nこんばんは、㔺界。😀''' __A ='''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' __A , __A =self.get_input_output_texts(lowercase__ ) __A =tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) __A =tokenizer.decode(lowercase__ , clean_up_tokenization_spaces=lowercase__ ) return text, ids def __UpperCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __UpperCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __UpperCamelCase ( self ): '''simple docstring''' pass # TODO add if relevant def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_tokenizer() # Testing tokenization __A ='''こんにちは、世界。 こんばんは、㔺界。''' __A =['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] __A =tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Testing conversion to ids without special tokens __A =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __A =tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Testing conversion to ids with special tokens __A =tokens + [tokenizer.unk_token] __A =[0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] __A =tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def __UpperCamelCase ( self ): '''simple docstring''' __A =self.get_tokenizer() # Testing tokenization __A ='''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' __A ='''こんにちは、、、、世界。こんばんは、、、、世界。''' __A =tokenizer.encode(lowercase__ ) __A =tokenizer.decode(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) @slow def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __A ='''こんにちは、世界。''' __A ='''こんばんは、㔺界。😀''' __A ='''こんにちは、世界。こんばんは、世界。😀''' __A =tokenizer.encode(prefix_text + input_text ) __A =tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) __A =tokenizer.encode(lowercase__ , prefix_text=lowercase__ ) __A =tokenizer.decode(lowercase__ ) __A =tokenizer.decode(lowercase__ ) __A =tokenizer.decode(lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) @slow def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization __A ='''こんにちは、世界。''' __A ='''こんばんは、㔺界。😀''' __A =len(tokenizer.encode(lowercase__ ) ) - 2 __A =len(tokenizer.encode(lowercase__ ) ) - 2 __A =[1] + [0] * (len_prefix + len_text + 1) __A =[1] * (len_prefix + len_text + 1) + [0] __A =[1] + [1] * (len_prefix) + [0] * (len_text + 1) __A =tokenizer(prefix_text + input_text ).token_type_ids __A =tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids __A =tokenizer(lowercase__ , prefix_text=lowercase__ ).token_type_ids self.assertListEqual(lowercase__ , lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) @slow def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __A =tokenizer.encode('''あンいワ''' ) __A =tokenizer.encode('''''' , prefix_text='''あンいワ''' ) __A =tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(lowercase__ ) , tokenizer.decode(lowercase__ ) ) self.assertEqual(tokenizer.decode(lowercase__ ) , tokenizer.decode(lowercase__ ) ) self.assertNotEqual(lowercase__ , lowercase__ ) self.assertNotEqual(lowercase__ , lowercase__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __UpperCamelCase ( self ): '''simple docstring''' __A =self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) __A =[['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] __A =tokenizer(lowercase__ , padding=lowercase__ ) __A =tokenizer.batch_encode_plus(lowercase__ , padding=lowercase__ ) # fmt: off __A =[[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] __A =[[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __A =[[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowercase__ ) self.assertListEqual(x_token.token_type_ids , lowercase__ ) self.assertListEqual(x_token.attention_mask , lowercase__ ) self.assertListEqual(x_token_a.input_ids , lowercase__ ) self.assertListEqual(x_token_a.token_type_ids , lowercase__ ) self.assertListEqual(x_token_a.attention_mask , lowercase__ ) def __UpperCamelCase ( self ): '''simple docstring''' pass def __UpperCamelCase ( self ): '''simple docstring''' pass
516
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Dict = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ['''ViTFeatureExtractor'''] _lowerCamelCase : int = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
516
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): _snake_case : Optional[Any] = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Tuple = 'sshleifer/tiny-gpt2' _snake_case : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) _snake_case : Dict = PyTorchBenchmark(lowerCamelCase_ ) _snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Tuple = 'sgugger/tiny-distilbert-classification' _snake_case : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , only_pretrain_model=lowerCamelCase_ , ) _snake_case : Union[str, Any] = PyTorchBenchmark(lowerCamelCase_ ) _snake_case : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Tuple = 'sshleifer/tiny-gpt2' _snake_case : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , torchscript=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) _snake_case : List[str] = PyTorchBenchmark(lowerCamelCase_ ) _snake_case : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : str = 'sshleifer/tiny-gpt2' _snake_case : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , fpaa=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) _snake_case : Union[str, Any] = PyTorchBenchmark(lowerCamelCase_ ) _snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : Any = 'sshleifer/tiny-gpt2' _snake_case : int = AutoConfig.from_pretrained(lowerCamelCase_ ) # set architectures equal to `None` _snake_case : Tuple = None _snake_case : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) _snake_case : Union[str, Any] = PyTorchBenchmark(lowerCamelCase_ , configs=[config] ) _snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Any = 'sshleifer/tiny-gpt2' _snake_case : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) _snake_case : Any = PyTorchBenchmark(lowerCamelCase_ ) _snake_case : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : int = 'sshleifer/tiny-gpt2' _snake_case : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowerCamelCase_ , multi_process=lowerCamelCase_ , ) _snake_case : List[Any] = PyTorchBenchmark(lowerCamelCase_ ) _snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = 'sshleifer/tiny-gpt2' _snake_case : int = AutoConfig.from_pretrained(lowerCamelCase_ ) _snake_case : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) _snake_case : str = PyTorchBenchmark(lowerCamelCase_ , configs=[config] ) _snake_case : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : List[str] = 'sshleifer/tinier_bart' _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) _snake_case : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) _snake_case : Optional[int] = PyTorchBenchmark(lowerCamelCase_ , configs=[config] ) _snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : List[Any] = 'sshleifer/tiny-gpt2' _snake_case : str = AutoConfig.from_pretrained(lowerCamelCase_ ) _snake_case : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) _snake_case : Any = PyTorchBenchmark(lowerCamelCase_ , configs=[config] ) _snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' _snake_case : Dict = 'sshleifer/tinier_bart' _snake_case : List[str] = AutoConfig.from_pretrained(lowerCamelCase_ ) _snake_case : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowerCamelCase_ , ) _snake_case : Dict = PyTorchBenchmark(lowerCamelCase_ , configs=[config] ) _snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' _snake_case : Tuple = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , save_to_csv=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowerCamelCase_ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(lowerCamelCase_ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(lowerCamelCase_ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(lowerCamelCase_ , 'train_time.csv' ) , env_info_csv_file=os.path.join(lowerCamelCase_ , 'env.csv' ) , multi_process=lowerCamelCase_ , ) _snake_case : List[str] = PyTorchBenchmark(lowerCamelCase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowerCamelCase_ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase_ , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase_ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase_ , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowerCamelCase_ , 'env.csv' ) ).exists() ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowerCamelCase_ : str ): self.assertTrue(hasattr(lowerCamelCase_ , 'sequential' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'cumulative' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'current' ) ) self.assertTrue(hasattr(lowerCamelCase_ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: _snake_case : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=lowerCamelCase_ , inference=lowerCamelCase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowerCamelCase_ , 'log.txt' ) , log_print=lowerCamelCase_ , trace_memory_line_by_line=lowerCamelCase_ , multi_process=lowerCamelCase_ , ) _snake_case : Optional[Any] = PyTorchBenchmark(lowerCamelCase_ ) _snake_case : Tuple = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowerCamelCase_ , 'log.txt' ) ).exists() )
304
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
304
1
__lowerCAmelCase = 8.314462 # Unit - J mol-1 K-1 def _lowercase ( a__ : float , a__ : float , a__ : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def _lowercase ( a__ : float , a__ : float , a__ : float ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
589
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase_ ( lowercase ): def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=7 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=99 , lowerCamelCase_=32 , lowerCamelCase_=5 , lowerCamelCase_=4 , lowerCamelCase_=64 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_12 , lowerCamelCase_=16 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=None , lowerCamelCase_=2 , lowerCamelCase_=2 , lowerCamelCase_=2 , lowerCamelCase_=2 , lowerCamelCase_=4 , lowerCamelCase_=1 , ) -> Tuple: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = q_groups _UpperCamelCase = k_groups _UpperCamelCase = v_groups _UpperCamelCase = post_attention_groups _UpperCamelCase = intermediate_groups _UpperCamelCase = output_groups def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self ) -> List[Any]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = SqueezeBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCamelCase = model(lowerCamelCase_ , lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: """simple docstring""" _UpperCamelCase = SqueezeBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = SqueezeBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCamelCase = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = SqueezeBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = SqueezeBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCamelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: """simple docstring""" _UpperCamelCase = self.num_choices _UpperCamelCase = SqueezeBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() _UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCamelCase = model( lowerCamelCase_ , attention_mask=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs _UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( lowercase , lowercase , unittest.TestCase ): __lowercase : Any = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __lowercase : Dict = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __lowercase : Tuple = False __lowercase : List[str] = True __lowercase : Any = False def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = SqueezeBertModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , dim=37 ) def lowercase ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def lowercase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCamelCase_ ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCamelCase_ ) def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCamelCase_ ) def lowercase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCamelCase_ ) def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCamelCase_ ) def lowercase ( self ) -> Tuple: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCamelCase_ ) @slow def lowercase ( self ) -> Any: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = SqueezeBertModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) _UpperCamelCase = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) _UpperCamelCase = model(lowerCamelCase_ )[0] _UpperCamelCase = torch.Size((1, 3) ) self.assertEqual(output.shape , lowerCamelCase_ ) _UpperCamelCase = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-4 ) )
589
1
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = WavaVecaPhonemeCTCTokenizer UpperCamelCase_ : Any = False def A_ ( self ) -> List[str]: '''simple docstring''' super().setUp() _UpperCamelCase = ( """<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː """ """ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː """ """ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 """ """oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ """ """pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ """ """yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ """ """əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ """ """ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ """ """ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ """ """uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ """ """ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ """ """ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ """ """ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4""" ).split(""" """ ) _UpperCamelCase = dict(zip(a , range(len(a ) ) ) ) _UpperCamelCase = {"""pad_token""": """<pad>""", """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>"""} _UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a ) + """\n""" ) def A_ ( self , a , a=False , a=20 , a=5 ) -> Tuple[str, list]: '''simple docstring''' _UpperCamelCase = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=a )) for i in range(len(a ) )] _UpperCamelCase = list(filter(lambda a : [t[0]] == tokenizer.encode(t[1] , do_phonemize=a ) , a ) ) if max_length is not None and len(a ) > max_length: _UpperCamelCase = toks[:max_length] if min_length is not None and len(a ) < min_length and len(a ) > 0: while len(a ) < min_length: _UpperCamelCase = toks + toks # toks_str = [t[1] for t in toks] _UpperCamelCase = [t[0] for t in toks] # Ensure consistency _UpperCamelCase = tokenizer.decode(a , clean_up_tokenization_spaces=a ) if " " not in output_txt and len(a ) > 1: _UpperCamelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a ) ) if with_prefix_space: _UpperCamelCase = """ """ + output_txt _UpperCamelCase = tokenizer.encode(a , add_special_tokens=a ) return output_txt, output_ids def A_ ( self , **a ) -> List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **a ) def A_ ( self ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) # check adding a single token tokenizer.add_tokens("""xxx""" ) _UpperCamelCase = tokenizer("""m xxx ɪ""" , do_phonemize=a ).input_ids self.assertEqual(a , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(["""aaa""", """bbb""", """ccc"""] ) _UpperCamelCase = tokenizer("""m aaa ɪ ccc""" , do_phonemize=a ).input_ids self.assertEqual(a , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa _UpperCamelCase = tokenizer("""maɪ c""" , do_phonemize=a ).input_ids self.assertEqual(a , [3, 2_00] ) # mai should be <unk> (=3) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _UpperCamelCase = """Hello how are you""" _UpperCamelCase = tokenizer.phonemize(a , phonemizer_lang="""en-us""" ) self.assertEqual(a , """h ə l oʊ h aʊ ɑːɹ j uː""" ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _UpperCamelCase = """Hello how are you""" _UpperCamelCase = tokenizer.phonemize(a , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(a ).input_ids , tokenizer(a , do_phonemize=a ).input_ids ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _UpperCamelCase = """Hello how are you""" _UpperCamelCase = tokenizer.phonemize(a , phonemizer_lang="""en-us""" ) _UpperCamelCase = tokenizer.decode(tokenizer(a ).input_ids ) self.assertEqual(a , a ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _UpperCamelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] _UpperCamelCase = tokenizer.decode(sample_ids[0] ) _UpperCamelCase = tokenizer.batch_decode(a ) self.assertEqual(a , batch_tokens[0] ) self.assertEqual(a , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _UpperCamelCase = """Hello how are you""" _UpperCamelCase = tokenizer.phonemize(a , phonemizer_lang="""en-us""" ) self.assertEqual(a , """h ə l oʊ | h aʊ | ɑːɹ | j uː |""" ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _UpperCamelCase = """Hello how are you""" _UpperCamelCase = tokenizer.phonemize(a , phonemizer_lang="""en-us""" ) self.assertEqual(tokenizer(a ).input_ids , tokenizer(a , do_phonemize=a ).input_ids ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off _UpperCamelCase = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter _UpperCamelCase = tokenizer.decode(sample_ids[0] ) _UpperCamelCase = tokenizer.batch_decode(a ) self.assertEqual(a , batch_tokens[0] ) self.assertEqual(a , ["""k s ɾ ɾ l ɭʲ""", """j ð s j ð s oːɹ"""] ) # decode with no word_del_token filter _UpperCamelCase = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=a ) _UpperCamelCase = tokenizer.batch_decode(a , filter_word_delimiter_token=a ) self.assertEqual(a , batch_tokens[0] ) self.assertEqual(a , ["""k s ɾ | ɾ l | ɭʲ""", """| j ð | s j ð s oːɹ"""] ) def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _UpperCamelCase = """Hello how are you""" _UpperCamelCase = tokenizer.phonemize(a , phonemizer_lang="""en-us""" ) _UpperCamelCase = tokenizer.decode(tokenizer(a ).input_ids , filter_word_delimiter_token=a ) self.assertEqual(a , a ) def A_ ( self ) -> int: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) _UpperCamelCase = """Hello how are you""" _UpperCamelCase = tokenizer.phonemize(a , phonemizer_lang="""en-us""" ) _UpperCamelCase = tokenizer.decode(tokenizer(a ).input_ids , filter_word_delimiter_token=a ) self.assertEqual(""" """.join([p.strip() for p in phonemes.split(""" |""" )] ).strip() , a ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained( """facebook/wav2vec2-lv-60-espeak-cv-ft""" , word_delimiter_token=a ) _UpperCamelCase = """Hello how are you""" _UpperCamelCase = tokenizer(a , phonemizer_lang="""en-us""" ).input_ids _UpperCamelCase = tokenizer(a , phonemizer_lang="""fr-fr""" ).input_ids self.assertNotEqual(a , a ) _UpperCamelCase = tokenizer.decode(a ) _UpperCamelCase = tokenizer.decode(a ) self.assertEqual(a , """h ə l oʊ h aʊ ɑːɹ j uː""" ) self.assertEqual(a , """ɛ l o h aʊ a ʁ j u""" ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) _UpperCamelCase = """Hello how Are you""" _UpperCamelCase = """hello how are you""" _UpperCamelCase = tokenizer(a ).input_ids _UpperCamelCase = tokenizer(a ).input_ids self.assertEqual(a , a ) def A_ ( self ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained("""facebook/wav2vec2-lv-60-espeak-cv-ft""" ) tokenizer.add_tokens(["""!""", """?"""] ) tokenizer.add_special_tokens({"""cls_token""": """$$$"""} ) # fmt: off _UpperCamelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on _UpperCamelCase = tokenizer.batch_decode(a ) self.assertEqual(a , ["""k s ɾ ɾ l ɭʲ!?!? $$$""", """j ð s j ð s oːɹ $$$"""] ) @staticmethod def A_ ( a , a ) -> List[Any]: '''simple docstring''' _UpperCamelCase = [d[key] for d in offsets] return retrieved_list def A_ ( self ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_tokenizer(word_delimiter_token="""|""" ) tokenizer.add_tokens("""|""" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" _UpperCamelCase = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on _UpperCamelCase = tokenizer.decode(a , output_char_offsets=a , filter_word_delimiter_token=a ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""char_offsets""" in outputs ) self.assertTrue(isinstance(a , a ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(""" """.join(self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """char""" ) , ["""k""", """s""", """ɾ""", """ɾ""", """|""", """ɾ""", """l""", """|""", """ɭʲ"""] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """start_offset""" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["""char_offsets"""] , """end_offset""" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def A_ ( self ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizer(word_delimiter_token="""|""" ) def check_list_tuples_equal(a , a ): self.assertTrue(isinstance(a , a ) ) self.assertTrue(isinstance(outputs_list[0] , a ) ) # transform list to ModelOutput _UpperCamelCase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["""text"""] , outputs_batch_a["""text"""] ) def recursive_check(a , a ): if isinstance(a , a ): [recursive_check(a , a ) for la, la in zip(a , a )] self.assertEqual(a , a ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["""char_offsets"""] , outputs_batch_a["""char_offsets"""] ) # fmt: off _UpperCamelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char _UpperCamelCase = tokenizer.batch_decode(a , output_char_offsets=a ) _UpperCamelCase = [tokenizer.decode(a , output_char_offsets=a ) for ids in sample_ids] check_list_tuples_equal(a , a ) @unittest.skip("""Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes""" ) def A_ ( self ) -> List[str]: '''simple docstring''' pass @unittest.skip("""Wav2Vec2PhonemeTokenizer always puts spaces between phonemes""" ) def A_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("""encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency""" ) def A_ ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip("""Wav2Vec2PhonemeModel has no max model length => no testing""" ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(do_lower_case=a ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _UpperCamelCase = tokenizer.vocab_size _UpperCamelCase = len(a ) self.assertNotEqual(a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _UpperCamelCase = ["""aaaaa bbbbbb""", """cccccccccdddddddd"""] _UpperCamelCase = tokenizer.add_tokens(a ) _UpperCamelCase = tokenizer.vocab_size _UpperCamelCase = len(a ) self.assertNotEqual(a , 0 ) self.assertEqual(a , a ) self.assertEqual(a , len(a ) ) self.assertEqual(a , all_size + len(a ) ) _UpperCamelCase = tokenizer.encode("""aaaaa bbbbbb low cccccccccdddddddd l""" , add_special_tokens=a ) self.assertGreaterEqual(len(a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _UpperCamelCase = {"""eos_token""": """>>>>|||<||<<|<<""", """pad_token""": """<<<<<|||>|>>>>|>"""} _UpperCamelCase = tokenizer.add_special_tokens(a ) _UpperCamelCase = tokenizer.vocab_size _UpperCamelCase = len(a ) self.assertNotEqual(a , 0 ) self.assertEqual(a , a ) self.assertEqual(a , len(a ) ) self.assertEqual(a , all_size_a + len(a ) ) _UpperCamelCase = tokenizer.encode( """>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l""" , add_special_tokens=a ) self.assertGreaterEqual(len(a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def A_ ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip("""The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode.""" ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' pass def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(fast=a , do_lower_case=a ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _UpperCamelCase = ["""ð""", """ɪ""", """s""", """ɪ""", """z""", """ɐ""", """t""", """ɛ""", """k""", """s""", """t"""] _UpperCamelCase = tokenizer.convert_tokens_to_string(a ) self.assertIsInstance(output["""text"""] , a )
612
from __future__ import annotations def __A(lowerCAmelCase , lowerCAmelCase ) -> list[list[int]]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = sum(lowerCAmelCase ) create_state_space_tree(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return result def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) -> None: """simple docstring""" if sum(lowerCAmelCase ) > max_sum or (remaining_nums_sum + sum(lowerCAmelCase )) < max_sum: return if sum(lowerCAmelCase ) == max_sum: result.append(lowerCAmelCase ) return for index in range(lowerCAmelCase , len(lowerCAmelCase ) ): create_state_space_tree( lowerCAmelCase , lowerCAmelCase , index + 1 , [*path, nums[index]] , lowerCAmelCase , remaining_nums_sum - nums[index] , ) lowerCamelCase__ = [3, 34, 4, 12, 5, 2] lowerCamelCase__ = 9 lowerCamelCase__ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
612
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "cvt" def __init__( self :Any , __A :List[str]=3 , __A :Any=[7, 3, 3] , __A :Optional[Any]=[4, 2, 2] , __A :Union[str, Any]=[2, 1, 1] , __A :List[str]=[64, 192, 384] , __A :int=[1, 3, 6] , __A :Any=[1, 2, 10] , __A :Optional[int]=[4.0, 4.0, 4.0] , __A :List[Any]=[0.0, 0.0, 0.0] , __A :Tuple=[0.0, 0.0, 0.0] , __A :Any=[0.0, 0.0, 0.1] , __A :Any=[True, True, True] , __A :Any=[False, False, True] , __A :Dict=["dw_bn", "dw_bn", "dw_bn"] , __A :Optional[Any]=[3, 3, 3] , __A :Dict=[1, 1, 1] , __A :List[str]=[2, 2, 2] , __A :Dict=[1, 1, 1] , __A :int=[1, 1, 1] , __A :Any=0.0_2 , __A :Optional[Any]=1E-12 , **__A :Union[str, Any] , ) -> str: """simple docstring""" super().__init__(**__A ) SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = patch_sizes SCREAMING_SNAKE_CASE__ = patch_stride SCREAMING_SNAKE_CASE__ = patch_padding SCREAMING_SNAKE_CASE__ = embed_dim SCREAMING_SNAKE_CASE__ = num_heads SCREAMING_SNAKE_CASE__ = depth SCREAMING_SNAKE_CASE__ = mlp_ratio SCREAMING_SNAKE_CASE__ = attention_drop_rate SCREAMING_SNAKE_CASE__ = drop_rate SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = qkv_bias SCREAMING_SNAKE_CASE__ = cls_token SCREAMING_SNAKE_CASE__ = qkv_projection_method SCREAMING_SNAKE_CASE__ = kernel_qkv SCREAMING_SNAKE_CASE__ = padding_kv SCREAMING_SNAKE_CASE__ = stride_kv SCREAMING_SNAKE_CASE__ = padding_q SCREAMING_SNAKE_CASE__ = stride_q SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps
703
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase__ ): def __init__( self :List[Any] , *__A :Tuple , **__A :Dict ) -> None: """simple docstring""" warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
59
0
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A: Dict = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : List[str] = PegasusTokenizer __lowerCAmelCase : Optional[int] = PegasusTokenizerFast __lowerCAmelCase : Union[str, Any] = True __lowerCAmelCase : Union[str, Any] = True def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Optional[Any] = PegasusTokenizer(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[Any] = """</s>""" UpperCAmelCase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1103 ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : List[Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCAmelCase : Union[str, Any] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" UpperCAmelCase : Dict = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Any = tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCAmelCase : Union[str, Any] = """To ensure a smooth flow of bank resolutions.""" UpperCAmelCase : int = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCAmelCase : Optional[int] = tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] = ["""This is going to be way too long.""" * 150, """short example"""] UpperCAmelCase : List[Any] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Optional[Any] = self._large_tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) UpperCAmelCase : str = self._large_tokenizer( text_target=_SCREAMING_SNAKE_CASE , max_length=5 , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask. @slow def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = PegasusTokenizer __lowerCAmelCase : Optional[int] = PegasusTokenizerFast __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : Dict = True def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : Any = PegasusTokenizer(_SCREAMING_SNAKE_CASE , offset=0 , mask_token_sent=_SCREAMING_SNAKE_CASE , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCAmelCase : Union[str, Any] = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) UpperCAmelCase : int = rust_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] UpperCAmelCase : Dict = py_tokenizer([raw_input_str] , return_tensors=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""] UpperCAmelCase : Union[str, Any] = ["""not super long but more than 5 tokens""", """tiny"""] UpperCAmelCase : Dict = self._large_tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) UpperCAmelCase : str = self._large_tokenizer( text_target=_SCREAMING_SNAKE_CASE , max_length=5 , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_SCREAMING_SNAKE_CASE ) == 2 # input_ids, attention_mask. def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) UpperCAmelCase : Tuple = self._large_tokenizer(_SCREAMING_SNAKE_CASE ).input_ids self.assertListEqual( _SCREAMING_SNAKE_CASE , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
160
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor A: Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
160
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class _lowercase ( __UpperCAmelCase ): _lowerCamelCase = '''fnet''' def __init__( self , UpperCamelCase_=3_2000 , UpperCamelCase_=768 , UpperCamelCase_=12 , UpperCamelCase_=3072 , UpperCamelCase_="gelu_new" , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=4 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-1_2 , UpperCamelCase_=False , UpperCamelCase_=512 , UpperCamelCase_=3 , UpperCamelCase_=1 , UpperCamelCase_=2 , **UpperCamelCase_ , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __magic_name__ = vocab_size __magic_name__ = max_position_embeddings __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = initializer_range __magic_name__ = type_vocab_size __magic_name__ = layer_norm_eps __magic_name__ = use_tpu_fourier_optimizations __magic_name__ = tpu_short_seq_length
190
0
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple ) -> Optional[int]: """simple docstring""" if index == r: for j in range(_SCREAMING_SNAKE_CASE ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase_ : Union[str, Any] = arr[i] combination_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 , _SCREAMING_SNAKE_CASE , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def a__ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ) -> Any: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , 0 ) if __name__ == "__main__": # Driver code to check the function above _lowerCamelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
71
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params _A = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def A_ ( __SCREAMING_SNAKE_CASE : Dict ) -> List[Any]: for pegasus_name, hf_name in PATTERNS: __SCREAMING_SNAKE_CASE : List[str] = k.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return k def A_ ( __SCREAMING_SNAKE_CASE : dict , __SCREAMING_SNAKE_CASE : dict ) -> PegasusForConditionalGeneration: __SCREAMING_SNAKE_CASE : Tuple = DEFAULTS.copy() cfg_kwargs.update(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Union[str, Any] = PegasusConfig(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[Any] = PegasusForConditionalGeneration(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Tuple = torch_model.model.state_dict() __SCREAMING_SNAKE_CASE : Dict = {} for k, v in tf_weights.items(): __SCREAMING_SNAKE_CASE : List[str] = rename_state_dict_key(__SCREAMING_SNAKE_CASE ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: __SCREAMING_SNAKE_CASE : Dict = v.T __SCREAMING_SNAKE_CASE : Any = torch.tensor(__SCREAMING_SNAKE_CASE , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected __SCREAMING_SNAKE_CASE : int = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) __SCREAMING_SNAKE_CASE : Optional[Any] = mapping['''shared.weight'''] __SCREAMING_SNAKE_CASE : Tuple = mapping['''shared.weight'''] __SCREAMING_SNAKE_CASE : List[Any] = {k: torch.zeros_like(__SCREAMING_SNAKE_CASE ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = torch_model.model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[Any] = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def A_ ( __SCREAMING_SNAKE_CASE : Union[str, Any]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: __SCREAMING_SNAKE_CASE : Any = tf.train.list_variables(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(__SCREAMING_SNAKE_CASE , desc='''converting tf checkpoint to dict''' ): __SCREAMING_SNAKE_CASE : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __SCREAMING_SNAKE_CASE : Any = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Dict = array return tf_weights def A_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Optional[int]: # save tokenizer first __SCREAMING_SNAKE_CASE : List[str] = Path(__SCREAMING_SNAKE_CASE ).parent.name __SCREAMING_SNAKE_CASE : Optional[int] = task_specific_params[f"""summarization_{dataset}"""]['''max_position_embeddings'''] __SCREAMING_SNAKE_CASE : List[str] = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''' , model_max_length=__SCREAMING_SNAKE_CASE ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__SCREAMING_SNAKE_CASE ) # convert model __SCREAMING_SNAKE_CASE : Any = get_tf_weights_as_numpy(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : str = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": __SCREAMING_SNAKE_CASE : Dict = task_specific_params __SCREAMING_SNAKE_CASE : Optional[int] = convert_pegasus(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) torch_model.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[Any] = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(__SCREAMING_SNAKE_CASE , Path(__SCREAMING_SNAKE_CASE ) / '''pytorch_model.bin''' ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") _A = parser.parse_args() if args.save_dir is None: _A = Path(args.tf_ckpt_path).parent.name _A = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
158
0
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , a__ : Optional[int] , a__ : int=13 , a__ : Tuple=7 , a__ : Dict=True , a__ : Union[str, Any]=True , a__ : Any=True , a__ : Tuple=True , a__ : Optional[Any]=99 , a__ : List[str]=64 , a__ : Optional[int]=32 , a__ : str=5 , a__ : List[str]=4 , a__ : List[Any]=37 , a__ : Optional[Any]="gelu" , a__ : str=0.1 , a__ : str=0.1 , a__ : Tuple=512 , a__ : Any=16 , a__ : Dict=2 , a__ : Union[str, Any]=0.02 , a__ : Optional[int]=3 , a__ : Any=4 , a__ : Optional[int]=None , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = embedding_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def __snake_case ( self : str ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : Union[str, Any] ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def __snake_case ( self : Union[str, Any] , a__ : Any , a__ : int , a__ : Optional[Any] , a__ : List[Any] , a__ : List[str] , a__ : str , a__ : Optional[Any] ): UpperCAmelCase = MegatronBertModel(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ ) UpperCAmelCase = model(a__ , token_type_ids=a__ ) UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case ( self : Dict , a__ : Tuple , a__ : Optional[Any] , a__ : Optional[int] , a__ : List[Any] , a__ : Tuple , a__ : str , a__ : Union[str, Any] ): UpperCAmelCase = MegatronBertForMaskedLM(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : Optional[Any] , a__ : Optional[int] , a__ : str , a__ : Union[str, Any] , a__ : Optional[int] , a__ : str , a__ : Optional[int] , a__ : Tuple ): UpperCAmelCase = MegatronBertForCausalLM(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : str , a__ : Tuple , a__ : int , a__ : str , a__ : Optional[Any] , a__ : Tuple , a__ : Tuple , a__ : Optional[Any] ): UpperCAmelCase = MegatronBertForNextSentencePrediction(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __snake_case ( self : Optional[Any] , a__ : int , a__ : str , a__ : List[Any] , a__ : List[Any] , a__ : Optional[int] , a__ : Dict , a__ : Tuple ): UpperCAmelCase = MegatronBertForPreTraining(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , next_sentence_label=a__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __snake_case ( self : str , a__ : Tuple , a__ : Optional[int] , a__ : Union[str, Any] , a__ : List[str] , a__ : str , a__ : Union[str, Any] , a__ : Optional[int] ): UpperCAmelCase = MegatronBertForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model( a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : str , a__ : Dict , a__ : Tuple , a__ : Any , a__ : Tuple , a__ : List[str] , a__ : Optional[Any] , a__ : Optional[int] ): UpperCAmelCase = self.num_labels UpperCAmelCase = MegatronBertForSequenceClassification(a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Tuple , a__ : str , a__ : List[str] , a__ : List[Any] , a__ : Union[str, Any] , a__ : int , a__ : Any , a__ : Tuple ): UpperCAmelCase = self.num_labels UpperCAmelCase = MegatronBertForTokenClassification(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : Any , a__ : Dict , a__ : Union[str, Any] , a__ : Tuple , a__ : List[str] , a__ : int , a__ : Optional[Any] , a__ : Union[str, Any] ): UpperCAmelCase = self.num_choices UpperCAmelCase = MegatronBertForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self : str ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase =( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase =True # test_resize_embeddings = False _lowerCamelCase =False def __snake_case ( self : Any , a__ : Optional[Any] , a__ : Union[str, Any] , a__ : Union[str, Any]=False ): UpperCAmelCase = super()._prepare_for_class(a__ , a__ , return_labels=a__ ) if return_labels: if model_class in get_values(a__ ): UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a__ ) UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) return inputs_dict def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = MegatronBertModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __snake_case ( self : Union[str, Any] ): self.config_tester.run_common_tests() def __snake_case ( self : int ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*a__ ) def __snake_case ( self : Any ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*a__ ) def __snake_case ( self : Any ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*a__ ) def __snake_case ( self : str ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*a__ ) def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*a__ ) def __snake_case ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*a__ ) def __snake_case ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*a__ ) def __snake_case ( self : List[str] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*a__ ) def __snake_case ( SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: """simple docstring""" return torch.tensor( SCREAMING_SNAKE_CASE_ , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ , ) a__ : Tuple = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('''Model is not available.''' ) def __snake_case ( self : Any ): UpperCAmelCase = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: UpperCAmelCase = os.path.join(os.environ['''MYDIR'''] , a__ ) UpperCAmelCase = MegatronBertModel.from_pretrained(a__ ) model.to(a__ ) model.half() UpperCAmelCase = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase = model(a__ )[0] UpperCAmelCase = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , a__ ) UpperCAmelCase = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): UpperCAmelCase = output[0, ii, jj] UpperCAmelCase = expected[3 * ii + jj] UpperCAmelCase = '''ii={} jj={} a={} b={}'''.format(a__ , a__ , a__ , a__ ) self.assertTrue(math.isclose(a__ , a__ , rel_tol=a__ , abs_tol=a__ ) , msg=a__ )
705
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a__ : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name a__ : List[str] = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __snake_case ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str]=8 ) -> str: """simple docstring""" UpperCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Tuple , a__ : UNetaDConditionModel , a__ : DDPMScheduler , a__ : VQModel , ): super().__init__() self.register_modules( unet=a__ , scheduler=a__ , movq=a__ , ) UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __snake_case ( self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : int , a__ : Optional[Any] , a__ : List[Any] , a__ : Union[str, Any] ): if latents is None: UpperCAmelCase = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) UpperCAmelCase = latents.to(a__ ) UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def __snake_case ( self : Optional[Any] , a__ : Union[str, Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase = torch.device(f"cuda:{gpu_id}" ) UpperCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a__ , a__ ) def __snake_case ( self : Union[str, Any] , a__ : List[str]=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) UpperCAmelCase = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=a__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase, UpperCAmelCase = cpu_offload_with_hook(a__ , a__ , prev_module_hook=a__ ) # We'll offload the last model manually. UpperCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __snake_case ( self : List[Any] ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(a__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a__ ) def __call__( self : Union[str, Any] , a__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , a__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , a__ : torch.FloatTensor , a__ : int = 512 , a__ : int = 512 , a__ : int = 100 , a__ : float = 4.0 , a__ : int = 1 , a__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[str] = "pil" , a__ : bool = True , ): UpperCAmelCase = self._execution_device UpperCAmelCase = guidance_scale > 1.0 if isinstance(a__ , a__ ): UpperCAmelCase = torch.cat(a__ , dim=0 ) if isinstance(a__ , a__ ): UpperCAmelCase = torch.cat(a__ , dim=0 ) if isinstance(a__ , a__ ): UpperCAmelCase = torch.cat(a__ , dim=0 ) UpperCAmelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCAmelCase = image_embeds.repeat_interleave(a__ , dim=0 ) UpperCAmelCase = negative_image_embeds.repeat_interleave(a__ , dim=0 ) UpperCAmelCase = hint.repeat_interleave(a__ , dim=0 ) UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) UpperCAmelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=a__ ) self.scheduler.set_timesteps(a__ , device=a__ ) UpperCAmelCase = self.scheduler.timesteps UpperCAmelCase = self.movq.config.latent_channels UpperCAmelCase, UpperCAmelCase = downscale_height_and_width(a__ , a__ , self.movq_scale_factor ) # create initial latent UpperCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , a__ , a__ , a__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(a__ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = {'''image_embeds''': image_embeds, '''hint''': hint} UpperCAmelCase = self.unet( sample=a__ , timestep=a__ , encoder_hidden_states=a__ , added_cond_kwargs=a__ , return_dict=a__ , )[0] if do_classifier_free_guidance: UpperCAmelCase, UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase, UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase, UpperCAmelCase = variance_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase, UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step( a__ , a__ , a__ , generator=a__ , )[0] # post-processing UpperCAmelCase = self.movq.decode(a__ , force_not_quantize=a__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: UpperCAmelCase = image * 0.5 + 0.5 UpperCAmelCase = image.clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(a__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a__ )
570
0
from __future__ import annotations def lowercase__ ( A_: list[int] , A_: list[int] , A_: list[int] , A_: list[list[str]] , A_: int , ) -> None: """simple docstring""" __UpperCAmelCase =len(A_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A_ , A_ , ) def lowercase__ ( A_: int ) -> None: """simple docstring""" __UpperCAmelCase =[] depth_first_search([] , [] , [] , A_ , A_ ) # Print all the boards for board in boards: for column in board: print(A_ ) print("""""" ) print(len(A_ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
68
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCamelCase : Union[str, Any] = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def lowercase__( A , A=None ): require_version(deps[pkg] , A )
170
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any]=100 , UpperCAmelCase : int=13 , UpperCAmelCase : Tuple=30 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : List[Any]=5 , UpperCAmelCase : Any=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : List[Any]=10 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : Optional[int]=3 , ): __lowerCamelCase : Dict = parent __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Dict = batch_size __lowerCamelCase : Dict = image_size __lowerCamelCase : Union[str, Any] = patch_size __lowerCamelCase : Any = num_channels __lowerCamelCase : Union[str, Any] = is_training __lowerCamelCase : Optional[Any] = use_labels __lowerCamelCase : Union[str, Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : int = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : str = hidden_act __lowerCamelCase : int = hidden_dropout_prob __lowerCamelCase : List[str] = attention_probs_dropout_prob __lowerCamelCase : List[Any] = type_sequence_label_size __lowerCamelCase : List[Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : Optional[int] = (image_size // patch_size) ** 2 __lowerCamelCase : Dict = num_patches + 1 def lowerCamelCase__ ( self : Any ): __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Tuple = None if self.use_labels: __lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : Tuple = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, pixel_values, labels def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ): __lowerCamelCase : str = FlaxBeitModel(config=UpperCAmelCase ) __lowerCamelCase : int = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ): __lowerCamelCase : int = FlaxBeitForMaskedImageModeling(config=UpperCAmelCase ) __lowerCamelCase : Any = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def lowerCamelCase__ ( self : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int ): __lowerCamelCase : Tuple = self.type_sequence_label_size __lowerCamelCase : Dict = FlaxBeitForImageClassification(config=UpperCAmelCase ) __lowerCamelCase : Optional[int] = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : Optional[Any] = 1 __lowerCamelCase : List[str] = FlaxBeitForImageClassification(UpperCAmelCase ) __lowerCamelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : Any = model(UpperCAmelCase ) def lowerCamelCase__ ( self : str ): __lowerCamelCase : str = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : Union[str, Any] = config_and_inputs __lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _snake_case ( a__ , unittest.TestCase ): snake_case__ = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def lowerCamelCase__ ( self : str ): __lowerCamelCase : Tuple = FlaxBeitModelTester(self ) __lowerCamelCase : Optional[int] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Any ): __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Tuple = [*signature.parameters.keys()] __lowerCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : Optional[Any] = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : int = model_class(UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase : str , **UpperCAmelCase : Dict ): return model(pixel_values=UpperCAmelCase , **UpperCAmelCase ) with self.subTest("JIT Enabled" ): __lowerCamelCase : Union[str, Any] = model_jitted(**UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowerCamelCase : List[str] = model_jitted(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCamelCase__ ( self : int ): __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def lowerCamelCase__ ( self : Any ): for model_class_name in self.all_model_classes: __lowerCamelCase : List[Any] = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) __lowerCamelCase : Optional[Any] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(UpperCAmelCase ) def lowercase_ ( ) -> int: '''simple docstring''' __lowerCamelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class _snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : List[str] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Tuple = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) __lowerCamelCase : str = self.default_image_processor __lowerCamelCase : Tuple = prepare_img() __lowerCamelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors="np" ).pixel_values # prepare bool_masked_pos __lowerCamelCase : Tuple = np.ones((1, 196) , dtype=UpperCAmelCase ) # forward pass __lowerCamelCase : Any = model(pixel_values=UpperCAmelCase , bool_masked_pos=UpperCAmelCase ) __lowerCamelCase : List[str] = outputs.logits # verify the logits __lowerCamelCase : int = (1, 196, 8192) self.assertEqual(logits.shape , UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = np.array( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , UpperCAmelCase , atol=1E-2 ) ) @slow def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : List[Any] = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) __lowerCamelCase : Dict = self.default_image_processor __lowerCamelCase : List[str] = prepare_img() __lowerCamelCase : Any = image_processor(images=UpperCAmelCase , return_tensors="np" ) # forward pass __lowerCamelCase : List[str] = model(**UpperCAmelCase ) __lowerCamelCase : List[Any] = outputs.logits # verify the logits __lowerCamelCase : Optional[Any] = (1, 1000) self.assertEqual(logits.shape , UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ) self.assertTrue(np.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) ) __lowerCamelCase : Optional[int] = 281 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase ) @slow def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Tuple = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) __lowerCamelCase : List[str] = self.default_image_processor __lowerCamelCase : Any = prepare_img() __lowerCamelCase : Tuple = image_processor(images=UpperCAmelCase , return_tensors="np" ) # forward pass __lowerCamelCase : Any = model(**UpperCAmelCase ) __lowerCamelCase : Any = outputs.logits # verify the logits __lowerCamelCase : str = (1, 21841) self.assertEqual(logits.shape , UpperCAmelCase ) __lowerCamelCase : Tuple = np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ) self.assertTrue(np.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) ) __lowerCamelCase : Optional[int] = 2396 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase )
366
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _snake_case ( a__ , a__ ): @register_to_config def __init__( self : Optional[Any] , UpperCAmelCase : int = 128 , UpperCAmelCase : int = 256 , UpperCAmelCase : float = 2_0_0_0.0 , UpperCAmelCase : int = 768 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 12 , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 2048 , UpperCAmelCase : float = 0.1 , ): super().__init__() __lowerCamelCase : List[Any] = nn.Sequential( nn.Linear(UpperCAmelCase , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCAmelCase ) , nn.SiLU() , ) __lowerCamelCase : str = nn.Embedding(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Optional[int] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = nn.Dropout(p=UpperCAmelCase ) __lowerCamelCase : str = nn.ModuleList() for lyr_num in range(UpperCAmelCase ): # FiLM conditional T5 decoder __lowerCamelCase : List[str] = DecoderLayer(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase ) self.decoders.append(UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = TaLayerNorm(UpperCAmelCase ) __lowerCamelCase : List[Any] = nn.Dropout(p=UpperCAmelCase ) __lowerCamelCase : Any = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : int ): __lowerCamelCase : List[Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : str ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowerCamelCase : str = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __lowerCamelCase : Optional[int] = self.conditioning_emb(UpperCAmelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowerCamelCase : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowerCamelCase : int = torch.broadcast_to( torch.arange(UpperCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __lowerCamelCase : Optional[Any] = self.position_encoding(UpperCAmelCase ) __lowerCamelCase : List[str] = self.continuous_inputs_projection(UpperCAmelCase ) inputs += position_encodings __lowerCamelCase : List[Any] = self.dropout(UpperCAmelCase ) # decoder: No padding present. __lowerCamelCase : Tuple = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowerCamelCase : Optional[Any] = [(x, self.encoder_decoder_mask(UpperCAmelCase , UpperCAmelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowerCamelCase : Union[str, Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __lowerCamelCase : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __lowerCamelCase : List[Any] = lyr( UpperCAmelCase , conditioning_emb=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , encoder_attention_mask=UpperCAmelCase , )[0] __lowerCamelCase : Dict = self.decoder_norm(UpperCAmelCase ) __lowerCamelCase : Optional[int] = self.post_dropout(UpperCAmelCase ) __lowerCamelCase : str = self.spec_out(UpperCAmelCase ) return spec_out class _snake_case ( nn.Module ): def __init__( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str]=1E-6 ): super().__init__() __lowerCamelCase : Union[str, Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCAmelCase , d_kv=UpperCAmelCase , num_heads=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase ) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Dict=None , ): __lowerCamelCase : Union[str, Any] = self.layer[0]( UpperCAmelCase , conditioning_emb=UpperCAmelCase , attention_mask=UpperCAmelCase , ) if encoder_hidden_states is not None: __lowerCamelCase : Tuple = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) __lowerCamelCase : Dict = self.layer[1]( UpperCAmelCase , key_value_states=UpperCAmelCase , attention_mask=UpperCAmelCase , ) # Apply Film Conditional Feed Forward layer __lowerCamelCase : List[Any] = self.layer[-1](UpperCAmelCase , UpperCAmelCase ) return (hidden_states,) class _snake_case ( nn.Module ): def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict ): super().__init__() __lowerCamelCase : Union[str, Any] = TaLayerNorm(UpperCAmelCase ) __lowerCamelCase : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase ) __lowerCamelCase : Tuple = nn.Dropout(UpperCAmelCase ) def lowerCamelCase__ ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=None , ): # pre_self_attention_layer_norm __lowerCamelCase : int = self.layer_norm(UpperCAmelCase ) if conditioning_emb is not None: __lowerCamelCase : Optional[Any] = self.FiLMLayer(UpperCAmelCase , UpperCAmelCase ) # Self-attention block __lowerCamelCase : Optional[Any] = self.attention(UpperCAmelCase ) __lowerCamelCase : Dict = hidden_states + self.dropout(UpperCAmelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : List[str] ): super().__init__() __lowerCamelCase : str = Attention(query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , out_bias=UpperCAmelCase , scale_qk=UpperCAmelCase ) __lowerCamelCase : List[Any] = TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase ) __lowerCamelCase : str = nn.Dropout(UpperCAmelCase ) def lowerCamelCase__ ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[int]=None , ): __lowerCamelCase : str = self.layer_norm(UpperCAmelCase ) __lowerCamelCase : Dict = self.attention( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , attention_mask=attention_mask.squeeze(1 ) , ) __lowerCamelCase : List[str] = hidden_states + self.dropout(UpperCAmelCase ) return layer_output class _snake_case ( nn.Module ): def __init__( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] ): super().__init__() __lowerCamelCase : str = TaDenseGatedActDense(d_model=UpperCAmelCase , d_ff=UpperCAmelCase , dropout_rate=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCAmelCase ) __lowerCamelCase : Dict = TaLayerNorm(UpperCAmelCase , eps=UpperCAmelCase ) __lowerCamelCase : Optional[Any] = nn.Dropout(UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=None ): __lowerCamelCase : int = self.layer_norm(UpperCAmelCase ) if conditioning_emb is not None: __lowerCamelCase : Union[str, Any] = self.film(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : List[str] = self.DenseReluDense(UpperCAmelCase ) __lowerCamelCase : Optional[int] = hidden_states + self.dropout(UpperCAmelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] ): super().__init__() __lowerCamelCase : List[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : List[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : List[Any] = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : str = nn.Dropout(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = NewGELUActivation() def lowerCamelCase__ ( self : Dict , UpperCAmelCase : List[Any] ): __lowerCamelCase : Union[str, Any] = self.act(self.wi_a(UpperCAmelCase ) ) __lowerCamelCase : Any = self.wi_a(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = hidden_gelu * hidden_linear __lowerCamelCase : Any = self.dropout(UpperCAmelCase ) __lowerCamelCase : List[Any] = self.wo(UpperCAmelCase ) return hidden_states class _snake_case ( nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[str]=1E-6 ): super().__init__() __lowerCamelCase : List[Any] = nn.Parameter(torch.ones(UpperCAmelCase ) ) __lowerCamelCase : Tuple = eps def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : Any ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 __lowerCamelCase : int = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCAmelCase ) __lowerCamelCase : Dict = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowerCamelCase : Union[str, Any] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _snake_case ( nn.Module ): def lowerCamelCase__ ( self : str , UpperCAmelCase : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(UpperCAmelCase , 3.0 )) )) class _snake_case ( nn.Module ): def __init__( self : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] ): super().__init__() __lowerCamelCase : Any = nn.Linear(UpperCAmelCase , out_features * 2 , bias=UpperCAmelCase ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any ): __lowerCamelCase : Optional[Any] = self.scale_bias(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : Dict = torch.chunk(UpperCAmelCase , 2 , -1 ) __lowerCamelCase : List[Any] = x * (1 + scale) + shift return x
366
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
547
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = ['''image_processor''', '''tokenizer'''] __A = '''ViTImageProcessor''' __A = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Union[str, Any] , lowercase_ : Optional[int]=None , lowercase_ : Dict=None , **lowercase_ : List[str]) -> str: """simple docstring""" _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowercase_ , ) _UpperCamelCase = kwargs.pop("feature_extractor") _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(lowercase_ , lowercase_) def __call__( self : Any , lowercase_ : List[str]=None , lowercase_ : int=None , lowercase_ : Optional[Any]=None , lowercase_ : Dict=None , **lowercase_ : Dict) -> int: """simple docstring""" if text is None and visual_prompt is None and images is None: raise ValueError("You have to specify either text, visual prompt or images.") if text is not None and visual_prompt is not None: raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt.") if text is not None: _UpperCamelCase = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_) if visual_prompt is not None: _UpperCamelCase = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_) if images is not None: _UpperCamelCase = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_) if visual_prompt is not None and images is not None: _UpperCamelCase = { "pixel_values": image_features.pixel_values, "conditional_pixel_values": prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _UpperCamelCase = { "conditional_pixel_values": prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowercase_) , tensor_type=lowercase_) def __UpperCAmelCase ( self : Optional[Any] , *lowercase_ : List[Any] , **lowercase_ : List[Any]) -> int: """simple docstring""" return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def __UpperCAmelCase ( self : Union[str, Any] , *lowercase_ : Any , **lowercase_ : int) -> Optional[int]: """simple docstring""" return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def __UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowercase_ , ) return self.image_processor_class @property def __UpperCAmelCase ( self : int) -> int: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowercase_ , ) return self.image_processor
547
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : Optional[Any] = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Union[str, Any] = "fnet" def __init__( self , UpperCamelCase__=32_000 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=3_072 , UpperCamelCase__="gelu_new" , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=4 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=False , UpperCamelCase__=512 , UpperCamelCase__=3 , UpperCamelCase__=1 , UpperCamelCase__=2 , **UpperCamelCase__ , ) -> str: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = type_vocab_size lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_tpu_fourier_optimizations lowerCamelCase_ = tpu_short_seq_length
66
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase ( a ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__="None" , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ) -> List[str]: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_input_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = num_choices lowerCamelCase_ = relative_attention lowerCamelCase_ = position_biased_input lowerCamelCase_ = pos_att_type lowerCamelCase_ = scope def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_input_mask: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowerCamelCase_ = None if self.use_token_type_ids: lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ = None lowerCamelCase_ = None lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> int: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = DebertaVaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ )[0] lowerCamelCase_ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ )[0] lowerCamelCase_ = model(UpperCamelCase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' lowerCamelCase_ = DebertaVaForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = DebertaVaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase__ ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = DebertaVaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = DebertaVaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' lowerCamelCase_ = DebertaVaForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __lowercase :Union[str, Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __lowercase :Optional[Any] = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __lowercase :Optional[int] = True __lowercase :Any = False __lowercase :Dict = False __lowercase :Optional[Any] = False __lowercase :Union[str, Any] = False def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = DebertaVaModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*UpperCamelCase__ ) @slow def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = DebertaVaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' pass @slow def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) lowerCamelCase_ = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) lowerCamelCase_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] # compare the actual values for a slice. lowerCamelCase_ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) , F"""{output[:, 1:4, 1:4]}""" )
66
1
import math def _lowerCAmelCase ( lowerCAmelCase_ :int )->int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): snake_case_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCAmelCase_ ) if number < 1: snake_case_ = F'''Input value of [number={number}] must be > 0''' raise ValueError(lowerCAmelCase_ ) elif number == 1: return 3 elif number == 2: return 5 else: snake_case_ = int(math.log(number // 3 , 2 ) ) + 2 snake_case_ = [3, 5] snake_case_ = 2 snake_case_ = 3 for block in range(1 , lowerCAmelCase_ ): for _ in range(lowerCAmelCase_ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): SCREAMING_SNAKE_CASE :Any = 0 try: SCREAMING_SNAKE_CASE :int = proth(number) except ValueError: print(F'''ValueError: there is no {number}th Proth number''') continue print(F'''The {number}th Proth number: {value}''')
283
from collections import deque from .hash_table import HashTable class __lowerCAmelCase ( a ): """simple docstring""" def __init__( self : int , *_lowerCAmelCase : List[Any] , **_lowerCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] ) -> List[Any]: """simple docstring""" snake_case_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_lowerCAmelCase ) snake_case_ = self.values[key] def lowerCAmelCase__ ( self : List[str] ) -> List[Any]: """simple docstring""" return ( sum(self.charge_factor - len(_lowerCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCAmelCase__ ( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]=None ) -> int: """simple docstring""" if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_lowerCAmelCase ) == 0 ): return key return super()._collision_resolution(_lowerCAmelCase , _lowerCAmelCase )
283
1
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowerCamelCase : int = logging.getLogger(__name__) _lowerCamelCase : List[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) _lowerCamelCase : Union[str, Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCamelCase__ : __UpperCAmelCase = field( default=__snake_case , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) __UpperCAmelCase = field( default=__snake_case , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__snake_case )} , ) __UpperCAmelCase = field( default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __UpperCAmelCase = field( default=__snake_case , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __UpperCAmelCase = field( default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowerCamelCase__ : __UpperCAmelCase = field( default=__snake_case , metadata={"""help""": """The input training data file (a text file)."""} ) __UpperCAmelCase = field( default=__snake_case , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) __UpperCAmelCase = field( default=__snake_case , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __UpperCAmelCase = field( default=__snake_case , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) __UpperCAmelCase = field( default=__snake_case , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) __UpperCAmelCase = field( default=__snake_case , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) __UpperCAmelCase = field( default=__snake_case , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) __UpperCAmelCase = field(default=__snake_case , metadata={"""help""": """Whether ot not to use whole word mask."""} ) __UpperCAmelCase = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __UpperCAmelCase = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) __UpperCAmelCase = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) __UpperCAmelCase = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) __UpperCAmelCase = field( default=__snake_case , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _lowerCAmelCase ( __a , __a , __a = False , __a = None , ) -> Tuple: '''simple docstring''' def _dataset(__a , __a=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=__a , file_path=__a , block_size=args.block_size , ref_path=__a , ) return LineByLineTextDataset(tokenizer=__a , file_path=__a , block_size=args.block_size ) else: return TextDataset( tokenizer=__a , file_path=__a , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=__a , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(__a ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ) -> Tuple: '''simple docstring''' _UpperCamelCase :List[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase :Union[str, Any] =parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _UpperCamelCase :Union[str, Any] =AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCamelCase :Dict =AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _UpperCamelCase :List[Any] =CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: _UpperCamelCase :Dict =AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCamelCase :str =AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: _UpperCamelCase :str =AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) _UpperCamelCase :Union[str, Any] =AutoModelWithLMHead.from_config(__a ) model.resize_token_embeddings(len(__a ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: _UpperCamelCase :Union[str, Any] =tokenizer.max_len # Our input block size will be the max possible for the model else: _UpperCamelCase :Any =min(data_args.block_size , tokenizer.max_len ) # Get datasets _UpperCamelCase :Optional[int] =( get_dataset(__a , tokenizer=__a , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _UpperCamelCase :Any =( get_dataset(__a , tokenizer=__a , evaluate=__a , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _UpperCamelCase :Union[str, Any] =DataCollatorForPermutationLanguageModeling( tokenizer=__a , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _UpperCamelCase :int =DataCollatorForWholeWordMask( tokenizer=__a , mlm_probability=data_args.mlm_probability ) else: _UpperCamelCase :Tuple =DataCollatorForLanguageModeling( tokenizer=__a , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCamelCase :str =Trainer( model=__a , args=__a , data_collator=__a , train_dataset=__a , eval_dataset=__a , prediction_loss_only=__a , ) # Training if training_args.do_train: _UpperCamelCase :Optional[Any] =( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=__a ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase :int ={} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCamelCase :List[Any] =trainer.evaluate() _UpperCamelCase :int =math.exp(eval_output["""eval_loss"""] ) _UpperCamelCase :Optional[int] ={"""perplexity""": perplexity} _UpperCamelCase :Dict =os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(__a , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , __a , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(__a ) return results def _lowerCAmelCase ( __a ) -> List[str]: '''simple docstring''' main() if __name__ == "__main__": main()
512
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( __snake_case , __snake_case , unittest.TestCase ): __UpperCAmelCase = StableDiffusionXLImgaImgPipeline __UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __UpperCAmelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} __UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase :List[str] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=lowerCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _UpperCamelCase :Any =EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _UpperCamelCase :Any =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _UpperCamelCase :Optional[int] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=32 , ) _UpperCamelCase :str =CLIPTextModel(lowerCAmelCase__ ) _UpperCamelCase :Optional[Any] =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=lowerCAmelCase__ ) _UpperCamelCase :List[Any] =CLIPTextModelWithProjection(lowerCAmelCase__ ) _UpperCamelCase :Tuple =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=lowerCAmelCase__ ) _UpperCamelCase :Tuple ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> str: """simple docstring""" _UpperCamelCase :Optional[int] =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) _UpperCamelCase :List[str] =image / 2 + 0.5 if str(lowerCAmelCase__ ).startswith("""mps""" ): _UpperCamelCase :Optional[Any] =torch.manual_seed(lowerCAmelCase__ ) else: _UpperCamelCase :Union[str, Any] =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCamelCase :Tuple ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :Union[str, Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase :Union[str, Any] =self.get_dummy_components() _UpperCamelCase :int =StableDiffusionXLImgaImgPipeline(**lowerCAmelCase__ ) _UpperCamelCase :Optional[int] =sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase :Optional[int] =self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase :Union[str, Any] =sd_pipe(**lowerCAmelCase__ ).images _UpperCamelCase :Any =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase :int =np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def _UpperCamelCase ( self ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" pass def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase :int =self.get_dummy_components() _UpperCamelCase :str =StableDiffusionXLImgaImgPipeline(**lowerCAmelCase__ ) _UpperCamelCase :Optional[Any] =sd_pipe.to(lowerCAmelCase__ ) _UpperCamelCase :Any =sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) # forward without prompt embeds _UpperCamelCase :Union[str, Any] =self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase :Optional[int] =3 * ["""this is a negative prompt"""] _UpperCamelCase :Optional[int] =negative_prompt _UpperCamelCase :str =3 * [inputs["""prompt"""]] _UpperCamelCase :Tuple =sd_pipe(**lowerCAmelCase__ ) _UpperCamelCase :Union[str, Any] =output.images[0, -3:, -3:, -1] # forward with prompt embeds _UpperCamelCase :Optional[Any] =self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase :Dict =3 * ["""this is a negative prompt"""] _UpperCamelCase :Tuple =3 * [inputs.pop("""prompt""" )] ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) :Any =sd_pipe.encode_prompt(lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) _UpperCamelCase :Tuple =sd_pipe( **lowerCAmelCase__ , prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , pooled_prompt_embeds=lowerCAmelCase__ , negative_pooled_prompt_embeds=lowerCAmelCase__ , ) _UpperCamelCase :Optional[int] =output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self , lowerCAmelCase__ , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=0 ) -> Tuple: """simple docstring""" _UpperCamelCase :Tuple =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCamelCase :Union[str, Any] =np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _UpperCamelCase :Optional[int] =torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) _UpperCamelCase :Union[str, Any] ={ """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase :str =DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase :Tuple =self.get_inputs(lowerCAmelCase__ ) _UpperCamelCase :str =pipe(**lowerCAmelCase__ ).images _UpperCamelCase :str =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _UpperCamelCase :Optional[Any] =np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
512
1
'''simple docstring''' UpperCAmelCase = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
119
def A_ ( _lowerCAmelCase ) -> bool: UpperCamelCase : List[Any] = 0 for ch in input_str: UpperCamelCase : Optional[Any] = ord(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = pow(2 , _lowerCAmelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
629
0
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset SCREAMING_SNAKE_CASE : Tuple = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) SCREAMING_SNAKE_CASE : str = dataset.iloc[:, 1:2].values SCREAMING_SNAKE_CASE : List[Any] = dataset.iloc[:, 2].values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = train_test_split(X, y, test_size=0.2, random_state=0) SCREAMING_SNAKE_CASE : Optional[int] = PolynomialFeatures(degree=4) SCREAMING_SNAKE_CASE : List[str] = poly_reg.fit_transform(X) SCREAMING_SNAKE_CASE : Optional[Any] = LinearRegression() pol_reg.fit(X_poly, y) def UpperCamelCase_( ) -> Any: plt.scatter(lowerCamelCase_ , lowerCamelCase_ , color='red' ) plt.plot(lowerCamelCase_ , pol_reg.predict(poly_reg.fit_transform(lowerCamelCase_ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
354
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=30, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=37, lowerCamelCase="gelu", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=10, lowerCamelCase=0.0_2, lowerCamelCase=3, lowerCamelCase=None, lowerCamelCase=2, ) -> Optional[int]: """simple docstring""" _lowercase : Any = parent _lowercase : int = batch_size _lowercase : int = image_size _lowercase : str = patch_size _lowercase : int = num_channels _lowercase : Any = is_training _lowercase : Union[str, Any] = use_labels _lowercase : Dict = hidden_size _lowercase : List[str] = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = hidden_act _lowercase : str = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Tuple = type_sequence_label_size _lowercase : List[str] = initializer_range _lowercase : Any = scope _lowercase : Union[str, Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _lowercase : Union[str, Any] = (image_size // patch_size) ** 2 _lowercase : Any = num_patches + 2 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : str = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : str = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self) -> int: """simple docstring""" return DeiTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=lowerCamelCase, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = DeiTModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Optional[Any] = DeiTForMaskedImageModeling(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model(lowerCamelCase) self.parent.assertEqual( result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _lowercase : Any = 1 _lowercase : Optional[Any] = DeiTForMaskedImageModeling(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = self.type_sequence_label_size _lowercase : Dict = DeiTForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images _lowercase : Optional[Any] = 1 _lowercase : Optional[Any] = DeiTForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[str] = config_and_inputs _lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase_ : Optional[Any] = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase_ : Dict = False lowercase_ : List[str] = False lowercase_ : Union[str, Any] = False def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = DeiTModelTester(self) _lowercase : Optional[Any] = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds') def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : int = model_class(lowerCamelCase) self.assertIsInstance(model.get_input_embeddings(), (nn.Module)) _lowercase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase, nn.Linear)) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Any = model_class(lowerCamelCase) _lowercase : Optional[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Union[str, Any] = [*signature.parameters.keys()] _lowercase : str = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=False) -> Any: """simple docstring""" _lowercase : Dict = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" if not self.model_tester.is_training: return _lowercase , _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Tuple = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _lowercase : Optional[int] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.train() _lowercase : Optional[Any] = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase) _lowercase : List[str] = model(**lowerCamelCase).loss loss.backward() def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowercase : Dict = False _lowercase : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _lowercase : str = model_class(lowerCamelCase) model.gradient_checkpointing_enable() model.to(lowerCamelCase) model.train() _lowercase : Union[str, Any] = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase) _lowercase : List[Any] = model(**lowerCamelCase).loss loss.backward() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : int = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase), *get_values(lowerCamelCase), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}'''): _lowercase : List[Any] = problem_type['title'] _lowercase : str = problem_type['num_labels'] _lowercase : Optional[int] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.train() _lowercase : Tuple = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase) if problem_type["num_labels"] > 1: _lowercase : Dict = inputs['labels'].unsqueeze(1).repeat(1, problem_type['num_labels']) _lowercase : Optional[int] = inputs['labels'].to(problem_type['dtype']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase) as warning_list: _lowercase : Dict = model(**lowerCamelCase).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''') loss.backward() @slow def UpperCamelCase ( self) -> str: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Tuple = DeiTModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> List[str]: _lowercase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> Dict: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224') if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Optional[int] = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224').to( lowerCamelCase) _lowercase : List[str] = self.default_image_processor _lowercase : List[str] = prepare_img() _lowercase : Tuple = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : int = model(**lowerCamelCase) # verify the logits _lowercase : Any = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow @require_accelerate @require_torch_gpu def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Tuple = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224', torch_dtype=torch.floataa, device_map='auto') _lowercase : Union[str, Any] = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : int = image_processor(images=lowerCamelCase, return_tensors='pt') _lowercase : Union[str, Any] = inputs.pixel_values.to(lowerCamelCase) # forward pass to make sure inference works in fp16 with torch.no_grad(): _lowercase : Optional[int] = model(lowerCamelCase)
354
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Union[str, Any] = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
691
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case_ : str = logging.getLogger(__name__) def lowerCamelCase( a__ ,a__): return (preds == labels).mean() @dataclass class A__ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class A__ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCamelCase( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _SCREAMING_SNAKE_CASE =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''') # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' ,a__) # Set seed set_seed(training_args.seed) try: _SCREAMING_SNAKE_CASE =processors[data_args.task_name]() _SCREAMING_SNAKE_CASE =processor.get_labels() _SCREAMING_SNAKE_CASE =len(a__) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=a__ ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path) ,config=a__ ,cache_dir=model_args.cache_dir ,) # Get datasets _SCREAMING_SNAKE_CASE =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) _SCREAMING_SNAKE_CASE =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def compute_metrics(a__) -> Dict: _SCREAMING_SNAKE_CASE =np.argmax(p.predictions ,axis=1) return {"acc": simple_accuracy(a__ ,p.label_ids)} # Data collator _SCREAMING_SNAKE_CASE =DataCollatorWithPadding(a__ ,pad_to_multiple_of=8) if training_args.fpaa else None # Initialize our Trainer _SCREAMING_SNAKE_CASE =Trainer( model=a__ ,args=a__ ,train_dataset=a__ ,eval_dataset=a__ ,compute_metrics=a__ ,data_collator=a__ ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation _SCREAMING_SNAKE_CASE ={} if training_args.do_eval: logger.info('''*** Evaluate ***''') _SCREAMING_SNAKE_CASE =trainer.evaluate() _SCREAMING_SNAKE_CASE =os.path.join(training_args.output_dir ,'''eval_results.txt''') if trainer.is_world_master(): with open(a__ ,'''w''') as writer: logger.info('''***** Eval results *****''') for key, value in result.items(): logger.info(''' %s = %s''' ,a__ ,a__) writer.write('''%s = %s\n''' % (key, value)) results.update(a__) return results def lowerCamelCase( a__): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
691
1
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=() , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="no" , SCREAMING_SNAKE_CASE="29500" ): '''simple docstring''' __UpperCamelCase :str = False __UpperCamelCase :str = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): __UpperCamelCase :Optional[Any] = True elif "IPython" in sys.modules: __UpperCamelCase :str = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: __UpperCamelCase :Any = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __A ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: __UpperCamelCase :List[str] = 8 __UpperCamelCase :Tuple = PrepareForLaunch(__A , distributed_type='''TPU''' ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(__A , args=__A , nprocs=__A , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__A ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__A , master_addr='''127.0.01''' , master_port=__A , mixed_precision=__A ): __UpperCamelCase :int = PrepareForLaunch(__A , distributed_type='''MULTI_GPU''' ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(__A , args=__A , nprocs=__A , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): __UpperCamelCase :Optional[int] = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__A ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=() , SCREAMING_SNAKE_CASE=2 ): '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__A , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): __UpperCamelCase :Union[str, Any] = PrepareForLaunch(__A , debug=__A ) start_processes(__A , args=__A , nprocs=__A , start_method='''fork''' )
701
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return 1 if input_a == input_a else 0 def lowerCamelCase ( ): '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
452
0
'''simple docstring''' import heapq import sys import numpy as np __UpperCAmelCase = tuple[int, int] class a__ : '''simple docstring''' def __init__( self ) -> Union[str, Any]: lowerCAmelCase__ = [] lowerCAmelCase__ = set() def __SCREAMING_SNAKE_CASE ( self ) -> Any: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: return len(self.elements ) == 0 def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(lowerCamelCase_ ) else: # update # print("update", item) lowerCAmelCase__ = [] ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Tuple: if item in self.set: self.set.remove(lowerCamelCase_ ) lowerCAmelCase__ = [] ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def __SCREAMING_SNAKE_CASE ( self ) -> int: return self.elements[0][1] def __SCREAMING_SNAKE_CASE ( self ) -> Any: ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) self.set.remove(lowerCamelCase_ ) return (priority, item) def _snake_case ( A , A ) -> Tuple: # euclidean distance lowerCAmelCase__ = np.array(A ) lowerCAmelCase__ = np.array(A ) return np.linalg.norm(a - b ) def _snake_case ( A , A ) -> List[str]: # integer division by time variable return consistent_heuristic(A , A ) // t def _snake_case ( A , A ) -> List[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _snake_case ( A , A , A , A ) -> str: lowerCAmelCase__ = g_function[start] + Wa * heuristics[i](A , A ) return ans def _snake_case ( A , A , A ) -> int: lowerCAmelCase__ = np.chararray((n, n) ) for i in range(A ): for j in range(A ): lowerCAmelCase__ = '''*''' for i in range(A ): for j in range(A ): if (j, (n - 1) - i) in blocks: lowerCAmelCase__ = '''#''' lowerCAmelCase__ = '''-''' lowerCAmelCase__ = back_pointer[goal] while x != start: ((lowerCAmelCase__) , (lowerCAmelCase__)) = x # print(x) lowerCAmelCase__ = '''-''' lowerCAmelCase__ = back_pointer[x] lowerCAmelCase__ = '''-''' for i in range(A ): for j in range(A ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) lowerCAmelCase__ = back_pointer[goal] while x != start: print(A , end=''' ''' ) lowerCAmelCase__ = back_pointer[x] print(A ) sys.exit() def _snake_case ( A ) -> Any: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _snake_case ( A , A , A , A , A , A , A , A , ) -> str: for itera in range(A ): open_list[itera].remove_element(A ) # print("s", s) # print("j", j) ((lowerCAmelCase__) , (lowerCAmelCase__)) = s lowerCAmelCase__ = (x - 1, y) lowerCAmelCase__ = (x + 1, y) lowerCAmelCase__ = (x, y + 1) lowerCAmelCase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A ) lowerCAmelCase__ = -1 lowerCAmelCase__ = float('''inf''' ) if valid(A ) and g_function[neighbours] > g_function[s] + 1: lowerCAmelCase__ = g_function[s] + 1 lowerCAmelCase__ = s if neighbours not in close_list_anchor: open_list[0].put(A , key(A , 0 , A , A ) ) if neighbours not in close_list_inad: for var in range(1 , A ): if key(A , A , A , A ) <= Wa * key( A , 0 , A , A ): open_list[j].put( A , key(A , A , A , A ) ) def _snake_case ( ) -> str: lowerCAmelCase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list __UpperCAmelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCAmelCase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCAmelCase = make_common_ground() __UpperCAmelCase = blocks_blk # hyper parameters __UpperCAmelCase = 1 __UpperCAmelCase = 1 __UpperCAmelCase = 20 __UpperCAmelCase = 3 # one consistent and two other inconsistent # start and end destination __UpperCAmelCase = (0, 0) __UpperCAmelCase = (n - 1, n - 1) __UpperCAmelCase = 1 def _snake_case ( A , A , A ) -> Dict: lowerCAmelCase__ = {start: 0, goal: float('''inf''' )} lowerCAmelCase__ = {start: -1, goal: -1} lowerCAmelCase__ = [] lowerCAmelCase__ = set() for i in range(A ): open_list.append(PriorityQueue() ) open_list[i].put(A , key(A , A , A , A ) ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , A ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(A , A , A ) else: lowerCAmelCase__ , lowerCAmelCase__ = open_list[i].top_show() visited.add(A ) expand_state( A , A , A , A , A , A , A , A , ) close_list_inad.append(A ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(A , A , A ) else: lowerCAmelCase__ = open_list[0].top_show() visited.add(A ) expand_state( A , 0 , A , A , A , A , A , A , ) close_list_anchor.append(A ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
90
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Dict , *UpperCAmelCase : Dict , **UpperCAmelCase : Union[str, Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Union[str, Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : str = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[str] , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : Union[str, Any] , *UpperCAmelCase : Any , **UpperCAmelCase : Dict ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Dict , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[str] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : int = ['torch', 'transformers', 'onnx'] def __init__( self : List[str] , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Any , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[Any] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = ['torch', 'transformers', 'onnx'] def __init__( self : List[str] , *UpperCAmelCase : str , **UpperCAmelCase : int ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[str] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : int = ['torch', 'transformers', 'onnx'] def __init__( self : Tuple , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Optional[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : Dict , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] )
86
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _lowerCAmelCase ( __lowerCamelCase : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def _lowerCAmelCase ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = emb.weight.shape __SCREAMING_SNAKE_CASE : str = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = emb.weight.data return lin_layer def _lowerCAmelCase ( __lowerCamelCase : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = torch.load(__lowerCamelCase , map_location="cpu" ) __SCREAMING_SNAKE_CASE : List[str] = Namespace(**checkpoint["cfg"]["model"] ) __SCREAMING_SNAKE_CASE : Tuple = checkpoint["model"] remove_ignore_keys_(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = state_dict["decoder.embed_tokens.weight"].shape[0] __SCREAMING_SNAKE_CASE : Optional[int] = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} __SCREAMING_SNAKE_CASE : str = XGLMConfig( vocab_size=__lowerCamelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) __SCREAMING_SNAKE_CASE : List[Any] = XGLMForCausalLM(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) print(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _lowerCamelCase = parser.parse_args() _lowerCamelCase = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
447
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : bool = True , UpperCamelCase : Dict[str, int] = None , UpperCamelCase : int = 3_2 , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 2_5_5 , UpperCamelCase : bool = True , UpperCamelCase : bool = True , UpperCamelCase : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , UpperCamelCase : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , UpperCamelCase : bool = True , UpperCamelCase : Dict=7 , UpperCamelCase : Dict=3_0 , UpperCamelCase : Tuple=4_0_0 , UpperCamelCase : Union[str, Any]=3 , )->Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = parent __SCREAMING_SNAKE_CASE : str = do_resize __SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else {"shortest_edge": 2_8_8} __SCREAMING_SNAKE_CASE : List[str] = size_divisor __SCREAMING_SNAKE_CASE : str = do_rescale __SCREAMING_SNAKE_CASE : int = rescale_factor __SCREAMING_SNAKE_CASE : Tuple = do_normalize __SCREAMING_SNAKE_CASE : List[Any] = do_center_crop __SCREAMING_SNAKE_CASE : List[str] = image_mean __SCREAMING_SNAKE_CASE : Optional[Any] = image_std __SCREAMING_SNAKE_CASE : Optional[int] = do_pad __SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size __SCREAMING_SNAKE_CASE : str = num_channels __SCREAMING_SNAKE_CASE : List[str] = min_resolution __SCREAMING_SNAKE_CASE : Tuple = max_resolution def __snake_case ( self : Optional[Any] )->List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __snake_case ( self : Optional[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : Dict=False )->Optional[Any]: if not batched: __SCREAMING_SNAKE_CASE : Optional[int] = self.size["shortest_edge"] __SCREAMING_SNAKE_CASE : List[Any] = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = image.size else: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = image.shape[1], image.shape[2] __SCREAMING_SNAKE_CASE : Tuple = size / min(UpperCamelCase , UpperCamelCase ) if h < w: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = size, scale * w else: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = scale * h, size __SCREAMING_SNAKE_CASE : Optional[Any] = int((1_3_3_3 / 8_0_0) * size ) if max(UpperCamelCase , UpperCamelCase ) > max_size: __SCREAMING_SNAKE_CASE : Any = max_size / max(UpperCamelCase , UpperCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = newh * scale __SCREAMING_SNAKE_CASE : Optional[int] = neww * scale __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = int(newh + 0.5 ), int(neww + 0.5 ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __SCREAMING_SNAKE_CASE : Optional[int] = [] for image in image_inputs: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __SCREAMING_SNAKE_CASE : int = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] __SCREAMING_SNAKE_CASE : List[str] = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _SCREAMING_SNAKE_CASE (UpperCamelCase , unittest.TestCase ): lowerCAmelCase = BridgeTowerImageProcessor if is_vision_available() else None def __snake_case ( self : str )->int: __SCREAMING_SNAKE_CASE : str = BridgeTowerImageProcessingTester(self ) @property def __snake_case ( self : str )->Any: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Optional[int] )->Dict: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase , "size" ) ) self.assertTrue(hasattr(UpperCamelCase , "size_divisor" ) ) def __snake_case ( self : Optional[int] )->int: pass def __snake_case ( self : str )->Union[str, Any]: # Initialize image processor __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE : Any = image_processing(UpperCamelCase , return_tensors="pt" ).pixel_values __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self : List[str] )->Optional[int]: # Initialize image processor __SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE : str = image_processing(UpperCamelCase , return_tensors="pt" ).pixel_values __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self : Optional[Any] )->Union[str, Any]: # Initialize image processor __SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE : str = image_processing(UpperCamelCase , return_tensors="pt" ).pixel_values __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
447
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ : str = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys A_ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
38
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a__ ( UpperCamelCase_ ): snake_case__ = 42 class a__ ( UpperCamelCase_ , UpperCamelCase_ ): @register_to_config def __init__( self : Optional[int] ,a__ : int = 32 ,a__ : int = 64 ,a__ : int = 20 ,a__ : int = 768 ,a__ : Union[str, Any]=77 ,a__ : Union[str, Any]=4 ,a__ : float = 0.0 ,a__ : str = "silu" ,a__ : Optional[str] = None ,a__ : Optional[str] = None ,a__ : Optional[str] = "linear" ,a__ : Optional[str] = "prd" ,a__ : Optional[int] = None ,a__ : Optional[int] = None ,a__ : Optional[int] = None ,) -> Optional[Any]: """simple docstring""" super().__init__() _lowerCAmelCase:str = num_attention_heads _lowerCAmelCase:Any = attention_head_dim _lowerCAmelCase:str = num_attention_heads * attention_head_dim _lowerCAmelCase:Any = additional_embeddings _lowerCAmelCase:Any = time_embed_dim or inner_dim _lowerCAmelCase:Optional[int] = embedding_proj_dim or embedding_dim _lowerCAmelCase:Any = clip_embed_dim or embedding_dim _lowerCAmelCase:str = Timesteps(a__ ,a__ ,0) _lowerCAmelCase:Tuple = TimestepEmbedding(a__ ,a__ ,out_dim=a__ ,act_fn=a__) _lowerCAmelCase:str = nn.Linear(a__ ,a__) if embedding_proj_norm_type is None: _lowerCAmelCase:str = None elif embedding_proj_norm_type == "layer": _lowerCAmelCase:Any = nn.LayerNorm(a__) else: raise ValueError(F'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}') _lowerCAmelCase:Tuple = nn.Linear(a__ ,a__) if encoder_hid_proj_type is None: _lowerCAmelCase:Tuple = None elif encoder_hid_proj_type == "linear": _lowerCAmelCase:int = nn.Linear(a__ ,a__) else: raise ValueError(F'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}') _lowerCAmelCase:Union[str, Any] = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,a__)) if added_emb_type == "prd": _lowerCAmelCase:str = nn.Parameter(torch.zeros(1 ,1 ,a__)) elif added_emb_type is None: _lowerCAmelCase:Optional[Any] = None else: raise ValueError( F'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.') _lowerCAmelCase:Dict = nn.ModuleList( [ BasicTransformerBlock( a__ ,a__ ,a__ ,dropout=a__ ,activation_fn='''gelu''' ,attention_bias=a__ ,) for d in range(a__) ]) if norm_in_type == "layer": _lowerCAmelCase:Dict = nn.LayerNorm(a__) elif norm_in_type is None: _lowerCAmelCase:List[Any] = None else: raise ValueError(F'Unsupported norm_in_type: {norm_in_type}.') _lowerCAmelCase:Dict = nn.LayerNorm(a__) _lowerCAmelCase:Optional[int] = nn.Linear(a__ ,a__) _lowerCAmelCase:Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-10000.0) causal_attention_mask.triu_(1) _lowerCAmelCase:int = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' ,a__ ,persistent=a__) _lowerCAmelCase:Tuple = nn.Parameter(torch.zeros(1 ,a__)) _lowerCAmelCase:Tuple = nn.Parameter(torch.zeros(1 ,a__)) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCamelCase ( self : List[str]) -> Dict[str, AttentionProcessor]: """simple docstring""" _lowerCAmelCase:Union[str, Any] = {} def fn_recursive_add_processors(a__ : str ,a__ : torch.nn.Module ,a__ : Dict[str, AttentionProcessor]): if hasattr(a__ ,'''set_processor'''): _lowerCAmelCase:int = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' ,a__ ,a__) return processors for name, module in self.named_children(): fn_recursive_add_processors(a__ ,a__ ,a__) return processors def __UpperCamelCase ( self : Any ,a__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]]) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Tuple = len(self.attn_processors.keys()) if isinstance(a__ ,a__) and len(a__) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(a__)} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.') def fn_recursive_attn_processor(a__ : str ,a__ : torch.nn.Module ,a__ : Tuple): if hasattr(a__ ,'''set_processor'''): if not isinstance(a__ ,a__): module.set_processor(a__) else: module.set_processor(processor.pop(F'{name}.processor')) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' ,a__ ,a__) for name, module in self.named_children(): fn_recursive_attn_processor(a__ ,a__ ,a__) def __UpperCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" self.set_attn_processor(AttnProcessor()) def __UpperCamelCase ( self : Optional[int] ,a__ : List[str] ,a__ : Union[torch.Tensor, float, int] ,a__ : torch.FloatTensor ,a__ : Optional[torch.FloatTensor] = None ,a__ : Optional[torch.BoolTensor] = None ,a__ : bool = True ,) -> Dict: """simple docstring""" _lowerCAmelCase:Dict = hidden_states.shape[0] _lowerCAmelCase:Any = timestep if not torch.is_tensor(a__): _lowerCAmelCase:List[str] = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device) elif torch.is_tensor(a__) and len(timesteps.shape) == 0: _lowerCAmelCase:Tuple = timesteps[None].to(hidden_states.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowerCAmelCase:str = timesteps * torch.ones(a__ ,dtype=timesteps.dtype ,device=timesteps.device) _lowerCAmelCase:List[str] = self.time_proj(a__) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowerCAmelCase:Optional[Any] = timesteps_projected.to(dtype=self.dtype) _lowerCAmelCase:str = self.time_embedding(a__) if self.embedding_proj_norm is not None: _lowerCAmelCase:Tuple = self.embedding_proj_norm(a__) _lowerCAmelCase:Optional[int] = self.embedding_proj(a__) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowerCAmelCase:List[str] = self.encoder_hidden_states_proj(a__) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''') _lowerCAmelCase:Dict = self.proj_in(a__) _lowerCAmelCase:Union[str, Any] = self.positional_embedding.to(hidden_states.dtype) _lowerCAmelCase:List[str] = [] _lowerCAmelCase:str = 0 if encoder_hidden_states is not None: additional_embeds.append(a__) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape) == 2: _lowerCAmelCase:Optional[Any] = proj_embeddings[:, None, :] if len(hidden_states.shape) == 2: _lowerCAmelCase:Optional[Any] = hidden_states[:, None, :] _lowerCAmelCase:Optional[int] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowerCAmelCase:Union[str, Any] = self.prd_embedding.to(hidden_states.dtype).expand(a__ ,-1 ,-1) additional_embeds.append(a__) _lowerCAmelCase:Dict = torch.cat( a__ ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowerCAmelCase:Optional[int] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowerCAmelCase:Optional[int] = F.pad( a__ ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowerCAmelCase:List[str] = hidden_states + positional_embeddings if attention_mask is not None: _lowerCAmelCase:int = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 _lowerCAmelCase:str = F.pad(a__ ,(0, self.additional_embeddings) ,value=0.0) _lowerCAmelCase:Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype) _lowerCAmelCase:str = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0) if self.norm_in is not None: _lowerCAmelCase:Union[str, Any] = self.norm_in(a__) for block in self.transformer_blocks: _lowerCAmelCase:Any = block(a__ ,attention_mask=a__) _lowerCAmelCase:int = self.norm_out(a__) if self.prd_embedding is not None: _lowerCAmelCase:List[str] = hidden_states[:, -1] else: _lowerCAmelCase:Any = hidden_states[:, additional_embeddings_len:] _lowerCAmelCase:int = self.proj_to_clip_embeddings(a__) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=a__) def __UpperCamelCase ( self : Tuple ,a__ : Optional[int]) -> Dict: """simple docstring""" _lowerCAmelCase:Dict = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
227
0
"""simple docstring""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ): try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: __lowerCAmelCase = os.path.abspath(_lowerCAmelCase ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) __lowerCAmelCase = torch.load(_lowerCAmelCase , map_location="""cpu""" ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) __lowerCAmelCase = convert_pytorch_state_dict_to_flax(_lowerCAmelCase , _lowerCAmelCase ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files __lowerCAmelCase = convert_pytorch_sharded_state_dict_to_flax(_lowerCAmelCase , _lowerCAmelCase ) return flax_state_dict def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): def is_key_or_prefix_key_in_dict(_lowerCAmelCase ) -> bool: return len(set(_lowerCAmelCase ) & {key, (model_prefix,) + key} ) > 0 # layer norm __lowerCAmelCase = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean __lowerCAmelCase = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var __lowerCAmelCase = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # embedding __lowerCAmelCase = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_lowerCAmelCase ): return renamed_pt_tuple_key, pt_tensor # conv layer __lowerCAmelCase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): __lowerCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __lowerCAmelCase = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_lowerCAmelCase ): __lowerCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __lowerCAmelCase = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __lowerCAmelCase = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 __lowerCAmelCase = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): __lowerCAmelCase = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): __lowerCAmelCase = pt_tuple_key[-2] + """_v""" if name is not None: __lowerCAmelCase = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowercase (_lowerCAmelCase , _lowerCAmelCase ): # convert pytorch tensor to numpy __lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} __lowerCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: __lowerCAmelCase = flax_model.params["""params"""] else: __lowerCAmelCase = flax_model.params __lowerCAmelCase = flatten_dict(_lowerCAmelCase ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __lowerCAmelCase = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) __lowerCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowerCAmelCase = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary __lowerCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters __lowerCAmelCase , __lowerCAmelCase = rename_key_and_reshape_tensor( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # add model prefix if necessary __lowerCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __lowerCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) return unflatten_dict(_lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): import torch # Load the index __lowerCAmelCase = {} for shard_file in shard_filenames: # load using msgpack utils __lowerCAmelCase = torch.load(_lowerCAmelCase ) __lowerCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} __lowerCAmelCase = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: __lowerCAmelCase = flax_model.params["""params"""] __lowerCAmelCase = flatten_dict(_lowerCAmelCase ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: __lowerCAmelCase = flax_model.params __lowerCAmelCase = flatten_dict(_lowerCAmelCase ) __lowerCAmelCase = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) __lowerCAmelCase = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __lowerCAmelCase = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary __lowerCAmelCase = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCAmelCase = pt_tuple_key[1:] # Correctly rename weight parameters __lowerCAmelCase , __lowerCAmelCase = rename_key_and_reshape_tensor( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # add model prefix if necessary __lowerCAmelCase = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: __lowerCAmelCase = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) continue if "var" in flax_key[-1]: __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) continue # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) else: # also add unexpected weight so that warning is thrown __lowerCAmelCase = jnp.asarray(_lowerCAmelCase ) return unflatten_dict(_lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = os.path.abspath(_lowerCAmelCase ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class __lowerCAmelCase = getattr(_lowerCAmelCase , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(_lowerCAmelCase , """rb""" ) as state_f: try: __lowerCAmelCase = from_bytes(_lowerCAmelCase , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(_lowerCAmelCase , _lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase ): try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights __lowerCAmelCase = flatten_dict(jax.tree_util.tree_map(lambda _lowerCAmelCase : x.dtype == jnp.bfloataa , _lowerCAmelCase ) ).values() if any(_lowerCAmelCase ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) __lowerCAmelCase = jax.tree_util.tree_map( lambda _lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCAmelCase ) __lowerCAmelCase = flatten_dict(_lowerCAmelCase ) __lowerCAmelCase = pt_model.state_dict() __lowerCAmelCase = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) __lowerCAmelCase = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys __lowerCAmelCase = [] __lowerCAmelCase = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __lowerCAmelCase = flax_key_tuple[0] == pt_model.base_model_prefix __lowerCAmelCase = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: __lowerCAmelCase = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: __lowerCAmelCase = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_lowerCAmelCase ) not in pt_model_dict: # conv layer __lowerCAmelCase = flax_key_tuple[:-1] + ("""weight""",) __lowerCAmelCase = jnp.transpose(_lowerCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_lowerCAmelCase ) not in pt_model_dict: # linear layer __lowerCAmelCase = flax_key_tuple[:-1] + ("""weight""",) __lowerCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __lowerCAmelCase = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: __lowerCAmelCase = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: __lowerCAmelCase = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: __lowerCAmelCase = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: __lowerCAmelCase = """.""".join(_lowerCAmelCase ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. __lowerCAmelCase = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: __lowerCAmelCase = key.split(""".""" ) __lowerCAmelCase = None if key_components[-3::2] == ["parametrizations", "original0"]: __lowerCAmelCase = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: __lowerCAmelCase = key_components[-2] + """_v""" if name is not None: __lowerCAmelCase = key_components[:-3] + [name] __lowerCAmelCase = """.""".join(_lowerCAmelCase ) __lowerCAmelCase = key if flax_key in special_pt_names: __lowerCAmelCase = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict __lowerCAmelCase = np.asarray(_lowerCAmelCase ) if not isinstance(_lowerCAmelCase , np.ndarray ) else flax_tensor __lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ) # remove from missing keys missing_keys.remove(_lowerCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(_lowerCAmelCase ) pt_model.load_state_dict(_lowerCAmelCase ) # re-transform missing_keys to list __lowerCAmelCase = list(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(_lowerCAmelCase ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" """If your task is similar to the task the model of the checkpoint was trained on, """ f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
718
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
573
0
from timeit import timeit _lowerCAmelCase : int = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def a_ ( UpperCamelCase_ : str ) -> bool: """simple docstring""" lowerCamelCase = 0 lowerCamelCase = len(UpperCamelCase_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def a_ ( UpperCamelCase_ : str ) -> bool: """simple docstring""" lowerCamelCase = len(UpperCamelCase_ ) // 2 lowerCamelCase = len(UpperCamelCase_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(UpperCamelCase_ ) ) def a_ ( UpperCamelCase_ : str ) -> bool: """simple docstring""" if len(UpperCamelCase_ ) <= 2: return True if s[0] == s[len(UpperCamelCase_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def a_ ( UpperCamelCase_ : str ) -> bool: """simple docstring""" return s == s[::-1] def a_ ( UpperCamelCase_ : str ) -> None: """simple docstring""" lowerCamelCase = f'''all({name}(key) is value for key, value in test_data.items())''' lowerCamelCase = f'''from __main__ import test_data, {name}''' lowerCamelCase = 5_0_0_0_0_0 lowerCamelCase = timeit(stmt=UpperCamelCase_ , setup=UpperCamelCase_ , number=UpperCamelCase_ ) print(f'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F'''{key:21} {value}''') print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
246
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _lowerCAmelCase : int = {'configuration_dpt': ['DPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DPTConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = ['DPTFeatureExtractor'] _lowerCAmelCase : Tuple = ['DPTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ 'DPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DPTForDepthEstimation', 'DPTForSemanticSegmentation', 'DPTModel', 'DPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
246
1
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase : int = logging.get_logger(__name__) class A__ ( _snake_case ): """simple docstring""" _lowercase = ['input_values', 'padding_mask'] def __init__( self : str , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 24_000 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : float = None , lowerCamelCase__ : float = None , **lowerCamelCase__ : Union[str, Any] , ): super().__init__(feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , **lowerCamelCase__ ) a__ : Optional[Any] = chunk_length_s a__ : Dict = overlap @property def _UpperCamelCase( self : Tuple ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCamelCase( self : Any ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : Tuple , lowerCamelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCamelCase__ : Optional[Union[bool, str, PaddingStrategy]] = None , lowerCamelCase__ : Optional[bool] = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : Optional[int] = None , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs a__ : Tuple = True a__ : Optional[Any] = bool( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: a__ : List[Any] = [np.asarray(lowerCamelCase__ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): a__ : Optional[int] = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): a__ : List[Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: a__ : Optional[Any] = [np.asarray(lowerCamelCase__ ).T] # verify inputs are valid for idx, example in enumerate(lowerCamelCase__ ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) a__ : Optional[Any] = None a__ : Dict = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: a__ : Optional[int] = min(array.shape[0] for array in raw_audio ) a__ : Optional[Any] = int(np.floor(max_length / self.chunk_stride ) ) a__ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: a__ : List[str] = max(array.shape[0] for array in raw_audio ) a__ : List[Any] = int(np.ceil(max_length / self.chunk_stride ) ) a__ : str = (nb_step - 1) * self.chunk_stride + self.chunk_length a__ : int = "max_length" else: a__ : int = input_values # normal padding on batch if padded_inputs is None: a__ : Optional[int] = self.pad( lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , padding=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) if padding: a__ : Union[str, Any] = padded_inputs.pop("attention_mask" ) a__ : List[str] = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: a__ : Dict = example[..., None] input_values.append(example.T ) a__ : Optional[Any] = input_values if return_tensors is not None: a__ : Tuple = padded_inputs.convert_to_tensors(lowerCamelCase__ ) return padded_inputs
713
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy UpperCamelCase : Optional[Any] = logging.getLogger(__name__) UpperCamelCase : Any = """pytorch_model.bin""" @dataclasses.dataclass class A__ : """simple docstring""" _lowercase = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) _lowercase = dataclasses.field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class A__ : """simple docstring""" _lowercase = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) _lowercase = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) _lowercase = dataclasses.field( default=A__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) _lowercase = dataclasses.field( default=A__ , metadata={'help': 'The name of the task to train on.'} , ) _lowercase = dataclasses.field( default=A__ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class A__ : """simple docstring""" _lowercase = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) _lowercase = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) _lowercase = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) _lowercase = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _lowercase = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) _lowercase = dataclasses.field( default=A__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) _lowercase = dataclasses.field( default=A__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) _lowercase = dataclasses.field( default=A__ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) _lowercase = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) _lowercase = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _lowercase = dataclasses.field( default=A__ , metadata={'help': 'Random seed for initialization.'} , ) def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> Optional[Any]: a__ : Any = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: a__ : str = dataset.filter(lambda __a : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 a__ : Tuple = int(eval_result * len(__a ) ) print(__a ) a__ : Optional[Any] = dataset.sort("probability" , reverse=__a ) a__ : Optional[int] = dataset.select(range(__a ) ) a__ : List[str] = dataset.remove_columns(["label", "probability"] ) a__ : Union[str, Any] = dataset.rename_column("prediction" , "label" ) a__ : int = dataset.map(lambda __a : {"label": idalabel[example["label"]]} ) a__ : Optional[int] = dataset.shuffle(seed=args.seed ) a__ : str = os.path.join(__a , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(__a , index=__a ) else: dataset.to_json(__a ) def UpperCamelCase_ ( __a , __a , __a , __a , **__a ) -> Dict: a__ : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() a__ : int = STModelArguments(model_name_or_path=__a ) a__ : Optional[int] = STDataArguments(train_file=__a , infer_file=__a ) a__ : List[Any] = STTrainingArguments(output_dir=__a ) a__ : Union[str, Any] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__a ).items(): setattr(__a , __a , __a ) for key, value in kwargs.items(): if hasattr(__a , __a ): setattr(__a , __a , __a ) # Sanity checks a__ : List[Any] = {} a__ : Optional[Any] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None a__ : Union[str, Any] = args.train_file a__ : List[str] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None a__ : Tuple = args.eval_file for key in data_files: a__ : Optional[Any] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: a__ : List[Any] = extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) a__ : Any = f'''{args.output_dir}/self-train_iter-{{}}'''.format a__ : List[str] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__a ) os.makedirs(__a , exist_ok=__a ) accelerator.wait_for_everyone() a__ : Optional[int] = None a__ : str = None a__ : List[Any] = 0 a__ : List[Any] = False # Show the progress bar a__ : Any = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): a__ : Optional[int] = data_dir_format(__a ) assert os.path.exists(__a ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 a__ : Union[str, Any] = os.path.join(__a , "stage-1" ) a__ : str = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__a , __a ): arguments_dict.update({key: value} ) a__ : Tuple = os.path.join(__a , "best-checkpoint" , __a ) if os.path.exists(__a ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , __a , __a , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , __a ) finetune(**__a ) accelerator.wait_for_everyone() assert os.path.exists(__a ) logger.info("Self-training job completed: iteration: %d, stage: 1." , __a ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data a__ : Any = os.path.join(__a , "best-checkpoint" ) a__ : Optional[int] = os.path.join(__a , "stage-2" ) # Update arguments_dict a__ : Union[str, Any] = model_path a__ : Union[str, Any] = data_files["train"] a__ : Optional[Any] = current_output_dir a__ : Optional[int] = os.path.join(__a , "best-checkpoint" , __a ) if os.path.exists(__a ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , __a , __a , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , __a ) finetune(**__a ) accelerator.wait_for_everyone() assert os.path.exists(__a ) logger.info("Self-training job completed: iteration: %d, stage: 2." , __a ) a__ : Dict = iteration a__ : List[str] = data_dir_format(iteration + 1 ) a__ : Union[str, Any] = AutoConfig.from_pretrained(os.path.join(__a , "best-checkpoint" ) ) a__ : str = config.idalabel a__ : Union[str, Any] = os.path.join(__a , "eval_results_best-checkpoint.json" ) a__ : Dict = os.path.join(__a , "test_results_best-checkpoint.json" ) assert os.path.exists(__a ) with open(__a , "r" ) as f: a__ : Optional[int] = float(json.load(__a )[args.eval_metric] ) a__ : Union[str, Any] = os.path.join(__a , "infer_output_best-checkpoint.csv" ) assert os.path.exists(__a ) # Loading the dataset from local csv or json files. a__ : List[Any] = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] a__ : Dict = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(__a , exist_ok=__a ) shutil.copy(__a , os.path.join(__a , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(__a ): shutil.copy(__a , os.path.join(__a , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(__a , __a , __a , __a , __a , __a ) accelerator.wait_for_everyone() a__ : Optional[int] = os.path.join(__a , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: a__ : str = eval_result if best_iteration is None: a__ : Union[str, Any] = new_iteration a__ : Dict = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: a__ : List[str] = new_iteration a__ : List[Any] = new_eval_result a__ : Dict = 0 else: if new_eval_result == best_eval_result: a__ : Optional[int] = new_iteration a__ : Any = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: a__ : Dict = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , __a ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __a ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__a , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(__a , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __a ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__a , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(__a , "eval_results_best-iteration.json" ) , )
151
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def lowerCamelCase ( _snake_case ): UpperCAmelCase__ : List[Any] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase__ : Union[str, Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase__ : Dict = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase__ : str = matrix[1][1], matrix[0][0] UpperCAmelCase__ : Tuple = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase__ : List[Any] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix UpperCAmelCase__ : Optional[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase__ : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase__ : int = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase__ : Optional[int] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase__ : Tuple = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase__ : str = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase__ : Any = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase__ : Optional[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase__ : str = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase__ : Dict = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase__ : Any = array(lowerCAmelCase_ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase__ : Optional[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase__ : Dict = array(lowerCAmelCase_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase_ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
110
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" def __init__( self , *a_ , **a_ ): warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , a_ , ) super().__init__(*a_ , **a_ )
250
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase_ (a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline __UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } __UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} __UpperCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCamelCase : Tuple = frozenset([] ) __UpperCamelCase : int = True @property def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = 1 SCREAMING_SNAKE_CASE__ : List[Any] = 4 SCREAMING_SNAKE_CASE__ : str = (16, 16) SCREAMING_SNAKE_CASE__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) return image def __magic_name__ (self ) -> str: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=SCREAMING_SNAKE_CASE__ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=SCREAMING_SNAKE_CASE__ , only_cross_attention=SCREAMING_SNAKE_CASE__ , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) SCREAMING_SNAKE_CASE__ : Any = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) SCREAMING_SNAKE_CASE__ : Optional[int] = EulerDiscreteScheduler(prediction_type="""sample""" ) SCREAMING_SNAKE_CASE__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""quick_gelu""" , projection_dim=5_12 , ) SCREAMING_SNAKE_CASE__ : Optional[int] = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) SCREAMING_SNAKE_CASE__ : str = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ) -> Dict: """simple docstring""" if str(SCREAMING_SNAKE_CASE__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = """cpu""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = pipe(**SCREAMING_SNAKE_CASE__ ).images SCREAMING_SNAKE_CASE__ : List[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE__ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE__ , 1E-3 ) def __magic_name__ (self ) -> Any: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def __magic_name__ (self ) -> Dict: """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def __magic_name__ (self ) -> Tuple: """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __magic_name__ (self ) -> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def __magic_name__ (self ) -> List[str]: """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def __magic_name__ (self ) -> Tuple: """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = 2 SCREAMING_SNAKE_CASE__ : int = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE__ : List[str] = getattr(SCREAMING_SNAKE_CASE__ , scheduler_enum.name ) SCREAMING_SNAKE_CASE__ : Any = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE__ : int = pipe(**SCREAMING_SNAKE_CASE__ )[0] outputs.append(SCREAMING_SNAKE_CASE__ ) assert check_same_shape(SCREAMING_SNAKE_CASE__ ) @require_torch_gpu @slow class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" SCREAMING_SNAKE_CASE__ : Dict = pipe(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , output_type="""latent""" ).images SCREAMING_SNAKE_CASE__ : Optional[int] = upscaler( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , num_inference_steps=20 , guidance_scale=0 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ).images[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE__ : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) SCREAMING_SNAKE_CASE__ : Dict = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" SCREAMING_SNAKE_CASE__ : int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) SCREAMING_SNAKE_CASE__ : int = upscaler( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , num_inference_steps=20 , guidance_scale=0 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ).images[0] SCREAMING_SNAKE_CASE__ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-2
545
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase__ : str = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : List[Any] = '''detr''' __UpperCamelCase : List[Any] = ['''past_key_values'''] __UpperCamelCase : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__(self , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=1_00 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=20_48 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=20_48 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=2_56 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="sine" , SCREAMING_SNAKE_CASE__="resnet50" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) SCREAMING_SNAKE_CASE__ : Any = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = backbone_config.get("""model_type""" ) SCREAMING_SNAKE_CASE__ : int = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ : str = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) # set timm attributes to None SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = None, None, None SCREAMING_SNAKE_CASE__ : Optional[int] = use_timm_backbone SCREAMING_SNAKE_CASE__ : Tuple = backbone_config SCREAMING_SNAKE_CASE__ : List[Any] = num_channels SCREAMING_SNAKE_CASE__ : Tuple = num_queries SCREAMING_SNAKE_CASE__ : Optional[int] = d_model SCREAMING_SNAKE_CASE__ : str = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : str = encoder_layers SCREAMING_SNAKE_CASE__ : Optional[int] = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Any = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE__ : Dict = decoder_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = dropout SCREAMING_SNAKE_CASE__ : Tuple = attention_dropout SCREAMING_SNAKE_CASE__ : Tuple = activation_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = activation_function SCREAMING_SNAKE_CASE__ : Any = init_std SCREAMING_SNAKE_CASE__ : Dict = init_xavier_std SCREAMING_SNAKE_CASE__ : Any = encoder_layerdrop SCREAMING_SNAKE_CASE__ : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Dict = encoder_layers SCREAMING_SNAKE_CASE__ : List[str] = auxiliary_loss SCREAMING_SNAKE_CASE__ : List[Any] = position_embedding_type SCREAMING_SNAKE_CASE__ : List[str] = backbone SCREAMING_SNAKE_CASE__ : Dict = use_pretrained_backbone SCREAMING_SNAKE_CASE__ : Any = dilation # Hungarian matcher SCREAMING_SNAKE_CASE__ : Optional[Any] = class_cost SCREAMING_SNAKE_CASE__ : Tuple = bbox_cost SCREAMING_SNAKE_CASE__ : List[Any] = giou_cost # Loss coefficients SCREAMING_SNAKE_CASE__ : Optional[int] = mask_loss_coefficient SCREAMING_SNAKE_CASE__ : Optional[Any] = dice_loss_coefficient SCREAMING_SNAKE_CASE__ : Optional[int] = bbox_loss_coefficient SCREAMING_SNAKE_CASE__ : Any = giou_loss_coefficient SCREAMING_SNAKE_CASE__ : List[str] = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __magic_name__ (self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def __magic_name__ (self ) -> int: """simple docstring""" return self.d_model @classmethod def __magic_name__ (cls , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" return cls(backbone_config=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Dict[str, any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: SCREAMING_SNAKE_CASE__ : Any = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ : Dict = self.__class__.model_type return output class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : Any = version.parse('''1.11''' ) @property def __magic_name__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __magic_name__ (self ) -> float: """simple docstring""" return 1E-5 @property def __magic_name__ (self ) -> int: """simple docstring""" return 12
545
1
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
78
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time snake_case = Lock() def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[int] , snake_case__ :Union[str, Any] , snake_case__ :Tuple , snake_case__ :Any , snake_case__ :Dict , snake_case__ :Optional[int] , snake_case__ :List[str] ) -> Optional[Any]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _lowercase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _lowercase = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _lowercase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _lowercase = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Dict: _lowercase = [] _lowercase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _lowercase = Pipe() _lowercase = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) _lowercase = temp_rs _lowercase = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): _lowercase = Pipe() _lowercase = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) _lowercase = temp_rs _lowercase = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): _lowercase = result_pipe[p][0].recv() process_array_[p].join() return arr def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: _lowercase = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) _lowercase = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
67
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["""ConditionalDetrFeatureExtractor"""] _lowercase = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
427
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class a_ ( UpperCAmelCase__ ): lowercase_ : Any = '''poolformer''' def __init__( self : Union[str, Any] , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Tuple=1_6 , __lowerCAmelCase : Union[str, Any]=1_6 , __lowerCAmelCase : int=3 , __lowerCAmelCase : List[str]=4.0 , __lowerCAmelCase : int=[2, 2, 6, 2] , __lowerCAmelCase : Union[str, Any]=[6_4, 1_2_8, 3_2_0, 5_1_2] , __lowerCAmelCase : int=[7, 3, 3, 3] , __lowerCAmelCase : Any=[4, 2, 2, 2] , __lowerCAmelCase : List[str]=[2, 1, 1, 1] , __lowerCAmelCase : Optional[Any]=4 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Union[str, Any]=1E-5 , __lowerCAmelCase : Dict=0.02 , **__lowerCAmelCase : Dict , ): __snake_case = num_channels __snake_case = patch_size __snake_case = stride __snake_case = padding __snake_case = pool_size __snake_case = hidden_sizes __snake_case = mlp_ratio __snake_case = depths __snake_case = patch_sizes __snake_case = strides __snake_case = num_encoder_blocks __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = use_layer_scale __snake_case = layer_scale_init_value __snake_case = initializer_range super().__init__(**__lowerCAmelCase ) class a_ ( UpperCAmelCase__ ): lowercase_ : Dict = version.parse('''1.11''' ) @property def lowercase__ ( self : str ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase__ ( self : Tuple ): return 2E-3
427
1
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _SCREAMING_SNAKE_CASE : Union[str, Any] = 2 class A : '''simple docstring''' def __init__( self : Union[str, Any] , *, # begin keyword-only arguments _UpperCamelCase : Optional[int]="<s>" , _UpperCamelCase : str="<pad>" , _UpperCamelCase : Any="</s>" , _UpperCamelCase : List[str]="<unk>" , _UpperCamelCase : List[str]=None , ): _lowercase , _lowercase , _lowercase , _lowercase: Any = bos, unk, pad, eos _lowercase: List[str] = [] _lowercase: Union[str, Any] = [] _lowercase: List[Any] = {} _lowercase: Optional[int] = self.add_symbol(_UpperCamelCase) _lowercase: str = self.add_symbol(_UpperCamelCase) _lowercase: List[str] = self.add_symbol(_UpperCamelCase) _lowercase: str = self.add_symbol(_UpperCamelCase) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_UpperCamelCase) _lowercase: List[Any] = len(self.symbols) def __eq__( self : Any , _UpperCamelCase : List[str]): return self.indices == other.indices def __getitem__( self : Optional[Any] , _UpperCamelCase : List[Any]): if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self : Tuple): return len(self.symbols) def __contains__( self : Any , _UpperCamelCase : str): return sym in self.indices @classmethod def UpperCAmelCase__ ( cls : List[Any] , _UpperCamelCase : Optional[Any]): _lowercase: Dict = cls() d.add_from_file(_UpperCamelCase) return d def UpperCAmelCase__ ( self : Optional[int] , _UpperCamelCase : List[str] , _UpperCamelCase : Any=1 , _UpperCamelCase : Optional[Any]=False): if word in self.indices and not overwrite: _lowercase: List[str] = self.indices[word] _lowercase: str = self.count[idx] + n return idx else: _lowercase: List[str] = len(self.symbols) _lowercase: List[str] = idx self.symbols.append(_UpperCamelCase) self.count.append(_UpperCamelCase) return idx def UpperCAmelCase__ ( self : Union[str, Any] , _UpperCamelCase : List[Any]): return 0 def UpperCAmelCase__ ( self : Union[str, Any] , _UpperCamelCase : List[str]): if isinstance(_UpperCamelCase , _UpperCamelCase): try: with open(_UpperCamelCase , "r" , encoding="utf-8") as fd: self.add_from_file(_UpperCamelCase) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(_UpperCamelCase)) return _lowercase: Optional[int] = f.readlines() _lowercase: int = self._load_meta(_UpperCamelCase) for line in lines[indices_start_line:]: try: _lowercase , _lowercase: List[str] = line.rstrip().rsplit(" " , 1) if field == "#fairseq:overwrite": _lowercase: Optional[Any] = True _lowercase , _lowercase: int = line.rsplit(" " , 1) else: _lowercase: Optional[Any] = False _lowercase: Optional[Any] = int(_UpperCamelCase) _lowercase: Dict = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(_UpperCamelCase)) self.add_symbol(_UpperCamelCase , n=_UpperCamelCase , overwrite=_UpperCamelCase) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'") def __lowerCAmelCase ( __magic_name__ ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _lowercase: List[str] = dict((re.sub(R"@@$" , "" , __magic_name__ ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , __magic_name__ ), v) for k, v in d.items() ) _lowercase: Optional[int] = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[f"{k}</w>"] _lowercase: List[str] = d[k] # restore return da def __lowerCAmelCase ( __magic_name__ , __magic_name__ ): # prep if not os.path.exists(__magic_name__ ): raise ValueError(f"path {biogpt_checkpoint_path} does not exist!" ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) print(f"Writing results to {pytorch_dump_folder_path}" ) # handle various types of models _lowercase: int = os.path.join(__magic_name__ , "checkpoint.pt" ) if not os.path.isfile(__magic_name__ ): raise ValueError(f"path to the file {checkpoint_file} does not exist!" ) _lowercase: Dict = torch.load(__magic_name__ , map_location="cpu" ) _lowercase: Optional[int] = chkpt["cfg"]["model"] # dicts _lowercase: int = os.path.join(__magic_name__ , "dict.txt" ) if not os.path.isfile(__magic_name__ ): raise ValueError(f"path to the file {dict_file} does not exist!" ) _lowercase: Union[str, Any] = Dictionary.load(__magic_name__ ) _lowercase: Tuple = rewrite_dict_keys(src_dict.indices ) _lowercase: Tuple = len(__magic_name__ ) _lowercase: List[Any] = os.path.join(__magic_name__ , VOCAB_FILES_NAMES["vocab_file"] ) print(f"Generating {src_vocab_file} of {src_vocab_size} records" ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__magic_name__ , ensure_ascii=__magic_name__ , indent=__magic_name__ ) ) # merges_file (bpecodes) _lowercase: Tuple = os.path.join(__magic_name__ , "bpecodes" ) if not os.path.isfile(__magic_name__ ): raise ValueError(f"path to the file {bpecodes_file} does not exist!" ) _lowercase: Dict = os.path.join(__magic_name__ , VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(__magic_name__ , __magic_name__ ) # model config _lowercase: Optional[Any] = os.path.join(__magic_name__ , "config.json" ) _lowercase: Any = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1e-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(f"Generating {biogpt_model_config_file}" ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__magic_name__ , ensure_ascii=__magic_name__ , indent=__magic_name__ ) ) # tokenizer config _lowercase: Dict = os.path.join(__magic_name__ , __magic_name__ ) _lowercase: Optional[int] = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1_0_2_4, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(f"Generating {biogpt_tokenizer_config_file}" ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__magic_name__ , ensure_ascii=__magic_name__ , indent=__magic_name__ ) ) # model _lowercase: Optional[int] = chkpt["model"] # remove unneeded keys _lowercase: int = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(__magic_name__ , __magic_name__ ) _lowercase: int = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): _lowercase: Tuple = model_state_dict.pop(__magic_name__ ) else: _lowercase: Any = model_state_dict.pop(__magic_name__ ) _lowercase: List[str] = BioGptConfig.from_pretrained(__magic_name__ ) _lowercase: int = BioGptForCausalLM(__magic_name__ ) # check that it loads ok model_new.load_state_dict(__magic_name__ ) # save _lowercase: Tuple = os.path.join(__magic_name__ , __magic_name__ ) print(f"Generating {pytorch_weights_dump_path}" ) torch.save(__magic_name__ , __magic_name__ ) print("Conversion is done!" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
226
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration SCREAMING_SNAKE_CASE__:str = HfArgumentParser(InitializationArguments) SCREAMING_SNAKE_CASE__:List[str] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization SCREAMING_SNAKE_CASE__:List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks SCREAMING_SNAKE_CASE__:Union[str, Any] = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) SCREAMING_SNAKE_CASE__:Optional[int] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config SCREAMING_SNAKE_CASE__:Tuple = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
528
0
"""simple docstring""" import doctest from collections import deque import numpy as np class _lowercase : """simple docstring""" def __init__( self : Tuple ) -> None: '''simple docstring''' __UpperCamelCase =[2, 1, 2, -1] __UpperCamelCase =[1, 2, 3, 4] def UpperCAmelCase_ ( self : List[str] ) -> list[float]: '''simple docstring''' __UpperCamelCase =len(self.first_signal ) __UpperCamelCase =len(self.second_signal ) __UpperCamelCase =max(UpperCamelCase__ , UpperCamelCase__ ) # create a zero matrix of max_length x max_length __UpperCamelCase =[[0] * max_length for i in range(UpperCamelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCamelCase__ ): __UpperCamelCase =deque(self.second_signal ) rotated_signal.rotate(UpperCamelCase__ ) for j, item in enumerate(UpperCamelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __UpperCamelCase =np.matmul(np.transpose(UpperCamelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCamelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
710
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class _lowercase ( __a ): """simple docstring""" lowercase__ = '''vit''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple=768 , UpperCamelCase__ : Dict=12 , UpperCamelCase__ : Dict=12 , UpperCamelCase__ : Union[str, Any]=3072 , UpperCamelCase__ : List[Any]="gelu" , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : Any=0.02 , UpperCamelCase__ : Union[str, Any]=1E-12 , UpperCamelCase__ : Union[str, Any]=224 , UpperCamelCase__ : Union[str, Any]=16 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[int]=16 , **UpperCamelCase__ : Optional[int] , ) -> Tuple: '''simple docstring''' super().__init__(**UpperCamelCase__ ) __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =qkv_bias __UpperCamelCase =encoder_stride class _lowercase ( __a ): """simple docstring""" lowercase__ = version.parse('''1.11''' ) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase_ ( self : str ) -> float: '''simple docstring''' return 1E-4
296
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=None , a=True , a=None , a=True , a=[0.5, 0.5, 0.5] , a=[0.5, 0.5, 0.5] , a=False , ) -> Dict: """simple docstring""" _A = size if size is not None else {'''height''': 2_0, '''width''': 2_0} _A = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_center_crop _A = crop_size _A = do_normalize _A = image_mean _A = image_std _A = do_reduce_labels def lowercase_ ( self ) -> List[str]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase__ ( ) -> Optional[Any]: _A = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) _A = Image.open(dataset[0]['''file'''] ) _A = Image.open(dataset[1]['''file'''] ) return image, map def UpperCAmelCase__ ( ) -> Dict: _A = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) _A = Image.open(ds[0]['''file'''] ) _A = Image.open(ds[1]['''file'''] ) _A = Image.open(ds[2]['''file'''] ) _A = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _snake_case ( lowerCamelCase ,unittest.TestCase ): """simple docstring""" lowerCamelCase_ = BeitImageProcessor if is_vision_available() else None def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _A = BeitImageProcessingTester(self ) @property def lowercase_ ( self ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ) -> str: """simple docstring""" _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a , '''do_resize''' ) ) self.assertTrue(hasattr(a , '''size''' ) ) self.assertTrue(hasattr(a , '''do_center_crop''' ) ) self.assertTrue(hasattr(a , '''center_crop''' ) ) self.assertTrue(hasattr(a , '''do_normalize''' ) ) self.assertTrue(hasattr(a , '''image_mean''' ) ) self.assertTrue(hasattr(a , '''image_std''' ) ) def lowercase_ ( self ) -> Optional[int]: """simple docstring""" _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 2_0, '''width''': 2_0} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) self.assertEqual(image_processor.do_reduce_labels , a ) _A = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , crop_size=8_4 , reduce_labels=a ) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) self.assertEqual(image_processor.do_reduce_labels , a ) def lowercase_ ( self ) -> List[str]: """simple docstring""" pass def lowercase_ ( self ) -> Tuple: """simple docstring""" _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=a ) for image in image_inputs: self.assertIsInstance(a , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a ) for image in image_inputs: self.assertIsInstance(a , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _A = image_processing(a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase_ ( self ) -> Optional[Any]: """simple docstring""" _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a ) _A = [] for image in image_inputs: self.assertIsInstance(a , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _A = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5 ) # Test batched _A = image_processing(a , a , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5 ) # Test not batched input (PIL images) _A , _A = prepare_semantic_single_inputs() _A = image_processing(a , a , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5 ) # Test batched input (PIL images) _A , _A = prepare_semantic_batch_inputs() _A = image_processing(a , a , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5 ) def lowercase_ ( self ) -> str: """simple docstring""" _A = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _A , _A = prepare_semantic_single_inputs() _A = image_processing(a , a , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_5_0 ) _A = True _A = image_processing(a , a , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_5_5 )
317
from __future__ import annotations import math def UpperCAmelCase__ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __snake_case , __snake_case , __snake_case ) , minimax(depth + 1 , node_index * 2 + 1 , __snake_case , __snake_case , __snake_case ) , ) ) def UpperCAmelCase__ ( ) -> None: _A = [90, 23, 6, 33, 21, 65, 123, 34_423] _A = math.log(len(__snake_case ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , __snake_case , __snake_case , __snake_case )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
317
1
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def __UpperCAmelCase ( ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=_lowercase , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=_lowercase , default=5 ) parser.add_argument("--batch_size" , type=_lowercase , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=_lowercase , default=1 ) parser.add_argument("--freeze" , type=_lowercase , default=_lowercase ) parser.add_argument("--learning_rate" , type=_lowercase , default=5E-4 ) parser.add_argument("--seed" , type=_lowercase , default=0 ) parser.add_argument("--lr_scheduler_type" , type=_lowercase , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=_lowercase , default=1_0 ) parser.add_argument("--weight_decay" , type=_lowercase , default=0.01 ) parser.add_argument("--output_dir" , type=_lowercase , default="./results" ) return parser.parse_args() A = load("accuracy") def __UpperCAmelCase ( __A ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = eval_pred UpperCAmelCase__ = np.argmax(_lowercase , axis=1 ) return metric.compute(predictions=_lowercase , references=_lowercase ) class lowercase__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : str , _lowercase : int ): """simple docstring""" super().__init__() UpperCAmelCase__ = trainer def _UpperCAmelCase ( self : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int , **_lowercase : Any ): """simple docstring""" if control.should_evaluate: UpperCAmelCase__ = deepcopy(UpperCamelCase_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def __UpperCAmelCase ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = get_args() set_seed(args.seed ) UpperCAmelCase__ = load_dataset("codeparrot/codecomplex" , split="train" ) UpperCAmelCase__ = dataset.train_test_split(test_size=0.2 ) UpperCAmelCase__ = train_test['test'].train_test_split(test_size=0.5 ) UpperCAmelCase__ = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) UpperCAmelCase__ = AutoTokenizer.from_pretrained(args.model_ckpt ) UpperCAmelCase__ = tokenizer.eos_token UpperCAmelCase__ = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) UpperCAmelCase__ = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): UpperCAmelCase__ = False UpperCAmelCase__ = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(__A ): UpperCAmelCase__ = tokenizer(example["src"] , truncation=_lowercase , max_length=1_0_2_4 ) UpperCAmelCase__ = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } UpperCAmelCase__ = train_test_validation.map( _lowercase , batched=_lowercase , remove_columns=train_test_validation["train"].column_names , ) UpperCAmelCase__ = DataCollatorWithPadding(tokenizer=_lowercase ) UpperCAmelCase__ = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) UpperCAmelCase__ = Trainer( model=_lowercase , args=_lowercase , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=_lowercase , data_collator=_lowercase , compute_metrics=_lowercase , ) print("Training..." ) trainer.add_callback(CustomCallback(_lowercase ) ) trainer.train() if __name__ == "__main__": main()
704
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
277
0
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Tuple = XLMTokenizer a :Any = False def _lowercase ( self : List[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] lowercase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) lowercase_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: lowercase_ = '''lower newer''' lowercase_ = '''lower newer''' return input_text, output_text def _lowercase ( self : Union[str, Any] ) -> Any: lowercase_ = XLMTokenizer(self.vocab_file , self.merges_file ) lowercase_ = '''lower''' lowercase_ = ['''low''', '''er</w>'''] lowercase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = tokens + ['''<unk>'''] lowercase_ = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : int ) -> List[str]: lowercase_ = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) lowercase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) lowercase_ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
97
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers A__ = float("""nan""") class _lowerCAmelCase : def __init__( self : List[str] , __snake_case : Dict ): lowerCamelCase :int = sys.stdout lowerCamelCase :str = open(__snake_case , '''a''' ) def __getattr__( self : int , __snake_case : Union[str, Any] ): return getattr(self.stdout , __snake_case ) def snake_case ( self : Tuple , __snake_case : Dict ): self.stdout.write(__snake_case ) # strip tqdm codes self.file.write(re.sub(R'''^.*\r''' , '''''' , __snake_case , 0 , re.M ) ) def _lowerCamelCase ( a_ : Union[str, Any]=80 , a_ : str=False): lowerCamelCase :str = [] # deal with critical env vars lowerCamelCase :Optional[Any] = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: lowerCamelCase :Optional[int] = os.environ.get(a_ , a_) if val is not None: cmd.append(F"{key}={val}") # python executable (not always needed if the script is executable) lowerCamelCase :str = sys.executable if full_python_path else sys.executable.split('''/''')[-1] cmd.append(a_) # now the normal args cmd += list(map(shlex.quote , sys.argv)) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowerCamelCase :List[Any] = [] lowerCamelCase :Any = '''''' while len(a_) > 0: current_line += F"{cmd.pop(0)} " if len(a_) == 0 or len(a_) + len(cmd[0]) + 1 > max_width - 1: lines.append(a_) lowerCamelCase :List[str] = '''''' return "\\\n".join(a_) def _lowerCamelCase ( a_ : Optional[int] , a_ : Dict): # unwrap multi-line input lowerCamelCase :int = re.sub(R'''[\\\n]+''' , ''' ''' , args.base_cmd) # remove --output_dir if any and set our own lowerCamelCase :Union[str, Any] = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd) args.base_cmd += F" --output_dir {output_dir}" # ensure we have --overwrite_output_dir lowerCamelCase :int = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd) def _lowerCamelCase ( a_ : List[Any] , a_ : Dict , a_ : int , a_ : List[str] , a_ : Optional[int] , a_ : List[Any] , a_ : Any): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0) return dict( {k: random.uniform(0 , 1_00) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222])} , ) lowerCamelCase :List[Any] = subprocess.run(a_ , capture_output=a_ , text=a_) if verbose: print('''STDOUT''' , result.stdout) print('''STDERR''' , result.stderr) # save the streams lowerCamelCase :Union[str, Any] = variation.replace(''' ''' , '''-''') with open(Path(a_) / F"log.{prefix}.stdout.txt" , '''w''') as f: f.write(result.stdout) with open(Path(a_) / F"log.{prefix}.stderr.txt" , '''w''') as f: f.write(result.stderr) if result.returncode != 0: if verbose: print('''failed''') return {target_metric_key: nan} with io.open(F"{output_dir}/all_results.json" , '''r''' , encoding='''utf-8''') as f: lowerCamelCase :int = json.load(a_) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _lowerCamelCase ( a_ : List[Any] , a_ : Optional[Any] , a_ : Any , a_ : Optional[Any] , a_ : Any , a_ : List[Any] , a_ : int , a_ : Any , a_ : Union[str, Any] , a_ : List[str] , ): lowerCamelCase :Optional[Any] = [] lowerCamelCase :List[Any] = [] lowerCamelCase :List[str] = F"{id}: {variation:<{longest_variation_len}}" lowerCamelCase :Tuple = F"{preamble}: " lowerCamelCase :Any = set(report_metric_keys + [target_metric_key]) for i in tqdm(range(a_) , desc=a_ , leave=a_): lowerCamelCase :Optional[Any] = process_run_single( a_ , a_ , a_ , a_ , a_ , a_ , a_) lowerCamelCase :int = single_run_metrics[target_metric_key] if not math.isnan(a_): metrics.append(a_) results.append(a_) outcome += "✓" else: outcome += "✘" lowerCamelCase :Dict = F"\33[2K\r{outcome}" if len(a_) > 0: lowerCamelCase :List[str] = {k: fmean([x[k] for x in metrics]) for k in metrics[0].keys()} lowerCamelCase :Tuple = round(mean_metrics[target_metric_key] , 2) lowerCamelCase :Union[str, Any] = F"{outcome} {mean_target}" if len(a_) > 1: results_str += F" {tuple(round(a_ , 2) for x in results)}" print(a_) lowerCamelCase :Optional[Any] = variation return mean_metrics else: print(a_) return {variation_key: variation, target_metric_key: nan} def _lowerCamelCase ( ): lowerCamelCase :str = torch.cuda.get_device_properties(torch.device('''cuda''')) return F"\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n" def _lowerCamelCase ( a_ : List[str] , a_ : Tuple , a_ : Tuple , a_ : Optional[int] , a_ : int): lowerCamelCase :List[str] = pd.DataFrame(a_) lowerCamelCase :int = '''variation''' lowerCamelCase :Tuple = '''diff_%''' lowerCamelCase :List[str] = nan if base_variation is not None and len(df[df[variation_key] == base_variation]): # this may still return nan lowerCamelCase :Dict = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(a_): # as a fallback, use the minimal value as the sentinel lowerCamelCase :str = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(a_): lowerCamelCase :Optional[Any] = df.apply( lambda a_: round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value) if not math.isnan(r[target_metric_key]) else 0 , axis='''columns''' , ) # re-order columns lowerCamelCase :Tuple = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowerCamelCase :str = df.reindex(a_ , axis='''columns''') # reorder cols # capitalize lowerCamelCase :Dict = df.rename(str.capitalize , axis='''columns''') # make the cols as narrow as possible lowerCamelCase :Any = df.rename(lambda a_: c.replace('''_''' , '''<br>''') , axis='''columns''') lowerCamelCase :Tuple = df.rename(lambda a_: c.replace('''_''' , '''\n''') , axis='''columns''') lowerCamelCase :List[Any] = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=a_ , floatfmt='''.2f''')] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=a_ , floatfmt='''.2f''')] print('''\n\n'''.join(a_)) def _lowerCamelCase ( ): lowerCamelCase :Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=a_ , type=a_ , required=a_ , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=a_ , type=a_ , nargs='''+''' , required=a_ , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=a_ , type=a_ , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=a_ , type=a_ , required=a_ , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=a_ , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=a_ , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=a_ , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=a_ , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) lowerCamelCase :Tuple = parser.parse_args() lowerCamelCase :Dict = args.output_dir Path(a_).mkdir(exist_ok=a_) lowerCamelCase :List[Any] = get_base_command(a_ , a_) # split each dimension into its --foo variations lowerCamelCase :int = [list(map(str.strip , re.split(R'''\|''' , a_))) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowerCamelCase :List[str] = list(map(str.strip , map(''' '''.join , itertools.product(*a_)))) lowerCamelCase :Union[str, Any] = max(len(a_) for x in variations) # split wanted keys lowerCamelCase :List[str] = args.report_metric_keys.split() # capture prints into a log file for convenience lowerCamelCase :Optional[Any] = F"benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}.txt" print(F"\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt") print(F"and this script's output is also piped into {report_fn}") lowerCamelCase :Optional[int] = Tee(a_) print(F"\n*** Running {len(a_)} benchmarks:") print(F"Base command: {' '.join(a_)}") lowerCamelCase :Union[str, Any] = '''variation''' lowerCamelCase :Optional[int] = [] for id, variation in enumerate(tqdm(a_ , desc='''Total completion: ''' , leave=a_)): lowerCamelCase :List[Any] = base_cmd + variation.split() results.append( process_run( id + 1 , a_ , a_ , a_ , a_ , args.target_metric_key , a_ , args.repeat_times , a_ , args.verbose , )) process_results(a_ , args.target_metric_key , a_ , args.base_variation , a_) if __name__ == "__main__": main()
166
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_a ) class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : List[Any] = field(default="""image-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case__ : Optional[int] = Features({"""image""": Image()} ) snake_case__ : Any = Features({"""labels""": ClassLabel} ) snake_case__ : Dict = """image""" snake_case__ : Tuple = """labels""" def _A ( self : Optional[Any] , __lowerCamelCase : int ): if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowercase_ ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) UpperCamelCase :List[str] = copy.deepcopy(self ) UpperCamelCase :Union[str, Any] = self.label_schema.copy() UpperCamelCase :Union[str, Any] = features[self.label_column] UpperCamelCase :Union[str, Any] = label_schema return task_template @property def _A ( self : Dict ): return { self.image_column: "image", self.label_column: "labels", }
716
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : jnp.ndarray snake_case__ : jnp.ndarray class _SCREAMING_SNAKE_CASE ( nn.Module ): snake_case__ : int snake_case__ : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) snake_case__ : jnp.dtype = jnp.floataa def _A ( self : Any ): UpperCamelCase :Union[str, Any] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCamelCase :List[str] = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCamelCase :Optional[Any] = self.block_out_channels[i] UpperCamelCase :List[Any] = self.block_out_channels[i + 1] UpperCamelCase :List[Any] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCamelCase ) UpperCamelCase :List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCamelCase ) UpperCamelCase :Tuple = blocks UpperCamelCase :Optional[Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Dict , __lowerCamelCase : Dict ): UpperCamelCase :Tuple = self.conv_in(__lowerCamelCase ) UpperCamelCase :Optional[Any] = nn.silu(__lowerCamelCase ) for block in self.blocks: UpperCamelCase :Tuple = block(__lowerCamelCase ) UpperCamelCase :List[str] = nn.silu(__lowerCamelCase ) UpperCamelCase :Dict = self.conv_out(__lowerCamelCase ) return embedding @flax_register_to_config class _SCREAMING_SNAKE_CASE ( nn.Module , _a , _a ): snake_case__ : int = 3_2 snake_case__ : int = 4 snake_case__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) snake_case__ : Union[bool, Tuple[bool]] = False snake_case__ : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) snake_case__ : int = 2 snake_case__ : Union[int, Tuple[int]] = 8 snake_case__ : Optional[Union[int, Tuple[int]]] = None snake_case__ : int = 1_2_8_0 snake_case__ : float = 0.0 snake_case__ : bool = False snake_case__ : jnp.dtype = jnp.floataa snake_case__ : bool = True snake_case__ : int = 0 snake_case__ : str = "rgb" snake_case__ : Tuple[int] = (1_6, 3_2, 9_6, 2_5_6) def _A ( self : int , __lowerCamelCase : jax.random.KeyArray ): # init input tensors UpperCamelCase :int = (1, self.in_channels, self.sample_size, self.sample_size) UpperCamelCase :Union[str, Any] = jnp.zeros(__lowerCamelCase , dtype=jnp.floataa ) UpperCamelCase :int = jnp.ones((1,) , dtype=jnp.intaa ) UpperCamelCase :Tuple = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCamelCase :Tuple = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCamelCase :Tuple = jnp.zeros(__lowerCamelCase , dtype=jnp.floataa ) UpperCamelCase , UpperCamelCase :int = jax.random.split(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )["params"] def _A ( self : int ): UpperCamelCase :Dict = self.block_out_channels UpperCamelCase :Tuple = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCamelCase :List[Any] = self.num_attention_heads or self.attention_head_dim # input UpperCamelCase :Optional[Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCamelCase :Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCamelCase :Tuple = FlaxTimestepEmbedding(__lowerCamelCase , dtype=self.dtype ) UpperCamelCase :List[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) UpperCamelCase :Union[str, Any] = self.only_cross_attention if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :List[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :str = (num_attention_heads,) * len(self.down_block_types ) # down UpperCamelCase :int = [] UpperCamelCase :str = [] UpperCamelCase :str = block_out_channels[0] UpperCamelCase :Optional[Any] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) for i, down_block_type in enumerate(self.down_block_types ): UpperCamelCase :List[str] = output_channel UpperCamelCase :Optional[Any] = block_out_channels[i] UpperCamelCase :Tuple = i == len(__lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCamelCase :List[Any] = FlaxCrossAttnDownBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: UpperCamelCase :List[Any] = FlaxDownBlockaD( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__lowerCamelCase ) for _ in range(self.layers_per_block ): UpperCamelCase :List[Any] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) if not is_final_block: UpperCamelCase :str = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCamelCase ) UpperCamelCase :Optional[Any] = down_blocks UpperCamelCase :Optional[Any] = controlnet_down_blocks # mid UpperCamelCase :str = block_out_channels[-1] UpperCamelCase :Dict = FlaxUNetMidBlockaDCrossAttn( in_channels=__lowerCamelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) UpperCamelCase :List[str] = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : float = 1.0 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = False , ): UpperCamelCase :Dict = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCamelCase :List[Any] = jnp.flip(__lowerCamelCase , axis=1 ) # 1. time if not isinstance(__lowerCamelCase , jnp.ndarray ): UpperCamelCase :Any = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCamelCase :Any = timesteps.astype(dtype=jnp.floataa ) UpperCamelCase :Optional[Any] = jnp.expand_dims(__lowerCamelCase , 0 ) UpperCamelCase :Optional[Any] = self.time_proj(__lowerCamelCase ) UpperCamelCase :Any = self.time_embedding(__lowerCamelCase ) # 2. pre-process UpperCamelCase :int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) UpperCamelCase :Dict = self.conv_in(__lowerCamelCase ) UpperCamelCase :Any = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) UpperCamelCase :Optional[int] = self.controlnet_cond_embedding(__lowerCamelCase ) sample += controlnet_cond # 3. down UpperCamelCase :int = (sample,) for down_block in self.down_blocks: if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase , UpperCamelCase :Optional[Any] = down_block(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , deterministic=not train ) else: UpperCamelCase , UpperCamelCase :Union[str, Any] = down_block(__lowerCamelCase , __lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCamelCase :List[str] = self.mid_block(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , deterministic=not train ) # 5. contronet blocks UpperCamelCase :str = () for down_block_res_sample, controlnet_block in zip(__lowerCamelCase , self.controlnet_down_blocks ): UpperCamelCase :Any = controlnet_block(__lowerCamelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCamelCase :Optional[Any] = controlnet_down_block_res_samples UpperCamelCase :str = self.controlnet_mid_block(__lowerCamelCase ) # 6. scaling UpperCamelCase :str = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__lowerCamelCase , mid_block_res_sample=__lowerCamelCase )
590
0
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple=1024 , lowerCAmelCase : List[str]=1024 , lowerCAmelCase : int=3.6 )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = tokenizer UpperCAmelCase = tokenizer.bos_token_id UpperCAmelCase = dataset UpperCAmelCase = seq_length UpperCAmelCase = seq_length * chars_per_token * num_of_sequences def __iter__( self : Any )-> int: """simple docstring""" UpperCAmelCase = iter(self.dataset ) UpperCAmelCase = True while more_examples: UpperCAmelCase , UpperCAmelCase = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(lowerCAmelCase )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: UpperCAmelCase = False break UpperCAmelCase = tokenizer(lowerCAmelCase , truncation=lowerCAmelCase )['''input_ids'''] UpperCAmelCase = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(lowerCAmelCase ) , self.seq_length ): UpperCAmelCase = all_token_ids[i : i + self.seq_length] if len(lowerCAmelCase ) == self.seq_length: yield torch.tensor(lowerCAmelCase ) def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' UpperCAmelCase = {'''streaming''': True} UpperCAmelCase = load_dataset(args.dataset_name , split='''train''' , **A ) UpperCAmelCase = ConstantLengthDataset(A , A , seq_length=args.seq_length ) UpperCAmelCase = DataLoader(A , batch_size=args.batch_size ) return eval_dataloader def lowerCamelCase__ ( A : Union[str, Any] ): '''simple docstring''' model.eval() UpperCAmelCase = [] for step, batch in enumerate(A ): with torch.no_grad(): UpperCAmelCase = model(A , labels=A ) UpperCAmelCase = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(A ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break UpperCAmelCase = torch.mean(torch.cat(A ) ) try: UpperCAmelCase = torch.exp(A ) except OverflowError: UpperCAmelCase = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _lowercase : Any = Accelerator() # Parse configuration _lowercase : Dict = HfArgumentParser(EvaluationArguments) _lowercase : Optional[int] = parser.parse_args() set_seed(args.seed) # Logging _lowercase : Union[str, Any] = logging.getLogger(__name__) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) # Load model and tokenizer _lowercase : Dict = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _lowercase : str = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _lowercase : Any = create_dataloader(args) # Prepare everything with our `accelerator`. _lowercase , _lowercase : Optional[int] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info("""Evaluating and saving model after training""") _lowercase , _lowercase : Union[str, Any] = evaluate(args) logger.info(F"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
210
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class UpperCamelCase__( datasets.BeamBasedBuilder ): def a__( self : List[str] )-> int: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=lowerCAmelCase , ) def a__( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any] )-> int: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def a__( self : int , lowerCAmelCase : Dict , lowerCAmelCase : List[str] )-> int: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase ) class UpperCamelCase__( datasets.BeamBasedBuilder ): def a__( self : Optional[int] )-> str: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=lowerCAmelCase , ) def a__( self : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str] )-> List[Any]: """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def a__( self : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] )-> Optional[int]: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCAmelCase ) def lowerCamelCase__ ( ): '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def lowerCamelCase__ ( ): '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class UpperCamelCase__( lowerCAmelCase ): @require_beam def a__( self : Optional[int] )-> List[Any]: """simple docstring""" UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = DummyBeamDataset(cache_dir=lowerCAmelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , lowerCAmelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , lowerCAmelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def a__( self : Optional[Any] )-> Tuple: """simple docstring""" import apache_beam as beam UpperCAmelCase = beam.io.parquetio.WriteToParquet UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = DummyBeamDataset(cache_dir=lowerCAmelCase , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: UpperCAmelCase = partial(lowerCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , lowerCAmelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , lowerCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def a__( self : Union[str, Any] )-> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = DummyBeamDataset(cache_dir=lowerCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def a__( self : str )-> int: """simple docstring""" UpperCAmelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = NestedBeamDataset(cache_dir=lowerCAmelCase , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , lowerCAmelCase ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , lowerCAmelCase ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCAmelCase , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
210
1
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = None ops.enable_eager_execution_internal() SCREAMING_SNAKE_CASE__ : Optional[int] = tf.config.list_physical_devices("""CPU""" ) if len(SCREAMING_SNAKE_CASE__ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) SCREAMING_SNAKE_CASE__ : str = tf.config.list_logical_devices(device_type="""CPU""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): SCREAMING_SNAKE_CASE__ : Tuple = GradientAccumulator() SCREAMING_SNAKE_CASE__ : Any = tf.Variable([4.0, 3.0] ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = create_optimizer(5E-5 , 10 , 5 ) SCREAMING_SNAKE_CASE__ : int = tf.Variable([0.0, 0.0] , trainable=SCREAMING_SNAKE_CASE__ ) def accumulate_on_replica(SCREAMING_SNAKE_CASE__ ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with strategy.scope(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = strategy.experimental_local_results(SCREAMING_SNAKE_CASE__ ) local_variables[0].assign(SCREAMING_SNAKE_CASE__ ) local_variables[1].assign(SCREAMING_SNAKE_CASE__ ) strategy.run(SCREAMING_SNAKE_CASE__ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(SCREAMING_SNAKE_CASE__ ) def _check_local_values(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , SCREAMING_SNAKE_CASE__ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , SCREAMING_SNAKE_CASE__ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
545
"""simple docstring""" import logging from transformers import PretrainedConfig UpperCAmelCase__ : Union[str, Any] = logging.getLogger(__name__) UpperCAmelCase__ : Any = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : List[Any] = '''bertabs''' def __init__(self , SCREAMING_SNAKE_CASE__=3_05_22 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=5_12 , SCREAMING_SNAKE_CASE__=0.2 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=7_68 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=20_48 , SCREAMING_SNAKE_CASE__=0.2 , **SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE__ : Any = max_pos SCREAMING_SNAKE_CASE__ : List[Any] = enc_layers SCREAMING_SNAKE_CASE__ : Tuple = enc_hidden_size SCREAMING_SNAKE_CASE__ : Dict = enc_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = enc_ff_size SCREAMING_SNAKE_CASE__ : Dict = enc_dropout SCREAMING_SNAKE_CASE__ : Any = dec_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] = dec_hidden_size SCREAMING_SNAKE_CASE__ : Any = dec_heads SCREAMING_SNAKE_CASE__ : List[Any] = dec_ff_size SCREAMING_SNAKE_CASE__ : str = dec_dropout
545
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : int = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCAmelCase_ ( lowerCamelCase_ ): __a : int = '''umt5''' __a : int = ['''past_key_values'''] def __init__( self ,snake_case__=250112 ,snake_case__=512 ,snake_case__=64 ,snake_case__=1024 ,snake_case__=8 ,snake_case__=None ,snake_case__=6 ,snake_case__=32 ,snake_case__=128 ,snake_case__=0.1 ,snake_case__=1E-6 ,snake_case__=1.0 ,snake_case__="gated-gelu" ,snake_case__=True ,snake_case__=True ,snake_case__="T5Tokenizer" ,snake_case__=True ,snake_case__=0 ,snake_case__=1 ,snake_case__=0 ,**snake_case__ ,): super().__init__( is_encoder_decoder=a__ ,tokenizer_class=a__ ,tie_word_embeddings=a__ ,pad_token_id=a__ ,eos_token_id=a__ ,decoder_start_token_id=a__ ,**a__ ,) SCREAMING_SNAKE_CASE_ : List[str] = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = d_model SCREAMING_SNAKE_CASE_ : str = d_kv SCREAMING_SNAKE_CASE_ : Tuple = d_ff SCREAMING_SNAKE_CASE_ : Optional[int] = num_layers SCREAMING_SNAKE_CASE_ : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE_ : Tuple = num_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = relative_attention_num_buckets SCREAMING_SNAKE_CASE_ : List[Any] = relative_attention_max_distance SCREAMING_SNAKE_CASE_ : Union[str, Any] = dropout_rate SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE_ : str = initializer_factor SCREAMING_SNAKE_CASE_ : Union[str, Any] = feed_forward_proj SCREAMING_SNAKE_CASE_ : str = use_cache SCREAMING_SNAKE_CASE_ : List[Any] = self.feed_forward_proj.split('-' ) SCREAMING_SNAKE_CASE_ : str = act_info[-1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = act_info[0] == 'gated' if len(a__ ) > 1 and act_info[0] != "gated" or len(a__ ) > 2: raise ValueError( F'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE_ : int = 'gelu_new' @property def snake_case ( self ): return self.d_model @property def snake_case ( self ): return self.num_heads @property def snake_case ( self ): return self.num_layers class lowerCAmelCase_ ( lowerCamelCase_ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: SCREAMING_SNAKE_CASE_ : Dict = 'past_encoder_sequence + sequence' SCREAMING_SNAKE_CASE_ : List[str] = {0: 'batch'} SCREAMING_SNAKE_CASE_ : Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: SCREAMING_SNAKE_CASE_ : Dict = {0: 'batch', 1: 'decoder_sequence'} SCREAMING_SNAKE_CASE_ : Dict = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(a__ ,direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def snake_case ( self ): return 13 @property def snake_case ( self ): return 5E-4
105
def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) A_ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" A_ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" A_ = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
141
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class A__ ( _lowerCamelCase): A_ : int = 'luke' def __init__( self , _SCREAMING_SNAKE_CASE=5_02_67 , _SCREAMING_SNAKE_CASE=50_00_00 , _SCREAMING_SNAKE_CASE=7_68 , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=30_72 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , **_SCREAMING_SNAKE_CASE , ): super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = vocab_size __lowerCAmelCase : Any = entity_vocab_size __lowerCAmelCase : Optional[Any] = hidden_size __lowerCAmelCase : Dict = entity_emb_size __lowerCAmelCase : Tuple = num_hidden_layers __lowerCAmelCase : Optional[int] = num_attention_heads __lowerCAmelCase : Tuple = hidden_act __lowerCAmelCase : Optional[int] = intermediate_size __lowerCAmelCase : Tuple = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : List[str] = max_position_embeddings __lowerCAmelCase : List[str] = type_vocab_size __lowerCAmelCase : List[Any] = initializer_range __lowerCAmelCase : Dict = layer_norm_eps __lowerCAmelCase : List[Any] = use_entity_aware_attention __lowerCAmelCase : Optional[int] = classifier_dropout
549
"""simple docstring""" from collections.abc import Sequence from queue import Queue class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): __lowerCAmelCase : List[str] = start __lowerCAmelCase : Union[str, Any] = end __lowerCAmelCase : Union[str, Any] = val __lowerCAmelCase : Dict = (start + end) // 2 __lowerCAmelCase : Dict = left __lowerCAmelCase : List[Any] = right def __repr__( self ): return f"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = collection __lowerCAmelCase : Optional[int] = function if self.collection: __lowerCAmelCase : str = self._build_tree(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self._update_tree(self.root , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return self._query_range(self.root , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if start == end: return SegmentTreeNode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.collection[start] ) __lowerCAmelCase : Tuple = (start + end) // 2 __lowerCAmelCase : List[str] = self._build_tree(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = self._build_tree(mid + 1 , _SCREAMING_SNAKE_CASE ) return SegmentTreeNode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.fn(left.val , right.val ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if node.start == i and node.end == i: __lowerCAmelCase : int = val return if i <= node.mid: self._update_tree(node.left , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: self._update_tree(node.right , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[Any] = self.fn(node.left.val , node.right.val ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _SCREAMING_SNAKE_CASE , node.mid ) , self._query_range(node.right , node.mid + 1 , _SCREAMING_SNAKE_CASE ) , ) else: # range in right child tree return self._query_range(node.right , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): if self.root is not None: __lowerCAmelCase : Optional[Any] = Queue() queue.put(self.root ) while not queue.empty(): __lowerCAmelCase : str = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) lowerCamelCase__ = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
549
1
from collections import deque from .hash_table import HashTable class __A( UpperCAmelCase ): def __init__( self : int , *__UpperCamelCase : List[str] , **__UpperCamelCase : Optional[Any] ): super().__init__(*__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str ): lowerCamelCase_ = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__UpperCamelCase ) lowerCamelCase_ = self.values[key] def lowercase__ ( self : Tuple ): return ( sum(self.charge_factor - len(__UpperCamelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowercase__ ( self : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any]=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__UpperCamelCase ) == 0 ): return key return super()._collision_resolution(__UpperCamelCase , __UpperCamelCase )
272
import os import sys lowercase = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : List[str] ) -> List[str]: return AutoConfig.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[Any] ) -> Any: return AutoTokenizer.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Dict ) -> Union[str, Any]: return AutoModel.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : List[Any] ) -> Optional[Any]: return AutoModelForCausalLM.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : Dict ) -> int: return AutoModelForMaskedLM.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Dict ) -> Dict: return AutoModelForSequenceClassification.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __lowerCAmelCase ( *UpperCAmelCase__ : Any , **UpperCAmelCase__ : List[str] ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*UpperCAmelCase__ , **UpperCAmelCase__ )
272
1
def A_( A = 10 ): if not isinstance(A , A ) or n < 0: raise ValueError("""Invalid input""" ) UpperCAmelCase_ = 10**n UpperCAmelCase_ = 28433 * (pow(2 , 7830457 , A )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(10) = }")
486
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ : Union[str, Any] = 16 UpperCamelCase__ : Tuple = 32 def A_( A , A = 16 ): UpperCAmelCase_ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) UpperCAmelCase_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase_ = datasets.map( A , batched=A , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase_ = 16 elif accelerator.mixed_precision != "no": UpperCAmelCase_ = 8 else: UpperCAmelCase_ = None return tokenizer.pad( A , padding="""longest""" , max_length=A , pad_to_multiple_of=A , return_tensors="""pt""" , ) # Instantiate dataloaders. UpperCAmelCase_ = DataLoader( tokenized_datasets["""train"""] , shuffle=A , collate_fn=A , batch_size=A ) UpperCAmelCase_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ : str = mocked_dataloaders # noqa: F811 def A_( A , A ): # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , A ) == "1": UpperCAmelCase_ = 2 # New Code # UpperCAmelCase_ = int(args.gradient_accumulation_steps ) # Initialize accelerator UpperCAmelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=A ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ = config["""lr"""] UpperCAmelCase_ = int(config["""num_epochs"""] ) UpperCAmelCase_ = int(config["""seed"""] ) UpperCAmelCase_ = int(config["""batch_size"""] ) UpperCAmelCase_ = evaluate.load("""glue""" , """mrpc""" ) set_seed(A ) UpperCAmelCase_ , UpperCAmelCase_ = get_dataloaders(A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase_ = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase_ = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler UpperCAmelCase_ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=100 , num_training_steps=(len(A ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare( A , A , A , A , A ) # Now we train the model for epoch in range(A ): model.train() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(A ): UpperCAmelCase_ = model(**A ) UpperCAmelCase_ = output.loss accelerator.backward(A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ = model(**A ) UpperCAmelCase_ = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=A , references=A , ) UpperCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , A ) def A_( ): UpperCAmelCase_ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=A , default=A , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=A , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(A , A ) if __name__ == "__main__": main()
486
1
import collections import os import re from pathlib import Path _UpperCamelCase = "src/transformers" # Matches is_xxx_available() _UpperCamelCase = re.compile(r"is\_([a-z_]*)_available()") # Catches a one-line _import_struct = {xxx} _UpperCamelCase = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _UpperCamelCase = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]") # Catches a line if not is_foo_available _UpperCamelCase = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)") # Catches a line _import_struct["bla"].append("foo") _UpperCamelCase = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _UpperCamelCase = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]") # Catches a line with an object between quotes and a comma: "MyModel", _UpperCamelCase = re.compile(r"^\s+\"([^\"]+)\",") # Catches a line with objects between brackets only: ["foo", "bar"], _UpperCamelCase = re.compile(r"^\s+\[([^\]]+)\]") # Catches a line with from foo import bar, bla, boo _UpperCamelCase = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Catches a line with try: _UpperCamelCase = re.compile(r"^\s*try:") # Catches a line with else: _UpperCamelCase = re.compile(r"^\s*else:") def _lowercase ( lowercase__ ): if _re_test_backend.search(lowercase__ ) is None: return None __lowerCAmelCase : Tuple = [b[0] for b in _re_backend.findall(lowercase__ )] backends.sort() return "_and_".join(lowercase__ ) def _lowercase ( lowercase__ ): with open(lowercase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __lowerCAmelCase : str = f.readlines() __lowerCAmelCase : Optional[int] = 0 while line_index < len(lowercase__ ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase__ ): return None # First grab the objects without a specific backend in _import_structure __lowerCAmelCase : str = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: __lowerCAmelCase : Dict = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase__ ): __lowerCAmelCase : List[Any] = _re_one_line_import_struct.search(lowercase__ ).groups()[0] __lowerCAmelCase : Any = re.findall(r'''\[([^\]]+)\]''' , lowercase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue __lowerCAmelCase : List[Any] = _re_import_struct_key_value.search(lowercase__ ) if single_line_import_search is not None: __lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 __lowerCAmelCase : Optional[Any] = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowerCAmelCase : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCAmelCase : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCAmelCase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): __lowerCAmelCase : Dict = lines[line_index] if _re_import_struct_add_one.search(lowercase__ ) is not None: objects.append(_re_import_struct_add_one.search(lowercase__ ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase__ ) is not None: __lowerCAmelCase : int = _re_import_struct_add_many.search(lowercase__ ).groups()[0].split(''', ''' ) __lowerCAmelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif _re_between_brackets.search(lowercase__ ) is not None: __lowerCAmelCase : Union[str, Any] = _re_between_brackets.search(lowercase__ ).groups()[0].split(''', ''' ) __lowerCAmelCase : List[Any] = [obj[1:-1] for obj in imports if len(lowercase__ ) > 0] objects.extend(lowercase__ ) elif _re_quote_object.search(lowercase__ ) is not None: objects.append(_re_quote_object.search(lowercase__ ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 1_2 + '''"''' ): objects.append(line[1_3:-3] ) line_index += 1 __lowerCAmelCase : str = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowerCAmelCase : List[Any] = [] while ( line_index < len(lowercase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): __lowerCAmelCase : Union[str, Any] = lines[line_index] __lowerCAmelCase : Tuple = _re_import.search(lowercase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowerCAmelCase : List[str] = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(lowercase__ ): # If the line is an if is_backend_available, we grab all objects associated. __lowerCAmelCase : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCAmelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCAmelCase : int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): __lowerCAmelCase : List[str] = lines[line_index] __lowerCAmelCase : Tuple = _re_import.search(lowercase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 __lowerCAmelCase : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _lowercase ( lowercase__ , lowercase__ ): def find_duplicates(lowercase__ ): return [k for k, v in collections.Counter(lowercase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowerCAmelCase : Optional[Any] = [] for key in import_dict_objects.keys(): __lowerCAmelCase : Optional[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __lowerCAmelCase : Dict = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowerCAmelCase : int = '''base imports''' if key == '''none''' else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def _lowercase ( ): __lowerCAmelCase : Tuple = [] for root, _, files in os.walk(lowercase__ ): if "__init__.py" in files: __lowerCAmelCase : List[str] = os.path.join(lowercase__ , '''__init__.py''' ) __lowerCAmelCase : int = parse_init(lowercase__ ) if objects is not None: __lowerCAmelCase : List[Any] = analyze_results(*lowercase__ ) if len(lowercase__ ) > 0: __lowerCAmelCase : Dict = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(lowercase__ ) ) if len(lowercase__ ) > 0: raise ValueError('''\n\n'''.join(lowercase__ ) ) def _lowercase ( ): __lowerCAmelCase : List[str] = [] for path, directories, files in os.walk(lowercase__ ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(lowercase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase__ ) / folder).glob('''*.py''' ) ) ) == 0: continue __lowerCAmelCase : List[Any] = str((Path(lowercase__ ) / folder).relative_to(lowercase__ ) ) __lowerCAmelCase : List[Any] = short_path.replace(os.path.sep , '''.''' ) submodules.append(lowercase__ ) for fname in files: if fname == "__init__.py": continue __lowerCAmelCase : Any = str((Path(lowercase__ ) / fname).relative_to(lowercase__ ) ) __lowerCAmelCase : Union[str, Any] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(lowercase__ ) return submodules _UpperCamelCase = [ "convert_pytorch_checkpoint_to_tf2", "modeling_flax_pytorch_utils", "models.esm.openfold_utils", ] def _lowercase ( ): # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import __lowerCAmelCase : Optional[int] = direct_transformers_import(lowercase__ ) __lowerCAmelCase : Optional[int] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowercase__ , '''__init__.py''' ) , '''r''' ) as f: __lowerCAmelCase : Optional[Any] = f.read() import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , lowercase__ ) ) ) __lowerCAmelCase : List[str] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowercase__ ) > 0: __lowerCAmelCase : Dict = '''\n'''.join(f"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registed in the main init of Transformers:\n''' f"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
492
_UpperCamelCase = {str(digit): digit**5 for digit in range(10)} def _lowercase ( lowercase__ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowercase__ ) ) def _lowercase ( ): return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(lowercase__ ) ) if __name__ == "__main__": print(solution())
492
1
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __lowerCamelCase :str = logging.getLogger(__name__) class A__ ( __lowercase): """simple docstring""" snake_case__ : Any ='''summarization''' snake_case__ : int =['''loss'''] snake_case__ : Optional[int] =ROUGE_KEYS snake_case__ : str ='''rouge2''' def __init__( self: int , __a: List[Any] , **__a: List[Any] )-> Optional[Any]: if hparams.sortish_sampler and hparams.gpus > 1: lowerCamelCase : List[Any] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(__a , num_labels=__a , mode=self.mode , **__a ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) lowerCamelCase : str = Path(self.output_dir ) / """metrics.json""" lowerCamelCase : Optional[Any] = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) lowerCamelCase : Optional[int] = 0 lowerCamelCase : int = defaultdict(__a ) lowerCamelCase : Union[str, Any] = self.config.model_type lowerCamelCase : Optional[Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size lowerCamelCase : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } lowerCamelCase : str = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } lowerCamelCase : str = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} lowerCamelCase : Optional[Any] = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], f'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) lowerCamelCase : Optional[int] = get_git_info()["""repo_sha"""] lowerCamelCase : str = hparams.num_workers lowerCamelCase : str = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __a ): lowerCamelCase : Any = self.tokenizer.lang_code_to_id[hparams.tgt_lang] lowerCamelCase : List[str] = self.decoder_start_token_id lowerCamelCase : str = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) lowerCamelCase : Tuple = False lowerCamelCase : Tuple = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: lowerCamelCase : Optional[Any] = self.hparams.eval_max_gen_length else: lowerCamelCase : Optional[Any] = self.model.config.max_length lowerCamelCase : Optional[int] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def a__ ( self: Any , __a: Dict[str, torch.Tensor] )-> Dict[str, List[str]]: lowerCamelCase : List[Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(__a , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) lowerCamelCase : Dict = True return readable_batch def a__ ( self: List[str] , __a: Any , **__a: Any )-> List[Any]: return self.model(__a , **__a ) def a__ ( self: int , __a: List[int] )-> str: lowerCamelCase : Union[str, Any] = self.tokenizer.batch_decode( __a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) return lmap(str.strip , __a ) def a__ ( self: Union[str, Any] , __a: dict )-> Tuple: lowerCamelCase : Any = self.tokenizer.pad_token_id lowerCamelCase , lowerCamelCase : Optional[int] = batch["""input_ids"""], batch["""attention_mask"""] lowerCamelCase : Optional[Any] = batch["""labels"""] if isinstance(self.model , __a ): lowerCamelCase : Optional[int] = self.model._shift_right(__a ) else: lowerCamelCase : List[str] = shift_tokens_right(__a , __a ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero lowerCamelCase : Tuple = decoder_input_ids self.save_readable_batch(__a ) lowerCamelCase : Optional[Any] = self(__a , attention_mask=__a , decoder_input_ids=__a , use_cache=__a ) lowerCamelCase : Union[str, Any] = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id lowerCamelCase : int = nn.CrossEntropyLoss(ignore_index=__a ) assert lm_logits.shape[-1] == self.vocab_size lowerCamelCase : Optional[int] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: lowerCamelCase : Union[str, Any] = nn.functional.log_softmax(__a , dim=-1 ) lowerCamelCase , lowerCamelCase : List[Any] = label_smoothed_nll_loss( __a , __a , self.hparams.label_smoothing , ignore_index=__a ) return (loss,) @property def a__ ( self: List[str] )-> int: return self.tokenizer.pad_token_id def a__ ( self: str , __a: Optional[Any] , __a: Dict )-> Dict: lowerCamelCase : Union[str, Any] = self._step(__a ) lowerCamelCase : Optional[int] = dict(zip(self.loss_names , __a ) ) # tokens per batch lowerCamelCase : int = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() lowerCamelCase : int = batch["""input_ids"""].shape[0] lowerCamelCase : int = batch["""input_ids"""].eq(self.pad ).sum() lowerCamelCase : List[str] = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def a__ ( self: int , __a: List[str] , __a: Any )-> Dict: return self._generative_step(__a ) def a__ ( self: Any , __a: Any , __a: Any="val" )-> Dict: self.step_count += 1 lowerCamelCase : Dict = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} lowerCamelCase : str = losses["""loss"""] lowerCamelCase : int = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } lowerCamelCase : Optional[int] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) lowerCamelCase : torch.FloatTensor = torch.tensor(__a ).type_as(__a ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__a ) lowerCamelCase : str = {f'{prefix}_avg_{k}': x for k, x in losses.items()} lowerCamelCase : int = self.step_count self.metrics[prefix].append(__a ) # callback writes this to self.metrics_save_path lowerCamelCase : Union[str, Any] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, f'{prefix}_loss': loss, f'{prefix}_{self.val_metric}': metric_tensor, } def a__ ( self: List[str] , __a: List[Any] , __a: Union[str, Any] )-> Dict: return calculate_rouge(__a , __a ) def a__ ( self: Union[str, Any] , __a: dict )-> dict: lowerCamelCase : Tuple = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') lowerCamelCase : Any = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=__a , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) lowerCamelCase : str = (time.time() - ta) / batch["""input_ids"""].shape[0] lowerCamelCase : List[str] = self.ids_to_clean_text(__a ) lowerCamelCase : List[str] = self.ids_to_clean_text(batch["""labels"""] ) lowerCamelCase : str = self._step(__a ) lowerCamelCase : Union[str, Any] = dict(zip(self.loss_names , __a ) ) lowerCamelCase : Dict = self.calc_generative_metrics(__a , __a ) lowerCamelCase : List[str] = np.mean(lmap(__a , __a ) ) base_metrics.update(gen_time=__a , gen_len=__a , preds=__a , target=__a , **__a ) return base_metrics def a__ ( self: List[str] , __a: Union[str, Any] , __a: Dict )-> Any: return self._generative_step(__a ) def a__ ( self: Any , __a: Optional[int] )-> List[str]: return self.validation_epoch_end(__a , prefix="""test""" ) def a__ ( self: str , __a: int )-> SeqaSeqDataset: lowerCamelCase : Union[str, Any] = self.n_obs[type_path] lowerCamelCase : int = self.target_lens[type_path] lowerCamelCase : Union[str, Any] = self.dataset_class( self.tokenizer , type_path=__a , n_obs=__a , max_target_length=__a , **self.dataset_kwargs , ) return dataset def a__ ( self: Optional[int] , __a: str , __a: int , __a: bool = False )-> DataLoader: lowerCamelCase : List[str] = self.get_dataset(__a ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": lowerCamelCase : Union[str, Any] = dataset.make_sortish_sampler(__a , distributed=self.hparams.gpus > 1 ) return DataLoader( __a , batch_size=__a , collate_fn=dataset.collate_fn , shuffle=__a , num_workers=self.num_workers , sampler=__a , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": lowerCamelCase : List[Any] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __a , batch_sampler=__a , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __a , batch_size=__a , collate_fn=dataset.collate_fn , shuffle=__a , num_workers=self.num_workers , sampler=__a , ) def a__ ( self: Optional[int] )-> DataLoader: lowerCamelCase : Tuple = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=__a ) return dataloader def a__ ( self: List[str] )-> DataLoader: return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def a__ ( self: Dict )-> DataLoader: return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def a__ ( __a: str , __a: Optional[int] )-> Dict: BaseTransformer.add_model_specific_args(__a , __a ) add_generic_args(__a , __a ) parser.add_argument( """--max_source_length""" , default=1_024 , type=__a , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=__a , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=__a , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=__a , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=__a ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=__a ) parser.add_argument("""--max_tokens_per_batch""" , type=__a , default=__a ) parser.add_argument("""--logger_name""" , type=__a , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=__a , default=-1 , required=__a , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=__a , default=500 , required=__a , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=__a , default=-1 , required=__a , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=__a , default="""summarization""" , required=__a , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=__a , default=0.0 , required=__a ) parser.add_argument("""--src_lang""" , type=__a , default="""""" , required=__a ) parser.add_argument("""--tgt_lang""" , type=__a , default="""""" , required=__a ) parser.add_argument("""--eval_beams""" , type=__a , default=__a , required=__a ) parser.add_argument( """--val_metric""" , type=__a , default=__a , required=__a , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=__a , default=__a , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=__a , default=1 , required=__a , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=__a , default=-1 , required=__a , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class A__ ( __lowercase): """simple docstring""" snake_case__ : Optional[Any] ='''translation''' snake_case__ : Dict =['''loss'''] snake_case__ : Any =['''bleu'''] snake_case__ : List[str] ='''bleu''' def __init__( self: Dict , __a: Union[str, Any] , **__a: Any )-> Union[str, Any]: super().__init__(__a , **__a ) lowerCamelCase : List[str] = hparams.src_lang lowerCamelCase : List[Any] = hparams.tgt_lang def a__ ( self: List[str] , __a: Dict , __a: Dict )-> dict: return calculate_bleu(__a , __a ) def snake_case ( UpperCamelCase__ : List[str] , UpperCamelCase__ : str=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=UpperCamelCase__ ) check_output_dir(UpperCamelCase__ , expected_items=3 ) if model is None: if "summarization" in args.task: lowerCamelCase : SummarizationModule = SummarizationModule(UpperCamelCase__ ) else: lowerCamelCase : SummarizationModule = TranslationModule(UpperCamelCase__ ) lowerCamelCase : str = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): lowerCamelCase : List[str] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger lowerCamelCase : Dict = os.environ.get("""WANDB_PROJECT""" , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = WandbLogger(name=model.output_dir.name , project=UpperCamelCase__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger lowerCamelCase : Tuple = WandbLogger(name=model.output_dir.name , project=F'hf_{dataset}' ) if args.early_stopping_patience >= 0: lowerCamelCase : str = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: lowerCamelCase : int = False lowerCamelCase : Tuple = args.val_metric == """loss""" lowerCamelCase : pl.Trainer = generic_train( UpperCamelCase__ , UpperCamelCase__ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , UpperCamelCase__ ) , early_stopping_callback=UpperCamelCase__ , logger=UpperCamelCase__ , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model lowerCamelCase : Optional[int] = """""" lowerCamelCase : Optional[Any] = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=UpperCamelCase__ ) ) if checkpoints: lowerCamelCase : List[Any] = checkpoints[-1] lowerCamelCase : str = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __lowerCamelCase :Optional[Any] = argparse.ArgumentParser() __lowerCamelCase :int = pl.Trainer.add_argparse_args(parser) __lowerCamelCase :Optional[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase :Any = parser.parse_args() main(args)
42
"""simple docstring""" import os def snake_case ( ) -> Optional[Any]: with open(os.path.dirname(UpperCamelCase__ ) + """/grid.txt""" ) as f: lowerCamelCase : int = [] # noqa: E741 for _ in range(20 ): l.append([int(UpperCamelCase__ ) for x in f.readline().split()] ) lowerCamelCase : Union[str, Any] = 0 # right for i in range(20 ): for j in range(17 ): lowerCamelCase : Dict = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCamelCase : Tuple = temp # down for i in range(17 ): for j in range(20 ): lowerCamelCase : Any = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCamelCase : Optional[Any] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCamelCase : List[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCamelCase : List[str] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCamelCase : List[str] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCamelCase : List[Any] = temp return maximum if __name__ == "__main__": print(solution())
42
1
def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> int: """simple docstring""" return int((input_a, input_a).count(1) != 0) def lowercase__ ( ) -> None: """simple docstring""" assert or_gate(0 , 0) == 0 assert or_gate(0 , 1) == 1 assert or_gate(1 , 0) == 1 assert or_gate(1 , 1) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
280
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ : Tuple = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Optional[Any] = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Tuple = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys __magic_name__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
280
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL UpperCamelCase__ : Any = logging.get_logger(__name__) def UpperCAmelCase ( a_ ) -> str: """simple docstring""" if isinstance(_snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_snake_case ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = ['''pixel_values'''] def __init__( self , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = 1 / 255 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) -> str: super().__init__(**_lowerCamelCase ) A_ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} A_ : Tuple = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) A_ : Dict = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} A_ : Union[str, Any] = get_size_dict(_lowerCamelCase , param_name="""crop_size""" ) A_ : Union[str, Any] = do_resize A_ : Tuple = size A_ : Optional[Any] = do_center_crop A_ : Dict = crop_size A_ : Any = resample A_ : str = do_rescale A_ : Union[str, Any] = rescale_factor A_ : Optional[int] = offset A_ : Dict = do_normalize A_ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A_ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = PILImageResampling.BILINEAR , _lowerCamelCase = None , **_lowerCamelCase , ) -> Optional[Any]: A_ : Union[str, Any] = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) if "shortest_edge" in size: A_ : Union[str, Any] = get_resize_output_image_size(_lowerCamelCase , size["""shortest_edge"""] , default_to_square=_lowerCamelCase ) elif "height" in size and "width" in size: A_ : List[Any] = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}" ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ) -> Optional[Any]: A_ : str = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have \'height\' and \'width\' as keys. Got {size.keys()}" ) return center_crop(_lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , ) -> str: A_ : Union[str, Any] = image.astype(np.floataa ) if offset: A_ : Dict = image - (scale / 2) return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , **_lowerCamelCase , ) -> List[Any]: return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , ) -> Dict: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. A_ : Tuple = to_numpy_array(_lowerCamelCase ) if do_resize: A_ : int = self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) if do_center_crop: A_ : List[str] = self.center_crop(_lowerCamelCase , size=_lowerCamelCase ) if do_rescale: A_ : str = self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase , offset=_lowerCamelCase ) if do_normalize: A_ : List[Any] = self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) A_ : Union[str, Any] = to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) return image def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = ChannelDimension.FIRST , **_lowerCamelCase , ) -> Dict: A_ : Tuple = do_resize if do_resize is not None else self.do_resize A_ : Dict = resample if resample is not None else self.resample A_ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop A_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale A_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor A_ : List[str] = offset if offset is not None else self.offset A_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize A_ : List[str] = image_mean if image_mean is not None else self.image_mean A_ : Dict = image_std if image_std is not None else self.image_std A_ : str = size if size is not None else self.size A_ : Tuple = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase ) A_ : List[Any] = crop_size if crop_size is not None else self.crop_size A_ : List[Any] = get_size_dict(_lowerCamelCase , param_name="""crop_size""" ) if not valid_images(_lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) A_ : str = make_batched(_lowerCamelCase ) A_ : List[str] = [ [ self._preprocess_image( image=_lowerCamelCase , do_resize=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , do_center_crop=_lowerCamelCase , crop_size=_lowerCamelCase , do_rescale=_lowerCamelCase , rescale_factor=_lowerCamelCase , offset=_lowerCamelCase , do_normalize=_lowerCamelCase , image_mean=_lowerCamelCase , image_std=_lowerCamelCase , data_format=_lowerCamelCase , ) for img in video ] for video in videos ] A_ : Tuple = {"""pixel_values""": videos} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
708
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : int = create_tensor(a_ ) A_ : Any = gather(a_ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" A_ : List[str] = [state.process_index] A_ : Optional[Any] = gather_object(a_ ) assert len(a_ ) == state.num_processes, F"{gathered_obj}, {len(a_ )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), F"{gathered_obj} != {list(range(state.num_processes ) )}" def UpperCAmelCase ( a_ ) -> List[str]: """simple docstring""" A_ : List[str] = create_tensor(a_ ) A_ : Optional[Any] = broadcast(a_ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" if state.is_main_process: A_ : Optional[int] = torch.arange(state.num_processes + 1 ).to(state.device ) else: A_ : Any = torch.arange(state.num_processes ).to(state.device ) A_ : Union[str, Any] = pad_across_processes(a_ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" if state.num_processes != 2: return A_ : Tuple = create_tensor(a_ ) A_ : Optional[Any] = reduce(a_ , """sum""" ) A_ : str = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(a_ , a_ ), F"{reduced_tensor} != {truth_tensor}" def UpperCAmelCase ( a_ ) -> str: """simple docstring""" if state.num_processes != 2: return A_ : str = create_tensor(a_ ) A_ : int = reduce(a_ , """mean""" ) A_ : Optional[Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(a_ , a_ ), F"{reduced_tensor} != {truth_tensor}" def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" main() def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" A_ : Union[str, Any] = PartialState() state.print(F"State: {state}" ) state.print("""testing gather""" ) test_gather(a_ ) state.print("""testing gather_object""" ) test_gather_object(a_ ) state.print("""testing broadcast""" ) test_broadcast(a_ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(a_ ) state.print("""testing reduce_sum""" ) test_reduce_sum(a_ ) state.print("""testing reduce_mean""" ) test_reduce_mean(a_ ) if __name__ == "__main__": main()
385
0
'''simple docstring''' import random from typing import Any def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Tuple ): for _ in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = random.randint(0 , len(lowerCAmelCase__ ) - 1 ) UpperCAmelCase = random.randint(0 , len(lowerCAmelCase__ ) - 1 ) UpperCAmelCase , UpperCAmelCase = data[b], data[a] return data if __name__ == "__main__": _a : int = [0, 1, 2, 3, 4, 5, 6, 7] _a : Tuple = ['python', 'says', 'hello', '!'] print('Fisher-Yates Shuffle:') print('List', integers, strings) print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
447
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
0
'''simple docstring''' from collections import deque from .hash_table import HashTable class UpperCAmelCase_ ( __lowercase ): def __init__( self : Union[str, Any] , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Dict ) -> List[str]: super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int ) -> Tuple: lowerCAmelCase = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(UpperCAmelCase__ ) lowerCAmelCase = self.values[key] def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: return ( sum(self.charge_factor - len(UpperCAmelCase__ ) for slot in self.values ) / self.size_table * self.charge_factor ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any]=None ) -> Optional[Any]: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(UpperCAmelCase__ ) == 0 ): return key return super()._collision_resolution(UpperCAmelCase__ , UpperCAmelCase__ )
513
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Any = (DDPMScheduler,) def __UpperCAmelCase ( self : Optional[int] , **UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: lowerCAmelCase = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**UpperCAmelCase__ ) return config def __UpperCAmelCase ( self : Dict ) -> Tuple: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Optional[int]: for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Optional[Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> List[Any]: self.check_over_configs(thresholding=UpperCAmelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCAmelCase__ , prediction_type=UpperCAmelCase__ , sample_max_value=UpperCAmelCase__ , ) def __UpperCAmelCase ( self : Any ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> int: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def __UpperCAmelCase ( self : Tuple ) -> Dict: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase__ ) ): # 1. predict noise residual lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def __UpperCAmelCase ( self : int ) -> Optional[int]: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(UpperCAmelCase__ ) ): # 1. predict noise residual lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , generator=UpperCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def __UpperCAmelCase ( self : Union[str, Any] ) -> int: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) lowerCAmelCase = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase__ ) lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(UpperCAmelCase__ ): if i == len(UpperCAmelCase__ ) - 1: lowerCAmelCase = -1 else: lowerCAmelCase = timesteps[i + 1] lowerCAmelCase = scheduler.previous_timestep(UpperCAmelCase__ ) lowerCAmelCase = prev_t.item() self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Tuple: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) lowerCAmelCase = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(UpperCAmelCase__ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> List[str]: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) lowerCAmelCase = [1_0_0, 8_7, 5_0, 1, 0] lowerCAmelCase = len(UpperCAmelCase__ ) with self.assertRaises(UpperCAmelCase__ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase__ , timesteps=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase__ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase__ )
513
1
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING a_ = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , **__UpperCAmelCase ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(__UpperCAmelCase ) def lowerCamelCase ( self , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} # preprocess args if "points_per_batch" in kwargs: __lowerCamelCase = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: __lowerCamelCase = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: __lowerCamelCase = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: __lowerCamelCase = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: __lowerCamelCase = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: __lowerCamelCase = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: __lowerCamelCase = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: __lowerCamelCase = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: __lowerCamelCase = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: __lowerCamelCase = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: __lowerCamelCase = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: __lowerCamelCase = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , __UpperCAmelCase , *__UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' return super().__call__(__UpperCAmelCase , *__UpperCAmelCase , num_workers=__UpperCAmelCase , batch_size=__UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=64 , __UpperCAmelCase = 0 , __UpperCAmelCase = 512 / 1500 , __UpperCAmelCase = 32 , __UpperCAmelCase = 1 , ): '''simple docstring''' __lowerCamelCase = load_image(__UpperCAmelCase ) __lowerCamelCase = self.image_processor.size['''longest_edge'''] __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = self.image_processor.generate_crop_boxes( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = self.image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": __lowerCamelCase = self.get_inference_context() with inference_context(): __lowerCamelCase = self._ensure_tensor_on_device(__UpperCAmelCase , device=self.device ) __lowerCamelCase = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) __lowerCamelCase = image_embeddings __lowerCamelCase = grid_points.shape[1] __lowerCamelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , __UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = grid_points[:, i : i + points_per_batch, :, :] __lowerCamelCase = input_labels[:, i : i + points_per_batch] __lowerCamelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0.88 , __UpperCAmelCase=0.95 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , ): '''simple docstring''' __lowerCamelCase = model_inputs.pop('''input_boxes''' ) __lowerCamelCase = model_inputs.pop('''is_last''' ) __lowerCamelCase = model_inputs.pop('''original_sizes''' ).tolist() __lowerCamelCase = model_inputs.pop('''reshaped_input_sizes''' ).tolist() __lowerCamelCase = self.model(**__UpperCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __lowerCamelCase = model_outputs['''pred_masks'''] __lowerCamelCase = self.image_processor.post_process_masks( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , binarize=__UpperCAmelCase ) __lowerCamelCase = model_outputs['''iou_scores'''] __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=0.7 , ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase ) __lowerCamelCase = torch.cat(__UpperCAmelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = self.image_processor.post_process_for_mask_generation( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = defaultdict(__UpperCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(__UpperCAmelCase ) __lowerCamelCase = {} if output_rle_mask: __lowerCamelCase = rle_mask if output_bboxes_mask: __lowerCamelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
175
from __future__ import annotations def a__ ( _UpperCamelCase : list[float] ): if len(_UpperCamelCase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) __lowerCamelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
175
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _A = logging.get_logger(__name__) _A = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _lowerCAmelCase ( __a ): _lowercase ='''codegen''' _lowercase ={ '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _UpperCamelCase=50_400 , _UpperCamelCase=2_048 , _UpperCamelCase=2_048 , _UpperCamelCase=4_096 , _UpperCamelCase=28 , _UpperCamelCase=16 , _UpperCamelCase=64 , _UpperCamelCase=None , _UpperCamelCase="gelu_new" , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=50_256 , _UpperCamelCase=50_256 , _UpperCamelCase=False , **_UpperCamelCase , ) -> Dict: lowerCAmelCase_ = vocab_size lowerCAmelCase_ = n_ctx lowerCAmelCase_ = n_positions lowerCAmelCase_ = n_embd lowerCAmelCase_ = n_layer lowerCAmelCase_ = n_head lowerCAmelCase_ = n_inner lowerCAmelCase_ = rotary_dim lowerCAmelCase_ = activation_function lowerCAmelCase_ = resid_pdrop lowerCAmelCase_ = embd_pdrop lowerCAmelCase_ = attn_pdrop lowerCAmelCase_ = layer_norm_epsilon lowerCAmelCase_ = initializer_range lowerCAmelCase_ = use_cache lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = eos_token_id super().__init__( bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , tie_word_embeddings=_UpperCamelCase , **_UpperCamelCase ) class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase = "default" , _UpperCamelCase = None , _UpperCamelCase = False , ) -> List[Any]: super().__init__(_UpperCamelCase , task=_UpperCamelCase , patching_specs=_UpperCamelCase , use_past=_UpperCamelCase ) if not getattr(self._config , "pad_token_id" , _UpperCamelCase ): # TODO: how to do that better? lowerCAmelCase_ = 0 @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase_ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(_UpperCamelCase , direction="inputs" ) lowerCAmelCase_ = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase_ = {0: "batch", 1: "sequence"} return common_inputs @property def __a ( self ) -> int: return self._config.n_layer @property def __a ( self ) -> int: return self._config.n_head def __a ( self , _UpperCamelCase , _UpperCamelCase = -1 , _UpperCamelCase = -1 , _UpperCamelCase = False , _UpperCamelCase = None , ) -> Mapping[str, Any]: lowerCAmelCase_ = super(_UpperCamelCase , self ).generate_dummy_inputs( _UpperCamelCase , batch_size=_UpperCamelCase , seq_length=_UpperCamelCase , is_pair=_UpperCamelCase , framework=_UpperCamelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase_ = seqlen + 2 lowerCAmelCase_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ = [ (torch.zeros(_UpperCamelCase ), torch.zeros(_UpperCamelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase_ = ordered_inputs["attention_mask"].dtype lowerCAmelCase_ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_UpperCamelCase , _UpperCamelCase , dtype=_UpperCamelCase )] , dim=1 ) return ordered_inputs @property def __a ( self ) -> int: return 13
708
import itertools import string from collections.abc import Generator, Iterable def lowerCamelCase__ ( __lowerCAmelCase : Iterable[str] , __lowerCAmelCase : int ): """simple docstring""" lowerCAmelCase_ = iter(__lowerCAmelCase ) while True: lowerCAmelCase_ = tuple(itertools.islice(__lowerCAmelCase , __lowerCAmelCase ) ) if not chunk: return yield chunk def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) lowerCAmelCase_ = "" if len(__lowerCAmelCase ) < 2: return dirty for i in range(len(__lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__lowerCAmelCase ) & 1: clean += "X" return clean def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowerCAmelCase_ = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__lowerCAmelCase ) return table def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = generate_table(__lowerCAmelCase ) lowerCAmelCase_ = prepare_input(__lowerCAmelCase ) lowerCAmelCase_ = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): lowerCAmelCase_ , lowerCAmelCase_ = divmod(table.index(__lowerCAmelCase ) , 5 ) lowerCAmelCase_ , lowerCAmelCase_ = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = generate_table(__lowerCAmelCase ) lowerCAmelCase_ = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__lowerCAmelCase , 2 ): lowerCAmelCase_ , lowerCAmelCase_ = divmod(table.index(__lowerCAmelCase ) , 5 ) lowerCAmelCase_ , lowerCAmelCase_ = divmod(table.index(__lowerCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
279
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCAmelCase_ = False class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe.dual_guided( prompt="""first prompt""" , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCAmelCase ) UpperCAmelCase__ = VersatileDiffusionPipeline.from_pretrained(_UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = generator.manual_seed(0 ) UpperCAmelCase__ = pipe.dual_guided( prompt="""first prompt""" , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = """cyberpunk 2077""" UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe.dual_guided( prompt=_UpperCAmelCase , image=_UpperCAmelCase , text_to_image_strength=0.75 , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase__ = """A painting of a squirrel eating a burger """ UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe.text_to_image( prompt=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase__ = pipe.image_variation(_UpperCAmelCase , generator=_UpperCAmelCase , output_type="""numpy""" ).images UpperCAmelCase__ = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCAmelCase__ = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
603
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
603
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : List[str] = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class SCREAMING_SNAKE_CASE_ (__A ): '''simple docstring''' _a = """unispeech-sat""" def __init__( self : List[Any] , __a : Union[str, Any]=32 , __a : Union[str, Any]=768 , __a : Optional[Any]=12 , __a : str=12 , __a : List[str]=3_072 , __a : Optional[Any]="gelu" , __a : Union[str, Any]=0.1 , __a : Union[str, Any]=0.1 , __a : Tuple=0.1 , __a : Union[str, Any]=0.0 , __a : Union[str, Any]=0.0 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Optional[Any]=0.02 , __a : int=1e-5 , __a : List[str]="group" , __a : int="gelu" , __a : Dict=(512, 512, 512, 512, 512, 512, 512) , __a : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __a : Dict=(10, 3, 3, 3, 3, 2, 2) , __a : str=False , __a : Any=128 , __a : List[str]=16 , __a : List[str]=False , __a : str=True , __a : Optional[Any]=0.05 , __a : Dict=10 , __a : List[Any]=2 , __a : Tuple=0.0 , __a : Tuple=10 , __a : Any=0 , __a : Optional[int]=320 , __a : List[Any]=2 , __a : Tuple=0.1 , __a : List[Any]=100 , __a : Tuple=256 , __a : Any=256 , __a : Optional[Any]=0.1 , __a : Any="mean" , __a : Optional[Any]=False , __a : Dict=False , __a : Optional[Any]=256 , __a : Optional[Any]=(512, 512, 512, 512, 1_500) , __a : Optional[int]=(5, 3, 3, 1, 1) , __a : Optional[Any]=(1, 2, 3, 1, 1) , __a : str=512 , __a : Optional[int]=0 , __a : Tuple=1 , __a : List[Any]=2 , __a : int=504 , **__a : str , ) ->str: super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) lowerCamelCase_ : int = hidden_size lowerCamelCase_ : List[Any] = feat_extract_norm lowerCamelCase_ : str = feat_extract_activation lowerCamelCase_ : str = list(UpperCamelCase__ ) lowerCamelCase_ : List[str] = list(UpperCamelCase__ ) lowerCamelCase_ : Union[str, Any] = list(UpperCamelCase__ ) lowerCamelCase_ : List[Any] = conv_bias lowerCamelCase_ : Union[str, Any] = num_conv_pos_embeddings lowerCamelCase_ : str = num_conv_pos_embedding_groups lowerCamelCase_ : int = len(self.conv_dim ) lowerCamelCase_ : int = num_hidden_layers lowerCamelCase_ : Dict = intermediate_size lowerCamelCase_ : Optional[int] = hidden_act lowerCamelCase_ : Tuple = num_attention_heads lowerCamelCase_ : Tuple = hidden_dropout lowerCamelCase_ : Optional[Any] = attention_dropout lowerCamelCase_ : Any = activation_dropout lowerCamelCase_ : Any = feat_proj_dropout lowerCamelCase_ : str = final_dropout lowerCamelCase_ : Optional[int] = layerdrop lowerCamelCase_ : Union[str, Any] = layer_norm_eps lowerCamelCase_ : Union[str, Any] = initializer_range lowerCamelCase_ : str = vocab_size lowerCamelCase_ : Optional[int] = num_clusters lowerCamelCase_ : Tuple = do_stable_layer_norm lowerCamelCase_ : str = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ : Dict = apply_spec_augment lowerCamelCase_ : Any = mask_time_prob lowerCamelCase_ : Optional[Any] = mask_time_length lowerCamelCase_ : str = mask_time_min_masks lowerCamelCase_ : int = mask_feature_prob lowerCamelCase_ : int = mask_feature_length lowerCamelCase_ : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase_ : List[str] = num_codevectors_per_group lowerCamelCase_ : Tuple = num_codevector_groups lowerCamelCase_ : List[str] = contrastive_logits_temperature lowerCamelCase_ : Optional[Any] = feat_quantizer_dropout lowerCamelCase_ : Any = num_negatives lowerCamelCase_ : Any = codevector_dim lowerCamelCase_ : Tuple = proj_codevector_dim lowerCamelCase_ : Optional[int] = diversity_loss_weight # ctc loss lowerCamelCase_ : Optional[int] = ctc_loss_reduction lowerCamelCase_ : Union[str, Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCamelCase_ : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCamelCase_ : Union[str, Any] = list(UpperCamelCase__ ) lowerCamelCase_ : Optional[int] = list(UpperCamelCase__ ) lowerCamelCase_ : Any = list(UpperCamelCase__ ) lowerCamelCase_ : int = xvector_output_dim @property def _lowerCAmelCase ( self : Any ) ->Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
709
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor snake_case__ : Optional[int] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ) ->None: warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" , __a , ) super().__init__(*__a , **__a )
171
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_lowercase ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase: ClassVar[Features] = Features({'''text''': Value('''string''' )} ) _lowerCamelCase: ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) _lowerCamelCase: str = "text" _lowerCamelCase: str = "summary" @property def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
91
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Dict = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : List[str]=0 ) -> str: A = floats_tensor((1, 3, 128, 128) ,rng=random.Random(A_ ) ) A = np.random.RandomState(A_ ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=A_ ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint ,provider='CPUExecutionProvider' ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: A = ort.SessionOptions() A = False return options def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,subfolder='scheduler' ,revision='onnx' ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' ,revision='onnx' ,scheduler=A_ ,safety_checker=A_ ,feature_extractor=A_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=A_ ) A = 'A fantasy landscape, trending on artstation' A = np.random.RandomState(0 ) A = pipe( prompt=A_ ,image=A_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=A_ ,output_type='np' ,) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
91
1
_UpperCAmelCase = { """A""": """.-""", """B""": """-...""", """C""": """-.-.""", """D""": """-..""", """E""": """.""", """F""": """..-.""", """G""": """--.""", """H""": """....""", """I""": """..""", """J""": """.---""", """K""": """-.-""", """L""": """.-..""", """M""": """--""", """N""": """-.""", """O""": """---""", """P""": """.--.""", """Q""": """--.-""", """R""": """.-.""", """S""": """...""", """T""": """-""", """U""": """..-""", """V""": """...-""", """W""": """.--""", """X""": """-..-""", """Y""": """-.--""", """Z""": """--..""", """1""": """.----""", """2""": """..---""", """3""": """...--""", """4""": """....-""", """5""": """.....""", """6""": """-....""", """7""": """--...""", """8""": """---..""", """9""": """----.""", """0""": """-----""", """&""": """.-...""", """@""": """.--.-.""", """:""": """---...""", """,""": """--..--""", """.""": """.-.-.-""", """'""": """.----.""", """\"""": """.-..-.""", """?""": """..--..""", """/""": """-..-.""", """=""": """-...-""", """+""": """.-.-.""", """-""": """-....-""", """(""": """-.--.""", """)""": """-.--.-""", """!""": """-.-.--""", """ """: """/""" } # Exclamation mark is not in ITU-R recommendation # fmt: on _UpperCAmelCase = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCamelCase ( __lowercase : str ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCamelCase ( __lowercase : str ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCamelCase ( ): '''simple docstring''' A_ : Optional[Any] = 'Morse code here!' print(__lowercase ) A_ : List[str] = encrypt(__lowercase ) print(__lowercase ) A_ : Tuple = decrypt(__lowercase ) print(__lowercase ) if __name__ == "__main__": main()
704
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) A_ : List[Any] = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(lowercase ) , torch_builtin(lowercase ) ) ) self.assertFalse(torch.allclose(gelu_python(lowercase ) , gelu_new(lowercase ) ) ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Tuple = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) A_ : str = get_activation('gelu' ) A_ : int = get_activation('gelu_10' ) A_ : Optional[int] = torch_builtin(lowercase ) A_ : Tuple = geluaa(lowercase ) A_ : Dict = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(lowercase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowerCAmelCase_ ( self ): """simple docstring""" get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(lowercase ): get_activation('bogus' ) with self.assertRaises(lowercase ): get_activation(lowercase ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : str = get_activation('gelu' ) A_ : List[str] = 1 A_ : Optional[Any] = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(lowercase ): A_ : str = acta.a
70
0
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Optional[int] = logging.get_logger(__name__) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Any = os.path.abspath(__UpperCAmelCase ) logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model lowerCamelCase_ : List[str] = tf.train.list_variables(__UpperCAmelCase ) lowerCamelCase_ : Optional[int] = [] lowerCamelCase_ : List[str] = [] lowerCamelCase_ : Dict = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowerCamelCase_ : Tuple = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(F"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' lowerCamelCase_ : List[Any] = name[1:] # figure out how many levels deep the name is lowerCamelCase_ : Optional[Any] = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(__UpperCAmelCase ) # read data lowerCamelCase_ : List[str] = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) names.append('''/'''.join(__UpperCAmelCase ) ) arrays.append(__UpperCAmelCase ) logger.info(F"""Read a total of {len(__UpperCAmelCase ):,} layers""" ) # Sanity check if len(set(__UpperCAmelCase ) ) != 1: raise ValueError(F"""Found layer names with different depths (layer depth {list(set(__UpperCAmelCase ) )})""" ) lowerCamelCase_ : Optional[Any] = list(set(__UpperCAmelCase ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(__UpperCAmelCase , __UpperCAmelCase ): lowerCamelCase_ : Tuple = full_name.split('''/''' ) lowerCamelCase_ : List[Any] = model lowerCamelCase_ : List[Any] = [] for i, m_name in enumerate(__UpperCAmelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): lowerCamelCase_ : Any = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) lowerCamelCase_ : Union[str, Any] = getattr(__UpperCAmelCase , '''embeddings''' ) lowerCamelCase_ : Optional[int] = getattr(__UpperCAmelCase , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) lowerCamelCase_ : Tuple = getattr(__UpperCAmelCase , '''encoder''' ) lowerCamelCase_ : List[str] = getattr(__UpperCAmelCase , '''layer''' ) lowerCamelCase_ : int = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) lowerCamelCase_ : List[Any] = getattr(__UpperCAmelCase , '''pooler''' ) lowerCamelCase_ : List[str] = getattr(__UpperCAmelCase , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) lowerCamelCase_ : Union[str, Any] = getattr(__UpperCAmelCase , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) lowerCamelCase_ : int = getattr(__UpperCAmelCase , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) lowerCamelCase_ : Dict = getattr(__UpperCAmelCase , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) lowerCamelCase_ : Any = getattr(__UpperCAmelCase , '''token_type_embeddings''' ) else: raise ValueError(F"""Unknown embedding layer with name {full_name}""" ) trace.append('''weight''' ) lowerCamelCase_ : Optional[Any] = getattr(__UpperCAmelCase , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) lowerCamelCase_ : Optional[int] = getattr(__UpperCAmelCase , '''attention''' ) lowerCamelCase_ : Dict = getattr(__UpperCAmelCase , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) lowerCamelCase_ : Tuple = getattr(__UpperCAmelCase , '''attention''' ) lowerCamelCase_ : List[str] = getattr(__UpperCAmelCase , '''output''' ) lowerCamelCase_ : List[Any] = getattr(__UpperCAmelCase , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) lowerCamelCase_ : Union[str, Any] = getattr(__UpperCAmelCase , '''attention''' ) lowerCamelCase_ : int = getattr(__UpperCAmelCase , '''output''' ) lowerCamelCase_ : Union[str, Any] = getattr(__UpperCAmelCase , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) lowerCamelCase_ : Optional[int] = getattr(__UpperCAmelCase , '''output''' ) lowerCamelCase_ : Dict = getattr(__UpperCAmelCase , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) lowerCamelCase_ : Tuple = getattr(__UpperCAmelCase , '''output''' ) lowerCamelCase_ : int = getattr(__UpperCAmelCase , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) lowerCamelCase_ : str = getattr(__UpperCAmelCase , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) lowerCamelCase_ : List[str] = getattr(__UpperCAmelCase , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) lowerCamelCase_ : List[Any] = getattr(__UpperCAmelCase , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) lowerCamelCase_ : Optional[Any] = getattr(__UpperCAmelCase , '''intermediate''' ) lowerCamelCase_ : Optional[int] = getattr(__UpperCAmelCase , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) lowerCamelCase_ : str = getattr(__UpperCAmelCase , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) lowerCamelCase_ : int = getattr(__UpperCAmelCase , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) lowerCamelCase_ : Optional[int] = getattr(__UpperCAmelCase , '''weight''' ) else: logger.warning(F"""Ignored {m_name}""" ) # for certain layers reshape is necessary lowerCamelCase_ : Tuple = '''.'''.join(__UpperCAmelCase ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , __UpperCAmelCase ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , __UpperCAmelCase ): lowerCamelCase_ : str = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowerCamelCase_ : Optional[Any] = array.transpose() if pointer.shape == array.shape: lowerCamelCase_ : List[str] = torch.from_numpy(__UpperCAmelCase ) else: raise ValueError( F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" F""" {array.shape}""" ) logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" # Instantiate model logger.info(F"""Loading model based on config from {config_path}...""" ) lowerCamelCase_ : Optional[Any] = BertConfig.from_json_file(__UpperCAmelCase ) lowerCamelCase_ : str = BertModel(__UpperCAmelCase ) # Load weights from checkpoint logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) __lowerCamelCase : Any = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
501
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : List[Any] = {"""vocab_file""": """vocab.txt"""} __lowerCamelCase : str = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } __lowerCamelCase : Optional[Any] = { """openbmb/cpm-ant-10b""": 1024, } def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = collections.OrderedDict() with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as reader: lowerCamelCase_ : Tuple = reader.readlines() for index, token in enumerate(__UpperCAmelCase ): lowerCamelCase_ : str = token.rstrip('''\n''' ) lowerCamelCase_ : Any = index return vocab class lowerCAmelCase__ ( _lowerCAmelCase ): def __init__( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int="<unk>" , UpperCamelCase_ : Dict=200 ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = vocab lowerCamelCase_ : List[Any] = unk_token lowerCamelCase_ : List[str] = max_input_chars_per_word def __UpperCamelCase ( self : List[Any] , UpperCamelCase_ : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ : List[str] = list(UpperCamelCase_ ) if len(UpperCamelCase_ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCamelCase_ : int = 0 lowerCamelCase_ : int = [] while start < len(UpperCamelCase_ ): lowerCamelCase_ : Optional[int] = len(UpperCamelCase_ ) lowerCamelCase_ : int = None while start < end: lowerCamelCase_ : Optional[int] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowerCamelCase_ : Dict = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = end return sub_tokens class lowerCAmelCase__ ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ["input_ids", "attention_mask"] A = False def __init__( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int]="<d>" , UpperCamelCase_ : Dict="</d>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : Tuple="</s>" , UpperCamelCase_ : Any="<pad>" , UpperCamelCase_ : Union[str, Any]="<unk>" , UpperCamelCase_ : Optional[Any]="</n>" , UpperCamelCase_ : str="</_>" , UpperCamelCase_ : str="left" , **UpperCamelCase_ : Dict , ) -> List[Any]: """simple docstring""" requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=UpperCamelCase_ , eod_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , line_token=UpperCamelCase_ , space_token=UpperCamelCase_ , padding_side=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCamelCase_ : List[str] = bod_token lowerCamelCase_ : List[str] = eod_token lowerCamelCase_ : Any = load_vocab(UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = self.encoder[space_token] lowerCamelCase_ : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCamelCase_ : Union[str, Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase_ : x[1] ) ) lowerCamelCase_ : Dict = {v: k for k, v in self.encoder.items()} lowerCamelCase_ : Tuple = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return self.encoder[self.bod_token] @property def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" return self.encoder[self.eod_token] @property def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" return self.encoder["\n"] @property def __UpperCamelCase ( self : str ) -> int: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ : Optional[Any] = [] for x in jieba.cut(UpperCamelCase_ , cut_all=UpperCamelCase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCamelCase_ ) ) return output_tokens def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ : str = [i for i in token_ids if i >= 0] lowerCamelCase_ : Tuple = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : Any ) -> int: """simple docstring""" return token in self.encoder def __UpperCamelCase ( self : Any , UpperCamelCase_ : List[str] ) -> str: """simple docstring""" return "".join(UpperCamelCase_ ) def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : List[str] ) -> Tuple: """simple docstring""" return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : Any ) -> Dict: """simple docstring""" return self.decoder.get(UpperCamelCase_ , self.unk_token ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(UpperCamelCase_ ): lowerCamelCase_ : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowerCamelCase_ : Optional[Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowerCamelCase_ : Optional[Any] = 0 if " " in self.encoder: lowerCamelCase_ : Tuple = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowerCamelCase_ : List[str] = self.encoder['''\n'''] del self.encoder["\n"] lowerCamelCase_ : List[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase_ : x[1] ) ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) lowerCamelCase_ : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def __UpperCamelCase ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) return [1] + ([0] * len(UpperCamelCase_ ))
501
1
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCAmelCase ( yaml.SafeLoader ): '''simple docstring''' def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : Optional[Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase__ : Tuple = [tuple(_lowercase ) if isinstance(_lowercase , _lowercase ) else key for key in keys] lowercase__ : List[Any] = Counter(_lowercase ) lowercase__ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=False ) -> List[str]: lowercase__ : Optional[Any] = super().construct_mapping(_lowercase , deep=_lowercase ) self._check_no_duplicates_on_constructed_node(_lowercase ) return mapping def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[Any] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase__ : Union[str, Any] = full_content[1:].index('''---''' ) + 1 lowercase__ : int = """\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_lowerCamelCase ) class UpperCAmelCase ( __snake_case ): '''simple docstring''' SCREAMING_SNAKE_CASE = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase ) -> Dict: with open(_lowercase , encoding='''utf-8''' ) as readme_file: lowercase__ : Optional[Any] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(_lowercase ) else: return cls() def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[int]: if path.exists(): with open(_lowercase , encoding='''utf-8''' ) as readme_file: lowercase__ : str = readme_file.read() else: lowercase__ : List[str] = None lowercase__ : Optional[Any] = self._to_readme(_lowercase ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as readme_file: readme_file.write(_lowercase ) def _lowerCAmelCase( self , __lowerCAmelCase = None ) -> Optional[Any]: if readme_content is not None: lowercase__ : Tuple = _split_yaml_from_readme(_lowercase ) lowercase__ : str = """---\n""" + self.to_yaml_string() + """---\n""" + content else: lowercase__ : Union[str, Any] = """---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def _lowerCAmelCase( cls , __lowerCAmelCase ) -> Optional[Any]: lowercase__ : int = yaml.load(_lowercase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowercase__ : Tuple = { (key.replace('''-''' , '''_''' ) if key.replace('''-''' , '''_''' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_lowercase ) def _lowerCAmelCase( self ) -> Union[str, Any]: return yaml.safe_dump( { (key.replace('''_''' , '''-''' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_lowercase , allow_unicode=_lowercase , encoding='''utf-8''' , ).decode('''utf-8''' ) __a: List[str] = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser __a: Optional[int] = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") __a: Optional[int] = ap.parse_args() __a: Tuple = Path(args.readme_filepath) __a: Tuple = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
719
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowercase__ , lowercase__ : int = len(UpperCAmelCase ), len(grid[0] ) if ( min(UpperCAmelCase , UpperCAmelCase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) lowercase__ : Optional[Any] = 0 count += depth_first_search(UpperCAmelCase , row + 1 , UpperCAmelCase , UpperCAmelCase ) count += depth_first_search(UpperCAmelCase , row - 1 , UpperCAmelCase , UpperCAmelCase ) count += depth_first_search(UpperCAmelCase , UpperCAmelCase , col + 1 , UpperCAmelCase ) count += depth_first_search(UpperCAmelCase , UpperCAmelCase , col - 1 , UpperCAmelCase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
428
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __SCREAMING_SNAKE_CASE :Union[str, Any] = 16 __SCREAMING_SNAKE_CASE :Optional[int] = 32 def UpperCAmelCase_ ( __lowercase : Accelerator , __lowercase : int = 16 ) -> Dict: '''simple docstring''' _UpperCAmelCase = AutoTokenizer.from_pretrained("bert-base-cased" ) _UpperCAmelCase = load_dataset("glue" , "mrpc" ) def tokenize_function(__lowercase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__lowercase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase = 8 else: _UpperCAmelCase = None return tokenizer.pad( lowerCAmelCase__ , padding="longest" , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. _UpperCAmelCase = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) _UpperCAmelCase = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __SCREAMING_SNAKE_CASE :Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( __lowercase : Dict , __lowercase : List[Any] ) -> Any: '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase__ ) == "1": _UpperCAmelCase = 2 # Initialize accelerator _UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase = config['lr'] _UpperCAmelCase = int(config["num_epochs"] ) _UpperCAmelCase = int(config["seed"] ) _UpperCAmelCase = int(config["batch_size"] ) _UpperCAmelCase = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase__ ) _UpperCAmelCase = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler _UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase = model(**lowerCAmelCase__ ) _UpperCAmelCase = outputs.loss _UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _UpperCAmelCase = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase = model(**lowerCAmelCase__ ) _UpperCAmelCase = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase = accelerator.gather((predictions, batch["labels"]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(lowerCAmelCase__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _UpperCAmelCase = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCAmelCase = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) _UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , lowerCAmelCase__ ) def UpperCAmelCase_ ( ) -> str: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
236
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter A = '''Create a default config file for Accelerate with only a few flags set.''' def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Any="no" , lowerCAmelCase__ : str = default_json_config_file , lowerCAmelCase__ : bool = False) -> Optional[int]: '''simple docstring''' _lowercase : List[Any] = Path(lowerCAmelCase__) path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''') return False _lowercase : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''') _lowercase : str = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): _lowercase : str = torch.cuda.device_count() _lowercase : Optional[Any] = num_gpus _lowercase : Tuple = False if num_gpus > 1: _lowercase : Tuple = 'MULTI_GPU' else: _lowercase : Any = 'NO' elif is_xpu_available() and use_xpu: _lowercase : List[str] = torch.xpu.device_count() _lowercase : Union[str, Any] = num_xpus _lowercase : List[Any] = False if num_xpus > 1: _lowercase : Tuple = 'MULTI_XPU' else: _lowercase : List[str] = 'NO' elif is_npu_available(): _lowercase : Optional[int] = torch.npu.device_count() _lowercase : Any = num_npus _lowercase : List[Any] = False if num_npus > 1: _lowercase : int = 'MULTI_NPU' else: _lowercase : Dict = 'NO' else: _lowercase : List[Any] = 0 _lowercase : Optional[int] = True _lowercase : List[str] = 1 _lowercase : List[Any] = 'NO' _lowercase : Union[str, Any] = ClusterConfig(**lowerCAmelCase__) config.to_json_file(lowerCAmelCase__) return path def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str]) -> Union[str, Any]: '''simple docstring''' _lowercase : Tuple = parser.add_parser('default' , parents=lowerCAmelCase__ , help=lowerCAmelCase__ , formatter_class=lowerCAmelCase__) parser.add_argument( '--config_file' , default=lowerCAmelCase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=lowerCAmelCase__ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=lowerCAmelCase__) return parser def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : List[Any]) -> Dict: '''simple docstring''' _lowercase : Tuple = write_basic_config(args.mixed_precision , args.save_location) if config_file: print(F'''accelerate configuration saved at {config_file}''')
125
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = (DDIMParallelScheduler,) _lowerCamelCase = (('''eta''', 0.0), ('''num_inference_steps''', 50)) def lowerCamelCase ( self : List[str] , **lowerCamelCase : Optional[Any] ) -> int: """simple docstring""" _UpperCAmelCase = { """num_train_timesteps""": 1000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**__SCREAMING_SNAKE_CASE ) return config def lowerCamelCase ( self : Dict , **lowerCamelCase : Dict ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE ) _UpperCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = 10, 0.0 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) for t in scheduler.timesteps: _UpperCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) _UpperCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample return sample def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def lowerCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(steps_offset=1 ) _UpperCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def lowerCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def lowerCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def lowerCamelCase ( self : Dict ) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def lowerCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE ) def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__SCREAMING_SNAKE_CASE ) def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__SCREAMING_SNAKE_CASE ) def lowerCamelCase ( self : Tuple ) -> str: """simple docstring""" self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def lowerCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE ) def lowerCamelCase ( self : Any ) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE , num_inference_steps=__SCREAMING_SNAKE_CASE ) def lowerCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE , eta=__SCREAMING_SNAKE_CASE ) def lowerCamelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def lowerCamelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) _UpperCAmelCase , _UpperCAmelCase = 10, 0.0 scheduler.set_timesteps(__SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter _UpperCAmelCase = self.dummy_sample_deter + 0.1 _UpperCAmelCase = self.dummy_sample_deter - 0.1 _UpperCAmelCase = samplea.shape[0] _UpperCAmelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _UpperCAmelCase = torch.arange(__SCREAMING_SNAKE_CASE )[0:3, None].repeat(1 , __SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _UpperCAmelCase = scheduler.batch_step_no_noise(__SCREAMING_SNAKE_CASE , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.22_3967 ) < 1E-3 def lowerCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.full_loop(prediction_type="""v_prediction""" ) _UpperCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _UpperCAmelCase = self.full_loop(set_alpha_to_one=__SCREAMING_SNAKE_CASE , beta_start=0.01 ) _UpperCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def lowerCamelCase ( self : List[str] ) -> int: """simple docstring""" _UpperCAmelCase = self.full_loop(set_alpha_to_one=__SCREAMING_SNAKE_CASE , beta_start=0.01 ) _UpperCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
716
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __a: Tuple = None __a: List[str] = logging.get_logger(__name__) __a: Tuple = '''▁''' __a: List[Any] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __a: Union[str, Any] = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } __a: Optional[int] = { '''google/pegasus-xsum''': 512, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = PegasusTokenizer _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=None , lowerCamelCase : Dict="<pad>" , lowerCamelCase : Tuple="</s>" , lowerCamelCase : Union[str, Any]="<unk>" , lowerCamelCase : Tuple="<mask_2>" , lowerCamelCase : List[Any]="<mask_1>" , lowerCamelCase : Optional[Any]=None , lowerCamelCase : str=103 , **lowerCamelCase : List[Any] , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = offset if additional_special_tokens is not None: if not isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError( f"""additional_special_tokens should be of type {type(lowerCamelCase )}, but is""" f""" {type(lowerCamelCase )}""" ) _UpperCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(lowerCamelCase ) , self.offset - 1 ) ] if len(set(lowerCamelCase ) ) != len(lowerCamelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) _UpperCAmelCase = additional_special_tokens_extended else: _UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , pad_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , mask_token=lowerCamelCase , mask_token_sent=lowerCamelCase , offset=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : List[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowerCamelCase ( self : Optional[int] , lowerCamelCase : List , lowerCamelCase : Optional[List] = None , lowerCamelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(lowerCamelCase ) elif token_ids_a is None: return self._special_token_mask(lowerCamelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCamelCase ( self : Tuple , lowerCamelCase : Any , lowerCamelCase : Optional[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCAmelCase = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ): copyfile(self.vocab_file , lowerCamelCase ) return (out_vocab_file,)
402
0
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right _lowercase = 50003 _lowercase = 50002 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowercase : Dict = PLBartTokenizer _lowercase : List[Any] = None _lowercase : Union[str, Any] = False def _lowercase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = PLBartTokenizer(_snake_case , language_codes="""base""" , keep_accents=_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = PLBartTokenizer(_snake_case , language_codes="""base""" , keep_accents=_snake_case ) _lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_snake_case , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) _lowerCAmelCase = tokenizer.vocab_size _lowerCAmelCase = [tokenizer.convert_ids_to_tokens(_snake_case ) for x in range(end - 4 , _snake_case )] self.assertListEqual(_snake_case , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) _lowerCAmelCase = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" _lowerCAmelCase = tokenizer(_snake_case ).input_ids self.assertEqual( tokenizer.decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) , _snake_case , ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = PLBartTokenizer(_snake_case , language_codes="""multi""" , keep_accents=_snake_case ) _lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_snake_case , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) _lowerCAmelCase = tokenizer.vocab_size _lowerCAmelCase = [tokenizer.convert_ids_to_tokens(_snake_case ) for x in range(end - 7 , _snake_case )] self.assertListEqual( _snake_case , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) _lowerCAmelCase = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" _lowerCAmelCase = tokenizer(_snake_case ).input_ids self.assertEqual( tokenizer.decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) , _snake_case , ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' _lowercase : Optional[Any] = "uclanlp/plbart-python-en_XX" _lowercase : Any = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] _lowercase : Optional[int] = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] _lowercase : List[str] = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def _lowercase ( cls ): """simple docstring""" _lowerCAmelCase = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) _lowerCAmelCase = 1 return cls def _lowercase ( self ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 50_003 ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _snake_case ) def _lowercase ( self ): """simple docstring""" self.assertIn(_snake_case , self.tokenizer.all_special_ids ) _lowerCAmelCase = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] _lowerCAmelCase = self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case ) _lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_snake_case ) self.assertEqual(_snake_case , _snake_case ) self.assertNotIn(self.tokenizer.eos_token , _snake_case ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 20] self.assertIsInstance(src_text[0] , _snake_case ) _lowerCAmelCase = 10 _lowerCAmelCase = self.tokenizer(_snake_case , max_length=_snake_case , truncation=_snake_case ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _snake_case ) self.assertEqual(len(_snake_case ) , _snake_case ) def _lowercase ( self ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [50_004, 50_001] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_snake_case ) _lowerCAmelCase = PLBartTokenizer.from_pretrained(_snake_case ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _snake_case ) @require_torch def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_snake_case , return_tensors="""pt""" ) _lowerCAmelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , _snake_case ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_snake_case , truncation=_snake_case , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) _lowerCAmelCase = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(_snake_case , _snake_case ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) _lowerCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _snake_case ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer(self.src_text , padding=_snake_case , truncation=_snake_case , max_length=3 , return_tensors="""pt""" ) _lowerCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=_snake_case , truncation=_snake_case , max_length=10 , return_tensors="""pt""" ) _lowerCAmelCase = targets["input_ids"] _lowerCAmelCase = shift_tokens_right(_snake_case , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(_snake_case ) , { # A, test, EOS, en_XX """input_ids""": [[150, 242, 2, 50_003]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 50_001, } , )
5
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _snake_case (unittest.TestCase): def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = tempfile.mkdtemp() # fmt: off UpperCAmelCase_ : List[str] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on UpperCAmelCase_ : List[str] = dict(zip(_snake_case ,range(len(_snake_case ) ) ) ) UpperCAmelCase_ : List[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] UpperCAmelCase_ : Dict = {"unk_token": "<unk>"} UpperCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as fp: fp.write(json.dumps(_snake_case ) + "\n" ) with open(self.merges_file ,"w" ,encoding="utf-8" ) as fp: fp.write("\n".join(_snake_case ) ) UpperCAmelCase_ : Optional[Any] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } UpperCAmelCase_ : str = os.path.join(self.tmpdirname ,_snake_case ) with open(self.image_processor_file ,"w" ,encoding="utf-8" ) as fp: json.dump(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ,**_snake_case ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCamelCase__ ( self ,**_snake_case ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCamelCase__ ( self ,**_snake_case ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**_snake_case ) def UpperCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] UpperCAmelCase_ : Union[str, Any] = [Image.fromarray(np.moveaxis(_snake_case ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : str = self.get_rust_tokenizer() UpperCAmelCase_ : List[str] = self.get_image_processor() UpperCAmelCase_ : Tuple = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : int = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=_snake_case ) UpperCAmelCase_ : str = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : str = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,_snake_case ) self.assertIsInstance(processor_fast.tokenizer ,_snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,_snake_case ) self.assertIsInstance(processor_fast.image_processor ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) UpperCAmelCase_ : Tuple = self.get_image_processor(do_normalize=_snake_case ,padding_value=1.0 ) UpperCAmelCase_ : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="(BOS)" ,eos_token="(EOS)" ,do_normalize=_snake_case ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_snake_case ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : List[str] = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : Dict = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) UpperCAmelCase_ : Any = self.prepare_image_inputs() UpperCAmelCase_ : Optional[int] = image_processor(_snake_case ,return_tensors="np" ) UpperCAmelCase_ : Any = processor(images=_snake_case ,return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Optional[Any] = self.get_image_processor() UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) UpperCAmelCase_ : Tuple = "lower newer" UpperCAmelCase_ : Any = processor(text=_snake_case ) UpperCAmelCase_ : List[Any] = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) UpperCAmelCase_ : Any = "lower newer" UpperCAmelCase_ : List[str] = self.prepare_image_inputs() UpperCAmelCase_ : str = processor(text=_snake_case ,images=_snake_case ) self.assertListEqual(list(inputs.keys() ) ,["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_snake_case ): processor() def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) UpperCAmelCase_ : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : int = processor.batch_decode(_snake_case ) UpperCAmelCase_ : int = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case ,_snake_case ) def UpperCamelCase__ ( self ): UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Tuple = CLIPProcessor(tokenizer=_snake_case ,image_processor=_snake_case ) UpperCAmelCase_ : Optional[int] = "lower newer" UpperCAmelCase_ : Any = self.prepare_image_inputs() UpperCAmelCase_ : Dict = processor(text=_snake_case ,images=_snake_case ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
71
0
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ : Union[str, Any] = logging.get_logger(__name__) class _lowercase ( _SCREAMING_SNAKE_CASE ): _a : str = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , a : Any="</s>" , a : Any="<unk>" , a : List[str]="<pad>" , a : List[Any]=1_2_5 , a : List[str]=None , **a : str , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: __snake_case : str =[f'''<extra_id_{i}>''' for i in range(A_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __snake_case : Any =len(set(filter(lambda a : bool('''extra_id''' in str(A_ ) ) , A_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) __snake_case : List[Any] =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token __snake_case : Optional[Any] =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token __snake_case : Tuple =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token super().__init__( eos_token=A_ , unk_token=A_ , pad_token=A_ , extra_ids=A_ , additional_special_tokens=A_ , **A_ , ) __snake_case : Any =extra_ids __snake_case : List[str] =2**8 # utf is 8 bits # define special tokens dict __snake_case : Any ={ self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __snake_case : Optional[int] =len(self.special_tokens_encoder ) __snake_case : Any =len(A_ ) for i, token in enumerate(A_ ): __snake_case : Tuple =self.vocab_size + i - n __snake_case : Union[str, Any] ={v: k for k, v in self.special_tokens_encoder.items()} @property def _UpperCamelCase ( self : List[str] ): """simple docstring""" return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def _UpperCamelCase ( self : Tuple , a : Any , a : List[str] = None , a : Optional[int] = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(A_ )) + [1] return ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def _UpperCamelCase ( self : Union[str, Any] , a : Tuple ): """simple docstring""" if len(A_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def _UpperCamelCase ( self : Dict , a : int , a : Optional[int] = None ): """simple docstring""" __snake_case : str =[self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _UpperCamelCase ( self : Optional[Any] , a : Optional[int] , a : str = None ): """simple docstring""" __snake_case : Any =self._add_eos_if_not_present(A_ ) if token_ids_a is None: return token_ids_a else: __snake_case : int =self._add_eos_if_not_present(A_ ) return token_ids_a + token_ids_a def _UpperCamelCase ( self : Union[str, Any] , a : Union[str, Any] ): """simple docstring""" __snake_case : Dict =[chr(A_ ) for i in text.encode('''utf-8''' )] return tokens def _UpperCamelCase ( self : int , a : Optional[int] ): """simple docstring""" if token in self.special_tokens_encoder: __snake_case : Union[str, Any] =self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __snake_case : Dict =self.added_tokens_encoder[token] elif len(A_ ) != 1: __snake_case : Optional[Any] =self.unk_token_id else: __snake_case : int =ord(A_ ) + self._num_special_tokens return token_id def _UpperCamelCase ( self : List[Any] , a : Any ): """simple docstring""" if index in self.special_tokens_decoder: __snake_case : int =self.special_tokens_decoder[index] else: __snake_case : Optional[Any] =chr(index - self._num_special_tokens ) return token def _UpperCamelCase ( self : str , a : Union[str, Any] ): """simple docstring""" __snake_case : Any =b'''''' for token in tokens: if token in self.special_tokens_decoder: __snake_case : Any =self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: __snake_case : List[str] =self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: __snake_case : str =token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: __snake_case : List[Any] =token.encode('''utf-8''' ) else: __snake_case : Any =bytes([ord(A_ )] ) bstring += tok_string __snake_case : List[str] =bstring.decode('''utf-8''' , errors='''ignore''' ) return string def _UpperCamelCase ( self : str , a : List[Any] , a : Dict = None ): """simple docstring""" return ()
703
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class _lowercase : def __init__( self : Optional[Any] , a : List[str] , a : List[Any]=1_3 , a : Any=7 , a : List[str]=True , a : int=True , a : Optional[int]=9_9 , a : List[Any]=3_2 , a : Optional[int]=5 , a : List[Any]=4 , a : Dict=3_7 , a : List[str]="gelu" , a : Union[str, Any]=0.1 , a : str=0.1 , a : List[str]=5_0 , a : Tuple=0.0_2 , a : Union[str, Any]=True , a : int=None , ): """simple docstring""" __snake_case : Optional[int] =parent __snake_case : Dict =batch_size __snake_case : Union[str, Any] =seq_length __snake_case : Optional[Any] =is_training __snake_case : Any =use_input_mask __snake_case : Union[str, Any] =vocab_size __snake_case : Union[str, Any] =hidden_size __snake_case : int =num_hidden_layers __snake_case : Optional[int] =num_attention_heads __snake_case : int =intermediate_size __snake_case : str =hidden_act __snake_case : str =hidden_dropout_prob __snake_case : Tuple =attention_probs_dropout_prob __snake_case : Tuple =max_position_embeddings __snake_case : Optional[Any] =initializer_range __snake_case : List[str] =use_labels __snake_case : List[Any] =scope def _UpperCamelCase ( self : List[Any] ): """simple docstring""" __snake_case : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] =None if self.use_input_mask: __snake_case : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: __snake_case : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any =self.get_config() return config, input_ids, input_mask, token_labels def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict =self.prepare_config_and_inputs() __snake_case : Dict =True __snake_case : int =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __snake_case : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCamelCase ( self : Optional[Any] , a : Union[str, Any] , a : Optional[int] , a : int , a : Tuple , **a : Any , ): """simple docstring""" __snake_case : List[Any] =BertGenerationEncoder(config=a ) model.to(a ) model.eval() __snake_case : Dict =model(a , attention_mask=a ) __snake_case : Tuple =model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Tuple , a : Union[str, Any] , a : Optional[Any] , a : str , a : List[Any] , a : Optional[int] , a : Optional[Any] , **a : int , ): """simple docstring""" __snake_case : Any =True __snake_case : List[str] =BertGenerationEncoder(config=a ) model.to(a ) model.eval() __snake_case : Union[str, Any] =model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) __snake_case : str =model( a , attention_mask=a , encoder_hidden_states=a , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self : Any , a : List[str] , a : Dict , a : Optional[Any] , a : Tuple , a : Dict , a : Tuple , **a : Tuple , ): """simple docstring""" __snake_case : List[Any] =True __snake_case : Any =True __snake_case : int =BertGenerationDecoder(config=a ).to(a ).eval() # first forward pass __snake_case : List[str] =model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) __snake_case : Optional[int] =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : List[str] =ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : List[Any] =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : Tuple =torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : List[Any] =torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : Tuple =model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )['''hidden_states'''][0] __snake_case : Any =model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )['''hidden_states'''][0] # select random slice __snake_case : int =ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : int =output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : int =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1e-3 ) ) def _UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Dict , a : Optional[Any] , a : List[str] , *a : Dict , ): """simple docstring""" __snake_case : List[str] =BertGenerationDecoder(a ) model.to(a ) model.eval() __snake_case : Any =model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case : Any =self.prepare_config_and_inputs() __snake_case : List[Any] ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowercase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Union[str, Any] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _a : List[Any] = (BertGenerationDecoder,) if is_torch_available() else () _a : Union[str, Any] = ( {'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder} if is_torch_available() else {} ) def _UpperCamelCase ( self : List[str] ): """simple docstring""" __snake_case : int =BertGenerationEncoderTester(self ) __snake_case : Union[str, Any] =ConfigTester(self , config_class=a , hidden_size=3_7 ) def _UpperCamelCase ( self : str ): """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" __snake_case : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case , __snake_case , __snake_case : Tuple =self.model_tester.prepare_config_and_inputs() __snake_case : int ='''bert''' self.model_tester.create_and_check_model(a , a , a , a ) def _UpperCamelCase ( self : Dict ): """simple docstring""" __snake_case : List[str] =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a ) def _UpperCamelCase ( self : Tuple ): """simple docstring""" __snake_case : Dict =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*a ) def _UpperCamelCase ( self : List[str] ): """simple docstring""" ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_decoder() __snake_case : Tuple =None self.model_tester.create_and_check_model_as_decoder( a , a , a , a , a , a , ) def _UpperCamelCase ( self : List[Any] ): """simple docstring""" __snake_case : Tuple =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*a ) @slow def _UpperCamelCase ( self : Tuple ): """simple docstring""" __snake_case : Optional[int] =BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) self.assertIsNotNone(a ) @require_torch class _lowercase ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Optional[int] ): """simple docstring""" __snake_case : List[Any] =BertGenerationEncoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __snake_case : Any =torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): __snake_case : str =model(a )[0] __snake_case : List[str] =torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape , a ) __snake_case : int =torch.tensor( [[[0.1_7_7_5, 0.0_0_8_3, -0.0_3_2_1], [1.6_0_0_2, 0.1_2_8_7, 0.3_9_1_2], [2.1_4_7_3, 0.5_7_9_1, 0.6_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4 ) ) @require_torch class _lowercase ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Any ): """simple docstring""" __snake_case : int =BertGenerationDecoder.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) __snake_case : Dict =torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): __snake_case : List[str] =model(a )[0] __snake_case : str =torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape , a ) __snake_case : Optional[int] =torch.tensor( [[[-0.5_7_8_8, -2.5_9_9_4, -3.7_0_5_4], [0.0_4_3_8, 4.7_9_9_7, 1.8_7_9_5], [1.5_8_6_2, 6.6_4_0_9, 4.4_6_3_8]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4 ) )
497
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[int] = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
452
def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): lowerCamelCase_ : Union[str, Any] = [] lowerCamelCase_ : Tuple = [] lowerCamelCase_ : Dict = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase_ : Optional[int] = len(lowerCAmelCase__ ) if (len(lowerCAmelCase__ ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) ,'Stack'.center(lowerCAmelCase__ ) ,'Postfix'.center(lowerCAmelCase__ ) ,sep=' | ' ,) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowerCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowerCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowerCAmelCase__ ) == 0: stack.append(lowerCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowerCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowerCAmelCase__ ) # push x to stack print( x.center(8 ) ,(''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) ,(''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) ,sep=' | ' ,) # Output in tabular format while len(lowerCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) ,(''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) ,(''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) ,sep=' | ' ,) # Output in tabular format return "".join(lowerCAmelCase__ ) # return Postfix as str def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): lowerCamelCase_ : Dict = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowerCAmelCase__ ) ): if infix[i] == "(": lowerCamelCase_ : str = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase_ : Optional[Any] = '(' # change ")" to "(" return (infix_2_postfix(''.join(lowerCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _lowercase : int =input("""\nEnter an Infix Equation = """) # Input an Infix equation _lowercase : Optional[Any] ="""""".join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
364
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=2 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=10 , lowerCamelCase__=3 , lowerCamelCase__=32 * 8 , lowerCamelCase__=32 * 8 , lowerCamelCase__=4 , lowerCamelCase__=64 , ) -> Any: lowercase__ : Tuple = parent lowercase__ : Tuple = batch_size lowercase__ : Tuple = is_training lowercase__ : int = use_auxiliary_loss lowercase__ : Dict = num_queries lowercase__ : Optional[Any] = num_channels lowercase__ : Dict = min_size lowercase__ : Dict = max_size lowercase__ : Optional[Any] = num_labels lowercase__ : Union[str, Any] = hidden_dim lowercase__ : Tuple = hidden_dim def UpperCAmelCase__( self ) -> Dict: lowercase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) lowercase__ : int = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) lowercase__ : Any = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() lowercase__ : List[Any] = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() lowercase__ : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : int = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowercase__ : Tuple = self.num_queries lowercase__ : Optional[Any] = self.num_labels lowercase__ : List[Any] = [1, 1, 1, 1] lowercase__ : Tuple = self.num_channels lowercase__ : Any = 64 lowercase__ : Union[str, Any] = 128 lowercase__ : List[str] = self.hidden_dim lowercase__ : List[Any] = self.hidden_dim lowercase__ : List[str] = self.hidden_dim return config def UpperCAmelCase__( self ) -> Any: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[Any] = self.prepare_config_and_inputs() lowercase__ : Optional[Any] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: lowercase__ : Optional[int] = output.encoder_hidden_states lowercase__ : Tuple = output.pixel_decoder_hidden_states lowercase__ : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ) -> Optional[int]: with torch.no_grad(): lowercase__ : List[str] = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase__ : List[str] = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) lowercase__ : List[Any] = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: lowercase__ : Optional[int] = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase__ : Optional[int] = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) lowercase__ : int = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) lowercase__ : int = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" _a : Tuple = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _a : List[str] = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} _a : Optional[int] = False _a : List[Any] = False _a : Dict = False _a : List[str] = False def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : Dict = MaskaFormerModelTester(self ) lowercase__ : Tuple = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCAmelCase__( self ) -> str: lowercase__ , lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[str]: lowercase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def UpperCAmelCase__( self ) -> Any: pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def UpperCAmelCase__( self ) -> str: pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def UpperCAmelCase__( self ) -> Union[str, Any]: pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def UpperCAmelCase__( self ) -> List[Any]: pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def UpperCAmelCase__( self ) -> Union[str, Any]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__( self ) -> str: pass def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[str] = model_class(lowerCamelCase__ ) lowercase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Tuple = [*signature.parameters.keys()] lowercase__ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def UpperCAmelCase__( self ) -> int: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowercase__ : Dict = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Dict: lowercase__ : Optional[int] = (self.model_tester.min_size,) * 2 lowercase__ : Optional[Any] = { """pixel_values""": torch.randn((2, 3, *size) , device=lowerCamelCase__ ), """mask_labels""": torch.randn((2, 10, *size) , device=lowerCamelCase__ ), """class_labels""": torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } lowercase__ : Optional[Any] = self.model_tester.get_config() lowercase__ : str = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) lowercase__ : List[Any] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def UpperCAmelCase__( self ) -> int: lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) lowercase__ : Tuple = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase__( self ) -> str: if not self.model_tester.is_training: return lowercase__ : Tuple = self.all_model_classes[1] lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowercase__ : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() lowercase__ : List[str] = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def UpperCAmelCase__( self ) -> List[str]: lowercase__ : List[Any] = self.all_model_classes[1] lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs() lowercase__ : int = True lowercase__ : Optional[int] = True lowercase__ : Tuple = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() lowercase__ : int = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) lowercase__ : List[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase__ : Any = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowercase__ : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase__ : List[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __snake_case = 1E-4 def _lowerCamelCase ( ): lowercase__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__( self ) -> Dict: return "facebook/mask2former-swin-small-coco-instance" @cached_property def UpperCAmelCase__( self ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def UpperCAmelCase__( self ) -> Tuple: lowercase__ : Dict = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) lowercase__ : Dict = self.default_image_processor lowercase__ : List[Any] = prepare_img() lowercase__ : Optional[int] = image_processor(lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) lowercase__ : Tuple = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): lowercase__ : Optional[Any] = model(**lowerCamelCase__ ) lowercase__ : Tuple = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) lowercase__ : int = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) lowercase__ : List[Any] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase__( self ) -> Any: lowercase__ : Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() lowercase__ : Union[str, Any] = self.default_image_processor lowercase__ : List[str] = prepare_img() lowercase__ : Tuple = image_processor(lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) lowercase__ : Tuple = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): lowercase__ : Any = model(**lowerCamelCase__ ) # masks_queries_logits lowercase__ : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowercase__ : Tuple = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowercase__ : Any = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits lowercase__ : int = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowercase__ : Dict = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase__( self ) -> int: lowercase__ : Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() lowercase__ : int = self.default_image_processor lowercase__ : List[str] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , ) lowercase__ : Union[str, Any] = inputs["""pixel_values"""].to(lowerCamelCase__ ) lowercase__ : str = [el.to(lowerCamelCase__ ) for el in inputs["""mask_labels"""]] lowercase__ : Dict = [el.to(lowerCamelCase__ ) for el in inputs["""class_labels"""]] with torch.no_grad(): lowercase__ : List[Any] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
128
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
128
1
from PIL import Image def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Image: def brightness(__snake_case ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__snake_case ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 __a: str = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
108
def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): return x if y == 0 else greatest_common_divisor(lowerCAmelCase__ , x % y ) def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): return (x * y) // greatest_common_divisor(lowerCAmelCase__ , lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : int = 2_0 ): __a : Union[str, Any] = 1 for i in range(1 , n + 1 ): __a : Dict = lcm(lowerCAmelCase__ , lowerCAmelCase__ ) return g if __name__ == "__main__": print(F"""{solution() = }""")
521
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ =logging.get_logger(__name__) lowerCAmelCase__ ={"vocab_file": "vocab.json", "merges_file": "merges.txt"} lowerCAmelCase__ ={ "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } lowerCAmelCase__ ={ "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _a ( ) -> List[Any]: __SCREAMING_SNAKE_CASE = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __SCREAMING_SNAKE_CASE = bs[:] __SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCAmelCase__ ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE = [chr(UpperCAmelCase__ ) for n in cs] return dict(zip(UpperCAmelCase__ , UpperCAmelCase__ ) ) def _a ( UpperCAmelCase__ ) -> Tuple: __SCREAMING_SNAKE_CASE = set() __SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE = char return pairs class A__( __magic_name__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict="replace" , __SCREAMING_SNAKE_CASE : int="<s>" , __SCREAMING_SNAKE_CASE : Dict="</s>" , __SCREAMING_SNAKE_CASE : Dict="</s>" , __SCREAMING_SNAKE_CASE : int="<s>" , __SCREAMING_SNAKE_CASE : str="<unk>" , __SCREAMING_SNAKE_CASE : Tuple="<pad>" , __SCREAMING_SNAKE_CASE : Union[str, Any]="<mask>" , __SCREAMING_SNAKE_CASE : str=False , **__SCREAMING_SNAKE_CASE : int , ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else bos_token __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else eos_token __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else sep_token __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cls_token __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else unk_token __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( errors=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as vocab_handle: __SCREAMING_SNAKE_CASE = json.load(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE = bytes_to_unicode() __SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as merges_handle: __SCREAMING_SNAKE_CASE = merges_handle.read().split('''\n''' )[1:-1] __SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _a ( self : List[Any] ) -> Any: """simple docstring""" return len(self.encoder ) def _a ( self : Tuple ) -> Tuple: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple ) -> Dict: """simple docstring""" if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE = tuple(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = get_pairs(__SCREAMING_SNAKE_CASE ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE = min(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = bigram __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 while i < len(__SCREAMING_SNAKE_CASE ): try: __SCREAMING_SNAKE_CASE = word.index(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE = tuple(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = new_word if len(__SCREAMING_SNAKE_CASE ) == 1: break else: __SCREAMING_SNAKE_CASE = get_pairs(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = ''' '''.join(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = word return word def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__SCREAMING_SNAKE_CASE ).split(''' ''' ) ) return bpe_tokens def _a ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Tuple ) -> List[Any]: """simple docstring""" return self.decoder.get(__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = ''''''.join(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__SCREAMING_SNAKE_CASE , ensure_ascii=__SCREAMING_SNAKE_CASE ) + '''\n''' ) __SCREAMING_SNAKE_CASE = 0 with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __SCREAMING_SNAKE_CASE = token_index writer.write(''' '''.join(__SCREAMING_SNAKE_CASE ) + '''\n''' ) index += 1 return vocab_file, merge_file def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] __SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self : Optional[int] , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None , __SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _a ( self : Dict , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False , **__SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__SCREAMING_SNAKE_CASE ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE = ''' ''' + text return (text, kwargs)
701
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__: def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : str=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE : Optional[int]=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : int=True , __SCREAMING_SNAKE_CASE : Optional[Any]="relu" , __SCREAMING_SNAKE_CASE : List[str]=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embeddings_size __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = len(__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _a ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModel(config=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A__( __magic_name__ , __magic_name__ , unittest.TestCase ): lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCAmelCase = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[Any]: """simple docstring""" return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def _a ( self : Dict ) -> List[Any]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : List[Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any ): __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , training=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __SCREAMING_SNAKE_CASE = layer_type __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]={} ): __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(__SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict ): if isinstance(__SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) check_equivalence(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) def _a ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _a ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = TFRegNetModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _a ( ) -> Dict: __SCREAMING_SNAKE_CASE = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A__( unittest.TestCase ): @cached_property def _a ( self : List[Any] ) -> str: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass __SCREAMING_SNAKE_CASE = model(**__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # verify the logits __SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 )
690
0
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Any: _lowerCAmelCase : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", """decoder.output_projection.weight""", ] for k in ignore_keys: state_dict.pop(__UpperCAmelCase ,__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase : int = emb.weight.shape _lowerCAmelCase : Dict = nn.Linear(__UpperCAmelCase ,__UpperCAmelCase ,bias=__UpperCAmelCase ) _lowerCAmelCase : List[str] = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : Optional[Any]="facebook/mbart-large-en-ro" ,_lowerCamelCase : List[Any]=False ,_lowerCamelCase : str=False ) -> List[Any]: _lowerCAmelCase : int = torch.load(__UpperCAmelCase ,map_location="""cpu""" )["""model"""] remove_ignore_keys_(__UpperCAmelCase ) _lowerCAmelCase : str = state_dict["""encoder.embed_tokens.weight"""].shape[0] _lowerCAmelCase : Union[str, Any] = MBartConfig.from_pretrained(__UpperCAmelCase ,vocab_size=__UpperCAmelCase ) if mbart_aa and finetuned: _lowerCAmelCase : Optional[Any] = """relu""" _lowerCAmelCase : Optional[int] = state_dict["""decoder.embed_tokens.weight"""] _lowerCAmelCase : Optional[Any] = MBartForConditionalGeneration(__UpperCAmelCase ) model.model.load_state_dict(__UpperCAmelCase ) if finetuned: _lowerCAmelCase : Union[str, Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') _a : Dict = parser.parse_args() _a : Tuple = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
213
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = {} class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' a = "llama" a = ["past_key_values"] def __init__( self : str , _snake_case : str=32000 , _snake_case : Any=4096 , _snake_case : int=11008 , _snake_case : List[str]=32 , _snake_case : Optional[int]=32 , _snake_case : Dict=None , _snake_case : Any="silu" , _snake_case : Optional[int]=2048 , _snake_case : Any=0.02 , _snake_case : List[str]=1e-6 , _snake_case : Union[str, Any]=True , _snake_case : List[Any]=0 , _snake_case : List[Any]=1 , _snake_case : Dict=2 , _snake_case : Tuple=1 , _snake_case : str=False , _snake_case : List[str]=None , **_snake_case : Tuple , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads # for backward compatibility if num_key_value_heads is None: SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = num_key_value_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = rms_norm_eps SCREAMING_SNAKE_CASE__ = pretraining_tp SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , tie_word_embeddings=_snake_case , **_snake_case , ) def lowerCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) SCREAMING_SNAKE_CASE__ = self.rope_scaling.get("type" , _snake_case ) SCREAMING_SNAKE_CASE__ = self.rope_scaling.get("factor" , _snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_snake_case , _snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
159
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _a : """simple docstring""" A = None A = None A = None # sigma(t_i) @classmethod def __a ( cls ): return cls() @dataclass class _a ( __A ): """simple docstring""" A = 42 A = 42 A = 42 class _a ( __A , __A ): """simple docstring""" @property def __a ( self ): return True @register_to_config def __init__( self ,__SCREAMING_SNAKE_CASE = 0.02 ,__SCREAMING_SNAKE_CASE = 100 ,__SCREAMING_SNAKE_CASE = 1.007 ,__SCREAMING_SNAKE_CASE = 80 ,__SCREAMING_SNAKE_CASE = 0.05 ,__SCREAMING_SNAKE_CASE = 50 ,): pass def __a ( self ): return KarrasVeSchedulerState.create() def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = () ): SCREAMING_SNAKE_CASE : Optional[Any] = jnp.arange(0 ,__SCREAMING_SNAKE_CASE )[::-1].copy() SCREAMING_SNAKE_CASE : Union[str, Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__SCREAMING_SNAKE_CASE ,schedule=jnp.array(__SCREAMING_SNAKE_CASE ,dtype=jnp.floataa ) ,timesteps=__SCREAMING_SNAKE_CASE ,) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,): if self.config.s_min <= sigma <= self.config.s_max: SCREAMING_SNAKE_CASE : Optional[Any] = min(self.config.s_churn / state.num_inference_steps ,2**0.5 - 1 ) else: SCREAMING_SNAKE_CASE : int = 0 # sample eps ~ N(0, S_noise^2 * I) SCREAMING_SNAKE_CASE : List[Any] = random.split(__SCREAMING_SNAKE_CASE ,num=1 ) SCREAMING_SNAKE_CASE : Tuple = self.config.s_noise * random.normal(key=__SCREAMING_SNAKE_CASE ,shape=sample.shape ) SCREAMING_SNAKE_CASE : Optional[int] = sigma + gamma * sigma SCREAMING_SNAKE_CASE : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = True ,): SCREAMING_SNAKE_CASE : List[str] = sample_hat + sigma_hat * model_output SCREAMING_SNAKE_CASE : str = (sample_hat - pred_original_sample) / sigma_hat SCREAMING_SNAKE_CASE : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__SCREAMING_SNAKE_CASE ,derivative=__SCREAMING_SNAKE_CASE ,state=__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = True ,): SCREAMING_SNAKE_CASE : Any = sample_prev + sigma_prev * model_output SCREAMING_SNAKE_CASE : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev SCREAMING_SNAKE_CASE : List[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__SCREAMING_SNAKE_CASE ,derivative=__SCREAMING_SNAKE_CASE ,state=__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): raise NotImplementedError()
704
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __UpperCAmelCase = '\\n\n' __UpperCAmelCase = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' __UpperCAmelCase = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def __a ( self ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) ,reference_urls=['https://huggingface.co/docs/transformers/perplexity'] ,) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = 16 ,__SCREAMING_SNAKE_CASE = True ,__SCREAMING_SNAKE_CASE=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": SCREAMING_SNAKE_CASE : Tuple = 'cuda' else: SCREAMING_SNAKE_CASE : Optional[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE : List[str] = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: SCREAMING_SNAKE_CASE : Optional[int] = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" SCREAMING_SNAKE_CASE : int = model.config.max_length - 1 else: SCREAMING_SNAKE_CASE : Union[str, Any] = model.config.max_length SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer( __SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ,padding=__SCREAMING_SNAKE_CASE ,truncation=__SCREAMING_SNAKE_CASE ,max_length=__SCREAMING_SNAKE_CASE ,return_tensors='pt' ,return_attention_mask=__SCREAMING_SNAKE_CASE ,).to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = encodings['input_ids'] SCREAMING_SNAKE_CASE : Dict = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) ,1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) ,2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : List[str] = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 ,len(__SCREAMING_SNAKE_CASE ) ,__SCREAMING_SNAKE_CASE ) ): SCREAMING_SNAKE_CASE : List[str] = min(start_index + batch_size ,len(__SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE : List[str] = encoded_texts[start_index:end_index] SCREAMING_SNAKE_CASE : Any = attn_masks[start_index:end_index] if add_start_token: SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = torch.cat([bos_tokens_tensor, encoded_batch] ,dim=1 ) SCREAMING_SNAKE_CASE : int = torch.cat( [torch.ones(bos_tokens_tensor.size() ,dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask] ,dim=1 ) SCREAMING_SNAKE_CASE : str = encoded_batch with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ).logits SCREAMING_SNAKE_CASE : int = out_logits[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE : List[Any] = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Any = attn_mask[..., 1:].contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.expa( (loss_fct(shift_logits.transpose(1 ,2 ) ,__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
220
0
import pprint import requests lowercase_ = """https://zenquotes.io/api""" def __UpperCamelCase () -> list: return requests.get(API_ENDPOINT_URL + '/today' ).json() def __UpperCamelCase () -> list: return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": lowercase_ = random_quotes() pprint.pprint(response)
235
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: lowercase__ = [0] * len(_SCREAMING_SNAKE_CASE ) lowercase__ = [] lowercase__ = [1] * len(_SCREAMING_SNAKE_CASE ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(_SCREAMING_SNAKE_CASE ) while queue: lowercase__ = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowercase__ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_SCREAMING_SNAKE_CASE ) print(max(_SCREAMING_SNAKE_CASE ) ) # Adjacency list of Graph lowercase_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
235
1
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: """simple docstring""" warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , lowercase_ , ) if isinstance(lowercase_ , torch.Tensor ): return image elif isinstance(lowercase_ , PIL.Image.Image ): A__ = [image] if isinstance(image[0] , PIL.Image.Image ): A__ , A__ = image[0].size A__ , A__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 A__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] A__ = np.concatenate(lowercase_ , axis=0 ) A__ = np.array(lowercase_ ).astype(np.floataa ) / 2_55.0 A__ = image.transpose(0 , 3 , 1 , 2 ) A__ = 2.0 * image - 1.0 A__ = torch.from_numpy(lowercase_ ) elif isinstance(image[0] , torch.Tensor ): A__ = torch.cat(lowercase_ , dim=0 ) return image def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" if isinstance(lowercase_ , torch.Tensor ): return mask elif isinstance(lowercase_ , PIL.Image.Image ): A__ = [mask] if isinstance(mask[0] , PIL.Image.Image ): A__ , A__ = mask[0].size A__ , A__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 A__ = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] A__ = np.concatenate(lowercase_ , axis=0 ) A__ = mask.astype(np.floataa ) / 2_55.0 A__ = 0 A__ = 1 A__ = torch.from_numpy(lowercase_ ) elif isinstance(mask[0] , torch.Tensor ): A__ = torch.cat(lowercase_ , dim=0 ) return mask class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 def __init__( self : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict) ->str: '''simple docstring''' super().__init__() self.register_modules(unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase__ : Union[torch.Tensor, PIL.Image.Image] , UpperCAmelCase__ : Union[torch.Tensor, PIL.Image.Image] , UpperCAmelCase__ : int = 250 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' A__ = image A__ = _preprocess_image(UpperCAmelCase__) A__ = original_image.to(device=self.device , dtype=self.unet.dtype) A__ = _preprocess_mask(UpperCAmelCase__) A__ = mask_image.to(device=self.device , dtype=self.unet.dtype) A__ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCAmelCase__ , UpperCAmelCase__) and len(UpperCAmelCase__) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(UpperCAmelCase__)}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""") A__ = original_image.shape A__ = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , self.device) A__ = eta A__ = self.scheduler.timesteps[0] + 1 A__ = generator[0] if isinstance(UpperCAmelCase__ , UpperCAmelCase__) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): if t < t_last: # predict the noise residual A__ = self.unet(UpperCAmelCase__ , UpperCAmelCase__).sample # compute previous image: x_t -> x_t-1 A__ = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__).prev_sample else: # compute the reverse: x_t-1 -> x_t A__ = self.scheduler.undo_step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) A__ = t A__ = (image / 2 + 0.5).clamp(0 , 1) A__ = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": A__ = self.numpy_to_pil(UpperCAmelCase__) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase__)
177
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _lowerCamelCase : Any = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) UpperCAmelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase__ = field( default=UpperCAmelCase__ , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A__ , A__ , A__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , lowercase_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ = training_args.get_process_log_level() logger.setLevel(lowercase_ ) datasets.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.set_verbosity(lowercase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. A__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: A__ = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: A__ = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A__ = train_dataset.features['''label'''].names if training_args.do_eval: A__ = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A__ = eval_dataset.features['''label'''].names if training_args.do_predict: A__ = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) A__ = predict_dataset.features['''label'''].names # Labels A__ = len(lowercase_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase_ , idalabel={str(lowercase_ ): label for i, label in enumerate(lowercase_ )} , labelaid={label: i for i, label in enumerate(lowercase_ )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowercase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: A__ = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch A__ = False def preprocess_function(lowercase_ ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=lowercase_ , max_length=data_args.max_seq_length , truncation=lowercase_ , ) if training_args.do_train: if data_args.max_train_samples is not None: A__ = min(len(lowercase_ ) , data_args.max_train_samples ) A__ = train_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): A__ = train_dataset.map( lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowercase_ ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: A__ = min(len(lowercase_ ) , data_args.max_eval_samples ) A__ = eval_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): A__ = eval_dataset.map( lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: A__ = min(len(lowercase_ ) , data_args.max_predict_samples ) A__ = predict_dataset.select(range(lowercase_ ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): A__ = predict_dataset.map( lowercase_ , batched=lowercase_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function A__ = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase_ ): A__ = p.predictions[0] if isinstance(p.predictions , lowercase_ ) else p.predictions A__ = np.argmax(lowercase_ , axis=1 ) return metric.compute(predictions=lowercase_ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: A__ = default_data_collator elif training_args.fpaa: A__ = DataCollatorWithPadding(lowercase_ , pad_to_multiple_of=8 ) else: A__ = None # Initialize our Trainer A__ = Trainer( model=lowercase_ , args=lowercase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase_ , tokenizer=lowercase_ , data_collator=lowercase_ , ) # Training if training_args.do_train: A__ = None if training_args.resume_from_checkpoint is not None: A__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ = last_checkpoint A__ = trainer.train(resume_from_checkpoint=lowercase_ ) A__ = train_result.metrics A__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase_ ) ) A__ = min(lowercase_ , len(lowercase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , lowercase_ ) trainer.save_metrics('''train''' , lowercase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A__ = trainer.evaluate(eval_dataset=lowercase_ ) A__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase_ ) A__ = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics('''eval''' , lowercase_ ) trainer.save_metrics('''eval''' , lowercase_ ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) A__ , A__ , A__ = trainer.predict(lowercase_ , metric_key_prefix='''predict''' ) A__ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowercase_ ) ) A__ = min(lowercase_ , len(lowercase_ ) ) trainer.log_metrics('''predict''' , lowercase_ ) trainer.save_metrics('''predict''' , lowercase_ ) A__ = np.argmax(lowercase_ , axis=1 ) A__ = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(lowercase_ , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(lowercase_ ): A__ = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
177
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if (ksize % 2) == 0: _UpperCAmelCase = ksize + 1 _UpperCAmelCase = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(UpperCamelCase__ ): for x in range(UpperCamelCase__ ): # distance from center _UpperCAmelCase = x - ksize // 2 _UpperCAmelCase = y - ksize // 2 # degree to radiant _UpperCAmelCase = theta / 180 * np.pi _UpperCAmelCase = np.cos(_theta ) _UpperCAmelCase = np.sin(_theta ) # get kernel x _UpperCAmelCase = cos_theta * px + sin_theta * py # get kernel y _UpperCAmelCase = -sin_theta * px + cos_theta * py # fill kernel _UpperCAmelCase = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __magic_name__ = imread('''../image_data/lena.jpg''') # turn image in gray scale value __magic_name__ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __magic_name__ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: __magic_name__ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __magic_name__ = out / out.max() * 2_55 __magic_name__ = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
657
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _lowerCAmelCase ( lowerCamelCase , unittest.TestCase ): lowercase_ : Tuple = BarthezTokenizer lowercase_ : List[Any] = BarthezTokenizerFast lowercase_ : Dict = True lowercase_ : int = True def _a ( self ) -> Any: super().setUp() _UpperCAmelCase = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=a_ ) _UpperCAmelCase = tokenizer def _a ( self ) -> List[Any]: _UpperCAmelCase = "<pad>" _UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def _a ( self ) -> List[Any]: _UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(a_ ) , 101122 ) def _a ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def _a ( self ) -> List[Any]: _UpperCAmelCase = ["A long paragraph for summarization.", "Another paragraph for summarization."] _UpperCAmelCase = [0, 57, 3018, 70307, 91, 2] _UpperCAmelCase = self.tokenizer( a_ , max_length=len(a_ ) , padding=a_ , truncation=a_ , return_tensors="pt" ) self.assertIsInstance(a_ , a_ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) _UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(a_ , a_ ) def _a ( self ) -> str: if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = "I was born in 92000, and this is falsé." _UpperCAmelCase = tokenizer.tokenize(a_ ) _UpperCAmelCase = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) _UpperCAmelCase = tokenizer.encode(a_ , add_special_tokens=a_ ) _UpperCAmelCase = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(a_ ) _UpperCAmelCase = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) @slow def _a ( self ) -> Dict: # fmt: off _UpperCAmelCase = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. _UpperCAmelCase = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=a_ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=a_ , )
657
1
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : List[str] = None , snake_case_ : str = None ): if start is None: __magic_name__ = 0 if end is None: __magic_name__ = len(_snake_case ) - 1 if start >= end: return __magic_name__ = (start + end) // 2 slowsort(_snake_case , _snake_case , _snake_case ) slowsort(_snake_case , mid + 1 , _snake_case ) if sequence[end] < sequence[mid]: __magic_name__ , __magic_name__ = sequence[mid], sequence[end] slowsort(_snake_case , _snake_case , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
711
def _SCREAMING_SNAKE_CASE ( ): __magic_name__ = [] __magic_name__ = 1 while len(snake_case_ ) < 1E6: constant.append(str(snake_case_ ) ) i += 1 __magic_name__ = ''''''.join(snake_case_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
678
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _UpperCAmelCase ( unittest.TestCase ): a__ : List[str] = MODEL_FOR_CAUSAL_LM_MAPPING a__ : Optional[int] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def a ( self : Tuple ): __UpperCAmelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output __UpperCAmelCase = text_generator('''This is a test''' , do_sample=_lowercase ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) __UpperCAmelCase = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _lowercase , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) __UpperCAmelCase = text_generator('''This is a test''' , do_sample=_lowercase , num_return_sequences=2 , return_tensors=_lowercase ) self.assertEqual( _lowercase , [ {'''generated_token_ids''': ANY(_lowercase )}, {'''generated_token_ids''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = text_generator.model.config.eos_token_id __UpperCAmelCase = '''<pad>''' __UpperCAmelCase = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_lowercase , num_return_sequences=2 , batch_size=2 , return_tensors=_lowercase , ) self.assertEqual( _lowercase , [ [ {'''generated_token_ids''': ANY(_lowercase )}, {'''generated_token_ids''': ANY(_lowercase )}, ], [ {'''generated_token_ids''': ANY(_lowercase )}, {'''generated_token_ids''': ANY(_lowercase )}, ], ] , ) @require_tf def a ( self : Dict ): __UpperCAmelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output __UpperCAmelCase = text_generator('''This is a test''' , do_sample=_lowercase ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) __UpperCAmelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def a ( self : Any , _lowercase : str , _lowercase : Optional[int] , _lowercase : str ): __UpperCAmelCase = TextGenerationPipeline(model=_lowercase , tokenizer=_lowercase ) return text_generator, ["This is a test", "Another test"] def a ( self : List[Any] ): __UpperCAmelCase = '''Hello I believe in''' __UpperCAmelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) __UpperCAmelCase = text_generator(_lowercase ) self.assertEqual( _lowercase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) __UpperCAmelCase = text_generator(_lowercase , stop_sequence=''' fe''' ) self.assertEqual(_lowercase , [{'''generated_text''': '''Hello I believe in fe'''}] ) def a ( self : Optional[int] , _lowercase : List[Any] , _lowercase : str ): __UpperCAmelCase = text_generator.model __UpperCAmelCase = text_generator.tokenizer __UpperCAmelCase = text_generator('''This is a test''' ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __UpperCAmelCase = text_generator('''This is a test''' , return_full_text=_lowercase ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __UpperCAmelCase = pipeline(task='''text-generation''' , model=_lowercase , tokenizer=_lowercase , return_full_text=_lowercase ) __UpperCAmelCase = text_generator('''This is a test''' ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) __UpperCAmelCase = text_generator('''This is a test''' , return_full_text=_lowercase ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __UpperCAmelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], ] , ) if text_generator.tokenizer.pad_token is not None: __UpperCAmelCase = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_lowercase ) self.assertEqual( _lowercase , [ [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], [{'''generated_text''': ANY(_lowercase )}, {'''generated_text''': ANY(_lowercase )}], ] , ) with self.assertRaises(_lowercase ): __UpperCAmelCase = text_generator('''test''' , return_full_text=_lowercase , return_text=_lowercase ) with self.assertRaises(_lowercase ): __UpperCAmelCase = text_generator('''test''' , return_full_text=_lowercase , return_tensors=_lowercase ) with self.assertRaises(_lowercase ): __UpperCAmelCase = text_generator('''test''' , return_text=_lowercase , return_tensors=_lowercase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __UpperCAmelCase = text_generator('''''' ) self.assertEqual(_lowercase , [{'''generated_text''': ANY(_lowercase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __UpperCAmelCase = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __UpperCAmelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 5_00 , max_new_tokens=20 ) __UpperCAmelCase = text_generator('''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_lowercase ): text_generator( '''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def a ( self : List[Any] ): import torch # Classic `model_kwargs` __UpperCAmelCase = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __UpperCAmelCase = pipe('''This is a test''' ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) __UpperCAmelCase = pipe('''This is a test''' ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) __UpperCAmelCase = pipe('''This is a test''' ) self.assertEqual( _lowercase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def a ( self : Union[str, Any] ): import torch __UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def a ( self : int ): import torch __UpperCAmelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_lowercase , top_p=0.5 ) def a ( self : int ): __UpperCAmelCase = '''Hello world''' __UpperCAmelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": __UpperCAmelCase = logging.get_logger('''transformers.generation.tf_utils''' ) else: __UpperCAmelCase = logging.get_logger('''transformers.generation.utils''' ) __UpperCAmelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_lowercase ) as cl: __UpperCAmelCase = text_generator(_lowercase , max_length=10 , max_new_tokens=1 ) self.assertIn(_lowercase , cl.out ) # The user only sets one -> no warning with CaptureLogger(_lowercase ) as cl: __UpperCAmelCase = text_generator(_lowercase , max_new_tokens=1 ) self.assertNotIn(_lowercase , cl.out ) with CaptureLogger(_lowercase ) as cl: __UpperCAmelCase = text_generator(_lowercase , max_length=10 ) self.assertNotIn(_lowercase , cl.out )
49
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Dict = "EncodecFeatureExtractor" a__ : Tuple = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , _lowercase : Tuple , _lowercase : str ): super().__init__(_lowercase , _lowercase ) __UpperCAmelCase = self.feature_extractor __UpperCAmelCase = False def a ( self : List[str] , _lowercase : List[Any]=None , _lowercase : List[str]=None , _lowercase : Any=True ): return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase ) def __call__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase ) __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''sampling_rate''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''text''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: __UpperCAmelCase = self.tokenizer(_lowercase , **_lowercase ) if audio is not None: __UpperCAmelCase = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) if audio is None: return inputs elif text is None: return audio_inputs else: __UpperCAmelCase = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: __UpperCAmelCase = audio_inputs['''padding_mask'''] return inputs def a ( self : str , *_lowercase : Dict , **_lowercase : List[str] ): __UpperCAmelCase = kwargs.pop('''audio''' , _lowercase ) __UpperCAmelCase = kwargs.pop('''padding_mask''' , _lowercase ) if len(_lowercase ) > 0: __UpperCAmelCase = args[0] __UpperCAmelCase = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase ) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def a ( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[str] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : List[Any] , _lowercase : Optional = None ): __UpperCAmelCase = to_numpy(_lowercase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = audio_values.shape if padding_mask is None: return list(_lowercase ) __UpperCAmelCase = to_numpy(_lowercase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __UpperCAmelCase = seq_len - padding_mask.shape[-1] __UpperCAmelCase = 1 - self.feature_extractor.padding_value __UpperCAmelCase = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase ) __UpperCAmelCase = audio_values.tolist() for i in range(_lowercase ): __UpperCAmelCase = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __UpperCAmelCase = sliced_audio.reshape(_lowercase , -1 ) return audio_values
49
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : int = logging.get_logger(__name__) __A : Optional[int] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "bit" lowerCamelCase__ = ["preactivation", "bottleneck"] lowerCamelCase__ = ["SAME", "VALID"] def __init__( self : List[str] , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[Any]=64 , __lowerCamelCase : int=[256, 512, 1024, 2048] , __lowerCamelCase : int=[3, 4, 6, 3] , __lowerCamelCase : Tuple="preactivation" , __lowerCamelCase : Any="relu" , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Any , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: SCREAMING_SNAKE_CASE = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = global_padding SCREAMING_SNAKE_CASE = num_groups SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = embedding_dynamic_padding SCREAMING_SNAKE_CASE = output_stride SCREAMING_SNAKE_CASE = width_factor SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
719
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _SCREAMING_SNAKE_CASE : '''simple docstring''' @staticmethod def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ): pass def __a ( A__ : str ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __A : Tuple = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) SCREAMING_SNAKE_CASE = "What is the placebo?" SCREAMING_SNAKE_CASE = [ { "image": load_image(__lowerCamelCase ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ): SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 ) self.assertEqual( __lowerCamelCase , [ [ {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "How many cats are there?" SCREAMING_SNAKE_CASE = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 ) self.assertEqual(__lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : str ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ): SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase ) SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ {"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _snake_case ( self : List[str] ): SCREAMING_SNAKE_CASE = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) SCREAMING_SNAKE_CASE = INVOICE_URL SCREAMING_SNAKE_CASE = "What is the invoice number?" SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _snake_case ( self : List[Any] ): pass
698
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __lowerCAmelCase ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 0.0 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = jnp.floataa def lowerCAmelCase__ ( self : Dict ) -> Optional[Any]: """simple docstring""" snake_case_ = [] snake_case_ = [] for i in range(self.num_layers ): snake_case_ = self.in_channels if i == 0 else self.out_channels snake_case_ = FlaxResnetBlockaD( in_channels=_lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowerCAmelCase ) snake_case_ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_lowerCAmelCase ) snake_case_ = resnets snake_case_ = attentions if self.add_downsample: snake_case_ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=True ) -> Optional[Any]: """simple docstring""" snake_case_ = () for resnet, attn in zip(self.resnets , self.attentions ): snake_case_ = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) snake_case_ = attn(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: snake_case_ = self.downsamplers_a(_lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 0.0 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = jnp.floataa def lowerCAmelCase__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" snake_case_ = [] for i in range(self.num_layers ): snake_case_ = self.in_channels if i == 0 else self.out_channels snake_case_ = FlaxResnetBlockaD( in_channels=_lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowerCAmelCase ) snake_case_ = resnets if self.add_downsample: snake_case_ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=True ) -> Any: """simple docstring""" snake_case_ = () for resnet in self.resnets: snake_case_ = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: snake_case_ = self.downsamplers_a(_lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 0.0 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = jnp.floataa def lowerCAmelCase__ ( self : int ) -> int: """simple docstring""" snake_case_ = [] snake_case_ = [] for i in range(self.num_layers ): snake_case_ = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ = self.prev_output_channel if i == 0 else self.out_channels snake_case_ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowerCAmelCase ) snake_case_ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_lowerCAmelCase ) snake_case_ = resnets snake_case_ = attentions if self.add_upsample: snake_case_ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple=True ) -> List[Any]: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states snake_case_ = res_hidden_states_tuple[-1] snake_case_ = res_hidden_states_tuple[:-1] snake_case_ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case_ = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) snake_case_ = attn(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) if self.add_upsample: snake_case_ = self.upsamplers_a(_lowerCAmelCase ) return hidden_states class __lowerCAmelCase ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 0.0 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = jnp.floataa def lowerCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" snake_case_ = [] for i in range(self.num_layers ): snake_case_ = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case_ = self.prev_output_channel if i == 0 else self.out_channels snake_case_ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowerCAmelCase ) snake_case_ = resnets if self.add_upsample: snake_case_ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int]=True ) -> Tuple: """simple docstring""" for resnet in self.resnets: # pop res hidden states snake_case_ = res_hidden_states_tuple[-1] snake_case_ = res_hidden_states_tuple[:-1] snake_case_ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case_ = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) if self.add_upsample: snake_case_ = self.upsamplers_a(_lowerCAmelCase ) return hidden_states class __lowerCAmelCase ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 0.0 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = 1 _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = jnp.floataa def lowerCAmelCase__ ( self : Any ) -> int: """simple docstring""" # there is always at least one resnet snake_case_ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] snake_case_ = [] for _ in range(self.num_layers ): snake_case_ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_lowerCAmelCase ) snake_case_ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_lowerCAmelCase ) snake_case_ = resnets snake_case_ = attentions def __call__( self : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str=True ) -> Dict: """simple docstring""" snake_case_ = self.resnets[0](_lowerCAmelCase , _lowerCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): snake_case_ = attn(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) snake_case_ = resnet(_lowerCAmelCase , _lowerCAmelCase , deterministic=_lowerCAmelCase ) return hidden_states
283
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE :Union[str, Any] = parse(importlib.metadata.version('''torch''')) def _lowerCAmelCase ( lowerCAmelCase_ :Union[str, Version] , lowerCAmelCase_ :str , lowerCAmelCase_ :str )->Any: '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) snake_case_ = STR_OPERATION_TO_FUNC[operation] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): snake_case_ = parse(importlib.metadata.version(lowerCAmelCase_ ) ) return operation(lowerCAmelCase_ , parse(lowerCAmelCase_ ) ) def _lowerCAmelCase ( lowerCAmelCase_ :str , lowerCAmelCase_ :str )->Any: '''simple docstring''' return compare_versions(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
283
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase__ ( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' a : Tuple = "swin" a : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, __magic_name__=224, __magic_name__=4, __magic_name__=3, __magic_name__=96, __magic_name__=[2, 2, 6, 2], __magic_name__=[3, 6, 12, 24], __magic_name__=7, __magic_name__=4.0, __magic_name__=True, __magic_name__=0.0, __magic_name__=0.0, __magic_name__=0.1, __magic_name__="gelu", __magic_name__=False, __magic_name__=0.02, __magic_name__=1E-5, __magic_name__=32, __magic_name__=None, __magic_name__=None, **__magic_name__, ) -> Any: """simple docstring""" super().__init__(**__magic_name__ ) UpperCamelCase__ : Tuple = image_size UpperCamelCase__ : List[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Optional[Any] = embed_dim UpperCamelCase__ : Dict = depths UpperCamelCase__ : Tuple = len(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = num_heads UpperCamelCase__ : Union[str, Any] = window_size UpperCamelCase__ : Tuple = mlp_ratio UpperCamelCase__ : Dict = qkv_bias UpperCamelCase__ : str = hidden_dropout_prob UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ : int = drop_path_rate UpperCamelCase__ : str = hidden_act UpperCamelCase__ : List[str] = use_absolute_embeddings UpperCamelCase__ : List[Any] = layer_norm_eps UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Tuple = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ : Optional[Any] = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) ) UpperCamelCase__ : int = ['''stem'''] + [f"stage{idx}" for idx in range(1, len(__magic_name__ ) + 1 )] UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__magic_name__, out_indices=__magic_name__, stage_names=self.stage_names ) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Dict = version.parse("1.11" ) @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase__ ( self ) -> float: """simple docstring""" return 1E-4
369
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def lowerCAmelCase_ ( __UpperCAmelCase: Tuple , __UpperCAmelCase: List[Any] , __UpperCAmelCase: Dict ) -> Dict: UpperCamelCase__ : List[str] = state_dict.pop(__UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] = val def lowerCAmelCase_ ( __UpperCAmelCase: Dict ) -> List[str]: UpperCamelCase__ : List[str] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase__ : Optional[Any] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) UpperCamelCase__ : List[str] = value else: UpperCamelCase__ : Optional[int] = value return new_state_dict def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Optional[int]=False ) -> Optional[int]: UpperCamelCase__ : List[str] = '''''' if is_panoptic: UpperCamelCase__ : List[Any] = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase__ : List[Any] = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) UpperCamelCase__ : int = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : Any = in_proj_weight[:256, :] UpperCamelCase__ : List[str] = in_proj_bias[:256] UpperCamelCase__ : Optional[int] = in_proj_weight[256:512, :] UpperCamelCase__ : List[str] = in_proj_bias[256:512] UpperCamelCase__ : Tuple = in_proj_weight[-256:, :] UpperCamelCase__ : List[Any] = in_proj_bias[-256:] def lowerCAmelCase_ ( ) -> int: UpperCamelCase__ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : Optional[int] = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __UpperCAmelCase: Any , __UpperCAmelCase: Any ) -> Optional[int]: UpperCamelCase__ : Tuple = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: UpperCamelCase__ : Optional[Any] = '''resnet101''' if "dc5" in model_name: UpperCamelCase__ : Dict = True UpperCamelCase__ : Union[str, Any] = '''panoptic''' in model_name if is_panoptic: UpperCamelCase__ : Any = 250 else: UpperCamelCase__ : int = 91 UpperCamelCase__ : List[str] = '''huggingface/label-files''' UpperCamelCase__ : List[str] = '''coco-detection-id2label.json''' UpperCamelCase__ : Tuple = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : List[str] = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : Dict = idalabel UpperCamelCase__ : Dict = {v: k for k, v in idalabel.items()} # load image processor UpperCamelCase__ : int = '''coco_panoptic''' if is_panoptic else '''coco_detection''' UpperCamelCase__ : str = ConditionalDetrImageProcessor(format=__UpperCAmelCase ) # prepare image UpperCamelCase__ : Tuple = prepare_img() UpperCamelCase__ : List[str] = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ) UpperCamelCase__ : Union[str, Any] = encoding['''pixel_values'''] logger.info(f"Converting model {model_name}..." ) # load original model from torch hub UpperCamelCase__ : Union[str, Any] = torch.hub.load('''DeppMeng/ConditionalDETR''' , __UpperCAmelCase , pretrained=__UpperCAmelCase ).eval() UpperCamelCase__ : Optional[int] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: UpperCamelCase__ : List[str] = '''conditional_detr.''' + src rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : str = rename_backbone_keys(__UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCAmelCase , is_panoptic=__UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase__ : List[str] = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): UpperCamelCase__ : Tuple = state_dict.pop(__UpperCAmelCase ) UpperCamelCase__ : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCamelCase__ : Any = state_dict.pop(__UpperCAmelCase ) UpperCamelCase__ : Dict = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: UpperCamelCase__ : List[Any] = state_dict.pop(__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCamelCase__ : List[str] = state_dict.pop(__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = val # finally, create HuggingFace model and load state dict UpperCamelCase__ : str = ConditionalDetrForSegmentation(__UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() model.push_to_hub(repo_id=__UpperCAmelCase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion UpperCamelCase__ : str = conditional_detr(__UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = model(__UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCAmelCase_ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
369
1
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A = 6378137.0 A = 6356752.314245 A = 6_378_137 def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> float: """simple docstring""" __UpperCAmelCase : Dict = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __UpperCAmelCase : Dict = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) ) __UpperCAmelCase : Optional[int] = atan((1 - flattening) * tan(radians(UpperCamelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __UpperCAmelCase : List[Any] = haversine_distance(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __UpperCAmelCase : str = (b_lata + b_lata) / 2 __UpperCAmelCase : Tuple = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __UpperCAmelCase : Tuple = (sin(UpperCamelCase ) ** 2) * (cos(UpperCamelCase ) ** 2) __UpperCAmelCase : Optional[Any] = cos(sigma / 2 ) ** 2 __UpperCAmelCase : List[Any] = (sigma - sin(UpperCamelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __UpperCAmelCase : Union[str, Any] = (cos(UpperCamelCase ) ** 2) * (sin(UpperCamelCase ) ** 2) __UpperCAmelCase : List[str] = sin(sigma / 2 ) ** 2 __UpperCAmelCase : Union[str, Any] = (sigma + sin(UpperCamelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
77
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = """▁""" _UpperCamelCase = {"""vocab_file""": """sentencepiece.bpe.model""", """monolingual_vocab_file""": """dict.txt"""} _UpperCamelCase = { """vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model""", }, """monolingual_vocab_file""": { """vinai/bartpho-syllable""": """https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt""", }, } _UpperCamelCase = {"""vinai/bartpho-syllable""": 1_0_2_4} class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : int = VOCAB_FILES_NAMES __UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = ['input_ids', 'attention_mask'] def __init__( self , snake_case , snake_case , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case = None , **snake_case , ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token lowerCAmelCase__ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) lowerCAmelCase__ : Union[str, Any] = vocab_file lowerCAmelCase__ : Optional[Any] = monolingual_vocab_file lowerCAmelCase__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCAmelCase__ : Optional[int] = {} lowerCAmelCase__ : int = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(snake_case ) not in self.fairseq_tokens_to_ids: lowerCAmelCase__ : Optional[int] = cnt cnt += 1 with open(snake_case , "r" , encoding="utf-8" ) as f: for line in f.readlines(): lowerCAmelCase__ : Union[str, Any] = line.strip().split()[0] lowerCAmelCase__ : List[str] = len(self.fairseq_tokens_to_ids ) if str(snake_case ) not in self.fairseq_tokens_to_ids: lowerCAmelCase__ : int = len(self.fairseq_tokens_to_ids ) lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" lowerCAmelCase__ : List[Any] = self.__dict__.copy() lowerCAmelCase__ : str = None lowerCAmelCase__ : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , snake_case ): """simple docstring""" lowerCAmelCase__ : Any = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase__ : Any = {} lowerCAmelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : Any = [self.cls_token_id] lowerCAmelCase__ : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = None , snake_case = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = None ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return len(self.fairseq_ids_to_tokens ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" return self.sp_model.encode(snake_case , out_type=snake_case ) def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" return self.fairseq_ids_to_tokens[index] def SCREAMING_SNAKE_CASE_ ( self , snake_case ): """simple docstring""" lowerCAmelCase__ : List[str] = "".join(snake_case ).replace(snake_case , " " ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = None ): """simple docstring""" if not os.path.isdir(snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : List[str] = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ : Optional[Any] = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , "wb" ) as fi: lowerCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(snake_case ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( snake_case ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , snake_case ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(snake_case , "w" , encoding="utf-8" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F"""{str(snake_case )} \n""" ) return out_vocab_file, out_monolingual_vocab_file
453
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ ( self : str ): __lowercase : Dict = 1 __lowercase : Any = 3 __lowercase : Dict = (32, 32) __lowercase : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_snake_case ) return image @property def snake_case_ ( self : List[Any] ): torch.manual_seed(0 ) __lowercase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def snake_case_ ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def snake_case_ ( self : Any ): torch.manual_seed(0 ) __lowercase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_snake_case ) @property def snake_case_ ( self : Optional[int] ): def extract(*_snake_case : str , **_snake_case : Dict ): class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] ): __lowercase : List[str] = torch.ones([0] ) def snake_case_ ( self : Union[str, Any] , _snake_case : Tuple ): self.pixel_values.to(_snake_case ) return self return Out() return extract def snake_case_ ( self : Optional[Any] ): __lowercase : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase : Optional[int] = self.dummy_cond_unet __lowercase : Tuple = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) __lowercase : Optional[int] = self.dummy_vae __lowercase : Dict = self.dummy_text_encoder __lowercase : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk __lowercase : Dict = StableDiffusionPipeline( unet=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , safety_checker=_snake_case , feature_extractor=self.dummy_extractor , ) __lowercase : Optional[Any] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) __lowercase : List[str] = '''A painting of a squirrel eating a burger''' __lowercase : Tuple = torch.Generator(device=_snake_case ).manual_seed(0 ) __lowercase : Optional[Any] = sd_pipe([prompt] , generator=_snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) __lowercase : Optional[Any] = output.images __lowercase : Union[str, Any] = torch.Generator(device=_snake_case ).manual_seed(0 ) __lowercase : List[str] = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=_snake_case , )[0] __lowercase : List[Any] = image[0, -3:, -3:, -1] __lowercase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase : int = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self : Tuple ): __lowercase : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowercase : int = self.dummy_cond_unet __lowercase : Union[str, Any] = PNDMScheduler(skip_prk_steps=_snake_case ) __lowercase : Tuple = self.dummy_vae __lowercase : Optional[int] = self.dummy_text_encoder __lowercase : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk __lowercase : Optional[int] = StableDiffusionPipeline( unet=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , safety_checker=_snake_case , feature_extractor=self.dummy_extractor , ) __lowercase : Optional[Any] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) __lowercase : Union[str, Any] = '''A painting of a squirrel eating a burger''' __lowercase : List[str] = torch.Generator(device=_snake_case ).manual_seed(0 ) __lowercase : Tuple = sd_pipe([prompt] , generator=_snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) __lowercase : Union[str, Any] = output.images __lowercase : str = torch.Generator(device=_snake_case ).manual_seed(0 ) __lowercase : List[Any] = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=_snake_case , )[0] __lowercase : Union[str, Any] = image[0, -3:, -3:, -1] __lowercase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase : Tuple = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self : Optional[int] ): __lowercase : Optional[int] = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=_snake_case ) assert isinstance(_snake_case , _snake_case ) assert isinstance(pipe.scheduler , _snake_case ) assert pipe.safety_checker is None __lowercase : Dict = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_snake_case ) __lowercase : int = StableDiffusionPipeline.from_pretrained(_snake_case ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowercase : Union[str, Any] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def snake_case_ ( self : Tuple ): __lowercase : Any = self.dummy_cond_unet __lowercase : Union[str, Any] = PNDMScheduler(skip_prk_steps=_snake_case ) __lowercase : Union[str, Any] = self.dummy_vae __lowercase : Union[str, Any] = self.dummy_text_encoder __lowercase : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 __lowercase : Union[str, Any] = unet.half() __lowercase : Dict = vae.half() __lowercase : Optional[Any] = bert.half() # make sure here that pndm scheduler skips prk __lowercase : Any = StableDiffusionPipeline( unet=_snake_case , scheduler=_snake_case , vae=_snake_case , text_encoder=_snake_case , tokenizer=_snake_case , safety_checker=_snake_case , feature_extractor=self.dummy_extractor , ) __lowercase : Union[str, Any] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) __lowercase : Tuple = '''A painting of a squirrel eating a burger''' __lowercase : str = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self : Optional[int] ): __lowercase : List[Any] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=_snake_case ) __lowercase : int = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __lowercase : List[str] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) __lowercase : int = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) __lowercase : Any = 40_0366_0346 __lowercase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) __lowercase : int = torch.manual_seed(_snake_case ) __lowercase : Optional[Any] = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=_snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __lowercase : Dict = output.images __lowercase : Optional[int] = image[0, -3:, -3:, -1] __lowercase : Any = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __lowercase : Tuple = torch.manual_seed(_snake_case ) __lowercase : Union[str, Any] = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=_snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowercase : Tuple = output.images __lowercase : Optional[int] = image[0, -3:, -3:, -1] __lowercase : int = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self : Tuple ): __lowercase : Tuple = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=_snake_case ) __lowercase : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __lowercase : Any = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) __lowercase : Optional[int] = '''padme amidala taking a bath artwork, safe for work, no nudity''' __lowercase : Union[str, Any] = 27_3497_1755 __lowercase : str = 7 __lowercase : Optional[Any] = torch.manual_seed(_snake_case ) __lowercase : Tuple = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=_snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __lowercase : Dict = output.images __lowercase : List[Any] = image[0, -3:, -3:, -1] __lowercase : Union[str, Any] = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __lowercase : List[Any] = torch.manual_seed(_snake_case ) __lowercase : str = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=_snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowercase : List[str] = output.images __lowercase : Any = image[0, -3:, -3:, -1] __lowercase : Optional[Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self : Union[str, Any] ): __lowercase : int = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) __lowercase : Dict = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) __lowercase : Any = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) __lowercase : Optional[Any] = 10_4435_5234 __lowercase : Tuple = 12 __lowercase : List[Any] = torch.manual_seed(_snake_case ) __lowercase : Any = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=_snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) __lowercase : Tuple = output.images __lowercase : List[str] = image[0, -3:, -3:, -1] __lowercase : int = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __lowercase : Tuple = torch.manual_seed(_snake_case ) __lowercase : Union[str, Any] = sd_pipe( [prompt] , generator=_snake_case , guidance_scale=_snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowercase : Union[str, Any] = output.images __lowercase : Optional[Any] = image[0, -3:, -3:, -1] __lowercase : Dict = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
284
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __lowerCAmelCase : """simple docstring""" @staticmethod def snake_case_ ( *_snake_case : Union[str, Any] , **_snake_case : str ): pass def UpperCAmelCase_ ( __lowerCAmelCase ) -> Union[str, Any]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __lowerCAmelCase : Dict = ( "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png" ) @is_pipeline_test @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : int = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def snake_case_ ( self : List[Any] , _snake_case : Any , _snake_case : Dict , _snake_case : Any ): __lowercase : List[str] = pipeline( '''document-question-answering''' , model=_snake_case , tokenizer=_snake_case , image_processor=_snake_case ) __lowercase : int = INVOICE_URL __lowercase : Optional[int] = list(zip(*apply_tesseract(load_image(_snake_case ) , _snake_case , '''''' ) ) ) __lowercase : List[str] = '''What is the placebo?''' __lowercase : Tuple = [ { '''image''': load_image(_snake_case ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def snake_case_ ( self : List[str] , _snake_case : int , _snake_case : List[Any] ): __lowercase : Optional[Any] = dqa_pipeline(_snake_case , top_k=2 ) self.assertEqual( _snake_case , [ [ {'''score''': ANY(_snake_case ), '''answer''': ANY(_snake_case ), '''start''': ANY(_snake_case ), '''end''': ANY(_snake_case )}, {'''score''': ANY(_snake_case ), '''answer''': ANY(_snake_case ), '''start''': ANY(_snake_case ), '''end''': ANY(_snake_case )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def snake_case_ ( self : Optional[int] ): __lowercase : List[str] = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __lowercase : Any = INVOICE_URL __lowercase : str = '''How many cats are there?''' __lowercase : Optional[int] = [ {'''score''': 0.00_01, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.00_01, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __lowercase : Optional[Any] = dqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual(nested_simplify(_snake_case , decimals=4 ) , _snake_case ) __lowercase : Optional[Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(_snake_case , decimals=4 ) , _snake_case ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase : Optional[int] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __lowercase : str = dqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual(_snake_case , [] ) # We can optionnally pass directly the words and bounding boxes __lowercase : List[Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __lowercase : Dict = [] __lowercase : List[str] = [] __lowercase : Tuple = dqa_pipeline(image=_snake_case , question=_snake_case , words=_snake_case , boxes=_snake_case , top_k=2 ) self.assertEqual(_snake_case , [] ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case_ ( self : int ): __lowercase : List[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __lowercase : List[str] = INVOICE_URL __lowercase : Optional[Any] = '''What is the invoice number?''' __lowercase : int = dqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'''score''': 0.99_44, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.00_09, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowercase : Union[str, Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'''score''': 0.99_44, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.00_09, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowercase : List[str] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'''score''': 0.99_44, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.00_09, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def snake_case_ ( self : int ): __lowercase : Optional[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __lowercase : Union[str, Any] = INVOICE_URL __lowercase : Any = '''What is the invoice number?''' __lowercase : Any = dqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'''score''': 0.99_74, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.99_48, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowercase : Dict = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'''score''': 0.99_74, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.99_48, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowercase : List[Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'''score''': 0.99_74, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.99_48, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def snake_case_ ( self : str ): __lowercase : List[Any] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=_snake_case ) __lowercase : Union[str, Any] = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=_snake_case , revision='''3dc6de3''' , ) __lowercase : Tuple = INVOICE_URL __lowercase : Any = '''What is the invoice number?''' __lowercase : Optional[Any] = dqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __lowercase : List[Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __lowercase : int = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __lowercase : Union[str, Any] = list(zip(*apply_tesseract(load_image(_snake_case ) , _snake_case , '''''' ) ) ) # This model should also work if `image` is set to None __lowercase : Union[str, Any] = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def snake_case_ ( self : List[str] ): __lowercase : Optional[int] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=_snake_case ) __lowercase : List[str] = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=_snake_case , revision='''3dc6de3''' , max_seq_len=50 , ) __lowercase : Tuple = INVOICE_URL __lowercase : Optional[int] = '''What is the invoice number?''' __lowercase : Any = dqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'''score''': 0.99_99, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.99_98, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __lowercase : Any = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ [ {'''score''': 0.99_99, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.99_98, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __lowercase : int = list(zip(*apply_tesseract(load_image(_snake_case ) , _snake_case , '''''' ) ) ) # This model should also work if `image` is set to None __lowercase : Tuple = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_snake_case , decimals=4 ) , [ {'''score''': 0.99_99, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.99_98, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def snake_case_ ( self : List[Any] ): __lowercase : int = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __lowercase : List[Any] = INVOICE_URL __lowercase : List[Any] = '''What is the invoice number?''' __lowercase : int = dqa_pipeline(image=_snake_case , question=_snake_case , top_k=2 ) self.assertEqual(nested_simplify(_snake_case , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def snake_case_ ( self : int ): pass
284
1
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 a_ = sys.version_info >= (3, 10) def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class __lowercase : """simple docstring""" _A : int _A : float _A : str _A : bool @dataclass class __lowercase : """simple docstring""" _A : int = 42 _A : str = field(default="""toto""" , metadata={"""help""": """help message"""}) @dataclass class __lowercase : """simple docstring""" _A : bool = False _A : bool = True _A : Optional[bool] = None class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : Optional[Any] = """titi""" _A : Dict = """toto""" class __lowercase ( _UpperCAmelCase): """simple docstring""" _A : int = """titi""" _A : Optional[Any] = """toto""" _A : Optional[Any] = 42 @dataclass class __lowercase : """simple docstring""" _A : BasicEnum = "toto" def __UpperCamelCase (self ): snake_case_ : str = BasicEnum(self.foo ) @dataclass class __lowercase : """simple docstring""" _A : MixedTypeEnum = "toto" def __UpperCamelCase (self ): snake_case_ : Optional[Any] = MixedTypeEnum(self.foo ) @dataclass class __lowercase : """simple docstring""" _A : Optional[int] = None _A : Optional[float] = field(default=_UpperCAmelCase , metadata={"""help""": """help message"""}) _A : Optional[str] = None _A : Optional[List[str]] = list_field(default=[]) _A : Optional[List[int]] = list_field(default=[]) @dataclass class __lowercase : """simple docstring""" _A : List[int] = list_field(default=[]) _A : List[int] = list_field(default=[1, 2, 3]) _A : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) _A : List[float] = list_field(default=[0.1, 0.2, 0.3]) @dataclass class __lowercase : """simple docstring""" _A : List[int] = field() _A : str = field() _A : BasicEnum = field() def __UpperCamelCase (self ): snake_case_ : Dict = BasicEnum(self.required_enum ) @dataclass class __lowercase : """simple docstring""" _A : int _A : "BasicEnum" = field() _A : "Optional[bool]" = None _A : "str" = field(default="""toto""" , metadata={"""help""": """help message"""}) _A : "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""]) if is_python_no_less_than_3_10: @dataclass class __lowercase : """simple docstring""" _A : bool = False _A : bool = True _A : bool | None = None @dataclass class __lowercase : """simple docstring""" _A : int | None = None _A : float | None = field(default=_UpperCAmelCase , metadata={"""help""": """help message"""}) _A : str | None = None _A : list[str] | None = list_field(default=[]) _A : list[int] | None = list_field(default=[]) class __lowercase ( unittest.TestCase): """simple docstring""" def __UpperCamelCase (self , lowercase__ , lowercase__ ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ : str = {k: v for k, v in vars(lowercase__ ).items() if k != """container"""} snake_case_ : Dict = {k: v for k, v in vars(lowercase__ ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , lowercase__ ) and yy.get("""choices""" , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](lowercase__ ) , yy["""type"""](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Tuple = HfArgumentParser(lowercase__ ) snake_case_ : Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase__ , required=lowercase__ ) expected.add_argument("""--bar""" , type=lowercase__ , required=lowercase__ ) expected.add_argument("""--baz""" , type=lowercase__ , required=lowercase__ ) expected.add_argument("""--flag""" , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs="""?""" ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Dict = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((snake_case_) , ) : str = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def __UpperCamelCase (self ): snake_case_ : Tuple = HfArgumentParser(lowercase__ ) snake_case_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=lowercase__ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowercase__ , help="""help message""" ) self.argparsersEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Tuple = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs="""?""" ) expected.add_argument("""--baz""" , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=lowercase__ , dest="""baz""" ) expected.add_argument("""--opt""" , type=lowercase__ , default=lowercase__ ) snake_case_ : int = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: snake_case_ : Optional[int] = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Tuple = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) snake_case_ : Any = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) snake_case_ : Dict = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) snake_case_ : Dict = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) snake_case_ : Any = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def __UpperCamelCase (self ): snake_case_ : Dict = HfArgumentParser(lowercase__ ) snake_case_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Optional[int] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) snake_case_ : Union[str, Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ : Union[str, Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) snake_case_ : Optional[Any] = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ : Optional[int] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) snake_case_ : int = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def __UpperCamelCase (self ): @dataclass class __lowercase : """simple docstring""" _A : Literal["titi", "toto", 42] = "toto" snake_case_ : Optional[Any] = HfArgumentParser(lowercase__ ) snake_case_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Optional[Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) snake_case_ : List[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) snake_case_ : str = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def __UpperCamelCase (self ): snake_case_ : str = HfArgumentParser(lowercase__ ) snake_case_ : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=lowercase__ ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowercase__ ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : Optional[int] = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ : Dict = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def __UpperCamelCase (self ): snake_case_ : int = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=lowercase__ , type=lowercase__ ) expected.add_argument("""--bar""" , default=lowercase__ , type=lowercase__ , help="""help message""" ) expected.add_argument("""--baz""" , default=lowercase__ , type=lowercase__ ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=lowercase__ ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=lowercase__ ) snake_case_ : Union[str, Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: snake_case_ : Dict = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) snake_case_ : int = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) snake_case_ : List[Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def __UpperCamelCase (self ): snake_case_ : List[Any] = HfArgumentParser(lowercase__ ) snake_case_ : List[Any] = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=lowercase__ , required=lowercase__ ) expected.add_argument("""--required_str""" , type=lowercase__ , required=lowercase__ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = HfArgumentParser(lowercase__ ) snake_case_ : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowercase__ , required=lowercase__ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowercase__ , ) expected.add_argument("""--opt""" , type=lowercase__ , default=lowercase__ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowercase__ , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : str = HfArgumentParser(lowercase__ ) snake_case_ : int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } snake_case_ : str = parser.parse_dict(lowercase__ )[0] snake_case_ : List[Any] = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Optional[int] = HfArgumentParser(lowercase__ ) snake_case_ : Optional[Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[str] = HfArgumentParser(lowercase__ ) snake_case_ : Any = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : Dict = os.path.join(lowercase__ , """temp_json""" ) os.mkdir(lowercase__ ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(lowercase__ , lowercase__ ) snake_case_ : List[Any] = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] snake_case_ : Optional[int] = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : List[Any] = HfArgumentParser(lowercase__ ) snake_case_ : Dict = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ : List[str] = os.path.join(lowercase__ , """temp_yaml""" ) os.mkdir(lowercase__ ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(lowercase__ , lowercase__ ) snake_case_ : Optional[Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] snake_case_ : Union[str, Any] = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCamelCase (self ): snake_case_ : Tuple = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
480
"""simple docstring""" from math import factorial def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int = 2_0 ): """simple docstring""" snake_case_ : int = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ : Tuple = n // 2 return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: a_ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
480
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowercase ( a__ ): _lowerCAmelCase = 42 _lowerCAmelCase = 42 def __init__( self : List[str] , lowercase__ : UNetaDModel , lowercase__ : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=lowercase__ , scheduler=lowercase__ ) @torch.no_grad() def __call__( self : List[Any] , lowercase__ : int = 1 , lowercase__ : int = 2_0_0_0 , lowercase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase__ : Optional[str] = "pil" , lowercase__ : bool = True , **lowercase__ : Dict , ): a_ = self.unet.config.sample_size a_ = (batch_size, 3, img_size, img_size) a_ = self.unet a_ = randn_tensor(lowercase__ , generator=lowercase__ ) * self.scheduler.init_noise_sigma a_ = sample.to(self.device ) self.scheduler.set_timesteps(lowercase__ ) self.scheduler.set_sigmas(lowercase__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): a_ = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): a_ = self.unet(lowercase__ , lowercase__ ).sample a_ = self.scheduler.step_correct(lowercase__ , lowercase__ , generator=lowercase__ ).prev_sample # prediction step a_ = model(lowercase__ , lowercase__ ).sample a_ = self.scheduler.step_pred(lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ ) a_ , a_ = output.prev_sample, output.prev_sample_mean a_ = sample_mean.clamp(0 , 1 ) a_ = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a_ = self.numpy_to_pil(lowercase__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowercase__ )
143
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __lowercase : def __init__( self : int , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any]=1_3 , lowercase__ : int=7 , lowercase__ : Dict=True , lowercase__ : List[Any]=True , lowercase__ : int=True , lowercase__ : Optional[Any]=True , lowercase__ : Union[str, Any]=9_9 , lowercase__ : Any=6_4 , lowercase__ : int=3_2 , lowercase__ : str=5 , lowercase__ : List[str]=4 , lowercase__ : str=3_7 , lowercase__ : Tuple="gelu" , lowercase__ : Any=0.1 , lowercase__ : Any=0.1 , lowercase__ : Dict=5_1_2 , lowercase__ : List[Any]=1_6 , lowercase__ : List[str]=2 , lowercase__ : Dict=0.02 , lowercase__ : List[Any]=3 , lowercase__ : List[Any]=4 , lowercase__ : Optional[int]=None , ): a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = embedding_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = scope def __magic_name__ ( self : List[Any] ): a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length] ) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ = ids_tensor([self.batch_size] , self.num_choices ) a_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Optional[Any] ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def __magic_name__ ( self : List[str] , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : str ): a_ = MegatronBertModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ ) a_ = model(lowercase__ , token_type_ids=lowercase__ ) a_ = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self : Dict , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : int ): a_ = MegatronBertForMaskedLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Union[str, Any] , lowercase__ : Dict , lowercase__ : Dict , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : Dict , lowercase__ : Any , lowercase__ : List[str] ): a_ = MegatronBertForCausalLM(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Union[str, Any] , lowercase__ : str , lowercase__ : int , lowercase__ : str , lowercase__ : int , lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : List[str] ): a_ = MegatronBertForNextSentencePrediction(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self : Tuple , lowercase__ : str , lowercase__ : List[str] , lowercase__ : Tuple , lowercase__ : int , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : int ): a_ = MegatronBertForPreTraining(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , next_sentence_label=lowercase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self : int , lowercase__ : Any , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : int , lowercase__ : List[Any] ): a_ = MegatronBertForQuestionAnswering(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , start_positions=lowercase__ , end_positions=lowercase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : str , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : int , lowercase__ : str , lowercase__ : Tuple , lowercase__ : str , lowercase__ : List[str] ): a_ = self.num_labels a_ = MegatronBertForSequenceClassification(lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[str] , lowercase__ : Dict , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ): a_ = self.num_labels a_ = MegatronBertForTokenClassification(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : str , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : Union[str, Any] ): a_ = self.num_choices a_ = MegatronBertForMultipleChoice(config=lowercase__ ) model.to(lowercase__ ) model.eval() a_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a_ = model( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : List[Any] ): a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( a__ , a__ , unittest.TestCase ): _lowerCAmelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _lowerCAmelCase = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase = True # test_resize_embeddings = False _lowerCAmelCase = False def __magic_name__ ( self : List[Any] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : Any=False ): a_ = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ ) if return_labels: if model_class in get_values(lowercase__ ): a_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase__ ) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase__ ) return inputs_dict def __magic_name__ ( self : Any ): a_ = MegatronBertModelTester(self ) a_ = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7 ) def __magic_name__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def __magic_name__ ( self : Dict ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowercase__ ) def __magic_name__ ( self : List[str] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowercase__ ) def __magic_name__ ( self : Optional[int] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowercase__ ) def __magic_name__ ( self : Union[str, Any] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowercase__ ) def __magic_name__ ( self : Optional[int] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowercase__ ) def __magic_name__ ( self : Union[str, Any] ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowercase__ ) def __magic_name__ ( self : Tuple ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowercase__ ) def __magic_name__ ( self : int ): a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowercase__ ) def UpperCAmelCase__ ( _A ): """simple docstring""" return torch.tensor( _A , dtype=torch.long , device=_A , ) UpperCamelCase__ = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def __magic_name__ ( self : Union[str, Any] ): a_ = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: a_ = os.path.join(os.environ['''MYDIR'''] , lowercase__ ) a_ = MegatronBertModel.from_pretrained(lowercase__ ) model.to(lowercase__ ) model.half() a_ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): a_ = model(lowercase__ )[0] a_ = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , lowercase__ ) a_ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): a_ = output[0, ii, jj] a_ = expected[3 * ii + jj] a_ = '''ii={} jj={} a={} b={}'''.format(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertTrue(math.isclose(lowercase__ , lowercase__ , rel_tol=lowercase__ , abs_tol=lowercase__ ) , msg=lowercase__ )
143
1
def lowercase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowercase = len(_lowerCAmelCase ) __lowercase = [[0] * n for i in range(_lowerCAmelCase )] for i in range(_lowerCAmelCase ): __lowercase = y_points[i] for i in range(2 , _lowerCAmelCase ): for j in range(_lowerCAmelCase , _lowerCAmelCase ): __lowercase = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
639
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" lowercase : Dict = KandinskyInpaintPipeline lowercase : Any = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowercase : Any = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowercase : Any = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase : Dict = False @property def __lowerCamelCase ( self ) -> int: '''simple docstring''' return 32 @property def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return 32 @property def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' return self.time_input_dim @property def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim * 4 @property def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' return 1_00 @property def __lowerCamelCase ( self ) -> int: '''simple docstring''' __UpperCamelCase : Optional[int] = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase : Any = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) __UpperCamelCase : Optional[int] = MultilingualCLIP(__UpperCamelCase ) __UpperCamelCase : int = text_encoder.eval() return text_encoder @property def __lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase : List[Any] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __UpperCamelCase : List[Any] = UNetaDConditionModel(**__UpperCamelCase ) return model @property def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Tuple = self.dummy_text_encoder __UpperCamelCase : Any = self.dummy_tokenizer __UpperCamelCase : Tuple = self.dummy_unet __UpperCamelCase : List[str] = self.dummy_movq __UpperCamelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__UpperCamelCase , set_alpha_to_one=__UpperCamelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=__UpperCamelCase , ) __UpperCamelCase : Dict = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=0 ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : List[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) __UpperCamelCase : Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCamelCase ) # create init_image __UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) __UpperCamelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : Optional[Any] = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert("RGB" ).resize((2_56, 2_56) ) # create mask __UpperCamelCase : Dict = np.ones((64, 64) , dtype=np.floataa ) __UpperCamelCase : List[Any] = 0 if str(__UpperCamelCase ).startswith("mps" ): __UpperCamelCase : int = torch.manual_seed(__UpperCamelCase ) else: __UpperCamelCase : Union[str, Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) __UpperCamelCase : Any = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def __lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' __UpperCamelCase : Any = "cpu" __UpperCamelCase : Any = self.get_dummy_components() __UpperCamelCase : Optional[Any] = self.pipeline_class(**__UpperCamelCase ) __UpperCamelCase : Union[str, Any] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) __UpperCamelCase : int = pipe(**self.get_dummy_inputs(__UpperCamelCase ) ) __UpperCamelCase : str = output.images __UpperCamelCase : Optional[int] = pipe( **self.get_dummy_inputs(__UpperCamelCase ) , return_dict=__UpperCamelCase , )[0] __UpperCamelCase : Tuple = image[0, -3:, -3:, -1] __UpperCamelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __UpperCamelCase : Tuple = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def __lowerCamelCase ( self ) -> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __lowerCamelCase ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) __UpperCamelCase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __UpperCamelCase : str = np.ones((7_68, 7_68) , dtype=np.floataa ) __UpperCamelCase : Dict = 0 __UpperCamelCase : Union[str, Any] = "a hat" __UpperCamelCase : Any = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCamelCase ) __UpperCamelCase : Any = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) __UpperCamelCase : Any = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) __UpperCamelCase : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCamelCase , __UpperCamelCase : int = pipe_prior( __UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __UpperCamelCase : List[Any] = pipeline( __UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , image_embeds=__UpperCamelCase , negative_image_embeds=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="np" , ) __UpperCamelCase : List[str] = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase )
327
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( __UpperCAmelCase , unittest.TestCase ): _lowerCamelCase = KandinskyImgaImgPipeline _lowerCamelCase = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] _lowerCamelCase = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] _lowerCamelCase = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _lowerCamelCase = False @property def lowerCAmelCase__ ( self ): return 32 @property def lowerCAmelCase__ ( self ): return 32 @property def lowerCAmelCase__ ( self ): return self.time_input_dim @property def lowerCAmelCase__ ( self ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self ): return 100 @property def lowerCAmelCase__ ( self ): __magic_name__ = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) __magic_name__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) __magic_name__ = MultilingualCLIP(UpperCamelCase_ ) __magic_name__ = text_encoder.eval() return text_encoder @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) __magic_name__ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __magic_name__ = UNetaDConditionModel(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self ): torch.manual_seed(0 ) __magic_name__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self ): __magic_name__ = self.dummy_text_encoder __magic_name__ = self.dummy_tokenizer __magic_name__ = self.dummy_unet __magic_name__ = self.dummy_movq __magic_name__ = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0_0_8_5, '''beta_end''': 0.0_1_2, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __magic_name__ = DDIMScheduler(**UpperCamelCase_ ) __magic_name__ = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=0 ): __magic_name__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __magic_name__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCamelCase_ ) # create init_image __magic_name__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __magic_name__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((256, 256) ) if str(UpperCamelCase_ ).startswith('''mps''' ): __magic_name__ = torch.manual_seed(UpperCamelCase_ ) else: __magic_name__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __magic_name__ = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowerCAmelCase__ ( self ): __magic_name__ = '''cpu''' __magic_name__ = self.get_dummy_components() __magic_name__ = self.pipeline_class(**UpperCamelCase_ ) __magic_name__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __magic_name__ = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __magic_name__ = output.images __magic_name__ = pipe( **self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0] __magic_name__ = image[0, -3:, -3:, -1] __magic_name__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __magic_name__ = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def lowerCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ): __magic_name__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) __magic_name__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __magic_name__ = '''A red cartoon frog, 4k''' __magic_name__ = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase_ ) __magic_name__ = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) __magic_name__ = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) __magic_name__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) __magic_name__ , __magic_name__ = pipe_prior( UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __magic_name__ = pipeline( UpperCamelCase_ , image=UpperCamelCase_ , image_embeds=UpperCamelCase_ , negative_image_embeds=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) __magic_name__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
190
"""simple docstring""" from __future__ import annotations from random import choice def lowercase ( __UpperCamelCase ) -> Any: return choice(__UpperCamelCase ) def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> int: __magic_name__ = random_pivot(__UpperCamelCase ) # partition based on pivot # linear time __magic_name__ = [e for e in lst if e < pivot] __magic_name__ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__UpperCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__UpperCamelCase ) < k - 1: return kth_number(__UpperCamelCase , k - len(__UpperCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
190
1
'''simple docstring''' def A ( UpperCamelCase_ : int , UpperCamelCase_ : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" from timeit import timeit def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> int: if number < 0: raise ValueError("""the value of input must not be negative""" ) _lowerCAmelCase : Dict = 0 while number: number &= number - 1 result += 1 return result def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ) -> int: if number < 0: raise ValueError("""the value of input must not be negative""" ) _lowerCAmelCase : Optional[Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def SCREAMING_SNAKE_CASE ( ) -> None: def do_benchmark(_lowerCamelCase : int ) -> None: _lowerCAmelCase : Dict = """import __main__ as z""" print(f"Benchmark when {number = }:" ) print(f"{get_set_bits_count_using_modulo_operator(_lowerCamelCase ) = }" ) _lowerCAmelCase : List[Any] = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" ,setup=_lowerCamelCase ) print(f"timeit() runs in {timing} seconds" ) print(f"{get_set_bits_count_using_brian_kernighans_algorithm(_lowerCamelCase ) = }" ) _lowerCAmelCase : str = timeit( """z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" ,setup=_lowerCamelCase ,) print(f"timeit() runs in {timing} seconds" ) for number in (25, 37, 58, 0): do_benchmark(_lowerCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
213
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class a_ ( unittest.TestCase ): def __init__( self :List[Any] , _lowercase :Union[str, Any] , _lowercase :Optional[Any]=7 , _lowercase :Tuple=3 , _lowercase :Union[str, Any]=18 , _lowercase :Union[str, Any]=30 , _lowercase :str=400 , _lowercase :Optional[int]=True , _lowercase :List[Any]=None , _lowercase :List[str]=True , _lowercase :Tuple=False , _lowercase :Optional[int]=True , _lowercase :List[str]=True , _lowercase :Optional[Any]=[0.5, 0.5, 0.5] , _lowercase :int=[0.5, 0.5, 0.5] , ) -> List[Any]: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''height''': 18, '''width''': 20} UpperCAmelCase_ = do_thumbnail UpperCAmelCase_ = do_align_axis UpperCAmelCase_ = do_pad UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std def __a ( self :Any) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Union[str, Any] =DonutImageProcessor if is_vision_available() else None def __a ( self :List[str]) -> Union[str, Any]: UpperCAmelCase_ = DonutImageProcessingTester(self) @property def __a ( self :Tuple) -> int: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :List[str]) -> Optional[int]: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''do_thumbnail''')) self.assertTrue(hasattr(_lowercase , '''do_align_long_axis''')) self.assertTrue(hasattr(_lowercase , '''do_pad''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) def __a ( self :Tuple) -> int: UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20}) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42}) # Previous config had dimensions in (width, height) order UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84)) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42}) def __a ( self :int) -> str: pass @is_flaky() def __a ( self :Union[str, Any]) -> Union[str, Any]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def __a ( self :Any) -> List[Any]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def __a ( self :Optional[int]) -> Dict: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
720
import re def A ( __UpperCAmelCase ) -> str: '''simple docstring''' if len(re.findall('''[ATCG]''' , __UpperCAmelCase ) ) != len(__UpperCAmelCase ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
561
0
def __UpperCAmelCase ( __a : str ,__a : str ) -> list: """simple docstring""" _a : Tuple = len(__a ) _a : str = [] for i in range(len(__a ) - pat_len + 1 ): _a : Any = True for j in range(__a ): if s[i + j] != pattern[j]: _a : Optional[int] = False break if match_found: position.append(__a ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
14
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : List[Any] = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
668
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = 'Hello world! cécé herlolip' def lowerCamelCase__ ( A__ : str , A__ : str , A__ : bool ): '''simple docstring''' __lowerCamelCase = FairseqRobertaModel.from_pretrained(A__ ) roberta.eval() # disable dropout __lowerCamelCase = roberta.model.encoder.sentence_encoder __lowerCamelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: __lowerCamelCase = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , A__ ) __lowerCamelCase = XLMRobertaXLForSequenceClassification(A__ ) if classification_head else XLMRobertaXLForMaskedLM(A__ ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCamelCase = roberta_sent_encoder.embed_tokens.weight __lowerCamelCase = roberta_sent_encoder.embed_positions.weight __lowerCamelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __lowerCamelCase = roberta_sent_encoder.layer_norm.weight __lowerCamelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCamelCase = model.roberta.encoder.layer[i] __lowerCamelCase = roberta_sent_encoder.layers[i] __lowerCamelCase = layer.attention __lowerCamelCase = roberta_layer.self_attn_layer_norm.weight __lowerCamelCase = roberta_layer.self_attn_layer_norm.bias # self attention __lowerCamelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __lowerCamelCase = roberta_layer.self_attn.q_proj.weight __lowerCamelCase = roberta_layer.self_attn.q_proj.bias __lowerCamelCase = roberta_layer.self_attn.k_proj.weight __lowerCamelCase = roberta_layer.self_attn.k_proj.bias __lowerCamelCase = roberta_layer.self_attn.v_proj.weight __lowerCamelCase = roberta_layer.self_attn.v_proj.bias # self-attention output __lowerCamelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __lowerCamelCase = roberta_layer.self_attn.out_proj.weight __lowerCamelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __lowerCamelCase = roberta_layer.final_layer_norm.weight __lowerCamelCase = roberta_layer.final_layer_norm.bias # intermediate __lowerCamelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCamelCase = roberta_layer.fca.weight __lowerCamelCase = roberta_layer.fca.bias # output __lowerCamelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCamelCase = roberta_layer.fca.weight __lowerCamelCase = roberta_layer.fca.bias # end of layer if classification_head: __lowerCamelCase = roberta.model.classification_heads["""mnli"""].dense.weight __lowerCamelCase = roberta.model.classification_heads["""mnli"""].dense.bias __lowerCamelCase = roberta.model.classification_heads["""mnli"""].out_proj.weight __lowerCamelCase = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __lowerCamelCase = roberta.model.encoder.lm_head.dense.weight __lowerCamelCase = roberta.model.encoder.lm_head.dense.bias __lowerCamelCase = roberta.model.encoder.lm_head.layer_norm.weight __lowerCamelCase = roberta.model.encoder.lm_head.layer_norm.bias __lowerCamelCase = roberta.model.encoder.lm_head.weight __lowerCamelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCamelCase = roberta.encode(A__ ).unsqueeze(0 ) # batch of size 1 __lowerCamelCase = model(A__ )[0] if classification_head: __lowerCamelCase = roberta.model.classification_heads["""mnli"""](roberta.extract_features(A__ ) ) else: __lowerCamelCase = roberta.model(A__ )[0] print(our_output.shape , their_output.shape ) __lowerCamelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __lowerCamelCase = torch.allclose(A__ , A__ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(A__ ).mkdir(parents=A__ , exist_ok=A__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) UpperCAmelCase_ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
714
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging UpperCAmelCase_ = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] UpperCAmelCase_ = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = ' Hello world! cécé herlolip' UpperCAmelCase_ = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def lowerCamelCase__ ( A__ : Tuple , A__ : Any , A__ : Union[str, Any] ): '''simple docstring''' __lowerCamelCase = dct.pop(A__ ) __lowerCamelCase = val def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = torch.load(A__ , map_location="""cpu""" ) __lowerCamelCase = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = emb.weight.shape __lowerCamelCase = nn.Linear(A__ , A__ , bias=A__ ) __lowerCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : Dict=None ): '''simple docstring''' if not os.path.exists(A__ ): __lowerCamelCase = torch.hub.load("""pytorch/fairseq""" , A__ ).eval() else: __lowerCamelCase = load_xsum_checkpoint(A__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: __lowerCamelCase = checkpoint_path.replace(""".""" , """-""" ) __lowerCamelCase = BartConfig.from_pretrained(A__ ) __lowerCamelCase = bart.encode(A__ ).unsqueeze(0 ) __lowerCamelCase = BartTokenizer.from_pretrained(A__ ).encode(A__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(A__ , A__ ).all(): raise ValueError( f'converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}' ) if checkpoint_path == "bart.large.mnli": __lowerCamelCase = bart.state_dict() remove_ignore_keys_(A__ ) __lowerCamelCase = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(A__ , A__ , A__ ) __lowerCamelCase = BartForSequenceClassification(A__ ).eval() model.load_state_dict(A__ ) __lowerCamelCase = bart.predict("""mnli""" , A__ , return_logits=A__ ) __lowerCamelCase = model(A__ )[0] # logits else: # no classification heads to worry about __lowerCamelCase = bart.model.state_dict() remove_ignore_keys_(A__ ) __lowerCamelCase = state_dict["""decoder.embed_tokens.weight"""] __lowerCamelCase = bart.extract_features(A__ ) if hf_checkpoint_name == "facebook/bart-large": __lowerCamelCase = BartModel(A__ ).eval() model.load_state_dict(A__ ) __lowerCamelCase = model(A__ ).model[0] else: __lowerCamelCase = BartForConditionalGeneration(A__ ).eval() # an existing summarization ckpt model.model.load_state_dict(A__ ) if hasattr(A__ , """lm_head""" ): __lowerCamelCase = make_linear_from_emb(model.model.shared ) __lowerCamelCase = model.model(A__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f'`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) UpperCAmelCase_ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
80
0