code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def __lowerCAmelCase ( __snake_case ): if len(A__ ) < 2: return collection def circle_sort_util(__snake_case , __snake_case , __snake_case ) -> bool: __lowerCAmelCase = False if low == high: return swapped __lowerCAmelCase = low __lowerCAmelCase = high while left < right: if collection[left] > collection[right]: __lowerCAmelCase , __lowerCAmelCase = ( collection[right], collection[left], ) __lowerCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __lowerCAmelCase , __lowerCAmelCase = ( collection[right + 1], collection[left], ) __lowerCAmelCase = True __lowerCAmelCase = low + int((high - low) / 2 ) __lowerCAmelCase = circle_sort_util(A__ , A__ , A__ ) __lowerCAmelCase = circle_sort_util(A__ , mid + 1 , A__ ) return swapped or left_swap or right_swap __lowerCAmelCase = True while is_not_sorted is True: __lowerCAmelCase = circle_sort_util(A__ , 0 , len(A__ ) - 1 ) return collection if __name__ == "__main__": lowerCamelCase : int = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Tuple = [int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
367
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Optional[int] = CpmAntTokenizer A : Optional[int] = False def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" super().setUp() lowercase__ = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) @tooslow def UpperCAmelCase ( self : str) -> Optional[Any]: """simple docstring""" lowercase__ = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b') lowercase__ = '今天天气真好!' lowercase__ = ['今天', '天气', '真', '好', '!'] lowercase__ = tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = '今天天气真好!' lowercase__ = [tokenizer.bos_token] + tokens lowercase__ = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , lowerCAmelCase) lowercase__ = tokenizer.decode(lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase)
622
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __UpperCamelCase( _A : Optional[int] , _A : Union[str, Any] , _A : Optional[int] , _A : Any , _A : Optional[int]=True , _A : List[Any]="pt" ): '''simple docstring''' UpperCAmelCase__ : List[str] = {'''add_prefix_space''': True} if isinstance(_A , _A ) and not line.startswith(''' ''' ) else {} UpperCAmelCase__ : str = padding_side return tokenizer( [line] , max_length=_A , padding='''max_length''' if pad_to_max_length else None , truncation=_A , return_tensors=_A , add_special_tokens=_A , **_A , ) def __UpperCamelCase( _A : Any , _A : Union[str, Any] , _A : str=None , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = input_ids.ne(_A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _lowercase ( lowerCAmelCase ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_="train" ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_="" ,) -> Any: '''simple docstring''' super().__init__() UpperCAmelCase__ : List[str] = Path(lowerCamelCase_ ).joinpath(type_path + '''.source''' ) UpperCAmelCase__ : Optional[int] = Path(lowerCamelCase_ ).joinpath(type_path + '''.target''' ) UpperCAmelCase__ : Tuple = self.get_char_lens(self.src_file ) UpperCAmelCase__ : Union[str, Any] = max_source_length UpperCAmelCase__ : Optional[int] = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' UpperCAmelCase__ : str = tokenizer UpperCAmelCase__ : Optional[int] = prefix if n_obs is not None: UpperCAmelCase__ : Optional[int] = self.src_lens[:n_obs] UpperCAmelCase__ : int = src_lang UpperCAmelCase__ : Dict = tgt_lang def __len__( self ) -> Optional[int]: '''simple docstring''' return len(self.src_lens ) def __getitem__( self ,lowerCamelCase_ ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = index + 1 # linecache starts at 1 UpperCAmelCase__ : Tuple = self.prefix + linecache.getline(str(self.src_file ) ,lowerCamelCase_ ).rstrip('''\n''' ) UpperCAmelCase__ : List[str] = linecache.getline(str(self.tgt_file ) ,lowerCamelCase_ ).rstrip('''\n''' ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,lowerCamelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right UpperCAmelCase__ : int = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,lowerCamelCase_ ) else self.tokenizer ) UpperCAmelCase__ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,lowerCamelCase_ ) else self.tokenizer UpperCAmelCase__ : List[Any] = encode_line(lowerCamelCase_ ,lowerCamelCase_ ,self.max_source_length ,'''right''' ) UpperCAmelCase__ : Dict = encode_line(lowerCamelCase_ ,lowerCamelCase_ ,self.max_target_length ,'''right''' ) UpperCAmelCase__ : Any = source_inputs['''input_ids'''].squeeze() UpperCAmelCase__ : Any = target_inputs['''input_ids'''].squeeze() UpperCAmelCase__ : int = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ ) -> Any: '''simple docstring''' return [len(lowerCamelCase_ ) for x in Path(lowerCamelCase_ ).open().readlines()] def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase__ : List[Any] = torch.stack([x['''input_ids'''] for x in batch] ) UpperCAmelCase__ : int = torch.stack([x['''attention_mask'''] for x in batch] ) UpperCAmelCase__ : List[Any] = torch.stack([x['''decoder_input_ids'''] for x in batch] ) UpperCAmelCase__ : Optional[Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,lowerCamelCase_ ) else self.tokenizer.pad_token_id ) UpperCAmelCase__ : Optional[Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,lowerCamelCase_ ) else self.tokenizer.pad_token_id ) UpperCAmelCase__ : Dict = trim_batch(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase__ : List[str] = trim_batch(lowerCamelCase_ ,lowerCamelCase_ ,attention_mask=lowerCamelCase_ ) UpperCAmelCase__ : str = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch UpperCamelCase__ : int = getLogger(__name__) def __UpperCamelCase( _A : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(_A ) ) def __UpperCamelCase( _A : str ): '''simple docstring''' UpperCAmelCase__ : Dict = get_git_info() save_json(_A , os.path.join(_A , '''git_log.json''' ) ) def __UpperCamelCase( _A : Tuple , _A : Optional[Any] , _A : List[Any]=4 , **_A : Optional[Any] ): '''simple docstring''' with open(_A , '''w''' ) as f: json.dump(_A , _A , indent=_A , **_A ) def __UpperCamelCase( _A : Tuple ): '''simple docstring''' with open(_A ) as f: return json.load(_A ) def __UpperCamelCase( ): '''simple docstring''' UpperCAmelCase__ : int = git.Repo(search_parent_directories=_A ) UpperCAmelCase__ : int = { '''repo_id''': str(_A ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def __UpperCamelCase( _A : Callable , _A : Iterable ): '''simple docstring''' return list(map(_A , _A ) ) def __UpperCamelCase( _A : str , _A : str ): '''simple docstring''' with open(_A , '''wb''' ) as f: return pickle.dump(_A , _A ) def __UpperCamelCase( _A : int ): '''simple docstring''' def remove_articles(_A : int ): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , _A ) def white_space_fix(_A : List[Any] ): return " ".join(text.split() ) def remove_punc(_A : Tuple ): UpperCAmelCase__ : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A : Any ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def __UpperCamelCase( _A : Optional[Any] , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = normalize_answer(_A ).split() UpperCAmelCase__ : str = normalize_answer(_A ).split() UpperCAmelCase__ : str = Counter(_A ) & Counter(_A ) UpperCAmelCase__ : Optional[Any] = sum(common.values() ) if num_same == 0: return 0 UpperCAmelCase__ : Union[str, Any] = 1.0 * num_same / len(_A ) UpperCAmelCase__ : List[Any] = 1.0 * num_same / len(_A ) UpperCAmelCase__ : Dict = (2 * precision * recall) / (precision + recall) return fa def __UpperCamelCase( _A : Dict , _A : Tuple ): '''simple docstring''' return normalize_answer(_A ) == normalize_answer(_A ) def __UpperCamelCase( _A : List[str] , _A : List[str] ): '''simple docstring''' assert len(_A ) == len(_A ) UpperCAmelCase__ : Optional[int] = 0 for hypo, pred in zip(_A , _A ): em += exact_match_score(_A , _A ) if len(_A ) > 0: em /= len(_A ) return {"em": em} def __UpperCamelCase( _A : int ): '''simple docstring''' return model_prefix.startswith('''rag''' ) def __UpperCamelCase( _A : str , _A : Any , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : Any = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead UpperCAmelCase__ : Optional[int] = '''dropout_rate''' for p in extra_params: if getattr(_A , _A , _A ): if not hasattr(_A , _A ) and not hasattr(_A , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(_A ) ) delattr(_A , _A ) continue UpperCAmelCase__ : int = p if hasattr(_A , _A ) else equivalent_param[p] setattr(_A , _A , getattr(_A , _A ) ) delattr(_A , _A ) return hparams, config
709
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : int = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = {'vocab_file': 'vocab.json'} UpperCamelCase__ : Tuple = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } UpperCamelCase__ : List[Any] = {'mgp-str': 27} class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Any = VOCAB_FILES_NAMES UpperCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,lowerCamelCase_ ,lowerCamelCase_="[GO]" ,lowerCamelCase_="[GO]" ,lowerCamelCase_="[s]" ,lowerCamelCase_="[GO]" ,**lowerCamelCase_ ) -> str: '''simple docstring''' super().__init__( unk_token=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,**lowerCamelCase_ ,) with open(lowerCamelCase_ ,encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase__ : Optional[Any] = json.load(lowerCamelCase_ ) UpperCAmelCase__ : Any = {v: k for k, v in self.vocab.items()} @property def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return len(self.vocab ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return dict(self.vocab ,**self.added_tokens_encoder ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Any: '''simple docstring''' UpperCAmelCase__ : List[Any] = [] for s in text: char_tokens.extend(lowerCamelCase_ ) return char_tokens def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> str: '''simple docstring''' return self.vocab.get(lowerCamelCase_ ,self.vocab.get(self.unk_token ) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Any: '''simple docstring''' return self.decoder.get(lowerCamelCase_ ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCamelCase_ ) ) return UpperCAmelCase__ : Union[str, Any] = os.path.join( lowerCamelCase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(lowerCamelCase_ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + '''\n''' ) return (vocab_file,)
496
0
import os import numpy import onnx def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" A : int = a.name A : Optional[int] = b.name A : Tuple = """""" A : List[Any] = """""" A : Union[str, Any] = a == b A : Optional[Any] = name_a A : List[Any] = name_b return res def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCAmelCase , _lowerCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g , _lowerCAmelCase , _lowerCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , _lowerCAmelCase , _lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" A : str = list(model.graph.initializer ) A : int = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A : int = inits[i].name A : Optional[Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , _lowerCAmelCase , _lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase ) -> List[Any]: """simple docstring""" A : Union[str, Any] = os.path.dirname(_lowerCAmelCase ) A : List[Any] = os.path.basename(_lowerCAmelCase ) A : int = onnx.load(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ) A : str = list(model.graph.initializer ) A : int = set() A : Optional[Any] = {} A : List[Any] = [] A : Optional[int] = 0 for i in range(len(_lowerCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(_lowerCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(_lowerCAmelCase ) dup_set.add(_lowerCAmelCase ) A : List[Any] = inits[j].data_type A : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , _lowerCAmelCase ) total_reduced_size += mem_size A : Optional[Any] = inits[i].name A : str = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCAmelCase ) else: A : Optional[Any] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) A : Optional[int] = sorted(_lowerCAmelCase ) _remove_dup_initializers_from_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A : List[str] = """optimized_""" + model_file_name A : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) onnx.save(_lowerCAmelCase , _lowerCAmelCase ) return new_model
662
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_:Tuple = logging.get_logger(__name__) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False ) -> Any: """simple docstring""" A : Dict = """backbone.""" if is_semantic else """""" A : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', """beit.embeddings.cls_token"""), (f'''{prefix}patch_embed.proj.weight''', """beit.embeddings.patch_embeddings.projection.weight"""), (f'''{prefix}patch_embed.proj.bias''', """beit.embeddings.patch_embeddings.projection.bias"""), (f'''{prefix}pos_embed''', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False ) -> Any: """simple docstring""" for i in range(config.num_hidden_layers ): A : Dict = """backbone.""" if is_semantic else """""" # queries, keys and values A : Union[str, Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A : Tuple = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A : Optional[int] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A : int = in_proj_weight[ : config.hidden_size, : ] A : Any = q_bias A : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A : Tuple = in_proj_weight[ -config.hidden_size :, : ] A : Union[str, Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A : str = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A : Dict = gamma_a A : Dict = gamma_a def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: """simple docstring""" A : List[str] = dct.pop(_lowerCAmelCase ) A : Optional[Any] = val def __UpperCamelCase ( ) -> List[str]: """simple docstring""" A : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" A : Optional[Any] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> str: """simple docstring""" A : Dict = False if """rvlcdip""" in checkpoint_url else True A : Union[str, Any] = BeitConfig(use_absolute_position_embeddings=_lowerCAmelCase , use_mask_token=_lowerCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A : Dict = 1024 A : List[Any] = 4096 A : int = 24 A : int = 16 # labels if "rvlcdip" in checkpoint_url: A : List[Any] = 16 A : List[Any] = """huggingface/label-files""" A : int = """rvlcdip-id2label.json""" A : Dict = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) A : List[str] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} A : int = idalabel A : Union[str, Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A : List[str] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="""cpu""" )["""model"""] A : str = create_rename_keys(_lowerCAmelCase , has_lm_head=_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , has_lm_head=_lowerCAmelCase ) # load HuggingFace model A : Any = BeitForMaskedImageModeling(_lowerCAmelCase ) if has_lm_head else BeitForImageClassification(_lowerCAmelCase ) model.eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image A : Any = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_lowerCAmelCase ) A : int = prepare_img() A : Tuple = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) A : str = encoding["""pixel_values"""] A : Tuple = model(_lowerCAmelCase ) A : Optional[int] = outputs.logits # verify logits A : Tuple = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(_lowerCAmelCase ), "Shape of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: if has_lm_head: A : Any = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: A : List[Any] = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_lowerCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_lowerCAmelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Optional[int] = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) SCREAMING_SNAKE_CASE_:Optional[Any] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
662
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Optional[int] = "sew-d" def __init__( self , __A=32 , __A=768 , __A=12 , __A=12 , __A=3072 , __A=2 , __A=512 , __A=256 , __A=True , __A=True , __A=("p2c", "c2p") , __A="layer_norm" , __A="gelu_python" , __A=0.1 , __A=0.1 , __A=0.1 , __A=0.0 , __A=0.1 , __A=0.02 , __A=1e-7 , __A=1e-5 , __A="group" , __A="gelu" , __A=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __A=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __A=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __A=False , __A=128 , __A=16 , __A=True , __A=0.05 , __A=10 , __A=2 , __A=0.0 , __A=10 , __A=0 , __A="mean" , __A=False , __A=False , __A=256 , __A=0 , __A=1 , __A=2 , **__A , ): """simple docstring""" super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) lowerCamelCase : Optional[int] = hidden_size lowerCamelCase : int = feat_extract_norm lowerCamelCase : str = feat_extract_activation lowerCamelCase : Union[str, Any] = list(__A ) lowerCamelCase : str = list(__A ) lowerCamelCase : Any = list(__A ) lowerCamelCase : Tuple = conv_bias lowerCamelCase : str = num_conv_pos_embeddings lowerCamelCase : Tuple = num_conv_pos_embedding_groups lowerCamelCase : Tuple = len(self.conv_dim ) lowerCamelCase : Optional[Any] = num_hidden_layers lowerCamelCase : Optional[Any] = intermediate_size lowerCamelCase : Dict = squeeze_factor lowerCamelCase : Optional[int] = max_position_embeddings lowerCamelCase : List[Any] = position_buckets lowerCamelCase : Any = share_att_key lowerCamelCase : int = relative_attention lowerCamelCase : int = norm_rel_ebd lowerCamelCase : Any = list(__A ) lowerCamelCase : str = hidden_act lowerCamelCase : int = num_attention_heads lowerCamelCase : Dict = hidden_dropout lowerCamelCase : List[Any] = attention_dropout lowerCamelCase : List[str] = activation_dropout lowerCamelCase : Optional[int] = feat_proj_dropout lowerCamelCase : Dict = final_dropout lowerCamelCase : Any = layer_norm_eps lowerCamelCase : int = feature_layer_norm_eps lowerCamelCase : Dict = initializer_range lowerCamelCase : Tuple = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase : Union[str, Any] = apply_spec_augment lowerCamelCase : Dict = mask_time_prob lowerCamelCase : int = mask_time_length lowerCamelCase : str = mask_time_min_masks lowerCamelCase : Optional[int] = mask_feature_prob lowerCamelCase : List[str] = mask_feature_length lowerCamelCase : Any = mask_feature_min_masks # ctc loss lowerCamelCase : List[str] = ctc_loss_reduction lowerCamelCase : Optional[Any] = ctc_zero_infinity # sequence classification lowerCamelCase : Optional[int] = use_weighted_layer_sum lowerCamelCase : int = classifier_proj_size @property def _snake_case ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
231
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _snake_case = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''BeitFeatureExtractor'''] _snake_case = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
231
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[Any] = logging.get_logger(__name__) _a : Dict = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" A = '''roberta''' def __init__( self , UpperCAmelCase=5_0_2_6_5 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1E-12 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , **UpperCAmelCase , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout class UpperCamelCase_ ( __UpperCamelCase ): """simple docstring""" @property def lowerCamelCase_ ( self ): if self.task == "multiple-choice": __lowerCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __lowerCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
479
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def UpperCamelCase__ ( _A: Tuple ): '''simple docstring''' __lowerCamelCase = VideoMAEConfig() set_architecture_configs(_A , _A ) if "finetuned" not in model_name: __lowerCamelCase = False if "finetuned" in model_name: __lowerCamelCase = """huggingface/label-files""" if "kinetics" in model_name: __lowerCamelCase = 400 __lowerCamelCase = """kinetics400-id2label.json""" elif "ssv2" in model_name: __lowerCamelCase = 174 __lowerCamelCase = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __lowerCamelCase = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) __lowerCamelCase = {int(_A ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} return config def UpperCamelCase__ ( _A: Optional[int] , _A: List[str] ): '''simple docstring''' if "small" in model_name: __lowerCamelCase = 384 __lowerCamelCase = 1536 __lowerCamelCase = 12 __lowerCamelCase = 16 __lowerCamelCase = 12 __lowerCamelCase = 3 __lowerCamelCase = 192 __lowerCamelCase = 768 elif "large" in model_name: __lowerCamelCase = 1024 __lowerCamelCase = 4096 __lowerCamelCase = 24 __lowerCamelCase = 16 __lowerCamelCase = 12 __lowerCamelCase = 8 __lowerCamelCase = 512 __lowerCamelCase = 2048 elif "huge" in model_name: __lowerCamelCase = 1280 __lowerCamelCase = 5120 __lowerCamelCase = 32 __lowerCamelCase = 16 __lowerCamelCase = 12 __lowerCamelCase = 8 __lowerCamelCase = 640 __lowerCamelCase = 2560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def UpperCamelCase__ ( _A: Tuple ): '''simple docstring''' if "encoder." in name: __lowerCamelCase = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __lowerCamelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __lowerCamelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __lowerCamelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __lowerCamelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCamelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __lowerCamelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __lowerCamelCase = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __lowerCamelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __lowerCamelCase = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __lowerCamelCase = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __lowerCamelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __lowerCamelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __lowerCamelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __lowerCamelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __lowerCamelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __lowerCamelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __lowerCamelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowerCamelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowerCamelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __lowerCamelCase = name.replace("""head""" , """classifier""" ) return name def UpperCamelCase__ ( _A: List[str] , _A: Any ): '''simple docstring''' for key in orig_state_dict.copy().keys(): __lowerCamelCase = orig_state_dict.pop(_A ) if key.startswith("""encoder.""" ): __lowerCamelCase = key.replace("""encoder.""" , """""" ) if "qkv" in key: __lowerCamelCase = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __lowerCamelCase = config.decoder_hidden_size __lowerCamelCase = int(key_split[2] ) __lowerCamelCase = """decoder.decoder_layers.""" if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[dim : dim * 2, :] __lowerCamelCase = val[-dim:, :] else: __lowerCamelCase = config.hidden_size __lowerCamelCase = int(key_split[1] ) __lowerCamelCase = """videomae.encoder.layer.""" if "weight" in key: __lowerCamelCase = val[:dim, :] __lowerCamelCase = val[dim : dim * 2, :] __lowerCamelCase = val[-dim:, :] else: __lowerCamelCase = val return orig_state_dict def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __lowerCamelCase = np.load(_A ) return list(_A ) def UpperCamelCase__ ( _A: Dict , _A: Optional[Any] , _A: Tuple , _A: int ): '''simple docstring''' __lowerCamelCase = get_videomae_config(_A ) if "finetuned" in model_name: __lowerCamelCase = VideoMAEForVideoClassification(_A ) else: __lowerCamelCase = VideoMAEForPreTraining(_A ) # download original checkpoint, hosted on Google Drive __lowerCamelCase = """pytorch_model.bin""" gdown.cached_download(_A , _A , quiet=_A ) __lowerCamelCase = torch.load(_A , map_location="""cpu""" ) if "model" in files: __lowerCamelCase = files["""model"""] else: __lowerCamelCase = files["""module"""] __lowerCamelCase = convert_state_dict(_A , _A ) model.load_state_dict(_A ) model.eval() # verify model on basic input __lowerCamelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowerCamelCase = prepare_video() __lowerCamelCase = image_processor(_A , return_tensors="""pt""" ) if "finetuned" not in model_name: __lowerCamelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __lowerCamelCase = torch.load(_A ) __lowerCamelCase = model(**_A ) __lowerCamelCase = outputs.logits __lowerCamelCase = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowerCamelCase = torch.Size([1, 400] ) __lowerCamelCase = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": __lowerCamelCase = torch.Size([1, 174] ) __lowerCamelCase = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": __lowerCamelCase = torch.Size([1, 1408, 1536] ) __lowerCamelCase = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": __lowerCamelCase = torch.Size([1, 1408, 1536] ) __lowerCamelCase = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowerCamelCase = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": __lowerCamelCase = torch.Size([1, 1408, 1536] ) __lowerCamelCase = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowerCamelCase = torch.Size([1, 400] ) __lowerCamelCase = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowerCamelCase = torch.Size([1, 400] ) __lowerCamelCase = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowerCamelCase = torch.Size([1, 400] ) __lowerCamelCase = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": __lowerCamelCase = torch.Size([1, 400] ) __lowerCamelCase = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": __lowerCamelCase = torch.Size([1, 1408, 1536] ) __lowerCamelCase = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowerCamelCase = torch.Size([1, 174] ) __lowerCamelCase = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": __lowerCamelCase = torch.Size([1, 1408, 1536] ) __lowerCamelCase = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowerCamelCase = torch.Size([1, 174] ) __lowerCamelCase = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _A , atol=1e-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , _A , atol=1e-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowerCamelCase = outputs.loss assert torch.allclose(_A , _A , atol=1e-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_A ) model.save_pretrained(_A ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(_A , organization="""nielsr""" ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _a : List[str] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
479
1
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase_ ( _lowercase): snake_case__ = 42 snake_case__ = None def lowercase ( a__ : Union[str, Any] , a__ : int=0.999 , a__ : Tuple="cosine" , ) -> str: if alpha_transform_type == "cosine": def alpha_bar_fn(a__ : str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a__ : Any ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _UpperCamelCase = [] for i in range(a__ ): _UpperCamelCase = i / num_diffusion_timesteps _UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a__ ) / alpha_bar_fn(a__ ) , a__ ) ) return torch.tensor(a__ , dtype=torch.floataa ) class UpperCAmelCase_ ( _lowercase , _lowercase): @register_to_config def __init__( self : Tuple , __UpperCamelCase : int = 1000 , __UpperCamelCase : str = "fixed_small_log" , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[float] = 1.0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : str = "squaredcos_cap_v2" , ) -> List[str]: if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) _UpperCamelCase = betas_for_alpha_bar(__UpperCamelCase ) _UpperCamelCase = 1.0 - self.betas _UpperCamelCase = torch.cumprod(self.alphas , dim=0 ) _UpperCamelCase = torch.tensor(1.0 ) # standard deviation of the initial noise distribution _UpperCamelCase = 1.0 # setable values _UpperCamelCase = None _UpperCamelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase )[::-1].copy() ) _UpperCamelCase = variance_type def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None ) -> torch.FloatTensor: return sample def _UpperCamelCase ( self : List[str] , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None ) -> Optional[Any]: _UpperCamelCase = num_inference_steps _UpperCamelCase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _UpperCamelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) _UpperCamelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[int]=None ) -> List[Any]: if prev_timestep is None: _UpperCamelCase = t - 1 _UpperCamelCase = self.alphas_cumprod[t] _UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _UpperCamelCase = self.betas[t] else: _UpperCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _UpperCamelCase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _UpperCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _UpperCamelCase = torch.log(torch.clamp(__UpperCamelCase , min=1E-20 ) ) _UpperCamelCase = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _UpperCamelCase = variance.log() _UpperCamelCase = beta.log() _UpperCamelCase = (predicted_variance + 1) / 2 _UpperCamelCase = frac * max_log + (1 - frac) * min_log return variance def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: _UpperCamelCase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _UpperCamelCase , _UpperCamelCase = torch.split(__UpperCamelCase , sample.shape[1] , dim=1 ) else: _UpperCamelCase = None # 1. compute alphas, betas if prev_timestep is None: _UpperCamelCase = t - 1 _UpperCamelCase = self.alphas_cumprod[t] _UpperCamelCase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _UpperCamelCase = self.betas[t] _UpperCamelCase = self.alphas[t] else: _UpperCamelCase = 1 - alpha_prod_t / alpha_prod_t_prev _UpperCamelCase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _UpperCamelCase = model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _UpperCamelCase = torch.clamp( __UpperCamelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCamelCase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _UpperCamelCase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _UpperCamelCase = 0 if t > 0: _UpperCamelCase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__UpperCamelCase , device=model_output.device ) _UpperCamelCase = self._get_variance( __UpperCamelCase , predicted_variance=__UpperCamelCase , prev_timestep=__UpperCamelCase , ) if self.variance_type == "fixed_small_log": _UpperCamelCase = variance elif self.variance_type == "learned_range": _UpperCamelCase = (0.5 * variance).exp() else: raise ValueError( F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ''' for the UnCLIPScheduler.''' ) _UpperCamelCase = variance * variance_noise _UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def _UpperCamelCase ( self : List[str] , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : torch.IntTensor , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples _UpperCamelCase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) _UpperCamelCase = timesteps.to(original_samples.device ) _UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 _UpperCamelCase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): _UpperCamelCase = sqrt_alpha_prod.unsqueeze(-1 ) _UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 _UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): _UpperCamelCase = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) _UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
342
"""simple docstring""" from datetime import datetime as dt import os from github import Github UpperCAmelCase = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def lowercase ( ) -> int: _UpperCamelCase = Github(os.environ['''GITHUB_TOKEN'''] ) _UpperCamelCase = g.get_repo('''huggingface/transformers''' ) _UpperCamelCase = repo.get_issues(state='''open''' ) for issue in open_issues: _UpperCamelCase = sorted([comment for comment in issue.get_comments()] , key=lambda a__ : i.created_at , reverse=a__ ) _UpperCamelCase = comments[0] if len(a__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
342
1
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ): snake_case_ = torch.nn.Linear(10 , 10 ) snake_case_ = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ = Accelerator() snake_case_ = accelerator.prepare(UpperCAmelCase_ ) try: pickle.loads(pickle.dumps(UpperCAmelCase_ ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
508
'''simple docstring''' from math import isqrt def __snake_case ( lowercase : int ): snake_case_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowercase , lowercase ): snake_case_ = False return [i for i in range(2 , lowercase ) if is_prime[i]] def __snake_case ( lowercase : int = 10**8 ): snake_case_ = calculate_prime_numbers(max_number // 2 ) snake_case_ = 0 snake_case_ = 0 snake_case_ = len(lowercase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
508
1
"""simple docstring""" import cva import numpy as np class UpperCAmelCase_ : def __init__( self : int , __UpperCamelCase : float , __UpperCamelCase : int ) -> int: if k in (0.0_4, 0.0_6): _UpperCamelCase = k _UpperCamelCase = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : List[Any] ) -> str: return str(self.k ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : str ) -> tuple[cva.Mat, list[list[int]]]: _UpperCamelCase = cva.imread(__UpperCamelCase , 0 ) _UpperCamelCase , _UpperCamelCase = img.shape _UpperCamelCase = [] _UpperCamelCase = img.copy() _UpperCamelCase = cva.cvtColor(__UpperCamelCase , cva.COLOR_GRAY2RGB ) _UpperCamelCase , _UpperCamelCase = np.gradient(__UpperCamelCase ) _UpperCamelCase = dx**2 _UpperCamelCase = dy**2 _UpperCamelCase = dx * dy _UpperCamelCase = 0.0_4 _UpperCamelCase = self.window_size // 2 for y in range(__UpperCamelCase , h - offset ): for x in range(__UpperCamelCase , w - offset ): _UpperCamelCase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCamelCase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCamelCase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _UpperCamelCase = (wxx * wyy) - (wxy**2) _UpperCamelCase = wxx + wyy _UpperCamelCase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
717
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase): def _UpperCamelCase ( self : List[Any] ) -> List[str]: _UpperCamelCase = 0 def _UpperCamelCase ( self : Any ) -> str: _UpperCamelCase = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Any ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] ) -> List[str]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : int ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ).to_dict() config_dict.pop('''image_processor_type''' ) _UpperCamelCase = CLIPImageProcessor(**__UpperCamelCase ) # save in new folder model_config.save_pretrained(__UpperCamelCase ) config.save_pretrained(__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) # make sure private variable is not incorrectly saved _UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) def _UpperCamelCase ( self : List[Any] ) -> List[Any]: with self.assertRaisesRegex( __UpperCamelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''clip-base''' ) def _UpperCamelCase ( self : Dict ) -> Union[str, Any]: with self.assertRaisesRegex( __UpperCamelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase , revision='''aaaaaa''' ) def _UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: with self.assertRaisesRegex( __UpperCamelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def _UpperCamelCase ( self : int ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__UpperCamelCase ): _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__UpperCamelCase ): _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase , trust_remote_code=__UpperCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def _UpperCamelCase ( self : Optional[int] ) -> List[Any]: try: AutoConfig.register('''custom''' , __UpperCamelCase ) AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__UpperCamelCase ): AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase = Path(__UpperCamelCase ) / '''preprocessor_config.json''' _UpperCamelCase = Path(__UpperCamelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__UpperCamelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(__UpperCamelCase , '''w''' ) ) _UpperCamelCase = CustomImageProcessor.from_pretrained(__UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__UpperCamelCase ) _UpperCamelCase = AutoImageProcessor.from_pretrained(__UpperCamelCase ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _UpperCamelCase ( self : List[str] ) -> Optional[Any]: class UpperCAmelCase_ ( _lowercase): snake_case__ = True try: AutoConfig.register('''custom''' , __UpperCamelCase ) AutoImageProcessor.register(__UpperCamelCase , __UpperCamelCase ) # If remote code is not set, the default is to use local _UpperCamelCase = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _UpperCamelCase = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(__UpperCamelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
342
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if config is None: assert isinstance(self.model , __lowerCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) __magic_name__ :Dict = self.model.config else: __magic_name__ :List[Any] = config __magic_name__ :Tuple = data_args __magic_name__ :Any = self.config.tgt_vocab_size if isinstance(self.config , __lowerCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: __magic_name__ :List[Any] = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __magic_name__ :str = label_smoothed_nll_loss def A ( self , __lowerCAmelCase ): """simple docstring""" if self.optimizer is None: __magic_name__ :int = ['''bias''', '''LayerNorm.weight'''] __magic_name__ :Union[str, Any] = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] __magic_name__ :Tuple = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __magic_name__ :List[Any] = Adafactor __magic_name__ :Union[str, Any] = {'''scale_parameter''': False, '''relative_step''': False} else: __magic_name__ :Union[str, Any] = AdamW __magic_name__ :int = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } __magic_name__ :List[str] = self.args.learning_rate if self.sharded_ddp: __magic_name__ :List[str] = OSS( params=__lowerCAmelCase , optim=__lowerCAmelCase , **__lowerCAmelCase , ) else: __magic_name__ :List[str] = optimizer_cls(__lowerCAmelCase , **__lowerCAmelCase ) if self.lr_scheduler is None: __magic_name__ :Union[str, Any] = self._get_lr_scheduler(__lowerCAmelCase ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[int] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __magic_name__ :int = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __magic_name__ :List[str] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __magic_name__ :str = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowerCAmelCase ) return scheduler def A ( self ): """simple docstring""" if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __magic_name__ :Tuple = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] __magic_name__ :List[Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __magic_name__ , __magic_name__ :Dict = model(**__lowerCAmelCase , labels=__lowerCAmelCase , use_cache=__lowerCAmelCase )[:2] else: # compute label smoothed loss __magic_name__ :Optional[int] = model(**__lowerCAmelCase , use_cache=__lowerCAmelCase )[0] __magic_name__ :Dict = torch.nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) __magic_name__ , __magic_name__ :int = self.loss_fn(__lowerCAmelCase , __lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :str = inputs.pop('''labels''' ) __magic_name__ , __magic_name__ :Optional[Any] = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return loss def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , ): """simple docstring""" __magic_name__ :Optional[int] = self._prepare_inputs(__lowerCAmelCase ) __magic_name__ :Optional[int] = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __magic_name__ :Optional[Any] = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **__lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __magic_name__ :Optional[Any] = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs['''max_length'''] ) __magic_name__ :int = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data __magic_name__ , __magic_name__ :Optional[int] = self._compute_loss(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Tuple = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __magic_name__ :int = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __magic_name__ :Any = self._pad_tensors_to_max_len(__lowerCAmelCase , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" # If PAD token is not defined at least EOS token has to be defined __magic_name__ :Optional[Any] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F''' padded to `max_length`={max_length}''' ) __magic_name__ :str = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __magic_name__ :Optional[Any] = tensor return padded_tensor
0
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCamelCase__ : Optional[Any] = logging.getLogger(__name__) UpperCamelCase__ : Dict = 50 # max width of layer names UpperCamelCase__ : Any = 70 # max width of quantizer names def __UpperCamelCase( _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=_A , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=_A , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=_A , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=_A , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=_A , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=_A , type=_A , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=_A , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def __UpperCamelCase( _A : Tuple ): '''simple docstring''' if args.calibrator == "max": UpperCAmelCase__ : str = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) UpperCAmelCase__ : Dict = '''histogram''' elif args.calibrator == "mse": UpperCAmelCase__ : Any = '''histogram''' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) UpperCAmelCase__ : Dict = QuantDescriptor(num_bits=args.aprec , calib_method=_A ) UpperCAmelCase__ : str = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_A ) quant_nn.QuantLinear.set_default_quant_desc_weight(_A ) def __UpperCamelCase( _A : Any , _A : Any , _A : Any=False , _A : Optional[Any]=False ): '''simple docstring''' logger.info('''Configuring Model for Quantization''' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_A , ['''embeddings'''] , which='''weight''' , _disabled=_A ) if args.quant_disable: set_quantizer_by_name(_A , [''''''] , _disabled=_A ) if args.quant_disable_keyword: set_quantizer_by_name(_A , args.quant_disable_keyword , _disabled=_A ) if args.quant_disable_layer_module: set_quantizer_by_name(_A , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=_A ) if args.quant_enable_layer_module: set_quantizer_by_name(_A , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=_A ) if args.recalibrate_weights: recalibrate_weights(_A ) if args.fuse_qkv: fuse_qkv(_A , _A ) if args.clip_gelu: clip_gelu(_A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_A ) def __UpperCamelCase( _A : str ): '''simple docstring''' logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def __UpperCamelCase( _A : Tuple , _A : Any ): '''simple docstring''' logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_A ) def __UpperCamelCase( _A : Dict , _A : Optional[int] ): '''simple docstring''' def fusea(_A : Optional[Any] , _A : Optional[Any] , _A : Dict ): for mod in [qq, qk, qv]: if not hasattr(_A , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return UpperCAmelCase__ : Dict = qq._amax.detach().item() UpperCAmelCase__ : List[Any] = qk._amax.detach().item() UpperCAmelCase__ : Optional[int] = qv._amax.detach().item() UpperCAmelCase__ : Dict = max(_A , _A , _A ) qq._amax.fill_(_A ) qk._amax.fill_(_A ) qv._amax.fill_(_A ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def __UpperCamelCase( _A : Dict , _A : Any ): '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): UpperCAmelCase__ : Union[str, Any] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_A ) UpperCAmelCase__ : Tuple = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def __UpperCamelCase( _A : str ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_A , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: UpperCAmelCase__ : int = mod.weight.shape[0] UpperCAmelCase__ : Tuple = mod._weight_quantizer._amax.detach() UpperCAmelCase__ : Optional[int] = torch.ones(_A , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def __UpperCamelCase( _A : List[str] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_A , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase__ : Any = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase__ : Optional[Any] = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase__ : int = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_A , keepdims=_A ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) UpperCAmelCase__ : str = amax def __UpperCamelCase( _A : Dict , _A : Tuple=25 , _A : Any=1_80 , _A : Optional[int]=None ): '''simple docstring''' if ignore is None: UpperCAmelCase__ : Dict = [] elif not isinstance(_A , _A ): UpperCAmelCase__ : int = [ignore] UpperCAmelCase__ : Optional[int] = 0 for name, mod in model.named_modules(): if not hasattr(_A , '''weight''' ): continue UpperCAmelCase__ : Dict = max(_A , len(_A ) ) for name, mod in model.named_modules(): UpperCAmelCase__ : str = getattr(_A , '''_input_quantizer''' , _A ) UpperCAmelCase__ : int = getattr(_A , '''_weight_quantizer''' , _A ) if not hasattr(_A , '''weight''' ): continue if type(_A ) in ignore: continue if [True for s in ignore if type(_A ) is str and s in name]: continue UpperCAmelCase__ : Dict = F'''Act:{input_q.extra_repr()}''' UpperCAmelCase__ : int = F'''Wgt:{weight_q.extra_repr()}''' UpperCAmelCase__ : Dict = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_A ) <= line_width: logger.info(_A ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{' ':{name_width}} {wgt_str}''' ) def __UpperCamelCase( _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : str = 0 for name, mod in model.named_modules(): if isinstance(_A , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def __UpperCamelCase( _A : Dict , _A : Optional[Any] , _A : Union[str, Any] , _A : Union[str, Any] , _A : Dict ): '''simple docstring''' UpperCAmelCase__ : Any = getattr(_A , _A , _A ) if quantizer_mod is not None: assert hasattr(_A , _A ) setattr(_A , _A , _A ) else: logger.warning(F'''{name} has no {quantizer}''' ) def __UpperCamelCase( _A : str , _A : Any , _A : Optional[int]="both" , **_A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_A , _A , '''_input_quantizer''' , _A , _A ) if which in ["weight", "both"]: set_quantizer(_A , _A , '''_weight_quantizer''' , _A , _A ) logger.info(_A ) def __UpperCamelCase( _A : Tuple , _A : List[str] , **_A : Optional[Any] ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_A , '''_input_quantizer''' ) or hasattr(_A , '''_weight_quantizer''' ): for n in names: if re.search(_A , _A ): set_quantizers(_A , _A , **_A ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(_A , _A ): UpperCAmelCase__ : str = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_A , _A , _A ) logger.info(_A )
614
0
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" def run_func(lowerCAmelCase_ ): @wraps(lowerCAmelCase_ ) def run_in_eager_mode(*lowerCAmelCase_ , **lowerCAmelCase_ ): return func(*lowerCAmelCase_ , **lowerCAmelCase_ ) @wraps(lowerCAmelCase_ ) @tf.function(experimental_compile=lowerCAmelCase_ ) def run_in_graph_mode(*lowerCAmelCase_ , **lowerCAmelCase_ ): return func(*lowerCAmelCase_ , **lowerCAmelCase_ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = random.Random() _snake_case : Union[str, Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase_ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowerCamelCase (a__ ): _lowercase : TensorFlowBenchmarkArguments _lowercase : PretrainedConfig _lowercase : str = "TensorFlow" @property def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" return tf.__version__ def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> float: """simple docstring""" _snake_case : Optional[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _snake_case : Optional[Any] = self._prepare_inference_func(lowercase__ , lowercase__ , lowercase__ ) return self._measure_speed(_inference ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> float: """simple docstring""" _snake_case : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _snake_case : Tuple = self._prepare_train_func(lowercase__ , lowercase__ , lowercase__ ) return self._measure_speed(_train ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase__ ) _snake_case : Optional[int] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _snake_case : List[Any] = self._prepare_inference_func(lowercase__ , lowercase__ , lowercase__ ) return self._measure_memory(_inference ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> [Memory, Optional[MemorySummary]]: """simple docstring""" if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowercase__ ) _snake_case : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) _snake_case : List[str] = self._prepare_train_func(lowercase__ , lowercase__ , lowercase__ ) return self._measure_memory(_train ) def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Callable[[], None]: """simple docstring""" _snake_case : Optional[int] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) _snake_case : List[Any] = ( hasattr(lowercase__ , '''architectures''' ) and isinstance(config.architectures , lowercase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : int = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : Dict = __import__('''transformers''' , fromlist=[model_class] ) _snake_case : List[Any] = getattr(lowercase__ , lowercase__ ) _snake_case : Tuple = model_cls(lowercase__ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: _snake_case : Union[str, Any] = TF_MODEL_MAPPING[config.__class__](lowercase__ ) # encoder-decoder has vocab size saved differently _snake_case : Optional[Any] = config.vocab_size if hasattr(lowercase__ , '''vocab_size''' ) else config.encoder.vocab_size _snake_case : List[str] = random_input_ids(lowercase__ , lowercase__ , lowercase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowercase__ , decoder_input_ids=lowercase__ , training=lowercase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowercase__ , training=lowercase__ ) _snake_case : List[Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def UpperCAmelCase_ ( self , lowercase__ , lowercase__ , lowercase__ ) -> Callable[[], None]: """simple docstring""" _snake_case : int = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) _snake_case : List[str] = ( hasattr(lowercase__ , '''architectures''' ) and isinstance(config.architectures , lowercase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _snake_case : Dict = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model _snake_case : List[Any] = __import__('''transformers''' , fromlist=[model_class] ) _snake_case : str = getattr(lowercase__ , lowercase__ ) _snake_case : Optional[int] = model_cls(lowercase__ ) except ImportError: raise ImportError( F'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: _snake_case : Any = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowercase__ ) # encoder-decoder has vocab size saved differently _snake_case : Union[str, Any] = config.vocab_size if hasattr(lowercase__ , '''vocab_size''' ) else config.encoder.vocab_size _snake_case : Any = random_input_ids(lowercase__ , lowercase__ , lowercase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _snake_case : Optional[int] = model(lowercase__ , decoder_input_ids=lowercase__ , labels=lowercase__ , training=lowercase__ )[0] _snake_case : List[str] = tf.gradients(lowercase__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _snake_case : List[str] = model(lowercase__ , labels=lowercase__ , training=lowercase__ )[0] _snake_case : Optional[int] = tf.gradients(lowercase__ , model.trainable_variables ) return gradients _snake_case : List[Any] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def UpperCAmelCase_ ( self , lowercase__ ) -> float: """simple docstring""" with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(lowercase__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _snake_case : Tuple = timeit.repeat( lowercase__ , repeat=self.args.repeat , number=10 , ) return min(lowercase__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) def UpperCAmelCase_ ( self , lowercase__ ) -> [Memory, MemorySummary]: """simple docstring""" logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) _snake_case : List[Any] = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) _snake_case : str = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() _snake_case : Optional[int] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _snake_case : Tuple = nvml.nvmlDeviceGetMemoryInfo(lowercase__ ) _snake_case : Any = meminfo.used _snake_case : str = Memory(lowercase__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) _snake_case : int = None else: _snake_case : Optional[int] = measure_peak_memory_cpu(lowercase__ ) _snake_case : List[str] = Memory(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else memory_bytes if self.args.trace_memory_line_by_line: _snake_case : Optional[int] = stop_memory_tracing(lowercase__ ) if memory is None: _snake_case : Any = summary.total else: _snake_case : Dict = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
47
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class lowerCamelCase (unittest.TestCase ): @slow def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModel.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = AutoModel.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Optional[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = TFAutoModelForPreTraining.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = AutoModelForPreTraining.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : Tuple = TFAutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[Any] = AutoModelForCausalLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : int = AutoModelForMaskedLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Optional[int] = AutoModelForMaskedLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_pt=lowercase__ ) _snake_case , _snake_case : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowercase__ , from_tf=lowercase__ ) _snake_case , _snake_case : Dict = AutoModelForSeqaSeqLM.from_pretrained( lowercase__ , output_loading_info=lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Any = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Any = TFAutoModelForSequenceClassification.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) @slow def UpperCAmelCase_ ( self ) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : str = AutoConfig.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : str = TFAutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) _snake_case : Union[str, Any] = AutoModelForQuestionAnswering.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsNotNone(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : Tuple = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowercase__ , from_pt=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 ) _snake_case : int = AutoModelWithLMHead.from_pretrained(lowercase__ , from_tf=lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase__ ) , 14_410 )
47
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class a : """simple docstring""" def __init__( self : Any , lowerCamelCase : Optional[int] , ) -> Tuple: __snake_case : Union[str, Any] = parent __snake_case : Dict = 13 __snake_case : Tuple = 7 __snake_case : Dict = 30 __snake_case : Any = self.seq_length + self.mem_len __snake_case : int = 15 __snake_case : Union[str, Any] = True __snake_case : List[Any] = True __snake_case : List[Any] = 99 __snake_case : Optional[int] = [10, 50, 80] __snake_case : List[str] = 32 __snake_case : List[Any] = 32 __snake_case : int = 4 __snake_case : Optional[Any] = 8 __snake_case : Union[str, Any] = 128 __snake_case : Optional[Any] = 2 __snake_case : Any = 2 __snake_case : str = None __snake_case : Optional[int] = 1 __snake_case : str = 0 __snake_case : Union[str, Any] = 3 __snake_case : Tuple = self.vocab_size - 1 __snake_case : List[str] = 0.01 def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = None if self.use_labels: __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __snake_case ( self : Any ) -> Union[str, Any]: random.seed(self.seed ) tf.random.set_seed(self.seed ) def __snake_case ( self : str , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : str ) -> Optional[Any]: __snake_case : List[str] = TFTransfoXLModel(lowerCamelCase ) __snake_case , __snake_case : str = model(lowerCamelCase ).to_tuple() __snake_case : Optional[Any] = {"input_ids": input_ids_a, "mems": mems_a} __snake_case , __snake_case : List[Any] = model(lowerCamelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : int ) -> Dict: __snake_case : int = TFTransfoXLLMHeadModel(lowerCamelCase ) __snake_case , __snake_case : str = model(lowerCamelCase ).to_tuple() __snake_case : Tuple = {"input_ids": input_ids_a, "labels": lm_labels} __snake_case , __snake_case : List[Any] = model(lowerCamelCase ).to_tuple() __snake_case , __snake_case : Union[str, Any] = model([input_ids_a, mems_a] ).to_tuple() __snake_case : List[str] = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} __snake_case , __snake_case : List[Any] = model(lowerCamelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __snake_case ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Optional[int] , lowerCamelCase : str , lowerCamelCase : Optional[int] ) -> List[str]: __snake_case : str = TFTransfoXLForSequenceClassification(lowerCamelCase ) __snake_case : Optional[int] = model(lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : List[Any] ) -> Any: __snake_case : Union[str, Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : Tuple = config_and_inputs __snake_case : Dict = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class a (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __UpperCAmelCase : List[Any] = () if is_tf_available() else () __UpperCAmelCase : Dict = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : int = False def __snake_case ( self : Optional[int] , lowerCamelCase : int , lowerCamelCase : List[str] , lowerCamelCase : List[str] , lowerCamelCase : str , lowerCamelCase : Any ) -> Optional[int]: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __snake_case ( self : int ) -> int: __snake_case : List[Any] = TFTransfoXLModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=lowerCamelCase , d_embed=37 ) def __snake_case ( self : int ) -> List[Any]: self.config_tester.run_common_tests() def __snake_case ( self : List[Any] ) -> Dict: self.model_tester.set_seed() __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Optional[Any]: self.model_tester.set_seed() __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Tuple: __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Any: __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __snake_case : str = model_class(lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __snake_case : int = model.get_output_embeddings() assert isinstance(lowerCamelCase , tf.keras.layers.Layer ) __snake_case : Optional[Any] = model.get_bias() assert name is None else: __snake_case : Optional[int] = model.get_output_embeddings() assert x is None __snake_case : Tuple = model.get_bias() assert name is None def __snake_case ( self : List[Any] ) -> List[Any]: # TODO JP: Make TransfoXL XLA compliant pass @slow def __snake_case ( self : Optional[int] ) -> Dict: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Union[str, Any] = TFTransfoXLModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def __snake_case ( self : str ) -> Optional[int]: pass @require_tf class a (unittest.TestCase ): """simple docstring""" @unittest.skip("Skip test until #12651 is resolved." ) @slow def __snake_case ( self : List[Any] ) -> Tuple: __snake_case : Dict = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off __snake_case : Union[str, Any] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __snake_case : List[str] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __snake_case : Optional[int] = model.generate(lowerCamelCase , max_length=200 , do_sample=lowerCamelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase )
81
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": A = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') A = parser.parse_args() if args.model_type == "bert": A = BertForMaskedLM.from_pretrained(args.model_name) A = 'bert' else: raise ValueError('args.model_type should be "bert".') A = model.state_dict() A = {} for w in ["word_embeddings", "position_embeddings"]: A = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: A = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] A = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 A = state_dict['cls.predictions.decoder.weight'] A = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: A = state_dict[f"""cls.predictions.transform.dense.{w}"""] A = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
320
0
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a__ (__lowercase :List[Any] , __lowercase :str , __lowercase :List[str] , __lowercase :Tuple , __lowercase :List[Any] ) -> str: # Load configuration defined in the metadata file with open(__lowercase ) as metadata_file: _A : Optional[Any] = json.load(__lowercase ) _A : Tuple = LukeConfig(use_entity_aware_attention=__lowercase , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path _A : int = torch.load(__lowercase , map_location='''cpu''' ) # Load the entity vocab file _A : Dict = load_entity_vocab(__lowercase ) _A : Dict = RobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks _A : Optional[int] = AddedToken('''<ent>''' , lstrip=__lowercase , rstrip=__lowercase ) _A : Any = AddedToken('''<ent2>''' , lstrip=__lowercase , rstrip=__lowercase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , LukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(__lowercase , __lowercase ) _A : Any = LukeTokenizer.from_pretrained(__lowercase ) # Initialize the embeddings of the special tokens _A : List[Any] = state_dict['''embeddings.word_embeddings.weight'''] _A : List[Any] = word_emb[tokenizer.convert_tokens_to_ids(['''@'''] )[0]].unsqueeze(0 ) _A : Optional[int] = word_emb[tokenizer.convert_tokens_to_ids(['''#'''] )[0]].unsqueeze(0 ) _A : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _A : str = f"""encoder.layer.{layer_index}.attention.self.""" _A : Union[str, Any] = state_dict[prefix + matrix_name] _A : int = state_dict[prefix + matrix_name] _A : int = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _A : List[Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] _A : int = entity_emb[entity_vocab['''[MASK]''']] _A : Tuple = LukeModel(config=__lowercase ).eval() _A , _A : Dict = model.load_state_dict(__lowercase , strict=__lowercase ) if not (len(__lowercase ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"""Missing keys {', '.join(__lowercase )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith('''entity_predictions''' ) or key.startswith('''lm_head''' ) for key in unexpected_keys )): raise ValueError( '''Unexpected keys''' f""" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions' ) or key.startswith('lm_head' ))] )}""" ) # Check outputs _A : str = LukeTokenizer.from_pretrained(__lowercase , task='''entity_classification''' ) _A : Dict = ( '''Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the''' ''' new world number one avoid a humiliating second- round exit at Wimbledon .''' ) _A : Optional[Any] = (39, 42) _A : int = tokenizer(__lowercase , entity_spans=[span] , add_prefix_space=__lowercase , return_tensors='''pt''' ) _A : int = model(**__lowercase ) # Verify word hidden states if model_size == "large": _A : List[Any] = torch.Size((1, 42, 1024) ) _A : Union[str, Any] = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base _A : Tuple = torch.Size((1, 42, 768) ) _A : List[str] = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowercase , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _A : Dict = torch.Size((1, 1, 1024) ) _A : int = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base _A : int = torch.Size((1, 1, 768) ) _A : str = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowercase , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(__lowercase ) ) model.save_pretrained(__lowercase ) def a__ (__lowercase :int ) -> Dict: _A : int = {} with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__lowercase ): _A , _A : Optional[Any] = line.rstrip().split('''\t''' ) _A : int = index return entity_vocab if __name__ == "__main__": _UpperCamelCase : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) _UpperCamelCase : List[str] =parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
332
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCamelCase : List[Any] =logging.get_logger(__name__) _UpperCamelCase : Optional[int] ={ 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class UpperCAmelCase__ ( __snake_case ): __snake_case : str = "instructblip_vision_model" def __init__( self ,A__=1408 ,A__=6144 ,A__=39 ,A__=16 ,A__=224 ,A__=14 ,A__="gelu" ,A__=1E-6 ,A__=0.0 ,A__=1E-10 ,A__=True ,**A__ ,): super().__init__(**A__ ) _A : str = hidden_size _A : Any = intermediate_size _A : List[Any] = num_hidden_layers _A : Union[str, Any] = num_attention_heads _A : Dict = patch_size _A : List[Any] = image_size _A : Any = initializer_range _A : Tuple = attention_dropout _A : Optional[Any] = layer_norm_eps _A : Optional[Any] = hidden_act _A : str = qkv_bias @classmethod def A__ ( cls ,A__ ,**A__ ): cls._set_token_in_kwargs(A__ ) _A , _A : Union[str, Any] = cls.get_config_dict(A__ ,**A__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": _A : str = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A__ ,**A__ ) class UpperCAmelCase__ ( __snake_case ): __snake_case : Dict = "instructblip_qformer" def __init__( self ,A__=30522 ,A__=768 ,A__=12 ,A__=12 ,A__=3072 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=512 ,A__=0.02 ,A__=1E-12 ,A__=0 ,A__="absolute" ,A__=2 ,A__=1408 ,**A__ ,): super().__init__(pad_token_id=A__ ,**A__ ) _A : Optional[int] = vocab_size _A : Tuple = hidden_size _A : Any = num_hidden_layers _A : Optional[int] = num_attention_heads _A : str = hidden_act _A : Union[str, Any] = intermediate_size _A : Optional[int] = hidden_dropout_prob _A : List[Any] = attention_probs_dropout_prob _A : List[str] = max_position_embeddings _A : List[Any] = initializer_range _A : int = layer_norm_eps _A : List[Any] = position_embedding_type _A : Tuple = cross_attention_frequency _A : Tuple = encoder_hidden_size @classmethod def A__ ( cls ,A__ ,**A__ ): cls._set_token_in_kwargs(A__ ) _A , _A : Optional[int] = cls.get_config_dict(A__ ,**A__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('''model_type''' ) == "instructblip": _A : List[Any] = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A__ ,**A__ ) class UpperCAmelCase__ ( __snake_case ): __snake_case : Any = "instructblip" __snake_case : Optional[int] = True def __init__( self ,A__=None ,A__=None ,A__=None ,A__=32 ,**A__ ): super().__init__(**A__ ) if vision_config is None: _A : Optional[int] = {} logger.info('''vision_config is None. initializing the InstructBlipVisionConfig with default values.''' ) if qformer_config is None: _A : str = {} logger.info('''qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.''' ) if text_config is None: _A : Optional[Any] = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) _A : List[str] = InstructBlipVisionConfig(**A__ ) _A : Union[str, Any] = InstructBlipQFormerConfig(**A__ ) _A : Optional[Any] = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' _A : Union[str, Any] = CONFIG_MAPPING[text_model_type](**A__ ) _A : List[str] = self.text_config.tie_word_embeddings _A : Dict = self.text_config.is_encoder_decoder _A : str = num_query_tokens _A : Union[str, Any] = self.vision_config.hidden_size _A : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _A : Any = 1.0 _A : List[str] = 0.02 @classmethod def A__ ( cls ,A__ ,A__ ,A__ ,**A__ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**A__ ,) def A__ ( self ): _A : Optional[int] = copy.deepcopy(self.__dict__ ) _A : Optional[int] = self.vision_config.to_dict() _A : Optional[int] = self.qformer_config.to_dict() _A : str = self.text_config.to_dict() _A : List[Any] = self.__class__.model_type return output
332
1
from typing import Any import numpy as np def UpperCamelCase__ ( lowerCAmelCase__ ): return np.array_equal(lowercase__ ,matrix.conjugate().T ) def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = v.conjugate().T lowercase = v_star.dot(lowercase__ ) assert isinstance(lowercase__ ,np.ndarray ) return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ )) def UpperCamelCase__ ( ): lowercase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) lowercase = np.array([[1], [2], [3]] ) assert is_hermitian(lowercase__ ), f"""{a} is not hermitian.""" print(rayleigh_quotient(lowercase__ ,lowercase__ ) ) lowercase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase__ ), f"""{a} is not hermitian.""" assert rayleigh_quotient(lowercase__ ,lowercase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
428
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase = get_tests_dir('''fixtures''') class lowerCAmelCase ( unittest.TestCase ): def snake_case ( self : str ): """simple docstring""" __lowercase =mock.Mock() __lowercase =500 __lowercase ={} __lowercase =HTTPError __lowercase ={} # Download this model to make sure it's in the cache. __lowercase =WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__lowercase ) as mock_head: __lowercase =WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def snake_case ( self : Dict ): """simple docstring""" __lowercase =WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class lowerCAmelCase ( unittest.TestCase ): @classmethod def snake_case ( cls : str ): """simple docstring""" __lowercase =TOKEN HfFolder.save_token(__lowercase ) @classmethod def snake_case ( cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def snake_case ( self : int ): """simple docstring""" __lowercase =WavaVecaFeatureExtractor.from_pretrained(__lowercase ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) __lowercase =WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowercase , getattr(__lowercase , __lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowercase , repo_id='test-feature-extractor' , push_to_hub=__lowercase , use_auth_token=self._token ) __lowercase =WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowercase , getattr(__lowercase , __lowercase ) ) def snake_case ( self : List[Any] ): """simple docstring""" __lowercase =WavaVecaFeatureExtractor.from_pretrained(__lowercase ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) __lowercase =WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowercase , getattr(__lowercase , __lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __lowercase , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=__lowercase , use_auth_token=self._token ) __lowercase =WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__lowercase , getattr(__lowercase , __lowercase ) ) def snake_case ( self : Optional[Any] ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() __lowercase =CustomFeatureExtractor.from_pretrained(__lowercase ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) __lowercase =AutoFeatureExtractor.from_pretrained( f'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=__lowercase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
119
0
from math import ceil def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = list(range(0 , lowerCamelCase_ ) ) lowercase__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowercase__ = [] for i in device_map_blocks: if device_map_blocks.count(lowerCamelCase_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowerCamelCase_ ) # Missing blocks lowercase__ = [i for i in blocks if i not in device_map_blocks] lowercase__ = [i for i in device_map_blocks if i not in blocks] if len(lowerCamelCase_ ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(lowerCamelCase_ ) ) if len(lowerCamelCase_ ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(lowerCamelCase_ ) ) def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = list(range(lowerCamelCase_ ) ) lowercase__ = int(ceil(n_layers / len(lowerCamelCase_ ) ) ) lowercase__ = [layers[i : i + n_blocks] for i in range(0 , lowerCamelCase_ , lowerCamelCase_ )] return dict(zip(lowerCamelCase_ , lowerCamelCase_ ) )
708
class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Union[str, Any] ): '''simple docstring''' # we need a list not a string, so do something to change the type lowercase__ = arr.split(''',''' ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = [int(self.array[0] )] * len(self.array ) lowercase__ = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): lowercase__ = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) lowercase__ = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": A__ : Dict = input('please input some numbers:') A__ : Union[str, Any] = SubArray(whole_array) A__ : int = array.solve_sub_array() print(('the results is:', re))
671
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : Union[str, Any] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class UpperCAmelCase_ ( a_ ): '''simple docstring''' A : str = 'gpt_bigcode' A : Union[str, Any] = ['past_key_values'] A : int = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="gelu_pytorch_tanh" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: snake_case_ : Dict = vocab_size snake_case_ : str = n_positions snake_case_ : Tuple = n_embd snake_case_ : Any = n_layer snake_case_ : Optional[int] = n_head snake_case_ : Optional[Any] = n_inner snake_case_ : List[Any] = activation_function snake_case_ : List[Any] = resid_pdrop snake_case_ : List[str] = embd_pdrop snake_case_ : Union[str, Any] = attn_pdrop snake_case_ : str = layer_norm_epsilon snake_case_ : int = initializer_range snake_case_ : Optional[Any] = scale_attn_weights snake_case_ : List[Any] = use_cache snake_case_ : List[str] = attention_softmax_in_fpaa snake_case_ : List[str] = scale_attention_softmax_in_fpaa snake_case_ : Dict = multi_query snake_case_ : Optional[int] = bos_token_id snake_case_ : Optional[int] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
568
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 SCREAMING_SNAKE_CASE__ : Tuple =sys.version_info >= (3, 10) def UpperCamelCase ( SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) ->Optional[int]: return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = 42 __snake_case = 42 __snake_case = 42 @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = field(default="""toto""" , metadata={"""help""": """help message"""} ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = False __snake_case = True __snake_case = None class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """titi""" __snake_case = """toto""" class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """titi""" __snake_case = """toto""" __snake_case = 42 @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = "toto" def a__ ( self ) -> Optional[Any]: _lowerCamelCase : List[Any] = BasicEnum(self.foo ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = "toto" def a__ ( self ) -> Dict: _lowerCamelCase : Union[str, Any] = MixedTypeEnum(self.foo ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = None __snake_case = field(default=a_ , metadata={"""help""": """help message"""} ) __snake_case = None __snake_case = list_field(default=[] ) __snake_case = list_field(default=[] ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = list_field(default=[] ) __snake_case = list_field(default=[1, 2, 3] ) __snake_case = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) __snake_case = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = field() __snake_case = field() __snake_case = field() def a__ ( self ) -> Dict: _lowerCamelCase : str = BasicEnum(self.required_enum ) @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = field() __snake_case = None __snake_case = field(default="""toto""" , metadata={"""help""": """help message"""} ) __snake_case = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = False __snake_case = True __snake_case = None @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = None __snake_case = field(default=a_ , metadata={"""help""": """help message"""} ) __snake_case = None __snake_case = list_field(default=[] ) __snake_case = list_field(default=[] ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def a__ ( self , _lowercase , _lowercase ) -> Optional[Any]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): _lowerCamelCase : List[str] = {k: v for k, v in vars(_lowercase ).items() if k != '''container'''} _lowerCamelCase : str = {k: v for k, v in vars(_lowercase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _lowercase ) and yy.get('''choices''' , _lowercase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_lowercase ) , yy['''type'''](_lowercase ) ) del xx["type"], yy["type"] self.assertEqual(_lowercase , _lowercase ) def a__ ( self ) -> Optional[Any]: _lowerCamelCase : str = HfArgumentParser(_lowercase ) _lowerCamelCase : Dict = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , required=_lowercase ) expected.add_argument('''--bar''' , type=_lowercase , required=_lowercase ) expected.add_argument('''--baz''' , type=_lowercase , required=_lowercase ) expected.add_argument('''--flag''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''' ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : str = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((_lowerCamelCase), ) : Union[str, Any] = parser.parse_args_into_dataclasses(_lowercase , look_for_args_file=_lowercase ) self.assertFalse(example.flag ) def a__ ( self ) -> Optional[int]: _lowerCamelCase : Dict = HfArgumentParser(_lowercase ) _lowerCamelCase : List[str] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=42 , type=_lowercase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowercase , help='''help message''' ) self.argparsersEqual(_lowercase , _lowercase ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_lowercase , default=_lowercase , const=_lowercase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_lowercase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_lowercase , default=_lowercase ) _lowerCamelCase : Optional[Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase ) for dataclass_type in dataclass_types: _lowerCamelCase : Optional[Any] = HfArgumentParser(_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : List[Any] = parser.parse_args([] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) _lowerCamelCase : Dict = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) _lowerCamelCase : int = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) _lowerCamelCase : Any = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) _lowerCamelCase : List[Any] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : Union[str, Any] = HfArgumentParser(_lowercase ) _lowerCamelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 42] , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : Dict = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _lowerCamelCase : int = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) _lowerCamelCase : Optional[Any] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _lowerCamelCase : Any = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) _lowerCamelCase : str = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) _lowerCamelCase : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def a__ ( self ) -> Dict: @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = "toto" _lowerCamelCase : Dict = HfArgumentParser(_lowercase ) _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 42) , type=make_choice_type_function(['''titi''', '''toto''', 42] ) , ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : str = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) _lowerCamelCase : Optional[int] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) _lowerCamelCase : Optional[int] = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 42 ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : int = HfArgumentParser(_lowercase ) _lowerCamelCase : Any = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_lowercase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_lowercase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowercase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : int = parser.parse_args([] ) self.assertEqual( _lowercase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) _lowerCamelCase : List[Any] = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_lowercase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def a__ ( self ) -> Optional[Any]: _lowerCamelCase : str = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_lowercase , type=_lowercase ) expected.add_argument('''--bar''' , default=_lowercase , type=_lowercase , help='''help message''' ) expected.add_argument('''--baz''' , default=_lowercase , type=_lowercase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_lowercase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_lowercase ) _lowerCamelCase : str = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase ) for dataclass_type in dataclass_types: _lowerCamelCase : Union[str, Any] = HfArgumentParser(_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) _lowerCamelCase : List[str] = parser.parse_args([] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , bar=_lowercase , baz=_lowercase , ces=[] , des=[] ) ) _lowerCamelCase : List[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_lowercase , Namespace(foo=12 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def a__ ( self ) -> Any: _lowerCamelCase : str = HfArgumentParser(_lowercase ) _lowerCamelCase : List[str] = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_lowercase , required=_lowercase ) expected.add_argument('''--required_str''' , type=_lowercase , required=_lowercase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowercase , ) self.argparsersEqual(_lowercase , _lowercase ) def a__ ( self ) -> Dict: _lowerCamelCase : Tuple = HfArgumentParser(_lowercase ) _lowerCamelCase : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_lowercase , required=_lowercase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_lowercase , ) expected.add_argument('''--opt''' , type=_lowercase , default=_lowercase ) expected.add_argument('''--baz''' , default='''toto''' , type=_lowercase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : List[Any] = HfArgumentParser(_lowercase ) _lowerCamelCase : Union[str, Any] = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } _lowerCamelCase : Optional[int] = parser.parse_dict(_lowercase )[0] _lowerCamelCase : str = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def a__ ( self ) -> Optional[int]: _lowerCamelCase : Tuple = HfArgumentParser(_lowercase ) _lowerCamelCase : Dict = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 42, } self.assertRaises(_lowercase , parser.parse_dict , _lowercase , allow_extra_keys=_lowercase ) def a__ ( self ) -> Union[str, Any]: _lowerCamelCase : Any = HfArgumentParser(_lowercase ) _lowerCamelCase : Dict = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Union[str, Any] = os.path.join(_lowercase , '''temp_json''' ) os.mkdir(_lowercase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_lowercase , _lowercase ) _lowerCamelCase : str = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] _lowerCamelCase : Optional[int] = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def a__ ( self ) -> Tuple: _lowerCamelCase : int = HfArgumentParser(_lowercase ) _lowerCamelCase : int = { '''foo''': 12, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : List[str] = os.path.join(_lowercase , '''temp_yaml''' ) os.mkdir(_lowercase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_lowercase , _lowercase ) _lowerCamelCase : Optional[int] = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] _lowerCamelCase : Tuple = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def a__ ( self ) -> str: _lowerCamelCase : List[Any] = HfArgumentParser(_lowercase ) self.assertIsNotNone(_lowercase )
434
0
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ (_UpperCAmelCase, unittest.TestCase ): A__ : Union[str, Any] = XLMTokenizer A__ : Optional[Any] = False def lowerCamelCase__ ( self ) ->str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _a = dict(zip(a_ , range(len(a_ ) ) ) ) _a = ["l o 123", "lo w 1456", "e r</w> 1789", ""] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(a_ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(a_ ) ) def lowerCamelCase__ ( self , a_ ) ->Dict: '''simple docstring''' _a = "lower newer" _a = "lower newer" return input_text, output_text def lowerCamelCase__ ( self ) ->List[Any]: '''simple docstring''' _a = XLMTokenizer(self.vocab_file , self.merges_file ) _a = "lower" _a = ["low", "er</w>"] _a = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) _a = tokens + ["<unk>"] _a = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) @slow def lowerCamelCase__ ( self ) ->int: '''simple docstring''' _a = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=a_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=a_ ) _a = tokenizer.build_inputs_with_special_tokens(a_ ) _a = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
612
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) UpperCamelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCAmelCase ( UpperCamelCase_: str ) -> Union[str, Any]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _a = model_type_to_module_name(UpperCamelCase_ ) _a = importlib.import_module(f'''.{module_name}''' , "transformers.models" ) try: return getattr(UpperCamelCase_ , UpperCamelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCamelCase_ , "__name__" , UpperCamelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _a = importlib.import_module("transformers" ) if hasattr(UpperCamelCase_ , UpperCamelCase_ ): return getattr(UpperCamelCase_ , UpperCamelCase_ ) return None def lowerCAmelCase ( UpperCamelCase_: Union[str, os.PathLike] , UpperCamelCase_: Optional[Union[str, os.PathLike]] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[Dict[str, str]] = None , UpperCamelCase_: Optional[Union[bool, str]] = None , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , **UpperCamelCase_: Dict , ) -> Optional[int]: '''simple docstring''' _a = get_file_from_repo( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(UpperCamelCase_ , encoding="utf-8" ) as reader: return json.load(UpperCamelCase_ ) class lowercase_ : def __init__( self ) ->List[Any]: '''simple docstring''' raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(a_ ) def lowerCamelCase__ ( cls , a_ , **a_ ) ->Dict: '''simple docstring''' _a = kwargs.pop("config" , a_ ) _a = kwargs.pop("trust_remote_code" , a_ ) _a = True _a , _a = ImageProcessingMixin.get_image_processor_dict(a_ , **a_ ) _a = config_dict.get("image_processor_type" , a_ ) _a = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): _a = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _a = config_dict.pop("feature_extractor_type" , a_ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) _a = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _a = config_dict["auto_map"]["AutoFeatureExtractor"] _a = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(a_ , a_ ): _a = AutoConfig.from_pretrained(a_ , **a_ ) # It could be in `config.image_processor_type`` _a = getattr(a_ , "image_processor_type" , a_ ) if hasattr(a_ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: _a = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: _a = image_processor_class_from_name(a_ ) _a = image_processor_auto_map is not None _a = image_processor_class is not None or type(a_ ) in IMAGE_PROCESSOR_MAPPING _a = resolve_trust_remote_code( a_ , a_ , a_ , a_ ) if has_remote_code and trust_remote_code: _a = get_class_from_dynamic_module( a_ , a_ , **a_ ) _a = kwargs.pop("code_revision" , a_ ) if os.path.isdir(a_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(a_ , **a_ ) elif image_processor_class is not None: return image_processor_class.from_dict(a_ , **a_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(a_ ) in IMAGE_PROCESSOR_MAPPING: _a = IMAGE_PROCESSOR_MAPPING[type(a_ )] return image_processor_class.from_dict(a_ , **a_ ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCamelCase__ ( a_ , a_ ) ->Optional[int]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(a_ , a_ )
612
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __lowerCAmelCase : Tuple =logging.get_logger(__name__) class UpperCAmelCase ( UpperCamelCase__ ): def __init__( self :Union[str, Any] , *lowercase_ :Optional[Any] , **lowercase_ :Dict )-> None: warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
440
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :List[str] , lowercase_ :int = 7_68 , )-> str: super().__init__() A__ = nn.Parameter(torch.zeros(1 , lowercase_ ) ) A__ = nn.Parameter(torch.ones(1 , lowercase_ ) ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :Optional[Union[str, torch.device]] = None , lowercase_ :Optional[torch.dtype] = None , )-> Tuple: A__ = nn.Parameter(self.mean.to(lowercase_ ).to(lowercase_ ) ) A__ = nn.Parameter(self.std.to(lowercase_ ).to(lowercase_ ) ) return self def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :str )-> Union[str, Any]: A__ = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCAmelCase_ ( self :Any , lowercase_ :List[Any] )-> Tuple: A__ = (embeds * self.std) + self.mean return embeds
440
1
'''simple docstring''' import math import qiskit def snake_case_ ( __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : int = 1) -> qiskit.result.counts.Counts: if ( isinstance(__snake_case , __snake_case) or isinstance(__snake_case , __snake_case) or isinstance(__snake_case , __snake_case) ): raise TypeError('''inputs must be integers.''') if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''') if ( (math.floor(__snake_case) != input_a) or (math.floor(__snake_case) != input_a) or (math.floor(__snake_case) != carry_in) ): raise ValueError('''inputs must be exact integers.''') if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''') # build registers lowerCAmelCase_ = qiskit.QuantumRegister(4 , '''qr''') lowerCAmelCase_ = qiskit.ClassicalRegister(2 , '''cr''') # list the entries lowerCAmelCase_ = [input_a, input_a, carry_in] lowerCAmelCase_ = qiskit.QuantumCircuit(__snake_case , __snake_case) for i in range(0 , 3): if entry[i] == 2: quantum_circuit.h(__snake_case) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__snake_case) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__snake_case) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3) # ccx = toffoli gate quantum_circuit.cx(0 , 1) quantum_circuit.ccx(1 , 2 , 3) quantum_circuit.cx(1 , 2) quantum_circuit.cx(0 , 1) quantum_circuit.measure([2, 3] , __snake_case) # measure the last two qbits lowerCAmelCase_ = qiskit.Aer.get_backend('''aer_simulator''') lowerCAmelCase_ = qiskit.execute(__snake_case , __snake_case , shots=1000) return job.result().get_counts(__snake_case) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
606
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : str =16 A_ : Any =32 def snake_case_ ( __snake_case : Accelerator , __snake_case : int = 16) -> List[Any]: lowerCAmelCase_ = AutoTokenizer.from_pretrained('''bert-base-cased''') lowerCAmelCase_ = load_dataset('''glue''' , '''mrpc''') def tokenize_function(__snake_case : Optional[Any]): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__snake_case , max_length=__snake_case) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase_ = datasets.map( __snake_case , batched=__snake_case , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ = tokenized_datasets.rename_column('''label''' , '''labels''') def collate_fn(__snake_case : int): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase_ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase_ = 8 else: lowerCAmelCase_ = None return tokenizer.pad( __snake_case , padding='''longest''' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCAmelCase_ = DataLoader( tokenized_datasets['''train'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case) lowerCAmelCase_ = DataLoader( tokenized_datasets['''validation'''] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A_ : Any =mocked_dataloaders # noqa: F811 def snake_case_ ( __snake_case : int , __snake_case : int) -> int: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __snake_case) == "1": lowerCAmelCase_ = 2 # New Code # lowerCAmelCase_ = int(args.gradient_accumulation_steps) # Initialize accelerator lowerCAmelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__snake_case) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( '''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ = config['''lr'''] lowerCAmelCase_ = int(config['''num_epochs''']) lowerCAmelCase_ = int(config['''seed''']) lowerCAmelCase_ = int(config['''batch_size''']) lowerCAmelCase_ = evaluate.load('''glue''' , '''mrpc''') set_seed(__snake_case) lowerCAmelCase_ ,lowerCAmelCase_ = get_dataloaders(__snake_case , __snake_case) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__snake_case) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase_ = model.to(accelerator.device) # Instantiate optimizer lowerCAmelCase_ = AdamW(params=model.parameters() , lr=__snake_case) # Instantiate scheduler lowerCAmelCase_ = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=100 , num_training_steps=(len(__snake_case) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case) # Now we train the model for epoch in range(__snake_case): model.train() for step, batch in enumerate(__snake_case): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__snake_case): lowerCAmelCase_ = model(**__snake_case) lowerCAmelCase_ = output.loss accelerator.backward(__snake_case) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): lowerCAmelCase_ = model(**__snake_case) lowerCAmelCase_ = outputs.logits.argmax(dim=-1) lowerCAmelCase_ ,lowerCAmelCase_ = accelerator.gather_for_metrics((predictions, batch['''labels'''])) metric.add_batch( predictions=__snake_case , references=__snake_case , ) lowerCAmelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __snake_case) def snake_case_ ( ) -> Optional[Any]: lowerCAmelCase_ = argparse.ArgumentParser(description='''Simple example of training script.''') parser.add_argument( '''--mixed_precision''' , type=__snake_case , default=__snake_case , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__snake_case , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__snake_case , __snake_case) if __name__ == "__main__": main()
606
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase_ = { 'vocab_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt', }, 'tokenizer_file': { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json' ), 'google/realm-orqa-nq-openqa': ( 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-nq-reader': ( 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-openqa': ( 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json' ), 'google/realm-orqa-wq-reader': ( 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json' ), }, } lowerCAmelCase_ = { 'google/realm-cc-news-pretrained-embedder': 5_12, 'google/realm-cc-news-pretrained-encoder': 5_12, 'google/realm-cc-news-pretrained-scorer': 5_12, 'google/realm-cc-news-pretrained-openqa': 5_12, 'google/realm-orqa-nq-openqa': 5_12, 'google/realm-orqa-nq-reader': 5_12, 'google/realm-orqa-wq-openqa': 5_12, 'google/realm-orqa-wq-reader': 5_12, } lowerCAmelCase_ = { 'google/realm-cc-news-pretrained-embedder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-encoder': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-scorer': {'do_lower_case': True}, 'google/realm-cc-news-pretrained-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-openqa': {'do_lower_case': True}, 'google/realm-orqa-nq-reader': {'do_lower_case': True}, 'google/realm-orqa-wq-openqa': {'do_lower_case': True}, 'google/realm-orqa-wq-reader': {'do_lower_case': True}, } class _A ( _lowerCamelCase ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = RealmTokenizer def __init__( self : Optional[Any] , _A : Any=None , _A : Union[str, Any]=None , _A : Dict=True , _A : Dict="[UNK]" , _A : List[str]="[SEP]" , _A : Optional[Any]="[PAD]" , _A : List[Any]="[CLS]" , _A : Optional[Any]="[MASK]" , _A : Optional[Any]=True , _A : Tuple=None , **_A : Tuple , ) -> int: """simple docstring""" super().__init__( _A , tokenizer_file=_A , do_lower_case=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , tokenize_chinese_chars=_A , strip_accents=_A , **_A , ) lowercase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _A ) != do_lower_case or normalizer_state.get('''strip_accents''' , _A ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _A ) != tokenize_chinese_chars ): lowercase : Dict = getattr(_A , normalizer_state.pop('''type''' ) ) lowercase : Any = do_lower_case lowercase : Optional[int] = strip_accents lowercase : Tuple = tokenize_chinese_chars lowercase : Union[str, Any] = normalizer_class(**_A ) lowercase : List[str] = do_lower_case def __a ( self : Union[str, Any] , _A : Optional[int] , **_A : Optional[int] ) -> Tuple: """simple docstring""" lowercase : Any = PaddingStrategy.MAX_LENGTH lowercase : Any = text lowercase : Optional[Any] = kwargs.pop('''text_pair''' , _A ) lowercase : List[str] = kwargs.pop('''return_tensors''' , _A ) lowercase : Any = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(_A ): if batch_text_pair is not None: lowercase : str = batch_text_pair[idx] else: lowercase : Optional[int] = None lowercase : Optional[Any] = super().__call__(_A , _A , return_tensors=_A , **_A ) lowercase : Optional[Any] = encoded_candidates.get('''input_ids''' ) lowercase : Optional[Any] = encoded_candidates.get('''attention_mask''' ) lowercase : Tuple = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(_A ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_A ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_A ) lowercase : Tuple = {key: item for key, item in output_data.items() if len(_A ) != 0} return BatchEncoding(_A , tensor_type=_A ) def __a ( self : Optional[Any] , _A : List[Any] , _A : Dict=None ) -> Tuple: """simple docstring""" lowercase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Optional[Any] , _A : List[int] , _A : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase : Dict = [self.sep_token_id] lowercase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : List[str] , _A : str , _A : Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase : List[Any] = self._tokenizer.model.save(_A , name=_A ) return tuple(_A )
217
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case( ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=__magic_name__ ) lowercase : Any = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__magic_name__ ) EnvironmentCommand.register_subcommand(__magic_name__ ) TestCommand.register_subcommand(__magic_name__ ) RunBeamCommand.register_subcommand(__magic_name__ ) DummyDataCommand.register_subcommand(__magic_name__ ) # Parse args lowercase , lowercase : Optional[int] = parser.parse_known_args() if not hasattr(__magic_name__ , '''func''' ): parser.print_help() exit(1 ) lowercase : int = parse_unknown_args(__magic_name__ ) # Run lowercase : str = args.func(__magic_name__ , **__magic_name__ ) service.run() if __name__ == "__main__": main()
217
1
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowerCAmelCase_ = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowerCAmelCase_ = logging.WARNING def lowerCamelCase_ ( )-> str: _snake_case : Union[str, Any] = os.getenv('DATASETS_VERBOSITY' , lowerCamelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def lowerCamelCase_ ( )-> str: return __name__.split('.' )[0] def lowerCamelCase_ ( )-> logging.Logger: return logging.getLogger(_get_library_name() ) def lowerCamelCase_ ( )-> None: _snake_case : List[str] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowerCamelCase_ ( )-> None: _snake_case : Dict = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowerCamelCase_ ( lowerCAmelCase: Optional[int] = None )-> logging.Logger: if name is None: _snake_case : Union[str, Any] = _get_library_name() return logging.getLogger(lowerCamelCase__ ) def lowerCamelCase_ ( )-> int: return _get_library_root_logger().getEffectiveLevel() def lowerCamelCase_ ( lowerCAmelCase: List[str] )-> None: _get_library_root_logger().setLevel(lowerCamelCase__ ) def lowerCamelCase_ ( )-> Union[str, Any]: return set_verbosity(lowerCamelCase__ ) def lowerCamelCase_ ( )-> List[Any]: return set_verbosity(lowerCamelCase__ ) def lowerCamelCase_ ( )-> Optional[int]: return set_verbosity(lowerCamelCase__ ) def lowerCamelCase_ ( )-> Dict: return set_verbosity(lowerCamelCase__ ) def lowerCamelCase_ ( )-> None: _snake_case : Dict = False def lowerCamelCase_ ( )-> None: _snake_case : Optional[Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _lowerCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] , *UpperCamelCase : Optional[Any] , **UpperCamelCase : Tuple ): # pylint: disable=unused-argument '''simple docstring''' _snake_case : List[Any] = args[0] if args else None def __iter__( self : int ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' def empty_fn(*UpperCamelCase : Tuple , **UpperCamelCase : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Dict ): '''simple docstring''' return self def __exit__( self : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : str , UpperCamelCase : Any ): '''simple docstring''' return lowerCAmelCase_ = True class _lowerCAmelCase : '''simple docstring''' def __call__( self : Dict , *UpperCamelCase : List[Any] , UpperCamelCase : int=False , **UpperCamelCase : List[Any] ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCamelCase_ , **UpperCamelCase_ ) else: return EmptyTqdm(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase_ ( self : List[str] , *UpperCamelCase : Any , **UpperCamelCase : Optional[int] ): '''simple docstring''' _snake_case : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase_ ( self : int ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCAmelCase_ = _tqdm_cls() def lowerCamelCase_ ( )-> bool: global _tqdm_active return bool(_tqdm_active ) def lowerCamelCase_ ( )-> List[Any]: global _tqdm_active _snake_case : Dict = True def lowerCamelCase_ ( )-> Any: global _tqdm_active _snake_case : List[Any] = False
710
def lowerCamelCase_ ( lowerCAmelCase: int )-> list: _snake_case : List[Any] = int(lowerCAmelCase ) if n_element < 1: _snake_case : int = ValueError('a should be a positive number' ) raise my_error _snake_case : Union[str, Any] = [1] _snake_case , _snake_case , _snake_case : Any = (0, 0, 0) _snake_case : str = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase_ = hamming(int(n)) print("""-----------------------------------------------------""") print(F"""The list with nth numbers is: {hamming_numbers}""") print("""-----------------------------------------------------""")
669
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''convbert''' def __init__( self : List[Any] , _A : Union[str, Any]=3_0522 , _A : Dict=768 , _A : int=12 , _A : Union[str, Any]=12 , _A : int=3072 , _A : Optional[int]="gelu" , _A : Optional[Any]=0.1 , _A : Optional[Any]=0.1 , _A : Union[str, Any]=512 , _A : List[str]=2 , _A : List[Any]=0.02 , _A : Union[str, Any]=1e-12 , _A : Union[str, Any]=1 , _A : List[str]=0 , _A : Optional[Any]=2 , _A : int=768 , _A : List[str]=2 , _A : str=9 , _A : List[Any]=1 , _A : Optional[Any]=None , **_A : List[str] , ): """simple docstring""" super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A , ) __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE : Any = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : Any = type_vocab_size __SCREAMING_SNAKE_CASE : Tuple = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = embedding_size __SCREAMING_SNAKE_CASE : str = head_ratio __SCREAMING_SNAKE_CASE : Tuple = conv_kernel_size __SCREAMING_SNAKE_CASE : int = num_groups __SCREAMING_SNAKE_CASE : List[Any] = classifier_dropout class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" @property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
74
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Dict = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = """conditional_detr""" UpperCAmelCase_ : Optional[int] = ["""past_key_values"""] UpperCAmelCase_ : str = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0_2 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.2_5 , **__SCREAMING_SNAKE_CASE , ) ->Optional[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowerCAmelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCAmelCase = backbone_config.get('''model_type''' ) lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase = config_class.from_dict(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = use_timm_backbone lowerCAmelCase = backbone_config lowerCAmelCase = num_channels lowerCAmelCase = num_queries lowerCAmelCase = d_model lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = init_xavier_std lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = encoder_layers lowerCAmelCase = auxiliary_loss lowerCAmelCase = position_embedding_type lowerCAmelCase = backbone lowerCAmelCase = use_pretrained_backbone lowerCAmelCase = dilation # Hungarian matcher lowerCAmelCase = class_cost lowerCAmelCase = bbox_cost lowerCAmelCase = giou_cost # Loss coefficients lowerCAmelCase = mask_loss_coefficient lowerCAmelCase = dice_loss_coefficient lowerCAmelCase = cls_loss_coefficient lowerCAmelCase = bbox_loss_coefficient lowerCAmelCase = giou_loss_coefficient lowerCAmelCase = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->int: return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE_ ( self ) ->int: return self.d_model def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase = self.backbone_config.to_dict() lowerCAmelCase = self.__class__.model_type return output class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : Any = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) ->float: return 1e-5 @property def SCREAMING_SNAKE_CASE_ ( self ) ->int: return 12
312
0
'''simple docstring''' def a_ ( lowerCAmelCase_ : Tuple ): return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def a_ ( lowerCAmelCase_ : Any ): __lowerCAmelCase = credit_card_number __lowerCAmelCase = 0 __lowerCAmelCase = len(lowerCAmelCase_ ) - 2 for i in range(lowerCAmelCase_, -1, -2 ): # double the value of every second digit __lowerCAmelCase = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __lowerCAmelCase = cc_number[:i] + str(lowerCAmelCase_ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(lowerCAmelCase_ ) - 1, -1, -2 ): total += int(cc_number[i] ) return total % 10 == 0 def a_ ( lowerCAmelCase_ : List[str] ): __lowerCAmelCase = F"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(F"""{error_message} it has nonnumerical characters.""" ) return False if not 13 <= len(lowerCAmelCase_ ) <= 16: print(F"""{error_message} of its length.""" ) return False if not validate_initial_digits(lowerCAmelCase_ ): print(F"""{error_message} of its first two digits.""" ) return False if not luhn_validation(lowerCAmelCase_ ): print(F"""{error_message} it fails the Luhn check.""" ) return False print(F"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
709
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : List[Any] = '▁' _snake_case : Tuple = {'vocab_file': 'spiece.model'} _snake_case : Optional[int] = { 'vocab_file': { 'google/reformer-crime-and-punishment': ( 'https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model' ) } } _snake_case : Union[str, Any] = { 'google/reformer-crime-and-punishment': 524288, } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any="</s>" , lowerCAmelCase_ : Any="<unk>" , lowerCAmelCase_ : List[Any]=[] , lowerCAmelCase_ : Optional[Dict[str, Any]] = None , **lowerCAmelCase_ : Any , ) -> None: __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def lowercase ( self : Any ) -> Any: return self.sp_model.get_piece_size() def lowercase ( self : int ) -> Dict[str, int]: __lowerCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> Any: __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self : int , lowerCAmelCase_ : str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : Dict ) -> Tuple: return self.sp_model.piece_to_id(lowerCAmelCase_ ) def lowercase ( self : Any , lowerCAmelCase_ : int ) -> Optional[int]: if index < self.sp_model.get_piece_size(): __lowerCAmelCase = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def lowercase ( self : Optional[int] , lowerCAmelCase_ : Tuple ) -> List[str]: __lowerCAmelCase = [] __lowerCAmelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase_ ) + token __lowerCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase_ ) out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , 'wb' ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
421
0
"""simple docstring""" from collections import deque def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : Optional[int] = len(__lowerCamelCase ) lowercase__ : str = deque() lowercase__ : Optional[Any] = [False for _ in range(__lowerCamelCase )] lowercase__ : Union[str, Any] = [-1 for _ in range(__lowerCamelCase )] lowercase__ : Optional[int] = index_of[:] def strong_connect(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): lowercase__ : Dict = index # the number when this node is seen lowercase__ : Union[str, Any] = index # lowest rank node reachable from here index += 1 stack.append(__lowerCamelCase ) lowercase__ : Any = True for w in g[v]: if index_of[w] == -1: lowercase__ : int = strong_connect(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase__ : Tuple = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowercase__ : str = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowercase__ : Union[str, Any] = [] lowercase__ : List[Any] = stack.pop() lowercase__ : Union[str, Any] = False component.append(__lowerCamelCase ) while w != v: lowercase__ : int = stack.pop() lowercase__ : Optional[int] = False component.append(__lowerCamelCase ) components.append(__lowerCamelCase ) return index lowercase__ : int = [] for v in range(__lowerCamelCase ): if index_of[v] == -1: strong_connect(__lowerCamelCase , 0 , __lowerCamelCase ) return components def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [[] for _ in range(__lowerCamelCase )] for u, v in edges: g[u].append(__lowerCamelCase ) return g if __name__ == "__main__": # Test lowerCAmelCase_ = 7 lowerCAmelCase_ = [0, 0, 1, 2, 3, 3, 4, 4, 6] lowerCAmelCase_ = [1, 3, 2, 0, 1, 4, 5, 6, 5] lowerCAmelCase_ = [(u, v) for u, v in zip(source, target)] lowerCAmelCase_ = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
560
"""simple docstring""" from ...processing_utils import ProcessorMixin class __A ( A_ ): '''simple docstring''' lowerCAmelCase : Tuple = "SpeechT5FeatureExtractor" lowerCAmelCase : Optional[Any] = "SpeechT5Tokenizer" def __init__( self : Optional[int] ,_snake_case : Union[str, Any] ,_snake_case : str ) -> Tuple: """simple docstring""" super().__init__(_snake_case ,_snake_case ) def __call__( self : str ,*_snake_case : str ,**_snake_case : Optional[Any] ) -> Any: """simple docstring""" lowercase__ : List[str] = kwargs.pop('''audio''' ,_snake_case ) lowercase__ : Union[str, Any] = kwargs.pop('''text''' ,_snake_case ) lowercase__ : Tuple = kwargs.pop('''text_target''' ,_snake_case ) lowercase__ : str = kwargs.pop('''audio_target''' ,_snake_case ) lowercase__ : Union[str, Any] = kwargs.pop('''sampling_rate''' ,_snake_case ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: lowercase__ : Optional[Any] = self.feature_extractor(_snake_case ,*_snake_case ,sampling_rate=_snake_case ,**_snake_case ) elif text is not None: lowercase__ : Dict = self.tokenizer(_snake_case ,**_snake_case ) else: lowercase__ : int = None if audio_target is not None: lowercase__ : Tuple = self.feature_extractor(audio_target=_snake_case ,*_snake_case ,sampling_rate=_snake_case ,**_snake_case ) lowercase__ : List[Any] = targets['''input_values'''] elif text_target is not None: lowercase__ : int = self.tokenizer(_snake_case ,**_snake_case ) lowercase__ : Union[str, Any] = targets['''input_ids'''] else: lowercase__ : List[str] = None if inputs is None: return targets if targets is not None: lowercase__ : Tuple = labels lowercase__ : Optional[int] = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase__ : str = decoder_attention_mask return inputs def UpperCAmelCase ( self : str ,*_snake_case : List[Any] ,**_snake_case : Union[str, Any] ) -> int: """simple docstring""" lowercase__ : List[str] = kwargs.pop('''input_values''' ,_snake_case ) lowercase__ : Any = kwargs.pop('''input_ids''' ,_snake_case ) lowercase__ : List[Any] = kwargs.pop('''labels''' ,_snake_case ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: lowercase__ : List[Any] = self.feature_extractor.pad(_snake_case ,*_snake_case ,**_snake_case ) elif input_ids is not None: lowercase__ : Union[str, Any] = self.tokenizer.pad(_snake_case ,**_snake_case ) else: lowercase__ : int = None if labels is not None: if "input_ids" in labels or (isinstance(_snake_case ,_snake_case ) and "input_ids" in labels[0]): lowercase__ : List[Any] = self.tokenizer.pad(_snake_case ,**_snake_case ) lowercase__ : Optional[int] = targets['''input_ids'''] else: lowercase__ : int = self.feature_extractor.feature_size lowercase__ : str = self.feature_extractor.num_mel_bins lowercase__ : int = self.feature_extractor.pad(_snake_case ,*_snake_case ,**_snake_case ) lowercase__ : Tuple = feature_size_hack lowercase__ : int = targets['''input_values'''] else: lowercase__ : Union[str, Any] = None if inputs is None: return targets if targets is not None: lowercase__ : str = labels lowercase__ : str = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: lowercase__ : Tuple = decoder_attention_mask return inputs def UpperCAmelCase ( self : Optional[int] ,*_snake_case : List[Any] ,**_snake_case : Tuple ) -> Optional[Any]: """simple docstring""" return self.tokenizer.batch_decode(*_snake_case ,**_snake_case ) def UpperCAmelCase ( self : List[str] ,*_snake_case : Dict ,**_snake_case : str ) -> List[str]: """simple docstring""" return self.tokenizer.decode(*_snake_case ,**_snake_case )
560
1
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __get__( self : List[Any] , __lowercase : int , __lowercase : str=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) snake_case_ = "__cached_" + self.fget.__name__ snake_case_ = getattr(__lowercase , __lowercase , __lowercase ) if cached is None: snake_case_ = self.fget(__lowercase ) setattr(__lowercase , __lowercase , __lowercase ) return cached def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"invalid truth value {val!r}" ) def lowerCamelCase__ ( _A ): '''simple docstring''' if is_torch_fx_proxy(_A ): return True if is_torch_available(): import torch if isinstance(_A , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_A , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_A , (jnp.ndarray, Tracer) ): return True return isinstance(_A , np.ndarray ) def lowerCamelCase__ ( _A ): '''simple docstring''' return isinstance(_A , np.ndarray ) def lowerCamelCase__ ( _A ): '''simple docstring''' return _is_numpy(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' import torch return isinstance(_A , torch.Tensor ) def lowerCamelCase__ ( _A ): '''simple docstring''' return False if not is_torch_available() else _is_torch(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' import torch return isinstance(_A , torch.device ) def lowerCamelCase__ ( _A ): '''simple docstring''' return False if not is_torch_available() else _is_torch_device(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' import torch if isinstance(_A , _A ): if hasattr(_A , _A ): snake_case_ = getattr(_A , _A ) else: return False return isinstance(_A , torch.dtype ) def lowerCamelCase__ ( _A ): '''simple docstring''' return False if not is_torch_available() else _is_torch_dtype(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' import tensorflow as tf return isinstance(_A , tf.Tensor ) def lowerCamelCase__ ( _A ): '''simple docstring''' return False if not is_tf_available() else _is_tensorflow(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_A , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(_A ) return type(_A ) == tf.Tensor def lowerCamelCase__ ( _A ): '''simple docstring''' return False if not is_tf_available() else _is_tf_symbolic_tensor(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' import jax.numpy as jnp # noqa: F811 return isinstance(_A , jnp.ndarray ) def lowerCamelCase__ ( _A ): '''simple docstring''' return False if not is_flax_available() else _is_jax(_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' if isinstance(_A , (dict, UserDict) ): return {k: to_py_obj(_A ) for k, v in obj.items()} elif isinstance(_A , (list, tuple) ): return [to_py_obj(_A ) for o in obj] elif is_tf_tensor(_A ): return obj.numpy().tolist() elif is_torch_tensor(_A ): return obj.detach().cpu().tolist() elif is_jax_tensor(_A ): return np.asarray(_A ).tolist() elif isinstance(_A , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowerCamelCase__ ( _A ): '''simple docstring''' if isinstance(_A , (dict, UserDict) ): return {k: to_numpy(_A ) for k, v in obj.items()} elif isinstance(_A , (list, tuple) ): return np.array(_A ) elif is_tf_tensor(_A ): return obj.numpy() elif is_torch_tensor(_A ): return obj.detach().cpu().numpy() elif is_jax_tensor(_A ): return np.asarray(_A ) else: return obj class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = fields(self ) # Safety and consistency checks if not len(__lowercase ): raise ValueError(f"{self.__class__.__name__} has no fields." ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"{self.__class__.__name__} should not have more than one required field." ) snake_case_ = getattr(self , class_fields[0].name ) snake_case_ = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__lowercase ): if isinstance(__lowercase , __lowercase ): snake_case_ = first_field.items() snake_case_ = True else: try: snake_case_ = iter(__lowercase ) snake_case_ = True except TypeError: snake_case_ = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__lowercase ): if ( not isinstance(__lowercase , (list, tuple) ) or not len(__lowercase ) == 2 or not isinstance(element[0] , __lowercase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute snake_case_ = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self , element[0] , element[1] ) if element[1] is not None: snake_case_ = element[1] elif first_field is not None: snake_case_ = first_field else: for field in class_fields: snake_case_ = getattr(self , field.name ) if v is not None: snake_case_ = v def __delitem__( self : Any , *__lowercase : Optional[Any] , **__lowercase : List[str] ): """simple docstring""" raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." ) def snake_case__ ( self : Optional[Any] , *__lowercase : Optional[Any] , **__lowercase : Dict ): """simple docstring""" raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." ) def snake_case__ ( self : List[str] , *__lowercase : Optional[Any] , **__lowercase : Dict ): """simple docstring""" raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance." ) def snake_case__ ( self : Optional[int] , *__lowercase : Tuple , **__lowercase : str ): """simple docstring""" raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance." ) def __getitem__( self : Dict , __lowercase : Optional[int] ): """simple docstring""" if isinstance(__lowercase , __lowercase ): snake_case_ = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : Tuple , __lowercase : Dict , __lowercase : Union[str, Any] ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__lowercase , __lowercase ) super().__setattr__(__lowercase , __lowercase ) def __setitem__( self : Optional[int] , __lowercase : str , __lowercase : List[str] ): """simple docstring""" super().__setitem__(__lowercase , __lowercase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__lowercase , __lowercase ) def snake_case__ ( self : Tuple ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @classmethod def snake_case__ ( cls : Union[str, Any] , __lowercase : Tuple ): """simple docstring""" raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" ) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = '''longest''' lowerCAmelCase_ = '''max_length''' lowerCAmelCase_ = '''do_not_pad''' class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowerCAmelCase_ = '''pt''' lowerCAmelCase_ = '''tf''' lowerCAmelCase_ = '''np''' lowerCAmelCase_ = '''jax''' class UpperCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , __lowercase : List[ContextManager] ): """simple docstring""" snake_case_ = context_managers snake_case_ = ExitStack() def __enter__( self : Optional[Any] ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(__lowercase ) def __exit__( self : Union[str, Any] , *__lowercase : Dict , **__lowercase : Dict ): """simple docstring""" self.stack.__exit__(*__lowercase , **__lowercase ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = infer_framework(_A ) if framework == "tf": snake_case_ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case_ = inspect.signature(model_class.forward ) # PyTorch models else: snake_case_ = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = model_class.__name__ snake_case_ = infer_framework(_A ) if framework == "tf": snake_case_ = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": snake_case_ = inspect.signature(model_class.forward ) # PyTorch models else: snake_case_ = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowerCamelCase__ ( _A , _A = "" , _A = "." ): '''simple docstring''' def _flatten_dict(_A , _A="" , _A="." ): for k, v in d.items(): snake_case_ = str(_A ) + delimiter + str(_A ) if parent_key else k if v and isinstance(_A , _A ): yield from flatten_dict(_A , _A , delimiter=_A ).items() else: yield key, v return dict(_flatten_dict(_A , _A , _A ) ) @contextmanager def lowerCamelCase__ ( _A , _A = False ): '''simple docstring''' if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowerCamelCase__ ( _A , _A=None ): '''simple docstring''' if is_numpy_array(_A ): return np.transpose(_A , axes=_A ) elif is_torch_tensor(_A ): return array.T if axes is None else array.permute(*_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.transpose(_A , perm=_A ) elif is_jax_tensor(_A ): return jnp.transpose(_A , axes=_A ) else: raise ValueError(f"Type not supported for transpose: {type(_A )}." ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if is_numpy_array(_A ): return np.reshape(_A , _A ) elif is_torch_tensor(_A ): return array.reshape(*_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.reshape(_A , _A ) elif is_jax_tensor(_A ): return jnp.reshape(_A , _A ) else: raise ValueError(f"Type not supported for reshape: {type(_A )}." ) def lowerCamelCase__ ( _A , _A=None ): '''simple docstring''' if is_numpy_array(_A ): return np.squeeze(_A , axis=_A ) elif is_torch_tensor(_A ): return array.squeeze() if axis is None else array.squeeze(dim=_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.squeeze(_A , axis=_A ) elif is_jax_tensor(_A ): return jnp.squeeze(_A , axis=_A ) else: raise ValueError(f"Type not supported for squeeze: {type(_A )}." ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if is_numpy_array(_A ): return np.expand_dims(_A , _A ) elif is_torch_tensor(_A ): return array.unsqueeze(dim=_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.expand_dims(_A , axis=_A ) elif is_jax_tensor(_A ): return jnp.expand_dims(_A , axis=_A ) else: raise ValueError(f"Type not supported for expand_dims: {type(_A )}." ) def lowerCamelCase__ ( _A ): '''simple docstring''' if is_numpy_array(_A ): return np.size(_A ) elif is_torch_tensor(_A ): return array.numel() elif is_tf_tensor(_A ): import tensorflow as tf return tf.size(_A ) elif is_jax_tensor(_A ): return array.size else: raise ValueError(f"Type not supported for expand_dims: {type(_A )}." ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' for key, value in auto_map.items(): if isinstance(_A , (tuple, list) ): snake_case_ = [f"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: snake_case_ = f"{repo_id}--{value}" return auto_map def lowerCamelCase__ ( _A ): '''simple docstring''' for base_class in inspect.getmro(_A ): snake_case_ = base_class.__module__ snake_case_ = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"Could not infer framework from class {model_class}." )
139
from __future__ import annotations def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = len(_A ) # We need to create solution object to save path. snake_case_ = [[0 for _ in range(_A )] for _ in range(_A )] snake_case_ = run_maze(_A , 0 , 0 , _A ) if solved: print("\n".join(str(_A ) for row in solutions ) ) else: print("No solution exists!" ) return solved def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = len(_A ) # Final check point. if i == j == (size - 1): snake_case_ = 1 return True snake_case_ = (not i < 0) and (not j < 0) # Check lower bounds snake_case_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. snake_case_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited snake_case_ = 1 # check for directions if ( run_maze(_A , i + 1 , _A , _A ) or run_maze(_A , _A , j + 1 , _A ) or run_maze(_A , i - 1 , _A , _A ) or run_maze(_A , _A , j - 1 , _A ) ): return True snake_case_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
139
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Any: """simple docstring""" UpperCamelCase = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") UpperCamelCase = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(UpperCAmelCase_ ): os.makedirs(UpperCAmelCase_ ) UpperCamelCase = model.state_dict() def to_tf_var_name(UpperCAmelCase_ ): for patt, repl in iter(UpperCAmelCase_ ): UpperCamelCase = name.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return F"bert/{name}" def create_tf_var(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCamelCase = tf.dtypes.as_dtype(tensor.dtype ) UpperCamelCase = tf.get_variable(dtype=UpperCAmelCase_ , shape=tensor.shape , name=UpperCAmelCase_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCAmelCase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCamelCase = to_tf_var_name(UpperCAmelCase_ ) UpperCamelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCamelCase = torch_tensor.T UpperCamelCase = create_tf_var(tensor=UpperCAmelCase_ , name=UpperCAmelCase_ , session=UpperCAmelCase_ ) tf.keras.backend.set_value(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = session.run(UpperCAmelCase_ ) print(F"Successfully created {tf_name}: {np.allclose(UpperCAmelCase_ , UpperCAmelCase_ )}" ) UpperCamelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , model_name.replace("-" , "_" ) + ".ckpt" ) ) def lowerCamelCase__ ( UpperCAmelCase_=None )-> Tuple: """simple docstring""" UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--model_name" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Directory in which to save tensorflow model" ) UpperCamelCase = parser.parse_args(UpperCAmelCase_ ) UpperCamelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCAmelCase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
554
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a ( _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = LongformerTokenizer UpperCamelCase_ : str = True UpperCamelCase_ : Tuple = LongformerTokenizerFast UpperCamelCase_ : List[str] = True def _SCREAMING_SNAKE_CASE ( self : Dict )-> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) UpperCamelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase = {"unk_token": "<unk>"} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , **UpperCAmelCase_ : Dict )-> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : str , **UpperCAmelCase_ : Optional[Any] )-> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase_ : Dict )-> List[Any]: """simple docstring""" UpperCamelCase = "lower newer" UpperCamelCase = "lower newer" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Optional[Any]: """simple docstring""" UpperCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = "lower newer" UpperCamelCase = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] UpperCamelCase = tokenizer.tokenize(UpperCAmelCase_ ) # , add_prefix_space=True) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Tuple: """simple docstring""" UpperCamelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=UpperCAmelCase_ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=UpperCAmelCase_ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def _SCREAMING_SNAKE_CASE ( self : int )-> int: """simple docstring""" UpperCamelCase = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" ) UpperCamelCase = tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase_ ) UpperCamelCase = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase_ ) UpperCamelCase = tokenizer.encode( "sequence builders" , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) UpperCamelCase = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_tokenizer() UpperCamelCase = "Encode this sequence." UpperCamelCase = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments UpperCamelCase = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) UpperCamelCase = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # Testing spaces after special tokens UpperCamelCase = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ )} ) # mask token has a left space UpperCamelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) UpperCamelCase = "Encode <mask> sequence" UpperCamelCase = "Encode <mask>sequence" UpperCamelCase = tokenizer.encode(UpperCAmelCase_ ) UpperCamelCase = encoded.index(UpperCAmelCase_ ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase = tokenizer.encode(UpperCAmelCase_ ) UpperCamelCase = encoded.index(UpperCAmelCase_ ) UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> List[str]: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Tuple: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) UpperCamelCase = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) UpperCamelCase = "A, <mask> AllenNLP sentence." UpperCamelCase = tokenizer_r.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) UpperCamelCase = tokenizer_p.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( UpperCAmelCase_ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Dict: """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) UpperCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , UpperCAmelCase_ ) self.assertEqual(post_processor_state["add_prefix_space"] , UpperCAmelCase_ ) self.assertEqual(post_processor_state["trim_offsets"] , UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Union[str, Any]: """simple docstring""" # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase = f"{text_of_1_token} {text_of_1_token}" UpperCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_ ) + 1, len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_ ) + 1, len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_ ), len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , ) UpperCamelCase = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_ ) + 1, 1 + len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_ ), 1 + len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ ) UpperCamelCase = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_ ), 1 + len(UpperCAmelCase_ ) + 1 + len(UpperCAmelCase_ )) , )
554
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) # General docstring __SCREAMING_SNAKE_CASE : Tuple = 'ResNetConfig' # Base docstring __SCREAMING_SNAKE_CASE : str = 'microsoft/resnet-50' __SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 2_0_4_8, 7, 7] # Image classification docstring __SCREAMING_SNAKE_CASE : Union[str, Any] = 'microsoft/resnet-50' __SCREAMING_SNAKE_CASE : Any = 'tiger cat' __SCREAMING_SNAKE_CASE : int = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class lowercase_ ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ = 3 , lowercase_ = 1 , lowercase_ = "relu" ): super().__init__() _snake_case : Any = nn.Convad( lowercase_ , lowercase_ , kernel_size=lowercase_ , stride=lowercase_ , padding=kernel_size // 2 , bias=lowercase_ ) _snake_case : Dict = nn.BatchNormad(lowercase_ ) _snake_case : Optional[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase ( self , lowercase_ ): _snake_case : List[str] = self.convolution(lowercase_ ) _snake_case : Union[str, Any] = self.normalization(lowercase_ ) _snake_case : List[Any] = self.activation(lowercase_ ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self , lowercase_ ): super().__init__() _snake_case : Dict = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _snake_case : int = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _snake_case : List[Any] = config.num_channels def UpperCamelCase ( self , lowercase_ ): _snake_case : Dict = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) _snake_case : int = self.embedder(lowercase_ ) _snake_case : Optional[int] = self.pooler(lowercase_ ) return embedding class lowercase_ ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ = 2 ): super().__init__() _snake_case : Dict = nn.Convad(lowercase_ , lowercase_ , kernel_size=1 , stride=lowercase_ , bias=lowercase_ ) _snake_case : Any = nn.BatchNormad(lowercase_ ) def UpperCamelCase ( self , lowercase_ ): _snake_case : Optional[int] = self.convolution(lowercase_ ) _snake_case : List[str] = self.normalization(lowercase_ ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ = 1 , lowercase_ = "relu" ): super().__init__() _snake_case : Optional[Any] = in_channels != out_channels or stride != 1 _snake_case : int = ( ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case : Union[str, Any] = nn.Sequential( ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , activation=lowercase_ ) , ) _snake_case : Optional[int] = ACTaFN[activation] def UpperCamelCase ( self , lowercase_ ): _snake_case : List[Any] = hidden_state _snake_case : List[str] = self.layer(lowercase_ ) _snake_case : Tuple = self.shortcut(lowercase_ ) hidden_state += residual _snake_case : Optional[Any] = self.activation(lowercase_ ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ = 1 , lowercase_ = "relu" , lowercase_ = 4 ): super().__init__() _snake_case : List[str] = in_channels != out_channels or stride != 1 _snake_case : List[Any] = out_channels // reduction _snake_case : List[str] = ( ResNetShortCut(lowercase_ , lowercase_ , stride=lowercase_ ) if should_apply_shortcut else nn.Identity() ) _snake_case : int = nn.Sequential( ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 ) , ResNetConvLayer(lowercase_ , lowercase_ , stride=lowercase_ ) , ResNetConvLayer(lowercase_ , lowercase_ , kernel_size=1 , activation=lowercase_ ) , ) _snake_case : int = ACTaFN[activation] def UpperCamelCase ( self , lowercase_ ): _snake_case : Any = hidden_state _snake_case : Union[str, Any] = self.layer(lowercase_ ) _snake_case : Dict = self.shortcut(lowercase_ ) hidden_state += residual _snake_case : int = self.activation(lowercase_ ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ = 2 , lowercase_ = 2 , ): super().__init__() _snake_case : str = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer _snake_case : str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowercase_ , lowercase_ , stride=lowercase_ , activation=config.hidden_act ) , *[layer(lowercase_ , lowercase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def UpperCamelCase ( self , lowercase_ ): _snake_case : Tuple = input for layer in self.layers: _snake_case : Any = layer(lowercase_ ) return hidden_state class lowercase_ ( nn.Module ): def __init__( self , lowercase_ ): super().__init__() _snake_case : List[str] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowercase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _snake_case : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowercase_ , config.depths[1:] ): self.stages.append(ResNetStage(lowercase_ , lowercase_ , lowercase_ , depth=lowercase_ ) ) def UpperCamelCase ( self , lowercase_ , lowercase_ = False , lowercase_ = True ): _snake_case : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Union[str, Any] = hidden_states + (hidden_state,) _snake_case : Optional[int] = stage_module(lowercase_ ) if output_hidden_states: _snake_case : Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowercase_ , hidden_states=lowercase_ , ) class lowercase_ ( __snake_case ): _lowerCamelCase = ResNetConfig _lowerCamelCase = 'resnet' _lowerCamelCase = 'pixel_values' _lowerCamelCase = True def UpperCamelCase ( self , lowercase_ ): if isinstance(lowercase_ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def UpperCamelCase ( self , lowercase_ , lowercase_=False ): if isinstance(lowercase_ , lowercase_ ): _snake_case : Tuple = value __SCREAMING_SNAKE_CASE : Tuple = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __SCREAMING_SNAKE_CASE : Tuple = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , __snake_case , ) class lowercase_ ( __snake_case ): def __init__( self , lowercase_ ): super().__init__(lowercase_ ) _snake_case : Dict = config _snake_case : List[str] = ResNetEmbeddings(lowercase_ ) _snake_case : Dict = ResNetEncoder(lowercase_ ) _snake_case : List[Any] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None ): _snake_case : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : str = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.embedder(lowercase_ ) _snake_case : Any = self.encoder( lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) _snake_case : int = encoder_outputs[0] _snake_case : str = self.pooler(lowercase_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase_ , pooler_output=lowercase_ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __snake_case , ) class lowercase_ ( __snake_case ): def __init__( self , lowercase_ ): super().__init__(lowercase_ ) _snake_case : Tuple = config.num_labels _snake_case : Any = ResNetModel(lowercase_ ) # classification head _snake_case : Optional[int] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase ( self , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , ): _snake_case : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Optional[int] = self.resnet(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) _snake_case : int = outputs.pooler_output if return_dict else outputs[1] _snake_case : Any = self.classifier(lowercase_ ) _snake_case : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Tuple = "single_label_classification" else: _snake_case : List[str] = "multi_label_classification" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case : Dict = loss_fct(lowercase_ , lowercase_ ) elif self.config.problem_type == "single_label_classification": _snake_case : Tuple = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case : Union[str, Any] = BCEWithLogitsLoss() _snake_case : Tuple = loss_fct(lowercase_ , lowercase_ ) if not return_dict: _snake_case : List[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase_ , logits=lowercase_ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __snake_case , ) class lowercase_ ( __snake_case , __snake_case ): def __init__( self , lowercase_ ): super().__init__(lowercase_ ) super()._init_backbone(lowercase_ ) _snake_case : Optional[int] = [config.embedding_size] + config.hidden_sizes _snake_case : List[Any] = ResNetEmbeddings(lowercase_ ) _snake_case : Optional[Any] = ResNetEncoder(lowercase_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase_ ) @replace_return_docstrings(output_type=lowercase_ , config_class=_CONFIG_FOR_DOC ) def UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = None ): _snake_case : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = self.embedder(lowercase_ ) _snake_case : Union[str, Any] = self.encoder(lowercase_ , output_hidden_states=lowercase_ , return_dict=lowercase_ ) _snake_case : Optional[Any] = outputs.hidden_states _snake_case : List[Any] = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _snake_case : int = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowercase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowercase_ , )
705
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def snake_case (__lowercase ) -> List[Any]: '''simple docstring''' _snake_case : int = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowercase_ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): _lowerCamelCase = StableDiffusionLatentUpscalePipeline _lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } _lowerCamelCase = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} _lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase = frozenset([] ) _lowerCamelCase = True @property def UpperCamelCase ( self ): _snake_case : Optional[int] = 1 _snake_case : Any = 4 _snake_case : int = (16, 16) _snake_case : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase_ ) return image def UpperCamelCase ( self ): torch.manual_seed(0 ) _snake_case : Tuple = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=lowercase_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=lowercase_ , only_cross_attention=lowercase_ , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) _snake_case : Any = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) _snake_case : Union[str, Any] = EulerDiscreteScheduler(prediction_type="sample" ) _snake_case : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="quick_gelu" , projection_dim=512 , ) _snake_case : Optional[int] = CLIPTextModel(lowercase_ ) _snake_case : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _snake_case : int = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def UpperCamelCase ( self , lowercase_ , lowercase_=0 ): if str(lowercase_ ).startswith("mps" ): _snake_case : Dict = torch.manual_seed(lowercase_ ) else: _snake_case : Tuple = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) _snake_case : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def UpperCamelCase ( self ): _snake_case : Tuple = "cpu" _snake_case : List[Any] = self.get_dummy_components() _snake_case : List[str] = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) _snake_case : Union[str, Any] = self.get_dummy_inputs(lowercase_ ) _snake_case : Dict = pipe(**lowercase_ ).images _snake_case : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) _snake_case : Union[str, Any] = np.array( [0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] ) _snake_case : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase_ , 1e-3 ) def UpperCamelCase ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def UpperCamelCase ( self ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def UpperCamelCase ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def UpperCamelCase ( self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def UpperCamelCase ( self ): super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCamelCase ( self ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCamelCase ( self ): _snake_case : Dict = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] _snake_case : Dict = self.get_dummy_components() _snake_case : Optional[Any] = self.pipeline_class(**lowercase_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) _snake_case : List[Any] = self.get_dummy_inputs(lowercase_ ) _snake_case : int = 2 _snake_case : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _snake_case : Union[str, Any] = getattr(lowercase_ , scheduler_enum.name ) _snake_case : Dict = scheduler_cls.from_config(pipe.scheduler.config ) _snake_case : Optional[int] = pipe(**lowercase_ )[0] outputs.append(lowercase_ ) assert check_same_shape(lowercase_ ) @require_torch_gpu @slow class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): _snake_case : Any = torch.manual_seed(33 ) _snake_case : Optional[Any] = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) _snake_case : int = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) _snake_case : int = "a photo of an astronaut high resolution, unreal engine, ultra realistic" _snake_case : Union[str, Any] = pipe(lowercase_ , generator=lowercase_ , output_type="latent" ).images _snake_case : Dict = upscaler( prompt=lowercase_ , image=lowercase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowercase_ , output_type="np" , ).images[0] _snake_case : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def UpperCamelCase ( self ): _snake_case : Dict = torch.manual_seed(33 ) _snake_case : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) _snake_case : Any = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" _snake_case : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) _snake_case : Any = upscaler( prompt=lowercase_ , image=lowercase_ , num_inference_steps=20 , guidance_scale=0 , generator=lowercase_ , output_type="np" , ).images[0] _snake_case : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5e-2
580
0
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Tuple = int(UpperCAmelCase ) lowercase__ , lowercase__ , lowercase__ : str = t // 3600, (t // 60) % 60, t % 60 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=300 ): # docstyle-ignore return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : List[Any] = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: lowercase__ : Union[str, Any] = F"""{elt:.6f}""" if isinstance(UpperCAmelCase , UpperCAmelCase ) else str(UpperCAmelCase ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE = 5 SCREAMING_SNAKE_CASE = 0.2 def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = 300 , ) -> Optional[Any]: lowercase__ : List[str] = total lowercase__ : Tuple = '''''' if prefix is None else prefix lowercase__ : List[Any] = leave lowercase__ : int = parent lowercase__ : str = width lowercase__ : List[str] = None lowercase__ : List[str] = None lowercase__ : List[str] = None def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None ) -> List[str]: lowercase__ : Union[str, Any] = value if comment is not None: lowercase__ : Union[str, Any] = comment if self.last_value is None: lowercase__ : List[Any] = time.time() lowercase__ : Dict = value lowercase__ : Any = None lowercase__ : Tuple = self.warmup lowercase__ : List[str] = 1 self.update_bar(__lowerCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 lowercase__ : int = time.time() lowercase__ : int = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: lowercase__ : Any = self.elapsed_time / (value - self.start_value) else: lowercase__ : str = None if value >= self.total: lowercase__ : Optional[Any] = self.total lowercase__ : Union[str, Any] = None if not self.leave: self.close() elif self.average_time_per_item is not None: lowercase__ : Tuple = self.average_time_per_item * (self.total - value) self.update_bar(__lowerCAmelCase ) lowercase__ : List[str] = value lowercase__ : Tuple = current_time if self.average_time_per_item is None: lowercase__ : Any = 1 else: lowercase__ : List[str] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None ) -> int: lowercase__ : Optional[int] = ''' ''' * (len(str(self.total ) ) - len(str(__lowerCAmelCase ) )) + str(__lowerCAmelCase ) if self.elapsed_time is None: lowercase__ : int = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: lowercase__ : Dict = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: lowercase__ : List[Any] = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : List[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: lowercase__ : Any = disp.display(disp.HTML(self.html_code ) , display_id=__lowerCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowerCAmelCase( self ) -> Optional[int]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=None ) -> str: super().__init__(__lowerCAmelCase ) lowercase__ : Optional[int] = None if column_names is None else [column_names] lowercase__ : Dict = None def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Optional[int] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: lowercase__ : Tuple = disp.display(disp.HTML(self.html_code ) , display_id=__lowerCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: if self.inner_table is None: lowercase__ : List[str] = [list(values.keys() ), list(values.values() )] else: lowercase__ : str = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__lowerCAmelCase ) lowercase__ : Optional[int] = columns self.inner_table.append([values[c] for c in columns] ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=300 ) -> Dict: lowercase__ : Dict = NotebookProgressBar(__lowerCAmelCase , prefix=__lowerCAmelCase , parent=self , width=__lowerCAmelCase ) return self.child_bar def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : List[Any] = None self.display() class UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self ) -> str: lowercase__ : int = None lowercase__ : Any = None lowercase__ : List[Any] = False def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: lowercase__ : Tuple = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' lowercase__ : List[str] = 0 lowercase__ : Optional[int] = 0 lowercase__ : List[str] = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) lowercase__ : Dict = NotebookTrainingTracker(state.max_steps , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: lowercase__ : str = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) lowercase__ : int = False def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ) -> Optional[Any]: if not has_length(__lowerCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: lowercase__ : int = self.training_tracker.add_child(len(__lowerCAmelCase ) ) else: lowercase__ : Tuple = NotebookProgressBar(len(__lowerCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: if self.prediction_bar is not None: self.prediction_bar.close() lowercase__ : Any = None def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ) -> List[Any]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: lowercase__ : List[str] = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy lowercase__ : Dict = state.global_step self.training_tracker.write_line(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , **__lowerCAmelCase ) -> Union[str, Any]: if self.training_tracker is not None: lowercase__ : Tuple = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: lowercase__ : List[str] = log['''loss'''] break if self.first_column == "Epoch": lowercase__ : Optional[Any] = int(state.epoch ) else: lowercase__ : Any = state.global_step lowercase__ : str = '''eval''' for k in metrics: if k.endswith('''_loss''' ): lowercase__ : int = re.sub(r'''\_loss$''' , '''''' , __lowerCAmelCase ) lowercase__ : Tuple = metrics.pop('''total_flos''' , __lowerCAmelCase ) lowercase__ : Optional[Any] = metrics.pop('''epoch''' , __lowerCAmelCase ) lowercase__ : int = metrics.pop(F"""{metric_key_prefix}_runtime""" , __lowerCAmelCase ) lowercase__ : Union[str, Any] = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , __lowerCAmelCase ) lowercase__ : Union[str, Any] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , __lowerCAmelCase ) lowercase__ : Optional[Any] = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , __lowerCAmelCase ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": lowercase__ : Optional[int] = v else: lowercase__ : str = k.split('''_''' ) lowercase__ : Union[str, Any] = ''' '''.join([part.capitalize() for part in splits[1:]] ) lowercase__ : Optional[Any] = v self.training_tracker.write_line(__lowerCAmelCase ) self.training_tracker.remove_child() lowercase__ : Dict = None # Evaluation takes a long time so we should force the next update. lowercase__ : Tuple = True def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: self.training_tracker.update( state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=__lowerCAmelCase ) lowercase__ : Optional[Any] = None
152
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a: str = 16 __a: Optional[Any] = 32 def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 16 , UpperCAmelCase = "bert-base-cased" ): lowercase__ : str = AutoTokenizer.from_pretrained(UpperCAmelCase ) lowercase__ : Optional[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowercase__ : Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCAmelCase , max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ : Optional[int] = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ : List[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowercase__ : Any = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) lowercase__ : Dict = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): # Initialize accelerator lowercase__ : List[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ : Dict = config['''lr'''] lowercase__ : Dict = int(config['''num_epochs'''] ) lowercase__ : Optional[Any] = int(config['''seed'''] ) lowercase__ : List[Any] = int(config['''batch_size'''] ) lowercase__ : Tuple = args.model_name_or_path set_seed(UpperCAmelCase ) lowercase__ , lowercase__ : Tuple = get_dataloaders(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained(UpperCAmelCase , return_dict=UpperCAmelCase ) # Instantiate optimizer lowercase__ : Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ : int = optimizer_cls(params=model.parameters() , lr=UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: lowercase__ : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowercase__ : int = 1 lowercase__ : int = (len(UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ : Tuple = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase , num_warmup_steps=0 , num_training_steps=UpperCAmelCase , ) else: lowercase__ : Tuple = DummyScheduler(UpperCAmelCase , total_num_steps=UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Any = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over lowercase__ : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ : str = 0 # Now we train the model lowercase__ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) lowercase__ : Any = 0 lowercase__ : Optional[Any] = {} for epoch in range(UpperCAmelCase , UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): lowercase__ : int = model(**UpperCAmelCase ) lowercase__ : Any = outputs.loss lowercase__ : int = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ : Dict = 0 for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ : Optional[Any] = model(**UpperCAmelCase ) lowercase__ : Tuple = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ : int = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCAmelCase ) - 1: lowercase__ : int = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ : List[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCAmelCase , references=UpperCAmelCase , ) lowercase__ : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , UpperCAmelCase ) lowercase__ : Any = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: lowercase__ : Tuple = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) def __UpperCamelCase ( ): lowercase__ : int = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=UpperCAmelCase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=UpperCAmelCase , ) parser.add_argument( '''--output_dir''' , type=UpperCAmelCase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=UpperCAmelCase , default=3 , help='''Number of train epochs.''' , ) lowercase__ : List[Any] = parser.parse_args() lowercase__ : List[str] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
152
1
from __future__ import annotations from random import random from typing import Generic, TypeVar __lowerCamelCase = TypeVar('KT') __lowerCamelCase = TypeVar('VT') class _UpperCamelCase( Generic[KT, VT] ): def __init__( self : str , _lowerCamelCase : KT | str = "root" , _lowerCamelCase : VT | None = None ): _UpperCAmelCase : int = key _UpperCAmelCase : str = value _UpperCAmelCase : list[Node[KT, VT]] = [] def __repr__( self : List[str] ): return f"""Node({self.key}: {self.value})""" @property def a__ ( self : str ): return len(self.forward ) class _UpperCamelCase( Generic[KT, VT] ): def __init__( self : List[Any] , _lowerCamelCase : float = 0.5 , _lowerCamelCase : int = 16 ): _UpperCAmelCase : Node[KT, VT] = Node[KT, VT]() _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : List[str] = p _UpperCAmelCase : Any = max_level def __str__( self : Any ): _UpperCAmelCase : Dict = list(self ) if len(_lowerCamelCase ) == 0: return f"""SkipList(level={self.level})""" _UpperCAmelCase : Tuple = max((len(str(_lowerCamelCase ) ) for item in items) , default=4 ) _UpperCAmelCase : int = max(_lowerCamelCase , 4 ) + 4 _UpperCAmelCase : int = self.head _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[str] = node.forward.copy() lines.append(f"""[{node.key}]""".ljust(_lowerCamelCase , "-" ) + "* " * len(_lowerCamelCase ) ) lines.append(" " * label_size + "| " * len(_lowerCamelCase ) ) while len(node.forward ) != 0: _UpperCAmelCase : List[str] = node.forward[0] lines.append( f"""[{node.key}]""".ljust(_lowerCamelCase , "-" ) + " ".join(str(n.key ) if n.key == node.key else "|" for n in forwards ) ) lines.append(" " * label_size + "| " * len(_lowerCamelCase ) ) _UpperCAmelCase : Optional[Any] = node.forward lines.append("None".ljust(_lowerCamelCase ) + "* " * len(_lowerCamelCase ) ) return f"""SkipList(level={self.level})\n""" + "\n".join(_lowerCamelCase ) def __iter__( self : Any ): _UpperCAmelCase : List[Any] = self.head while len(node.forward ) != 0: yield node.forward[0].key _UpperCAmelCase : Optional[Any] = node.forward[0] def a__ ( self : Dict ): _UpperCAmelCase : List[Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def a__ ( self : Optional[int] , _lowerCamelCase : Dict ): _UpperCAmelCase : Dict = [] _UpperCAmelCase : Optional[Any] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: _UpperCAmelCase : Union[str, Any] = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(_lowerCamelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def a__ ( self : Any , _lowerCamelCase : KT ): _UpperCAmelCase ,_UpperCAmelCase : Dict = self._locate_node(_lowerCamelCase ) if node is not None: for i, update_node in enumerate(_lowerCamelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: _UpperCAmelCase : List[str] = node.forward[i] else: _UpperCAmelCase : str = update_node.forward[:i] def a__ ( self : List[str] , _lowerCamelCase : KT , _lowerCamelCase : VT ): _UpperCAmelCase ,_UpperCAmelCase : str = self._locate_node(_lowerCamelCase ) if node is not None: _UpperCAmelCase : Optional[Any] = value else: _UpperCAmelCase : Optional[int] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , _lowerCamelCase ): update_vector.append(self.head ) _UpperCAmelCase : Dict = level _UpperCAmelCase : Tuple = Node(_lowerCamelCase , _lowerCamelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(_lowerCamelCase ) else: _UpperCAmelCase : int = new_node def a__ ( self : Optional[Any] , _lowerCamelCase : VT ): _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = self._locate_node(_lowerCamelCase ) if node is not None: return node.value return None def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = SkipList() skip_list.insert("Key1" , 3 ) skip_list.insert("Key2" , 1_2 ) skip_list.insert("Key3" , 4_1 ) skip_list.insert("Key4" , -1_9 ) _UpperCAmelCase : str = skip_list.head _UpperCAmelCase : Any = {} while node.level != 0: _UpperCAmelCase : int = node.forward[0] _UpperCAmelCase : Optional[Any] = node.value assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def lowerCAmelCase_ ( ) -> int: """simple docstring""" _UpperCAmelCase : Dict = SkipList() skip_list.insert("Key1" , 1_0 ) skip_list.insert("Key1" , 1_2 ) skip_list.insert("Key5" , 7 ) skip_list.insert("Key7" , 1_0 ) skip_list.insert("Key10" , 5 ) skip_list.insert("Key7" , 7 ) skip_list.insert("Key5" , 5 ) skip_list.insert("Key10" , 1_0 ) _UpperCAmelCase : Optional[int] = skip_list.head _UpperCAmelCase : str = {} while node.level != 0: _UpperCAmelCase : Union[str, Any] = node.forward[0] _UpperCAmelCase : str = node.value if len(_SCREAMING_SNAKE_CASE ) != 4: print() assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def lowerCAmelCase_ ( ) -> str: """simple docstring""" _UpperCAmelCase : Any = SkipList() assert skip_list.find("Some key" ) is None def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" _UpperCAmelCase : Any = SkipList() skip_list.insert("Key2" , 2_0 ) assert skip_list.find("Key2" ) == 2_0 skip_list.insert("Some Key" , 1_0 ) skip_list.insert("Key2" , 8 ) skip_list.insert("V" , 1_3 ) assert skip_list.find("Y" ) is None assert skip_list.find("Key2" ) == 8 assert skip_list.find("Some Key" ) == 1_0 assert skip_list.find("V" ) == 1_3 def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" _UpperCAmelCase : Any = SkipList() skip_list.delete("Some key" ) assert len(skip_list.head.forward ) == 0 def lowerCAmelCase_ ( ) -> str: """simple docstring""" _UpperCAmelCase : str = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("V" ) skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("Key2" ) is None def lowerCAmelCase_ ( ) -> Any: """simple docstring""" _UpperCAmelCase : Dict = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("V" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) == 1_4 assert skip_list.find("Key1" ) == 1_2 assert skip_list.find("Key2" ) == 1_5 skip_list.delete("X" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) == 1_2 assert skip_list.find("Key2" ) == 1_5 skip_list.delete("Key1" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) == 1_5 skip_list.delete("Key2" ) assert skip_list.find("V" ) is None assert skip_list.find("X" ) is None assert skip_list.find("Key1" ) is None assert skip_list.find("Key2" ) is None def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = SkipList() skip_list.insert("Key1" , 1_2 ) skip_list.insert("V" , 1_3 ) skip_list.insert("X" , 1_4_2 ) skip_list.insert("Key2" , 1_5 ) skip_list.delete("X" ) def traverse_keys(_SCREAMING_SNAKE_CASE ): yield node.key for forward_node in node.forward: yield from traverse_keys(_SCREAMING_SNAKE_CASE ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def lowerCAmelCase_ ( ) -> List[str]: """simple docstring""" def is_sorted(_SCREAMING_SNAKE_CASE ): return all(next_item >= item for item, next_item in zip(_SCREAMING_SNAKE_CASE , lst[1:] ) ) _UpperCAmelCase : int = SkipList() for i in range(1_0 ): skip_list.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def lowerCAmelCase_ ( ) -> Any: """simple docstring""" _UpperCAmelCase : int = SkipList() skip_list.insert(2 , "2" ) skip_list.insert(4 , "4" ) skip_list.insert(6 , "4" ) skip_list.insert(4 , "5" ) skip_list.insert(8 , "4" ) skip_list.insert(9 , "4" ) skip_list.delete(4 ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
328
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" _UpperCAmelCase : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase : str = "" else: _UpperCAmelCase : Any = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : List[str] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) _UpperCAmelCase : str = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Any = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : Optional[int] = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Dict = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Any = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase : List[Any] = dct.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Any = val def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" _UpperCAmelCase : Union[str, Any] = ViTMSNConfig() _UpperCAmelCase : int = 1_0_0_0 _UpperCAmelCase : str = "datasets/huggingface/label-files" _UpperCAmelCase : int = "imagenet-1k-id2label.json" _UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , "r" ) ) _UpperCAmelCase : Dict = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCAmelCase : List[Any] = idalabel _UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = 3_8_4 _UpperCAmelCase : Any = 1_5_3_6 _UpperCAmelCase : Optional[Any] = 6 elif "l16" in checkpoint_url: _UpperCAmelCase : Optional[int] = 1_0_2_4 _UpperCAmelCase : Union[str, Any] = 4_0_9_6 _UpperCAmelCase : Any = 2_4 _UpperCAmelCase : Any = 1_6 _UpperCAmelCase : List[Any] = 0.1 elif "b4" in checkpoint_url: _UpperCAmelCase : Optional[Any] = 4 elif "l7" in checkpoint_url: _UpperCAmelCase : str = 7 _UpperCAmelCase : List[str] = 1_0_2_4 _UpperCAmelCase : int = 4_0_9_6 _UpperCAmelCase : List[str] = 2_4 _UpperCAmelCase : Any = 1_6 _UpperCAmelCase : Optional[int] = 0.1 _UpperCAmelCase : Any = ViTMSNModel(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location="cpu" )["target_encoder"] _UpperCAmelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : str = create_rename_keys(_SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , base_model=_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Any = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) _UpperCAmelCase : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) _UpperCAmelCase : int = model(**_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Tuple = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _UpperCAmelCase : Dict = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: _UpperCAmelCase : Dict = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: _UpperCAmelCase : Any = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: _UpperCAmelCase : List[Any] = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __lowerCamelCase = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
328
1
import operator as op def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Any = lambda lowercase , lowercase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE : str = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(lowercase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(lowercase ) , sep=" | " ) else: SCREAMING_SNAKE_CASE : Any = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(lowercase ) , sep=" | " ) SCREAMING_SNAKE_CASE : int = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(lowercase ) , sep=" | " ) stack.append( str(opr[x](int(lowercase ) , int(lowercase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(lowercase ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": snake_case = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
62
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : List[Any] ): torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) lowerCamelCase_ = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) lowerCamelCase_ = CLIPTextModel(__UpperCamelCase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any=0 ): lowerCamelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert("""RGB""" ) if str(__UpperCamelCase ).startswith("""mps""" ): lowerCamelCase_ = torch.manual_seed(__UpperCamelCase ) else: lowerCamelCase_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) lowerCamelCase_ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Dict ): lowerCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = sd_pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Dict ): lowerCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = """french fries""" lowerCamelCase_ = sd_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = [inputs["""prompt"""]] * 2 lowerCamelCase_ = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 lowerCamelCase_ = torch.from_numpy(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) lowerCamelCase_ = image / 2 + 0.5 lowerCamelCase_ = image.permute(0 , 3 , 1 , 2 ) lowerCamelCase_ = image.repeat(2 , 1 , 1 , 1 ) lowerCamelCase_ = sd_pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) lowerCamelCase_ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Dict ): lowerCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = sd_pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = [round(__UpperCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(__UpperCamelCase ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = VaeImageProcessor(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase ) lowerCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = pipe(**self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type="""pt""" ) )[0] lowerCamelCase_ = components["""vae"""] lowerCamelCase_ = self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowerCamelCase_ = vae.encode(inputs[image_param] ).latent_dist.mode() lowerCamelCase_ = pipe(**__UpperCamelCase )[0] lowerCamelCase_ = np.abs(out - out_latents_inputs ).max() self.assertLess(__UpperCamelCase , 1E-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class __A( unittest.TestCase ): def lowercase__ ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] , __UpperCamelCase : Union[str, Any]=0 ): lowerCamelCase_ = torch.manual_seed(__UpperCamelCase ) lowerCamelCase_ = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) lowerCamelCase_ = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase ) lowerCamelCase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[Any] ): lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase ) lowerCamelCase_ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): lowerCamelCase_ = 0 def callback_fn(__UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor ) -> None: lowerCamelCase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCamelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) lowerCamelCase_ = latents[0, -3:, -3:, -1] lowerCamelCase_ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowerCamelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) lowerCamelCase_ = latents[0, -3:, -3:, -1] lowerCamelCase_ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowerCamelCase_ = False lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() pipe(**__UpperCamelCase , callback=__UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase__ ( self : int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**__UpperCamelCase ) lowerCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def lowercase__ ( self : Tuple ): lowerCamelCase_ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ = inputs["""image"""].resize((5_0_4, 5_0_4) ) lowerCamelCase_ = """timbrooks/instruct-pix2pix""" lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = pipe(**__UpperCamelCase ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) lowerCamelCase_ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
272
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase__ = { "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ["LayoutLMv2FeatureExtractor"] UpperCamelCase__ = ["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
548
def _UpperCamelCase (a__ :int ): """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 UpperCamelCase__ = 1 UpperCamelCase__ = 1 while repunit: UpperCamelCase__ = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _UpperCamelCase (a__ :int = 100_0000 ): """simple docstring""" UpperCamelCase__ = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(a__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f"""{solution() = }""")
548
1
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( a_ , unittest.TestCase ): _lowercase : List[Any] = MgpstrTokenizer _lowercase : Union[str, Any] = False _lowercase : Tuple = {} _lowercase : List[Any] = False def lowerCAmelCase_ ( self : Union[str, Any] ): super().setUp() # fmt: off __A : Dict = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __A : Tuple = dict(zip(__A , range(len(__A ) ) ) ) __A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__A ) + """\n""" ) def lowerCAmelCase_ ( self : List[str] , **__A : int ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , __A : Union[str, Any] ): __A : Optional[Any] = 'tester' __A : List[Any] = 'tester' return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass def lowerCAmelCase_ ( self : List[Any] ): __A : Dict = self.get_tokenizers(do_lower_case=__A ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __A : Optional[Any] = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({"""cls_token""": special_token} ) __A : Dict = tokenizer.encode([special_token] , add_special_tokens=__A ) self.assertEqual(len(__A ) , 1 ) __A : Any = tokenizer.decode(__A , skip_special_tokens=__A ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase_ ( self : Union[str, Any] ): __A : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __A : List[str] = self.get_input_output_texts(__A ) __A : List[Any] = tokenizer.tokenize(__A ) __A : Optional[int] = tokenizer.convert_tokens_to_ids(__A ) __A : List[Any] = tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) __A : Dict = tokenizer.convert_ids_to_tokens(__A ) self.assertNotEqual(len(__A ) , 0 ) __A : Optional[Any] = tokenizer.decode(__A ) self.assertIsInstance(__A , __A ) self.assertEqual(text_a.replace(""" """ , """""" ) , __A ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def lowerCAmelCase_ ( self : Tuple ): pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def lowerCAmelCase_ ( self : Dict ): pass
17
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging A : Optional[Any] = logging.get_logger(__name__) class __lowerCamelCase : """simple docstring""" a = 42 a = None @staticmethod def A ( ): raise NotImplementedError def A ( self : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : str): raise NotImplementedError def A ( self : Tuple , SCREAMING_SNAKE_CASE : Any): raise NotImplementedError def A ( self : Tuple): if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.') @classmethod def A ( cls : Tuple): return F'`pip install {cls.pip_package or cls.name}`' class __lowerCamelCase ( a_ ): """simple docstring""" a = "optuna" @staticmethod def A ( ): return is_optuna_available() def A ( self : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : str): return run_hp_search_optuna(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int): return default_hp_space_optuna(SCREAMING_SNAKE_CASE) class __lowerCamelCase ( a_ ): """simple docstring""" a = "ray" a = "'ray[tune]'" @staticmethod def A ( ): return is_ray_available() def A ( self : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Dict): return run_hp_search_ray(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def A ( self : Any , SCREAMING_SNAKE_CASE : Optional[Any]): return default_hp_space_ray(SCREAMING_SNAKE_CASE) class __lowerCamelCase ( a_ ): """simple docstring""" a = "sigopt" @staticmethod def A ( ): return is_sigopt_available() def A ( self : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : List[Any]): return run_hp_search_sigopt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def A ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any]): return default_hp_space_sigopt(SCREAMING_SNAKE_CASE) class __lowerCamelCase ( a_ ): """simple docstring""" a = "wandb" @staticmethod def A ( ): return is_wandb_available() def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : str): return run_hp_search_wandb(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def A ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any]): return default_hp_space_wandb(SCREAMING_SNAKE_CASE) A : Dict = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase__ ( ): _A : Any = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowerCamelCase ) > 0: _A : Optional[Any] = available_backends[0].name if len(lowerCamelCase ) > 1: logger.info( F'{len(lowerCamelCase )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
128
0
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowercase =logging.get_logger(__name__) def lowerCamelCase__ ( __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowerCamelCase__ ( __lowerCamelCase : np.ndarray , __lowerCamelCase : Optional[str] , __lowerCamelCase : Optional[str] = None ): '''simple docstring''' _UpperCAmelCase : Optional[Any] =tesseract_config if tesseract_config is not None else '' # apply OCR _UpperCAmelCase : str =to_pil_image(__lowerCamelCase ) _UpperCAmelCase : List[Any] =pil_image.size _UpperCAmelCase : Tuple =pytesseract.image_to_data(__lowerCamelCase , lang=__lowerCamelCase , output_type='dict' , config=__lowerCamelCase ) _UpperCAmelCase : Any =data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates _UpperCAmelCase : str =[idx for idx, word in enumerate(__lowerCamelCase ) if not word.strip()] _UpperCAmelCase : List[Any] =[word for idx, word in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] _UpperCAmelCase : Union[str, Any] =[coord for idx, coord in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] _UpperCAmelCase : List[str] =[coord for idx, coord in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] _UpperCAmelCase : Any =[coord for idx, coord in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] _UpperCAmelCase : Any =[coord for idx, coord in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _UpperCAmelCase : List[Any] =[] for x, y, w, h in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): _UpperCAmelCase : Any =[x, y, x + w, y + h] actual_boxes.append(__lowerCamelCase ) # finally, normalize the bounding boxes _UpperCAmelCase : Tuple =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =["pixel_values"] def __init__( self , snake_case = True , snake_case = None , snake_case = PILImageResampling.BILINEAR , snake_case = True , snake_case = None , snake_case = "" , **snake_case , ) -> None: '''simple docstring''' super().__init__(**snake_case) _UpperCAmelCase : List[str] =size if size is not None else {'height': 2_2_4, 'width': 2_2_4} _UpperCAmelCase : Any =get_size_dict(snake_case) _UpperCAmelCase : str =do_resize _UpperCAmelCase : Tuple =size _UpperCAmelCase : int =resample _UpperCAmelCase : Any =apply_ocr _UpperCAmelCase : Any =ocr_lang _UpperCAmelCase : Tuple =tesseract_config def lowerCAmelCase ( self , snake_case , snake_case , snake_case = PILImageResampling.BILINEAR , snake_case = None , **snake_case , ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =get_size_dict(snake_case) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") _UpperCAmelCase : Optional[Any] =(size['height'], size['width']) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case) def lowerCAmelCase ( self , snake_case , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ) -> PIL.Image.Image: '''simple docstring''' _UpperCAmelCase : Dict =do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : Tuple =size if size is not None else self.size _UpperCAmelCase : str =get_size_dict(snake_case) _UpperCAmelCase : Dict =resample if resample is not None else self.resample _UpperCAmelCase : Optional[int] =apply_ocr if apply_ocr is not None else self.apply_ocr _UpperCAmelCase : int =ocr_lang if ocr_lang is not None else self.ocr_lang _UpperCAmelCase : Optional[Any] =tesseract_config if tesseract_config is not None else self.tesseract_config _UpperCAmelCase : Tuple =make_list_of_images(snake_case) if not valid_images(snake_case): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') # All transformations expect numpy arrays. _UpperCAmelCase : List[Any] =[to_numpy_array(snake_case) for image in images] if apply_ocr: requires_backends(self , 'pytesseract') _UpperCAmelCase : Optional[int] =[] _UpperCAmelCase : List[Any] =[] for image in images: _UpperCAmelCase : str =apply_tesseract(snake_case , snake_case , snake_case) words_batch.append(snake_case) boxes_batch.append(snake_case) if do_resize: _UpperCAmelCase : Optional[Any] =[self.resize(image=snake_case , size=snake_case , resample=snake_case) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _UpperCAmelCase : Union[str, Any] =[flip_channel_order(snake_case) for image in images] _UpperCAmelCase : int =[to_channel_dimension_format(snake_case , snake_case) for image in images] _UpperCAmelCase : str =BatchFeature(data={'pixel_values': images} , tensor_type=snake_case) if apply_ocr: _UpperCAmelCase : Dict =words_batch _UpperCAmelCase : Optional[int] =boxes_batch return data
703
'''simple docstring''' import argparse from collections import defaultdict import yaml lowercase ='docs/source/en/_toctree.yml' def lowerCamelCase__ ( __lowerCamelCase : List[Any] ): '''simple docstring''' _UpperCAmelCase : str =defaultdict(__lowerCamelCase ) _UpperCAmelCase : str =[] _UpperCAmelCase : Optional[Any] =[] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(__lowerCamelCase ) _UpperCAmelCase : List[Any] =new_doc_list _UpperCAmelCase : Dict =[key for key, value in counts.items() if value > 1] _UpperCAmelCase : Tuple =[] for duplicate_key in duplicates: _UpperCAmelCase : List[Any] =list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(__lowerCamelCase ) > 1: raise ValueError( f"{duplicate_key} is present several times in the documentation table of content at " '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _UpperCAmelCase : Any =sorted(__lowerCamelCase , key=lambda __lowerCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__lowerCamelCase ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(__lowerCamelCase ) # Sort return overview_doc def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' with open(__lowerCamelCase , encoding='utf-8' ) as f: _UpperCAmelCase : Any =yaml.safe_load(f.read() ) # Get to the API doc _UpperCAmelCase : Tuple =0 while content[api_idx]["title"] != "API": api_idx += 1 _UpperCAmelCase : Optional[int] =content[api_idx]['sections'] # Then to the model doc _UpperCAmelCase : Dict =0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _UpperCAmelCase : Any =api_doc[scheduler_idx]['sections'] _UpperCAmelCase : Any =clean_doc_toc(__lowerCamelCase ) _UpperCAmelCase : Dict =False if new_scheduler_doc != scheduler_doc: _UpperCAmelCase : Optional[Any] =True if overwrite: _UpperCAmelCase : List[Any] =new_scheduler_doc if diff: if overwrite: _UpperCAmelCase : List[Any] =api_doc with open(__lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__lowerCamelCase , allow_unicode=__lowerCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any]=False ): '''simple docstring''' with open(__lowerCamelCase , encoding='utf-8' ) as f: _UpperCAmelCase : Union[str, Any] =yaml.safe_load(f.read() ) # Get to the API doc _UpperCAmelCase : Optional[int] =0 while content[api_idx]["title"] != "API": api_idx += 1 _UpperCAmelCase : Dict =content[api_idx]['sections'] # Then to the model doc _UpperCAmelCase : Optional[Any] =0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _UpperCAmelCase : Tuple =False _UpperCAmelCase : int =api_doc[pipeline_idx]['sections'] _UpperCAmelCase : List[Any] =[] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _UpperCAmelCase : Dict =pipeline_doc['section'] _UpperCAmelCase : Tuple =clean_doc_toc(__lowerCamelCase ) if overwrite: _UpperCAmelCase : List[str] =new_sub_pipeline_doc new_pipeline_docs.append(__lowerCamelCase ) # sort overall pipeline doc _UpperCAmelCase : Union[str, Any] =clean_doc_toc(__lowerCamelCase ) if new_pipeline_docs != pipeline_docs: _UpperCAmelCase : Optional[Any] =True if overwrite: _UpperCAmelCase : Optional[int] =new_pipeline_docs if diff: if overwrite: _UpperCAmelCase : Optional[Any] =api_doc with open(__lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(__lowerCamelCase , allow_unicode=__lowerCamelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": lowercase =argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase =parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
331
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A ( __lowercase , unittest.TestCase ): _snake_case ='''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: Dict=0 ) -> Dict: '''simple docstring''' UpperCAmelCase_ =floats_tensor((1, 3, 128, 128) , rng=random.Random(_lowerCAmelCase ) ) UpperCAmelCase_ =np.random.RandomState(_lowerCAmelCase ) UpperCAmelCase_ ={ "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =pipe(**_lowerCAmelCase ).images UpperCAmelCase_ =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ =np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowerCAmelCase__ ( self: Dict ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =pipe(**_lowerCAmelCase ).images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ =np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCAmelCase__ ( self: int ) -> Dict: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) # warmup pass to apply optimizations UpperCAmelCase_ =pipe(**self.get_dummy_inputs() ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =pipe(**_lowerCAmelCase ).images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ =np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCAmelCase__ ( self: List[str] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =pipe(**_lowerCAmelCase ).images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ =np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCAmelCase__ ( self: str ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =pipe(**_lowerCAmelCase ).images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ =np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowerCAmelCase__ ( self: Optional[int] ) -> str: '''simple docstring''' UpperCAmelCase_ =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) UpperCAmelCase_ =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ =self.get_dummy_inputs() UpperCAmelCase_ =pipe(**_lowerCAmelCase ).images UpperCAmelCase_ =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ =np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class A ( unittest.TestCase ): @property def lowerCAmelCase__ ( self: List[str] ) -> Dict: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self: List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ =ort.SessionOptions() UpperCAmelCase_ =False return options def lowerCAmelCase__ ( self: Any ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCAmelCase_ =init_image.resize((768, 512) ) # using the PNDM scheduler by default UpperCAmelCase_ =OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="A fantasy landscape, trending on artstation" UpperCAmelCase_ =np.random.RandomState(0 ) UpperCAmelCase_ =pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="np" , ) UpperCAmelCase_ =output.images UpperCAmelCase_ =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) UpperCAmelCase_ =np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowerCAmelCase__ ( self: str ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) UpperCAmelCase_ =init_image.resize((768, 512) ) UpperCAmelCase_ =LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) UpperCAmelCase_ =OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ ="A fantasy landscape, trending on artstation" UpperCAmelCase_ =np.random.RandomState(0 ) UpperCAmelCase_ =pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_lowerCAmelCase , output_type="np" , ) UpperCAmelCase_ =output.images UpperCAmelCase_ =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) UpperCAmelCase_ =np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
54
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
1
"""simple docstring""" import copy import re class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: Tuple = '''hp''' _lowerCamelCase: Optional[Any] = {} _lowerCamelCase: Optional[Any] = None @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] ,A_ : Union[str, Any] ,A_ : Dict ) -> Union[str, Any]: A = prefix A = defaults cls.build_naming_info() @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : Optional[Any] ,A_ : Optional[int] ) -> List[Any]: if len(A_ ) == 0: return "" A = None if any(char.isdigit() for char in word ): raise Exception(F'Parameters should not contain numbers: \'{word}\' contains a number' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 ,len(A_ ) + 1 ): A = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: A = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(A_ : int ): A = '' while integer != 0: A = chr(ord('A' ) + integer % 10 ) + s integer //= 10 return s A = 0 while True: A = word + '#' + int_to_alphabetic(A_ ) if sword in info["reverse_short_word"]: continue else: A = sword break A = short_word A = word return short_word @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : Any ,A_ : Any ) -> List[str]: A = param_name.split('_' ) A = [TrialShortNamer.shortname_for_word(A_ ,A_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name A = ['', '_'] for separator in separators: A = separator.join(A_ ) if shortname not in info["reverse_short_param"]: A = shortname A = param_name return shortname return param_name @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : List[Any] ,A_ : List[Any] ) -> Dict: A = TrialShortNamer.shortname_for_key(A_ ,A_ ) A = short_name A = param_name @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ) -> Union[str, Any]: if cls.NAMING_INFO is not None: return A = { 'short_word': {}, 'reverse_short_word': {}, 'short_param': {}, 'reverse_short_param': {}, } A = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(A_ ,A_ ) A = info @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,A_ : List[str] ) -> Optional[int]: cls.build_naming_info() assert cls.PREFIX is not None A = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'You should provide a default value for the param name {k} with value {v}' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue A = cls.NAMING_INFO['short_param'][k] if isinstance(A_ ,A_ ): A = 1 if v else 0 A = '' if isinstance(A_ ,(int, float) ) else '-' A = F'{key}{sep}{v}' name.append(A_ ) return "_".join(A_ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,A_ : List[Any] ) -> Tuple: A = repr[len(cls.PREFIX ) + 1 :] if repr == "": A = [] else: A = repr.split('_' ) A = {} for value in values: if "-" in value: A , A = value.split('-' ) else: A = re.sub('[0-9.]' ,'' ,A_ ) A = float(re.sub('[^0-9.]' ,'' ,A_ ) ) A = cls.NAMING_INFO['reverse_short_param'][p_k] A = p_v for k in cls.DEFAULTS: if k not in parameters: A = cls.DEFAULTS[k] return parameters
22
"""simple docstring""" def _snake_case ( snake_case__ : list , snake_case__ : list , snake_case__ : int ): A = len(snake_case__ ) A = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): A = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): A = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
22
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case__ ( ) -> List[str]: '''simple docstring''' lowerCAmelCase = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__SCREAMING_SNAKE_CASE , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__SCREAMING_SNAKE_CASE , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__SCREAMING_SNAKE_CASE ) return parser.parse_args() def snake_case__ ( ) -> Dict: '''simple docstring''' lowerCAmelCase = parse_args() # Import training_script as a module. lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase = script_fpath.stem lowerCAmelCase = importlib.import_module(__SCREAMING_SNAKE_CASE ) # Patch sys.argv lowerCAmelCase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
370
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class lowerCAmelCase_ ( snake_case__ , snake_case__ ): """simple docstring""" a_ :Tuple ="""resnet""" a_ :int =["""basic""", """bottleneck"""] def __init__( self : Any , SCREAMING_SNAKE_CASE__ : List[str]=3 , SCREAMING_SNAKE_CASE__ : Tuple=6_4 , SCREAMING_SNAKE_CASE__ : Dict=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , SCREAMING_SNAKE_CASE__ : Optional[int]=[3, 4, 6, 3] , SCREAMING_SNAKE_CASE__ : Optional[Any]="bottleneck" , SCREAMING_SNAKE_CASE__ : str="relu" , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) __a = num_channels __a = embedding_size __a = hidden_sizes __a = depths __a = layer_type __a = hidden_act __a = downsample_in_first_stage __a = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(SCREAMING_SNAKE_CASE__ ) + 1 )] __a , __a = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE__ , out_indices=SCREAMING_SNAKE_CASE__ , stage_names=self.stage_names ) class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :Any =version.parse("""1.11""" ) @property def __a ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __a ( self : Optional[int] ): '''simple docstring''' return 1E-3
582
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( __lowercase : float , __lowercase : float , __lowercase : float ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
119
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger() @dataclass class A_ : _lowerCamelCase : nn.Module _lowerCamelCase : List[nn.Module] = field(default_factory=lowerCAmelCase_ ) _lowerCamelCase : list = field(default_factory=lowerCAmelCase_ ) def lowercase ( self : Dict , snake_case_ : Dict , snake_case_ : Tensor , snake_case_ : Tensor ): _UpperCAmelCase = len(list(m.modules() ) ) == 1 or isinstance(snake_case_ , nn.Convad ) or isinstance(snake_case_ , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case_ ) def __call__( self : str , snake_case_ : Tensor ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case_ ) [x.remove() for x in self.handles] return self @property def lowercase ( self : int ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A_ : _lowerCamelCase : nn.Module _lowerCamelCase : nn.Module _lowerCamelCase : int = 1 _lowerCamelCase : List = field(default_factory=lowerCAmelCase_ ) _lowerCamelCase : List = field(default_factory=lowerCAmelCase_ ) _lowerCamelCase : bool = True def __call__( self : str , snake_case_ : Tensor ): _UpperCAmelCase = Tracker(self.dest )(snake_case_ ).parametrized _UpperCAmelCase = Tracker(self.src )(snake_case_ ).parametrized _UpperCAmelCase = list(filter(lambda snake_case_ : type(snake_case_ ) not in self.src_skip , snake_case_ ) ) _UpperCAmelCase = list(filter(lambda snake_case_ : type(snake_case_ ) not in self.dest_skip , snake_case_ ) ) if len(snake_case_ ) != len(snake_case_ ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(snake_case_ )} operations while' f' destination module has {len(snake_case_ )}.' ) for dest_m, src_m in zip(snake_case_ , snake_case_ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class A_ ( nn.Module ): def __init__( self : str , snake_case_ : nn.Module ): super().__init__() _UpperCAmelCase = [] # - get the stem feature_blocks.append(("conv1", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block" ), f'Unexpected layer name {k}' _UpperCAmelCase = len(snake_case_ ) + 1 feature_blocks.append((f'res{block_index}', v) ) _UpperCAmelCase = nn.ModuleDict(snake_case_ ) def lowercase ( self : Optional[int] , snake_case_ : Tensor ): return get_trunk_forward_outputs( snake_case_ , out_feat_keys=snake_case_ , feature_blocks=self._feature_blocks , ) class A_ ( lowerCAmelCase_ ): def lowercase ( self : Any , snake_case_ : str ): _UpperCAmelCase = x.split("-" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Any , snake_case_ : str ): # default to timm! if x not in self: _UpperCAmelCase = self.convert_name_to_timm(snake_case_ ) _UpperCAmelCase = partial(lambda: (timm.create_model(snake_case_ , pretrained=snake_case_ ).eval(), None) ) else: _UpperCAmelCase = super().__getitem__(snake_case_ ) return val class A_ ( lowerCAmelCase_ ): def __getitem__( self : Tuple , snake_case_ : str ): if "seer" in x and "in1k" not in x: _UpperCAmelCase = RegNetModel else: _UpperCAmelCase = RegNetForImageClassification return val def UpperCAmelCase_ ( __lowercase : Optional[Any] , __lowercase : str , __lowercase : List[Tuple[str, str]] ) -> List[Any]: '''simple docstring''' for from_key, to_key in keys: _UpperCAmelCase = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def UpperCAmelCase_ ( __lowercase : str , __lowercase : Callable[[], nn.Module] , __lowercase : Callable[[], nn.Module] , __lowercase : RegNetConfig , __lowercase : Path , __lowercase : bool = True , ) -> str: '''simple docstring''' print(f'Converting {name}...' ) with torch.no_grad(): _UpperCAmelCase , _UpperCAmelCase = from_model_func() _UpperCAmelCase = our_model_func(__lowercase ).eval() _UpperCAmelCase = ModuleTransfer(src=__lowercase , dest=__lowercase , raise_if_mismatch=__lowercase ) _UpperCAmelCase = torch.randn((1, 3, 224, 224) ) module_transfer(__lowercase ) if from_state_dict is not None: _UpperCAmelCase = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _UpperCAmelCase = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] _UpperCAmelCase = manually_copy_vissl_head(__lowercase , our_model.state_dict() , __lowercase ) our_model.load_state_dict(__lowercase ) _UpperCAmelCase = our_model(__lowercase , output_hidden_states=__lowercase ) _UpperCAmelCase = ( our_outputs.logits if isinstance(__lowercase , __lowercase ) else our_outputs.last_hidden_state ) _UpperCAmelCase = from_model(__lowercase ) _UpperCAmelCase = from_output[-1] if type(__lowercase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _UpperCAmelCase = our_outputs.hidden_states[-1] assert torch.allclose(__lowercase , __lowercase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=__lowercase , ) _UpperCAmelCase = 224 if "seer" not in name else 384 # we can use the convnext one _UpperCAmelCase = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=__lowercase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=__lowercase , ) print(f'Pushed {name}' ) def UpperCAmelCase_ ( __lowercase : Path , __lowercase : str = None , __lowercase : bool = True ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = "imagenet-1k-id2label.json" _UpperCAmelCase = 1000 _UpperCAmelCase = (1, num_labels) _UpperCAmelCase = "huggingface/label-files" _UpperCAmelCase = num_labels _UpperCAmelCase = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type="dataset" ) ) , "r" ) ) _UpperCAmelCase = {int(__lowercase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} _UpperCAmelCase = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) _UpperCAmelCase = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } _UpperCAmelCase = NameToOurModelFuncMap() _UpperCAmelCase = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowercase : str , __lowercase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: _UpperCAmelCase = torch.hub.load_state_dict_from_url(__lowercase , model_dir=str(__lowercase ) , map_location="cpu" ) _UpperCAmelCase = model_func() # check if we have a head, if yes add it _UpperCAmelCase = files["classy_state_dict"]["base_model"]["model"] _UpperCAmelCase = model_state_dict["trunk"] model.load_state_dict(__lowercase ) return model.eval(), model_state_dict["heads"] # pretrained _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _UpperCAmelCase = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowercase , __lowercase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowercase , __lowercase , __lowercase , ) return config, expected_shape if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) __SCREAMING_SNAKE_CASE :Any = parser.parse_args() __SCREAMING_SNAKE_CASE :Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
119
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case_ : Optional[int] = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Dict = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = ["""LayoutLMv2FeatureExtractor"""] snake_case_ : Dict = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys snake_case_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
595
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self : Dict , lowercase : int , lowercase : Dict=7 , lowercase : Optional[int]=3 , lowercase : Any=18 , lowercase : Tuple=30 , lowercase : List[str]=4_00 , lowercase : Dict=True , lowercase : Dict=None , lowercase : List[str]=True , lowercase : List[str]=None , lowercase : Tuple=True , lowercase : List[str]=[0.5, 0.5, 0.5] , lowercase : Dict=[0.5, 0.5, 0.5] , ): '''simple docstring''' UpperCAmelCase : Tuple = size if size is not None else {"shortest_edge": 18} UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCAmelCase : Optional[int] = parent UpperCAmelCase : List[str] = batch_size UpperCAmelCase : Optional[Any] = num_channels UpperCAmelCase : Tuple = image_size UpperCAmelCase : List[Any] = min_resolution UpperCAmelCase : Optional[int] = max_resolution UpperCAmelCase : List[Any] = do_resize UpperCAmelCase : Dict = size UpperCAmelCase : Tuple = do_center_crop UpperCAmelCase : Optional[int] = crop_size UpperCAmelCase : int = do_normalize UpperCAmelCase : Tuple = image_mean UpperCAmelCase : Tuple = image_std def __lowerCAmelCase ( self : str ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = LevitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase : Dict = LevitImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , "image_mean" ) ) self.assertTrue(hasattr(lowercase , "image_std" ) ) self.assertTrue(hasattr(lowercase , "do_normalize" ) ) self.assertTrue(hasattr(lowercase , "do_resize" ) ) self.assertTrue(hasattr(lowercase , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase , "size" ) ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase : Any = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase : Optional[int] = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __lowerCAmelCase ( self : str ): '''simple docstring''' UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input UpperCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCAmelCase : Dict = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
595
1
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a__ : def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , _A=1_0_0_0 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = range_bbox def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase = bbox[i, j, 3] __lowerCAmelCase = bbox[i, j, 1] __lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase = bbox[i, j, 2] __lowerCAmelCase = bbox[i, j, 0] __lowerCAmelCase = t __lowerCAmelCase = tf.convert_to_tensor(_A ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFLayoutLMModel(config=_A ) __lowerCAmelCase = model(_A , _A , attention_mask=_A , token_type_ids=_A ) __lowerCAmelCase = model(_A , _A , token_type_ids=_A ) __lowerCAmelCase = model(_A , _A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFLayoutLMForMaskedLM(config=_A ) __lowerCAmelCase = model(_A , _A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_A ) __lowerCAmelCase = model(_A , _A , attention_mask=_A , token_type_ids=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFLayoutLMForTokenClassification(config=_A ) __lowerCAmelCase = model(_A , _A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_A ) __lowerCAmelCase = model(_A , _A , attention_mask=_A , token_type_ids=_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Dict = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _a : Dict = ( { """feature-extraction""": TFLayoutLMModel, """fill-mask""": TFLayoutLMForMaskedLM, """text-classification""": TFLayoutLMForSequenceClassification, """token-classification""": TFLayoutLMForTokenClassification, """zero-shot""": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _a : Tuple = False _a : Optional[int] = True _a : str = 1_0 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFLayoutLMModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = TFLayoutLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def _a ( ): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off __lowerCAmelCase = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 __lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 __lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __lowerCAmelCase = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a__ ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass __lowerCAmelCase = model(input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A ) # test the sequence output on [0, :3, :3] __lowerCAmelCase = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1E-3 ) ) # test the pooled output on [1, :3] __lowerCAmelCase = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _A , atol=1E-3 ) ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass __lowerCAmelCase = model( input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar __lowerCAmelCase = outputs.loss __lowerCAmelCase = (2,) self.assertEqual(loss.shape , _A ) # test the shape of the logits __lowerCAmelCase = outputs.logits __lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=1_3 ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass __lowerCAmelCase = model( input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A , labels=_A ) # test the shape of the logits __lowerCAmelCase = outputs.logits __lowerCAmelCase = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass __lowerCAmelCase = model(input_ids=_A , bbox=_A , attention_mask=_A , token_type_ids=_A ) # test the shape of the logits __lowerCAmelCase = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _A ) self.assertEqual(outputs.end_logits.shape , _A )
552
def _a ( SCREAMING_SNAKE_CASE_ : int ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 __lowerCAmelCase = 1 __lowerCAmelCase = 1 while repunit: __lowerCAmelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _a ( SCREAMING_SNAKE_CASE_ : int = 1_00_00_00 ): __lowerCAmelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(SCREAMING_SNAKE_CASE_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
552
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCAmelCase : Dict = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
362
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class lowercase ( lowercase_ , lowercase_ ): __SCREAMING_SNAKE_CASE : List[str] = '''resnet''' __SCREAMING_SNAKE_CASE : Dict = ['''basic''', '''bottleneck'''] def __init__( self , snake_case=3 , snake_case=64 , snake_case=[256, 512, 1024, 2048] , snake_case=[3, 4, 6, 3] , snake_case="bottleneck" , snake_case="relu" , snake_case=False , snake_case=None , snake_case=None , **snake_case , ): super().__init__(**snake_case ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(snake_case ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : List[Any] = version.parse('''1.11''' ) @property def a ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a ( self ): return 1e-3
362
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase ( unittest.TestCase ): def a__ ( self ): _A= AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _A= AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCAmelCase__ ) _A= -1 _A= ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ ) _A= model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ ) _A= tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _A= TextStreamer(lowerCAmelCase__ ) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _A= cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( self ): _A= AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _A= AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCAmelCase__ ) _A= -1 _A= ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ ) _A= model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ ) _A= tokenizer.decode(greedy_ids[0] ) _A= TextIteratorStreamer(lowerCAmelCase__ ) _A= {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} _A= Thread(target=model.generate , kwargs=lowerCAmelCase__ ) thread.start() _A= '' for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( self ): _A= AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _A= AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCAmelCase__ ) _A= -1 _A= ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ ) _A= model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ ) _A= greedy_ids[:, input_ids.shape[1] :] _A= tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _A= TextStreamer(lowerCAmelCase__ , skip_prompt=lowerCAmelCase__ ) model.generate(lowerCAmelCase__ , max_new_tokens=10 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _A= cs.out[:-1] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( self ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them _A= AutoTokenizer.from_pretrained('distilgpt2' ) _A= AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(lowerCAmelCase__ ) _A= -1 _A= torch.ones((1, 5) , device=lowerCAmelCase__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: _A= TextStreamer(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) model.generate(lowerCAmelCase__ , max_new_tokens=1 , do_sample=lowerCAmelCase__ , streamer=lowerCAmelCase__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _A= cs.out[:-1] # Remove the final "\n" _A= tokenizer(lowerCAmelCase__ , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a__ ( self ): _A= AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _A= AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(lowerCAmelCase__ ) _A= -1 _A= ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCAmelCase__ ) _A= TextIteratorStreamer(lowerCAmelCase__ , timeout=0.001 ) _A= {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} _A= Thread(target=model.generate , kwargs=lowerCAmelCase__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCAmelCase__ ): _A= '' for new_text in streamer: streamer_text += new_text
476
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCAmelCase_ = '''pt''' elif is_tf_available(): UpperCAmelCase_ = '''tf''' else: UpperCAmelCase_ = '''jax''' class lowerCAmelCase ( _a , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] =ByTaTokenizer _SCREAMING_SNAKE_CASE : Dict =False def a__ ( self ): super().setUp() _A= ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def a__ ( self ): return ByTaTokenizer.from_pretrained('google/byt5-small' ) def a__ ( self , **lowerCAmelCase__ ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=20 , lowerCAmelCase__=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _A= [] for i in range(len(lowerCAmelCase__ ) ): try: _A= tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _A= list(filter(lambda lowerCAmelCase__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , lowerCAmelCase__ ) ) _A= list(filter(lambda lowerCAmelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase__ ) , lowerCAmelCase__ ) ) if max_length is not None and len(lowerCAmelCase__ ) > max_length: _A= toks[:max_length] if min_length is not None and len(lowerCAmelCase__ ) < min_length and len(lowerCAmelCase__ ) > 0: while len(lowerCAmelCase__ ) < min_length: _A= toks + toks # toks_str = [t[1] for t in toks] _A= [t[0] for t in toks] # Ensure consistency _A= tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) if " " not in output_txt and len(lowerCAmelCase__ ) > 1: _A= ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase__ ) ) if with_prefix_space: _A= ' ' + output_txt _A= tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) return output_txt, output_ids def a__ ( self ): _A= self.ta_base_tokenizer _A= tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _A= tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def a__ ( self ): _A= self.ta_base_tokenizer _A= 'Unicode €.' _A= tokenizer(lowerCAmelCase__ ) _A= [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , lowerCAmelCase__ ) # decoding _A= tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , 'Unicode €.</s>' ) _A= tokenizer('e è é ê ë' ) _A= [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , lowerCAmelCase__ ) # decoding _A= tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def a__ ( self ): _A= self.ta_base_tokenizer _A= ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _A= [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _A= tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) if FRAMEWORK != "jax": _A= list(batch.input_ids.numpy()[0] ) else: _A= list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def a__ ( self ): _A= self.ta_base_tokenizer _A= ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _A= tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowerCAmelCase__ ) self.assertIn('attention_mask' , lowerCAmelCase__ ) self.assertNotIn('decoder_input_ids' , lowerCAmelCase__ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase__ ) def a__ ( self ): _A= self.ta_base_tokenizer _A= [ 'Summary of the text.', 'Another summary.', ] _A= tokenizer( text_target=lowerCAmelCase__ , max_length=32 , padding='max_length' , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def a__ ( self ): _A= self.ta_base_tokenizer _A= ['A long paragraph for summarization. </s>'] _A= ['Summary of the text. </s>'] # fmt: off _A= [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _A= [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _A= tokenizer(lowerCAmelCase__ , text_target=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , batch['input_ids'][0] ) self.assertEqual(lowerCAmelCase__ , batch['labels'][0] ) def a__ ( self ): # safety check on max_len default value so we are sure the test works _A= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _A= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _A= tempfile.mkdtemp() _A= ' He is very happy, UNwant\u00E9d,running' _A= tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) _A= tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) _A= after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) _A= self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _A= tempfile.mkdtemp() _A= ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _A= tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _A= tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) _A= tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) _A= after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _A= tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase__ ) def a__ ( self ): _A= [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _A= json.load(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _A= json.load(lowerCAmelCase__ ) _A= [f"<extra_id_{i}>" for i in range(125 )] _A= added_tokens_extra_ids + [ 'an_additional_special_token' ] _A= added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCAmelCase__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _A= tokenizer_class.from_pretrained( lowerCAmelCase__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _A= added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowerCAmelCase__ )] _A= tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def a__ ( self ): _A= [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) _A= tokenizer_class.from_pretrained(lowerCAmelCase__ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def a__ ( self ): pass def a__ ( self ): pass def a__ ( self ): pass def a__ ( self ): pass def a__ ( self ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens _A= self.get_tokenizers(fast=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _A= ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _A= tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( self ): _A= self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): _A= [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _A= 0 _A= tokenizer.convert_ids_to_tokens( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) for attr in attributes_list: setattr(lowerCAmelCase__ , attr + '_id' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '_id' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , attr + '_id' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '_id' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , 'additional_special_tokens_ids' ) , [] ) setattr(lowerCAmelCase__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
476
1
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowerCamelCase (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ = 1_0 def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4] SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0, 1_1, 1_2, 1_3] SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1_0] self.assertEqual(truncate_or_pad(__UpperCAmelCase , self.block_size , 0 ) , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = process_story(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = """""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = process_story(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , [] ) self.assertEqual(__UpperCAmelCase , [] ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = process_story(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = ["""It was the best of times."""] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = torch.tensor([1, 2, 3, 4] ) SCREAMING_SNAKE_CASE__ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = torch.tensor([1, 2, 3, 4, 2_3, 2_3, 2_3] ) SCREAMING_SNAKE_CASE__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 2_3 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) SCREAMING_SNAKE_CASE__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCAmelCase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = 1_0_1 SCREAMING_SNAKE_CASE__ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_0_1, 5, 6], [1, 1_0_1, 3, 4, 1_0_1, 6]] ) SCREAMING_SNAKE_CASE__ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) SCREAMING_SNAKE_CASE__ = compute_token_type_ids(__UpperCAmelCase , __UpperCAmelCase ) np.testing.assert_array_equal(__UpperCAmelCase , __UpperCAmelCase )
196
"""simple docstring""" def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 while i * i <= n: SCREAMING_SNAKE_CASE__ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 1 while True: i += 1 t_num += i if count_divisors(snake_case__ ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
196
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( _lowerCamelCase: dict , _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = set(__a ), [start] while stack: __SCREAMING_SNAKE_CASE : Optional[Any] = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored UpperCamelCase__ : List[str] = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
720
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets UpperCamelCase__ : Optional[Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' UpperCamelCase__ : List[str] = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' UpperCamelCase__ : Dict = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Optional[int]="uniform_average" , lowerCAmelCase__ : int=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = mean_squared_error( lowerCAmelCase__ , lowerCAmelCase__ , sample_weight=lowerCAmelCase__ , multioutput=lowerCAmelCase__ , squared=lowerCAmelCase__ ) return {"mse": mse}
178
0
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def _SCREAMING_SNAKE_CASE ( ): _A , _A = 9, 1_4 # noqa: F841 _A = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] _A = defaultdict(__snake_case ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _A = mst(__snake_case ) _A = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _A = tuple(answer[:2] ) _A = tuple(edge[::-1] ) assert edge in result or reverse in result
107
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCamelCase :str = logging.get_logger(__name__) class UpperCAmelCase ( __snake_case ): a: Union[str, Any] = ["input_values", "attention_mask"] def __init__( self: Dict , __UpperCamelCase: int = 1 , __UpperCamelCase: int = 1_6000 , __UpperCamelCase: float = 0.0 , __UpperCamelCase: bool = False , __UpperCamelCase: int = 80 , __UpperCamelCase: int = 16 , __UpperCamelCase: int = 64 , __UpperCamelCase: str = "hann_window" , __UpperCamelCase: float = 1.0 , __UpperCamelCase: float = 80 , __UpperCamelCase: float = 7600 , __UpperCamelCase: float = 1E-10 , __UpperCamelCase: int = 2 , __UpperCamelCase: bool = True , **__UpperCamelCase: List[Any] , ): super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase ) _a = do_normalize _a = return_attention_mask _a = num_mel_bins _a = hop_length _a = win_length _a = win_function _a = frame_signal_scale _a = fmin _a = fmax _a = mel_floor _a = reduction_factor _a = win_length * sampling_rate // 1000 _a = hop_length * sampling_rate // 1000 _a = optimal_fft_length(self.sample_size ) _a = (self.n_fft // 2) + 1 _a = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCamelCase ) _a = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , __UpperCamelCase , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , __UpperCamelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _A ( __UpperCamelCase: List[np.ndarray] , __UpperCamelCase: List[np.ndarray] , __UpperCamelCase: float = 0.0 ): if attention_mask is not None: _a = np.array(__UpperCamelCase , np.intaa ) _a = [] for vector, length in zip(__UpperCamelCase , attention_mask.sum(-1 ) ): _a = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _a = padding_value normed_input_values.append(__UpperCamelCase ) else: _a = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _A ( self: Optional[Any] , __UpperCamelCase: np.ndarray , ): _a = spectrogram( __UpperCamelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self: Optional[Any] , __UpperCamelCase: Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __UpperCamelCase: Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __UpperCamelCase: Union[bool, str, PaddingStrategy] = False , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: bool = False , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: Optional[bool] = None , __UpperCamelCase: Optional[Union[str, TensorType]] = None , __UpperCamelCase: Optional[int] = None , **__UpperCamelCase: Any , ): if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: _a = self._process_audio( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase , ) else: _a = None if audio_target is not None: _a = self._process_audio( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase , ) if inputs is None: return inputs_target else: _a = inputs_target['''input_values'''] _a = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: _a = decoder_attention_mask return inputs def _A ( self: Optional[Any] , __UpperCamelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCamelCase: bool = False , __UpperCamelCase: Union[bool, str, PaddingStrategy] = False , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: bool = False , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: Optional[bool] = None , __UpperCamelCase: Optional[Union[str, TensorType]] = None , **__UpperCamelCase: Optional[int] , ): _a = isinstance(__UpperCamelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) _a = is_batched_numpy or ( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): _a = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _a = speech.astype(np.floataa ) # always return batch if not is_batched: _a = [speech] # needed to make pad() work on spectrogram inputs _a = self.feature_size # convert into correct format for padding if is_target: _a = [self._extract_mel_features(__UpperCamelCase ) for waveform in speech] _a = BatchFeature({'''input_values''': features} ) _a = self.num_mel_bins else: _a = BatchFeature({'''input_values''': speech} ) _a = self.pad( __UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) _a = feature_size_hack # convert input values to correct format _a = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): _a = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__UpperCamelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _a = [array.astype(np.floataa ) for array in input_values] elif isinstance(__UpperCamelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _a = input_values.astype(np.floataa ) # convert attention_mask to correct format _a = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: _a = [np.asarray(__UpperCamelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _a = ( attention_mask if self._get_padding_strategies(__UpperCamelCase , max_length=__UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _a = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=__UpperCamelCase , padding_value=self.padding_value ) if return_tensors is not None: _a = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs def _A ( self: Optional[int] ): _a = super().to_dict() # Don't serialize these as they are derived from the other properties. _a = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
487
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging a_ = logging.get_logger(__name__) a_ = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class _UpperCamelCase ( __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ ="bloom" lowerCamelCase__ =["past_key_values"] lowerCamelCase__ ={ "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self : Any , a : Union[str, Any]=25_0880 , a : Optional[Any]=64 , a : int=2 , a : Any=8 , a : Optional[int]=1e-5 , a : str=0.02 , a : List[str]=True , a : Dict=1 , a : Tuple=2 , a : Optional[Any]=False , a : List[Any]=0.0 , a : List[str]=0.0 , a : int=1 , a : Dict=False , **a : Tuple , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = vocab_size # Backward compatibility with n_embed kwarg SCREAMING_SNAKE_CASE : Tuple = kwargs.pop("n_embed" , lowerCamelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size if n_embed is None else n_embed SCREAMING_SNAKE_CASE : int = n_layer SCREAMING_SNAKE_CASE : Optional[int] = n_head SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Any = use_cache SCREAMING_SNAKE_CASE : List[str] = pretraining_tp SCREAMING_SNAKE_CASE : str = apply_residual_connection_post_layernorm SCREAMING_SNAKE_CASE : int = hidden_dropout SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE : str = bos_token_id SCREAMING_SNAKE_CASE : Tuple = eos_token_id SCREAMING_SNAKE_CASE : List[str] = slow_but_exact super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) class _UpperCamelCase ( __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ =version.parse('1.12' ) def __init__( self : int , a : PretrainedConfig , a : str = "default" , a : List[PatchingSpec] = None , a : bool = False , ) -> Tuple: """simple docstring""" super().__init__(lowerCamelCase__ , task=lowerCamelCase__ , patching_specs=lowerCamelCase__ , use_past=lowerCamelCase__ ) if not getattr(self._config , "pad_token_id" , lowerCamelCase__ ): # TODO: how to do that better? SCREAMING_SNAKE_CASE : List[str] = 0 @property def __UpperCamelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowerCamelCase__ , direction="inputs" , inverted_values_shape=lowerCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE : Optional[int] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_layer @property def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" return self._config.n_head @property def __UpperCamelCase ( self : int ) -> float: """simple docstring""" return 1e-3 def __UpperCamelCase ( self : Optional[Any] , a : "PreTrainedTokenizer" , a : int = -1 , a : int = -1 , a : bool = False , a : Optional["TensorType"] = None , ) -> Mapping[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = super(lowerCamelCase__ , self ).generate_dummy_inputs( lowerCamelCase__ , batch_size=lowerCamelCase__ , seq_length=lowerCamelCase__ , is_pair=lowerCamelCase__ , framework=lowerCamelCase__ ) # We need to order the input in the way they appears in the forward() SCREAMING_SNAKE_CASE : List[Any] = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch SCREAMING_SNAKE_CASE : str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE : Any = seqlen + 2 SCREAMING_SNAKE_CASE : Tuple = self._config.hidden_size // self.num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) SCREAMING_SNAKE_CASE : Dict = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) SCREAMING_SNAKE_CASE : Any = [ (torch.zeros(lowerCamelCase__ ), torch.zeros(lowerCamelCase__ )) for _ in range(self.num_layers ) ] SCREAMING_SNAKE_CASE : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: SCREAMING_SNAKE_CASE : List[Any] = ordered_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE : List[str] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowerCamelCase__ , lowerCamelCase__ , dtype=lowerCamelCase__ )] , dim=1 ) return ordered_inputs @property def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
718
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='wavlm' def __init__( self : Optional[int] , a : Optional[Any]=32 , a : int=768 , a : Tuple=12 , a : List[str]=12 , a : str=3072 , a : Any="gelu" , a : Dict=0.1 , a : int=0.1 , a : str=0.1 , a : Optional[Any]=0.0 , a : Any=0.1 , a : Any=0.1 , a : List[str]=0.02 , a : List[Any]=1e-5 , a : Any="group" , a : Optional[int]="gelu" , a : List[str]=(512, 512, 512, 512, 512, 512, 512) , a : Any=(5, 2, 2, 2, 2, 2, 2) , a : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , a : Optional[Any]=False , a : Dict=128 , a : Optional[Any]=16 , a : Optional[Any]=320 , a : str=800 , a : Optional[int]=False , a : Tuple=True , a : Optional[Any]=0.05 , a : Any=10 , a : Optional[int]=2 , a : Dict=0.0 , a : str=10 , a : Tuple=320 , a : Optional[int]=2 , a : int=0.1 , a : List[str]=100 , a : Tuple=256 , a : str=256 , a : Tuple=0.1 , a : str="mean" , a : int=False , a : int=False , a : Optional[Any]=256 , a : Any=(512, 512, 512, 512, 1500) , a : Tuple=(5, 3, 3, 1, 1) , a : str=(1, 2, 3, 1, 1) , a : Optional[Any]=512 , a : Optional[Any]=80 , a : Tuple=0 , a : Any=1 , a : Optional[Any]=2 , a : int=False , a : Dict=3 , a : Any=2 , a : List[Any]=3 , a : int=None , **a : Any , ) -> Dict: """simple docstring""" super().__init__(**a , pad_token_id=a , bos_token_id=a , eos_token_id=a ) SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = feat_extract_norm SCREAMING_SNAKE_CASE : Any = feat_extract_activation SCREAMING_SNAKE_CASE : Any = list(a ) SCREAMING_SNAKE_CASE : Optional[int] = list(a ) SCREAMING_SNAKE_CASE : Optional[Any] = list(a ) SCREAMING_SNAKE_CASE : Any = conv_bias SCREAMING_SNAKE_CASE : str = num_buckets SCREAMING_SNAKE_CASE : str = max_bucket_distance SCREAMING_SNAKE_CASE : List[str] = num_conv_pos_embeddings SCREAMING_SNAKE_CASE : Any = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.conv_dim ) SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : int = hidden_dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : List[str] = activation_dropout SCREAMING_SNAKE_CASE : int = feat_proj_dropout SCREAMING_SNAKE_CASE : Any = final_dropout SCREAMING_SNAKE_CASE : Optional[int] = layerdrop SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Dict = num_ctc_classes SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : int = do_stable_layer_norm SCREAMING_SNAKE_CASE : List[Any] = use_weighted_layer_sum SCREAMING_SNAKE_CASE : List[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE : int = apply_spec_augment SCREAMING_SNAKE_CASE : int = mask_time_prob SCREAMING_SNAKE_CASE : Union[str, Any] = mask_time_length SCREAMING_SNAKE_CASE : List[Any] = mask_time_min_masks SCREAMING_SNAKE_CASE : Tuple = mask_feature_prob SCREAMING_SNAKE_CASE : List[str] = mask_feature_length # parameters for pretraining with codevector quantized representations SCREAMING_SNAKE_CASE : str = num_codevectors_per_group SCREAMING_SNAKE_CASE : Dict = num_codevector_groups SCREAMING_SNAKE_CASE : Tuple = contrastive_logits_temperature SCREAMING_SNAKE_CASE : List[Any] = num_negatives SCREAMING_SNAKE_CASE : Optional[int] = codevector_dim SCREAMING_SNAKE_CASE : int = proj_codevector_dim SCREAMING_SNAKE_CASE : List[Any] = diversity_loss_weight # ctc loss SCREAMING_SNAKE_CASE : Any = ctc_loss_reduction SCREAMING_SNAKE_CASE : Dict = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE : Any = add_adapter SCREAMING_SNAKE_CASE : Optional[int] = adapter_kernel_size SCREAMING_SNAKE_CASE : Any = adapter_stride SCREAMING_SNAKE_CASE : List[Any] = num_adapter_layers SCREAMING_SNAKE_CASE : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE : Union[str, Any] = list(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = list(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = list(a ) SCREAMING_SNAKE_CASE : Tuple = xvector_output_dim @property def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
193
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=13 , UpperCamelCase_ : Optional[Any]=30 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : str=True , UpperCamelCase_ : int=32 , UpperCamelCase_ : Tuple=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : str=37 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Optional[Any]=10 , UpperCamelCase_ : Union[str, Any]=0.02 , ): """simple docstring""" __A = parent __A = batch_size __A = image_size __A = patch_size __A = num_channels __A = is_training __A = use_labels __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = type_sequence_label_size __A = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __A = (image_size // patch_size) ** 2 __A = num_patches + 1 def lowerCAmelCase_ ( self : int ): """simple docstring""" __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values def lowerCAmelCase_ ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] ): """simple docstring""" __A = FlaxViTModel(config=_lowerCamelCase ) __A = model(_lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __A = (self.image_size, self.image_size) __A = (self.patch_size, self.patch_size) __A = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowerCAmelCase_ ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : Dict ): """simple docstring""" __A = self.type_sequence_label_size __A = FlaxViTForImageClassification(config=_lowerCamelCase ) __A = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A = 1 __A = FlaxViTForImageClassification(_lowerCamelCase ) __A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A = model(_lowerCamelCase ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = self.prepare_config_and_inputs() ( __A ) = config_and_inputs __A = {"""pixel_values""": pixel_values} return config, inputs_dict @require_flax class __lowercase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = FlaxViTModelTester(self ) __A = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def lowerCAmelCase_ ( self : str ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(_lowerCamelCase ) __A = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __A = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) __A = model_class(_lowerCamelCase ) @jax.jit def model_jitted(UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Tuple ): return model(pixel_values=_lowerCamelCase , **_lowerCamelCase ) with self.subTest("""JIT Enabled""" ): __A = model_jitted(**_lowerCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __A = model_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" for model_class_name in self.all_model_classes: __A = model_class_name.from_pretrained("""google/vit-base-patch16-224""" ) __A = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_lowerCamelCase )
637
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=True , _lowerCamelCase=1 / 255 , _lowerCamelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase__ : List[str] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : List[str] = min_resolution UpperCAmelCase__ : Optional[Any] = max_resolution UpperCAmelCase__ : List[str] = do_resize UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : int = image_mean UpperCAmelCase__ : Dict = image_std UpperCAmelCase__ : Any = do_rescale UpperCAmelCase__ : str = rescale_factor UpperCAmelCase__ : List[str] = do_pad def snake_case__ ( self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=False): if not batched: UpperCAmelCase__ : List[Any] = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : List[Any] = int(self.size["""shortest_edge"""] * h / w) UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""] elif w > h: UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""] UpperCAmelCase__ : Optional[int] = int(self.size["""shortest_edge"""] * w / h) else: UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""] UpperCAmelCase__ : int = self.size["""shortest_edge"""] else: UpperCAmelCase__ : str = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : Any = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase__ : Any = max(_lowerCamelCase , key=lambda _lowerCamelCase: item[0])[0] UpperCAmelCase__ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = DeformableDetrImageProcessingTester(self) @property def snake_case__ ( self): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""")) self.assertTrue(hasattr(_lowerCamelCase , """image_std""")) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""")) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""")) self.assertTrue(hasattr(_lowerCamelCase , """do_rescale""")) self.assertTrue(hasattr(_lowerCamelCase , """do_pad""")) self.assertTrue(hasattr(_lowerCamelCase , """size""")) def snake_case__ ( self): UpperCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333}) self.assertEqual(image_processor.do_pad , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCamelCase) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84}) self.assertEqual(image_processor.do_pad , _lowerCamelCase) def snake_case__ ( self): pass def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image) # Test not batched input UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray) # Test not batched input UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor) # Test not batched input UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : int = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self): # prepare image and target UpperCAmelCase__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""") as f: UpperCAmelCase__ : Dict = json.loads(f.read()) UpperCAmelCase__ : int = {"""image_id""": 3_9769, """annotations""": target} # encode them UpperCAmelCase__ : Dict = DeformableDetrImageProcessor() UpperCAmelCase__ : int = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors="""pt""") # verify pixel values UpperCAmelCase__ : Tuple = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase) UpperCAmelCase__ : Any = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4)) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase)) # verify boxes UpperCAmelCase__ : Union[str, Any] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase) UpperCAmelCase__ : Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3)) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase)) # verify is_crowd UpperCAmelCase__ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase)) # verify class_labels UpperCAmelCase__ : Any = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase)) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase)) # verify size UpperCAmelCase__ : List[Any] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase)) @slow def snake_case__ ( self): # prepare image, target and masks_path UpperCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""") as f: UpperCAmelCase__ : Optional[int] = json.loads(f.read()) UpperCAmelCase__ : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} UpperCAmelCase__ : Tuple = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""") # encode them UpperCAmelCase__ : List[str] = DeformableDetrImageProcessor(format="""coco_panoptic""") UpperCAmelCase__ : Tuple = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors="""pt""") # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4)) # verify area UpperCAmelCase__ : str = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase)) # verify boxes UpperCAmelCase__ : List[str] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase) UpperCAmelCase__ : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3)) # verify image_id UpperCAmelCase__ : Tuple = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase)) # verify is_crowd UpperCAmelCase__ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase)) # verify class_labels UpperCAmelCase__ : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase)) # verify masks UpperCAmelCase__ : Dict = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _lowerCamelCase) # verify orig_size UpperCAmelCase__ : Any = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase)) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase))
407
0
def UpperCamelCase_( _A :int )-> str: if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) UpperCamelCase__ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCamelCase__ = 1 if upper_limit > 0: UpperCamelCase__ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(UpperCamelCase__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: __UpperCamelCase = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(f'''The Catalan numbers from 0 through {N} are:''') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
715
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
185
0
'''simple docstring''' _UpperCAmelCase : dict[str, float] = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_02_17_66_34e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def UpperCamelCase ( lowercase_ : str , lowercase_ : str , lowercase_ : float ) -> float: '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowercase =( f'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' f'Valid values are: {", ".join(lowercase_ )}' ) raise ValueError(lowercase_ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
72
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np A : Optional[int] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 A : List[str] = typing.Union[np.floataa, int, float] # noqa: UP007 def a__ ( __UpperCamelCase , __UpperCamelCase ): return np.sqrt(np.sum((np.asarray(__UpperCamelCase ) - np.asarray(__UpperCamelCase )) ** 2 ) ) def a__ ( __UpperCamelCase , __UpperCamelCase ): return sum((va - va) ** 2 for va, va in zip(__UpperCamelCase , __UpperCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def a__ ( ): from timeit import timeit print("Without Numpy" ) print( timeit( "euclidean_distance_no_np([1, 2, 3], [4, 5, 6])" , number=1_0_0_0_0 , globals=globals() , ) ) print("With Numpy" ) print( timeit( "euclidean_distance([1, 2, 3], [4, 5, 6])" , number=1_0_0_0_0 , globals=globals() , ) ) benchmark()
140
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ : Optional[int] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModel.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModel.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForPreTraining.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForPreTraining.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForCausalLM.from_pretrained(__lowercase , from_pt=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained(__lowercase , from_tf=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForCausalLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForMaskedLM.from_pretrained(__lowercase , from_pt=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained(__lowercase , from_tf=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForMaskedLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_pt=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained(__lowercase , from_tf=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ = AutoModelForSeqaSeqLM.from_pretrained( __lowercase , output_loading_info=__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForSequenceClassification.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) @slow def SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase_ = AutoConfig.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = TFAutoModelForQuestionAnswering.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) UpperCAmelCase_ = AutoModelForQuestionAnswering.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsNotNone(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = TFAutoModelWithLMHead.from_pretrained(__lowercase , from_pt=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 ) UpperCAmelCase_ = AutoModelWithLMHead.from_pretrained(__lowercase , from_tf=__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowercase ) , 1_44_10 )
486
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCAmelCase = "." if __name__ == "__main__": __lowerCAmelCase = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __lowerCAmelCase = [] __lowerCAmelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCAmelCase = line.strip() __lowerCAmelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCAmelCase = "\n".join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
684
def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[float, float]: # Check if the input is valid if not len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
684
1
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __A ( _A , _A , **_A ): """simple docstring""" __a = AutoConfig.from_pretrained(_A , **_A ) __a = AutoModelForSeqaSeqLM.from_config(_A ) model.save_pretrained(_A ) AutoTokenizer.from_pretrained(_A ).save_pretrained(_A ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
701
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""", """facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class A_ ( a_ ): _SCREAMING_SNAKE_CASE = """xlm-roberta-xl""" def __init__( self : str , __SCREAMING_SNAKE_CASE : int=25_08_80 , __SCREAMING_SNAKE_CASE : Dict=25_60 , __SCREAMING_SNAKE_CASE : List[str]=36 , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : int=1_02_40 , __SCREAMING_SNAKE_CASE : Optional[int]="gelu" , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , __SCREAMING_SNAKE_CASE : int=5_14 , __SCREAMING_SNAKE_CASE : List[Any]=1 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=1E-05 , __SCREAMING_SNAKE_CASE : str=1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=2 , __SCREAMING_SNAKE_CASE : Optional[int]="absolute" , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : str=None , **__SCREAMING_SNAKE_CASE : str , ): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout class A_ ( a_ ): @property def _UpperCAmelCase ( self : List[str] ): if self.task == "multiple-choice": __a = {0: "batch", 1: "choice", 2: "sequence"} else: __a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
525
0
from scipy.stats import spearmanr import datasets _lowercase = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n" _lowercase = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n" _lowercase = R"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def snake_case_ ( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float'''), '''references''': datasets.Value('''float'''), }) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'''] , ) def snake_case_ ( self , a__ , a__ , a__=False): A__ = spearmanr(a__ , a__) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
632
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _lowercase = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _lowercase = concatenate_datasets _lowercase = DownloadConfig _lowercase = DownloadManager _lowercase = DownloadMode _lowercase = DownloadConfig _lowercase = DownloadMode _lowercase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
632
1
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def lowercase__( __UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' ,out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) SCREAMING_SNAKE_CASE : List[str] = MaskFormerConfig(backbone_config=__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok SCREAMING_SNAKE_CASE : Optional[int] = 8_47 SCREAMING_SNAKE_CASE : str = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok SCREAMING_SNAKE_CASE : Any = 1_50 SCREAMING_SNAKE_CASE : List[str] = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok SCREAMING_SNAKE_CASE : Optional[int] = 1_71 SCREAMING_SNAKE_CASE : int = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO SCREAMING_SNAKE_CASE : Optional[int] = 1_33 SCREAMING_SNAKE_CASE : Dict = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok SCREAMING_SNAKE_CASE : Optional[int] = 19 SCREAMING_SNAKE_CASE : Optional[Any] = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok SCREAMING_SNAKE_CASE : Any = 65 SCREAMING_SNAKE_CASE : str = 'mapillary-vistas-id2label.json' SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type='dataset' ) ,'r' ) ) SCREAMING_SNAKE_CASE : Optional[int] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} return config def lowercase__( __UpperCamelCase: Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((f"backbone.layers.{i}.downsample.reduction.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((f"backbone.layers.{i}.downsample.norm.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((f"backbone.layers.{i}.downsample.norm.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 ,0 ,-1 ) ,range(0 ,3 ) ): rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight") ) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight") ) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight") ) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias") ) # cross-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias") ) # MLP 1 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias") ) # MLP 2 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias") ) # layernorm 3 (final layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight") ) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight") ) rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias") ) # fmt: on return rename_keys def lowercase__( __UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[int] ,__UpperCamelCase: List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = dct.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = val def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE : int = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE : str = in_proj_bias[: dim] SCREAMING_SNAKE_CASE : int = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : Any = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE : List[str] = in_proj_bias[-dim :] # fmt: on def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: Any ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : str = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE : str = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE : List[Any] = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE : int = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE : Any = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE : Any = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : Dict = in_proj_weight[: hidden_size, :] SCREAMING_SNAKE_CASE : int = in_proj_bias[:config.hidden_size] SCREAMING_SNAKE_CASE : int = in_proj_weight[hidden_size : hidden_size * 2, :] SCREAMING_SNAKE_CASE : int = in_proj_bias[hidden_size : hidden_size * 2] SCREAMING_SNAKE_CASE : Any = in_proj_weight[-hidden_size :, :] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[-hidden_size :] # fmt: on def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ,__UpperCamelCase: str ,__UpperCamelCase: bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = get_maskformer_config(__UpperCamelCase ) # load original state_dict with open(__UpperCamelCase ,'rb' ) as f: SCREAMING_SNAKE_CASE : List[str] = pickle.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys SCREAMING_SNAKE_CASE : str = create_rename_keys(__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) read_in_swin_q_k_v(__UpperCamelCase ,config.backbone_config ) read_in_decoder_q_k_v(__UpperCamelCase ,__UpperCamelCase ) # update to torch tensors for key, value in state_dict.items(): SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(__UpperCamelCase ) # load 🤗 model SCREAMING_SNAKE_CASE : Optional[int] = MaskFormerForInstanceSegmentation(__UpperCamelCase ) model.eval() for name, param in model.named_parameters(): print(__UpperCamelCase ,param.shape ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = model.load_state_dict(__UpperCamelCase ,strict=__UpperCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__UpperCamelCase ) == 0, f"Unexpected keys: {unexpected_keys}" # verify results SCREAMING_SNAKE_CASE : str = prepare_img() if "vistas" in model_name: SCREAMING_SNAKE_CASE : List[str] = 65 elif "cityscapes" in model_name: SCREAMING_SNAKE_CASE : str = 6_55_35 else: SCREAMING_SNAKE_CASE : List[Any] = 2_55 SCREAMING_SNAKE_CASE : Tuple = True if 'ade' in model_name else False SCREAMING_SNAKE_CASE : str = MaskFormerImageProcessor(ignore_index=__UpperCamelCase ,reduce_labels=__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = image_processor(__UpperCamelCase ,return_tensors='pt' ) SCREAMING_SNAKE_CASE : Any = model(**__UpperCamelCase ) print('Logits:' ,outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] ,__UpperCamelCase ,atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}" ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(f"nielsr/{model_name}" ) image_processor.push_to_hub(f"nielsr/{model_name}" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase_ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
508
'''simple docstring''' class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : dict[str, TrieNode] = {} # Mapping from char to TrieNode SCREAMING_SNAKE_CASE : int = False def UpperCamelCase_ ( self, A ): '''simple docstring''' for word in words: self.insert(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self for char in word: if char not in curr.nodes: SCREAMING_SNAKE_CASE : Any = TrieNode() SCREAMING_SNAKE_CASE : Optional[int] = curr.nodes[char] SCREAMING_SNAKE_CASE : Dict = True def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self for char in word: if char not in curr.nodes: return False SCREAMING_SNAKE_CASE : int = curr.nodes[char] return curr.is_leaf def UpperCamelCase_ ( self, A ): '''simple docstring''' def _delete(A, A, A ) -> bool: if index == len(A ): # If word does not exist if not curr.is_leaf: return False SCREAMING_SNAKE_CASE : Optional[int] = False return len(curr.nodes ) == 0 SCREAMING_SNAKE_CASE : List[Any] = word[index] SCREAMING_SNAKE_CASE : Union[str, Any] = curr.nodes.get(A ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted SCREAMING_SNAKE_CASE : Dict = _delete(A, A, index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self, A, 0 ) def lowercase__( __UpperCamelCase: TrieNode ,__UpperCamelCase: str ): """simple docstring""" if node.is_leaf: print(__UpperCamelCase ,end=' ' ) for key, value in node.nodes.items(): print_words(__UpperCamelCase ,word + key ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 'banana bananas bandana band apple all beast'.split() SCREAMING_SNAKE_CASE : List[Any] = TrieNode() root.insert_many(__UpperCamelCase ) # print_words(root, "") assert all(root.find(__UpperCamelCase ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: bool ): """simple docstring""" print(str(__UpperCamelCase ) ,'works!' if passes else 'doesn\'t work :(' ) def lowercase__( ): """simple docstring""" assert test_trie() def lowercase__( ): """simple docstring""" print_results('Testing trie functionality' ,test_trie() ) if __name__ == "__main__": main()
508
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCAmelCase__ = logging.get_logger(__name__) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" __A= r'\w+[.]\d+' __A= re.findall(__lowerCAmelCase,__lowerCAmelCase ) for pat in pats: __A= key.replace(__lowerCAmelCase,'_'.join(pat.split('.' ) ) ) return key def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int,_SCREAMING_SNAKE_CASE : Optional[Any],_SCREAMING_SNAKE_CASE : int ): """simple docstring""" __A= pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __A= pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __A= pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __A= pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer __A= pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __A= pt_tensor.transpose(2,3,1,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __A= pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": __A= pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __A= pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __A= pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Optional[int],_SCREAMING_SNAKE_CASE : str,_SCREAMING_SNAKE_CASE : Union[str, Any]=42 ): """simple docstring""" __A= {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __A= flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) __A= flatten_dict(__lowerCAmelCase ) __A= {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __A= rename_key(__lowerCAmelCase ) __A= tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters __A, __A= rename_key_and_reshape_tensor(__lowerCAmelCase,__lowerCAmelCase,__lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown __A= jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
186
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _A = logging.get_logger(__name__) _A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class _lowerCAmelCase ( __a ): _lowercase ='''bloom''' _lowercase =['''past_key_values'''] _lowercase ={ '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self , _UpperCamelCase=250_880 , _UpperCamelCase=64 , _UpperCamelCase=2 , _UpperCamelCase=8 , _UpperCamelCase=1e-5 , _UpperCamelCase=0.02 , _UpperCamelCase=True , _UpperCamelCase=1 , _UpperCamelCase=2 , _UpperCamelCase=False , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=1 , _UpperCamelCase=False , **_UpperCamelCase , ) -> str: lowerCAmelCase_ = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase_ = kwargs.pop("n_embed" , _UpperCamelCase ) lowerCAmelCase_ = hidden_size if n_embed is None else n_embed lowerCAmelCase_ = n_layer lowerCAmelCase_ = n_head lowerCAmelCase_ = layer_norm_epsilon lowerCAmelCase_ = initializer_range lowerCAmelCase_ = use_cache lowerCAmelCase_ = pretraining_tp lowerCAmelCase_ = apply_residual_connection_post_layernorm lowerCAmelCase_ = hidden_dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = slow_but_exact super().__init__(bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) class _lowerCAmelCase ( __a ): _lowercase =version.parse('''1.12''' ) def __init__( self , _UpperCamelCase , _UpperCamelCase = "default" , _UpperCamelCase = None , _UpperCamelCase = False , ) -> int: super().__init__(_UpperCamelCase , task=_UpperCamelCase , patching_specs=_UpperCamelCase , use_past=_UpperCamelCase ) if not getattr(self._config , "pad_token_id" , _UpperCamelCase ): # TODO: how to do that better? lowerCAmelCase_ = 0 @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: lowerCAmelCase_ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCamelCase , direction="inputs" , inverted_values_shape=_UpperCamelCase ) lowerCAmelCase_ = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase_ = {0: "batch", 1: "sequence"} return common_inputs @property def __a ( self ) -> int: return self._config.n_layer @property def __a ( self ) -> int: return self._config.n_head @property def __a ( self ) -> float: return 1e-3 def __a ( self , _UpperCamelCase , _UpperCamelCase = -1 , _UpperCamelCase = -1 , _UpperCamelCase = False , _UpperCamelCase = None , ) -> Mapping[str, Any]: lowerCAmelCase_ = super(_UpperCamelCase , self ).generate_dummy_inputs( _UpperCamelCase , batch_size=_UpperCamelCase , seq_length=_UpperCamelCase , is_pair=_UpperCamelCase , framework=_UpperCamelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase_ = seqlen + 2 lowerCAmelCase_ = self._config.hidden_size // self.num_attention_heads lowerCAmelCase_ = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCAmelCase_ = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCAmelCase_ = [ (torch.zeros(_UpperCamelCase ), torch.zeros(_UpperCamelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase_ = ordered_inputs["attention_mask"].dtype lowerCAmelCase_ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(_UpperCamelCase , _UpperCamelCase , dtype=_UpperCamelCase )] , dim=1 ) return ordered_inputs @property def __a ( self ) -> int: return 13
290
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __A : str = logging.get_logger(__name__) __A : str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __A : str = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } __A : Union[str, Any] = { 'roberta-base': 512, 'roberta-large': 512, 'roberta-large-mnli': 512, 'distilroberta-base': 512, 'roberta-base-openai-detector': 512, 'roberta-large-openai-detector': 512, } class __UpperCamelCase ( lowercase__ ): lowercase : str = VOCAB_FILES_NAMES lowercase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : str = ['input_ids', 'attention_mask'] lowercase : List[Any] = RobertaTokenizer def __init__( self :int ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Tuple=None ,_UpperCamelCase :Dict="replace" ,_UpperCamelCase :List[str]="<s>" ,_UpperCamelCase :Dict="</s>" ,_UpperCamelCase :List[str]="</s>" ,_UpperCamelCase :Any="<s>" ,_UpperCamelCase :Tuple="<unk>" ,_UpperCamelCase :int="<pad>" ,_UpperCamelCase :str="<mask>" ,_UpperCamelCase :Dict=False ,_UpperCamelCase :Dict=True ,**_UpperCamelCase :Any ,): super().__init__( _UpperCamelCase ,_UpperCamelCase ,tokenizer_file=_UpperCamelCase ,errors=_UpperCamelCase ,bos_token=_UpperCamelCase ,eos_token=_UpperCamelCase ,sep_token=_UpperCamelCase ,cls_token=_UpperCamelCase ,unk_token=_UpperCamelCase ,pad_token=_UpperCamelCase ,mask_token=_UpperCamelCase ,add_prefix_space=_UpperCamelCase ,trim_offsets=_UpperCamelCase ,**_UpperCamelCase ,) snake_case_ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" ,_UpperCamelCase ) != add_prefix_space: snake_case_ : Union[str, Any] = getattr(_UpperCamelCase ,pre_tok_state.pop("""type""" ) ) snake_case_ : Dict = add_prefix_space snake_case_ : Dict = pre_tok_class(**_UpperCamelCase ) snake_case_ : Any = add_prefix_space snake_case_ : Tuple = """post_processor""" snake_case_ : str = getattr(self.backend_tokenizer ,_UpperCamelCase ,_UpperCamelCase ) if tokenizer_component_instance: snake_case_ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ : str = tuple(state["""sep"""] ) if "cls" in state: snake_case_ : Optional[int] = tuple(state["""cls"""] ) snake_case_ : List[Any] = False if state.get("""add_prefix_space""" ,_UpperCamelCase ) != add_prefix_space: snake_case_ : Tuple = add_prefix_space snake_case_ : Optional[int] = True if state.get("""trim_offsets""" ,_UpperCamelCase ) != trim_offsets: snake_case_ : Union[str, Any] = trim_offsets snake_case_ : Tuple = True if changes_to_apply: snake_case_ : List[str] = getattr(_UpperCamelCase ,state.pop("""type""" ) ) snake_case_ : Any = component_class(**_UpperCamelCase ) setattr(self.backend_tokenizer ,_UpperCamelCase ,_UpperCamelCase ) @property def a__ ( self :Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def a__ ( self :Optional[int] ,_UpperCamelCase :Any ): snake_case_ : List[Any] = AddedToken(_UpperCamelCase ,lstrip=_UpperCamelCase ,rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else value snake_case_ : Optional[int] = value def a__ ( self :str ,*_UpperCamelCase :str ,**_UpperCamelCase :Tuple ): snake_case_ : str = kwargs.get("""is_split_into_words""" ,_UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCamelCase ,**_UpperCamelCase ) def a__ ( self :Optional[int] ,*_UpperCamelCase :List[str] ,**_UpperCamelCase :Dict ): snake_case_ : List[str] = kwargs.get("""is_split_into_words""" ,_UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCamelCase ,**_UpperCamelCase ) def a__ ( self :Optional[int] ,_UpperCamelCase :str ,_UpperCamelCase :Optional[str] = None ): snake_case_ : Any = self._tokenizer.model.save(_UpperCamelCase ,name=_UpperCamelCase ) return tuple(_UpperCamelCase ) def a__ ( self :Optional[int] ,_UpperCamelCase :Tuple ,_UpperCamelCase :List[str]=None ): snake_case_ : Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a__ ( self :Optional[Any] ,_UpperCamelCase :List[int] ,_UpperCamelCase :Optional[List[int]] = None ): snake_case_ : List[str] = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
267
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __UpperCamelCase ( lowercase__ , unittest.TestCase ): lowercase : List[str] = KandinskyVaaPriorPipeline lowercase : Optional[Any] = ['prompt'] lowercase : Dict = ['prompt', 'negative_prompt'] lowercase : Dict = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] lowercase : int = False @property def a__ ( self :int ): return 3_2 @property def a__ ( self :Any ): return 3_2 @property def a__ ( self :Union[str, Any] ): return self.time_input_dim @property def a__ ( self :int ): return self.time_input_dim * 4 @property def a__ ( self :Dict ): return 1_0_0 @property def a__ ( self :List[Any] ): snake_case_ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def a__ ( self :int ): torch.manual_seed(0 ) snake_case_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModelWithProjection(_UpperCamelCase ) @property def a__ ( self :Dict ): torch.manual_seed(0 ) snake_case_ : Tuple = { """num_attention_heads""": 2, """attention_head_dim""": 1_2, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } snake_case_ : int = PriorTransformer(**_UpperCamelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 snake_case_ : Any = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def a__ ( self :Optional[int] ): torch.manual_seed(0 ) snake_case_ : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=2_2_4 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1_4 ,) snake_case_ : Optional[Any] = CLIPVisionModelWithProjection(_UpperCamelCase ) return model @property def a__ ( self :List[Any] ): snake_case_ : Any = CLIPImageProcessor( crop_size=2_2_4 ,do_center_crop=_UpperCamelCase ,do_normalize=_UpperCamelCase ,do_resize=_UpperCamelCase ,image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] ,image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] ,resample=3 ,size=2_2_4 ,) return image_processor def a__ ( self :List[Any] ): snake_case_ : Tuple = self.dummy_prior snake_case_ : Any = self.dummy_image_encoder snake_case_ : Optional[int] = self.dummy_text_encoder snake_case_ : Any = self.dummy_tokenizer snake_case_ : Union[str, Any] = self.dummy_image_processor snake_case_ : Tuple = UnCLIPScheduler( variance_type="""fixed_small_log""" ,prediction_type="""sample""" ,num_train_timesteps=1_0_0_0 ,clip_sample=_UpperCamelCase ,clip_sample_range=10.0 ,) snake_case_ : Tuple = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def a__ ( self :Dict ,_UpperCamelCase :str ,_UpperCamelCase :Union[str, Any]=0 ): if str(_UpperCamelCase ).startswith("""mps""" ): snake_case_ : Optional[int] = torch.manual_seed(_UpperCamelCase ) else: snake_case_ : int = torch.Generator(device=_UpperCamelCase ).manual_seed(_UpperCamelCase ) snake_case_ : Dict = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def a__ ( self :int ): snake_case_ : Union[str, Any] = """cpu""" snake_case_ : int = self.get_dummy_components() snake_case_ : int = self.pipeline_class(**_UpperCamelCase ) snake_case_ : Union[str, Any] = pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) snake_case_ : Any = pipe(**self.get_dummy_inputs(_UpperCamelCase ) ) snake_case_ : List[Any] = output.image_embeds snake_case_ : List[Any] = pipe( **self.get_dummy_inputs(_UpperCamelCase ) ,return_dict=_UpperCamelCase ,)[0] snake_case_ : Dict = image[0, -1_0:] snake_case_ : Optional[Any] = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) snake_case_ : Optional[int] = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a__ ( self :List[Any] ): snake_case_ : Any = torch_device == """cpu""" snake_case_ : Any = True snake_case_ : Dict = False self._test_inference_batch_single_identical( test_max_difference=_UpperCamelCase ,relax_max_difference=_UpperCamelCase ,test_mean_pixel_difference=_UpperCamelCase ,) @skip_mps def a__ ( self :str ): snake_case_ : str = torch_device == """cpu""" snake_case_ : List[str] = False self._test_attention_slicing_forward_pass( test_max_difference=_UpperCamelCase ,test_mean_pixel_difference=_UpperCamelCase ,)
267
1
import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase ( snake_case_ ): __UpperCAmelCase = '''naver-clova-ix/donut-base-finetuned-docvqa''' __UpperCAmelCase = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) __UpperCAmelCase = '''document_qa''' __UpperCAmelCase = AutoProcessor __UpperCAmelCase = VisionEncoderDecoderModel __UpperCAmelCase = ['''image''', '''text'''] __UpperCAmelCase = ['''text'''] def __init__( self , *lowercase_ , **lowercase_) -> int: if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.') super().__init__(*__snake_case , **__snake_case) def _a ( self , lowercase_ , lowercase_) -> Any: __snake_case = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __snake_case = task_prompt.replace('{user_input}' , __snake_case) __snake_case = self.pre_processor.tokenizer( __snake_case , add_special_tokens=__snake_case , return_tensors='pt').input_ids __snake_case = self.pre_processor(__snake_case , return_tensors='pt').pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _a ( self , lowercase_) -> Any: return self.model.generate( inputs['pixel_values'].to(self.device) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__snake_case , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__snake_case , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__snake_case , ).sequences def _a ( self , lowercase_) -> List[str]: __snake_case = self.pre_processor.batch_decode(__snake_case)[0] __snake_case = sequence.replace(self.pre_processor.tokenizer.eos_token , '') __snake_case = sequence.replace(self.pre_processor.tokenizer.pad_token , '') __snake_case = re.sub(r'<.*?>' , '' , __snake_case , count=1).strip() # remove first task start token __snake_case = self.pre_processor.tokenajson(__snake_case) return sequence["answer"]
313
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if "cls_token" in name: _lowerCAmelCase = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: _lowerCAmelCase = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: _lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: _lowerCAmelCase = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _lowerCAmelCase = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _lowerCAmelCase = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: _lowerCAmelCase = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: _lowerCAmelCase = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: _lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _lowerCAmelCase = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: _lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: _lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: _lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: _lowerCAmelCase = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: _lowerCAmelCase = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCAmelCase = orig_state_dict.pop(lowerCAmelCase ) if "qkv" in key: _lowerCAmelCase = key.split(""".""" ) _lowerCAmelCase = int(key_split[1] ) if "decoder_blocks" in key: _lowerCAmelCase = config.decoder_hidden_size _lowerCAmelCase = """decoder.decoder_layers.""" if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] elif "bias" in key: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = config.hidden_size _lowerCAmelCase = """vit.encoder.layer.""" if "weight" in key: _lowerCAmelCase = val[:dim, :] _lowerCAmelCase = val[dim : dim * 2, :] _lowerCAmelCase = val[-dim:, :] elif "bias" in key: _lowerCAmelCase = val[:dim] _lowerCAmelCase = val[dim : dim * 2] _lowerCAmelCase = val[-dim:] else: _lowerCAmelCase = val return orig_state_dict def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = ViTMAEConfig() if "large" in checkpoint_url: _lowerCAmelCase = 10_24 _lowerCAmelCase = 40_96 _lowerCAmelCase = 24 _lowerCAmelCase = 16 elif "huge" in checkpoint_url: _lowerCAmelCase = 14 _lowerCAmelCase = 12_80 _lowerCAmelCase = 51_20 _lowerCAmelCase = 32 _lowerCAmelCase = 16 _lowerCAmelCase = ViTMAEForPreTraining(lowerCAmelCase ) _lowerCAmelCase = torch.hub.load_state_dict_from_url(lowerCAmelCase , map_location="""cpu""" )["""model"""] _lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size ) _lowerCAmelCase = convert_state_dict(lowerCAmelCase , lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) model.eval() _lowerCAmelCase = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" _lowerCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) _lowerCAmelCase = ViTMAEImageProcessor(size=config.image_size ) _lowerCAmelCase = image_processor(images=lowerCAmelCase , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) _lowerCAmelCase = model(**lowerCAmelCase ) _lowerCAmelCase = outputs.logits if "large" in checkpoint_url: _lowerCAmelCase = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: _lowerCAmelCase = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: _lowerCAmelCase = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": A__ : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) A__ : List[Any] =parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
207
0
'''simple docstring''' _snake_case : List[str] = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(100000)] def snake_case_ (UpperCamelCase : int ): '''simple docstring''' _a = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 10_0000] number //= 10_0000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _snake_case : list[bool | None] = [None] * 10000000 _snake_case : List[Any] = True _snake_case : Tuple = False def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore _a = chain(next_number(UpperCamelCase ) ) _a = number_chain while number < 1000_0000: _a = number_chain number *= 10 return number_chain def snake_case_ (UpperCamelCase : int = 1000_0000 ): '''simple docstring''' for i in range(1 , UpperCamelCase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'''{solution() = }''')
377
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class A ( _a ): def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _a = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): _a = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): _a = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''bool''' ) , type=Value('''int64''' ) ) ) def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _a = pa.array(TypedSequence([1, 2, 3] , type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _a = pa.array(TypedSequence(['''foo''', '''bar'''] , type=Value('''int64''' ) ) ) def __lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" _a = pa.array(TypedSequence([1, 2, 3] , try_type=Value('''int32''' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" _a = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=Value('''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _a = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _a = pa.array(TypedSequence(['''foo''', '''bar'''] , type=ArrayaD((1, 3) , '''int64''' ) ) ) def __lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" _a = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , '''int64''' ) ) def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" _a = pa.array(TypedSequence(['''foo''', '''bar'''] , try_type=ArrayaD((1, 3) , '''int64''' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" import PIL.Image _a = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( '''datasets.arrow_writer.cast_to_python_objects''' , side_effect=lowerCAmelCase_ ) as mock_cast_to_python_objects: _a = pa.array(TypedSequence([{'''path''': None, '''bytes''': B'''image_bytes'''}, pil_image] , type=Image() ) ) _a , _a = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('''optimize_list_casting''' , lowerCAmelCase_ ) self.assertFalse(kwargs['''optimize_list_casting'''] ) def snake_case_ (UpperCamelCase : Union[str, Any] , UpperCamelCase : int ): '''simple docstring''' _a = pa.BufferReader(UpperCamelCase ) if isinstance(UpperCamelCase , pa.Buffer ) else pa.memory_map(UpperCamelCase ) _a = pa.ipc.open_stream(UpperCamelCase ) _a = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : str ): '''simple docstring''' _a = pa.BufferOutputStream() _a = pa.schema(UpperCamelCase ) if fields else None with ArrowWriter(stream=UpperCamelCase , schema=UpperCamelCase , writer_batch_size=UpperCamelCase ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case_ (): '''simple docstring''' _a = pa.BufferOutputStream() _a = Features({'''labels''': ClassLabel(names=['''neg''', '''pos'''] )} ) with ArrowWriter(stream=UpperCamelCase , features=UpperCamelCase ) as writer: writer.write({'''labels''': 0} ) writer.write({'''labels''': 1} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata _a = pa.BufferReader(output.getvalue() ) _a = pa.ipc.open_stream(UpperCamelCase ) _a = f.read_all() _a = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(UpperCamelCase ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) def snake_case_ (UpperCamelCase : Any ): '''simple docstring''' _a = pa.BufferOutputStream() with ArrowWriter( stream=UpperCamelCase , writer_batch_size=UpperCamelCase , hash_salt='''split_name''' , check_duplicates=UpperCamelCase , ) as writer: with pytest.raises(UpperCamelCase ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=[1, 2] ) _a , _a = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def snake_case_ (UpperCamelCase : Any ): '''simple docstring''' _a = pa.BufferOutputStream() with ArrowWriter( stream=UpperCamelCase , writer_batch_size=UpperCamelCase , hash_salt='''split_name''' , check_duplicates=UpperCamelCase , ) as writer: with pytest.raises(UpperCamelCase ): writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=10 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=10 ) _a , _a = writer.finalize() @pytest.mark.parametrize('''writer_batch_size''' , [None, 2, 10] ) def snake_case_ (UpperCamelCase : int ): '''simple docstring''' _a = pa.BufferOutputStream() with ArrowWriter( stream=UpperCamelCase , writer_batch_size=UpperCamelCase , hash_salt='''split_name''' , check_duplicates=UpperCamelCase , ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} , key=1 ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} , key=2 ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def snake_case_ (UpperCamelCase : Dict , UpperCamelCase : List[str] ): '''simple docstring''' _a = pa.BufferOutputStream() _a = pa.schema(UpperCamelCase ) if fields else None with ArrowWriter(stream=UpperCamelCase , schema=UpperCamelCase , writer_batch_size=UpperCamelCase ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) writer.write_batch({'''col_1''': [], '''col_2''': []} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def snake_case_ (UpperCamelCase : Any , UpperCamelCase : Any ): '''simple docstring''' _a = pa.BufferOutputStream() _a = pa.schema(UpperCamelCase ) if fields else None with ArrowWriter(stream=UpperCamelCase , schema=UpperCamelCase , writer_batch_size=UpperCamelCase ) as writer: writer.write_table(pa.Table.from_pydict({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('''writer_batch_size''' , [None, 1, 10] ) @pytest.mark.parametrize( '''fields''' , [None, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}, {'''col_1''': pa.string(), '''col_2''': pa.intaa()}] ) def snake_case_ (UpperCamelCase : int , UpperCamelCase : Optional[int] ): '''simple docstring''' _a = pa.BufferOutputStream() _a = pa.schema(UpperCamelCase ) if fields else None with ArrowWriter(stream=UpperCamelCase , schema=UpperCamelCase , writer_batch_size=UpperCamelCase ) as writer: writer.write_row(pa.Table.from_pydict({'''col_1''': ['''foo'''], '''col_2''': [1]} ) ) writer.write_row(pa.Table.from_pydict({'''col_1''': ['''bar'''], '''col_2''': [2]} ) ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _a = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} assert writer._schema == pa.schema(UpperCamelCase , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def snake_case_ (): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _a = {'''col_1''': pa.string(), '''col_2''': pa.intaa()} _a = os.path.join(UpperCamelCase , '''test.arrow''' ) with ArrowWriter(path=UpperCamelCase , schema=pa.schema(UpperCamelCase ) ) as writer: writer.write_batch({'''col_1''': ['''foo''', '''bar'''], '''col_2''': [1, 2]} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(UpperCamelCase , metadata=writer._schema.metadata ) _check_output(UpperCamelCase , 1 ) def snake_case_ (UpperCamelCase : List[str] ): '''simple docstring''' if pa.types.is_list(UpperCamelCase ): return get_base_dtype(arr_type.value_type ) else: return arr_type def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Any ): '''simple docstring''' if isinstance(lst[0] , UpperCamelCase ): change_first_primitive_element_in_list(lst[0] , UpperCamelCase ) else: _a = value @pytest.mark.parametrize('''optimized_int_type, expected_dtype''' , [(None, pa.intaa()), (Value('''int32''' ), pa.intaa())] ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case_ (UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : Optional[int] ): '''simple docstring''' _a = pa.array(TypedSequence(UpperCamelCase , optimized_int_type=UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( '''col, expected_dtype''' , [ ('''attention_mask''', pa.inta()), ('''special_tokens_mask''', pa.inta()), ('''token_type_ids''', pa.inta()), ('''input_ids''', pa.intaa()), ('''other''', pa.intaa()), ] , ) @pytest.mark.parametrize('''sequence''' , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : str , UpperCamelCase : List[Any] ): '''simple docstring''' _a = pa.array(OptimizedTypedSequence(UpperCamelCase , col=UpperCamelCase ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications _a = copy.deepcopy(UpperCamelCase ) _a = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(UpperCamelCase , UpperCamelCase ) _a = pa.array(OptimizedTypedSequence(UpperCamelCase , col=UpperCamelCase ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('''raise_exception''' , [False, True] ) def snake_case_ (UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] ): '''simple docstring''' _a = str(tmp_path / '''dataset-train.arrow''' ) try: with ArrowWriter(path=UpperCamelCase ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def snake_case_ (UpperCamelCase : List[Any] ): '''simple docstring''' _a = '''mock://dataset-train.arrow''' with ArrowWriter(path=UpperCamelCase , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(UpperCamelCase ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(UpperCamelCase ) def snake_case_ (): '''simple docstring''' _a = pa.BufferOutputStream() with ParquetWriter(stream=UpperCamelCase ) as writer: writer.write({'''col_1''': '''foo''', '''col_2''': 1} ) writer.write({'''col_1''': '''bar''', '''col_2''': 2} ) _a , _a = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _a = pa.BufferReader(output.getvalue() ) _a = pq.read_table(UpperCamelCase ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('''embed_local_files''' , [False, True] ) def snake_case_ (UpperCamelCase : List[Any] , UpperCamelCase : List[Any] ): '''simple docstring''' import PIL.Image _a = str(tmp_path / '''test_image_rgb.jpg''' ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(UpperCamelCase , format='''png''' ) _a = pa.BufferOutputStream() with ParquetWriter( stream=UpperCamelCase , features=Features({'''image''': Image()} ) , embed_local_files=UpperCamelCase ) as writer: writer.write({'''image''': image_path} ) writer.finalize() _a = pa.BufferReader(output.getvalue() ) _a = pq.read_table(UpperCamelCase ) _a = pa_table.to_pydict() if embed_local_files: assert isinstance(out['''image'''][0]['''path'''] , UpperCamelCase ) with open(UpperCamelCase , '''rb''' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def snake_case_ (): '''simple docstring''' _a = pa.schema([pa.field('''col_1''' , pa.string() , nullable=UpperCamelCase )] ) _a = pa.BufferOutputStream() with ArrowWriter(stream=UpperCamelCase ) as writer: writer._build_writer(inferred_schema=UpperCamelCase ) assert writer._schema == pa.schema([pa.field('''col_1''' , pa.string() )] )
377
1
'''simple docstring''' import random def A ( UpperCamelCase_ : int ) -> bool: '''simple docstring''' lowerCAmelCase__ = num - 1 lowerCAmelCase__ = 0 while s % 2 == 0: lowerCAmelCase__ = s // 2 t += 1 for _ in range(5 ): lowerCAmelCase__ = random.randrange(2 , num - 1 ) lowerCAmelCase__ = pow(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if v != 1: lowerCAmelCase__ = 0 while v != (num - 1): if i == t - 1: return False else: lowerCAmelCase__ = i + 1 lowerCAmelCase__ = (v**2) % num return True def A ( UpperCamelCase_ : int ) -> bool: '''simple docstring''' if num < 2: return False lowerCAmelCase__ = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(UpperCamelCase_ ) def A ( UpperCamelCase_ : int = 10_24 ) -> int: '''simple docstring''' while True: lowerCAmelCase__ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(UpperCamelCase_ ): return num if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
48
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCamelCase__( unittest.TestCase ): @property def a__( self : List[str] )-> Dict: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def a__( self : Tuple )-> int: """simple docstring""" UpperCAmelCase = self.dummy_uncond_unet UpperCAmelCase = PNDMScheduler() UpperCAmelCase = PNDMPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pndm.to(lowerCAmelCase ) pndm.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pndm(generator=lowerCAmelCase , num_inference_steps=20 , output_type='''numpy''' ).images UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pndm(generator=lowerCAmelCase , num_inference_steps=20 , output_type='''numpy''' , return_dict=lowerCAmelCase )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : Dict )-> List[str]: """simple docstring""" UpperCAmelCase = '''google/ddpm-cifar10-32''' UpperCAmelCase = UNetaDModel.from_pretrained(lowerCAmelCase ) UpperCAmelCase = PNDMScheduler() UpperCAmelCase = PNDMPipeline(unet=lowerCAmelCase , scheduler=lowerCAmelCase ) pndm.to(lowerCAmelCase ) pndm.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pndm(generator=lowerCAmelCase , output_type='''numpy''' ).images UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
210
0
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Any , **UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: super().__init__(**UpperCAmelCase__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , "vision" ) self.check_model_type(UpperCAmelCase__ ) def __call__( self : str , UpperCAmelCase__ : Union[str, "Image.Image", List[Dict[str, Any]]] , UpperCAmelCase__ : Union[str, List[str]] = None , **UpperCAmelCase__ : Dict , ) -> List[Any]: if "text_queries" in kwargs: __SCREAMING_SNAKE_CASE = kwargs.pop("text_queries" ) if isinstance(UpperCAmelCase__ , (str, Image.Image) ): __SCREAMING_SNAKE_CASE = {"image": image, "candidate_labels": candidate_labels} else: __SCREAMING_SNAKE_CASE = image __SCREAMING_SNAKE_CASE = super().__call__(UpperCAmelCase__ , **UpperCAmelCase__ ) return results def UpperCAmelCase_ ( self : List[Any] , **UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["threshold"] if "top_k" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["top_k"] return {}, {}, postprocess_params def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = load_image(inputs["image"] ) __SCREAMING_SNAKE_CASE = inputs["candidate_labels"] if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = candidate_labels.split("," ) __SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = self.tokenizer(UpperCAmelCase__ , return_tensors=self.framework ) __SCREAMING_SNAKE_CASE = self.image_processor(UpperCAmelCase__ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCAmelCase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Tuple ) -> int: __SCREAMING_SNAKE_CASE = model_inputs.pop("target_size" ) __SCREAMING_SNAKE_CASE = model_inputs.pop("candidate_label" ) __SCREAMING_SNAKE_CASE = model_inputs.pop("is_last" ) __SCREAMING_SNAKE_CASE = self.model(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Optional[Any]=None ) -> List[str]: __SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: __SCREAMING_SNAKE_CASE = model_output["candidate_label"] __SCREAMING_SNAKE_CASE = BaseModelOutput(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=UpperCAmelCase__ , threshold=UpperCAmelCase__ , target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): __SCREAMING_SNAKE_CASE = outputs["scores"][index].item() __SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs["boxes"][index][0] ) __SCREAMING_SNAKE_CASE = {"score": score, "label": label, "box": box} results.append(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : x["score"] , reverse=UpperCAmelCase__ ) if top_k: __SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : "torch.Tensor" ) -> Dict[str, int]: if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = box.int().tolist() __SCREAMING_SNAKE_CASE = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
553
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False")) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ]) class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Dict ) -> Any: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=UpperCAmelCase__ , ) assert hasattr(self , "env" ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : int ) -> Any: __SCREAMING_SNAKE_CASE = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings __SCREAMING_SNAKE_CASE = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=UpperCAmelCase__ , instance_count=UpperCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCAmelCase__ , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=UpperCAmelCase__ , py_version="py36" , ) def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : Optional[int] ) -> Optional[Any]: TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Optional[Any] ) -> List[str]: # create estimator __SCREAMING_SNAKE_CASE = self.create_estimator(UpperCAmelCase__ ) # run training estimator.fit() # result dataframe __SCREAMING_SNAKE_CASE = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __SCREAMING_SNAKE_CASE = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) __SCREAMING_SNAKE_CASE = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __SCREAMING_SNAKE_CASE = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , UpperCAmelCase__ )
553
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def __A (_SCREAMING_SNAKE_CASE ) ->YolosConfig: """simple docstring""" lowerCAmelCase__ :List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCAmelCase__ :Tuple = 192 lowerCAmelCase__ :List[str] = 768 lowerCAmelCase__ :Optional[int] = 12 lowerCAmelCase__ :int = 3 lowerCAmelCase__ :List[str] = [800, 1333] lowerCAmelCase__ :Optional[Any] = False elif yolos_name == "yolos_s_dWr": lowerCAmelCase__ :List[Any] = 330 lowerCAmelCase__ :str = 14 lowerCAmelCase__ :str = 6 lowerCAmelCase__ :Dict = 1320 elif "yolos_s" in yolos_name: lowerCAmelCase__ :int = 384 lowerCAmelCase__ :int = 1536 lowerCAmelCase__ :int = 12 lowerCAmelCase__ :List[str] = 6 elif "yolos_b" in yolos_name: lowerCAmelCase__ :Tuple = [800, 1344] lowerCAmelCase__ :List[str] = 91 lowerCAmelCase__ :Dict = 'huggingface/label-files' lowerCAmelCase__ :Union[str, Any] = 'coco-detection-id2label.json' lowerCAmelCase__ :List[str] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ :Optional[Any] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase__ :int = idalabel lowerCAmelCase__ :List[Any] = {v: k for k, v in idalabel.items()} return config def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) ->List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) lowerCAmelCase__ :Union[str, Any] = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ :int = in_proj_weight[: config.hidden_size, :] lowerCAmelCase__ :int = in_proj_bias[: config.hidden_size] lowerCAmelCase__ :Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ :Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ :Dict = in_proj_weight[-config.hidden_size :, :] lowerCAmelCase__ :List[str] = in_proj_bias[-config.hidden_size :] def __A (_SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" if "backbone" in name: lowerCAmelCase__ :str = name.replace('backbone' , 'vit' ) if "cls_token" in name: lowerCAmelCase__ :str = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: lowerCAmelCase__ :Tuple = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: lowerCAmelCase__ :Dict = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: lowerCAmelCase__ :List[str] = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCAmelCase__ :Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: lowerCAmelCase__ :List[Any] = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: lowerCAmelCase__ :str = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowerCAmelCase__ :List[Any] = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowerCAmelCase__ :List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowerCAmelCase__ :Union[str, Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase__ :str = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase__ :int = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: lowerCAmelCase__ :Tuple = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: lowerCAmelCase__ :Tuple = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: lowerCAmelCase__ :Tuple = name.replace('vit.norm' , 'vit.layernorm' ) return name def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase__ :Any = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: lowerCAmelCase__ :str = key.split('.' ) lowerCAmelCase__ :Any = int(key_split[2] ) lowerCAmelCase__ :Union[str, Any] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCAmelCase__ :Dict = val[:dim, :] lowerCAmelCase__ :Optional[Any] = val[ dim : dim * 2, : ] lowerCAmelCase__ :Union[str, Any] = val[-dim:, :] else: lowerCAmelCase__ :Dict = val[:dim] lowerCAmelCase__ :List[Any] = val[dim : dim * 2] lowerCAmelCase__ :Any = val[-dim:] else: lowerCAmelCase__ :int = val return orig_state_dict def __A () ->torch.Tensor: """simple docstring""" lowerCAmelCase__ :Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ :Union[str, Any] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) ->Tuple: """simple docstring""" lowerCAmelCase__ :str = get_yolos_config(_SCREAMING_SNAKE_CASE ) # load original state_dict lowerCAmelCase__ :Optional[Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] # load 🤗 model lowerCAmelCase__ :Optional[Any] = YolosForObjectDetection(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase__ :str = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by YolosImageProcessor lowerCAmelCase__ :Dict = 800 if yolos_name != 'yolos_ti' else 512 lowerCAmelCase__ :Dict = YolosImageProcessor(format='coco_detection' , size=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = image_processor(images=prepare_img() , return_tensors='pt' ) lowerCAmelCase__ :List[Any] = model(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ :List[str] = outputs.logits, outputs.pred_boxes lowerCAmelCase__ , lowerCAmelCase__ :int = None, None if yolos_name == "yolos_ti": lowerCAmelCase__ :List[str] = torch.tensor( [[-3_9.5_0_2_2, -1_1.9_8_2_0, -1_7.6_8_8_8], [-2_9.9_5_7_4, -9.9_7_6_9, -1_7.7_6_9_1], [-4_2.3_2_8_1, -2_0.7_2_0_0, -3_0.6_2_9_4]] ) lowerCAmelCase__ :Union[str, Any] = torch.tensor( [[0.4_0_2_1, 0.0_8_3_6, 0.7_9_7_9], [0.0_1_8_4, 0.2_6_0_9, 0.0_3_6_4], [0.1_7_8_1, 0.2_0_0_4, 0.2_0_9_5]] ) elif yolos_name == "yolos_s_200_pre": lowerCAmelCase__ :int = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] ) lowerCAmelCase__ :Tuple = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] ) elif yolos_name == "yolos_s_300_pre": lowerCAmelCase__ :List[str] = torch.tensor( [[-3_6.2_2_2_0, -1_4.4_3_8_5, -2_3.5_4_5_7], [-3_5.6_9_7_0, -1_4.7_5_8_3, -2_1.3_9_3_5], [-3_1.5_9_3_9, -1_3.6_0_4_2, -1_6.8_0_4_9]] ) lowerCAmelCase__ :Dict = torch.tensor( [[0.7_6_1_4, 0.2_3_1_6, 0.4_7_2_8], [0.7_1_6_8, 0.4_4_9_5, 0.3_8_5_5], [0.4_9_9_6, 0.1_4_6_6, 0.9_9_9_6]] ) elif yolos_name == "yolos_s_dWr": lowerCAmelCase__ :Dict = torch.tensor( [[-4_2.8_6_6_8, -2_4.1_0_4_9, -4_1.1_6_9_0], [-3_4.7_4_5_6, -1_4.1_2_7_4, -2_4.9_1_9_4], [-3_3.7_8_9_8, -1_2.1_9_4_6, -2_5.6_4_9_5]] ) lowerCAmelCase__ :Optional[int] = torch.tensor( [[0.5_5_8_7, 0.2_7_7_3, 0.0_6_0_5], [0.5_0_0_4, 0.3_0_1_4, 0.9_9_9_4], [0.4_9_9_9, 0.1_5_4_8, 0.9_9_9_4]] ) elif yolos_name == "yolos_base": lowerCAmelCase__ :str = torch.tensor( [[-4_0.6_0_6_4, -2_4.3_0_8_4, -3_2.6_4_4_7], [-5_5.1_9_9_0, -3_0.7_7_1_9, -3_5.5_8_7_7], [-5_1.4_3_1_1, -3_3.3_5_0_7, -3_5.6_4_6_2]] ) lowerCAmelCase__ :Any = torch.tensor( [[0.5_5_5_5, 0.2_7_9_4, 0.0_6_5_5], [0.9_0_4_9, 0.2_6_6_4, 0.1_8_9_4], [0.9_1_8_3, 0.1_9_8_4, 0.1_6_3_5]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: lowerCAmelCase__ :Union[str, Any] = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) lowerCAmelCase__ :Union[str, Any] = model_mapping[yolos_name] image_processor.push_to_hub(_SCREAMING_SNAKE_CASE , organization='hustvl' ) model.push_to_hub(_SCREAMING_SNAKE_CASE , organization='hustvl' ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __A = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
93
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Dict = logging.get_logger(__name__) __snake_case : int = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'visual_bert' def __init__( self: int , _SCREAMING_SNAKE_CASE: Dict=3_0522 , _SCREAMING_SNAKE_CASE: Union[str, Any]=768 , _SCREAMING_SNAKE_CASE: List[str]=512 , _SCREAMING_SNAKE_CASE: Optional[int]=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Tuple=3072 , _SCREAMING_SNAKE_CASE: Union[str, Any]="gelu" , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: List[Any]=512 , _SCREAMING_SNAKE_CASE: Any=2 , _SCREAMING_SNAKE_CASE: Optional[int]=0.02 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1e-12 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: str=1 , _SCREAMING_SNAKE_CASE: Tuple=0 , _SCREAMING_SNAKE_CASE: Any=2 , **_SCREAMING_SNAKE_CASE: List[str] , ) -> str: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = vocab_size __lowerCAmelCase : Tuple = max_position_embeddings __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : Union[str, Any] = visual_embedding_dim __lowerCAmelCase : List[str] = num_hidden_layers __lowerCAmelCase : Optional[int] = num_attention_heads __lowerCAmelCase : str = intermediate_size __lowerCAmelCase : int = hidden_act __lowerCAmelCase : Union[str, Any] = hidden_dropout_prob __lowerCAmelCase : int = attention_probs_dropout_prob __lowerCAmelCase : List[Any] = initializer_range __lowerCAmelCase : Dict = type_vocab_size __lowerCAmelCase : Optional[int] = layer_norm_eps __lowerCAmelCase : Union[str, Any] = bypass_transformer __lowerCAmelCase : List[str] = special_visual_initialize
293
0
def __UpperCamelCase ( lowerCAmelCase__ : int = 4_0_0_0_0_0_0 ): __a : Dict = [] __a , __a : Dict = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCAmelCase__ ) __a , __a : List[Any] = b, a + b return sum(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
326
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __UpperCamelCase ( lowerCAmelCase__ : Any ): __a : Dict = filter(lambda lowerCAmelCase__ : p.requires_grad , model.parameters() ) __a : Tuple = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowercase__ =logging.getLogger(__name__) def __UpperCamelCase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ): if metric == "rouge2": __a : List[Any] = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": __a : List[str] = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": __a : Optional[Any] = '''{val_avg_em:.4f}-{step_count}''' else: raise NotImplementedError( f"seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this" ''' function.''' ) __a : List[Any] = ModelCheckpoint( dirpath=lowerCAmelCase__ , filename=lowerCAmelCase__ , monitor=f"val_{metric}" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def __UpperCamelCase ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ): return EarlyStopping( monitor=f"val_{metric}" , mode='''min''' if '''loss''' in metric else '''max''' , patience=lowerCAmelCase__ , verbose=lowerCAmelCase__ , ) class UpperCamelCase__ ( pl.Callback ): def lowerCAmelCase (self : List[str] , snake_case_ : Any , snake_case_ : Any ): __a : Optional[int] = {f"lr_group_{i}": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case_ ) @rank_zero_only def lowerCAmelCase (self : str , snake_case_ : pl.Trainer , snake_case_ : pl.LightningModule , snake_case_ : str , snake_case_ : Dict=True ): logger.info(f"***** {type_path} results at step {trainer.global_step:05d} *****" ) __a : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results __a : Union[str, Any] = Path(pl_module.hparams.output_dir ) if type_path == "test": __a : Union[str, Any] = od / '''test_results.txt''' __a : Optional[Any] = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __a : Optional[int] = od / f"{type_path}_results/{trainer.global_step:05d}.txt" __a : List[str] = od / f"{type_path}_generations/{trainer.global_step:05d}.txt" results_file.parent.mkdir(exist_ok=snake_case_ ) generations_file.parent.mkdir(exist_ok=snake_case_ ) with open(snake_case_ , '''a+''' ) as writer: for key in sorted(snake_case_ ): if key in ["log", "progress_bar", "preds"]: continue __a : Tuple = metrics[key] if isinstance(snake_case_ , torch.Tensor ): __a : Optional[int] = val.item() __a : List[str] = f"{key}: {val:.6f}\n" writer.write(snake_case_ ) if not save_generations: return if "preds" in metrics: __a : Optional[Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(snake_case_ ) @rank_zero_only def lowerCAmelCase (self : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple ): try: __a : Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: __a : int = pl_module.model.num_parameters() __a : Any = count_trainable_parameters(snake_case_ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase (self : Optional[int] , snake_case_ : pl.Trainer , snake_case_ : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case_ , snake_case_ , '''test''' ) @rank_zero_only def lowerCAmelCase (self : Union[str, Any] , snake_case_ : pl.Trainer , snake_case_ : str ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
326
1
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration A : Tuple = HfArgumentParser(InitializationArguments) A : str = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks A : Optional[int] = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) A : Dict = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config A : str = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
15
def __snake_case ( __magic_name__ ): '''simple docstring''' lowercase , lowercase = [], [] while len(__magic_name__ ) > 1: lowercase , lowercase = min(__magic_name__ ), max(__magic_name__ ) start.append(__magic_name__ ) end.append(__magic_name__ ) collection.remove(__magic_name__ ) collection.remove(__magic_name__ ) end.reverse() return start + collection + end if __name__ == "__main__": _snake_case : int = input("Enter numbers separated by a comma:\n").strip() _snake_case : Dict = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
441
0
import math def lowercase_ ( A__ , A__ = 0 , A__ = 0 ) -> list: """simple docstring""" snake_case = end or len(A__ ) for i in range(A__ , A__ ): snake_case = i snake_case = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: snake_case = array[temp_index - 1] temp_index -= 1 snake_case = temp_index_value return array def lowercase_ ( A__ , A__ , A__ ) -> None: # Max Heap """simple docstring""" snake_case = index snake_case = 2 * index + 1 # Left Node snake_case = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: snake_case = left_index if right_index < heap_size and array[largest] < array[right_index]: snake_case = right_index if largest != index: snake_case , snake_case = array[largest], array[index] heapify(A__ , A__ , A__ ) def lowercase_ ( A__ ) -> list: """simple docstring""" snake_case = len(A__ ) for i in range(n // 2 , -1 , -1 ): heapify(A__ , A__ , A__ ) for i in range(n - 1 , 0 , -1 ): snake_case , snake_case = array[0], array[i] heapify(A__ , 0 , A__ ) return array def lowercase_ ( A__ , A__ , A__ , A__ ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowercase_ ( A__ , A__ , A__ , A__ ) -> int: """simple docstring""" snake_case = low snake_case = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i snake_case , snake_case = array[j], array[i] i += 1 def lowercase_ ( A__ ) -> list: """simple docstring""" if len(A__ ) == 0: return array snake_case = 2 * math.ceil(math.loga(len(A__ ) ) ) snake_case = 16 return intro_sort(A__ , 0 , len(A__ ) , A__ , A__ ) def lowercase_ ( A__ , A__ , A__ , A__ , A__ ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(A__ ) max_depth -= 1 snake_case = median_of_a(A__ , A__ , start + ((end - start) // 2) + 1 , end - 1 ) snake_case = partition(A__ , A__ , A__ , A__ ) intro_sort(A__ , A__ , A__ , A__ , A__ ) snake_case = p return insertion_sort(A__ , A__ , A__ ) if __name__ == "__main__": import doctest doctest.testmod() _A = input("Enter numbers separated by a comma : ").strip() _A = [float(item) for item in user_input.split(",")] print(sort(unsorted))
715
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): @slow def UpperCAmelCase(self : List[str] ) -> Optional[int]: snake_case = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=_A ).to(_A ) snake_case = AutoTokenizer.from_pretrained("google/mt5-small" ) snake_case = tokenizer("Hello there" , return_tensors="pt" ).input_ids snake_case = tokenizer("Hi I am" , return_tensors="pt" ).input_ids snake_case = model(input_ids.to(_A ) , labels=labels.to(_A ) ).loss snake_case = -(labels.shape[-1] * loss.item()) snake_case = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
294
0
'''simple docstring''' lowerCAmelCase_ : Union[str, Any] = 9.8_0_6_6_5 def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = g ): if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
414
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def __A ( lowerCAmelCase_ ): _UpperCAmelCase : str = {} _UpperCAmelCase : Optional[Any] = job["""started_at"""] _UpperCAmelCase : List[Any] = job["""completed_at"""] _UpperCAmelCase : Optional[int] = date_parser.parse(lowerCAmelCase_ ) _UpperCAmelCase : str = date_parser.parse(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _UpperCAmelCase : Tuple = start _UpperCAmelCase : str = end _UpperCAmelCase : List[Any] = duration_in_min return job_info def __A ( lowerCAmelCase_ , lowerCAmelCase_=None ): _UpperCAmelCase : str = None if token is not None: _UpperCAmelCase : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} _UpperCAmelCase : Any = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" _UpperCAmelCase : Union[str, Any] = requests.get(lowerCAmelCase_ , headers=lowerCAmelCase_ ).json() _UpperCAmelCase : int = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(lowerCAmelCase_ ) for job in result["""jobs"""]} ) _UpperCAmelCase : str = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(lowerCAmelCase_ ): _UpperCAmelCase : Dict = requests.get(url + f"&page={i + 2}" , headers=lowerCAmelCase_ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(lowerCAmelCase_ ) for job in result["""jobs"""]} ) return job_time except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} if __name__ == "__main__": lowerCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') lowerCAmelCase_ : Optional[int] = parser.parse_args() lowerCAmelCase_ : int = get_job_time(args.workflow_run_id) lowerCAmelCase_ : Optional[Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F"{k}: {v['duration']}")
414
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __a = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
409
import numpy as np import qiskit def a ( snake_case__: int = 8 , snake_case__: int | None = None ): '''simple docstring''' lowercase_ = np.random.default_rng(seed=snake_case__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. lowercase_ = 6 * key_len # Measurement basis for Alice's qubits. lowercase_ = rng.integers(2 , size=snake_case__ ) # The set of states Alice will prepare. lowercase_ = rng.integers(2 , size=snake_case__ ) # Measurement basis for Bob's qubits. lowercase_ = rng.integers(2 , size=snake_case__ ) # Quantum Circuit to simulate BB84 lowercase_ = qiskit.QuantumCircuit(snake_case__ , name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(snake_case__ ): if alice_state[index] == 1: bbaa_circ.x(snake_case__ ) if alice_basis[index] == 1: bbaa_circ.h(snake_case__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(snake_case__ ): if bob_basis[index] == 1: bbaa_circ.h(snake_case__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. lowercase_ = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. lowercase_ = qiskit.execute(snake_case__ , snake_case__ , shots=1 , seed_simulator=snake_case__ ) # Returns the result of measurement. lowercase_ = job.result().get_counts(snake_case__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. lowercase_ = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( snake_case__ , snake_case__ , snake_case__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. lowercase_ = gen_key[:key_len] if len(snake_case__ ) >= key_len else gen_key.ljust(snake_case__ , '''0''' ) return key if __name__ == "__main__": print(f"The generated key is : {bbaa(8, seed=0)}") from doctest import testmod testmod()
409
1
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch snake_case_ : int = logging.get_logger(__name__) @add_end_docstrings( snake_case_ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class lowercase__ ( snake_case_ ): def UpperCamelCase_ ( self : Dict ,lowerCamelCase__ : GenericTensor ): '''simple docstring''' if self.framework == "tf": _UpperCamelCase : Tuple = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": _UpperCamelCase : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=__UpperCAmelCase ) else: raise ValueError('Unsupported framework' ) return masked_index def UpperCamelCase_ ( self : str ,lowerCamelCase__ : GenericTensor ): '''simple docstring''' _UpperCamelCase : Tuple = self.get_masked_index(__UpperCAmelCase ) _UpperCamelCase : str = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' ,self.model.base_model_prefix ,F'No mask_token ({self.tokenizer.mask_token}) found on the input' ,) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : GenericTensor ): '''simple docstring''' if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(__UpperCAmelCase ) def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Optional[int]=None ,**lowerCamelCase__ : int ): '''simple docstring''' if return_tensors is None: _UpperCamelCase : List[Any] = self.framework _UpperCamelCase : Union[str, Any] = self.tokenizer(__UpperCAmelCase ,return_tensors=__UpperCAmelCase ) self.ensure_exactly_one_mask_token(__UpperCAmelCase ) return model_inputs def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.model(**__UpperCAmelCase ) _UpperCamelCase : Optional[Any] = model_inputs['input_ids'] return model_outputs def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Any=5 ,lowerCamelCase__ : int=None ): '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: _UpperCamelCase : Dict = target_ids.shape[0] _UpperCamelCase : Dict = model_outputs['input_ids'][0] _UpperCamelCase : Tuple = model_outputs['logits'] if self.framework == "tf": _UpperCamelCase : List[str] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] _UpperCamelCase : Dict = outputs.numpy() _UpperCamelCase : List[str] = outputs[0, masked_index, :] _UpperCamelCase : Optional[int] = stable_softmax(__UpperCAmelCase ,axis=-1 ) if target_ids is not None: _UpperCamelCase : Optional[Any] = tf.gather_nd(tf.squeeze(__UpperCAmelCase ,0 ) ,target_ids.reshape(-1 ,1 ) ) _UpperCamelCase : int = tf.expand_dims(__UpperCAmelCase ,0 ) _UpperCamelCase : Tuple = tf.math.top_k(__UpperCAmelCase ,k=__UpperCAmelCase ) _UpperCamelCase , _UpperCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: _UpperCamelCase : Dict = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=__UpperCAmelCase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample _UpperCamelCase : int = outputs[0, masked_index, :] _UpperCamelCase : Optional[int] = logits.softmax(dim=-1 ) if target_ids is not None: _UpperCamelCase : str = probs[..., target_ids] _UpperCamelCase , _UpperCamelCase : Optional[int] = probs.topk(__UpperCAmelCase ) _UpperCamelCase : Tuple = [] _UpperCamelCase : List[str] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): _UpperCamelCase : Optional[int] = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place _UpperCamelCase : Dict = input_ids.numpy().copy() if target_ids is not None: _UpperCamelCase : Optional[Any] = target_ids[p].tolist() _UpperCamelCase : int = p # Filter padding out: _UpperCamelCase : Optional[Any] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back _UpperCamelCase : int = self.tokenizer.decode(__UpperCAmelCase ,skip_special_tokens=__UpperCAmelCase ) _UpperCamelCase : Dict = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(__UpperCAmelCase ) result.append(__UpperCAmelCase ) if single_mask: return result[0] return result def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : int ,lowerCamelCase__ : Any=None ): '''simple docstring''' if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): _UpperCamelCase : int = [targets] try: _UpperCamelCase : Dict = self.tokenizer.get_vocab() except Exception: _UpperCamelCase : List[str] = {} _UpperCamelCase : List[str] = [] for target in targets: _UpperCamelCase : Union[str, Any] = vocab.get(__UpperCAmelCase ,__UpperCAmelCase ) if id_ is None: _UpperCamelCase : List[Any] = self.tokenizer( __UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_attention_mask=__UpperCAmelCase ,return_token_type_ids=__UpperCAmelCase ,max_length=1 ,truncation=__UpperCAmelCase ,)['input_ids'] if len(__UpperCAmelCase ) == 0: logger.warning( F'The specified target token `{target}` does not exist in the model vocabulary. ' 'We cannot replace it with anything meaningful, ignoring it' ) continue _UpperCamelCase : Any = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'The specified target token `{target}` does not exist in the model vocabulary. ' F'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) _UpperCamelCase : List[Any] = list(set(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) == 0: raise ValueError('At least one target must be provided when passed.' ) _UpperCamelCase : Optional[int] = np.array(__UpperCAmelCase ) return target_ids def UpperCamelCase_ ( self : Optional[int] ,lowerCamelCase__ : int=None ,lowerCamelCase__ : Optional[int]=None ): '''simple docstring''' _UpperCamelCase : Dict = {} if targets is not None: _UpperCamelCase : str = self.get_target_ids(__UpperCAmelCase ,__UpperCAmelCase ) _UpperCamelCase : Union[str, Any] = target_ids if top_k is not None: _UpperCamelCase : List[Any] = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' ,self.model.base_model_prefix ,'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self : Dict ,lowerCamelCase__ : str ,*lowerCamelCase__ : List[Any] ,**lowerCamelCase__ : int ): '''simple docstring''' _UpperCamelCase : Any = super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) and len(__UpperCAmelCase ) == 1: return outputs[0] return outputs
195
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = '''▁''' lowerCamelCase_ = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowerCamelCase_ = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } lowerCamelCase_ = { '''facebook/mbart-large-50-one-to-many-mmt''': 10_24, } # fmt: off lowerCamelCase_ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = ['''input_ids''', '''attention_mask'''] snake_case = [] snake_case = [] def __init__( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Dict="</s>" , __UpperCAmelCase : Dict="</s>" , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : Optional[int]="<unk>" , __UpperCAmelCase : Optional[int]="<pad>" , __UpperCAmelCase : Union[str, Any]="<mask>" , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : Optional[int] , ): '''simple docstring''' _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _A = {} if sp_model_kwargs is None else sp_model_kwargs _A = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) _A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _A = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _A = 1 _A = len(self.sp_model ) _A = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCAmelCase ) } _A = {v: k for k, v in self.lang_code_to_id.items()} _A = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _A = src_lang if src_lang is not None else "en_XX" _A = self.lang_code_to_id[self._src_lang] _A = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCAmelCase ( self : str ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCAmelCase ( self : Any , __UpperCAmelCase : str ): '''simple docstring''' _A = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Any ): '''simple docstring''' _A = self.__dict__.copy() _A = None return state def __setstate__( self : Optional[Any] , __UpperCAmelCase : Dict ): '''simple docstring''' _A = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : str , __UpperCAmelCase : str ): '''simple docstring''' return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A = self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = [] _A = "" _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token _A = True _A = [] else: current_sub_tokens.append(__UpperCAmelCase ) _A = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def lowerCAmelCase ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , "wb" ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def lowerCAmelCase ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) _A = [1] * len(self.prefix_tokens ) _A = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] , __UpperCAmelCase : Optional[str] , **__UpperCAmelCase : List[Any] ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _A = src_lang _A = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) _A = self.convert_tokens_to_ids(__UpperCAmelCase ) _A = tgt_lang_id return inputs def lowerCAmelCase ( self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : str = "en_XX" , __UpperCAmelCase : Optional[List[str]] = None , __UpperCAmelCase : str = "ro_RO" , **__UpperCAmelCase : List[str] , ): '''simple docstring''' _A = src_lang _A = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase ( self : str ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : str ): '''simple docstring''' _A = self.lang_code_to_id[src_lang] _A = [self.cur_lang_code_id] _A = [self.eos_token_id] def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str ): '''simple docstring''' _A = self.lang_code_to_id[tgt_lang] _A = [self.cur_lang_code_id] _A = [self.eos_token_id]
330
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a : Optional[Any] = {"""configuration_swin""": ["""SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwinConfig""", """SwinOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : int = [ """SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwinForImageClassification""", """SwinForMaskedImageModeling""", """SwinModel""", """SwinPreTrainedModel""", """SwinBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : int = [ """TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSwinForImageClassification""", """TFSwinForMaskedImageModeling""", """TFSwinModel""", """TFSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __a : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
414
import os import jsonlines import numpy as np from tqdm import tqdm __a : int = 2_0_4_8 __a : Optional[int] = 4_0_9_6 __a : Optional[int] = 4_2 __a : Optional[Any] = os.environ.pop("""PROCESS_TRAIN""", """false""") __a : Dict = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def __magic_name__ ( lowercase_ ) -> List[Any]: '''simple docstring''' def choose_first(lowercase_ , lowercase_=False ): assert isinstance(lowercase_ , lowercase_ ) if len(lowercase_ ) == 1: UpperCamelCase = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCamelCase = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a UpperCamelCase = {"id": example["id"]} UpperCamelCase = example["annotations"] UpperCamelCase = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCamelCase = ["yes"] if 1 in yes_no_answer else ["no"] UpperCamelCase = UpperCamelCase = [] UpperCamelCase = UpperCamelCase = [] UpperCamelCase = ["<cls>"] else: UpperCamelCase = ["short"] UpperCamelCase = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available UpperCamelCase = ["long"] UpperCamelCase = choose_first(annotation["long_answer"] , is_long_answer=lowercase_ ) UpperCamelCase = [] answer.update(lowercase_ ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCamelCase = True else: UpperCamelCase = False UpperCamelCase = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] , lowercase_ ) for k in cols ): raise ValueError("Issue in ID" , example["id"] ) return answer def __magic_name__ ( lowercase_ , lowercase_=False ) -> Optional[int]: '''simple docstring''' UpperCamelCase = _get_single_answer(lowercase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCamelCase = example["document"]["tokens"] UpperCamelCase = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(lowercase_ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCamelCase = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCamelCase = example["document"]["tokens"] UpperCamelCase = answer["start_token"] UpperCamelCase = answer["end_token"] UpperCamelCase = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCamelCase = " ".join(context[start_token:end_token] ) # checking above code if assertion: UpperCamelCase = doc["is_html"][answer["start_token"] : answer["end_token"]] UpperCamelCase = doc["token"][answer["start_token"] : answer["end_token"]] UpperCamelCase = " ".join([old[i] for i in range(len(lowercase_ ) ) if not is_html[i]] ) if new != old: print("ID:" , example["id"] ) print("New:" , lowercase_ , end="\n" ) print("Old:" , lowercase_ , end="\n\n" ) return { "context": " ".join(lowercase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=2048 , lowercase_=4096 , lowercase_=True ) -> int: '''simple docstring''' UpperCamelCase = get_context_and_ans(lowercase_ , assertion=lowercase_ ) UpperCamelCase = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCamelCase = tokenizer(example["question"]["text"] , out["context"] ).input_ids UpperCamelCase = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = input_ids[:q_len] UpperCamelCase = range(lowercase_ , len(lowercase_ ) , max_length - doc_stride ) for i in doc_start_indices: UpperCamelCase = i + max_length - q_len UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowercase_ ), "end_token": [-100] * len(lowercase_ ), "category": category, }, } UpperCamelCase = out["context"].split() UpperCamelCase = splitted_context[answer["end_token"]] UpperCamelCase = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) , add_special_tokens=lowercase_ , ).input_ids ) UpperCamelCase = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) , add_special_tokens=lowercase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCamelCase = len(tokenizer(lowercase_ , add_special_tokens=lowercase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCamelCase = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive UpperCamelCase = answer["start_token"] UpperCamelCase = answer["end_token"] if assertion: UpperCamelCase = tokenizer.decode(lowercase_ ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" , answer["span"] ) print("NEW:" , lowercase_ , end="\n\n" ) if len(lowercase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCamelCase = input_ids[:q_len] UpperCamelCase = range(lowercase_ , len(lowercase_ ) , max_length - doc_stride ) UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = [] # null, yes, no, long, short for i in doc_start_indices: UpperCamelCase = i + max_length - q_len UpperCamelCase = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCamelCase = start_token - i + q_len UpperCamelCase = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: UpperCamelCase = -100 UpperCamelCase = -100 answers_category.append("null" ) UpperCamelCase = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowercase_ ) answers_end_token.append(lowercase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" , example["id"] ) print("New:" , tokenizer.decode(lowercase_ ) ) print("Old:" , tokenizer.decode(lowercase_ ) , end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __magic_name__ ( lowercase_ , lowercase_ , lowercase_=2048 , lowercase_=4096 , lowercase_=False ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = get_strided_contexts_and_ans( lowercase_ , lowercase_ , doc_stride=lowercase_ , max_length=lowercase_ , assertion=lowercase_ , ) return example def __magic_name__ ( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' with jsonlines.open(lowercase_ , "a" ) as writer: for example in tqdm(lowercase_ , total=len(lowercase_ ) , desc="Saving samples ... " ): UpperCamelCase = example["labels"] for ids, start, end, cat in zip( example["input_ids"] , labels["start_token"] , labels["end_token"] , labels["category"] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __a : Dict = load_dataset("""natural_questions""") __a : int = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") __a : List[Any] = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] __a : Tuple = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } __a : int = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __a : Optional[int] = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) __a : List[Any] = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
414
1
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name _SCREAMING_SNAKE_CASE : int = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class a ( __snake_case ): SCREAMING_SNAKE_CASE : Union[PIL.Image.Image, np.ndarray] class a ( __snake_case ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : PriorTransformer , __SCREAMING_SNAKE_CASE : CLIPVisionModel , __SCREAMING_SNAKE_CASE : CLIPImageProcessor , __SCREAMING_SNAKE_CASE : HeunDiscreteScheduler , __SCREAMING_SNAKE_CASE : ShapERenderer , ) -> Union[str, Any]: super().__init__() self.register_modules( prior=__SCREAMING_SNAKE_CASE , image_encoder=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , renderer=__SCREAMING_SNAKE_CASE , ) def UpperCamelCase ( self : Any , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> int: if latents is None: lowerCamelCase_ = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowerCamelCase_ = latents.to(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = latents * scheduler.init_noise_sigma return latents def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : int=0 ) -> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCamelCase_ = torch.device(F'''cuda:{gpu_id}''' ) lowerCamelCase_ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property def UpperCamelCase ( self : Dict ) -> Any: if self.device != torch.device('meta' ) or not hasattr(self.image_encoder , '_hf_hook' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(__SCREAMING_SNAKE_CASE , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , ) -> int: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(__SCREAMING_SNAKE_CASE , axis=0 ) if image[0].ndim == 4 else torch.stack(__SCREAMING_SNAKE_CASE , axis=0 ) if not isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ): lowerCamelCase_ = self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values[0].unsqueeze(0 ) lowerCamelCase_ = image.to(dtype=self.image_encoder.dtype , device=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.image_encoder(__SCREAMING_SNAKE_CASE )['last_hidden_state'] lowerCamelCase_ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase_ = image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ = torch.zeros_like(__SCREAMING_SNAKE_CASE ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(__SCREAMING_SNAKE_CASE ) def __call__( self : List[str] , __SCREAMING_SNAKE_CASE : Union[PIL.Image.Image, List[PIL.Image.Image]] , __SCREAMING_SNAKE_CASE : int = 1 , __SCREAMING_SNAKE_CASE : int = 25 , __SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , __SCREAMING_SNAKE_CASE : float = 4.0 , __SCREAMING_SNAKE_CASE : int = 64 , __SCREAMING_SNAKE_CASE : Optional[str] = "pil" , __SCREAMING_SNAKE_CASE : bool = True , ) -> List[Any]: if isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image ): lowerCamelCase_ = 1 elif isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ): lowerCamelCase_ = image.shape[0] elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCamelCase_ = len(__SCREAMING_SNAKE_CASE ) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__SCREAMING_SNAKE_CASE )}''' ) lowerCamelCase_ = self._execution_device lowerCamelCase_ = batch_size * num_images_per_prompt lowerCamelCase_ = guidance_scale > 1.0 lowerCamelCase_ = self._encode_image(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # prior self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.scheduler.timesteps lowerCamelCase_ = self.prior.config.num_embeddings lowerCamelCase_ = self.prior.config.embedding_dim lowerCamelCase_ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase_ = latents.reshape(latents.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i, t in enumerate(self.progress_bar(__SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ = self.scheduler.scale_model_input(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.prior( __SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , proj_embedding=__SCREAMING_SNAKE_CASE , ).predicted_image_embedding # remove the variance lowerCamelCase_ , lowerCamelCase_ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase_ , lowerCamelCase_ = noise_pred.chunk(2 ) lowerCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase_ = self.scheduler.step( __SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , sample=__SCREAMING_SNAKE_CASE , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = [] for i, latent in enumerate(__SCREAMING_SNAKE_CASE ): print() lowerCamelCase_ = self.renderer.decode( latent[None, :] , __SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.stack(__SCREAMING_SNAKE_CASE ) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) lowerCamelCase_ = images.cpu().numpy() if output_type == "pil": lowerCamelCase_ = [self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) for image in images] # Offload last model to CPU if hasattr(self , 'final_offload_hook' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__SCREAMING_SNAKE_CASE )
549
"""simple docstring""" import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class a ( unittest.TestCase ): @require_torch def UpperCamelCase ( self : str ) -> str: lowerCamelCase_ = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) lowerCamelCase_ = load_dataset('ashraq/esc50' ) lowerCamelCase_ = dataset['train']['audio'][-1]['array'] lowerCamelCase_ = audio_classifier(__SCREAMING_SNAKE_CASE , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'score': 0.501, 'label': 'Sound of a dog'}, {'score': 0.499, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def UpperCamelCase ( self : Tuple ) -> Optional[Any]: pass @slow @require_torch def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase_ = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog lowerCamelCase_ = load_dataset('ashraq/esc50' ) lowerCamelCase_ = dataset['train']['audio'][-1]['array'] lowerCamelCase_ = audio_classifier(__SCREAMING_SNAKE_CASE , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ] , ) lowerCamelCase_ = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) lowerCamelCase_ = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def UpperCamelCase ( self : Optional[int] ) -> int: pass
549
1
from __future__ import annotations import queue class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None def UpperCAmelCase__ ( )->TreeNode: print('''\n********Press N to stop entering at any point of time********\n''' ) _lowerCAmelCase = input('''Enter the value of the root node: ''' ).strip().lower() _lowerCAmelCase = queue.Queue() _lowerCAmelCase = TreeNode(int(_SCREAMING_SNAKE_CASE ) ) q.put(_SCREAMING_SNAKE_CASE ) while not q.empty(): _lowerCAmelCase = q.get() _lowerCAmelCase = f'''Enter the left node of {node_found.data}: ''' _lowerCAmelCase = input(_SCREAMING_SNAKE_CASE ).strip().lower() or '''n''' if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = left_node q.put(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = f'''Enter the right node of {node_found.data}: ''' _lowerCAmelCase = input(_SCREAMING_SNAKE_CASE ).strip().lower() or '''n''' if check == "n": return tree_node _lowerCAmelCase = TreeNode(int(_SCREAMING_SNAKE_CASE ) ) _lowerCAmelCase = right_node q.put(_SCREAMING_SNAKE_CASE ) raise def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return _lowerCAmelCase = queue.Queue() q.put(_SCREAMING_SNAKE_CASE ) while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return _lowerCAmelCase = queue.Queue() q.put(_SCREAMING_SNAKE_CASE ) while not q.empty(): _lowerCAmelCase = [] while not q.empty(): _lowerCAmelCase = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = n.left # end of while means current node doesn't have left child _lowerCAmelCase = stack.pop() # start to traverse its right child _lowerCAmelCase = n.right def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return _lowerCAmelCase = [] _lowerCAmelCase = node while n or stack: while n: stack.append(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = n.left _lowerCAmelCase = stack.pop() print(n.data , end=''',''' ) _lowerCAmelCase = n.right def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : TreeNode )->None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node: return _lowerCAmelCase , _lowerCAmelCase = [], [] _lowerCAmelCase = node stacka.append(_SCREAMING_SNAKE_CASE ) while stacka: # to find the reversed order of post order, store it in stack2 _lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(_SCREAMING_SNAKE_CASE ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : str = "" , _SCREAMING_SNAKE_CASE : Optional[Any]=5_0 , _SCREAMING_SNAKE_CASE : Optional[int]="*" )->str: if not s: return "\n" + width * char _lowerCAmelCase , _lowerCAmelCase = divmod(width - len(_SCREAMING_SNAKE_CASE ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) UpperCAmelCase_ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
664
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = '''ClapFeatureExtractor''' SCREAMING_SNAKE_CASE__ = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): super().__init__(_lowerCAmelCase , _lowerCAmelCase ) def __call__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase ): _lowerCAmelCase = kwargs.pop('''sampling_rate''' , _lowerCAmelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: _lowerCAmelCase = self.tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if audios is not None: _lowerCAmelCase = self.feature_extractor( _lowerCAmelCase , sampling_rate=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase ) if text is not None and audios is not None: _lowerCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_lowerCAmelCase ) , tensor_type=_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def __lowerCAmelCase ( self , *_lowerCAmelCase , **_lowerCAmelCase ): return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) @property def __lowerCAmelCase ( self ): _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
664
1
import math def __SCREAMING_SNAKE_CASE ( a__ : int ) -> str: __A : Optional[int] = 0 __A : List[str] = 0 while num > 0: __A : Optional[int] = num % 8 __A : List[Any] = octal + (remainder * math.floor(math.pow(10 ,a__ ) )) counter += 1 __A : Any = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(a__ )}""" def __SCREAMING_SNAKE_CASE ( ) -> None: print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
17
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def A__ ( A : Optional[int]): '''simple docstring''' assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def A__ ( ): '''simple docstring''' assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def A__ ( ): '''simple docstring''' UpperCamelCase : Tuple = "mock-s3-bucket" UpperCamelCase : List[str] = F'''s3://{mock_bucket}''' UpperCamelCase : Optional[Any] = extract_path_from_uri(A) assert dataset_path.startswith("s3://") is False UpperCamelCase : Any = "./local/path" UpperCamelCase : str = extract_path_from_uri(A) assert dataset_path == new_dataset_path def A__ ( A : Optional[Any]): '''simple docstring''' UpperCamelCase : List[Any] = is_remote_filesystem(A) assert is_remote is True UpperCamelCase : Tuple = fsspec.filesystem("file") UpperCamelCase : int = is_remote_filesystem(A) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , A) def A__ ( A : List[Any] , A : Any , A : str , A : Union[str, Any] , A : List[str] , A : List[Any] , A : Optional[Any]): '''simple docstring''' UpperCamelCase : List[str] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} UpperCamelCase : Any = input_paths[compression_fs_class.protocol] if input_path is None: UpperCamelCase : Any = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(A) UpperCamelCase : List[str] = fsspec.filesystem(compression_fs_class.protocol , fo=A) assert isinstance(A , A) UpperCamelCase : List[Any] = os.path.basename(A) UpperCamelCase : Union[str, Any] = expected_filename[: expected_filename.rindex(".")] assert fs.glob("*") == [expected_filename] with fs.open(A , "r" , encoding="utf-8") as f, open(A , encoding="utf-8") as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"]) def A__ ( A : Optional[int] , A : str , A : Optional[Any]): '''simple docstring''' UpperCamelCase : Any = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} UpperCamelCase : str = compressed_file_paths[protocol] UpperCamelCase : Optional[int] = "dataset.jsonl" UpperCamelCase : Tuple = F'''{protocol}://{member_file_path}::{compressed_file_path}''' UpperCamelCase , *UpperCamelCase : Dict = fsspec.get_fs_token_paths(A) assert fs.isfile(A) assert not fs.isfile("non_existing_" + member_file_path) @pytest.mark.integration def A__ ( A : Dict , A : List[str] , A : Dict , A : List[Any]): '''simple docstring''' UpperCamelCase : Optional[int] = hf_api.dataset_info(A , token=A) UpperCamelCase : List[str] = HfFileSystem(repo_info=A , token=A) assert sorted(hffs.glob("*")) == [".gitattributes", "data"] assert hffs.isdir("data") assert hffs.isfile(".gitattributes") and hffs.isfile("data/text_data.txt") with open(A) as f: assert hffs.open("data/text_data.txt" , "r").read() == f.read() def A__ ( ): '''simple docstring''' UpperCamelCase : str = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(A , A , clobber=A) with pytest.warns(A) as warning_info: importlib.reload(datasets.filesystems) assert len(A) == 1 assert ( str(warning_info[0].message) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
173
0
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase__ = 4 lowerCAmelCase__ = 3 class lowercase ( _lowercase ): """simple docstring""" pass def lowerCamelCase_ ( UpperCAmelCase_ : List[str] ) -> Union[str, Any]: '''simple docstring''' for shard in shards: for i in range(UpperCAmelCase_ ): yield {"i": i, "shard": shard} def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = int(os.environ['RANK'] ) _UpperCamelCase : str = int(os.environ['WORLD_SIZE'] ) _UpperCamelCase : List[str] = ArgumentParser() parser.add_argument('--streaming' , type=UpperCAmelCase_ ) parser.add_argument('--local_rank' , type=UpperCAmelCase_ ) parser.add_argument('--num_workers' , type=UpperCAmelCase_ , default=0 ) _UpperCamelCase : Optional[Any] = parser.parse_args() _UpperCamelCase : Optional[int] = args.streaming _UpperCamelCase : int = args.num_workers _UpperCamelCase : List[str] = {'shards': [F'''shard_{shard_idx}''' for shard_idx in range(UpperCAmelCase_ )]} _UpperCamelCase : Tuple = IterableDataset.from_generator(UpperCAmelCase_ , gen_kwargs=UpperCAmelCase_ ) if not streaming: _UpperCamelCase : List[Any] = Dataset.from_list(list(UpperCAmelCase_ ) ) _UpperCamelCase : int = split_dataset_by_node(UpperCAmelCase_ , rank=UpperCAmelCase_ , world_size=UpperCAmelCase_ ) _UpperCamelCase : Any = torch.utils.data.DataLoader(UpperCAmelCase_ , num_workers=UpperCAmelCase_ ) _UpperCamelCase : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD _UpperCamelCase : Union[str, Any] = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _UpperCamelCase : int = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
648
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=True , __snake_case=99 , __snake_case=64 , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=16 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=3 , __snake_case=4 , __snake_case=None , ): _UpperCamelCase : List[Any] = parent _UpperCamelCase : Optional[Any] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : str = is_training _UpperCamelCase : Tuple = use_input_mask _UpperCamelCase : Union[str, Any] = use_token_type_ids _UpperCamelCase : Union[str, Any] = use_labels _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : List[Any] = hidden_size _UpperCamelCase : Optional[Any] = embedding_size _UpperCamelCase : str = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : int = intermediate_size _UpperCamelCase : int = hidden_act _UpperCamelCase : Tuple = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : List[str] = type_vocab_size _UpperCamelCase : Dict = type_sequence_label_size _UpperCamelCase : List[str] = initializer_range _UpperCamelCase : Optional[Any] = num_labels _UpperCamelCase : Tuple = num_choices _UpperCamelCase : List[str] = scope def A__ ( self): _UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : Any = None if self.use_input_mask: _UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase : Optional[Any] = None if self.use_token_type_ids: _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase : int = None _UpperCamelCase : List[str] = None _UpperCamelCase : Dict = None if self.use_labels: _UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = MegatronBertModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Dict = model(__snake_case , token_type_ids=__snake_case) _UpperCamelCase : Optional[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForMaskedLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Dict = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : str = MegatronBertForCausalLM(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Tuple = MegatronBertForNextSentencePrediction(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Optional[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = MegatronBertForPreTraining(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[str] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : int = MegatronBertForQuestionAnswering(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[int] = self.num_labels _UpperCamelCase : Union[str, Any] = MegatronBertForSequenceClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Any = self.num_labels _UpperCamelCase : Optional[int] = MegatronBertForTokenClassification(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = self.num_choices _UpperCamelCase : Optional[int] = MegatronBertForMultipleChoice(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : List[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase : Union[str, Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def A__ ( self): _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) : Optional[int] = config_and_inputs _UpperCamelCase : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) a__ = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) a__ = True # test_resize_embeddings = False a__ = False def A__ ( self , __snake_case , __snake_case , __snake_case=False): _UpperCamelCase : str = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case) if return_labels: if model_class in get_values(__snake_case): _UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case) _UpperCamelCase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case) return inputs_dict def A__ ( self): _UpperCamelCase : Any = MegatronBertModelTester(self) _UpperCamelCase : int = ConfigTester(self , config_class=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case) def A__ ( self): _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case) def A__ ( self): _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case) def A__ ( self): _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case) def A__ ( self): _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case) def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) lowerCAmelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('Model is not available.') def A__ ( self): _UpperCamelCase : int = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: _UpperCamelCase : int = os.path.join(os.environ['MYDIR'] , __snake_case) _UpperCamelCase : Optional[int] = MegatronBertModel.from_pretrained(__snake_case) model.to(__snake_case) model.half() _UpperCamelCase : Optional[Any] = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]]) with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)[0] _UpperCamelCase : Optional[int] = torch.Size((1, 9, 10_24)) self.assertEqual(output.shape , __snake_case) _UpperCamelCase : Union[str, Any] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3): for jj in range(3): _UpperCamelCase : Optional[Any] = output[0, ii, jj] _UpperCamelCase : Dict = expected[3 * ii + jj] _UpperCamelCase : Optional[int] = 'ii={} jj={} a={} b={}'.format(__snake_case , __snake_case , __snake_case , __snake_case) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case) , msg=__snake_case)
648
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : str , __snake_case : List[Any]=False ): if isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ): _A = len(set_a.intersection(__snake_case ) ) if alternative_union: _A = len(__snake_case ) + len(__snake_case ) else: _A = len(set_a.union(__snake_case ) ) return intersection / union if isinstance(__snake_case , (list, tuple) ) and isinstance(__snake_case , (list, tuple) ): _A = [element for element in set_a if element in set_b] if alternative_union: _A = len(__snake_case ) + len(__snake_case ) return len(__snake_case ) / union else: _A = set_a + [element for element in set_b if element not in set_a] return len(__snake_case ) / len(__snake_case ) return len(__snake_case ) / len(__snake_case ) return None if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = {'''a''', '''b''', '''c''', '''d''', '''e'''} _UpperCAmelCase : str = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
107
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __lowerCAmelCase = logging.getLogger(__name__) torch.set_grad_enabled(False) __lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' def _UpperCAmelCase ( __A : str , __A : Optional[Any]=1_00 , __A : int=" " ): a_ : Optional[int] = text.split(__A ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__A ) , __A )] def _UpperCAmelCase ( __A : dict ): a_ , a_ : List[Any] = [], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(__A ): titles.append(title if title is not None else '''''' ) texts.append(__A ) return {"title": titles, "text": texts} def _UpperCAmelCase ( __A : dict , __A : DPRContextEncoder , __A : DPRContextEncoderTokenizerFast ): a_ : int = ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=__A , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] a_ : List[Any] = ctx_encoder(input_ids.to(device=__A ) , return_dict=__A ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _UpperCAmelCase ( __A : "RagExampleArguments" , __A : "ProcessingArguments" , __A : "IndexHnswArguments" , ): ###################################### logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way a_ : List[str] = load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words a_ : Dict = dataset.map(__A , batched=__A , num_proc=processing_args.num_proc ) # And compute the embeddings a_ : str = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__A ) a_ : Tuple = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) a_ : Union[str, Any] = Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space a_ : Union[str, Any] = dataset.map( partial(__A , ctx_encoder=__A , ctx_tokenizer=__A ) , batched=__A , batch_size=processing_args.batch_size , features=__A , ) # And finally save your dataset a_ : Tuple = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(__A ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search a_ : Dict = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=__A ) # And save the index a_ : Optional[Any] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(__A ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=str(Path(SCREAMING_SNAKE_CASE_ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) snake_case__ = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) snake_case__ = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) snake_case__ = field( default=str(Path(SCREAMING_SNAKE_CASE_ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=SCREAMING_SNAKE_CASE_ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) snake_case__ = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) snake_case__ = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __lowerCAmelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __lowerCAmelCase = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
466
0
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _UpperCamelCase ( _A ) -> List[Any]: """simple docstring""" return EnvironmentCommand() def _UpperCamelCase ( _A ) -> Any: """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class a_ ( _UpperCAmelCase ): @staticmethod def _snake_case ( __UpperCamelCase : ArgumentParser ) ->int: '''simple docstring''' _UpperCAmelCase = parser.add_parser("""env""" ) download_parser.set_defaults(func=__UpperCamelCase ) download_parser.add_argument( """--accelerate-config_file""" , default=__UpperCamelCase , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=__UpperCamelCase ) def __init__( self : Any , __UpperCamelCase : List[Any] , *__UpperCamelCase : Any ) ->None: '''simple docstring''' _UpperCAmelCase = accelerate_config_file def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = """not installed""" if is_safetensors_available(): import safetensors _UpperCAmelCase = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors _UpperCAmelCase = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" _UpperCAmelCase = """not installed""" _UpperCAmelCase = _UpperCAmelCase = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _UpperCAmelCase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__UpperCamelCase ): _UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict() _UpperCAmelCase = ( """\n""".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else f"""\t{accelerate_config}""" ) _UpperCAmelCase = """not installed""" _UpperCAmelCase = """NA""" if is_torch_available(): import torch _UpperCAmelCase = torch.__version__ _UpperCAmelCase = torch.cuda.is_available() _UpperCAmelCase = """not installed""" _UpperCAmelCase = """NA""" if is_tf_available(): import tensorflow as tf _UpperCAmelCase = tf.__version__ try: # deprecated in v2.1 _UpperCAmelCase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _UpperCAmelCase = bool(tf.config.list_physical_devices("""GPU""" ) ) _UpperCAmelCase = """not installed""" _UpperCAmelCase = """not installed""" _UpperCAmelCase = """not installed""" _UpperCAmelCase = """NA""" if is_flax_available(): import flax import jax import jaxlib _UpperCAmelCase = flax.__version__ _UpperCAmelCase = jax.__version__ _UpperCAmelCase = jaxlib.__version__ _UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform _UpperCAmelCase = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f"""{safetensors_version}""", """Accelerate version""": f"""{accelerate_version}""", """Accelerate config""": f"""{accelerate_config_str}""", """PyTorch version (GPU?)""": f"""{pt_version} ({pt_cuda_available})""", """Tensorflow version (GPU?)""": f"""{tf_version} ({tf_cuda_available})""", """Flax version (CPU?/GPU?/TPU?)""": f"""{flax_version} ({jax_backend})""", """Jax version""": f"""{jax_version}""", """JaxLib version""": f"""{jaxlib_version}""", """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(__UpperCamelCase ) ) return info @staticmethod def _snake_case ( __UpperCamelCase : Union[str, Any] ) ->Dict: '''simple docstring''' return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
19
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a_ ( nn.Module ): def __init__( self : List[str] , __UpperCamelCase : int = 16 , __UpperCamelCase : int = 88 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 32 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "geglu" , __UpperCamelCase : Optional[int] = None , ) ->Dict: '''simple docstring''' super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__UpperCamelCase , attention_head_dim=__UpperCamelCase , in_channels=__UpperCamelCase , num_layers=__UpperCamelCase , dropout=__UpperCamelCase , norm_num_groups=__UpperCamelCase , cross_attention_dim=__UpperCamelCase , attention_bias=__UpperCamelCase , sample_size=__UpperCamelCase , num_vector_embeds=__UpperCamelCase , activation_fn=__UpperCamelCase , num_embeds_ada_norm=__UpperCamelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def _snake_case ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : bool = True , ) ->Tuple: '''simple docstring''' _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( __UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase , cross_attention_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__UpperCamelCase )
19
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Tuple): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase ( self : List[str]): __lowerCamelCase : Union[str, Any] = 1 __lowerCamelCase : Dict = 3 __lowerCamelCase : Tuple = (3_2, 3_2) __lowerCamelCase : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0)).to(SCREAMING_SNAKE_CASE__) return image @property def lowerCAmelCase ( self : Any): torch.manual_seed(0) __lowerCamelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=3_2 ,) return model @property def lowerCAmelCase ( self : Optional[Any]): torch.manual_seed(0) __lowerCamelCase : List[str] = AutoencoderKL( block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) return model @property def lowerCAmelCase ( self : Optional[Any]): torch.manual_seed(0) __lowerCamelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModel(SCREAMING_SNAKE_CASE__) @property def lowerCAmelCase ( self : Tuple): def extract(*SCREAMING_SNAKE_CASE__ : List[Any] ,**SCREAMING_SNAKE_CASE__ : Dict): class A_ : def __init__( self : Optional[int]): __lowerCamelCase : Any = torch.ones([0]) def lowerCAmelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Any): self.pixel_values.to(SCREAMING_SNAKE_CASE__) return self return Out() return extract def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Tuple = self.dummy_cond_unet __lowerCamelCase : Any = DDIMScheduler( beta_start=0.00085 ,beta_end=0.012 ,beta_schedule='scaled_linear' ,clip_sample=SCREAMING_SNAKE_CASE__ ,set_alpha_to_one=SCREAMING_SNAKE_CASE__ ,) __lowerCamelCase : Optional[Any] = self.dummy_vae __lowerCamelCase : Tuple = self.dummy_text_encoder __lowerCamelCase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk __lowerCamelCase : Union[str, Any] = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,vae=SCREAMING_SNAKE_CASE__ ,text_encoder=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=self.dummy_extractor ,) __lowerCamelCase : Optional[int] = sd_pipe.to(SCREAMING_SNAKE_CASE__) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = 'A painting of a squirrel eating a burger' __lowerCamelCase : int = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(0) __lowerCamelCase : List[Any] = sd_pipe([prompt] ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='np') __lowerCamelCase : List[Any] = output.images __lowerCamelCase : Dict = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(0) __lowerCamelCase : Union[str, Any] = sd_pipe( [prompt] ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='np' ,return_dict=SCREAMING_SNAKE_CASE__ ,)[0] __lowerCamelCase : Any = image[0, -3:, -3:, -1] __lowerCamelCase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCamelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def lowerCAmelCase ( self : Tuple): __lowerCamelCase : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Union[str, Any] = self.dummy_cond_unet __lowerCamelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = self.dummy_vae __lowerCamelCase : Optional[Any] = self.dummy_text_encoder __lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk __lowerCamelCase : List[Any] = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,vae=SCREAMING_SNAKE_CASE__ ,text_encoder=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=self.dummy_extractor ,) __lowerCamelCase : List[str] = sd_pipe.to(SCREAMING_SNAKE_CASE__) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = 'A painting of a squirrel eating a burger' __lowerCamelCase : Optional[int] = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(0) __lowerCamelCase : str = sd_pipe([prompt] ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='np') __lowerCamelCase : Optional[Any] = output.images __lowerCamelCase : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__).manual_seed(0) __lowerCamelCase : Union[str, Any] = sd_pipe( [prompt] ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type='np' ,return_dict=SCREAMING_SNAKE_CASE__ ,)[0] __lowerCamelCase : Any = image[0, -3:, -3:, -1] __lowerCamelCase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCamelCase : int = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' ,safety_checker=SCREAMING_SNAKE_CASE__) assert isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) assert isinstance(pipe.scheduler ,SCREAMING_SNAKE_CASE__) assert pipe.safety_checker is None __lowerCamelCase : List[Any] = pipe('example prompt' ,num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE__) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowerCamelCase : List[Any] = pipe('example prompt' ,num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' ,'This test requires a GPU') def lowerCAmelCase ( self : List[str]): __lowerCamelCase : Union[str, Any] = self.dummy_cond_unet __lowerCamelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = self.dummy_vae __lowerCamelCase : List[Any] = self.dummy_text_encoder __lowerCamelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 __lowerCamelCase : str = unet.half() __lowerCamelCase : Union[str, Any] = vae.half() __lowerCamelCase : str = bert.half() # make sure here that pndm scheduler skips prk __lowerCamelCase : str = StableDiffusionPipeline( unet=SCREAMING_SNAKE_CASE__ ,scheduler=SCREAMING_SNAKE_CASE__ ,vae=SCREAMING_SNAKE_CASE__ ,text_encoder=SCREAMING_SNAKE_CASE__ ,tokenizer=SCREAMING_SNAKE_CASE__ ,safety_checker=SCREAMING_SNAKE_CASE__ ,feature_extractor=self.dummy_extractor ,) __lowerCamelCase : Any = sd_pipe.to(SCREAMING_SNAKE_CASE__) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = 'A painting of a squirrel eating a burger' __lowerCamelCase : Tuple = sd_pipe([prompt] ,num_inference_steps=2 ,output_type='np').images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : int): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : int): __lowerCamelCase : Tuple = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ,safety_checker=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __lowerCamelCase : Any = sd_pipe.to(SCREAMING_SNAKE_CASE__) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) __lowerCamelCase : Union[str, Any] = 4_0_0_3_6_6_0_3_4_6 __lowerCamelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) __lowerCamelCase : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : int = sd_pipe( [prompt] ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,num_inference_steps=5_0 ,output_type='np' ,width=5_1_2 ,height=5_1_2 ,sld_guidance_scale=0 ,) __lowerCamelCase : str = output.images __lowerCamelCase : Dict = image[0, -3:, -3:, -1] __lowerCamelCase : str = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 # without safety guidance (strong configuration) __lowerCamelCase : Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = sd_pipe( [prompt] ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,num_inference_steps=5_0 ,output_type='np' ,width=5_1_2 ,height=5_1_2 ,sld_guidance_scale=2_0_0_0 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) __lowerCamelCase : Union[str, Any] = output.images __lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] __lowerCamelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def lowerCAmelCase ( self : Dict): __lowerCamelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ,safety_checker=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) __lowerCamelCase : Optional[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE__) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = 'padme amidala taking a bath artwork, safe for work, no nudity' __lowerCamelCase : Optional[int] = 2_7_3_4_9_7_1_7_5_5 __lowerCamelCase : List[str] = 7 __lowerCamelCase : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = sd_pipe( [prompt] ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,num_inference_steps=5_0 ,output_type='np' ,width=5_1_2 ,height=5_1_2 ,sld_guidance_scale=0 ,) __lowerCamelCase : Union[str, Any] = output.images __lowerCamelCase : List[str] = image[0, -3:, -3:, -1] __lowerCamelCase : Any = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 __lowerCamelCase : int = torch.manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Any = sd_pipe( [prompt] ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,num_inference_steps=5_0 ,output_type='np' ,width=5_1_2 ,height=5_1_2 ,sld_guidance_scale=2_0_0_0 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) __lowerCamelCase : Any = output.images __lowerCamelCase : int = image[0, -3:, -3:, -1] __lowerCamelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[str] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') __lowerCamelCase : List[str] = sd_pipe.to(SCREAMING_SNAKE_CASE__) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) __lowerCamelCase : Any = 1_0_4_4_3_5_5_2_3_4 __lowerCamelCase : Optional[Any] = 1_2 __lowerCamelCase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[Any] = sd_pipe( [prompt] ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,num_inference_steps=5_0 ,output_type='np' ,width=5_1_2 ,height=5_1_2 ,sld_guidance_scale=0 ,) __lowerCamelCase : int = output.images __lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] __lowerCamelCase : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-7 __lowerCamelCase : int = torch.manual_seed(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = sd_pipe( [prompt] ,generator=SCREAMING_SNAKE_CASE__ ,guidance_scale=SCREAMING_SNAKE_CASE__ ,num_inference_steps=5_0 ,output_type='np' ,width=5_1_2 ,height=5_1_2 ,sld_guidance_scale=2_0_0_0 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) __lowerCamelCase : Optional[Any] = output.images __lowerCamelCase : List[str] = image[0, -3:, -3:, -1] __lowerCamelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561]) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
652
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__="pt" ) -> Dict: __lowerCamelCase : Any = {'add_prefix_space': True} if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not line.startswith(' ' ) else {} __lowerCamelCase : int = padding_side return tokenizer( [line] , max_length=lowerCamelCase__ , padding='max_length' if pad_to_max_length else None , truncation=lowerCamelCase__ , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , ) -> List[str]: __lowerCamelCase : List[str] = input_ids.ne(lowerCamelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A_ ( SCREAMING_SNAKE_CASE ): def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int]="train" ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : Dict=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : List[Any]="" ,): super().__init__() __lowerCamelCase : Optional[Any] = Path(SCREAMING_SNAKE_CASE__).joinpath(type_path + '.source') __lowerCamelCase : Any = Path(SCREAMING_SNAKE_CASE__).joinpath(type_path + '.target') __lowerCamelCase : List[Any] = self.get_char_lens(self.src_file) __lowerCamelCase : List[Any] = max_source_length __lowerCamelCase : List[str] = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" __lowerCamelCase : Any = tokenizer __lowerCamelCase : Optional[int] = prefix if n_obs is not None: __lowerCamelCase : Dict = self.src_lens[:n_obs] __lowerCamelCase : str = src_lang __lowerCamelCase : Any = tgt_lang def __len__( self : Tuple): return len(self.src_lens) def __getitem__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Dict = index + 1 # linecache starts at 1 __lowerCamelCase : Any = self.prefix + linecache.getline(str(self.src_file) ,SCREAMING_SNAKE_CASE__).rstrip('\n') __lowerCamelCase : int = linecache.getline(str(self.tgt_file) ,SCREAMING_SNAKE_CASE__).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __lowerCamelCase : Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__) else self.tokenizer ) __lowerCamelCase : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__) else self.tokenizer __lowerCamelCase : List[str] = encode_line(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.max_source_length ,'right') __lowerCamelCase : Any = encode_line(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.max_target_length ,'right') __lowerCamelCase : List[Any] = source_inputs['input_ids'].squeeze() __lowerCamelCase : Tuple = target_inputs['input_ids'].squeeze() __lowerCamelCase : Tuple = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : int): return [len(SCREAMING_SNAKE_CASE__) for x in Path(SCREAMING_SNAKE_CASE__).open().readlines()] def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : Optional[Any] = torch.stack([x['input_ids'] for x in batch]) __lowerCamelCase : Any = torch.stack([x['attention_mask'] for x in batch]) __lowerCamelCase : Union[str, Any] = torch.stack([x['decoder_input_ids'] for x in batch]) __lowerCamelCase : Optional[int] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__) else self.tokenizer.pad_token_id ) __lowerCamelCase : int = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__) else self.tokenizer.pad_token_id ) __lowerCamelCase : int = trim_batch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : int = trim_batch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch a =getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any: return list(itertools.chain.from_iterable(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: __lowerCamelCase : str = get_git_info() save_json(lowerCamelCase__ , os.path.join(lowerCamelCase__ , 'git_log.json' ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=4 , **lowerCamelCase__ ) -> List[str]: with open(lowerCamelCase__ , 'w' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=lowerCamelCase__ , **lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Tuple: with open(lowerCamelCase__ ) as f: return json.load(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: __lowerCamelCase : str = git.Repo(search_parent_directories=lowerCamelCase__ ) __lowerCamelCase : Any = { 'repo_id': str(lowerCamelCase__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List: return list(map(lowerCamelCase__ , lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: with open(lowerCamelCase__ , 'wb' ) as f: return pickle.dump(lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: def remove_articles(lowerCamelCase__ ): return re.sub(R'\b(a|an|the)\b' , ' ' , lowerCamelCase__ ) def white_space_fix(lowerCamelCase__ ): return " ".join(text.split() ) def remove_punc(lowerCamelCase__ ): __lowerCamelCase : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: __lowerCamelCase : str = normalize_answer(lowerCamelCase__ ).split() __lowerCamelCase : Optional[int] = normalize_answer(lowerCamelCase__ ).split() __lowerCamelCase : Union[str, Any] = Counter(lowerCamelCase__ ) & Counter(lowerCamelCase__ ) __lowerCamelCase : Any = sum(common.values() ) if num_same == 0: return 0 __lowerCamelCase : List[Any] = 1.0 * num_same / len(lowerCamelCase__ ) __lowerCamelCase : int = 1.0 * num_same / len(lowerCamelCase__ ) __lowerCamelCase : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: return normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) __lowerCamelCase : Dict = 0 for hypo, pred in zip(lowerCamelCase__ , lowerCamelCase__ ): em += exact_match_score(lowerCamelCase__ , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: em /= len(lowerCamelCase__ ) return {"em": em} def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Tuple: return model_prefix.startswith('rag' ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __lowerCamelCase : List[str] = 'dropout_rate' for p in extra_params: if getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if not hasattr(lowerCamelCase__ , lowerCamelCase__ ) and not hasattr(lowerCamelCase__ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(lowerCamelCase__ ) ) delattr(lowerCamelCase__ , lowerCamelCase__ ) continue __lowerCamelCase : List[Any] = p if hasattr(lowerCamelCase__ , lowerCamelCase__ ) else equivalent_param[p] setattr(lowerCamelCase__ , lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) delattr(lowerCamelCase__ , lowerCamelCase__ ) return hparams, config
652
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class lowercase__( UpperCAmelCase ): """simple docstring""" a :List[Any] = 'nllb-moe' a :Optional[int] = ['past_key_values'] a :Dict = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Any , SCREAMING_SNAKE_CASE_ : List[Any]=1_2_8_1_1_2 , SCREAMING_SNAKE_CASE_ : List[str]=1_0_2_4 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE_ : int=4_0_9_6 , SCREAMING_SNAKE_CASE_ : int=1_6 , SCREAMING_SNAKE_CASE_ : List[Any]=1_2 , SCREAMING_SNAKE_CASE_ : List[Any]=4_0_9_6 , SCREAMING_SNAKE_CASE_ : List[str]=1_6 , SCREAMING_SNAKE_CASE_ : Dict=0.05 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.05 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]="relu" , SCREAMING_SNAKE_CASE_ : Dict=1_0_2_4 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : str=0.0 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : List[Any]="float32" , SCREAMING_SNAKE_CASE_ : Optional[int]=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_2_8 , SCREAMING_SNAKE_CASE_ : int=6_4 , SCREAMING_SNAKE_CASE_ : List[str]=4 , SCREAMING_SNAKE_CASE_ : Optional[int]=4 , SCREAMING_SNAKE_CASE_ : Dict=0.0_01 , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0_01 , SCREAMING_SNAKE_CASE_ : List[Any]="all" , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : Any=False , SCREAMING_SNAKE_CASE_ : List[Any]=1.0 , SCREAMING_SNAKE_CASE_ : Any=0.2 , SCREAMING_SNAKE_CASE_ : str=1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE_ : Dict=2 , SCREAMING_SNAKE_CASE_ : str=False , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> Union[str, Any]: lowercase_ = vocab_size lowercase_ = max_position_embeddings lowercase_ = d_model lowercase_ = encoder_ffn_dim lowercase_ = encoder_layers lowercase_ = encoder_attention_heads lowercase_ = decoder_ffn_dim lowercase_ = decoder_layers lowercase_ = decoder_attention_heads lowercase_ = dropout lowercase_ = attention_dropout lowercase_ = activation_dropout lowercase_ = activation_function lowercase_ = init_std lowercase_ = encoder_layerdrop lowercase_ = decoder_layerdrop lowercase_ = use_cache lowercase_ = encoder_layers lowercase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ = router_z_loss_coef lowercase_ = router_aux_loss_coef lowercase_ = decoder_sparse_step lowercase_ = encoder_sparse_step lowercase_ = num_experts lowercase_ = expert_capacity lowercase_ = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) lowercase_ = router_dtype lowercase_ = router_ignore_padding_tokens lowercase_ = batch_prioritized_routing lowercase_ = second_expert_policy lowercase_ = normalize_router_prob_before_dropping lowercase_ = moe_eval_capacity_token_fraction lowercase_ = moe_token_dropout lowercase_ = output_router_logits super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
409
def a ( snake_case__: int ): '''simple docstring''' lowercase_ = [0] * len(snake_case__ ) lowercase_ = [] lowercase_ = [] lowercase_ = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: lowercase_ = queue.pop(0 ) cnt += 1 topo.append(snake_case__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(snake_case__ ) if cnt != len(snake_case__ ): print('''Cycle exists''' ) else: print(snake_case__ ) # Adjacency List of Graph __a = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
409
1
def SCREAMING_SNAKE_CASE ( snake_case ) -> bool: if not isinstance(snake_case , snake_case ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(snake_case ) == 0: raise ValueError('Input list must be a non empty list' ) if len(snake_case ) == 1: return True __lowercase = series[1] - series[0] for index in range(len(snake_case ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def SCREAMING_SNAKE_CASE ( snake_case ) -> float: if not isinstance(snake_case , snake_case ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(snake_case ) == 0: raise ValueError('Input list must be a non empty list' ) __lowercase = 0 for val in series: answer += val return answer / len(snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
375
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) SCREAMING_SNAKE_CASE_ : str = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def SCREAMING_SNAKE_CASE ( snake_case ) -> Tuple: __lowercase = {} state_dict.pop('pixel_mean' , snake_case ) state_dict.pop('pixel_std' , snake_case ) __lowercase = r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowercase = key.replace(snake_case , snake_case ) if re.match(snake_case , snake_case ): __lowercase = int(re.match(snake_case , snake_case ).group(2 ) ) if layer_nb == 0: __lowercase = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: __lowercase = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: __lowercase = key.replace('layers.2' , 'proj_out' ) __lowercase = value __lowercase = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case="ybelkada/segment-anything" ) -> int: __lowercase = hf_hub_download(snake_case , F"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: __lowercase = SamConfig() elif "sam_vit_l" in model_name: __lowercase = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __lowercase = SamConfig( vision_config=snake_case , ) elif "sam_vit_h" in model_name: __lowercase = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __lowercase = SamConfig( vision_config=snake_case , ) __lowercase = torch.load(snake_case , map_location='cpu' ) __lowercase = replace_keys(snake_case ) __lowercase = SamImageProcessor() __lowercase = SamProcessor(image_processor=snake_case ) __lowercase = SamModel(snake_case ) hf_model.load_state_dict(snake_case ) __lowercase = hf_model.to('cuda' ) __lowercase = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' __lowercase = Image.open(requests.get(snake_case , stream=snake_case ).raw ).convert('RGB' ) __lowercase = [[[400, 650]]] __lowercase = [[1]] __lowercase = processor(images=np.array(snake_case ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 __lowercase = processor( images=np.array(snake_case ) , input_points=snake_case , input_labels=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 __lowercase = ((75, 275, 1_725, 850),) __lowercase = processor(images=np.array(snake_case ) , input_boxes=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. __lowercase = [[[400, 650], [800, 650]]] __lowercase = [[1, 1]] __lowercase = processor( images=np.array(snake_case ) , input_points=snake_case , input_labels=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = argparse.ArgumentParser() SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
375
1
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] ): '''simple docstring''' if isinstance(_lowerCAmelCase , torch.Tensor ): return image elif isinstance(_lowerCAmelCase , PIL.Image.Image ): lowercase__ : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase__ : int = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] lowercase__ : str = np.concatenate(_lowerCAmelCase , axis=0 ) lowercase__ : Union[str, Any] = np.array(_lowerCAmelCase ).astype(np.floataa ) / 255.0 lowercase__ : Union[str, Any] = image.transpose(0 , 3 , 1 , 2 ) lowercase__ : Optional[int] = 2.0 * image - 1.0 lowercase__ : Union[str, Any] = torch.from_numpy(_lowerCAmelCase ) elif isinstance(image[0] , torch.Tensor ): lowercase__ : Optional[int] = torch.cat(_lowerCAmelCase , dim=0 ) return image def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple=0.9_9_9_5 ): '''simple docstring''' if not isinstance(_lowerCAmelCase , np.ndarray ): lowercase__ : Optional[int] = True lowercase__ : str = va.device lowercase__ : Tuple = va.cpu().numpy() lowercase__ : Any = va.cpu().numpy() lowercase__ : Dict = np.sum(va * va / (np.linalg.norm(_lowerCAmelCase ) * np.linalg.norm(_lowerCAmelCase )) ) if np.abs(_lowerCAmelCase ) > DOT_THRESHOLD: lowercase__ : Optional[int] = (1 - t) * va + t * va else: lowercase__ : Dict = np.arccos(_lowerCAmelCase ) lowercase__ : Optional[Any] = np.sin(_lowerCAmelCase ) lowercase__ : Union[str, Any] = theta_a * t lowercase__ : List[Any] = np.sin(_lowerCAmelCase ) lowercase__ : str = np.sin(theta_a - theta_t ) / sin_theta_a lowercase__ : Any = sin_theta_t / sin_theta_a lowercase__ : Optional[Any] = sa * va + sa * va if inputs_are_torch: lowercase__ : List[str] = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) return va def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): '''simple docstring''' lowercase__ : Any = F.normalize(_lowerCAmelCase , dim=-1 ) lowercase__ : Dict = F.normalize(_lowerCAmelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' for param in model.parameters(): lowercase__ : Optional[int] = value class UpperCAmelCase_ ( _a): def __init__( self , a , a , a , a , a , a , a , a=None , a=None , a=None , ) -> Any: super().__init__() self.register_modules( vae=a , text_encoder=a , clip_model=a , tokenizer=a , unet=a , scheduler=a , feature_extractor=a , coca_model=a , coca_tokenizer=a , coca_transform=a , ) lowercase__ : Tuple = ( feature_extractor.size if isinstance(feature_extractor.size , a ) else feature_extractor.size['shortest_edge'] ) lowercase__ : Optional[int] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , a ) set_requires_grad(self.clip_model , a ) def _UpperCAmelCase ( self , a = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def _UpperCAmelCase ( self ) -> Dict: self.enable_attention_slicing(a ) def _UpperCAmelCase ( self ) -> Any: set_requires_grad(self.vae , a ) def _UpperCAmelCase ( self ) -> Optional[Any]: set_requires_grad(self.vae , a ) def _UpperCAmelCase ( self ) -> int: set_requires_grad(self.unet , a ) def _UpperCAmelCase ( self ) -> Any: set_requires_grad(self.unet , a ) def _UpperCAmelCase ( self , a , a , a ) -> int: # get the original timestep using init_timestep lowercase__ : int = min(int(num_inference_steps * strength ) , a ) lowercase__ : Optional[Any] = max(num_inference_steps - init_timestep , 0 ) lowercase__ : List[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCAmelCase ( self , a , a , a , a , a , a=None ) -> Tuple: if not isinstance(a , torch.Tensor ): raise ValueError(f"""`image` has to be of type `torch.Tensor` but is {type(a )}""" ) lowercase__ : str = image.to(device=a , dtype=a ) if isinstance(a , a ): lowercase__ : Optional[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] lowercase__ : Tuple = torch.cat(a , dim=0 ) else: lowercase__ : Any = self.vae.encode(a ).latent_dist.sample(a ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ : int = 0.18_215 * init_latents lowercase__ : int = init_latents.repeat_interleave(a , dim=0 ) lowercase__ : Dict = randn_tensor(init_latents.shape , generator=a , device=a , dtype=a ) # get latents lowercase__ : int = self.scheduler.add_noise(a , a , a ) lowercase__ : List[Any] = init_latents return latents def _UpperCAmelCase ( self , a ) -> List[str]: lowercase__ : List[Any] = self.coca_transform(a ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowercase__ : Any = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) lowercase__ : Optional[int] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def _UpperCAmelCase ( self , a , a ) -> List[Any]: lowercase__ : int = self.feature_extractor.preprocess(a ) lowercase__ : Optional[Any] = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() lowercase__ : List[str] = self.clip_model.get_image_features(a ) lowercase__ : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) lowercase__ : Optional[Any] = image_embeddings_clip.repeat_interleave(a , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _UpperCAmelCase ( self , a , a , a , a , a , a , a , ) -> str: lowercase__ : Tuple = latents.detach().requires_grad_() lowercase__ : Dict = self.scheduler.scale_model_input(a , a ) # predict the noise residual lowercase__ : int = self.unet(a , a , encoder_hidden_states=a ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowercase__ : int = self.scheduler.alphas_cumprod[timestep] lowercase__ : Tuple = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ : Any = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowercase__ : List[str] = torch.sqrt(a ) lowercase__ : Any = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , a ): lowercase__ : Dict = self.scheduler.sigmas[index] lowercase__ : List[str] = latents - sigma * noise_pred else: raise ValueError(f"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ : str = 1 / 0.18_215 * sample lowercase__ : int = self.vae.decode(a ).sample lowercase__ : int = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ : Dict = transforms.Resize(self.feature_extractor_size )(a ) lowercase__ : Optional[int] = self.normalize(a ).to(latents.dtype ) lowercase__ : str = self.clip_model.get_image_features(a ) lowercase__ : Tuple = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=a ) lowercase__ : Dict = spherical_dist_loss(a , a ).mean() * clip_guidance_scale lowercase__ : Tuple = -torch.autograd.grad(a , a )[0] if isinstance(self.scheduler , a ): lowercase__ : int = latents.detach() + grads * (sigma**2) lowercase__ : Optional[Any] = noise_pred_original else: lowercase__ : List[Any] = noise_pred_original - torch.sqrt(a ) * grads return noise_pred, latents @torch.no_grad() def __call__( self , a , a , a = None , a = None , a = 5_1_2 , a = 5_1_2 , a = 0.6 , a = 5_0 , a = 7.5 , a = 1 , a = 0.0 , a = 1_0_0 , a = None , a = "pil" , a = True , a = 0.8 , a = 0.1 , a = 0.1 , ) -> Dict: if isinstance(a , a ) and len(a ) != batch_size: raise ValueError(f"""You have passed {batch_size} batch_size, but only {len(a )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(a , torch.Generator ) and batch_size > 1: lowercase__ : Optional[int] = [generator] + [None] * (batch_size - 1) lowercase__ : Tuple = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] lowercase__ : Optional[Any] = [x[0] for x in coca_is_none if x[1]] lowercase__ : Dict = ', '.join(a ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(a ): raise ValueError( f"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" f"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowercase__ : int = self.get_image_description(a ) if style_prompt is None: if len(a ): raise ValueError( f"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" f""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) lowercase__ : List[str] = self.get_image_description(a ) # get prompt text embeddings for content and style lowercase__ : Any = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) lowercase__ : Optional[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowercase__ : Tuple = self.tokenizer( a , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=a , return_tensors='pt' , ) lowercase__ : Union[str, Any] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowercase__ : Union[str, Any] = slerp(a , a , a ) # duplicate text embeddings for each generation per prompt lowercase__ : Any = text_embeddings.repeat_interleave(a , dim=0 ) # set timesteps lowercase__ : List[str] = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowercase__ : Optional[Any] = {} if accepts_offset: lowercase__ : Dict = 1 self.scheduler.set_timesteps(a , **a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowercase__ : Optional[int] = self.get_timesteps(a , a , self.device ) lowercase__ : List[Any] = timesteps[:1].repeat(a ) # Preprocess image lowercase__ : Tuple = preprocess(a , a , a ) lowercase__ : int = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) lowercase__ : List[Any] = preprocess(a , a , a ) lowercase__ : Union[str, Any] = self.prepare_latents( a , a , a , text_embeddings.dtype , self.device , a ) lowercase__ : str = slerp(a , a , a ) if clip_guidance_scale > 0: lowercase__ : List[str] = self.get_clip_image_embeddings(a , a ) lowercase__ : Any = self.get_clip_image_embeddings(a , a ) lowercase__ : Dict = slerp( a , a , a ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase__ : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase__ : Optional[int] = content_text_input.input_ids.shape[-1] lowercase__ : Optional[Any] = self.tokenizer([''] , padding='max_length' , max_length=a , return_tensors='pt' ) lowercase__ : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowercase__ : Optional[int] = uncond_embeddings.repeat_interleave(a , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase__ : Tuple = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase__ : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowercase__ : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowercase__ : Tuple = torch.randn(a , generator=a , device='cpu' , dtype=a ).to( self.device ) else: lowercase__ : Any = torch.randn(a , generator=a , device=self.device , dtype=a ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) lowercase__ : Tuple = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase__ : Union[str, Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ : Any = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ : Optional[int] = {} if accepts_eta: lowercase__ : str = eta # check if the scheduler accepts generator lowercase__ : List[Any] = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowercase__ : str = generator with self.progress_bar(total=a ): for i, t in enumerate(a ): # expand the latents if we are doing classifier free guidance lowercase__ : List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase__ : Dict = self.scheduler.scale_model_input(a , a ) # predict the noise residual lowercase__ : List[Any] = self.unet(a , a , encoder_hidden_states=a ).sample # perform classifier free guidance if do_classifier_free_guidance: lowercase__ : List[str] = noise_pred.chunk(2 ) lowercase__ : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowercase__ : int = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowercase__ : int = self.cond_fn( a , a , a , a , a , a , a , ) # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Optional[Any] = self.scheduler.step(a , a , a , **a ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase__ : int = 1 / 0.18_215 * latents lowercase__ : List[Any] = self.vae.decode(a ).sample lowercase__ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) lowercase__ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=a , nsfw_content_detected=a )
702
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCamelCase : Dict = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCamelCase : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' for attribute in key.split('.' ): lowercase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowercase__ : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowercase__ : Optional[int] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase__ : Optional[Any] = value elif weight_type == "weight_g": lowercase__ : Dict = value elif weight_type == "weight_v": lowercase__ : List[str] = value elif weight_type == "bias": lowercase__ : Optional[Any] = value else: lowercase__ : List[str] = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = [] lowercase__ : List[str] = fairseq_model.state_dict() lowercase__ : Union[str, Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowercase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase__ : List[Any] = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowercase__ : int = True if "*" in mapped_key: lowercase__ : Optional[int] = name.split(_lowerCAmelCase )[0].split('.' )[-2] lowercase__ : List[str] = mapped_key.replace('*' , _lowerCAmelCase ) if "weight_g" in name: lowercase__ : List[Any] = 'weight_g' elif "weight_v" in name: lowercase__ : int = 'weight_v' elif "bias" in name: lowercase__ : Dict = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase__ : Union[str, Any] = 'weight' else: lowercase__ : int = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : int = full_name.split('conv_layers.' )[-1] lowercase__ : int = name.split('.' ) lowercase__ : int = int(items[0] ) lowercase__ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase__ : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase__ : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowercase__ : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase__ : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : Tuple=True ): '''simple docstring''' if config_path is not None: lowercase__ : Any = UniSpeechSatConfig.from_pretrained(_lowerCAmelCase ) else: lowercase__ : Any = UniSpeechSatConfig() lowercase__ : Union[str, Any] = '' if is_finetuned: lowercase__ : Optional[Any] = UniSpeechSatForCTC(_lowerCAmelCase ) else: lowercase__ : List[Any] = UniSpeechSatForPreTraining(_lowerCAmelCase ) lowercase__ , lowercase__ , lowercase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ : Union[str, Any] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
645
0
import torch from torch import nn class UpperCamelCase ( nn.Module ): def __init__(self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=1 , __UpperCamelCase=False ) -> Optional[int]: super().__init__() UpperCamelCase_ : List[str] = n_token UpperCamelCase_ : List[Any] = d_embed UpperCamelCase_ : List[Any] = d_proj UpperCamelCase_ : Optional[Any] = cutoffs + [n_token] UpperCamelCase_ : Tuple = [0] + self.cutoffs UpperCamelCase_ : Union[str, Any] = div_val UpperCamelCase_ : str = self.cutoffs[0] UpperCamelCase_ : Tuple = len(self.cutoffs ) - 1 UpperCamelCase_ : int = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCamelCase_ : Union[str, Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCamelCase_ : Dict = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCamelCase_ : Tuple = nn.ModuleList() UpperCamelCase_ : List[Any] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCamelCase , __UpperCamelCase ) ) ) else: self.out_projs.append(__UpperCamelCase ) self.out_layers.append(nn.Linear(__UpperCamelCase , __UpperCamelCase ) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase_,UpperCamelCase_ : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase_ : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__UpperCamelCase , __UpperCamelCase ) ) ) self.out_layers.append(nn.Linear(__UpperCamelCase , r_idx - l_idx ) ) UpperCamelCase_ : Any = keep_order def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[int]: if proj is None: UpperCamelCase_ : Optional[int] = nn.functional.linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCamelCase_ : Optional[Any] = nn.functional.linear(__UpperCamelCase , proj.t().contiguous() ) UpperCamelCase_ : Optional[int] = nn.functional.linear(__UpperCamelCase , __UpperCamelCase , bias=__UpperCamelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def A_ (self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=False ) -> List[Any]: if labels is not None: # Shift so that tokens < n predict n UpperCamelCase_ : str = hidden[..., :-1, :].contiguous() UpperCamelCase_ : List[Any] = labels[..., 1:].contiguous() UpperCamelCase_ : Dict = hidden.view(-1 , hidden.size(-1 ) ) UpperCamelCase_ : Union[str, Any] = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: UpperCamelCase_ : Optional[int] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCamelCase_ : Union[str, Any] = self._compute_logit(__UpperCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCamelCase_ : int = labels != -100 UpperCamelCase_ : Optional[int] = torch.zeros_like(__UpperCamelCase , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase_ : int = ( -nn.functional.log_softmax(__UpperCamelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCamelCase_ : Optional[Any] = nn.functional.log_softmax(__UpperCamelCase , dim=-1 ) else: # construct weights and biases UpperCamelCase_,UpperCamelCase_ : Union[str, Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase_,UpperCamelCase_ : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase_ : List[Any] = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase_ : List[str] = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase_ : int = self.out_layers[i].weight UpperCamelCase_ : List[Any] = self.out_layers[i].bias if i == 0: UpperCamelCase_ : List[str] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase_ : int = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__UpperCamelCase ) biases.append(__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ : List[str] = weights[0], biases[0], self.out_projs[0] UpperCamelCase_ : Dict = self._compute_logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ : int = nn.functional.log_softmax(__UpperCamelCase , dim=1 ) if labels is None: UpperCamelCase_ : List[str] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCamelCase_ : Dict = torch.zeros_like(__UpperCamelCase , dtype=hidden.dtype , device=hidden.device ) UpperCamelCase_ : Any = 0 UpperCamelCase_ : int = [0] + self.cutoffs for i in range(len(__UpperCamelCase ) - 1 ): UpperCamelCase_,UpperCamelCase_ : str = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCamelCase_ : Optional[int] = (labels >= l_idx) & (labels < r_idx) UpperCamelCase_ : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCamelCase_ : Optional[Any] = labels.index_select(0 , __UpperCamelCase ) - l_idx UpperCamelCase_ : Optional[Any] = head_logprob.index_select(0 , __UpperCamelCase ) UpperCamelCase_ : Dict = hidden.index_select(0 , __UpperCamelCase ) else: UpperCamelCase_ : Union[str, Any] = hidden if i == 0: if labels is not None: UpperCamelCase_ : Union[str, Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase_ : Optional[Any] = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ : List[Any] = weights[i], biases[i], self.out_projs[i] UpperCamelCase_ : Optional[Any] = self._compute_logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ : Tuple = nn.functional.log_softmax(__UpperCamelCase , dim=1 ) UpperCamelCase_ : Optional[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCamelCase_ : Any = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCamelCase_ : Any = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCamelCase_ : Tuple = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , __UpperCamelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def A_ (self , __UpperCamelCase ) -> Tuple: if self.n_clusters == 0: UpperCamelCase_ : Optional[int] = self._compute_logit(__UpperCamelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__UpperCamelCase , dim=-1 ) else: # construct weights and biases UpperCamelCase_,UpperCamelCase_ : List[str] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCamelCase_,UpperCamelCase_ : str = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase_ : List[str] = self.out_layers[0].weight[l_idx:r_idx] UpperCamelCase_ : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: UpperCamelCase_ : Optional[int] = self.out_layers[i].weight UpperCamelCase_ : Union[str, Any] = self.out_layers[i].bias if i == 0: UpperCamelCase_ : List[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCamelCase_ : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__UpperCamelCase ) biases.append(__UpperCamelCase ) UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ : List[str] = weights[0], biases[0], self.out_projs[0] UpperCamelCase_ : List[str] = self._compute_logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ : Optional[int] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCamelCase_ : int = nn.functional.log_softmax(__UpperCamelCase , dim=1 ) UpperCamelCase_ : Optional[int] = [0] + self.cutoffs for i in range(len(__UpperCamelCase ) - 1 ): UpperCamelCase_,UpperCamelCase_ : str = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCamelCase_ : Optional[int] = head_logprob[:, : self.cutoffs[0]] else: UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ : Tuple = weights[i], biases[i], self.out_projs[i] UpperCamelCase_ : Any = self._compute_logit(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ : int = nn.functional.log_softmax(__UpperCamelCase , dim=1 ) UpperCamelCase_ : Union[str, Any] = head_logprob[:, -i] + tail_logprob_i UpperCamelCase_ : Union[str, Any] = logprob_i return out
635
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE : Dict = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] SCREAMING_SNAKE_CASE : int = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE : Any = {F'''funnel-transformer/{name}''': 512 for name in _model_names} SCREAMING_SNAKE_CASE : Tuple = {F'''funnel-transformer/{name}''': {"do_lower_case": True} for name in _model_names} class UpperCamelCase ( __a ): a__ :Dict = VOCAB_FILES_NAMES a__ :Dict = PRETRAINED_VOCAB_FILES_MAP a__ :Dict = PRETRAINED_INIT_CONFIGURATION a__ :str = FunnelTokenizer a__ :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ :int = 2 def __init__(self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase="<unk>" , __UpperCamelCase="<sep>" , __UpperCamelCase="<pad>" , __UpperCamelCase="<cls>" , __UpperCamelCase="<mask>" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase="##" , **__UpperCamelCase , ) -> List[Any]: super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , clean_text=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , wordpieces_prefix=__UpperCamelCase , **__UpperCamelCase , ) UpperCamelCase_ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCamelCase ) != tokenize_chinese_chars ): UpperCamelCase_ : List[Any] = getattr(__UpperCamelCase , normalizer_state.pop("""type""" ) ) UpperCamelCase_ : Union[str, Any] = do_lower_case UpperCamelCase_ : Tuple = strip_accents UpperCamelCase_ : Dict = tokenize_chinese_chars UpperCamelCase_ : Union[str, Any] = normalizer_class(**__UpperCamelCase ) UpperCamelCase_ : Dict = do_lower_case def A_ (self , __UpperCamelCase , __UpperCamelCase=None ) -> Dict: UpperCamelCase_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ (self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: UpperCamelCase_ : Optional[Any] = [self.sep_token_id] UpperCamelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ (self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: UpperCamelCase_ : int = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase )
635
1
"""simple docstring""" def __A ( a_ :int) -> List[Any]: __a : Dict = abs(snake_case__) __a : Optional[int] = 0 while n > 0: res += n % 10 n //= 10 return res def __A ( a_ :int) -> int: __a : str = abs(snake_case__) return n if n < 10 else n % 10 + sum_of_digits(n // 10) def __A ( a_ :int) -> Any: return sum(int(snake_case__) for c in str(abs(snake_case__))) def __A ( ) -> Any: from collections.abc import Callable from timeit import timeit def benchmark_a_function(a_ :Callable , a_ :int) -> None: __a : Union[str, Any] = F"""{func.__name__}({value})""" __a : int = timeit(F"""__main__.{call}""" , setup='''import __main__''') print(F"""{call:56} = {func(snake_case__)} -- {timing:.4f} seconds""") for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(snake_case__ , snake_case__) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
700
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A = logging.get_logger(__name__) A = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''detr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=3 , _UpperCAmelCase=100 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase="sine" , _UpperCAmelCase="resnet50" , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , **_UpperCAmelCase , ): if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __a : Any = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = backbone_config.get('''model_type''' ) __a : Tuple = CONFIG_MAPPING[backbone_model_type] __a : Union[str, Any] = config_class.from_dict(_UpperCAmelCase ) # set timm attributes to None __a , __a , __a : Union[str, Any] = None, None, None __a : Union[str, Any] = use_timm_backbone __a : Any = backbone_config __a : Tuple = num_channels __a : int = num_queries __a : str = d_model __a : Any = encoder_ffn_dim __a : int = encoder_layers __a : Optional[int] = encoder_attention_heads __a : Any = decoder_ffn_dim __a : str = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : List[Any] = dropout __a : Union[str, Any] = attention_dropout __a : int = activation_dropout __a : Dict = activation_function __a : str = init_std __a : int = init_xavier_std __a : Optional[Any] = encoder_layerdrop __a : Optional[int] = decoder_layerdrop __a : str = encoder_layers __a : List[str] = auxiliary_loss __a : Optional[Any] = position_embedding_type __a : Any = backbone __a : Tuple = use_pretrained_backbone __a : int = dilation # Hungarian matcher __a : str = class_cost __a : Optional[Any] = bbox_cost __a : Any = giou_cost # Loss coefficients __a : List[str] = mask_loss_coefficient __a : Dict = dice_loss_coefficient __a : str = bbox_loss_coefficient __a : str = giou_loss_coefficient __a : Any = eos_coefficient super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowerCamelCase ( self ): return self.encoder_attention_heads @property def _lowerCamelCase ( self ): return self.d_model @classmethod def _lowerCamelCase ( cls , _UpperCAmelCase , **_UpperCAmelCase ): return cls(backbone_config=_UpperCAmelCase , **_UpperCAmelCase ) def _lowerCamelCase ( self ): __a : Dict = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __a : Tuple = self.backbone_config.to_dict() __a : Dict = self.__class__.model_type return output class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowerCamelCase ( self ): return 1e-5 @property def _lowerCamelCase ( self ): return 12
101
0
"""simple docstring""" def a_ ( ): return 1 def a_ ( lowercase__ :Optional[Any] ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def a_ ( lowercase__ :int ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(a_ ) def a_ ( lowercase__ :Dict ): return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(a_ ) def a_ ( lowercase__ :List[str] ): return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(a_ ) def a_ ( lowercase__ :Optional[Any] ): return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(a_ ) def a_ ( lowercase__ :Dict ): return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(a_ ) def a_ ( lowercase__ :Tuple ): return 0 if x < 0 else two_pound(x - 200 ) + one_pound(a_ ) def a_ ( lowercase__ :List[Any] = 200 ): return two_pound(a_ ) if __name__ == "__main__": print(solution(int(input().strip())))
281
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _lowercase ( self ) -> int: '''simple docstring''' lowerCAmelCase_ = self.dummy_uncond_unet lowerCAmelCase_ = ScoreSdeVeScheduler() lowerCAmelCase_ = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowercase_ ).images lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowercase_ , return_dict=lowercase_ )[ 0 ] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'google/ncsnpp-church-256' lowerCAmelCase_ = UNetaDModel.from_pretrained(lowercase_ ) lowerCAmelCase_ = ScoreSdeVeScheduler.from_pretrained(lowercase_ ) lowerCAmelCase_ = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_ ) sde_ve.to(lowercase_ ) sde_ve.set_progress_bar_config(disable=lowercase_ ) lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = sde_ve(num_inference_steps=1_0 , output_type='numpy' , generator=lowercase_ ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) lowerCAmelCase_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
318
0
from __future__ import annotations import requests A = set( 'approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports'.split() ) def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = "new" , lowerCamelCase__ = None ) -> dict: A = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(lowerCamelCase__ ) - valid_terms ) ): A = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(lowerCamelCase__ ) A = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'User-agent': 'A random string'} , ) if response.status_code == 429: raise requests.HTTPError A = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(lowerCamelCase__ )} A = {} for id_ in range(lowerCamelCase__ ): A = { item: data['data']['children'][id_]['data'][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('learnpython', wanted_data=['title', 'url', 'selftext']))
711
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging A = logging.get_logger(__name__) def lowerCAmelCase__ ( lowerCamelCase__=None , lowerCamelCase__=None ) -> Dict: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class UpperCAmelCase__ : lowerCAmelCase_ : List[str] = list_field( default=[] ,metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } ,) lowerCAmelCase_ : List[int] = list_field( default=[8] ,metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) lowerCAmelCase_ : List[int] = list_field( default=[8, 32, 1_28, 5_12] ,metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} ,) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} ,) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} ,) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Use FP16 to accelerate inference."""} ) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Benchmark training of model"""} ) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Verbose memory tracing"""} ) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} ,) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } ,) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Trace memory line by line"""} ) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Save result to a CSV file"""} ) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Save all print statements in a log file"""} ) lowerCAmelCase_ : bool = field(default=UpperCamelCase ,metadata={"""help""": """Whether to print environment information"""} ) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } ,) lowerCAmelCase_ : str = field( default=f"""inference_time_{round(time() )}.csv""" ,metadata={"""help""": """CSV filename used if saving time results to csv."""} ,) lowerCAmelCase_ : str = field( default=f"""inference_memory_{round(time() )}.csv""" ,metadata={"""help""": """CSV filename used if saving memory results to csv."""} ,) lowerCAmelCase_ : str = field( default=f"""train_time_{round(time() )}.csv""" ,metadata={"""help""": """CSV filename used if saving time results to csv for training."""} ,) lowerCAmelCase_ : str = field( default=f"""train_memory_{round(time() )}.csv""" ,metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} ,) lowerCAmelCase_ : str = field( default=f"""env_info_{round(time() )}.csv""" ,metadata={"""help""": """CSV filename used if saving environment information."""} ,) lowerCAmelCase_ : str = field( default=f"""log_{round(time() )}.csv""" ,metadata={"""help""": """Log filename used if print statements are saved in log."""} ,) lowerCAmelCase_ : int = field(default=3 ,metadata={"""help""": """Times an experiment will be run."""} ) lowerCAmelCase_ : bool = field( default=UpperCamelCase ,metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } ,) def A_ ( self : Dict ) -> Optional[int]: '''simple docstring''' warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , snake_case , ) def A_ ( self : str ) -> List[Any]: '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def A_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def A_ ( self : Tuple ) -> List[str]: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
109
0
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''multiplicative_persistence() only accepts integral values''') if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 1 for i in range(0 , len(__A)): total *= numbers[i] _a = str(__A) steps += 1 return steps def lowerCAmelCase (__A): """simple docstring""" if not isinstance(__A , __A): raise ValueError('''additive_persistence() only accepts integral values''') if num < 0: raise ValueError('''additive_persistence() does not accept negative values''') _a = 0 _a = str(__A) while len(__A) != 1: _a = [int(__A) for i in num_string] _a = 0 for i in range(0 , len(__A)): total += numbers[i] _a = str(__A) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
11
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = {"""vocab_file""": """sentencepiece.model"""} _a = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } _a = { """google/rembert""": 256, } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __a , __a=False , __a=True , __a=True , __a="[CLS]" , __a="[SEP]" , __a="[UNK]" , __a="[SEP]" , __a="[PAD]" , __a="[CLS]" , __a="[MASK]" , **__a , ) -> Optional[int]: '''simple docstring''' super().__init__( do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , ) _UpperCamelCase = do_lower_case _UpperCamelCase = remove_space _UpperCamelCase = keep_accents _UpperCamelCase = vocab_file _UpperCamelCase = spm.SentencePieceProcessor() self.sp_model.Load(__a) @property def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return len(self.sp_model) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = {self.convert_ids_to_tokens(__a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self , __a) -> str: '''simple docstring''' _UpperCamelCase = d _UpperCamelCase = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def UpperCAmelCase ( self , __a , __a=False) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.sp_model.EncodeAsPieces(__a) return pieces def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' return self.sp_model.PieceToId(__a) def UpperCAmelCase ( self , __a) -> Dict: '''simple docstring''' return self.sp_model.IdToPiece(__a) def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = self.sp_model.decode_pieces(__a) return out_string def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self , __a , __a = None , __a = False) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__a)) + [1] + ([0] * len(__a)) + [1] return [1] + ([0] * len(__a)) + [1] def UpperCAmelCase ( self , __a , __a = None) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def UpperCAmelCase ( self , __a , __a = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__a): logger.error('''Vocabulary path ({}) should be a directory'''.format(__a)) return _UpperCamelCase = os.path.join( __a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__a): copyfile(self.vocab_file , __a) return (out_vocab_file,)
78
"""simple docstring""" def lowerCamelCase__ ( ) -> list[list[int]]: """simple docstring""" return [list(range(10_00 - i, -10_00 - i, -1 ) ) for i in range(10_00 )] _a = generate_large_matrix() _a = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCamelCase__ ( __snake_case ) -> None: """simple docstring""" assert all(row == sorted(__snake_case, reverse=__snake_case ) for row in grid ) assert all(list(__snake_case ) == sorted(__snake_case, reverse=__snake_case ) for col in zip(*__snake_case ) ) def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = len(__snake_case ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _UpperCamelCase = (left + right) // 2 _UpperCamelCase = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _UpperCamelCase = mid + 1 else: _UpperCamelCase = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__snake_case ) def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = len(grid[0] ) for i in range(len(__snake_case ) ): _UpperCamelCase = find_negative_index(grid[i][:bound] ) total += bound return (len(__snake_case ) * len(grid[0] )) - total def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" _UpperCamelCase = 0 for row in grid: for i, number in enumerate(__snake_case ): if number < 0: total += len(__snake_case ) - i break return total def lowerCamelCase__ ( ) -> None: """simple docstring""" from timeit import timeit print('''Running benchmarks''' ) _UpperCamelCase = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _UpperCamelCase = timeit(F'''{func}(grid=grid)''', setup=__snake_case, number=5_00 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
78
1
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase (_lowerCAmelCase ): return np.maximum(0 , _lowerCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
465
"""simple docstring""" def __magic_name__ ( UpperCamelCase : int , UpperCamelCase : list[int] , UpperCamelCase : int ) -> int: def count_of_possible_combinations(UpperCamelCase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(UpperCamelCase ) def __magic_name__ ( UpperCamelCase : int , UpperCamelCase : list[int] , UpperCamelCase : int ) -> int: def count_of_possible_combinations_with_dp_array( UpperCamelCase : int , UpperCamelCase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] a__ = sum( count_of_possible_combinations_with_dp_array(target - item , UpperCamelCase ) for item in array ) a__ = answer return answer a__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(UpperCamelCase , UpperCamelCase ) def __magic_name__ ( UpperCamelCase : int , UpperCamelCase : list[int] , UpperCamelCase : int ) -> int: a__ = [0] * (target + 1) a__ = 1 for i in range(1 , target + 1 ): for j in range(UpperCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() a : Optional[Any] = 3 a : List[str] = 5 a : Dict = [1, 2, 5] print(combination_sum_iv(n, array, target))
273
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ ={ """configuration_x_clip""": [ """XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XCLIPConfig""", """XCLIPTextConfig""", """XCLIPVisionConfig""", ], """processing_x_clip""": ["""XCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ =[ """XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """XCLIPModel""", """XCLIPPreTrainedModel""", """XCLIPTextModel""", """XCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys UpperCAmelCase_ =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
33
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __UpperCamelCase ( __UpperCAmelCase ): '''simple docstring''' def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = "arrow" , **UpperCAmelCase_ , ): super().__init__( split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCAmelCase = load_from_cache_file lowerCAmelCase = file_format lowerCAmelCase = Spark( df=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , working_dir=UpperCAmelCase_ , **UpperCAmelCase_ , ) def __snake_case ( self ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) lowerCAmelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCAmelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
33
1
import math import unittest def UpperCamelCase__( UpperCamelCase__ : Tuple )->bool: assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def UpperCamelCase ( self ): with self.assertRaises(__lowerCamelCase ): is_prime(-19 ) self.assertFalse( is_prime(0 ),'''Zero doesn\'t have any positive factors, primes must have exactly two.''',) self.assertFalse( is_prime(1 ),'''One only has 1 positive factor, primes must have exactly two.''',) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
190
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __lowercase ( unittest.TestCase ): def __a ( self : Any ) -> Tuple: '''simple docstring''' lowercase = [[1, 2, 4], [1, 2, 3, 4]] lowercase = DisjunctiveConstraint(__lowerCamelCase ) self.assertTrue(isinstance(dc.token_ids , __lowerCamelCase ) ) with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __a ( self : List[str] ) -> Dict: '''simple docstring''' lowercase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowerCamelCase ): DisjunctiveConstraint(__lowerCamelCase ) # fails here def __a ( self : Optional[Any] ) -> Any: '''simple docstring''' lowercase = [[1, 2, 3], [1, 2, 4]] lowercase = DisjunctiveConstraint(__lowerCamelCase ) lowercase ,lowercase ,lowercase = dc.update(1 ) lowercase = stepped is True and completed is False and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase ,lowercase ,lowercase = dc.update(2 ) lowercase = stepped is True and completed is False and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase ,lowercase ,lowercase = dc.update(3 ) lowercase = stepped is True and completed is True and reset is False self.assertTrue(__lowerCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __a ( self : Optional[int] ) -> Dict: '''simple docstring''' lowercase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase = DisjunctiveConstraint(__lowerCamelCase ) lowercase ,lowercase ,lowercase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase ,lowercase ,lowercase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase ,lowercase ,lowercase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase ,lowercase ,lowercase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase ,lowercase ,lowercase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase ,lowercase ,lowercase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase ,lowercase ,lowercase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
604
0
"""simple docstring""" def lowercase ( _snake_case : int ) ->bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
229
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Any = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCamelCase ( A__ ): __A : Dict = ["""image_processor""", """tokenizer"""] __A : List[str] = """BridgeTowerImageProcessor""" __A : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _UpperCamelCase , _UpperCamelCase ): super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 0 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , **_UpperCamelCase , ): _UpperCAmelCase = self.tokenizer( text=_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , stride=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_token_type_ids=_UpperCamelCase , return_attention_mask=_UpperCamelCase , return_overflowing_tokens=_UpperCamelCase , return_special_tokens_mask=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , return_length=_UpperCamelCase , verbose=_UpperCamelCase , return_tensors=_UpperCamelCase , **_UpperCamelCase , ) # add pixel_values + pixel_mask _UpperCAmelCase = self.image_processor( _UpperCamelCase , return_tensors=_UpperCamelCase , do_normalize=_UpperCamelCase , do_center_crop=_UpperCamelCase , **_UpperCamelCase ) encoding.update(_UpperCamelCase ) return encoding def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def UpperCamelCase( self , *_UpperCamelCase , **_UpperCamelCase ): return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase ) @property def UpperCamelCase( self ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
32
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _A( lowerCAmelCase ): A__ : int = fname.split(os.path.sep )[-1] return re.search(r"""^(.*)_\d+\.jpg$""" , lowerCAmelCase ).groups()[0] class __UpperCAmelCase (__A ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=None , snake_case_=None ): '''simple docstring''' A__ : Dict = file_names A__ : str = image_transform A__ : Dict = label_to_id def __len__( self ): '''simple docstring''' return len(self.file_names ) def __getitem__( self , snake_case_ ): '''simple docstring''' A__ : Optional[Any] = self.file_names[idx] A__ : Optional[Any] = PIL.Image.open(snake_case_ ) A__ : str = raw_image.convert("""RGB""" ) if self.image_transform is not None: A__ : Optional[int] = self.image_transform(snake_case_ ) A__ : Dict = extract_label(snake_case_ ) if self.label_to_id is not None: A__ : List[Any] = self.label_to_id[label] return {"image": image, "label": label} def _A( lowerCAmelCase , lowerCAmelCase ): # Initialize accelerator if args.with_tracking: A__ : List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: A__ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : List[Any] = config["""lr"""] A__ : Any = int(config["""num_epochs"""] ) A__ : List[Any] = int(config["""seed"""] ) A__ : Tuple = int(config["""batch_size"""] ) A__ : List[str] = config["""image_size"""] if not isinstance(lowerCAmelCase , (list, tuple) ): A__ : List[str] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , """isdigit""" ): if args.checkpointing_steps == "epoch": A__ : List[Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): A__ : int = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: A__ : Any = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: A__ : int = os.path.split(lowerCAmelCase )[-1].split(""".""" )[0] accelerator.init_trackers(lowerCAmelCase , lowerCAmelCase ) # Grab all the image filenames A__ : Union[str, Any] = [os.path.join(args.data_dir , lowerCAmelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith(""".jpg""" )] # Build the label correspondences A__ : int = [extract_label(lowerCAmelCase ) for fname in file_names] A__ : Dict = list(set(lowerCAmelCase ) ) id_to_label.sort() A__ : int = {lbl: i for i, lbl in enumerate(lowerCAmelCase )} # Set the seed before splitting the data. np.random.seed(lowerCAmelCase ) torch.manual_seed(lowerCAmelCase ) torch.cuda.manual_seed_all(lowerCAmelCase ) # Split our filenames between train and validation A__ : str = np.random.permutation(len(lowerCAmelCase ) ) A__ : Optional[int] = int(0.8 * len(lowerCAmelCase ) ) A__ : Union[str, Any] = random_perm[:cut] A__ : Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop A__ : Union[str, Any] = Compose([RandomResizedCrop(lowerCAmelCase , scale=(0.5, 1.0) ), ToTensor()] ) A__ : Dict = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowerCAmelCase , label_to_id=lowerCAmelCase ) # For evaluation, we use a deterministic Resize A__ : Optional[int] = Compose([Resize(lowerCAmelCase ), ToTensor()] ) A__ : Optional[Any] = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowerCAmelCase , label_to_id=lowerCAmelCase ) # Instantiate dataloaders. A__ : List[Any] = DataLoader(lowerCAmelCase , shuffle=lowerCAmelCase , batch_size=lowerCAmelCase , num_workers=4 ) A__ : str = DataLoader(lowerCAmelCase , shuffle=lowerCAmelCase , batch_size=lowerCAmelCase , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Dict = create_model("""resnet50d""" , pretrained=lowerCAmelCase , num_classes=len(lowerCAmelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : Tuple = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): A__ : Any = False for param in model.get_classifier().parameters(): A__ : Dict = True # We normalize the batches of images to be a bit faster. A__ : List[Any] = torch.tensor(model.default_cfg["""mean"""] )[None, :, None, None].to(accelerator.device ) A__ : int = torch.tensor(model.default_cfg["""std"""] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer A__ : str = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler A__ : Optional[int] = OneCycleLR(optimizer=lowerCAmelCase , max_lr=lowerCAmelCase , epochs=lowerCAmelCase , steps_per_epoch=len(lowerCAmelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over A__ : str = 0 # We also need to keep track of the starting epoch so files are named properly A__ : Union[str, Any] = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) A__ : Dict = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint A__ : Tuple = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) A__ : Optional[Any] = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` A__ : Optional[Any] = os.path.splitext(lowerCAmelCase )[0] if "epoch" in training_difference: A__ : Optional[Any] = int(training_difference.replace("""epoch_""" , """""" ) ) + 1 A__ : int = None else: A__ : Optional[Any] = int(training_difference.replace("""step_""" , """""" ) ) A__ : Union[str, Any] = resume_step // len(lowerCAmelCase ) resume_step -= starting_epoch * len(lowerCAmelCase ) # Now we train the model for epoch in range(lowerCAmelCase , lowerCAmelCase ): model.train() if args.with_tracking: A__ : List[Any] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step A__ : int = accelerator.skip_first_batches(lowerCAmelCase , lowerCAmelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader A__ : Optional[int] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. A__ : Union[str, Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} A__ : Any = (batch["""image"""] - mean) / std A__ : Tuple = model(lowerCAmelCase ) A__ : int = torch.nn.functional.cross_entropy(lowerCAmelCase , batch["""label"""] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowerCAmelCase , lowerCAmelCase ): A__ : Union[str, Any] = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: A__ : List[str] = os.path.join(args.output_dir , lowerCAmelCase ) accelerator.save_state(lowerCAmelCase ) model.eval() A__ : Any = 0 A__ : Tuple = 0 for step, batch in enumerate(lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. A__ : List[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} A__ : Any = (batch["""image"""] - mean) / std with torch.no_grad(): A__ : Optional[int] = model(lowerCAmelCase ) A__ : Tuple = outputs.argmax(dim=-1 ) A__ , A__ : Tuple = accelerator.gather_for_metrics((predictions, batch["""label"""]) ) A__ : int = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() A__ : List[Any] = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { """accuracy""": 100 * eval_metric, """train_loss""": total_loss.item() / len(lowerCAmelCase ), """epoch""": epoch, } , step=lowerCAmelCase , ) if checkpointing_steps == "epoch": A__ : Any = F'''epoch_{epoch}''' if args.output_dir is not None: A__ : Any = os.path.join(args.output_dir , lowerCAmelCase ) accelerator.save_state(lowerCAmelCase ) if args.with_tracking: accelerator.end_training() def _A( ): A__ : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument("""--data_dir""" , required=lowerCAmelCase , help="""The data folder on disk.""" ) parser.add_argument("""--fp16""" , action="""store_true""" , help="""If passed, will use FP16 training.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase , default=lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--checkpointing_steps""" , type=lowerCAmelCase , default=lowerCAmelCase , help="""Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.""" , ) parser.add_argument( """--output_dir""" , type=lowerCAmelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowerCAmelCase , default=lowerCAmelCase , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=lowerCAmelCase , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) A__ : Optional[Any] = parser.parse_args() A__ : Any = {"""lr""": 3E-2, """num_epochs""": 3, """seed""": 42, """batch_size""": 64, """image_size""": 224} training_function(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": main()
363
0
from __future__ import annotations from collections import namedtuple def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): _a : Optional[Any] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
249
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self : Any , __snake_case : int , __snake_case : Optional[Any]=13 , __snake_case : int=7 , __snake_case : Dict=True , __snake_case : str=True , __snake_case : List[str]=True , __snake_case : int=True , __snake_case : str=99 , __snake_case : Dict=24 , __snake_case : int=2 , __snake_case : Dict=6 , __snake_case : str=37 , __snake_case : str="gelu" , __snake_case : List[str]=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Optional[int]=512 , __snake_case : Any=16 , __snake_case : Optional[int]=2 , __snake_case : List[Any]=0.02 , __snake_case : str=3 , __snake_case : List[Any]=None , __snake_case : Any=1000 , ) -> str: _a : Dict = parent _a : Tuple = batch_size _a : Optional[int] = seq_length _a : Optional[int] = is_training _a : Dict = use_input_mask _a : Optional[Any] = use_token_type_ids _a : List[Any] = use_labels _a : List[str] = vocab_size _a : int = hidden_size _a : List[str] = num_hidden_layers _a : Optional[Any] = num_attention_heads _a : Dict = intermediate_size _a : str = hidden_act _a : str = hidden_dropout_prob _a : Union[str, Any] = attention_probs_dropout_prob _a : Tuple = max_position_embeddings _a : List[str] = type_vocab_size _a : List[Any] = type_sequence_label_size _a : Optional[int] = initializer_range _a : str = num_labels _a : int = scope _a : Tuple = range_bbox def snake_case_ ( self : Any ) -> Any: _a : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _a : Any = bbox[i, j, 3] _a : Any = bbox[i, j, 1] _a : Optional[int] = t if bbox[i, j, 2] < bbox[i, j, 0]: _a : int = bbox[i, j, 2] _a : str = bbox[i, j, 0] _a : List[Any] = t _a : Any = None if self.use_input_mask: _a : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _a : Optional[Any] = None if self.use_token_type_ids: _a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Any = None _a : Union[str, Any] = None if self.use_labels: _a : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ ( self : str ) -> List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def snake_case_ ( self : int , __snake_case : List[str] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Any , __snake_case : int , ) -> Any: _a : Union[str, Any] = LiltModel(config=__snake_case ) model.to(__snake_case ) model.eval() _a : Union[str, Any] = model(__snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) _a : List[Any] = model(__snake_case , bbox=__snake_case , token_type_ids=__snake_case ) _a : List[Any] = model(__snake_case , bbox=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self : Dict , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : int , ) -> Tuple: _a : List[str] = self.num_labels _a : Optional[Any] = LiltForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() _a : Optional[Any] = model( __snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : List[str] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Optional[int] , ) -> Optional[int]: _a : List[str] = LiltForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() _a : int = model( __snake_case , bbox=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : Any ) -> Optional[int]: _a : List[Any] = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Optional[Any] = config_and_inputs _a : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCAmelCase : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase : Optional[Any] = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase : Any = False UpperCAmelCase : Optional[Any] = False def snake_case_ ( self : Optional[int] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Dict , __snake_case : Optional[int] ) -> List[str]: return True def snake_case_ ( self : int ) -> Dict: _a : Union[str, Any] = LiltModelTester(self ) _a : List[str] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def snake_case_ ( self : Dict ) -> Union[str, Any]: self.config_tester.run_common_tests() def snake_case_ ( self : str ) -> Tuple: _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case_ ( self : str ) -> str: _a : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a : Any = type self.model_tester.create_and_check_model(*__snake_case ) def snake_case_ ( self : Optional[Any] ) -> List[Any]: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) def snake_case_ ( self : List[Any] ) -> List[Any]: _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) @slow def snake_case_ ( self : Dict ) -> Optional[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : List[str] = LiltModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch @slow class lowerCamelCase ( unittest.TestCase ): def snake_case_ ( self : Optional[Any] ) -> str: _a : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__snake_case ) _a : List[str] = torch.tensor([[1, 2]] , device=__snake_case ) _a : List[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__snake_case ) # forward pass with torch.no_grad(): _a : List[Any] = model(input_ids=__snake_case , bbox=__snake_case ) _a : Optional[Any] = torch.Size([1, 2, 768] ) _a : Optional[Any] = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__snake_case , ) self.assertTrue(outputs.last_hidden_state.shape , __snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __snake_case , atol=1E-3 ) )
249
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { 'salesforce/blip2-opt-2.7b': 'https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json', } class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Optional[int] = 'blip_2_vision_model' def __init__( self , _UpperCamelCase=1408 , _UpperCamelCase=6144 , _UpperCamelCase=39 , _UpperCamelCase=16 , _UpperCamelCase=224 , _UpperCamelCase=14 , _UpperCamelCase="gelu" , _UpperCamelCase=0.0_0_0_0_1 , _UpperCamelCase=0.0 , _UpperCamelCase=1E-1_0 , _UpperCamelCase=True , **_UpperCamelCase , ): """simple docstring""" super().__init__(**_UpperCamelCase ) _lowercase : Optional[int] = hidden_size _lowercase : str = intermediate_size _lowercase : Any = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Union[str, Any] = patch_size _lowercase : Dict = image_size _lowercase : Any = initializer_range _lowercase : str = attention_dropout _lowercase : Union[str, Any] = layer_norm_eps _lowercase : str = hidden_act _lowercase : Optional[int] = qkv_bias @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(_UpperCamelCase ) _lowercase , _lowercase : List[str] = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": _lowercase : List[str] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : Any = 'blip_2_qformer' def __init__( self , _UpperCamelCase=30522 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=3072 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=0.0_2 , _UpperCamelCase=1E-1_2 , _UpperCamelCase=0 , _UpperCamelCase="absolute" , _UpperCamelCase=2 , _UpperCamelCase=1408 , **_UpperCamelCase , ): """simple docstring""" super().__init__(pad_token_id=_UpperCamelCase , **_UpperCamelCase ) _lowercase : List[Any] = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Tuple = hidden_act _lowercase : Tuple = intermediate_size _lowercase : int = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Optional[Any] = max_position_embeddings _lowercase : str = initializer_range _lowercase : Any = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Union[str, Any] = encoder_hidden_size @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , **_UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(_UpperCamelCase ) _lowercase , _lowercase : Optional[int] = cls.get_config_dict(_UpperCamelCase , **_UpperCamelCase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type" ) == "blip-2": _lowercase : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCamelCase , **_UpperCamelCase ) class a__ ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : List[Any] = 'blip-2' _SCREAMING_SNAKE_CASE : Optional[Any] = True def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=32 , **_UpperCamelCase ): """simple docstring""" super().__init__(**_UpperCamelCase ) if vision_config is None: _lowercase : str = {} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values." ) if qformer_config is None: _lowercase : Optional[int] = {} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values." ) if text_config is None: _lowercase : List[Any] = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) _lowercase : Any = BlipaVisionConfig(**_UpperCamelCase ) _lowercase : Any = BlipaQFormerConfig(**_UpperCamelCase ) _lowercase : Optional[int] = text_config["model_type"] if "model_type" in text_config else "opt" _lowercase : str = CONFIG_MAPPING[text_model_type](**_UpperCamelCase ) _lowercase : Union[str, Any] = self.text_config.tie_word_embeddings _lowercase : Any = self.text_config.is_encoder_decoder _lowercase : Optional[int] = num_query_tokens _lowercase : int = self.vision_config.hidden_size _lowercase : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Optional[int] = 1.0 _lowercase : List[Any] = 0.0_2 @classmethod def _lowerCamelCase ( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase , ): """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCamelCase , ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Dict = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : List[Any] = self.__class__.model_type return output
245
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _snake_case = datasets.utils.logging.get_logger(__name__) _snake_case = ['names', 'prefix'] _snake_case = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _snake_case = ['encoding_errors', 'on_bad_lines'] _snake_case = ['date_format'] @dataclass class a__ ( datasets.BuilderConfig ): _SCREAMING_SNAKE_CASE : str = "," _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[Union[int, List[int], str]] = "infer" _SCREAMING_SNAKE_CASE : Optional[List[str]] = None _SCREAMING_SNAKE_CASE : Optional[List[str]] = None _SCREAMING_SNAKE_CASE : Optional[Union[int, str, List[int], List[str]]] = None _SCREAMING_SNAKE_CASE : Optional[Union[List[int], List[str]]] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : Optional[Literal["c", "python", "pyarrow"]] = None _SCREAMING_SNAKE_CASE : Dict[Union[int, str], Callable[[Any], Any]] = None _SCREAMING_SNAKE_CASE : Optional[list] = None _SCREAMING_SNAKE_CASE : Optional[list] = None _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : Optional[Union[int, List[int]]] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[Union[str, List[str]]] = None _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : str = "." _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : str = '"' _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : int = 1_0000 _SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None _SCREAMING_SNAKE_CASE : Optional[str] = "strict" _SCREAMING_SNAKE_CASE : Literal["error", "warn", "skip"] = "error" _SCREAMING_SNAKE_CASE : Optional[str] = None def _lowerCamelCase ( self ): """simple docstring""" if self.delimiter is not None: _lowercase : Optional[Any] = self.delimiter if self.column_names is not None: _lowercase : str = self.column_names @property def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Any = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _UpperCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class a__ ( datasets.ArrowBasedBuilder ): _SCREAMING_SNAKE_CASE : int = CsvConfig def _lowerCamelCase ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _lowercase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCamelCase , (str, list, tuple) ): _lowercase : List[Any] = data_files if isinstance(_UpperCamelCase , _UpperCamelCase ): _lowercase : Union[str, Any] = [files] _lowercase : int = [dl_manager.iter_files(_UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _lowercase : List[Any] = [] for split_name, files in data_files.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): _lowercase : Tuple = [files] _lowercase : Tuple = [dl_manager.iter_files(_UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCamelCase , gen_kwargs={"files": files} ) ) return splits def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if self.config.features is not None: _lowercase : Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(_UpperCamelCase ) for feature in self.config.features.values() ): # cheaper cast _lowercase : int = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_UpperCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _lowercase : Optional[int] = table_cast(_UpperCamelCase , _UpperCamelCase ) return pa_table def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _lowercase : Any = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_UpperCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCamelCase ) ): _lowercase : List[str] = pd.read_csv(_UpperCamelCase , iterator=_UpperCamelCase , dtype=_UpperCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_UpperCamelCase ): _lowercase : Optional[Any] = pa.Table.from_pandas(_UpperCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_UpperCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_UpperCamelCase )}: {e}''' ) raise
245
1
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = np.inf def set_batch_size(A__ : List[Any] ) -> None: nonlocal batch_size if isinstance(__UpperCamelCase , __UpperCamelCase ): __lowerCamelCase = min(__UpperCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): __lowerCamelCase = min(__UpperCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__UpperCamelCase , __UpperCamelCase ) and feature.dtype == "binary": __lowerCamelCase = min(__UpperCamelCase , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__UpperCamelCase , __UpperCamelCase ) return None if batch_size is np.inf else batch_size class lowerCamelCase__( __lowerCamelCase): def __init__( self: str , UpperCamelCase_: Dict , UpperCamelCase_: int = None , UpperCamelCase_: Union[str, Any] = None , UpperCamelCase_: Any = None , UpperCamelCase_: str = False , UpperCamelCase_: Union[str, Any] = False , UpperCamelCase_: Tuple = None , **UpperCamelCase_: Tuple , ): super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCamelCase = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} __lowerCamelCase = _PACKAGED_DATASETS_MODULES["""parquet"""][1] __lowerCamelCase = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def lowerCAmelCase__ ( self: Any ): if self.streaming: __lowerCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) __lowerCamelCase = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase__: def __init__( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any] = None , **UpperCamelCase_: str , ): __lowerCamelCase = dataset __lowerCamelCase = path_or_buf __lowerCamelCase = batch_size or get_writer_batch_size(dataset.features ) __lowerCamelCase = parquet_writer_kwargs def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , """wb+""" ) as buffer: __lowerCamelCase = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: __lowerCamelCase = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def lowerCAmelCase__ ( self: Dict , UpperCamelCase_: str , UpperCamelCase_: Dict , **UpperCamelCase_: int ): __lowerCamelCase = 0 __lowerCamelCase = parquet_writer_kwargs.pop("""path_or_buf""" , _SCREAMING_SNAKE_CASE ) __lowerCamelCase = self.dataset.features.arrow_schema __lowerCamelCase = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ): __lowerCamelCase = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
713
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = [] __lowerCamelCase = [] for i in range(self.num_layers ): __lowerCamelCase = self.in_channels if i == 0 else self.out_channels __lowerCamelCase = FlaxResnetBlockaD( in_channels=UpperCamelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase_ ) __lowerCamelCase = resnets __lowerCamelCase = attentions if self.add_downsample: __lowerCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int=True ): __lowerCamelCase = () for resnet, attn in zip(self.resnets , self.attentions ): __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) __lowerCamelCase = attn(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: __lowerCamelCase = self.downsamplers_a(UpperCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = [] for i in range(self.num_layers ): __lowerCamelCase = self.in_channels if i == 0 else self.out_channels __lowerCamelCase = FlaxResnetBlockaD( in_channels=UpperCamelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = resnets if self.add_downsample: __lowerCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: str , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: int=True ): __lowerCamelCase = () for resnet in self.resnets: __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: __lowerCamelCase = self.downsamplers_a(UpperCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = [] __lowerCamelCase = [] for i in range(self.num_layers ): __lowerCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCamelCase = self.prev_output_channel if i == 0 else self.out_channels __lowerCamelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase_ ) __lowerCamelCase = resnets __lowerCamelCase = attentions if self.add_upsample: __lowerCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: List[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __lowerCamelCase = res_hidden_states_tuple[-1] __lowerCamelCase = res_hidden_states_tuple[:-1] __lowerCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) __lowerCamelCase = attn(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) if self.add_upsample: __lowerCamelCase = self.upsamplers_a(UpperCamelCase_ ) return hidden_states class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = [] for i in range(self.num_layers ): __lowerCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCamelCase = self.prev_output_channel if i == 0 else self.out_channels __lowerCamelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = resnets if self.add_upsample: __lowerCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: List[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any]=True ): for resnet in self.resnets: # pop res hidden states __lowerCamelCase = res_hidden_states_tuple[-1] __lowerCamelCase = res_hidden_states_tuple[:-1] __lowerCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) if self.add_upsample: __lowerCamelCase = self.upsamplers_a(UpperCamelCase_ ) return hidden_states class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: int ): # there is always at least one resnet __lowerCamelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __lowerCamelCase = [] for _ in range(self.num_layers ): __lowerCamelCase = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase_ ) __lowerCamelCase = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = resnets __lowerCamelCase = attentions def __call__( self: int , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int]=True ): __lowerCamelCase = self.resnets[0](UpperCamelCase_ , UpperCamelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __lowerCamelCase = attn(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) return hidden_states
80
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A__: str = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE_): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self: Tuple , __lowerCamelCase: bool = True , __lowerCamelCase: Dict[str, int] = None , __lowerCamelCase: float = None , __lowerCamelCase: PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase: bool = True , __lowerCamelCase: Union[int, float] = 1 / 255 , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[float, List[float]]] = None , __lowerCamelCase: Optional[Union[float, List[float]]] = None , **__lowerCamelCase: Optional[int] , ): '''simple docstring''' super().__init__(**_a ) UpperCamelCase__: Any = size if size is not None else {'shortest_edge': 384} UpperCamelCase__: Union[str, Any] = get_size_dict(_a , default_to_square=_a ) UpperCamelCase__: Optional[int] = do_resize UpperCamelCase__: Optional[Any] = size # Default value set here for backwards compatibility where the value in config is None UpperCamelCase__: Union[str, Any] = crop_pct if crop_pct is not None else 224 / 256 UpperCamelCase__: Tuple = resample UpperCamelCase__: str = do_rescale UpperCamelCase__: Optional[Any] = rescale_factor UpperCamelCase__: Optional[Any] = do_normalize UpperCamelCase__: Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__: int = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase_ ( self: int , __lowerCamelCase: np.ndarray , __lowerCamelCase: Dict[str, int] , __lowerCamelCase: float , __lowerCamelCase: PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: List[Any] , ): '''simple docstring''' UpperCamelCase__: Optional[int] = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F"Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}" ) UpperCamelCase__: Any = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCamelCase__: List[str] = int(shortest_edge / crop_pct ) UpperCamelCase__: Optional[int] = get_resize_output_image_size(_a , size=_a , default_to_square=_a ) UpperCamelCase__: Any = resize(image=_a , size=_a , resample=_a , data_format=_a , **_a ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_a , size=(shortest_edge, shortest_edge) , data_format=_a , **_a ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _a , size=(shortest_edge, shortest_edge) , resample=_a , data_format=_a , **_a ) def UpperCAmelCase_ ( self: Optional[Any] , __lowerCamelCase: np.ndarray , __lowerCamelCase: Union[int, float] , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: List[str] , ): '''simple docstring''' return rescale(_a , scale=_a , data_format=_a , **_a ) def UpperCAmelCase_ ( self: Any , __lowerCamelCase: np.ndarray , __lowerCamelCase: Union[float, List[float]] , __lowerCamelCase: Union[float, List[float]] , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: int , ): '''simple docstring''' return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: ImageInput , __lowerCamelCase: bool = None , __lowerCamelCase: Dict[str, int] = None , __lowerCamelCase: float = None , __lowerCamelCase: PILImageResampling = None , __lowerCamelCase: bool = None , __lowerCamelCase: float = None , __lowerCamelCase: bool = None , __lowerCamelCase: Optional[Union[float, List[float]]] = None , __lowerCamelCase: Optional[Union[float, List[float]]] = None , __lowerCamelCase: Optional[Union[str, TensorType]] = None , __lowerCamelCase: ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase: Any , ): '''simple docstring''' UpperCamelCase__: int = do_resize if do_resize is not None else self.do_resize UpperCamelCase__: Tuple = crop_pct if crop_pct is not None else self.crop_pct UpperCamelCase__: Union[str, Any] = resample if resample is not None else self.resample UpperCamelCase__: Any = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__: str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__: int = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__: Union[str, Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase__: int = image_std if image_std is not None else self.image_std UpperCamelCase__: List[Any] = size if size is not None else self.size UpperCamelCase__: Any = get_size_dict(_a , default_to_square=_a ) UpperCamelCase__: str = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__: str = [to_numpy_array(_a ) for image in images] if do_resize: UpperCamelCase__: List[Any] = [self.resize(image=_a , size=_a , crop_pct=_a , resample=_a ) for image in images] if do_rescale: UpperCamelCase__: str = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: UpperCamelCase__: Any = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] UpperCamelCase__: int = [to_channel_dimension_format(_a , _a ) for image in images] UpperCamelCase__: int = {'pixel_values': images} return BatchFeature(data=_a , tensor_type=_a )
380
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
459
0
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) lowercase : Any = logging.getLogger(__name__) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=3_0_5_2_2, type=int) lowercase : int = parser.parse_args() logger.info(F"""Loading data from {args.data_file}""") with open(args.data_file, """rb""") as fp: lowercase : List[str] = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") lowercase : Any = Counter() for tk_ids in data: counter.update(tk_ids) lowercase : Optional[Any] = [0] * args.vocab_size for k, v in counter.items(): lowercase : Dict = v logger.info(F"""Dump to {args.token_counts_dump}""") with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
392
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Optional[int] = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : List[Any] = '''vit_msn''' def __init__( self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1e-06 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=True , **lowercase , ) -> Dict: '''simple docstring''' super().__init__(**lowercase) a__ : Tuple = hidden_size a__ : Optional[Any] = num_hidden_layers a__ : str = num_attention_heads a__ : Optional[Any] = intermediate_size a__ : Optional[Any] = hidden_act a__ : int = hidden_dropout_prob a__ : Optional[int] = attention_probs_dropout_prob a__ : List[Any] = initializer_range a__ : Optional[int] = layer_norm_eps a__ : List[str] = image_size a__ : Optional[int] = patch_size a__ : List[str] = num_channels a__ : Dict = qkv_bias
392
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class A__ : """simple docstring""" pass
37
"""simple docstring""" import operator def A_ (__a , __a = False , __a = None ): '''simple docstring''' A_ = operator.lt if reverse else operator.gt A_ = solution or [] if not arr: return solution A_ = [arr.pop(0 )] for i, item in enumerate(__a ): if _operator(__a , sublist[-1] ): sublist.append(__a ) arr.pop(__a ) # merging sublist into solution list if not solution: solution.extend(__a ) else: while sublist: A_ = sublist.pop(0 ) for i, xx in enumerate(__a ): if not _operator(__a , __a ): solution.insert(__a , __a ) break else: solution.append(__a ) strand_sort(__a , __a , __a ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
115
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCamelCase : List[str] = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def __snake_case ( UpperCamelCase__=True ) -> Union[str, Any]: """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=UpperCAmelCase_ ) ) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = None lowerCAmelCase = None def __a ( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any] ): with TemporaryDirectory() as tmp_dir: A = dataset_module_factory(_lowercase , cache_dir=_lowercase ) A = import_main_class(dataset_module.module_path , dataset=_lowercase ) A = builder_cls( cache_dir=_lowercase , config_name=_lowercase , hash=dataset_module.hash , ) A = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=_lowercase ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) A = cached_path(_lowercase , cache_dir=_lowercase ) self.assertTrue(os.path.exists(_lowercase ) ) @pytest.mark.integration def __snake_case ( UpperCamelCase__ ) -> Dict: """simple docstring""" A = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' A = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) A = import_main_class(dataset_module.module_path ) A = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam A = None builder_instance.download_and_prepare() A = builder_instance.as_dataset() assert ds @pytest.mark.integration def __snake_case ( UpperCamelCase__ ) -> Tuple: """simple docstring""" A = dataset_module_factory('wikipedia' , cache_dir=UpperCamelCase__ ) A = import_main_class(dataset_module.module_path , dataset=UpperCamelCase__ ) A = builder_cls( cache_dir=UpperCamelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) A = builder_instance.as_streaming_dataset() assert ds assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert "train" in ds assert isinstance(ds['train'] , UpperCamelCase__ ) assert next(iter(ds['train'] ) )
711
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not nums: return 0 A = nums[0] A = 0 for num in nums[1:]: A , A = ( max_excluding + num, max(UpperCamelCase__ , UpperCamelCase__ ), ) return max(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
91
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __UpperCamelCase : str = logging.get_logger(__name__) @dataclass class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self: List[Any] , **UpperCamelCase: str ) -> Any: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case__ = deprecated_arg[3:] snake_case__ = not kwargs.pop(UpperCamelCase ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) snake_case__ = kwargs.pop('tpu_name' , self.tpu_name ) snake_case__ = kwargs.pop('device_idx' , self.device_idx ) snake_case__ = kwargs.pop('eager_mode' , self.eager_mode ) snake_case__ = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**UpperCamelCase ) _UpperCAmelCase = field( default=a_ , metadata={"help": "Name of TPU"} , ) _UpperCAmelCase = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) _UpperCAmelCase = field(default=a_ , metadata={"help": "Benchmark models in eager model."} ) _UpperCAmelCase = field( default=a_ , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def lowerCAmelCase_ ( self: Tuple ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf'] ) snake_case__ = None if self.tpu: try: if self.tpu_name: snake_case__ = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: snake_case__ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: snake_case__ = None return tpu @cached_property def lowerCAmelCase_ ( self: Any ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) snake_case__ = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) snake_case__ = tf.distribute.OneDeviceStrategy(device=F'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU snake_case__ = tf.distribute.OneDeviceStrategy(device=F'''/cpu:{self.device_idx}''' ) return strategy @property def lowerCAmelCase_ ( self: Union[str, Any] ) -> bool: requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def lowerCAmelCase_ ( self: Any ) -> "tf.distribute.Strategy": requires_backends(self , ['tf'] ) return self._setup_strategy @property def lowerCAmelCase_ ( self: List[Any] ) -> List[Any]: requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def lowerCAmelCase_ ( self: Any ) -> int: requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCAmelCase_ ( self: List[str] ) -> bool: return self.n_gpu > 0
328
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "char" _UpperCAmelCase = "bpe" _UpperCAmelCase = "wp" __UpperCamelCase : Optional[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = ["image_processor", "char_tokenizer"] _UpperCAmelCase = "ViTImageProcessor" _UpperCAmelCase = "MgpstrTokenizer" def __init__( self: Optional[int] , UpperCamelCase: Dict=None , UpperCamelCase: Any=None , **UpperCamelCase: Any ) -> str: snake_case__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCamelCase , ) snake_case__ = kwargs.pop('feature_extractor' ) snake_case__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) snake_case__ = tokenizer snake_case__ = AutoTokenizer.from_pretrained('gpt2' ) snake_case__ = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self: str , UpperCamelCase: List[str]=None , UpperCamelCase: Any=None , UpperCamelCase: Optional[Any]=None , **UpperCamelCase: Optional[int] ) -> List[str]: if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: snake_case__ = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None: snake_case__ = self.char_tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: snake_case__ = encodings['input_ids'] return inputs def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: List[str] ) -> int: snake_case__ , snake_case__ , snake_case__ = sequences snake_case__ = char_preds.size(0 ) snake_case__ , snake_case__ = self._decode_helper(UpperCamelCase , 'char' ) snake_case__ , snake_case__ = self._decode_helper(UpperCamelCase , 'bpe' ) snake_case__ , snake_case__ = self._decode_helper(UpperCamelCase , 'wp' ) snake_case__ = [] snake_case__ = [] for i in range(UpperCamelCase ): snake_case__ = [char_scores[i], bpe_scores[i], wp_scores[i]] snake_case__ = [char_strs[i], bpe_strs[i], wp_strs[i]] snake_case__ = scores.index(max(UpperCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) snake_case__ = {} snake_case__ = final_strs snake_case__ = final_scores snake_case__ = char_strs snake_case__ = bpe_strs snake_case__ = wp_strs return out def lowerCAmelCase_ ( self: str , UpperCamelCase: str , UpperCamelCase: Tuple ) -> Optional[int]: if format == DecodeType.CHARACTER: snake_case__ = self.char_decode snake_case__ = 1 snake_case__ = '[s]' elif format == DecodeType.BPE: snake_case__ = self.bpe_decode snake_case__ = 2 snake_case__ = '#' elif format == DecodeType.WORDPIECE: snake_case__ = self.wp_decode snake_case__ = 1_02 snake_case__ = '[SEP]' else: raise ValueError(F'''Format {format} is not supported.''' ) snake_case__ , snake_case__ = [], [] snake_case__ = pred_logits.size(0 ) snake_case__ = pred_logits.size(1 ) snake_case__ , snake_case__ = pred_logits.topk(1 , dim=-1 , largest=UpperCamelCase , sorted=UpperCamelCase ) snake_case__ = preds_index.view(-1 , UpperCamelCase )[:, 1:] snake_case__ = decoder(UpperCamelCase ) snake_case__ , snake_case__ = torch.nn.functional.softmax(UpperCamelCase , dim=2 ).max(dim=2 ) snake_case__ = preds_max_prob[:, 1:] for index in range(UpperCamelCase ): snake_case__ = preds_str[index].find(UpperCamelCase ) snake_case__ = preds_str[index][:pred_eos] snake_case__ = preds_index[index].cpu().tolist() snake_case__ = pred_index.index(UpperCamelCase ) if eos_token in pred_index else -1 snake_case__ = preds_max_prob[index][: pred_eos_index + 1] snake_case__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(UpperCamelCase ) conf_scores.append(UpperCamelCase ) return dec_strs, conf_scores def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: str ) -> int: snake_case__ = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(UpperCamelCase )] return decode_strs def lowerCAmelCase_ ( self: int , UpperCamelCase: Optional[int] ) -> Dict: return self.bpe_tokenizer.batch_decode(UpperCamelCase ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: str ) -> Union[str, Any]: snake_case__ = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(UpperCamelCase )] return decode_strs
328
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) lowerCamelCase :Any = { '''MIT/ast-finetuned-audioset-10-10-0.4593''': ( '''https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json''' ), } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Dict = 'audio-spectrogram-transformer' def __init__(self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=16 , lowercase=True , lowercase=10 , lowercase=10 , lowercase=1024 , lowercase=128 , **lowercase , ): super().__init__(**lowercase ) A_ : List[str] = hidden_size A_ : Optional[int] = num_hidden_layers A_ : int = num_attention_heads A_ : List[Any] = intermediate_size A_ : Union[str, Any] = hidden_act A_ : Tuple = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : List[str] = initializer_range A_ : Tuple = layer_norm_eps A_ : List[Any] = patch_size A_ : Optional[Any] = qkv_bias A_ : Tuple = frequency_stride A_ : str = time_stride A_ : Tuple = max_length A_ : List[str] = num_mel_bins
686
'''simple docstring''' import pytest lowerCamelCase :Optional[Any] = '''__dummy_dataset1__''' lowerCamelCase :List[Any] = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def a ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = dataset_loading_script_name A_ : int = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCamelCase__ ) A_ : Tuple = script_dir / f'{script_name}.py' with open(lowerCamelCase__ , """w""" ) as f: f.write(lowerCamelCase__ ) return str(lowerCamelCase__ )
686
1
def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> str: UpperCamelCase_: int = len(UpperCAmelCase__ ) UpperCamelCase_: int = len(UpperCAmelCase__ ) UpperCamelCase_: int = ( first_str_length if first_str_length > second_str_length else second_str_length ) UpperCamelCase_: list = [] for char_count in range(UpperCAmelCase__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(UpperCAmelCase__ ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
57
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ('''foo.json''',)] ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase :int = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , config_name=SCREAMING_SNAKE_CASE_ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> str: UpperCamelCase :Optional[Any] = AutoConfig.from_pretrained('''gpt2''' ) UpperCamelCase :Union[str, Any] = GenerationConfig.from_model_config(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :List[str] = GenerationConfig() UpperCamelCase :List[str] = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } UpperCamelCase :Dict = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = generation_config.update(**SCREAMING_SNAKE_CASE_ ) # update_kwargs was not modified (no side effects) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(SCREAMING_SNAKE_CASE_ , {'''foo''': '''bar'''} ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :List[Any] = GenerationConfig() UpperCamelCase :Tuple = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''' ) UpperCamelCase :Union[str, Any] = GenerationConfig.from_model_config(SCREAMING_SNAKE_CASE_ ) assert not hasattr(SCREAMING_SNAKE_CASE_ , '''foo''' ) # no new kwargs should be initialized if from config def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Dict = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(default_config.num_beams , 1 ) UpperCamelCase :Tuple = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = GenerationConfig.from_pretrained(SCREAMING_SNAKE_CASE_ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , SCREAMING_SNAKE_CASE_ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase ( cls ) -> Optional[Any]: UpperCamelCase :List[str] = TOKEN HfFolder.save_token(SCREAMING_SNAKE_CASE_ ) @classmethod def UpperCAmelCase ( cls ) -> Union[str, Any]: try: delete_repo(token=cls._token , repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Optional[Any] = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token ) UpperCamelCase :List[Any] = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='''test-generation-config''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) UpperCamelCase :Any = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :List[str] = GenerationConfig( do_sample=SCREAMING_SNAKE_CASE_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token ) UpperCamelCase :Any = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( SCREAMING_SNAKE_CASE_ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token ) UpperCamelCase :Tuple = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
658
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Any = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class A_ (a_ ): """simple docstring""" a__ = '''unispeech''' def __init__( self :Union[str, Any] , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple=768 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :List[str]=3_072 , lowerCAmelCase__ :Dict="gelu" , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :List[str]=0.0 , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :str=0.0_2 , lowerCAmelCase__ :Tuple=1E-5 , lowerCAmelCase__ :Optional[Any]="group" , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :Optional[Any]=(512, 512, 512, 512, 512, 512, 512) , lowerCAmelCase__ :Optional[int]=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__ :Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__ :Dict=False , lowerCAmelCase__ :Tuple=128 , lowerCAmelCase__ :Optional[Any]=16 , lowerCAmelCase__ :List[str]=False , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.0_5 , lowerCAmelCase__ :Any=10 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :List[Any]=0.0 , lowerCAmelCase__ :Any=10 , lowerCAmelCase__ :str=0 , lowerCAmelCase__ :List[str]=320 , lowerCAmelCase__ :Optional[Any]=2 , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :List[Any]=100 , lowerCAmelCase__ :Tuple=256 , lowerCAmelCase__ :Optional[int]=256 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :Optional[Any]="mean" , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :List[str]=256 , lowerCAmelCase__ :Dict=80 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :List[Any]=1 , lowerCAmelCase__ :List[Any]=2 , lowerCAmelCase__ :int=0.5 , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) snake_case_ : int = hidden_size snake_case_ : List[Any] = feat_extract_norm snake_case_ : List[str] = feat_extract_activation snake_case_ : int = list(lowerCAmelCase__ ) snake_case_ : Dict = list(lowerCAmelCase__ ) snake_case_ : Any = list(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = conv_bias snake_case_ : int = num_conv_pos_embeddings snake_case_ : Optional[Any] = num_conv_pos_embedding_groups snake_case_ : Any = len(self.conv_dim ) snake_case_ : List[str] = num_hidden_layers snake_case_ : List[Any] = intermediate_size snake_case_ : int = hidden_act snake_case_ : Optional[int] = num_attention_heads snake_case_ : int = hidden_dropout snake_case_ : Dict = attention_dropout snake_case_ : Union[str, Any] = activation_dropout snake_case_ : Dict = feat_proj_dropout snake_case_ : Optional[Any] = final_dropout snake_case_ : Tuple = layerdrop snake_case_ : str = layer_norm_eps snake_case_ : Dict = initializer_range snake_case_ : List[Any] = num_ctc_classes snake_case_ : Optional[int] = vocab_size snake_case_ : Any = do_stable_layer_norm snake_case_ : Any = use_weighted_layer_sum snake_case_ : Union[str, Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ : int = apply_spec_augment snake_case_ : Tuple = mask_time_prob snake_case_ : str = mask_time_length snake_case_ : List[Any] = mask_time_min_masks snake_case_ : str = mask_feature_prob snake_case_ : Optional[int] = mask_feature_length snake_case_ : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ : Optional[Any] = num_codevectors_per_group snake_case_ : Dict = num_codevector_groups snake_case_ : List[Any] = contrastive_logits_temperature snake_case_ : Dict = feat_quantizer_dropout snake_case_ : Dict = num_negatives snake_case_ : Optional[Any] = codevector_dim snake_case_ : Any = proj_codevector_dim snake_case_ : str = diversity_loss_weight # ctc loss snake_case_ : Optional[Any] = ctc_loss_reduction snake_case_ : List[Any] = ctc_zero_infinity # pretraining loss snake_case_ : Optional[int] = replace_prob @property def _A ( self :Tuple ) -> str: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
656
'''simple docstring''' import fire from utils import calculate_rouge, save_json def __UpperCAmelCase ( __magic_name__ ,__magic_name__ ,__magic_name__=None ,**__magic_name__ )-> Optional[Any]: """simple docstring""" snake_case_ : int = [x.strip() for x in open(__magic_name__ ).readlines()] snake_case_ : Optional[int] = [x.strip() for x in open(__magic_name__ ).readlines()][: len(__magic_name__ )] snake_case_ : List[Any] = calculate_rouge(__magic_name__ ,__magic_name__ ,**__magic_name__ ) if save_path is not None: save_json(__magic_name__ ,__magic_name__ ,indent=__magic_name__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
656
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class A__ : A__ = 42 A__ = 42 class A__ : def __init__( self : str , _a : int ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =[[] for _ in range(_a )] _SCREAMING_SNAKE_CASE =size def __getitem__( self : Union[str, Any] , _a : int ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self._size def A ( self : Union[str, Any] , _a : int , _a : int , _a : int ) -> Any: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(_a , _a ) ) def A ( self : str , _a : int , _a : int ) -> int | None: '''simple docstring''' _SCREAMING_SNAKE_CASE =deque([start_vertex] ) _SCREAMING_SNAKE_CASE =[None] * self.size _SCREAMING_SNAKE_CASE =0 while queue: _SCREAMING_SNAKE_CASE =queue.popleft() _SCREAMING_SNAKE_CASE =distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _SCREAMING_SNAKE_CASE =current_distance + edge.weight _SCREAMING_SNAKE_CASE =distances[edge.destination_vertex] if ( isinstance(_a , _a ) and new_distance >= dest_vertex_distance ): continue _SCREAMING_SNAKE_CASE =new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
405
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version lowerCamelCase : Optional[int] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") lowerCamelCase : Union[str, Any] = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization lowerCamelCase : str = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } lowerCamelCase : Optional[Any] = sorted(arg_to_scheduler.keys()) lowerCamelCase : int = "{" + ", ".join(arg_to_scheduler_choices) + "}" class A__ ( pl.LightningModule ): def __init__( self : Optional[Any] , _a : argparse.Namespace , _a : Any=None , _a : int="base" , _a : Dict=None , _a : Tuple=None , _a : Any=None , **_a : List[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_a ) _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =Path(self.hparams.output_dir ) _SCREAMING_SNAKE_CASE =self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=_a , **_a , ) else: _SCREAMING_SNAKE_CASE =config _SCREAMING_SNAKE_CASE =('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , _a , _a ): assert hasattr(self.config , _a ), f"model config doesn't have a `{p}` attribute" setattr(self.config , _a , getattr(self.hparams , _a ) ) if tokenizer is None: _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_a , ) else: _SCREAMING_SNAKE_CASE =tokenizer _SCREAMING_SNAKE_CASE =MODEL_MODES[mode] if model is None: _SCREAMING_SNAKE_CASE =self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_a , ) else: _SCREAMING_SNAKE_CASE =model def A ( self : List[Any] , *_a : Optional[int] , **_a : int ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_type.from_pretrained(*_a , **_a ) def A ( self : List[Any] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =arg_to_scheduler[self.hparams.lr_scheduler] _SCREAMING_SNAKE_CASE =get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _SCREAMING_SNAKE_CASE ={'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def A ( self : str ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model _SCREAMING_SNAKE_CASE =['bias', 'LayerNorm.weight'] _SCREAMING_SNAKE_CASE =[ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: _SCREAMING_SNAKE_CASE =Adafactor( _a , lr=self.hparams.learning_rate , scale_parameter=_a , relative_step=_a ) else: _SCREAMING_SNAKE_CASE =AdamW( _a , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _SCREAMING_SNAKE_CASE =optimizer _SCREAMING_SNAKE_CASE =self.get_lr_scheduler() return [optimizer], [scheduler] def A ( self : Tuple , _a : Dict , _a : List[str] ) -> str: '''simple docstring''' return self.validation_step(_a , _a ) def A ( self : Dict , _a : str ) -> Dict: '''simple docstring''' return self.validation_end(_a ) def A ( self : Union[str, Any] ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _SCREAMING_SNAKE_CASE =self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def A ( self : int , _a : Any ) -> Union[str, Any]: '''simple docstring''' if stage == "test": _SCREAMING_SNAKE_CASE =len(self.test_dataloader().dataset ) else: _SCREAMING_SNAKE_CASE =self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=_a ) _SCREAMING_SNAKE_CASE =len(self.train_dataloader().dataset ) def A ( self : Union[str, Any] , _a : str , _a : int , _a : bool = False ) -> Optional[int]: '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def A ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return self.train_loader def A ( self : str ) -> str: '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=_a ) def A ( self : Tuple ) -> Any: '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=_a ) def A ( self : int , _a : Dict ) -> Optional[Any]: '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( _a , list(filter(_a , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def A ( self : Optional[Any] , _a : Dict[str, Any] ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.output_dir.joinpath('best_tfmr' ) _SCREAMING_SNAKE_CASE =self.step_count self.model.save_pretrained(_a ) self.tokenizer.save_pretrained(_a ) @staticmethod def A ( _a : Any , _a : Any ) -> List[str]: '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=_a , type=_a , required=_a , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=_a , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=_a , type=_a , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(_a ).parent / 'test_run' / 'cache' ) , type=_a , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=_a , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=_a , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=_a , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=_a , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5e-5 , type=_a , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=_a , metavar=_a , type=_a , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=_a , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=_a , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=_a , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=_a , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=_a ) parser.add_argument('--train_batch_size' , default=32 , type=_a ) parser.add_argument('--eval_batch_size' , default=32 , type=_a ) parser.add_argument('--adafactor' , action='store_true' ) class A__ ( pl.Callback ): def A ( self : Tuple , _a : str , _a : int ) -> Dict: '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class A__ ( pl.Callback ): def A ( self : Tuple , _a : str , _a : Tuple ) -> Tuple: '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_a ) class A__ ( pl.Callback ): def A ( self : List[str] , _a : Tuple , _a : Optional[int] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =trainer.lr_schedulers[0]['scheduler'] _SCREAMING_SNAKE_CASE ={f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_a ) def A ( self : List[Any] , _a : pl.Trainer , _a : pl.LightningModule ) -> Optional[int]: '''simple docstring''' rank_zero_info('***** Validation results *****' ) _SCREAMING_SNAKE_CASE =trainer.callback_metrics # Log results for key in sorted(_a ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_a , str(metrics[key] ) ) ) def A ( self : Optional[Any] , _a : pl.Trainer , _a : pl.LightningModule ) -> List[str]: '''simple docstring''' rank_zero_info('***** Test results *****' ) _SCREAMING_SNAKE_CASE =trainer.callback_metrics # Log and save results to file _SCREAMING_SNAKE_CASE =os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(_a , 'w' ) as writer: for key in sorted(_a ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(_a , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(_a , str(metrics[key] ) ) ) def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] ) -> None: """simple docstring""" parser.add_argument( '--output_dir' , default=str(Path(_UpperCamelCase ).parent / 'test_run' / 'model_checkpoints' ) , type=_UpperCamelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_UpperCamelCase , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=_UpperCamelCase ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=_UpperCamelCase , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=_UpperCamelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=_UpperCamelCase , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(_UpperCamelCase ).parent / 'test_run' / 'dummy-train-data' ) , type=_UpperCamelCase , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def _lowerCAmelCase ( _UpperCamelCase : BaseTransformer , _UpperCamelCase : argparse.Namespace , _UpperCamelCase : Any=None , _UpperCamelCase : str=True , _UpperCamelCase : Any=[] , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : str=None , **_UpperCamelCase : Optional[int] , ) -> Tuple: """simple docstring""" pl.seed_everything(args.seed ) # init model _SCREAMING_SNAKE_CASE =Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_UpperCamelCase ) # add custom checkpoints if checkpoint_callback is None: _SCREAMING_SNAKE_CASE =pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_UpperCamelCase ) if logging_callback is None: _SCREAMING_SNAKE_CASE =LoggingCallback() _SCREAMING_SNAKE_CASE ={} if args.fpaa: _SCREAMING_SNAKE_CASE =16 if args.gpus > 1: _SCREAMING_SNAKE_CASE ='auto' _SCREAMING_SNAKE_CASE ='ddp' _SCREAMING_SNAKE_CASE =args.accumulate_grad_batches _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE ='auto' _SCREAMING_SNAKE_CASE =pl.Trainer.from_argparse_args( _UpperCamelCase , weights_summary=_UpperCamelCase , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_UpperCamelCase , val_check_interval=1 , num_sanity_val_steps=2 , **_UpperCamelCase , ) if args.do_train: trainer.fit(_UpperCamelCase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
405
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
188
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Tuple ) -> int: lowerCamelCase__ : Optional[int] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase__ : Dict = get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase ) , torch_builtin(UpperCAmelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase ) , gelu_new(UpperCAmelCase ) ) ) def A_ ( self : Dict ) -> str: lowerCamelCase__ : Optional[int] = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase__ : str = get_activation('gelu' ) lowerCamelCase__ : Tuple = get_activation('gelu_10' ) lowerCamelCase__ : Tuple = torch_builtin(UpperCAmelCase ) lowerCamelCase__ : List[str] = geluaa(UpperCAmelCase ) lowerCamelCase__ : Tuple = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCAmelCase ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def A_ ( self : str ) -> List[str]: get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(UpperCAmelCase ): get_activation('bogus' ) with self.assertRaises(UpperCAmelCase ): get_activation(UpperCAmelCase ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Optional[Any] = get_activation('gelu' ) lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : Optional[Any] = get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : str = acta.a
188
1