code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def lowercase__ ( snake_case_ :Dict ): __UpperCAmelCase = {} __UpperCAmelCase = job['''started_at'''] __UpperCAmelCase = job['''completed_at'''] __UpperCAmelCase = date_parser.parse(snake_case_ ) __UpperCAmelCase = date_parser.parse(snake_case_ ) __UpperCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) __UpperCAmelCase = start __UpperCAmelCase = end __UpperCAmelCase = duration_in_min return job_info def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any]=None ): __UpperCAmelCase = None if token is not None: __UpperCAmelCase = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''} __UpperCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' __UpperCAmelCase = requests.get(snake_case_ , headers=snake_case_ ).json() __UpperCAmelCase = {} try: job_time.update({job['''name''']: extract_time_from_single_job(snake_case_ ) for job in result['''jobs''']} ) __UpperCAmelCase = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(snake_case_ ): __UpperCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=snake_case_ ).json() job_time.update({job['''name''']: extract_time_from_single_job(snake_case_ ) for job in result['''jobs''']} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _lowercase : Tuple = parser.parse_args() _lowercase : List[str] = get_job_time(args.workflow_run_id) _lowercase : List[Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v["duration"]}""")
49
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase__ ( snake_case_ :Dict , snake_case_ :int ): assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :str , snake_case_ :Dict , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :List[str] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowercase__ ( snake_case_ :Any , snake_case_ :Union[str, Any] , snake_case_ :List[str] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} __UpperCAmelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} __UpperCAmelCase = features.copy() __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = JsonDatasetReader(snake_case_ , features=snake_case_ , cache_dir=snake_case_ ).read() assert isinstance(snake_case_ , snake_case_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[Any] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ , split=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Dict ): if issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = jsonl_path elif issubclass(snake_case_ , snake_case_ ): __UpperCAmelCase = [jsonl_path] __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_dataset(snake_case_ , snake_case_ ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :str , snake_case_ :int=("train",) ): assert isinstance(snake_case_ , snake_case_ ) for split in splits: __UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase__ ( snake_case_ :Tuple , snake_case_ :List[Any] , snake_case_ :Optional[Any] ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=snake_case_ , keep_in_memory=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase__ ( snake_case_ :List[str] , snake_case_ :List[str] , snake_case_ :int ): __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = features.copy() if features else default_expected_features __UpperCAmelCase = ( Features({feature: Value(snake_case_ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCAmelCase = JsonDatasetReader({'''train''': jsonl_path} , features=snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Any , snake_case_ :Optional[Any] ): if split: __UpperCAmelCase = {split: jsonl_path} else: __UpperCAmelCase = '''train''' __UpperCAmelCase = {'''train''': jsonl_path, '''test''': jsonl_path} __UpperCAmelCase = tmp_path / '''cache''' __UpperCAmelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __UpperCAmelCase = JsonDatasetReader(snake_case_ , cache_dir=snake_case_ ).read() _check_json_datasetdict(snake_case_ , snake_case_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase__ ( snake_case_ :Optional[int] ): return json.load(snake_case_ ) def lowercase__ ( snake_case_ :Any ): return [json.loads(snake_case_ ) for line in buffer] class _UpperCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : Union[str, Any] , _lowercase : int , _lowercase : int , _lowercase : int ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : Optional[Any] , _lowercase : Dict , _lowercase : Tuple , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : Tuple ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def a ( self : str , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def a ( self : List[Any] , _lowercase : List[str] , _lowercase : str , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write() buffer.seek(0 ) __UpperCAmelCase = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 def a ( self : int , _lowercase : Any ): with pytest.raises(_lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def a ( self : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : str ): __UpperCAmelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' __UpperCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() with fsspec.open(_lowercase , '''rb''' , compression='''infer''' ) as f: __UpperCAmelCase = f.read() assert exported_content == original_content
49
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): lowercase = True from torch.cuda.amp import autocast lowercase = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : '''simple docstring''' lowerCAmelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCAmelCase = field( default=__UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCAmelCase = field( default=__UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowerCAmelCase = field( default=__UpperCAmelCase , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) lowerCAmelCase = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) lowerCAmelCase = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) lowerCAmelCase = field( default=0.999995 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def __UpperCAmelCase ( a_ , a_): logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout)] , ) snake_case_ = logging.WARNING if model_args.verbose_logging: snake_case_ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank): snake_case_ = logging.INFO logger.setLevel(_snake_case) @dataclass class UpperCamelCase_ : '''simple docstring''' lowerCAmelCase = field( default=__UpperCAmelCase , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase = field( default=__UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) lowerCAmelCase = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) lowerCAmelCase = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) lowerCAmelCase = field( default=__UpperCAmelCase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCAmelCase = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) lowerCAmelCase = field( default=__UpperCAmelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCAmelCase = field( default=20.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class UpperCamelCase_ : '''simple docstring''' lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = "longest" lowerCAmelCase = None lowerCAmelCase = None def __call__( self , a ) -> List[Any]: # reformat list to dict and set to pytorch format snake_case_ = self.feature_extractor.pad( UpperCAmelCase_ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) snake_case_ = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) snake_case_ = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula snake_case_ = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) snake_case_ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to snake_case_ = 1 snake_case_ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices snake_case_ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCAmelCase_ , min_masks=2 , ) return batch class UpperCamelCase_ ( __UpperCAmelCase ): '''simple docstring''' def __init__( self , *a , a=1 , a=0 , a=1.0 , **a ) -> Optional[Any]: super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = 0 snake_case_ = max_gumbel_temp snake_case_ = min_gumbel_temp snake_case_ = gumbel_temp_decay def _UpperCamelCase ( self , a , a ) -> List[str]: model.train() snake_case_ = self._prepare_inputs(UpperCAmelCase_ ) if self.use_amp: with autocast(): snake_case_ = self.compute_loss(UpperCAmelCase_ , UpperCAmelCase_ ) else: snake_case_ = self.compute_loss(UpperCAmelCase_ , UpperCAmelCase_ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": snake_case_ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": snake_case_ = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: snake_case_ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase_ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __UpperCAmelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() configure_logger(_snake_case , _snake_case) # Downloading and loading a dataset from the hub. snake_case_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" snake_case_ = DatasetDict() snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" snake_case_ = DatasetDict() snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) snake_case_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported snake_case_ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_snake_case) def prepare_dataset(a_): # check that all files have the correct sampling rate snake_case_ , snake_case_ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate) return batch # load audio files into numpy arrays snake_case_ = datasets.map( _snake_case , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names) # filter audio files that are too long snake_case_ = vectorized_datasets.filter( lambda a_: len(data['speech']) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate)) def normalize(a_): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate) # normalize and transform to `BatchFeatures` snake_case_ = vectorized_datasets.map( _snake_case , batched=_snake_case , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 snake_case_ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'') snake_case_ = WavaVecaForPreTraining(_snake_case) snake_case_ = DataCollatorForWavaVecaPretraining(model=_snake_case , feature_extractor=_snake_case) snake_case_ = WavaVecaPreTrainer( model=_snake_case , data_collator=_snake_case , args=_snake_case , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=_snake_case , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
711
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __UpperCAmelCase ( a_): if isinstance(a_ , torch.Tensor): return image elif isinstance(a_ , PIL.Image.Image): snake_case_ = [image] snake_case_ = [trans(img.convert('RGB')) for img in image] snake_case_ = torch.stack(a_) return image class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a ) -> List[Any]: super().__init__() # make sure scheduler can always be converted to DDIM snake_case_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=a , scheduler=a ) def _UpperCamelCase ( self , a ) -> List[str]: if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _UpperCamelCase ( self , a , a , a ) -> Any: # get the original timestep using init_timestep snake_case_ = min(int(num_inference_steps * strength ) , a ) snake_case_ = max(num_inference_steps - init_timestep , 0 ) snake_case_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCamelCase ( self , a , a , a , a , a , a=None ) -> List[Any]: if not isinstance(a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a )}''' ) snake_case_ = image.to(device=a , dtype=a ) if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(a )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ = init_latents.shape snake_case_ = randn_tensor(a , generator=a , device=a , dtype=a ) # get latents print('add noise to latents at timestep' , a ) snake_case_ = self.scheduler.add_noise(a , a , a ) snake_case_ = init_latents return latents @torch.no_grad() def __call__( self , a = None , a = 0.8 , a = 1 , a = None , a = 0.0 , a = 50 , a = None , a = "pil" , a = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(a ) # 2. Preprocess image snake_case_ = preprocess(a ) # 3. set timesteps self.scheduler.set_timesteps(a , device=self.device ) snake_case_ , snake_case_ = self.get_timesteps(a , a , self.device ) snake_case_ = timesteps[:1].repeat(a ) # 4. Prepare latent variables snake_case_ = self.prepare_latents(a , a , a , self.unet.dtype , self.device , a ) snake_case_ = latents # 5. Denoising loop for t in self.progress_bar(a ): # 1. predict noise model_output snake_case_ = self.unet(a , a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case_ = self.scheduler.step( a , a , a , eta=a , use_clipped_model_output=a , generator=a , ).prev_sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(a ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=a )
607
0
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> list[int]: if num <= 0: raise ValueError("""Input must be a positive integer""" ) SCREAMING_SNAKE_CASE__ : Any = [True] * (num + 1) SCREAMING_SNAKE_CASE__ : str = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : str = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() a :Dict = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
680
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() a :Any = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a :str = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Tuple = state_dict.pop(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = val def _lowercase ( __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE__ : List[Any] = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) SCREAMING_SNAKE_CASE__ : Dict = value else: SCREAMING_SNAKE_CASE__ : Tuple = value return new_state_dict def _lowercase ( __lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ : str = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ : int = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : int = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE__ : Any = in_proj_bias[:256] SCREAMING_SNAKE_CASE__ : Dict = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[256:512] SCREAMING_SNAKE_CASE__ : int = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention SCREAMING_SNAKE_CASE__ : List[str] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ : Tuple = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : Any = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[:256] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE__ : Tuple = in_proj_bias[256:512] SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE__ : Dict = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) SCREAMING_SNAKE_CASE__ : List[Any] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict SCREAMING_SNAKE_CASE__ : int = in_proj_weight_cross_attn[:256, :] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias_cross_attn[:256] SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_weight_cross_attn[256:512, :] SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_bias_cross_attn[256:512] SCREAMING_SNAKE_CASE__ : int = in_proj_weight_cross_attn[-256:, :] SCREAMING_SNAKE_CASE__ : Dict = in_proj_bias_cross_attn[-256:] def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = image.size SCREAMING_SNAKE_CASE__ : Optional[Any] = max(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = 800 if """detection""" in checkpoint_url else 1000 SCREAMING_SNAKE_CASE__ : List[str] = target_max_size / current_max_size SCREAMING_SNAKE_CASE__ : str = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[int] = F.to_tensor(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = F.normalize(__lowerCAmelCase , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: logger.info("""Converting model...""" ) # load original state dict SCREAMING_SNAKE_CASE__ : str = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = rename_backbone_keys(__lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE__ : Optional[int] = """model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): SCREAMING_SNAKE_CASE__ : Optional[int] = state_dict.pop(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = val # create HuggingFace model and load state dict SCREAMING_SNAKE_CASE__ : Tuple = TableTransformerConfig( backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Optional[int] = 15 SCREAMING_SNAKE_CASE__ : Any = 2 SCREAMING_SNAKE_CASE__ : str = {0: """table""", 1: """table rotated"""} SCREAMING_SNAKE_CASE__ : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE__ : List[str] = {v: k for k, v in idalabel.items()} else: SCREAMING_SNAKE_CASE__ : Tuple = 125 SCREAMING_SNAKE_CASE__ : str = 6 SCREAMING_SNAKE_CASE__ : List[Any] = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } SCREAMING_SNAKE_CASE__ : Any = idalabel SCREAMING_SNAKE_CASE__ : Dict = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Dict = DetrImageProcessor( format="""coco_detection""" , max_size=800 if """detection""" in checkpoint_url else 1000 ) SCREAMING_SNAKE_CASE__ : Tuple = TableTransformerForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() # verify our conversion SCREAMING_SNAKE_CASE__ : Dict = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" SCREAMING_SNAKE_CASE__ : Tuple = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = Image.open(__lowerCAmelCase ).convert("""RGB""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = normalize(resize(__lowerCAmelCase , __lowerCAmelCase ) ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ : Dict = model(__lowerCAmelCase ) if "detection" in checkpoint_url: SCREAMING_SNAKE_CASE__ : List[Any] = (1, 15, 3) SCREAMING_SNAKE_CASE__ : str = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) SCREAMING_SNAKE_CASE__ : str = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: SCREAMING_SNAKE_CASE__ : Dict = (1, 125, 7) SCREAMING_SNAKE_CASE__ : Any = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) SCREAMING_SNAKE_CASE__ : List[Any] = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(__lowerCAmelCase ) image_processor.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": a :Any = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a :int = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
680
1
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( _UpperCAmelCase , unittest.TestCase ): __UpperCAmelCase = CLIPTokenizer __UpperCAmelCase = CLIPTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = {} __UpperCAmelCase = False def __a ( self ): super().setUp() # fmt: off UpperCamelCase__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on UpperCamelCase__ = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) UpperCamelCase__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>"""] UpperCamelCase__ = {"""unk_token""": """<unk>"""} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase__ ) ) def __a ( self , **a ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __a ( self , **a ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def __a ( self , a ): UpperCamelCase__ = """lower newer""" UpperCamelCase__ = """lower newer""" return input_text, output_text def __a ( self ): UpperCamelCase__ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = ["""lo""", """w""", """er</w>""", """n""", """e""", """w""", """er</w>"""] UpperCamelCase__ = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) @require_ftfy def __a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) UpperCamelCase__ = """A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d.""" UpperCamelCase__ = tokenizer_s.tokenize(lowercase__ ) UpperCamelCase__ = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase__ = """xa\u0303y""" + """ """ + """x\xe3y""" UpperCamelCase__ = tokenizer_s.tokenize(lowercase__ ) UpperCamelCase__ = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase__ = [ """\u0009""", # (horizontal tab, '\t') """\u000B""", # (vertical tab) """\u000C""", # (form feed) """\u0020""", # (space, ' ') """\u200E""", # (left-to-right mark):w """\u200F""", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(lowercase__ ) UpperCamelCase__ = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase__ = [ """\u000A""", # (line feed, '\n') """\r\n""", # (carriage return and line feed, '\r\n') """\u000D""", # (carriage return, '\r') """\r""", # (carriage return, '\r') """\u000D""", # (carriage return, '\r') """\u2028""", # (line separator) """\u2029""", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase__ = tokenizer_s.tokenize(lowercase__ ) UpperCamelCase__ = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def __a ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = f'''{text_of_1_token} {text_of_1_token}''' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) UpperCamelCase__ = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) UpperCamelCase__ = f''' {text}''' UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) UpperCamelCase__ = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) def __a ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowercase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def __a ( self ): super().test_tokenization_python_rust_equals() def __a ( self ): # CLIP always lower cases letters pass
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Dict = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
223
0
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __snake_case =trt.Logger(trt.Logger.WARNING) __snake_case =absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __snake_case =logging.getLogger(__name__) __snake_case =argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=384, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=128, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=20, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=30, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) __snake_case =parser.parse_args() if args.tokenizer_name: __snake_case =AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) __snake_case =args.per_device_eval_batch_size __snake_case =(args.eval_batch_size, args.max_seq_length) # TRT Engine properties __snake_case =True __snake_case ='''temp_engine/bert-fp32.engine''' if args.fpaa: __snake_case ='''temp_engine/bert-fp16.engine''' if args.inta: __snake_case ='''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") __snake_case =1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __snake_case =[network.get_input(i) for i in range(network.num_inputs)] __snake_case =[_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __snake_case =1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __snake_case =builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __snake_case =builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def a_ ( lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[int] ): lowerCAmelCase = np.asarray(inputs['input_ids'] , dtype=np.intaa ) lowerCAmelCase = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) lowerCAmelCase = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _UpperCamelCase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _UpperCamelCase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _UpperCamelCase ) # start time lowerCAmelCase = time.time() # Run inference context.execute_async( bindings=[int(_UpperCamelCase ) for d_inp in d_inputs] + [int(_UpperCamelCase ), int(_UpperCamelCase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) cuda.memcpy_dtoh_async(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase = time.time() lowerCAmelCase = end_time - start_time lowerCAmelCase = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __snake_case =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __snake_case =load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __snake_case =raw_datasets['''validation'''].column_names __snake_case ='''question''' if '''question''' in column_names else column_names[0] __snake_case ='''context''' if '''context''' in column_names else column_names[1] __snake_case ='''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __snake_case =tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __snake_case =min(args.max_seq_length, tokenizer.model_max_length) def a_ ( lowerCamelCase : int ): lowerCAmelCase = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=_UpperCamelCase , stride=args.doc_stride , return_overflowing_tokens=_UpperCamelCase , return_offsets_mapping=_UpperCamelCase , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase = tokenized_examples.sequence_ids(_UpperCamelCase ) lowerCAmelCase = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __snake_case =raw_datasets['''validation'''] # Validation Feature Creation __snake_case =eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) __snake_case =default_data_collator __snake_case =eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) __snake_case =DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def a_ ( lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any]="eval" ): lowerCAmelCase = postprocess_qa_predictions( examples=_UpperCamelCase , features=_UpperCamelCase , predictions=_UpperCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_UpperCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCamelCase , label_ids=_UpperCamelCase ) __snake_case =load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def a_ ( lowerCamelCase : Union[str, Any] ): return trt.volume(engine.get_binding_shape(_UpperCamelCase ) ) * engine.get_binding_dtype(_UpperCamelCase ).itemsize # Allocate device memory for inputs and outputs. __snake_case =[cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __snake_case =cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __snake_case =cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __snake_case =cuda.mem_alloc(h_outputa.nbytes) __snake_case =cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __snake_case =cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(F''' Num examples = {len(eval_dataset)}''') logger.info(F''' Batch size = {args.per_device_eval_batch_size}''') __snake_case =0.0 __snake_case =0 __snake_case =timeit.default_timer() __snake_case =None for step, batch in enumerate(eval_dataloader): __snake_case =model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __snake_case =outputs __snake_case =torch.tensor(start_logits) __snake_case =torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __snake_case =accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __snake_case =accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __snake_case =(accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __snake_case =logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __snake_case =nested_truncate(all_preds, len(eval_dataset)) __snake_case =timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1_000 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1_000)) logger.info("""Total Number of Inference = %d""", niter) __snake_case =post_processing_function(eval_examples, eval_dataset, all_preds) __snake_case =metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'''Evaluation metrics: {eval_metric}''')
133
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __magic_name__ : Optional[int] = logging.get_logger(__name__) def lowercase__ ( _UpperCamelCase) -> Dict: """simple docstring""" UpperCamelCase = r'\w+[.]\d+' UpperCamelCase = re.findall(_UpperCamelCase , _UpperCamelCase) for pat in pats: UpperCamelCase = key.replace(_UpperCamelCase , '_'.join(pat.split('.'))) return key def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> Tuple: """simple docstring""" UpperCamelCase = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCamelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCamelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCamelCase = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCamelCase = pt_tensor.transpose(2 , 3 , 1 , 0) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": UpperCamelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=42) -> Optional[Any]: """simple docstring""" UpperCamelCase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCamelCase = flax_model.init_weights(PRNGKey(_UpperCamelCase)) UpperCamelCase = flatten_dict(_UpperCamelCase) UpperCamelCase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase = rename_key(_UpperCamelCase) UpperCamelCase = tuple(renamed_pt_key.split('.')) # Correctly rename weight parameters UpperCamelCase , UpperCamelCase = rename_key_and_reshape_tensor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.') # also add unexpected weight so that warning is thrown UpperCamelCase = jnp.asarray(_UpperCamelCase) return unflatten_dict(_UpperCamelCase)
280
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable a_ : str = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ["""DPTFeatureExtractor"""] a_ : Tuple = ["""DPTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ """DPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DPTForDepthEstimation""", """DPTForSemanticSegmentation""", """DPTModel""", """DPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys a_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=7 , UpperCamelCase=3 , UpperCamelCase=30 , UpperCamelCase=400 , UpperCamelCase=True , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase=1 / 255 , UpperCamelCase=True , UpperCamelCase=[0.5, 0.5, 0.5] , UpperCamelCase=[0.5, 0.5, 0.5] , UpperCamelCase=True , ): """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCamelCase_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_rescale lowerCamelCase_ = rescale_factor lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = do_pad def snake_case ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def snake_case ( self , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" if not batched: lowerCamelCase_ = image_inputs[0] if isinstance(UpperCamelCase , Image.Image ): lowerCamelCase_ ,lowerCamelCase_ = image.size else: lowerCamelCase_ ,lowerCamelCase_ = image.shape[1], image.shape[2] if w < h: lowerCamelCase_ = int(self.size["shortest_edge"] * h / w ) lowerCamelCase_ = self.size["shortest_edge"] elif w > h: lowerCamelCase_ = self.size["shortest_edge"] lowerCamelCase_ = int(self.size["shortest_edge"] * w / h ) else: lowerCamelCase_ = self.size["shortest_edge"] lowerCamelCase_ = self.size["shortest_edge"] else: lowerCamelCase_ = [] for image in image_inputs: lowerCamelCase_ ,lowerCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCamelCase_ = max(UpperCamelCase , key=lambda UpperCamelCase : item[0] )[0] lowerCamelCase_ = max(UpperCamelCase , key=lambda UpperCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case ( lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = DetrImageProcessor if is_vision_available() else None def snake_case ( self ): """simple docstring""" lowerCamelCase_ = DetrImageProcessingTester(self ) @property def snake_case ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(UpperCamelCase , "rescale_factor" ) ) self.assertTrue(hasattr(UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase , "size" ) ) self.assertTrue(hasattr(UpperCamelCase , "do_pad" ) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) lowerCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) lowerCamelCase_ = image_processing(UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self ): """simple docstring""" # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , numpify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(UpperCamelCase , return_tensors="pt" ).pixel_values lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self ): """simple docstring""" # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase , torchify=UpperCamelCase ) for image in image_inputs: self.assertIsInstance(UpperCamelCase , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCamelCase_ = image_processing(UpperCamelCase , return_tensors="pt" ).pixel_values lowerCamelCase_ ,lowerCamelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase , batched=UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case ( self ): """simple docstring""" # prepare image and target lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {"image_id": 3_9769, "annotations": target} # encode them lowerCamelCase_ = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50" ) lowerCamelCase_ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , return_tensors="pt" ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area lowerCamelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase ) ) # verify class_labels lowerCamelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase ) ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase ) ) @slow def snake_case ( self ): """simple docstring""" # prepare image, target and masks_path lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCamelCase_ = json.loads(f.read() ) lowerCamelCase_ = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} lowerCamelCase_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCamelCase_ = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic" ) lowerCamelCase_ = image_processing(images=UpperCamelCase , annotations=UpperCamelCase , masks_path=UpperCamelCase , return_tensors="pt" ) # verify pixel values lowerCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase , atol=1e-4 ) ) # verify area lowerCamelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase ) ) # verify boxes lowerCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase ) lowerCamelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase , atol=1e-3 ) ) # verify image_id lowerCamelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase ) ) # verify is_crowd lowerCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase ) ) # verify class_labels lowerCamelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase ) ) # verify masks lowerCamelCase_ = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCamelCase ) # verify orig_size lowerCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase ) ) # verify size lowerCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase ) )
445
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __lowercase = random.Random() def _lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if rng is None: A_ = global_rng A_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _lowercase ( unittest.TestCase ): def __init__( self : str , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any]=7 , lowerCamelCase__ : List[str]=4_0_0 , lowerCamelCase__ : Tuple=2_0_0_0 , lowerCamelCase__ : Optional[int]=2_0_4_8 , lowerCamelCase__ : Tuple=1_2_8 , lowerCamelCase__ : Union[str, Any]=1 , lowerCamelCase__ : List[str]=5_1_2 , lowerCamelCase__ : List[str]=3_0 , lowerCamelCase__ : Dict=4_4_1_0_0 , ) -> Union[str, Any]: """simple docstring""" A_ = parent A_ = batch_size A_ = min_seq_length A_ = max_seq_length A_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ = spectrogram_length A_ = feature_size A_ = num_audio_channels A_ = hop_length A_ = chunk_length A_ = sampling_rate def UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase ( self : List[str] , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" def _flatten(lowerCamelCase__ : Any ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: A_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowercase ( __lowerCamelCase,unittest.TestCase ): _lowercase : Dict = TvltFeatureExtractor def UpperCamelCase ( self : Any ) -> Any: """simple docstring""" A_ = TvltFeatureExtractionTester(self ) def UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" A_ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''spectrogram_length''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''feature_size''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''num_audio_channels''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''hop_length''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''chunk_length''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''sampling_rate''' ) ) def UpperCamelCase ( self : str ) -> Dict: """simple docstring""" A_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ = feat_extract_first.save_pretrained(lowerCamelCase__ )[0] check_json_file_has_correct_format(lowerCamelCase__ ) A_ = self.feature_extraction_class.from_pretrained(lowerCamelCase__ ) A_ = feat_extract_first.to_dict() A_ = feat_extract_second.to_dict() A_ = dict_first.pop('''mel_filters''' ) A_ = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" A_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(lowerCamelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(lowerCamelCase__ ) A_ = self.feature_extraction_class.from_json_file(lowerCamelCase__ ) A_ = feat_extract_first.to_dict() A_ = feat_extract_second.to_dict() A_ = dict_first.pop('''mel_filters''' ) A_ = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" A_ = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 A_ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] A_ = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test not batched input A_ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched A_ = feature_extractor(lowerCamelCase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking A_ = feature_extractor( lowerCamelCase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=lowerCamelCase__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. A_ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] A_ = np.asarray(lowerCamelCase__ ) A_ = feature_extractor(lowerCamelCase__ , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" A_ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech A_ = ds.sort('''id''' ).select(range(lowerCamelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" A_ = self._load_datasamples(1 ) A_ = TvltFeatureExtractor() A_ = feature_extractor(lowerCamelCase__ , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) A_ = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowerCamelCase__ , atol=1e-4 ) )
203
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __lowercase = logging.get_logger(__name__) __lowercase = { """microsoft/table-transformer-detection""": ( """https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json""" ), } class _lowercase ( __lowerCamelCase ): _lowercase : Any = 'table-transformer' _lowercase : List[Any] = ['past_key_values'] _lowercase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : List[Any] , lowerCamelCase__ : Any=True , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Any=3 , lowerCamelCase__ : Any=1_0_0 , lowerCamelCase__ : int=6 , lowerCamelCase__ : List[Any]=2_0_4_8 , lowerCamelCase__ : List[str]=8 , lowerCamelCase__ : int=6 , lowerCamelCase__ : List[str]=2_0_4_8 , lowerCamelCase__ : Optional[int]=8 , lowerCamelCase__ : Union[str, Any]=0.0 , lowerCamelCase__ : Any=0.0 , lowerCamelCase__ : str=True , lowerCamelCase__ : Optional[Any]="relu" , lowerCamelCase__ : Optional[int]=2_5_6 , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : str=0.0 , lowerCamelCase__ : Optional[int]=0.0 , lowerCamelCase__ : Dict=0.02 , lowerCamelCase__ : Union[str, Any]=1.0 , lowerCamelCase__ : Union[str, Any]=False , lowerCamelCase__ : Optional[int]="sine" , lowerCamelCase__ : str="resnet50" , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : Optional[Any]=False , lowerCamelCase__ : Any=1 , lowerCamelCase__ : int=5 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : List[str]=1 , lowerCamelCase__ : Union[str, Any]=1 , lowerCamelCase__ : Optional[Any]=5 , lowerCamelCase__ : Tuple=2 , lowerCamelCase__ : List[str]=0.1 , **lowerCamelCase__ : List[str] , ) -> Dict: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) A_ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ = backbone_config.get('''model_type''' ) A_ = CONFIG_MAPPING[backbone_model_type] A_ = config_class.from_dict(lowerCamelCase__ ) # set timm attributes to None A_ ,A_ ,A_ = None, None, None A_ = use_timm_backbone A_ = backbone_config A_ = num_channels A_ = num_queries A_ = d_model A_ = encoder_ffn_dim A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_ffn_dim A_ = decoder_layers A_ = decoder_attention_heads A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = init_xavier_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = encoder_layers A_ = auxiliary_loss A_ = position_embedding_type A_ = backbone A_ = use_pretrained_backbone A_ = dilation # Hungarian matcher A_ = class_cost A_ = bbox_cost A_ = giou_cost # Loss coefficients A_ = mask_loss_coefficient A_ = dice_loss_coefficient A_ = bbox_loss_coefficient A_ = giou_loss_coefficient A_ = eos_coefficient super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self : Any ) -> int: """simple docstring""" return self.d_model class _lowercase ( __lowerCamelCase ): _lowercase : Tuple = version.parse('1.11' ) @property def UpperCamelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def UpperCamelCase ( self : List[Any] ) -> float: """simple docstring""" return 1e-5 @property def UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" return 1_2
203
1
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int]="attention" ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/layers_{i}/{layer_name}/key/kernel"""] SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/layers_{i}/{layer_name}/out/kernel"""] SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/layers_{i}/{layer_name}/query/kernel"""] SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/layers_{i}/{layer_name}/value/kernel"""] return k, o, q, v def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=False ) -> Dict: """simple docstring""" if split_mlp_wi: SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/layers_{i}/mlp/wi_0/kernel"""] SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/layers_{i}/mlp/wi_1/kernel"""] SCREAMING_SNAKE_CASE__ = (wi_a, wi_a) else: SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/layers_{i}/mlp/wi/kernel"""] SCREAMING_SNAKE_CASE__ = params[f"""{prefix}/layers_{i}/mlp/wo/kernel"""] return wi, wo def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] ) -> List[Any]: """simple docstring""" return params[f"""{prefix}/layers_{i}/{layer_name}/scale"""] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , *, __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(variables["""target"""] ) SCREAMING_SNAKE_CASE__ = {"""/""".join(SCREAMING_SNAKE_CASE_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi SCREAMING_SNAKE_CASE__ = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE__ = collections.OrderedDict() # Shared embeddings. SCREAMING_SNAKE_CASE__ = old["""token_embedder/embedding"""] # Encoder. for i in range(SCREAMING_SNAKE_CASE_ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """encoder""" , """pre_attention_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """encoder""" , """attention""" ) SCREAMING_SNAKE_CASE__ = layer_norm SCREAMING_SNAKE_CASE__ = k.T SCREAMING_SNAKE_CASE__ = o.T SCREAMING_SNAKE_CASE__ = q.T SCREAMING_SNAKE_CASE__ = v.T # Block i, layer 1 (MLP). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """encoder""" , """pre_mlp_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """encoder""" , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE__ = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ = wi[0].T SCREAMING_SNAKE_CASE__ = wi[1].T else: SCREAMING_SNAKE_CASE__ = wi.T SCREAMING_SNAKE_CASE__ = wo.T SCREAMING_SNAKE_CASE__ = old[ """encoder/relpos_bias/rel_embedding""" ].T SCREAMING_SNAKE_CASE__ = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE_ ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """decoder""" , """pre_self_attention_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """decoder""" , """self_attention""" ) SCREAMING_SNAKE_CASE__ = layer_norm SCREAMING_SNAKE_CASE__ = k.T SCREAMING_SNAKE_CASE__ = o.T SCREAMING_SNAKE_CASE__ = q.T SCREAMING_SNAKE_CASE__ = v.T # Block i, layer 1 (Cross Attention). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """decoder""" , """pre_cross_attention_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_attention_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """decoder""" , """encoder_decoder_attention""" ) SCREAMING_SNAKE_CASE__ = layer_norm SCREAMING_SNAKE_CASE__ = k.T SCREAMING_SNAKE_CASE__ = o.T SCREAMING_SNAKE_CASE__ = q.T SCREAMING_SNAKE_CASE__ = v.T # Block i, layer 2 (MLP). SCREAMING_SNAKE_CASE__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """decoder""" , """pre_mlp_layer_norm""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , """decoder""" , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE__ = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE__ = wi[0].T SCREAMING_SNAKE_CASE__ = wi[1].T else: SCREAMING_SNAKE_CASE__ = wi.T SCREAMING_SNAKE_CASE__ = wo.T SCREAMING_SNAKE_CASE__ = old["""decoder/decoder_norm/scale"""] SCREAMING_SNAKE_CASE__ = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: SCREAMING_SNAKE_CASE__ = old["""decoder/logits_dense/kernel"""].T return new def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE__ = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE__ = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) SCREAMING_SNAKE_CASE__ = state_dict["""shared.weight"""] return state_dict def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE__ = convert_tax_to_pytorch(SCREAMING_SNAKE_CASE_ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE__ = make_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : str = False ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = TaConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: SCREAMING_SNAKE_CASE__ = TaEncoderModel(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE_ ) print("""Done""" ) if __name__ == "__main__": __lowerCamelCase : Optional[Any] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) __lowerCamelCase : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
700
from math import log from scipy.constants import Boltzmann, physical_constants __lowerCamelCase : int = 300 # TEMPERATURE (unit = K) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
379
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _UpperCAmelCase ( a__ , a__ , a__ , a__=1_0_2_4): '''simple docstring''' a_ , a_ : Tuple = [], [] a_ : str = list(zip(a__ , a__)) a_ , a_ : Optional[Any] = sorted_examples[0] def is_too_big(a__): return tok(a__ , return_tensors="""pt""").input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:]): a_ : str = new_src + """ """ + src a_ : Dict = new_tgt + """ """ + tgt if is_too_big(a__) or is_too_big(a__): # cant fit, finalize example finished_src.append(a__) finished_tgt.append(a__) a_ , a_ : Tuple = src, tgt else: # can fit, keep adding a_ , a_ : List[str] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(a__) finished_tgt.append(a__) return finished_src, finished_tgt def _UpperCAmelCase ( a__ , a__ , a__ , a__): '''simple docstring''' a_ : Any = Path(a__) save_path.mkdir(exist_ok=a__) for split in ["train"]: a_ , a_ : List[Any] = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' a_ : Dict = [x.rstrip() for x in Path(a__).open().readlines()] a_ : Any = [x.rstrip() for x in Path(a__).open().readlines()] a_ , a_ : Union[str, Any] = pack_examples(a__ , a__ , a__ , a__) print(f'''packed {split} split from {len(a__)} examples -> {len(a__)}.''') Path(save_path / f'''{split}.source''').open("""w""").write("""\n""".join(a__)) Path(save_path / f'''{split}.target''').open("""w""").write("""\n""".join(a__)) for split in ["val", "test"]: a_ , a_ : int = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(a__ , save_path / f'''{split}.source''') shutil.copyfile(a__ , save_path / f'''{split}.target''') def _UpperCAmelCase ( ): '''simple docstring''' a_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--tok_name""" , type=a__ , help="""like facebook/bart-large-cnn,t5-base, etc.""") parser.add_argument("""--max_seq_len""" , type=a__ , default=1_2_8) parser.add_argument("""--data_dir""" , type=a__) parser.add_argument("""--save_path""" , type=a__) a_ : Any = parser.parse_args() a_ : Any = AutoTokenizer.from_pretrained(args.tok_name) return pack_data_dir(a__ , Path(args.data_dir) , args.max_seq_len , args.save_path) if __name__ == "__main__": packer_cli()
540
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _UpperCAmelCase ( a__ , a__ , a__ , a__ , a__): '''simple docstring''' with open(a__) as metadata_file: a_ : Any = json.load(a__) a_ : Dict = LukeConfig(use_entity_aware_attention=a__ , **metadata["""model_config"""]) # Load in the weights from the checkpoint_path a_ : str = torch.load(a__ , map_location="""cpu""") # Load the entity vocab file a_ : List[str] = load_entity_vocab(a__) a_ : int = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""]) # Add special tokens to the token vocabulary for downstream tasks a_ : Optional[Any] = AddedToken("""<ent>""" , lstrip=a__ , rstrip=a__) a_ : int = AddedToken("""<ent2>""" , lstrip=a__ , rstrip=a__) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]}) config.vocab_size += 2 print(f'''Saving tokenizer to {pytorch_dump_folder_path}''') tokenizer.save_pretrained(a__) with open(os.path.join(a__ , LukeTokenizer.vocab_files_names["""entity_vocab_file"""]) , """w""") as f: json.dump(a__ , a__) a_ : List[str] = LukeTokenizer.from_pretrained(a__) # Initialize the embeddings of the special tokens a_ : Optional[int] = state_dict["""embeddings.word_embeddings.weight"""] a_ : List[str] = word_emb[tokenizer.convert_tokens_to_ids(["""@"""])[0]].unsqueeze(0) a_ : List[Any] = word_emb[tokenizer.convert_tokens_to_ids(["""#"""])[0]].unsqueeze(0) a_ : Optional[Any] = torch.cat([word_emb, ent_emb, enta_emb]) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers): for matrix_name in ["query.weight", "query.bias"]: a_ : Any = f'''encoder.layer.{layer_index}.attention.self.''' a_ : List[str] = state_dict[prefix + matrix_name] a_ : List[Any] = state_dict[prefix + matrix_name] a_ : Dict = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a_ : str = state_dict["""entity_embeddings.entity_embeddings.weight"""] a_ : int = entity_emb[entity_vocab["""[MASK]"""]] a_ : int = LukeModel(config=a__).eval() a_ , a_ : Optional[int] = model.load_state_dict(a__ , strict=a__) if not (len(a__) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'''Missing keys {", ".join(a__)}. Expected only missing embeddings.position_ids''') if not (all(key.startswith("""entity_predictions""") or key.startswith("""lm_head""") for key in unexpected_keys)): raise ValueError( """Unexpected keys""" f''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions") or key.startswith("lm_head"))])}''') # Check outputs a_ : List[Any] = LukeTokenizer.from_pretrained(a__ , task="""entity_classification""") a_ : str = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) a_ : str = (3_9, 4_2) a_ : Tuple = tokenizer(a__ , entity_spans=[span] , add_prefix_space=a__ , return_tensors="""pt""") a_ : List[str] = model(**a__) # Verify word hidden states if model_size == "large": a_ : Optional[int] = torch.Size((1, 4_2, 1_0_2_4)) a_ : List[str] = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]]) else: # base a_ : List[str] = torch.Size((1, 4_2, 7_6_8)) a_ : str = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]]) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''') if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1e-4): raise ValueError # Verify entity hidden states if model_size == "large": a_ : Dict = torch.Size((1, 1, 1_0_2_4)) a_ : int = torch.tensor([[0.0466, -0.0106, -0.0179]]) else: # base a_ : Optional[Any] = torch.Size((1, 1, 7_6_8)) a_ : str = torch.tensor([[0.1457, 0.1044, 0.0174]]) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is''' f''' {expected_shape}''') if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a__ , atol=1e-4): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(a__)) model.save_pretrained(a__) def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[str] = {} with open(a__ , """r""" , encoding="""utf-8""") as f: for index, line in enumerate(a__): a_ , a_ : List[Any] = line.rstrip().split("""\t""") a_ : Any = index return entity_vocab if __name__ == "__main__": __snake_case : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __snake_case : List[str] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
540
1
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Dict = len(__A ) for i in range(1 , __A ): lowerCAmelCase_ : Union[str, Any] = collection[i] lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Optional[Any] = i - 1 while low <= high: lowerCAmelCase_ : List[str] = (low + high) // 2 if val < collection[mid]: lowerCAmelCase_ : Union[str, Any] = mid - 1 else: lowerCAmelCase_ : int = mid + 1 for j in range(__A , __A , -1 ): lowerCAmelCase_ : Tuple = collection[j - 1] lowerCAmelCase_ : Union[str, Any] = val return collection if __name__ == "__main__": lowercase__ : List[str] = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ : int = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
701
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ : int = { """configuration_groupvit""": [ """GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GroupViTConfig""", """GroupViTOnnxConfig""", """GroupViTTextConfig""", """GroupViTVisionConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ """GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GroupViTModel""", """GroupViTPreTrainedModel""", """GroupViTTextModel""", """GroupViTVisionModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = [ """TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFGroupViTModel""", """TFGroupViTPreTrainedModel""", """TFGroupViTTextModel""", """TFGroupViTVisionModel""", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys lowercase__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
0
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCAmelCase = datasets.logging.get_logger(__name__) UpperCAmelCase = '''\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n''' UpperCAmelCase = '''\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n''' UpperCAmelCase = '''\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n''' def __UpperCamelCase ( lowercase__ : List[Any], lowercase__ : str, lowercase__ : List[Any]=False, lowercase__ : int=False, lowercase__ : List[str]=True, lowercase__ : Union[str, Any]=False, lowercase__ : Optional[int]="dummy_doc" ): '''simple docstring''' __lowercase ={doc: key_lines} __lowercase ={doc: sys_lines} __lowercase ={} __lowercase =0 __lowercase =0 __lowercase =0 __lowercase =0 __lowercase =0 __lowercase =0 __lowercase =reader.get_doc_mentions(UpperCamelCase__, key_doc_lines[doc], UpperCamelCase__ ) key_singletons_num += singletons_num if NP_only or min_span: __lowercase =reader.set_annotated_parse_trees(UpperCamelCase__, key_doc_lines[doc], UpperCamelCase__, UpperCamelCase__ ) __lowercase =reader.get_doc_mentions(UpperCamelCase__, sys_doc_lines[doc], UpperCamelCase__ ) sys_singletons_num += singletons_num if NP_only or min_span: __lowercase =reader.set_annotated_parse_trees(UpperCamelCase__, key_doc_lines[doc], UpperCamelCase__, UpperCamelCase__ ) if remove_nested: __lowercase =reader.remove_nested_coref_mentions(UpperCamelCase__, UpperCamelCase__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters __lowercase =reader.remove_nested_coref_mentions(UpperCamelCase__, UpperCamelCase__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters __lowercase =reader.get_mention_assignments(UpperCamelCase__, UpperCamelCase__ ) __lowercase =reader.get_mention_assignments(UpperCamelCase__, UpperCamelCase__ ) __lowercase =(key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( 'Number of resulting singleton clusters in the key ' F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' 'files, respectively' ) return doc_coref_infos def __UpperCamelCase ( lowercase__ : Union[str, Any], lowercase__ : List[str], lowercase__ : Any, lowercase__ : Optional[int], lowercase__ : Dict, lowercase__ : Optional[Any], lowercase__ : Any ): '''simple docstring''' __lowercase =get_coref_infos(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) __lowercase ={} __lowercase =0 __lowercase =0 for name, metric in metrics: __lowercase =evaluator.evaluate_documents(UpperCamelCase__, UpperCamelCase__, beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ), F'''Recall: {recall * 1_00:.2f}''', F''' Precision: {precision * 1_00:.2f}''', F''' F1: {fa * 1_00:.2f}''', ) if conll_subparts_num == 3: __lowercase =(conll / 3) * 1_00 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({'conll_score': conll} ) return output_scores def __UpperCamelCase ( lowercase__ : Dict ): '''simple docstring''' __lowercase =False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: __lowercase =line.split()[5] if not parse_col == "-": __lowercase =True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def snake_case ( self : Tuple ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Sequence(datasets.Value('string' ) ), } ) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def snake_case ( self : Optional[int] , __lowercase : str , __lowercase : Union[str, Any] , __lowercase : int=True , __lowercase : Optional[int]=False , __lowercase : Union[str, Any]=False , __lowercase : Optional[int]=False ): """simple docstring""" __lowercase =[ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: __lowercase =util.check_gold_parse_annotation(__lowercase ) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" __lowercase =evaluate( key_lines=__lowercase , sys_lines=__lowercase , metrics=__lowercase , NP_only=__lowercase , remove_nested=__lowercase , keep_singletons=__lowercase , min_span=__lowercase , ) return score
119
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a_ = logging.getLogger(__name__) def _a( UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' if os.path.exists(UpperCamelCase__ ): if os.path.exists(os.path.join(UpperCamelCase__, '''config.json''' ) ) and os.path.isfile( os.path.join(UpperCamelCase__, '''config.json''' ) ): os.remove(os.path.join(UpperCamelCase__, '''config.json''' ) ) if os.path.exists(os.path.join(UpperCamelCase__, '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(UpperCamelCase__, '''pytorch_model.bin''' ) ): os.remove(os.path.join(UpperCamelCase__, '''pytorch_model.bin''' ) ) else: os.makedirs(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[int]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any =2 if unlogit: SCREAMING_SNAKE_CASE__ : Any =torch.pow(UpperCamelCase__, UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] =p * torch.log(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =0 return -plogp.sum(dim=-1 ) def _a( UpperCamelCase__ : int ): '''simple docstring''' logger.info('''lv, h >\t''' + '''\t'''.join(f"{x + 1}" for x in range(len(UpperCamelCase__ ) ) ) ) for row in range(len(UpperCamelCase__ ) ): if tensor.dtype != torch.long: logger.info(f"layer {row + 1}:\t" + '''\t'''.join(f"{x:.5f}" for x in tensor[row].cpu().data ) ) else: logger.info(f"layer {row + 1}:\t" + '''\t'''.join(f"{x:d}" for x in tensor[row].cpu().data ) ) def _a( UpperCamelCase__ : Tuple, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : str, UpperCamelCase__ : Optional[Any]=True, UpperCamelCase__ : int=True, UpperCamelCase__ : Union[str, Any]=None, UpperCamelCase__ : Optional[int]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str =model.config.num_hidden_layers, model.config.num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.zeros(UpperCamelCase__, UpperCamelCase__ ).to(args.device ) SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.zeros(UpperCamelCase__, UpperCamelCase__ ).to(args.device ) if head_mask is None: SCREAMING_SNAKE_CASE__ : str =torch.ones(UpperCamelCase__, UpperCamelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCamelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: SCREAMING_SNAKE_CASE__ : Optional[Any] =None SCREAMING_SNAKE_CASE__ : Dict =0.0 SCREAMING_SNAKE_CASE__ : Union[str, Any] =0.0 for step, inputs in enumerate(tqdm(UpperCamelCase__, desc='''Iteration''', disable=args.local_rank not in [-1, 0] ) ): SCREAMING_SNAKE_CASE__ : List[str] =tuple(t.to(args.device ) for t in inputs ) ((SCREAMING_SNAKE_CASE__) , ) : List[Any] =inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) SCREAMING_SNAKE_CASE__ : List[Any] =model(UpperCamelCase__, labels=UpperCamelCase__, head_mask=UpperCamelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : List[Any] =entropy(attn.detach(), UpperCamelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCamelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: SCREAMING_SNAKE_CASE__ : str =2 SCREAMING_SNAKE_CASE__ : str =torch.pow(torch.pow(UpperCamelCase__, UpperCamelCase__ ).sum(-1 ), 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: SCREAMING_SNAKE_CASE__ : Tuple =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(UpperCamelCase__ ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(UpperCamelCase__ ) logger.info('''Head ranked by importance scores''' ) SCREAMING_SNAKE_CASE__ : Tuple =torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device ) SCREAMING_SNAKE_CASE__ : str =torch.arange( head_importance.numel(), device=args.device ) SCREAMING_SNAKE_CASE__ : str =head_ranks.view_as(UpperCamelCase__ ) print_ad_tensor(UpperCamelCase__ ) return attn_entropy, head_importance, total_loss def _a( UpperCamelCase__ : Any, UpperCamelCase__ : Dict, UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =compute_heads_importance(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, compute_entropy=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''', UpperCamelCase__, original_score * args.masking_threshold ) SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.ones_like(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =max(1, int(new_head_mask.numel() * args.masking_amount ) ) SCREAMING_SNAKE_CASE__ : str =original_score while current_score >= original_score * args.masking_threshold: SCREAMING_SNAKE_CASE__ : Optional[Any] =new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads SCREAMING_SNAKE_CASE__ : Optional[int] =float('''Inf''' ) SCREAMING_SNAKE_CASE__ : List[str] =head_importance.view(-1 ).sort()[1] if len(UpperCamelCase__ ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads SCREAMING_SNAKE_CASE__ : Optional[Any] =current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''', str(current_heads_to_mask.tolist() ) ) SCREAMING_SNAKE_CASE__ : List[str] =new_head_mask.view(-1 ) SCREAMING_SNAKE_CASE__ : Any =0.0 SCREAMING_SNAKE_CASE__ : str =new_head_mask.view_as(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Tuple =new_head_mask.clone().detach() print_ad_tensor(UpperCamelCase__ ) # Compute metric and head importance again SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =compute_heads_importance( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, compute_entropy=UpperCamelCase__, head_mask=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : str =1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''', UpperCamelCase__, new_head_mask.sum(), new_head_mask.sum() / new_head_mask.numel() * 1_0_0, ) logger.info('''Final head mask''' ) print_ad_tensor(UpperCamelCase__ ) np.save(os.path.join(args.output_dir, '''head_mask.npy''' ), head_mask.detach().cpu().numpy() ) return head_mask def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : List[Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =datetime.now() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =compute_heads_importance( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, compute_entropy=UpperCamelCase__, compute_importance=UpperCamelCase__, head_mask=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =1 / loss SCREAMING_SNAKE_CASE__ : Tuple =datetime.now() - before_time SCREAMING_SNAKE_CASE__ : Optional[Any] =sum(p.numel() for p in model.parameters() ) SCREAMING_SNAKE_CASE__ : Optional[int] ={ layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCamelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCamelCase__, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =[ v, ] assert sum(len(UpperCamelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =sum(p.numel() for p in model.parameters() ) SCREAMING_SNAKE_CASE__ : Optional[int] =datetime.now() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] =compute_heads_importance( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, compute_entropy=UpperCamelCase__, compute_importance=UpperCamelCase__, head_mask=UpperCamelCase__, actually_pruned=UpperCamelCase__, ) SCREAMING_SNAKE_CASE__ : Dict =1 / loss SCREAMING_SNAKE_CASE__ : Union[str, Any] =datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''', UpperCamelCase__, UpperCamelCase__, pruned_num_params / original_num_params * 1_0_0, ) logger.info('''Pruning: score with masking: %f score with pruning: %f''', UpperCamelCase__, UpperCamelCase__ ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''', original_time / new_time * 1_0_0 ) save_model(UpperCamelCase__, args.output_dir ) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''', default=UpperCamelCase__, type=UpperCamelCase__, required=UpperCamelCase__, help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''', ) parser.add_argument( '''--model_name_or_path''', default=UpperCamelCase__, type=UpperCamelCase__, required=UpperCamelCase__, help='''Path to pretrained model or model identifier from huggingface.co/models''', ) parser.add_argument( '''--output_dir''', default=UpperCamelCase__, type=UpperCamelCase__, required=UpperCamelCase__, help='''The output directory where the model predictions and checkpoints will be written.''', ) # Other parameters parser.add_argument( '''--config_name''', default='''''', type=UpperCamelCase__, help='''Pretrained config name or path if not the same as model_name_or_path''', ) parser.add_argument( '''--tokenizer_name''', default='''''', type=UpperCamelCase__, help='''Pretrained tokenizer name or path if not the same as model_name_or_path''', ) parser.add_argument( '''--cache_dir''', default=UpperCamelCase__, type=UpperCamelCase__, help='''Where do you want to store the pre-trained models downloaded from s3''', ) parser.add_argument( '''--data_subset''', type=UpperCamelCase__, default=-1, help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''', action='''store_true''', help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''', action='''store_true''', help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''', action='''store_true''', help='''Don\'t normalize all importance scores between 0 and 1''', ) parser.add_argument( '''--try_masking''', action='''store_true''', help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''', default=0.9, type=UpperCamelCase__, help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''', ) parser.add_argument( '''--masking_amount''', default=0.1, type=UpperCamelCase__, help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''', default='''acc''', type=UpperCamelCase__, help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''', default=1_2_8, type=UpperCamelCase__, help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ), ) parser.add_argument('''--batch_size''', default=1, type=UpperCamelCase__, help='''Batch size.''' ) parser.add_argument('''--seed''', type=UpperCamelCase__, default=4_2 ) parser.add_argument('''--local_rank''', type=UpperCamelCase__, default=-1, help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''', action='''store_true''', help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''', type=UpperCamelCase__, default='''''', help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''', type=UpperCamelCase__, default='''''', help='''Can be used for distant debugging.''' ) SCREAMING_SNAKE_CASE__ : List[str] =parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=UpperCamelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) SCREAMING_SNAKE_CASE__ : List[Any] =0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) SCREAMING_SNAKE_CASE__ : Optional[int] =torch.device('''cuda''', args.local_rank ) SCREAMING_SNAKE_CASE__ : Any =1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device, args.n_gpu, bool(args.local_rank != -1 ) ) ) SCREAMING_SNAKE_CASE__ : Any =GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: SCREAMING_SNAKE_CASE__ : str =nn.parallel.DistributedDataParallel( UpperCamelCase__, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=UpperCamelCase__ ) elif args.n_gpu > 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] =nn.DataParallel(UpperCamelCase__ ) # Print/save training arguments os.makedirs(args.output_dir, exist_ok=UpperCamelCase__ ) torch.save(UpperCamelCase__, os.path.join(args.output_dir, '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''', UpperCamelCase__ ) # Prepare dataset SCREAMING_SNAKE_CASE__ : List[str] =np.concatenate( [ np.loadtxt(args.data_dir, dtype=np.intaa ), ] ) SCREAMING_SNAKE_CASE__ : Dict =(torch.from_numpy(UpperCamelCase__ ),) SCREAMING_SNAKE_CASE__ : Any =TensorDataset(*UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =RandomSampler(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] =DataLoader(UpperCamelCase__, sampler=UpperCamelCase__, batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: SCREAMING_SNAKE_CASE__ : Any =mask_heads(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) prune_heads(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": main()
296
0
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase_( lowercase_ : Optional[Any] ) -> Optional[Any]: _lowerCamelCase = fname.split(os.path.sep )[-1] return re.search(r'''^(.*)_\d+\.jpg$''' , lowercase_ ).groups()[0] class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ): _lowerCamelCase = file_names _lowerCamelCase = image_transform _lowerCamelCase = label_to_id def __len__( self ): return len(self.file_names ) def __getitem__( self , lowerCamelCase__ ): _lowerCamelCase = self.file_names[idx] _lowerCamelCase = PIL.Image.open(lowerCamelCase__ ) _lowerCamelCase = raw_image.convert('''RGB''' ) if self.image_transform is not None: _lowerCamelCase = self.image_transform(lowerCamelCase__ ) _lowerCamelCase = extract_label(lowerCamelCase__ ) if self.label_to_id is not None: _lowerCamelCase = self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase_( lowercase_ : List[Any] , lowercase_ : List[Any] ) -> Union[str, Any]: # Initialize accelerator if args.with_tracking: _lowerCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: _lowerCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase = config['''lr'''] _lowerCamelCase = int(config['''num_epochs'''] ) _lowerCamelCase = int(config['''seed'''] ) _lowerCamelCase = int(config['''batch_size'''] ) _lowerCamelCase = config['''image_size'''] if not isinstance(lowercase_ , (list, tuple) ): _lowerCamelCase = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": _lowerCamelCase = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _lowerCamelCase = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: _lowerCamelCase = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _lowerCamelCase = os.path.split(lowercase_ )[-1].split('''.''' )[0] accelerator.init_trackers(lowercase_ , lowercase_ ) # Grab all the image filenames _lowerCamelCase = [os.path.join(args.data_dir , lowercase_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences _lowerCamelCase = [extract_label(lowercase_ ) for fname in file_names] _lowerCamelCase = list(set(lowercase_ ) ) id_to_label.sort() _lowerCamelCase = {lbl: i for i, lbl in enumerate(lowercase_ )} # Set the seed before splitting the data. np.random.seed(lowercase_ ) torch.manual_seed(lowercase_ ) torch.cuda.manual_seed_all(lowercase_ ) # Split our filenames between train and validation _lowerCamelCase = np.random.permutation(len(lowercase_ ) ) _lowerCamelCase = int(0.8 * len(lowercase_ ) ) _lowerCamelCase = random_perm[:cut] _lowerCamelCase = random_perm[cut:] # For training we use a simple RandomResizedCrop _lowerCamelCase = Compose([RandomResizedCrop(lowercase_ , scale=(0.5, 1.0) ), ToTensor()] ) _lowerCamelCase = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowercase_ , label_to_id=lowercase_ ) # For evaluation, we use a deterministic Resize _lowerCamelCase = Compose([Resize(lowercase_ ), ToTensor()] ) _lowerCamelCase = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowercase_ , label_to_id=lowercase_ ) # Instantiate dataloaders. _lowerCamelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) _lowerCamelCase = DataLoader(lowercase_ , shuffle=lowercase_ , batch_size=lowercase_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase = create_model('''resnet50d''' , pretrained=lowercase_ , num_classes=len(lowercase_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCamelCase = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): _lowerCamelCase = False for param in model.get_classifier().parameters(): _lowerCamelCase = True # We normalize the batches of images to be a bit faster. _lowerCamelCase = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) _lowerCamelCase = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer _lowerCamelCase = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler _lowerCamelCase = OneCycleLR(optimizer=lowercase_ , max_lr=lowercase_ , epochs=lowercase_ , steps_per_epoch=len(lowercase_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # We need to keep track of how many total steps we have iterated over _lowerCamelCase = 0 # We also need to keep track of the starting epoch so files are named properly _lowerCamelCase = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) _lowerCamelCase = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint _lowerCamelCase = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) _lowerCamelCase = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _lowerCamelCase = os.path.splitext(lowercase_ )[0] if "epoch" in training_difference: _lowerCamelCase = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 _lowerCamelCase = None else: _lowerCamelCase = int(training_difference.replace('''step_''' , '''''' ) ) _lowerCamelCase = resume_step // len(lowercase_ ) resume_step -= starting_epoch * len(lowercase_ ) # Now we train the model for epoch in range(lowercase_ , lowercase_ ): model.train() if args.with_tracking: _lowerCamelCase = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _lowerCamelCase = accelerator.skip_first_batches(lowercase_ , lowercase_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _lowerCamelCase = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _lowerCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} _lowerCamelCase = (batch['''image'''] - mean) / std _lowerCamelCase = model(lowercase_ ) _lowerCamelCase = torch.nn.functional.cross_entropy(lowercase_ , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowercase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowercase_ , lowercase_ ): _lowerCamelCase = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _lowerCamelCase = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) model.eval() _lowerCamelCase = 0 _lowerCamelCase = 0 for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. _lowerCamelCase = {k: v.to(accelerator.device ) for k, v in batch.items()} _lowerCamelCase = (batch['''image'''] - mean) / std with torch.no_grad(): _lowerCamelCase = model(lowercase_ ) _lowerCamelCase = outputs.argmax(dim=-1 ) _lowerCamelCase , _lowerCamelCase = accelerator.gather_for_metrics((predictions, batch['''label''']) ) _lowerCamelCase = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _lowerCamelCase = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {1_00 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { '''accuracy''': 1_00 * eval_metric, '''train_loss''': total_loss.item() / len(lowercase_ ), '''epoch''': epoch, } , step=lowercase_ , ) if checkpointing_steps == "epoch": _lowerCamelCase = F"""epoch_{epoch}""" if args.output_dir is not None: _lowerCamelCase = os.path.join(args.output_dir , lowercase_ ) accelerator.save_state(lowercase_ ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase_( ) -> str: _lowerCamelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=lowercase_ , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase_ , default=lowercase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=lowercase_ , default=lowercase_ , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=lowercase_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=lowercase_ , default=lowercase_ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=lowercase_ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) _lowerCamelCase = parser.parse_args() _lowerCamelCase = {'''lr''': 3e-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 2_24} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
705
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__=None , **lowerCamelCase__ ): warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , lowerCamelCase__ , ) super().__init__(args=lowerCamelCase__ , **lowerCamelCase__ )
623
0
'''simple docstring''' def A__ ( UpperCAmelCase_ ): if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) _UpperCamelCase : List[str] = sum(UpperCAmelCase_ ) / len(UpperCAmelCase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
195
'''simple docstring''' import os from pathlib import Path def A__ ( ): from torch.utils.cpp_extension import load _UpperCamelCase : Optional[Any] = Path(UpperCAmelCase_ ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' _UpperCamelCase : Tuple = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , UpperCAmelCase_ , with_cuda=UpperCAmelCase_ , extra_include_paths=[str(UpperCAmelCase_ )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
195
1
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def __A ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = credit_card_number __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = len(_SCREAMING_SNAKE_CASE ) - 2 for i in range(_SCREAMING_SNAKE_CASE , -1 , -2 ): # double the value of every second digit __SCREAMING_SNAKE_CASE : Any = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 __SCREAMING_SNAKE_CASE : Tuple = cc_number[:i] + str(_SCREAMING_SNAKE_CASE ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def __A ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = f'{credit_card_number} is an invalid credit card number because' if not credit_card_number.isdigit(): print(f'{error_message} it has nonnumerical characters.' ) return False if not 1_3 <= len(_SCREAMING_SNAKE_CASE ) <= 1_6: print(f'{error_message} of its length.' ) return False if not validate_initial_digits(_SCREAMING_SNAKE_CASE ): print(f'{error_message} of its first two digits.' ) return False if not luhn_validation(_SCREAMING_SNAKE_CASE ): print(f'{error_message} it fails the Luhn check.' ) return False print(f'{credit_card_number} is a valid credit card number.' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
702
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __lowerCamelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' def a_ ( self ): __SCREAMING_SNAKE_CASE : int = load_tool("text-to-speech" ) self.tool.setup() def a_ ( self ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = self.tool("hey" ) __SCREAMING_SNAKE_CASE : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) ) def a_ ( self ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.tool("hey" ) __SCREAMING_SNAKE_CASE : Optional[int] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ) , ) )
564
0
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : List[str] =TypeVar('T') def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->int: return (position - 1) // 2 def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->int: return (2 * position) + 1 def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->int: return (2 * position) + 2 class _UpperCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: _lowerCamelCase : list[tuple[T, int]] = [] _lowerCamelCase : dict[T, int] = {} _lowerCamelCase : int = 0 def __len__( self ) -> int: return self.elements def __repr__( self ) -> str: return str(self.heap ) def a__ ( self ) -> bool: # Check if the priority queue is empty return self.elements == 0 def a__ ( self , _lowercase , _lowercase ) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight) ) _lowerCamelCase : List[Any] = self.elements self.elements += 1 self._bubble_up(_lowercase ) def a__ ( self ) -> T: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _lowerCamelCase, _lowerCamelCase : List[str] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.heap[0] self._bubble_down(_lowercase ) return elem def a__ ( self , _lowercase , _lowercase ) -> None: # Update the weight of the given key _lowerCamelCase : Optional[Any] = self.position_map[elem] _lowerCamelCase : int = (elem, weight) if position > 0: _lowerCamelCase : List[str] = get_parent_position(_lowercase ) _lowerCamelCase, _lowerCamelCase : Dict = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_lowercase ) else: self._bubble_down(_lowercase ) else: self._bubble_down(_lowercase ) def a__ ( self , _lowercase ) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] _lowerCamelCase : str = self.position_map[elem] if curr_pos == 0: return None _lowerCamelCase : int = get_parent_position(_lowercase ) _lowerCamelCase, _lowerCamelCase : List[Any] = self.heap[curr_pos] _lowerCamelCase, _lowerCamelCase : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_lowercase , _lowercase ) return self._bubble_up(_lowercase ) return None def a__ ( self , _lowercase ) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] _lowerCamelCase : List[str] = self.position_map[elem] _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.heap[curr_pos] _lowerCamelCase : str = get_child_left_position(_lowercase ) _lowerCamelCase : Any = get_child_right_position(_lowercase ) if child_left_position < self.elements and child_right_position < self.elements: _lowerCamelCase, _lowerCamelCase : int = self.heap[child_left_position] _lowerCamelCase, _lowerCamelCase : Dict = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_lowercase , _lowercase ) return self._bubble_down(_lowercase ) if child_left_position < self.elements: _lowerCamelCase, _lowerCamelCase : Dict = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_lowercase , _lowercase ) return self._bubble_down(_lowercase ) else: return None if child_right_position < self.elements: _lowerCamelCase, _lowerCamelCase : int = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_lowercase , _lowercase ) return self._bubble_down(_lowercase ) return None def a__ ( self , _lowercase , _lowercase ) -> None: # Swap the nodes at the given positions _lowerCamelCase : List[Any] = self.heap[nodea_pos][0] _lowerCamelCase : Tuple = self.heap[nodea_pos][0] _lowerCamelCase, _lowerCamelCase : Dict = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _lowerCamelCase : Optional[Any] = nodea_pos _lowerCamelCase : Optional[int] = nodea_pos class _UpperCAmelCase ( Generic[T] ): """simple docstring""" def __init__( self ) -> None: _lowerCamelCase : dict[T, dict[T, int]] = {} _lowerCamelCase : int = 0 def __repr__( self ) -> str: return str(self.connections ) def __len__( self ) -> int: return self.nodes def a__ ( self , _lowercase ) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: _lowerCamelCase : Optional[Any] = {} self.nodes += 1 def a__ ( self , _lowercase , _lowercase , _lowercase ) -> None: # Add an edge between 2 nodes in the graph self.add_node(_lowercase ) self.add_node(_lowercase ) _lowerCamelCase : Dict = weight _lowerCamelCase : Optional[Any] = weight def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , ) ->tuple[dict[T, int], dict[T, T | None]]: _lowerCamelCase : dict[T, int] = {node: maxsize for node in graph.connections} _lowerCamelCase : dict[T, T | None] = {node: None for node in graph.connections} _lowerCamelCase : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if priority_queue.is_empty(): return dist, parent # initialization _lowerCamelCase : str = priority_queue.extract_min() _lowerCamelCase : Any = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowerCamelCase : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(SCREAMING_SNAKE_CASE_ , dist[neighbour] ) _lowerCamelCase : List[str] = node # running prim's algorithm while not priority_queue.is_empty(): _lowerCamelCase : Dict = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowerCamelCase : int = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(SCREAMING_SNAKE_CASE_ , dist[neighbour] ) _lowerCamelCase : Optional[int] = node return dist, parent
434
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a_ ) class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __snake_case = Features({"""text""": Value("""string""" )} ) __snake_case = Features({} ) __snake_case = "text" @property def a__ ( self ) -> Dict[str, str]: return {self.text_column: "text"}
434
1
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
449
'''simple docstring''' from __future__ import annotations A = '#' class __snake_case : def __init__( self ): """simple docstring""" lowerCamelCase : dict = {} def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : int = self._trie for char in text: if char not in trie: lowerCamelCase : Dict = {} lowerCamelCase : Optional[int] = trie[char] lowerCamelCase : Optional[Any] = True def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : Dict = self._trie for char in prefix: if char in trie: lowerCamelCase : int = trie[char] else: return [] return self._elements(A ) def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : Optional[Any] = [] for c, v in d.items(): lowerCamelCase : Optional[Any] = [' '] if c == END else [(c + s) for s in self._elements(A )] result.extend(A ) return tuple(A ) A = Trie() A = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : Any = trie.find_word(UpperCAmelCase__) return tuple(string + word for word in suffixes) def UpperCAmelCase ( ): print(autocomplete_using_trie('de')) if __name__ == "__main__": import doctest doctest.testmod() main()
449
1
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase ( __a , unittest.TestCase ): __A : List[Any] = PhobertTokenizer __A : Optional[int] = False def UpperCAmelCase_ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ = ['''T@@''', '''i''', '''I''', '''R@@''', '''r''', '''e@@'''] lowerCAmelCase_ = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) lowerCAmelCase_ = ['''#version: 0.2''', '''l à</w>'''] lowerCAmelCase_ = {'''unk_token''': '''<unk>'''} lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def UpperCAmelCase_ ( self , **_lowerCamelCase ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = '''Tôi là VinAI Research''' lowerCAmelCase_ = '''T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>''' return input_text, output_text def UpperCAmelCase_ ( self ): lowerCAmelCase_ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ = '''Tôi là VinAI Research''' lowerCAmelCase_ = '''T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'''.split() lowerCAmelCase_ = tokenizer.tokenize(_lowerCamelCase ) print(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) lowerCAmelCase_ = tokens + [tokenizer.unk_token] lowerCAmelCase_ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase )
274
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class __UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self , _lowerCamelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): lowerCAmelCase_ = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCamelCase ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sgugger/tiny-distilbert-classification''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , only_pretrain_model=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , torchscript=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , fpaa=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = AutoConfig.from_pretrained(_lowerCamelCase ) # set architectures equal to `None` lowerCAmelCase_ = None lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowerCamelCase , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = AutoConfig.from_pretrained(_lowerCamelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tinier_bart''' lowerCAmelCase_ = AutoConfig.from_pretrained(_lowerCamelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' lowerCAmelCase_ = AutoConfig.from_pretrained(_lowerCamelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tinier_bart''' lowerCAmelCase_ = AutoConfig.from_pretrained(_lowerCamelCase ) lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase , configs=[config] ) lowerCAmelCase_ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , save_to_csv=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCamelCase , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(_lowerCamelCase , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(_lowerCamelCase , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(_lowerCamelCase , '''train_time.csv''' ) , env_info_csv_file=os.path.join(_lowerCamelCase , '''env.csv''' ) , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCamelCase , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''env.csv''' ) ).exists() ) def UpperCAmelCase_ ( self ): lowerCAmelCase_ = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCamelCase ): self.assertTrue(hasattr(_lowerCamelCase , '''sequential''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''current''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCamelCase , '''log.txt''' ) , log_print=_lowerCamelCase , trace_memory_line_by_line=_lowerCamelCase , multi_process=_lowerCamelCase , ) lowerCAmelCase_ = PyTorchBenchmark(_lowerCamelCase ) lowerCAmelCase_ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCamelCase , '''log.txt''' ) ).exists() )
274
1
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 5000_0000 ) -> Any: '''simple docstring''' snake_case_ = set() snake_case_ = int((limit - 24) ** (1 / 2) ) snake_case_ = set(range(3, prime_square_limit + 1, 2 ) ) primes.add(2 ) for p in range(3, prime_square_limit + 1, 2 ): if p not in primes: continue primes.difference_update(set(range(p * p, prime_square_limit + 1, lowerCAmelCase_ ) ) ) for primea in primes: snake_case_ = primea * primea for primea in primes: snake_case_ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: snake_case_ = primea * primea * primea * primea snake_case_ = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
707
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Optional[Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
593
0
def a_ ( __lowerCAmelCase ): if len(__lowerCAmelCase ) < 2: return collection def circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> bool: lowerCAmelCase__ = False if low == high: return swapped lowerCAmelCase__ = low lowerCAmelCase__ = high while left < right: if collection[left] > collection[right]: lowerCAmelCase__ = ( collection[right], collection[left], ) lowerCAmelCase__ = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: lowerCAmelCase__ = ( collection[right + 1], collection[left], ) lowerCAmelCase__ = True lowerCAmelCase__ = low + int((high - low) / 2 ) lowerCAmelCase__ = circle_sort_util(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase__ = circle_sort_util(__lowerCAmelCase , mid + 1 , __lowerCAmelCase ) return swapped or left_swap or right_swap lowerCAmelCase__ = True while is_not_sorted is True: lowerCAmelCase__ = circle_sort_util(__lowerCAmelCase , 0 , len(__lowerCAmelCase ) - 1 ) return collection if __name__ == "__main__": __magic_name__ : List[str] = input("""Enter numbers separated by a comma:\n""").strip() __magic_name__ : Tuple = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
615
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __snake_case : Optional[str] = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __snake_case : Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __snake_case : Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __snake_case : Optional[int] = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __snake_case : Optional[int] = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __snake_case : Optional[float] = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __snake_case : Optional[int] = field( default=1_00_00 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __snake_case : Optional[float] = field(default=2e-4 , metadata={"""help""": """Learning rate fo training."""} ) __snake_case : Optional[str] = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __snake_case : Optional[int] = field( default=7_50 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __snake_case : Optional[int] = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __snake_case : Optional[bool] = field( default=snake_case__ , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __snake_case : Optional[int] = field(default=5_00_00 , metadata={"""help""": """Maximum number of training steps."""} ) __snake_case : Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __snake_case : Optional[int] = field(default=10_24 , metadata={"""help""": """Sequence lengths used for training."""} ) __snake_case : Optional[int] = field(default=1 , metadata={"""help""": """Training seed."""} ) __snake_case : Optional[int] = field( default=10_24 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __snake_case : Optional[str] = field( default=snake_case__ , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __snake_case : Optional[bool] = field(default=snake_case__ , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __snake_case : Optional[str] = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __snake_case : Optional[int] = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __snake_case : Optional[int] = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __snake_case : Optional[int] = field(default=10_24 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __snake_case : Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __snake_case : Optional[int] = field(default=snake_case__ , metadata={"""help""": """Number of workers used for code evaluation."""} ) __snake_case : Optional[int] = field( default=snake_case__ , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __snake_case : Optional[bool] = field( default=snake_case__ , metadata={"""help""": """Sample from the language model's output distribution."""} ) __snake_case : Optional[float] = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __snake_case : Optional[int] = field(default=2_56 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __snake_case : Optional[int] = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __snake_case : Optional[float] = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __snake_case : Optional[int] = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __snake_case : Optional[int] = field( default=2_00 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __snake_case : Optional[int] = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __snake_case : Optional[str] = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __snake_case : Optional[str] = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __snake_case : Optional[int] = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : Optional[int] = field( default=snake_case__ , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __snake_case : Optional[str] = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __snake_case : Optional[str] = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __snake_case : Optional[int] = field( default=10_00_00 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __snake_case : Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __snake_case : Optional[float] = field( default=10_00 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __snake_case : Optional[float] = field( default=1_00 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __snake_case : Optional[float] = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __snake_case : Optional[float] = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __snake_case : Optional[float] = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __snake_case : Optional[bool] = field( default=snake_case__ , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __snake_case : Optional[float] = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : Optional[str] = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __snake_case : Optional[str] = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __snake_case : Optional[str] = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __snake_case : Optional[int] = field(default=20_00_00 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __snake_case : Optional[int] = field( default=3_27_68 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __snake_case : Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __snake_case : Optional[bool] = field(default=snake_case__ , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __snake_case : Optional[str] = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __snake_case : Optional[str] = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __snake_case : Optional[int] = field(default=snake_case__ , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : Optional[str] = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __snake_case : Optional[str] = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __snake_case : Optional[str] = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __snake_case : Optional[bool] = field(default=snake_case__ , metadata={"""help""": """Push saved tokenizer to the hub."""} )
179
0
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __a = "sshleifer/mar_enro_6_3_student" class UpperCAmelCase_ ( _a ): """simple docstring""" def lowerCamelCase ( self : List[str] ): super().setUp() snake_case__ : List[Any] = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=snake_case_ , ) snake_case__ : str = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def lowerCamelCase ( self : Union[str, Any] ): MarianMTModel.from_pretrained(snake_case_ ) @slow @require_torch_gpu def lowerCamelCase ( self : List[Any] ): snake_case__ : List[str] = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script snake_case__ : Any = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() snake_case__ : str = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): snake_case__ : Optional[Any] = bash_script.replace(snake_case_ , str(snake_case_ ) ) snake_case__ : Optional[int] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") snake_case__ : Optional[int] = f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future snake_case__ : Tuple = ["""finetune.py"""] + bash_script.split() + args with patch.object(snake_case_ , """argv""" , snake_case_ ): snake_case__ : Optional[Any] = argparse.ArgumentParser() snake_case__ : Optional[Any] = pl.Trainer.add_argparse_args(snake_case_ ) snake_case__ : Optional[int] = SummarizationModule.add_model_specific_args(snake_case_ , os.getcwd() ) snake_case__ : Optional[int] = parser.parse_args() snake_case__ : List[str] = main(snake_case_ ) # Check metrics snake_case__ : int = load_json(model.metrics_save_path ) snake_case__ : List[str] = metrics["""val"""][0] snake_case__ : Any = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , snake_case_ ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict snake_case__ : str = os.listdir(snake_case_ ) snake_case__ : Any = [x for x in contents if x.endswith(""".ckpt""" )][0] snake_case__ : List[str] = os.path.join(args.output_dir , snake_case_ ) snake_case__ : Tuple = torch.load(snake_case_ , map_location="""cpu""" ) snake_case__ : str = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: snake_case__ : str = {os.path.basename(snake_case_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class UpperCAmelCase_ ( _a ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Tuple = f"{self.test_file_dir_str}/test_data/wmt_en_ro" snake_case__ : Dict = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 128, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script snake_case__ : List[str] = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) snake_case__ : int = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) snake_case__ : str = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): snake_case__ : Union[str, Any] = bash_script.replace(snake_case_ , str(snake_case_ ) ) snake_case__ : List[str] = self.get_auto_remove_tmp_dir() snake_case__ : Tuple = bash_script.replace("""--fp16""" , """""" ) snake_case__ : List[str] = 6 snake_case__ : Dict = ( ["""distillation.py"""] + bash_script.split() + [ f"--output_dir={output_dir}", """--gpus=1""", """--learning_rate=1e-3""", f"--num_train_epochs={epochs}", """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(snake_case_ , """argv""" , snake_case_ ): snake_case__ : Union[str, Any] = argparse.ArgumentParser() snake_case__ : int = pl.Trainer.add_argparse_args(snake_case_ ) snake_case__ : Optional[int] = SummarizationDistiller.add_model_specific_args(snake_case_ , os.getcwd() ) snake_case__ : List[str] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu snake_case__ : Dict = distill_main(snake_case_ ) # Check metrics snake_case__ : Any = load_json(model.metrics_save_path ) snake_case__ : str = metrics["""val"""][0] snake_case__ : Tuple = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , snake_case_ ) # check lightning ckpt can be loaded and has a reasonable statedict snake_case__ : Dict = os.listdir(snake_case_ ) snake_case__ : Optional[int] = [x for x in contents if x.endswith(""".ckpt""" )][0] snake_case__ : List[Any] = os.path.join(args.output_dir , snake_case_ ) snake_case__ : List[Any] = torch.load(snake_case_ , map_location="""cpu""" ) snake_case__ : Optional[Any] = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: snake_case__ : int = {os.path.basename(snake_case_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
301
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __snake_case( ) -> Union[str, Any]: snake_case__ : Union[str, Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=_lowerCAmelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=_lowerCAmelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=_lowerCAmelCase ) return parser.parse_args() def __snake_case( ) -> int: snake_case__ : Tuple = parse_args() # Import training_script as a module. snake_case__ : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) snake_case__ : Tuple = script_fpath.stem snake_case__ : Any = importlib.import_module(_lowerCAmelCase ) # Patch sys.argv snake_case__ : Any = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
301
1
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __A = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __A = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :Optional[Any] = numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_SCREAMING_SNAKE_CASE )[0] @deprecated(_SCREAMING_SNAKE_CASE , 'Please use tf.data to implement this functionality.' ) def __A (_SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=_SCREAMING_SNAKE_CASE ) as bytestream: lowerCAmelCase__ :List[Any] = _readaa(_SCREAMING_SNAKE_CASE ) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) lowerCAmelCase__ :List[Any] = _readaa(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = _readaa(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[Any] = _readaa(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = bytestream.read(rows * cols * num_images ) lowerCAmelCase__ :List[str] = numpy.frombuffer(_SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) lowerCAmelCase__ :int = data.reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1 ) return data @deprecated(_SCREAMING_SNAKE_CASE , 'Please use tf.one_hot on tensors.' ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" lowerCAmelCase__ :Dict = labels_dense.shape[0] lowerCAmelCase__ :List[str] = numpy.arange(_SCREAMING_SNAKE_CASE ) * num_classes lowerCAmelCase__ :Optional[Any] = numpy.zeros((num_labels, num_classes) ) lowerCAmelCase__ :Union[str, Any] = 1 return labels_one_hot @deprecated(_SCREAMING_SNAKE_CASE , 'Please use tf.data to implement this functionality.' ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=10 ) ->Tuple: """simple docstring""" print('Extracting' , f.name ) with gzip.GzipFile(fileobj=_SCREAMING_SNAKE_CASE ) as bytestream: lowerCAmelCase__ :Union[str, Any] = _readaa(_SCREAMING_SNAKE_CASE ) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) lowerCAmelCase__ :Union[str, Any] = _readaa(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[Any] = bytestream.read(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[Any] = numpy.frombuffer(_SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return labels class _lowerCAmelCase : """simple docstring""" @deprecated( __UpperCAmelCase , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=dtypes.floataa , __UpperCAmelCase=True , __UpperCAmelCase=None , ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = random_seed.get_seed(__UpperCAmelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowerCAmelCase__ :List[Any] = dtypes.as_dtype(__UpperCAmelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: lowerCAmelCase__ :Any = 1_0_0_0_0 lowerCAmelCase__ :Union[str, Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"images.shape: {images.shape} labels.shape: {labels.shape}" lowerCAmelCase__ :Dict = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowerCAmelCase__ :Dict = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowerCAmelCase__ :List[Any] = images.astype(numpy.floataa ) lowerCAmelCase__ :Optional[int] = numpy.multiply(__UpperCAmelCase , 1.0 / 2_55.0 ) lowerCAmelCase__ :Union[str, Any] = images lowerCAmelCase__ :Any = labels lowerCAmelCase__ :Any = 0 lowerCAmelCase__ :Union[str, Any] = 0 @property def snake_case ( self ): '''simple docstring''' return self._images @property def snake_case ( self ): '''simple docstring''' return self._labels @property def snake_case ( self ): '''simple docstring''' return self._num_examples @property def snake_case ( self ): '''simple docstring''' return self._epochs_completed def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ): '''simple docstring''' if fake_data: lowerCAmelCase__ :List[str] = [1] * 7_8_4 lowerCAmelCase__ :Any = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__UpperCAmelCase )], [fake_label for _ in range(__UpperCAmelCase )], ) lowerCAmelCase__ :List[str] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowerCAmelCase__ :Optional[int] = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) lowerCAmelCase__ :str = self.images[perma] lowerCAmelCase__ :Optional[int] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowerCAmelCase__ :int = self._num_examples - start lowerCAmelCase__ :Any = self._images[start : self._num_examples] lowerCAmelCase__ :Dict = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowerCAmelCase__ :Any = numpy.arange(self._num_examples ) numpy.random.shuffle(__UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = self.images[perm] lowerCAmelCase__ :Optional[int] = self.labels[perm] # Start next epoch lowerCAmelCase__ :Any = 0 lowerCAmelCase__ :Dict = batch_size - rest_num_examples lowerCAmelCase__ :Optional[Any] = self._index_in_epoch lowerCAmelCase__ :Tuple = self._images[start:end] lowerCAmelCase__ :int = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowerCAmelCase__ :Union[str, Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_SCREAMING_SNAKE_CASE , 'Please write your own downloading logic.' ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: """simple docstring""" if not gfile.Exists(_SCREAMING_SNAKE_CASE ): gfile.MakeDirs(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Dict = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not gfile.Exists(_SCREAMING_SNAKE_CASE ): urllib.request.urlretrieve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # noqa: S310 with gfile.GFile(_SCREAMING_SNAKE_CASE ) as f: lowerCAmelCase__ :Optional[Any] = f.size() print('Successfully downloaded' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'bytes.' ) return filepath @deprecated( _SCREAMING_SNAKE_CASE , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=dtypes.floataa , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=5000 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=DEFAULT_SOURCE_URL , ) ->Tuple: """simple docstring""" if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , seed=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = fake() lowerCAmelCase__ :Optional[int] = fake() lowerCAmelCase__ :List[str] = fake() return _Datasets(train=_SCREAMING_SNAKE_CASE , validation=_SCREAMING_SNAKE_CASE , test=_SCREAMING_SNAKE_CASE ) if not source_url: # empty string check lowerCAmelCase__ :List[str] = DEFAULT_SOURCE_URL lowerCAmelCase__ :List[str] = 'train-images-idx3-ubyte.gz' lowerCAmelCase__ :Dict = 'train-labels-idx1-ubyte.gz' lowerCAmelCase__ :Dict = 't10k-images-idx3-ubyte.gz' lowerCAmelCase__ :Tuple = 't10k-labels-idx1-ubyte.gz' lowerCAmelCase__ :Dict = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + train_images_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: lowerCAmelCase__ :List[str] = _extract_images(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + train_labels_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: lowerCAmelCase__ :Tuple = _extract_labels(_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + test_images_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: lowerCAmelCase__ :int = _extract_images(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + test_labels_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , 'rb' ) as f: lowerCAmelCase__ :Dict = _extract_labels(_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE ) if not 0 <= validation_size <= len(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :List[Any] = ( 'Validation size should be between 0 and ' F"{len(_SCREAMING_SNAKE_CASE )}. Received: {validation_size}." ) raise ValueError(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = train_images[:validation_size] lowerCAmelCase__ :Any = train_labels[:validation_size] lowerCAmelCase__ :Union[str, Any] = train_images[validation_size:] lowerCAmelCase__ :Union[str, Any] = train_labels[validation_size:] lowerCAmelCase__ :Any = {'dtype': dtype, 'reshape': reshape, 'seed': seed} lowerCAmelCase__ :Optional[int] = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Tuple = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return _Datasets(train=_SCREAMING_SNAKE_CASE , validation=_SCREAMING_SNAKE_CASE , test=_SCREAMING_SNAKE_CASE )
93
"""simple docstring""" from __future__ import annotations import math def __A (_SCREAMING_SNAKE_CASE ) ->bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __A = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def __A (_SCREAMING_SNAKE_CASE ) ->list[int]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowerCAmelCase__ :Tuple = [] for num in range(len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ :int = 0 while 2 * i * i <= odd_composites[num]: lowerCAmelCase__ :int = odd_composites[num] - 2 * i * i if is_prime(_SCREAMING_SNAKE_CASE ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(_SCREAMING_SNAKE_CASE ) == n: return list_nums return [] def __A () ->int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
93
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge A : Any = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] A : Dict = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def a__ ( ): SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , bootstrap_aggregation=__UpperCamelCase , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , bootstrap_aggregation=__UpperCamelCase , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def a__ ( ): SCREAMING_SNAKE_CASE_ = "rougeLsum" SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase , rouge_keys=[k] )[k] SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase , rouge_keys=[k] )[k] assert score > score_no_sep def a__ ( ): SCREAMING_SNAKE_CASE_ = ["rouge1", "rouge2", "rougeL"] SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase , rouge_keys=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase , rouge_keys=__UpperCamelCase ) assert score_sep == score_no_sep def a__ ( ): SCREAMING_SNAKE_CASE_ = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] SCREAMING_SNAKE_CASE_ = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase ) == calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase ) def a__ ( ): SCREAMING_SNAKE_CASE_ = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] SCREAMING_SNAKE_CASE_ = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , rouge_keys=["rougeLsum"] , newline_sep=__UpperCamelCase )["rougeLsum"] SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def a__ ( ): SCREAMING_SNAKE_CASE_ = Path("examples/seq2seq/test_data/wmt_en_ro" ) SCREAMING_SNAKE_CASE_ = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase )
356
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge A : Any = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] A : Dict = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def a__ ( ): SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , bootstrap_aggregation=__UpperCamelCase , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , bootstrap_aggregation=__UpperCamelCase , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def a__ ( ): SCREAMING_SNAKE_CASE_ = "rougeLsum" SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase , rouge_keys=[k] )[k] SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase , rouge_keys=[k] )[k] assert score > score_no_sep def a__ ( ): SCREAMING_SNAKE_CASE_ = ["rouge1", "rouge2", "rougeL"] SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase , rouge_keys=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase , rouge_keys=__UpperCamelCase ) assert score_sep == score_no_sep def a__ ( ): SCREAMING_SNAKE_CASE_ = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] SCREAMING_SNAKE_CASE_ = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase ) == calculate_rouge(__UpperCamelCase , __UpperCamelCase , newline_sep=__UpperCamelCase ) def a__ ( ): SCREAMING_SNAKE_CASE_ = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] SCREAMING_SNAKE_CASE_ = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , rouge_keys=["rougeLsum"] , newline_sep=__UpperCamelCase )["rougeLsum"] SCREAMING_SNAKE_CASE_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def a__ ( ): SCREAMING_SNAKE_CASE_ = Path("examples/seq2seq/test_data/wmt_en_ro" ) SCREAMING_SNAKE_CASE_ = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase )
356
1
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ = cva.getAffineTransform(lowerCAmelCase__ ,lowerCAmelCase__ ) return cva.warpAffine(lowerCAmelCase__ ,lowerCAmelCase__ ,(rows, cols) ) if __name__ == "__main__": # read original image A_ = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value A_ = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape A_ , A_ = gray_img.shape # set different points to rotate image A_ = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) A_ = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) A_ = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) A_ = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list A_ = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations A_ = plt.figure(1) A_ = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
29
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
431
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase : Optional[int] = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase : List[Any] = { 'distilbert-base-uncased': 5_12, 'distilbert-base-uncased-distilled-squad': 5_12, 'distilbert-base-cased': 5_12, 'distilbert-base-cased-distilled-squad': 5_12, 'distilbert-base-german-cased': 5_12, 'distilbert-base-multilingual-cased': 5_12, } __UpperCAmelCase : str = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase_ :Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ :List[str] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ :str = ["input_ids", "attention_mask"] UpperCAmelCase_ :Tuple = DistilBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A="[UNK]" , __A="[SEP]" , __A="[PAD]" , __A="[CLS]" , __A="[MASK]" , __A=True , __A=None , **__A , ) -> List[Any]: super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , tokenize_chinese_chars=__A , strip_accents=__A , **__A , ) lowerCAmelCase_ :Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __A ) != do_lower_case or normalizer_state.get("""strip_accents""" , __A ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __A ) != tokenize_chinese_chars ): lowerCAmelCase_ :int = getattr(__A , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ :Optional[int] = do_lower_case lowerCAmelCase_ :Union[str, Any] = strip_accents lowerCAmelCase_ :int = tokenize_chinese_chars lowerCAmelCase_ :Optional[int] = normalizer_class(**__A ) lowerCAmelCase_ :Any = do_lower_case def __lowerCAmelCase ( self , __A , __A=None ) -> Optional[Any]: lowerCAmelCase_ :List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , __A , __A = None ) -> List[int]: lowerCAmelCase_ :Union[str, Any] = [self.sep_token_id] lowerCAmelCase_ :str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , __A , __A = None ) -> Tuple[str]: lowerCAmelCase_ :str = self._tokenizer.model.save(__A , name=__A ) return tuple(__A )
720
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Tuple = "wavlm" def __init__( self , __A=32 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=0.1 , __A=0.0 , __A=0.1 , __A=0.1 , __A=0.0_2 , __A=1E-5 , __A="group" , __A="gelu" , __A=(512, 512, 512, 512, 512, 512, 512) , __A=(5, 2, 2, 2, 2, 2, 2) , __A=(10, 3, 3, 3, 3, 2, 2) , __A=False , __A=128 , __A=16 , __A=320 , __A=800 , __A=False , __A=True , __A=0.0_5 , __A=10 , __A=2 , __A=0.0 , __A=10 , __A=320 , __A=2 , __A=0.1 , __A=100 , __A=256 , __A=256 , __A=0.1 , __A="mean" , __A=False , __A=False , __A=256 , __A=(512, 512, 512, 512, 1500) , __A=(5, 3, 3, 1, 1) , __A=(1, 2, 3, 1, 1) , __A=512 , __A=80 , __A=0 , __A=1 , __A=2 , __A=False , __A=3 , __A=2 , __A=3 , __A=None , **__A , ) -> Any: super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) lowerCAmelCase_ :Any = hidden_size lowerCAmelCase_ :Union[str, Any] = feat_extract_norm lowerCAmelCase_ :Optional[Any] = feat_extract_activation lowerCAmelCase_ :int = list(__A ) lowerCAmelCase_ :Optional[int] = list(__A ) lowerCAmelCase_ :List[Any] = list(__A ) lowerCAmelCase_ :Any = conv_bias lowerCAmelCase_ :int = num_buckets lowerCAmelCase_ :List[str] = max_bucket_distance lowerCAmelCase_ :List[str] = num_conv_pos_embeddings lowerCAmelCase_ :Dict = num_conv_pos_embedding_groups lowerCAmelCase_ :Union[str, Any] = len(self.conv_dim ) lowerCAmelCase_ :Dict = num_hidden_layers lowerCAmelCase_ :List[str] = intermediate_size lowerCAmelCase_ :Optional[int] = hidden_act lowerCAmelCase_ :List[Any] = num_attention_heads lowerCAmelCase_ :Union[str, Any] = hidden_dropout lowerCAmelCase_ :Optional[Any] = attention_dropout lowerCAmelCase_ :List[Any] = activation_dropout lowerCAmelCase_ :Union[str, Any] = feat_proj_dropout lowerCAmelCase_ :Optional[Any] = final_dropout lowerCAmelCase_ :Optional[Any] = layerdrop lowerCAmelCase_ :Union[str, Any] = layer_norm_eps lowerCAmelCase_ :Union[str, Any] = initializer_range lowerCAmelCase_ :List[Any] = num_ctc_classes lowerCAmelCase_ :Tuple = vocab_size lowerCAmelCase_ :List[str] = do_stable_layer_norm lowerCAmelCase_ :Union[str, Any] = use_weighted_layer_sum lowerCAmelCase_ :Optional[int] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ :List[str] = apply_spec_augment lowerCAmelCase_ :Tuple = mask_time_prob lowerCAmelCase_ :Optional[Any] = mask_time_length lowerCAmelCase_ :int = mask_time_min_masks lowerCAmelCase_ :Optional[Any] = mask_feature_prob lowerCAmelCase_ :Optional[int] = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCAmelCase_ :Optional[Any] = num_codevectors_per_group lowerCAmelCase_ :Optional[int] = num_codevector_groups lowerCAmelCase_ :Tuple = contrastive_logits_temperature lowerCAmelCase_ :Tuple = num_negatives lowerCAmelCase_ :str = codevector_dim lowerCAmelCase_ :int = proj_codevector_dim lowerCAmelCase_ :Optional[Any] = diversity_loss_weight # ctc loss lowerCAmelCase_ :Union[str, Any] = ctc_loss_reduction lowerCAmelCase_ :Optional[Any] = ctc_zero_infinity # adapter lowerCAmelCase_ :Union[str, Any] = add_adapter lowerCAmelCase_ :List[str] = adapter_kernel_size lowerCAmelCase_ :Union[str, Any] = adapter_stride lowerCAmelCase_ :Union[str, Any] = num_adapter_layers lowerCAmelCase_ :Tuple = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCAmelCase_ :str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCAmelCase_ :List[Any] = list(__A ) lowerCAmelCase_ :List[str] = list(__A ) lowerCAmelCase_ :Optional[int] = list(__A ) lowerCAmelCase_ :Optional[int] = xvector_output_dim @property def __lowerCAmelCase ( self ) -> List[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
256
0
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __lowerCamelCase ( _UpperCamelCase : List[Any] ): '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = tokenizer(example['''content'''] , truncation=_UpperCamelCase )['''input_ids'''] UpperCAmelCase_ = len(example['''content'''] ) / len(output['''input_ids'''] ) return output lowercase__ : Union[str, Any] = HfArgumentParser(PretokenizationArguments) lowercase__ : Optional[int] = parser.parse_args() if args.num_workers is None: lowercase__ : str = multiprocessing.cpu_count() lowercase__ : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir) lowercase__ : str = time.time() lowercase__ : List[str] = load_dataset(args.dataset_name, split="train") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') lowercase__ : Tuple = time.time() lowercase__ : Optional[Any] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') lowercase__ : List[str] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
390
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") lowercase__ : List[str] = logging.getLogger(__name__) @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) lowerCAmelCase__ = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase__ = field(default=lowerCamelCase , metadata={'''help''': '''The input training data file (a text file).'''} ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase__ = field( default=lowerCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase__ ( self : Tuple ) ->str: if self.train_file is not None: UpperCAmelCase_ = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCAmelCase_ = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCamelCase : '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = True lowerCAmelCase__ = None lowerCAmelCase__ = None def __call__( self : int , UpperCAmelCase__ : int ) ->List[str]: UpperCAmelCase_ = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCAmelCase_ = [feature.pop(UpperCAmelCase__ ) for feature in features] UpperCAmelCase_ = len(UpperCAmelCase__ ) UpperCAmelCase_ = len(features[0]['''input_ids'''] ) UpperCAmelCase_ = [ [{k: v[i] for k, v in feature.items()} for i in range(UpperCAmelCase__ )] for feature in features ] UpperCAmelCase_ = list(chain(*UpperCAmelCase__ ) ) UpperCAmelCase_ = self.tokenizer.pad( UpperCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten UpperCAmelCase_ = {k: v.view(UpperCAmelCase__ , UpperCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels UpperCAmelCase_ = torch.tensor(UpperCAmelCase__ , dtype=torch.intaa ) return batch def __lowerCamelCase ( ): '''simple docstring''' UpperCAmelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) datasets.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCAmelCase_ = {} if data_args.train_file is not None: UpperCAmelCase_ = data_args.train_file if data_args.validation_file is not None: UpperCAmelCase_ = data_args.validation_file UpperCAmelCase_ = data_args.train_file.split('''.''' )[-1] UpperCAmelCase_ = load_dataset( _UpperCamelCase , data_files=_UpperCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCAmelCase_ = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCAmelCase_ = [F"""ending{i}""" for i in range(4 )] UpperCAmelCase_ = '''sent1''' UpperCAmelCase_ = '''sent2''' if data_args.max_seq_length is None: UpperCAmelCase_ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) UpperCAmelCase_ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) UpperCAmelCase_ = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_UpperCamelCase : List[str] ): UpperCAmelCase_ = [[context] * 4 for context in examples[context_name]] UpperCAmelCase_ = examples[question_header_name] UpperCAmelCase_ = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(_UpperCamelCase ) ] # Flatten out UpperCAmelCase_ = list(chain(*_UpperCamelCase ) ) UpperCAmelCase_ = list(chain(*_UpperCamelCase ) ) # Tokenize UpperCAmelCase_ = tokenizer( _UpperCamelCase , _UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_UpperCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) UpperCAmelCase_ = raw_datasets['''train'''] if data_args.max_train_samples is not None: UpperCAmelCase_ = min(len(_UpperCamelCase ) , data_args.max_train_samples ) UpperCAmelCase_ = train_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): UpperCAmelCase_ = train_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) UpperCAmelCase_ = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: UpperCAmelCase_ = min(len(_UpperCamelCase ) , data_args.max_eval_samples ) UpperCAmelCase_ = eval_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): UpperCAmelCase_ = eval_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCAmelCase_ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_UpperCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_UpperCamelCase : List[str] ): UpperCAmelCase_ , UpperCAmelCase_ = eval_predictions UpperCAmelCase_ = np.argmax(_UpperCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCAmelCase_ = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , compute_metrics=_UpperCamelCase , ) # Training if training_args.do_train: UpperCAmelCase_ = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ = last_checkpoint UpperCAmelCase_ = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCAmelCase_ = train_result.metrics UpperCAmelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase ) ) UpperCAmelCase_ = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''train''' , _UpperCamelCase ) trainer.save_metrics('''train''' , _UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ = trainer.evaluate() UpperCAmelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCamelCase ) UpperCAmelCase_ = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics('''eval''' , _UpperCamelCase ) trainer.save_metrics('''eval''' , _UpperCamelCase ) UpperCAmelCase_ = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) def __lowerCamelCase ( _UpperCamelCase : List[Any] ): '''simple docstring''' main() if __name__ == "__main__": main()
390
1
"""simple docstring""" import os lowercase = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def _lowerCAmelCase ( __lowerCamelCase:str ): '''simple docstring''' __magic_name__ = 0 __magic_name__ = 0 while index < len(__lowerCamelCase ) - 1: __magic_name__ = SYMBOLS[numerals[index]] __magic_name__ = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _lowerCAmelCase ( __lowerCamelCase:int ): '''simple docstring''' __magic_name__ = "" __magic_name__ = num // 1_0_0_0 numerals += m_count * "M" num %= 1_0_0_0 __magic_name__ = num // 1_0_0 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_0_0 __magic_name__ = num // 1_0 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 1_0 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _lowerCAmelCase ( __lowerCamelCase:str = "/p089_roman.txt" ): '''simple docstring''' __magic_name__ = 0 with open(os.path.dirname(__lowerCamelCase ) + roman_numerals_filename ) as filea: __magic_name__ = filea.readlines() for line in lines: __magic_name__ = line.strip() __magic_name__ = parse_roman_numerals(__lowerCamelCase ) __magic_name__ = generate_roman_numerals(__lowerCamelCase ) savings += len(__lowerCamelCase ) - len(__lowerCamelCase ) return savings if __name__ == "__main__": print(f'''{solution() = }''')
468
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase = 250004 lowercase = 250020 @require_sentencepiece @require_tokenizers class A_ ( snake_case_ , unittest.TestCase ): UpperCAmelCase__ = MBartaaTokenizer UpperCAmelCase__ = MBartaaTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = True def _snake_case ( self : Any ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing __magic_name__ = MBartaaTokenizer(__lowerCamelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict ) -> List[Any]: __magic_name__ = "<s>" __magic_name__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def _snake_case ( self : int ) -> Union[str, Any]: __magic_name__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 1_0_5_4 ) def _snake_case ( self : Any ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def _snake_case ( self : str ) -> Optional[Any]: __magic_name__ = MBartaaTokenizer(__lowerCamelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCamelCase ) __magic_name__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __magic_name__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) __magic_name__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __magic_name__ = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def _snake_case ( self : List[str] ) -> List[str]: # fmt: off __magic_name__ = {"input_ids": [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def _snake_case ( self : int ) -> Any: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __magic_name__ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __magic_name__ = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) __magic_name__ = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) __magic_name__ = tempfile.mkdtemp() __magic_name__ = tokenizer_r.save_pretrained(__lowerCamelCase ) __magic_name__ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) __magic_name__ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way __magic_name__ = tokenizer_r.from_pretrained(__lowerCamelCase ) __magic_name__ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True __magic_name__ = tempfile.mkdtemp() __magic_name__ = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) __magic_name__ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way __magic_name__ = tokenizer_r.from_pretrained(__lowerCamelCase ) __magic_name__ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False __magic_name__ = tempfile.mkdtemp() __magic_name__ = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) __magic_name__ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __magic_name__ = tokenizer_r.from_pretrained(__lowerCamelCase ) __magic_name__ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): UpperCAmelCase__ = '''facebook/mbart-large-50-one-to-many-mmt''' UpperCAmelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] UpperCAmelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] UpperCAmelCase__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def _snake_case ( cls : Any ) -> Dict: __magic_name__ = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) __magic_name__ = 1 return cls def _snake_case ( self : Any ) -> Dict: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 2_5_0_0_3_8 ) def _snake_case ( self : Any ) -> str: __magic_name__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) def _snake_case ( self : Any ) -> List[str]: self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids ) __magic_name__ = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] __magic_name__ = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) __magic_name__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase ) def _snake_case ( self : int ) -> List[str]: __magic_name__ = ["this is gunna be a long sentence " * 2_0] assert isinstance(src_text[0] , __lowerCamelCase ) __magic_name__ = 1_0 __magic_name__ = self.tokenizer(__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ).input_ids[0] self.assertEqual(ids[0] , __lowerCamelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) def _snake_case ( self : str ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def _snake_case ( self : Any ) -> str: __magic_name__ = tempfile.mkdtemp() __magic_name__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCamelCase ) __magic_name__ = MBartaaTokenizer.from_pretrained(__lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCamelCase ) @require_torch def _snake_case ( self : int ) -> Dict: __magic_name__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , return_tensors="pt" ) __magic_name__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _snake_case ( self : Dict ) -> Tuple: __magic_name__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __magic_name__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) __magic_name__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _snake_case ( self : Optional[int] ) -> Dict: __magic_name__ = self.tokenizer(self.src_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=3 , return_tensors="pt" ) __magic_name__ = self.tokenizer( text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=1_0 , return_tensors="pt" ) __magic_name__ = targets["input_ids"] __magic_name__ = shift_tokens_right(__lowerCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def _snake_case ( self : Optional[int] ) -> Tuple: __magic_name__ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { # en_XX, A, test, EOS "input_ids": [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 2_5_0_0_0_1, } , )
468
1
from datetime import datetime import matplotlib.pyplot as plt import torch def _lowerCamelCase ( snake_case ): for param in module.parameters(): _lowerCAmelCase = False def _lowerCamelCase ( ): _lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _lowerCAmelCase = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def _lowerCamelCase ( snake_case ): _lowerCAmelCase = plt.imshow(snake_case ) fig.axes.get_xaxis().set_visible(snake_case ) fig.axes.get_yaxis().set_visible(snake_case ) plt.show() def _lowerCamelCase ( ): _lowerCAmelCase = datetime.now() _lowerCAmelCase = current_time.strftime('%H:%M:%S' ) return timestamp
192
def _lowerCamelCase ( snake_case ): assert ( isinstance(snake_case , snake_case ) and number_of_steps > 0 ), F'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 _lowerCAmelCase , _lowerCAmelCase = 1, 1 for _ in range(number_of_steps - 1 ): _lowerCAmelCase , _lowerCAmelCase = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
192
1
from __future__ import annotations def A(__a: list , __a: int ): # Checks if the entire collection has been sorted if len(__a ) <= 1 or n <= 1: return insert_next(__a , n - 1 ) rec_insertion_sort(__a , n - 1 ) def A(__a: list , __a: int ): # Checks order between adjacent elements if index >= len(__a ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowerCAmelCase_ , lowerCAmelCase_ = ( collection[index], collection[index - 1], ) insert_next(__a , index + 1 ) if __name__ == "__main__": lowerCamelCase__ = input('''Enter integers separated by spaces: ''') lowerCamelCase__ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
226
from __future__ import annotations from functools import lru_cache from math import ceil lowerCamelCase__ = 1_00 lowerCamelCase__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCamelCase__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def A(__a: int ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase_ = set() lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A(__a: int = 5000 ): for number_to_partition in range(1 , __a ): if len(partition(__a ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
226
1
from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase )-> bool: '''simple docstring''' return len(set(snake_case_ ) ) == len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
393
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Dict = """philschmid/bart-large-cnn-samsum""" _SCREAMING_SNAKE_CASE : Optional[Any] = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) _SCREAMING_SNAKE_CASE : Tuple = """summarizer""" _SCREAMING_SNAKE_CASE : Any = AutoTokenizer _SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForSeqaSeqLM _SCREAMING_SNAKE_CASE : int = ["""text"""] _SCREAMING_SNAKE_CASE : List[Any] = ["""text"""] def a ( self : int , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: return self.pre_processor(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" , truncation=SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: return self.model.generate(**SCREAMING_SNAKE_CASE__ )[0] def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: return self.pre_processor.decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ )
427
0
'''simple docstring''' from PIL import Image def __A ( a_ : Image ): lowerCAmelCase , lowerCAmelCase : List[Any] = image.size lowerCAmelCase : str = 0 lowerCAmelCase : Dict = image.load() for i in range(a_ ): for j in range(a_ ): lowerCAmelCase : str = pixels[j, i] mean += pixel mean //= width * height for j in range(a_ ): for i in range(a_ ): lowerCAmelCase : Optional[int] = 2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": lowerCAmelCase = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
551
'''simple docstring''' def __A ( a_ : int ): assert ( isinstance(a_ ,a_ ) and number_of_steps > 0 ), f'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 lowerCAmelCase , lowerCAmelCase : int = 1, 1 for _ in range(number_of_steps - 1 ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
551
1
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record SCREAMING_SNAKE_CASE = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' SCREAMING_SNAKE_CASE = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' SCREAMING_SNAKE_CASE = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def _lowerCamelCase ( __A : Dict , __A : Any ) -> Tuple: return float((preds == labels).mean() ) def _lowerCamelCase ( __A : Dict , __A : Any , __A : str="binary" ) -> Tuple: _UpperCAmelCase : Optional[Any] = simple_accuracy(__A , __A ) _UpperCAmelCase : Union[str, Any] = float(fa_score(y_true=__A , y_pred=__A , average=__A ) ) return { "accuracy": acc, "f1": fa, } def _lowerCamelCase ( __A : str , __A : Dict ) -> str: _UpperCAmelCase : Any = {} for id_pred, label in zip(__A , __A ): _UpperCAmelCase : Tuple = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' _UpperCAmelCase : Tuple = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _UpperCAmelCase : str = [(pred, label)] _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = [], [] for question, preds_labels in question_map.items(): _UpperCAmelCase , _UpperCAmelCase : Tuple = zip(*__A ) _UpperCAmelCase : Dict = fa_score(y_true=__A , y_pred=__A , average='''macro''' ) fas.append(__A ) _UpperCAmelCase : int = int(sum(pred == label for pred, label in preds_labels ) == len(__A ) ) ems.append(__A ) _UpperCAmelCase : List[Any] = float(sum(__A ) / len(__A ) ) _UpperCAmelCase : Any = sum(__A ) / len(__A ) _UpperCAmelCase : List[str] = float(fa_score(y_true=__A , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def snake_case__ ( self) -> List[Any]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types()) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , ) def snake_case__ ( self) -> Dict: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64'''), "query": datasets.Value('''int64'''), }, "prediction_text": datasets.Value('''string'''), }, "references": { "idx": { "passage": datasets.Value('''int64'''), "query": datasets.Value('''int64'''), }, "answers": datasets.Sequence(datasets.Value('''string''')), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64'''), "paragraph": datasets.Value('''int64'''), "question": datasets.Value('''int64'''), }, "prediction": datasets.Value('''int64'''), }, "references": datasets.Value('''int64'''), } else: return { "predictions": datasets.Value('''int64'''), "references": datasets.Value('''int64'''), } def snake_case__ ( self , _A , _A) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_A , _A)} elif self.config_name == "cb": return acc_and_fa(_A , _A , fa_avg='''macro''') elif self.config_name == "record": _UpperCAmelCase : Tuple = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _UpperCAmelCase : int = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(_A , _A)[0] elif self.config_name == "multirc": return evaluate_multirc(_A , _A) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_A , _A)} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''')
485
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = "switch_transformers" _SCREAMING_SNAKE_CASE : int = ["past_key_values"] _SCREAMING_SNAKE_CASE : Optional[Any] = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _A=32128 , _A=768 , _A=64 , _A=2048 , _A=64 , _A=12 , _A=3 , _A=12 , _A=3 , _A=12 , _A=8 , _A=False , _A=0.01 , _A="float32" , _A=False , _A=32 , _A=128 , _A=0.1 , _A=1e-6 , _A=0.001 , _A=0.001 , _A=1.0 , _A="relu" , _A=True , _A=False , _A=True , _A=0 , _A=1 , **_A , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Tuple = d_model _UpperCAmelCase : Dict = d_kv _UpperCAmelCase : str = d_ff _UpperCAmelCase : int = num_sparse_encoder_layers _UpperCAmelCase : Dict = num_layers _UpperCAmelCase : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _UpperCAmelCase : Dict = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _UpperCAmelCase : int = self.num_layers // self.num_sparse_encoder_layers else: _UpperCAmelCase : Optional[int] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _UpperCAmelCase : Optional[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: _UpperCAmelCase : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers _UpperCAmelCase : Any = num_heads _UpperCAmelCase : List[Any] = num_experts _UpperCAmelCase : List[str] = expert_capacity _UpperCAmelCase : List[str] = router_bias _UpperCAmelCase : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''') _UpperCAmelCase : List[str] = router_dtype _UpperCAmelCase : Any = router_ignore_padding_tokens _UpperCAmelCase : Optional[Any] = relative_attention_num_buckets _UpperCAmelCase : Optional[int] = relative_attention_max_distance _UpperCAmelCase : List[Any] = dropout_rate _UpperCAmelCase : Optional[int] = layer_norm_epsilon _UpperCAmelCase : Union[str, Any] = initializer_factor _UpperCAmelCase : int = feed_forward_proj _UpperCAmelCase : List[str] = use_cache _UpperCAmelCase : Optional[int] = add_router_probs _UpperCAmelCase : Optional[int] = router_z_loss_coef _UpperCAmelCase : List[str] = router_aux_loss_coef _UpperCAmelCase : Union[str, Any] = self.feed_forward_proj.split('''-''') _UpperCAmelCase : int = act_info[-1] _UpperCAmelCase : int = act_info[0] == '''gated''' if len(_A) > 1 and act_info[0] != "gated" or len(_A) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''') # for backwards compatibility if feed_forward_proj == "gated-gelu": _UpperCAmelCase : Optional[Any] = '''gelu_new''' super().__init__( pad_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , **_A , )
485
1
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : Optional[Any] = DDIMPipeline snake_case__ : Dict = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ : List[Any] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } snake_case__ : Tuple = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS snake_case__ : int = False def _A ( self : List[str] ): torch.manual_seed(0 ) UpperCamelCase :Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) UpperCamelCase :Tuple = DDIMScheduler() UpperCamelCase :Optional[Any] = {"""unet""": unet, """scheduler""": scheduler} return components def _A ( self : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any]=0 ): if str(__lowerCamelCase ).startswith("""mps""" ): UpperCamelCase :int = torch.manual_seed(__lowerCamelCase ) else: UpperCamelCase :int = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase :Optional[Any] = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def _A ( self : Optional[Any] ): UpperCamelCase :Union[str, Any] = """cpu""" UpperCamelCase :int = self.get_dummy_components() UpperCamelCase :Optional[Any] = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Tuple = self.get_dummy_inputs(__lowerCamelCase ) UpperCamelCase :Tuple = pipe(**__lowerCamelCase ).images UpperCamelCase :Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) UpperCamelCase :Any = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) UpperCamelCase :Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) def _A ( self : int ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _A ( self : Any ): super().test_save_load_local(expected_max_difference=3E-3 ) def _A ( self : List[Any] ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def _A ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Tuple ): UpperCamelCase :str = """google/ddpm-cifar10-32""" UpperCamelCase :int = UNetaDModel.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[Any] = DDIMScheduler() UpperCamelCase :int = DDIMPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) ddim.to(__lowerCamelCase ) ddim.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Tuple = torch.manual_seed(0 ) UpperCamelCase :Dict = ddim(generator=__lowerCamelCase , eta=0.0 , output_type="""numpy""" ).images UpperCamelCase :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase :Dict = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _A ( self : int ): UpperCamelCase :Optional[Any] = """google/ddpm-ema-bedroom-256""" UpperCamelCase :Optional[Any] = UNetaDModel.from_pretrained(__lowerCamelCase ) UpperCamelCase :Union[str, Any] = DDIMScheduler.from_pretrained(__lowerCamelCase ) UpperCamelCase :Optional[int] = DDIMPipeline(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) ddpm.to(__lowerCamelCase ) ddpm.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase :Dict = torch.manual_seed(0 ) UpperCamelCase :Any = ddpm(generator=__lowerCamelCase , output_type="""numpy""" ).images UpperCamelCase :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase :List[str] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
707
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> Any: """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(__magic_name__ ): return ext raise Exception( f"""Unable to determine file format from file extension {path}. """ f"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[str] ) -> List[Any]: """simple docstring""" UpperCamelCase :List[str] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) UpperCamelCase :List[Any] = try_infer_format_from_ext(args.input ) if args.format == """infer""" else args.format UpperCamelCase :Any = PipelineDataFormat.from_str( format=__magic_name__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(__magic_name__ , __magic_name__ ) class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : Tuple , __lowerCamelCase : Pipeline , __lowerCamelCase : PipelineDataFormat ): UpperCamelCase :Optional[Any] = nlp UpperCamelCase :Dict = reader @staticmethod def _A ( __lowerCamelCase : ArgumentParser ): UpperCamelCase :List[Any] = parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=__lowerCamelCase , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=__lowerCamelCase , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=__lowerCamelCase , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=__lowerCamelCase , help="""Name or path to the model's config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=__lowerCamelCase , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=__lowerCamelCase , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=__lowerCamelCase , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=__lowerCamelCase , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=__lowerCamelCase ) def _A ( self : str ): UpperCamelCase , UpperCamelCase :List[Any] = self._nlp, [] for entry in self._reader: UpperCamelCase :List[Any] = nlp(**__lowerCamelCase ) if self._reader.is_multi_columns else nlp(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): outputs.append(__lowerCamelCase ) else: outputs += output # Saving data if self._nlp.binary_output: UpperCamelCase :Union[str, Any] = self._reader.save_binary(__lowerCamelCase ) logger.warning(F"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(__lowerCamelCase )
590
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: lowerCAmelCase_ = None lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } lowerCAmelCase_ = { '''google/fnet-base''': 5_1_2, '''google/fnet-large''': 5_1_2, } lowerCAmelCase_ = '''▁''' class _snake_case( UpperCAmelCase ): __snake_case: Union[str, Any] = VOCAB_FILES_NAMES __snake_case: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __snake_case: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case: List[str] = ['''input_ids''', '''token_type_ids'''] __snake_case: List[Any] = FNetTokenizer def __init__(self : List[Any] , a : str=None , a : str=None , a : Tuple=False , a : Any=True , a : int=True , a : List[str]="<unk>" , a : Dict="[SEP]" , a : Optional[Any]="<pad>" , a : Optional[Any]="[CLS]" , a : Dict="[MASK]" , **a : List[str] , ) -> int: """simple docstring""" A__ = ( AddedToken(a , lstrip=a , rstrip=a , normalized=a ) if isinstance(a , a ) else mask_token ) super().__init__( a , tokenizer_file=a , do_lower_case=a , remove_space=a , keep_accents=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , **a , ) A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = False if not self.vocab_file else True def _UpperCamelCase (self : Tuple , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCamelCase (self : List[str] , a : List[int] , a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase (self : List[str] , a : str , a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ): copyfile(self.vocab_file , a ) return (out_vocab_file,)
531
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCAmelCase_ = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCAmelCase_ = concatenate_datasets lowerCAmelCase_ = DownloadConfig lowerCAmelCase_ = DownloadManager lowerCAmelCase_ = DownloadMode lowerCAmelCase_ = DownloadConfig lowerCAmelCase_ = DownloadMode lowerCAmelCase_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
531
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart lowerCamelCase_ : List[str] = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } lowerCamelCase_ : Union[str, Any] = { 'facebook/bart-base': 10_24, 'facebook/bart-large': 10_24, 'facebook/bart-large-mnli': 10_24, 'facebook/bart-large-cnn': 10_24, 'facebook/bart-large-xsum': 10_24, 'yjernite/bart_eli5': 10_24, } @lru_cache() def UpperCAmelCase__ ( ): """simple docstring""" A_ : List[str] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) A_ : int = bs[:] A_ : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCAmelCase ) cs.append(2**8 + n ) n += 1 A_ : Union[str, Any] = [chr(_UpperCAmelCase ) for n in cs] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Union[str, Any] = set() A_ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A_ : Dict = char return pairs class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Tuple = VOCAB_FILES_NAMES lowercase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Any = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_ , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , **snake_case_ , ): """simple docstring""" A_ : Optional[int] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token A_ : int = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token A_ : Tuple = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token A_ : Dict = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token A_ : int = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token A_ : int = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A_ : List[Any] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding='utf-8' ) as vocab_handle: A_ : Union[str, Any] = json.load(snake_case_ ) A_ : str = {v: k for k, v in self.encoder.items()} A_ : Tuple = errors # how to handle errors in decoding A_ : Tuple = bytes_to_unicode() A_ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(snake_case_ , encoding='utf-8' ) as merges_handle: A_ : List[str] = merges_handle.read().split('\n' )[1:-1] A_ : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] A_ : int = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) A_ : Dict = {} A_ : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A_ : int = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def lowerCamelCase_ ( self ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" if token in self.cache: return self.cache[token] A_ : Any = tuple(snake_case_ ) A_ : Any = get_pairs(snake_case_ ) if not pairs: return token while True: A_ : Optional[int] = min(snake_case_ , key=lambda snake_case_ : self.bpe_ranks.get(snake_case_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A_ , A_ : List[str] = bigram A_ : Optional[Any] = [] A_ : Tuple = 0 while i < len(snake_case_ ): try: A_ : Any = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A_ : Any = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A_ : Optional[Any] = tuple(snake_case_ ) A_ : Optional[Any] = new_word if len(snake_case_ ) == 1: break else: A_ : Any = get_pairs(snake_case_ ) A_ : Any = ' '.join(snake_case_ ) A_ : Any = word return word def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : Any = [] for token in re.findall(self.pat , snake_case_ ): A_ : Union[str, Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(' ' ) ) return bpe_tokens def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" return self.decoder.get(snake_case_ ) def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" A_ : List[str] = ''.join(snake_case_ ) A_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowerCamelCase_ ( self , snake_case_ , snake_case_ = None ): """simple docstring""" if not os.path.isdir(snake_case_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A_ : Optional[Any] = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A_ : int = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + '\n' ) A_ : Dict = 0 with open(snake_case_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) A_ : Optional[Any] = token_index writer.write(' '.join(snake_case_ ) + '\n' ) index += 1 return vocab_file, merge_file def lowerCamelCase_ ( self , snake_case_ , snake_case_ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ : List[str] = [self.cls_token_id] A_ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def lowerCamelCase_ ( self , snake_case_ , snake_case_ = None ): """simple docstring""" A_ : str = [self.sep_token_id] A_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self , snake_case_ , snake_case_=False , **snake_case_ ): """simple docstring""" A_ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): A_ : Optional[Any] = ' ' + text return (text, kwargs)
302
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ : str = logging.get_logger(__name__) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : List[str] = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): A_ : int = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): A_ : List[str] = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 A_ : Union[str, Any] = key[key.find('patch_embed' ) + len('patch_embed' )] A_ : List[str] = key.replace(f"""patch_embed{idx}""" , f"""patch_embeddings.{int(_UpperCAmelCase )-1}""" ) if "norm" in key: A_ : Tuple = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 A_ : Optional[int] = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] A_ : Any = key.replace(f"""layer_norm{idx}""" , f"""layer_norm.{int(_UpperCAmelCase )-1}""" ) if "layer_norm1" in key: A_ : Any = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: A_ : Tuple = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 A_ : List[str] = key[key.find('block' ) + len('block' )] A_ : str = key.replace(f"""block{idx}""" , f"""block.{int(_UpperCAmelCase )-1}""" ) if "attn.q" in key: A_ : List[str] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: A_ : Optional[Any] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: A_ : Optional[int] = key.replace('attn' , 'attention.self' ) if "fc1" in key: A_ : Union[str, Any] = key.replace('fc1' , 'dense1' ) if "fc2" in key: A_ : Optional[Any] = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: A_ : Optional[Any] = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: A_ : int = key.replace('linear_fuse.conv' , 'linear_fuse' ) A_ : Optional[int] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 A_ : List[Any] = key[key.find('linear_c' ) + len('linear_c' )] A_ : Optional[int] = key.replace(f"""linear_c{idx}""" , f"""linear_c.{int(_UpperCAmelCase )-1}""" ) if "bot_conv" in key: A_ : Union[str, Any] = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: A_ : Any = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: A_ : Tuple = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: A_ : Any = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: A_ : int = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: A_ : Optional[Any] = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: A_ : Dict = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): A_ : List[Any] = key.replace('module.last_layer_depth' , 'head.head' ) A_ : Optional[int] = value return new_state_dict def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) A_ : str = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) A_ : List[str] = state_dict.pop(f"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict A_ : List[str] = kv_weight[ : config.hidden_sizes[i], : ] A_ : Dict = kv_bias[: config.hidden_sizes[i]] A_ : str = kv_weight[ config.hidden_sizes[i] :, : ] A_ : List[str] = kv_bias[config.hidden_sizes[i] :] def UpperCAmelCase__ ( ): """simple docstring""" A_ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' A_ : Dict = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return image @torch.no_grad() def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=None ): """simple docstring""" A_ : Tuple = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) A_ : Union[str, Any] = GLPNImageProcessor() # prepare image A_ : int = prepare_img() A_ : Dict = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict A_ : str = torch.load(_UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys A_ : Tuple = rename_keys(_UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(_UpperCAmelCase , _UpperCAmelCase ) # create HuggingFace model and load state dict A_ : int = GLPNForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # forward pass A_ : int = model(_UpperCAmelCase ) A_ : Optional[int] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: A_ : Any = torch.tensor( [[4.4_147, 4.0_873, 4.0_673], [3.7_890, 3.2_881, 3.1_525], [3.7_674, 3.5_423, 3.4_913]] ) elif "kitti" in model_name: A_ : List[str] = torch.tensor( [[3.4_291, 2.7_865, 2.5_151], [3.2_841, 2.7_021, 2.3_502], [3.1_147, 2.4_625, 2.2_481]] ) else: raise ValueError(f"""Unknown model name: {model_name}""" ) A_ : Optional[int] = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , _UpperCAmelCase , atol=1E-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , ) if __name__ == "__main__": lowerCamelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) lowerCamelCase_ : str = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
302
1
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a__ : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=64 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.0_2 , _a=3 , _a=4 , _a=None , ): lowercase : Union[str, Any] = parent lowercase : str = batch_size lowercase : Dict = seq_length lowercase : int = is_training lowercase : Optional[int] = use_input_mask lowercase : Optional[Any] = use_token_type_ids lowercase : Union[str, Any] = use_labels lowercase : List[str] = vocab_size lowercase : Tuple = hidden_size lowercase : Union[str, Any] = embedding_size lowercase : str = num_hidden_layers lowercase : Any = num_attention_heads lowercase : List[Any] = intermediate_size lowercase : List[Any] = hidden_act lowercase : int = hidden_dropout_prob lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : Any = max_position_embeddings lowercase : Any = type_vocab_size lowercase : Tuple = type_sequence_label_size lowercase : Optional[Any] = initializer_range lowercase : Union[str, Any] = num_labels lowercase : Optional[Any] = num_choices lowercase : Optional[Any] = scope def __magic_name__ ( self ): lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Union[str, Any] = None if self.use_input_mask: lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Optional[Any] = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[str] = None lowercase : Dict = None lowercase : Optional[int] = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : int = ids_tensor([self.batch_size] , self.num_choices ) lowercase : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : Tuple = MobileBertModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase : Any = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) lowercase : Union[str, Any] = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) lowercase : Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : List[str] = MobileBertForMaskedLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase : str = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : Optional[Any] = MobileBertForNextSentencePrediction(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase : List[Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : List[Any] = MobileBertForPreTraining(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase : str = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , next_sentence_label=lowerCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : int = MobileBertForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase : Dict = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : Union[str, Any] = self.num_labels lowercase : List[Any] = MobileBertForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase : List[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : Any = self.num_labels lowercase : List[str] = MobileBertForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , _a , _a , _a , _a , _a , _a , _a ): lowercase : List[Any] = self.num_choices lowercase : Union[str, Any] = MobileBertForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : str = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self ): lowercase : Dict = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a__ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, unittest.TestCase ): __lowerCAmelCase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) __lowerCAmelCase = ( { 'feature-extraction': MobileBertModel, 'fill-mask': MobileBertForMaskedLM, 'question-answering': MobileBertForQuestionAnswering, 'text-classification': MobileBertForSequenceClassification, 'token-classification': MobileBertForTokenClassification, 'zero-shot': MobileBertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = True def __magic_name__ ( self , _a , _a , _a=False ): lowercase : int = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class in get_values(lowerCamelCase__ ): lowercase : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase__ ) lowercase : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) return inputs_dict def __magic_name__ ( self ): lowercase : str = MobileBertModelTester(self ) lowercase : Tuple = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __magic_name__ ( self ): self.config_tester.run_common_tests() def __magic_name__ ( self ): lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase__ ) def __magic_name__ ( self ): lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase__ ) def __magic_name__ ( self ): lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase__ ) def __magic_name__ ( self ): lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase__ ) def __magic_name__ ( self ): lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase__ ) def __magic_name__ ( self ): lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase__ ) def __magic_name__ ( self ): lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase__ ) def __magic_name__ ( self ): lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase__ ) def __magic_name__ ( __snake_case : Tuple ) -> int: return torch.tensor( UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ , ) _A : Tuple = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @slow def __magic_name__ ( self ): lowercase : Union[str, Any] = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(lowerCamelCase__ ) lowercase : str = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): lowercase : List[Any] = model(lowerCamelCase__ )[0] lowercase : Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , lowerCamelCase__ ) lowercase : int = torch.tensor( [ [ [-2.4736526E07, 8.2691656E04, 1.6521838E05], [-5.7541704E-01, 3.9056022E00, 4.4011507E00], [2.6047359E00, 1.5677652E00, -1.7324188E-01], ] ] , device=lowerCamelCase__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE lowercase : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) lowercase : List[str] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
361
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
332
0
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = """The Nymphenburg Palace is a beautiful palace in Munich!""" def _lowerCamelCase ( UpperCAmelCase_ : str, UpperCAmelCase_ : str ) -> int: """simple docstring""" A__ = { "attention_cell": "multi_head", "num_layers": 4, "units": 1024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1e-5, "token_type_vocab_size": 2, } A__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py A__ = BERTEncoder( attention_cell=predefined_args["attention_cell"], num_layers=predefined_args["num_layers"], units=predefined_args["units"], hidden_size=predefined_args["hidden_size"], max_length=predefined_args["max_length"], num_heads=predefined_args["num_heads"], scaled=predefined_args["scaled"], dropout=predefined_args["dropout"], output_attention=UpperCAmelCase_, output_all_encodings=UpperCAmelCase_, use_residual=predefined_args["use_residual"], activation=predefined_args.get("activation", "gelu" ), layer_norm_eps=predefined_args.get("layer_norm_eps", UpperCAmelCase_ ), ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later A__ = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab A__ = os.path.join(get_home_dir(), "models" ) A__ = _load_vocab(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, cls=UpperCAmelCase_ ) A__ = nlp.model.BERTModel( UpperCAmelCase_, len(UpperCAmelCase_ ), units=predefined_args["units"], embed_size=predefined_args["embed_size"], embed_dropout=predefined_args["embed_dropout"], word_embed=predefined_args["word_embed"], use_pooler=UpperCAmelCase_, use_token_type_embed=UpperCAmelCase_, token_type_vocab_size=predefined_args["token_type_vocab_size"], use_classifier=UpperCAmelCase_, use_decoder=UpperCAmelCase_, ) original_bort.load_parameters(UpperCAmelCase_, cast_dtype=UpperCAmelCase_, ignore_extra=UpperCAmelCase_ ) A__ = original_bort._collect_params_with_prefix() # Build our config 🤗 A__ = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(UpperCAmelCase_ ), } A__ = BertConfig.from_dict(UpperCAmelCase_ ) A__ = BertForMaskedLM(UpperCAmelCase_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(UpperCAmelCase_ : Any ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : List[Any] ): A__ = hf_param.shape A__ = to_torch(params[gluon_param] ) A__ = gluon_param.shape assert ( shape_hf == shape_gluon ), F"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param A__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight, "word_embed.0.weight" ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight, "encoder.position_weight" ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias, "encoder.layer_norm.beta" ) A__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight, "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) A__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): A__ = hf_bort_model.bert.encoder.layer[i] # self attention A__ = layer.attention.self A__ = check_and_map_params( self_attn.key.bias.data, F"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) A__ = check_and_map_params( self_attn.key.weight.data, F"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) A__ = check_and_map_params( self_attn.query.bias.data, F"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) A__ = check_and_map_params( self_attn.query.weight.data, F"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) A__ = check_and_map_params( self_attn.value.bias.data, F"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) A__ = check_and_map_params( self_attn.value.weight.data, F"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output A__ = layer.attention.output A__ = check_and_map_params( self_output.dense.bias, F"""encoder.transformer_cells.{i}.proj.bias""" ) A__ = check_and_map_params( self_output.dense.weight, F"""encoder.transformer_cells.{i}.proj.weight""" ) A__ = check_and_map_params( self_output.LayerNorm.bias, F"""encoder.transformer_cells.{i}.layer_norm.beta""" ) A__ = check_and_map_params( self_output.LayerNorm.weight, F"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate A__ = layer.intermediate A__ = check_and_map_params( intermediate.dense.bias, F"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) A__ = check_and_map_params( intermediate.dense.weight, F"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output A__ = layer.output A__ = check_and_map_params( bert_output.dense.bias, F"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) A__ = check_and_map_params( bert_output.dense.weight, F"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) A__ = check_and_map_params( bert_output.LayerNorm.bias, F"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) A__ = check_and_map_params( bert_output.LayerNorm.weight, F"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models A__ = RobertaTokenizer.from_pretrained("roberta-base" ) A__ = tokenizer.encode_plus(UpperCAmelCase_ )["input_ids"] # Get gluon output A__ = mx.nd.array([input_ids] ) A__ = original_bort(inputs=UpperCAmelCase_, token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(UpperCAmelCase_ ) A__ = BertModel.from_pretrained(UpperCAmelCase_ ) hf_bort_model.eval() A__ = tokenizer.encode_plus(UpperCAmelCase_, return_tensors="pt" ) A__ = hf_bort_model(**UpperCAmelCase_ )[0] A__ = output_gluon[0].asnumpy() A__ = output_hf[0].detach().numpy() A__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() A__ = np.allclose(UpperCAmelCase_, UpperCAmelCase_, atol=1e-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:", UpperCAmelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
709
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
562
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] ="""▁""" _lowerCAmelCase : Optional[int] ={"""vocab_file""": """spiece.model"""} _lowerCAmelCase : Optional[Any] ={ """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } _lowerCAmelCase : Optional[Any] ={ """google/reformer-crime-and-punishment""": 52_42_88, } class __UpperCamelCase ( _a ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase__ , lowerCamelCase__="</s>" , lowerCamelCase__="<unk>" , lowerCamelCase__=[] , lowerCamelCase__ = None , **lowerCamelCase__ , ): UpperCAmelCase__: Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCAmelCase__: str = vocab_file UpperCAmelCase__: Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) @property def _UpperCAmelCase ( self ): return self.sp_model.get_piece_size() def _UpperCAmelCase ( self ): UpperCAmelCase__: str = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): UpperCAmelCase__: Tuple = self.__dict__.copy() UpperCAmelCase__: int = None return state def __setstate__( self , lowerCamelCase__ ): UpperCAmelCase__: List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__: str = {} UpperCAmelCase__: Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self , lowerCamelCase__ ): return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self , lowerCamelCase__ ): return self.sp_model.piece_to_id(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self , lowerCamelCase__ ): if index < self.sp_model.get_piece_size(): UpperCAmelCase__: Optional[int] = self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) return token def _UpperCAmelCase ( self , lowerCamelCase__ ): UpperCAmelCase__: Union[str, Any] = [] UpperCAmelCase__: str = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token UpperCAmelCase__: List[Any] = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__: List[str] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCAmelCase__: Optional[int] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
113
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __lowerCAmelCase =imread(R"digital_image_processing/image_data/lena_small.jpg") __lowerCAmelCase =cvtColor(img, COLOR_BGR2GRAY) def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = cn.convert_to_negative(_lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def __UpperCamelCase ( ): """simple docstring""" with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(_lowerCAmelCase , 1_10 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() UpperCAmelCase = canny.canny(_lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def __UpperCamelCase ( ): """simple docstring""" assert gg.gaussian_filter(_lowerCAmelCase , 5 , sigma=0.9 ).all() def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) UpperCAmelCase = conv.img_convolve(_lowerCAmelCase , _lowerCAmelCase ).astype(_lowerCAmelCase ) assert res.any() def __UpperCamelCase ( ): """simple docstring""" assert med.median_filter(_lowerCAmelCase , 3 ).any() def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = sob.sobel_filter(_lowerCAmelCase ) assert grad.any() and theta.any() def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = sp.make_sepia(_lowerCAmelCase , 20 ) assert sepia.all() def __UpperCamelCase ( _lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" UpperCAmelCase = bs.Burkes(imread(_lowerCAmelCase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def __UpperCamelCase ( _lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" UpperCAmelCase = rs.NearestNeighbour(imread(_lowerCAmelCase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def __UpperCamelCase ( ): """simple docstring""" UpperCAmelCase = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. UpperCAmelCase = imread(_lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = image[x_coordinate][y_coordinate] UpperCAmelCase = lbp.get_neighbors_pixel( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image UpperCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): UpperCAmelCase = lbp.local_binary_value(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) assert lbp_image.any()
333
0
def A_ ( snake_case : int , snake_case : int ) -> int: '''simple docstring''' __UpperCamelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __UpperCamelCase = n - k # Calculate C(n,k) for i in range(snake_case ): result *= n - i result //= i + 1 return result def A_ ( snake_case : int ) -> int: '''simple docstring''' return binomial_coefficient(2 * node_count , snake_case ) // (node_count + 1) def A_ ( snake_case : int ) -> int: '''simple docstring''' if n < 0: raise ValueError('''factorial() not defined for negative values''' ) __UpperCamelCase = 1 for i in range(1 , n + 1 ): result *= i return result def A_ ( snake_case : int ) -> int: '''simple docstring''' return catalan_number(snake_case ) * factorial(snake_case ) if __name__ == "__main__": lowercase__ : List[str] = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( F"Given {node_count} nodes, there are {binary_tree_count(node_count)} " F"binary trees and {catalan_number(node_count)} binary search trees." )
451
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=32 * 8 , SCREAMING_SNAKE_CASE_=32 * 8 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=64 , )-> Dict: '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = is_training __UpperCamelCase = use_auxiliary_loss __UpperCamelCase = num_queries __UpperCamelCase = num_channels __UpperCamelCase = min_size __UpperCamelCase = max_size __UpperCamelCase = num_labels __UpperCamelCase = hidden_dim __UpperCamelCase = hidden_dim def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE_ ) > 0.5 ).float() __UpperCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=SCREAMING_SNAKE_CASE_ ) > 0.5).long() __UpperCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __UpperCamelCase = self.num_queries __UpperCamelCase = self.num_labels __UpperCamelCase = [1, 1, 1, 1] __UpperCamelCase = self.num_channels __UpperCamelCase = 64 __UpperCamelCase = 128 __UpperCamelCase = self.hidden_dim __UpperCamelCase = self.hidden_dim __UpperCamelCase = self.hidden_dim return config def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' __UpperCamelCase = output.encoder_hidden_states __UpperCamelCase = output.pixel_decoder_hidden_states __UpperCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) , config.decoder_layers ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False )-> Tuple: '''simple docstring''' with torch.no_grad(): __UpperCamelCase = MaskaFormerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __UpperCamelCase = model(pixel_values=SCREAMING_SNAKE_CASE_ , pixel_mask=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' __UpperCamelCase = MaskaFormerForUniversalSegmentation(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __UpperCamelCase = model(pixel_values=SCREAMING_SNAKE_CASE_ , pixel_mask=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model( pixel_values=SCREAMING_SNAKE_CASE_ , pixel_mask=SCREAMING_SNAKE_CASE_ , mask_labels=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" _snake_case = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _snake_case = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self )-> Optional[Any]: '''simple docstring''' __UpperCamelCase = MaskaFormerModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self )-> int: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def A__ ( self )-> Any: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def A__ ( self )-> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def A__ ( self )-> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def A__ ( self )-> List[str]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def A__ ( self )-> Dict: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A__ ( self )-> str: '''simple docstring''' pass def A__ ( self )-> str: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @slow def A__ ( self )-> Any: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __UpperCamelCase = MaskaFormerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Optional[int]: '''simple docstring''' __UpperCamelCase = (self.model_tester.min_size,) * 2 __UpperCamelCase = { '''pixel_values''': torch.randn((2, 3, *size) , device=SCREAMING_SNAKE_CASE_ ), '''mask_labels''': torch.randn((2, 10, *size) , device=SCREAMING_SNAKE_CASE_ ), '''class_labels''': torch.zeros(2 , 10 , device=SCREAMING_SNAKE_CASE_ ).long(), } __UpperCamelCase = self.model_tester.get_config() __UpperCamelCase = MaskaFormerForUniversalSegmentation(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None ) def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) def A__ ( self )-> Any: '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.attentions is not None ) def A__ ( self )-> Any: '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase = self.all_model_classes[1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , mask_labels=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ ).loss loss.backward() def A__ ( self )-> Tuple: '''simple docstring''' __UpperCamelCase = self.all_model_classes[1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) model.train() __UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , mask_labels=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __UpperCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __UpperCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __UpperCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase__ : Any = 1e-4 def A_ ( ) -> List[Any]: '''simple docstring''' __UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self )-> List[Any]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self )-> Any: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self )-> List[str]: '''simple docstring''' __UpperCamelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_ , (1, 3, 384, 384) ) with torch.no_grad(): __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def A__ ( self )-> List[Any]: '''simple docstring''' __UpperCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_ , (1, 3, 384, 384) ) with torch.no_grad(): __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) # masks_queries_logits __UpperCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __UpperCamelCase = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] __UpperCamelCase = torch.tensor(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) # class_queries_logits __UpperCamelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __UpperCamelCase = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def A__ ( self )-> str: '''simple docstring''' __UpperCamelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() __UpperCamelCase = self.default_image_processor __UpperCamelCase = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) __UpperCamelCase = inputs['''pixel_values'''].to(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs['''mask_labels''']] __UpperCamelCase = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs['''class_labels''']] with torch.no_grad(): __UpperCamelCase = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None )
451
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class A : lowercase_ = 42 lowercase_ = 42 class A : def __init__( self : Optional[Any] , lowerCAmelCase_ : int ) -> str: """simple docstring""" _a = [[] for _ in range(lowerCAmelCase_ )] _a = size def __getitem__( self : Any , lowerCAmelCase_ : int ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def __lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" return self._size def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> Dict: """simple docstring""" if weight not in (0, 1): raise ValueError('''Edge weight must be either 0 or 1.''' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('''Vertex indexes must be in [0; size).''' ) self._graph[from_vertex].append(Edge(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> int | None: """simple docstring""" _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('''No path from start_vertex to finish_vertex.''' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
22
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {"vocab_file": "sentencepiece.model"} _UpperCamelCase = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } _UpperCamelCase = { "google/rembert": 2_56, } class __UpperCAmelCase (__A ): '''simple docstring''' _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , snake_case_ , snake_case_=False , snake_case_=True , snake_case_=True , snake_case_="[CLS]" , snake_case_="[SEP]" , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , **snake_case_ , ): '''simple docstring''' super().__init__( do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) A__ : List[Any] = do_lower_case A__ : Dict = remove_space A__ : Optional[int] = keep_accents A__ : Tuple = vocab_file A__ : List[str] = spm.SentencePieceProcessor() self.sp_model.Load(snake_case_ ) @property def lowerCamelCase ( self ): '''simple docstring''' return len(self.sp_model ) def lowerCamelCase ( self ): '''simple docstring''' A__ : Optional[Any] = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' A__ : str = self.__dict__.copy() A__ : Tuple = None return state def __setstate__( self , snake_case_ ): '''simple docstring''' A__ : Dict = d A__ : int = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowerCamelCase ( self , snake_case_ , snake_case_=False ): '''simple docstring''' A__ : Tuple = self.sp_model.EncodeAsPieces(snake_case_ ) return pieces def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' return self.sp_model.PieceToId(snake_case_ ) def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' return self.sp_model.IdToPiece(snake_case_ ) def lowerCamelCase ( self , snake_case_ ): '''simple docstring''' A__ : str = self.sp_model.decode_pieces(snake_case_ ) return out_string def lowerCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' A__ : List[Any] = [self.sep_token_id] A__ : str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case_ )) + [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1] def lowerCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' A__ : int = [self.sep_token_id] A__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error("""Vocabulary path ({}) should be a directory""".format(snake_case_ ) ) return A__ : Any = os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
363
0
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self ,UpperCamelCase ,UpperCamelCase=13 ,UpperCamelCase=32 ,UpperCamelCase=2 ,UpperCamelCase=3 ,UpperCamelCase=16 ,UpperCamelCase=[32, 64, 128] ,UpperCamelCase=[1, 2, 1] ,UpperCamelCase=[2, 2, 4] ,UpperCamelCase=2 ,UpperCamelCase=2.0 ,UpperCamelCase=True ,UpperCamelCase=0.0 ,UpperCamelCase=0.0 ,UpperCamelCase=0.1 ,UpperCamelCase="gelu" ,UpperCamelCase=False ,UpperCamelCase=True ,UpperCamelCase=0.02 ,UpperCamelCase=1E-5 ,UpperCamelCase=True ,UpperCamelCase=None ,UpperCamelCase=True ,UpperCamelCase=10 ,UpperCamelCase=8 ,UpperCamelCase=["stage1", "stage2"] ,UpperCamelCase=[1, 2] ,) -> Optional[Any]: snake_case__ :int = parent snake_case__ :Tuple = batch_size snake_case__ :int = image_size snake_case__ :Any = patch_size snake_case__ :Any = num_channels snake_case__ :Union[str, Any] = embed_dim snake_case__ :Any = hidden_sizes snake_case__ :Dict = depths snake_case__ :int = num_heads snake_case__ :int = window_size snake_case__ :Optional[int] = mlp_ratio snake_case__ :List[str] = qkv_bias snake_case__ :Optional[Any] = hidden_dropout_prob snake_case__ :Optional[int] = attention_probs_dropout_prob snake_case__ :Optional[Any] = drop_path_rate snake_case__ :Optional[int] = hidden_act snake_case__ :str = use_absolute_embeddings snake_case__ :Any = patch_norm snake_case__ :int = layer_norm_eps snake_case__ :str = initializer_range snake_case__ :Tuple = is_training snake_case__ :Any = scope snake_case__ :Any = use_labels snake_case__ :List[Any] = type_sequence_label_size snake_case__ :List[str] = encoder_stride snake_case__ :str = out_features snake_case__ :List[str] = out_indices def lowerCAmelCase_ ( self ) -> int: snake_case__ :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ :Dict = None if self.use_labels: snake_case__ :Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ :Any = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self ) -> Union[str, Any]: return FocalNetConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_heads=self.num_heads ,window_size=self.window_size ,mlp_ratio=self.mlp_ratio ,qkv_bias=self.qkv_bias ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,drop_path_rate=self.drop_path_rate ,hidden_act=self.hidden_act ,use_absolute_embeddings=self.use_absolute_embeddings ,path_norm=self.patch_norm ,layer_norm_eps=self.layer_norm_eps ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,out_features=self.out_features ,out_indices=self.out_indices ,) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: snake_case__ :List[Any] = FocalNetModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Any = model(UpperCamelCase ) snake_case__ :Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case__ :Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]: snake_case__ :List[Any] = FocalNetBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :List[str] = model(UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) ) self.parent.assertListEqual(model.channels ,config.hidden_sizes[:-1] ) # verify backbone works with out_features=None snake_case__ :Optional[int] = None snake_case__ :Union[str, Any] = FocalNetBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :Tuple = model(UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) ,1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) ,1 ) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int: snake_case__ :Any = FocalNetForMaskedImageModeling(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :str = model(UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case__ :Union[str, Any] = 1 snake_case__ :str = FocalNetForMaskedImageModeling(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ :Optional[int] = model(UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: snake_case__ :List[Any] = self.type_sequence_label_size snake_case__ :int = FocalNetForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :str = model(UpperCamelCase ,labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case__ :List[str] = 1 snake_case__ :Union[str, Any] = FocalNetForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() snake_case__ :str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ :Union[str, Any] = model(UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self ) -> Any: snake_case__ :List[str] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ :str = config_and_inputs snake_case__ :Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _A , _A , unittest.TestCase ): _A = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) _A = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) _A = False _A = False _A = False _A = False _A = False def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case__ :Any = FocalNetModelTester(self ) snake_case__ :Any = ConfigTester(self ,config_class=UpperCamelCase ,embed_dim=37 ,has_text_modality=UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self ) -> str: return def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> str: snake_case__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: snake_case__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[str]: snake_case__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowerCAmelCase_ ( self ) -> Dict: pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowerCAmelCase_ ( self ) -> List[Any]: pass def lowerCAmelCase_ ( self ) -> Dict: snake_case__ , snake_case__ :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: snake_case__ :List[Any] = model_class(UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) snake_case__ :Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase ,nn.Linear ) ) def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: snake_case__ :Union[str, Any] = model_class(UpperCamelCase ) snake_case__ :int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ :Tuple = [*signature.parameters.keys()] snake_case__ :List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[int]: snake_case__ :List[str] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): snake_case__ :Any = model(**self._prepare_for_class(UpperCamelCase ,UpperCamelCase ) ) snake_case__ :Optional[int] = outputs.hidden_states snake_case__ :Union[str, Any] = getattr( self.model_tester ,"expected_num_hidden_layers" ,len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase ) ,UpperCamelCase ) # FocalNet has a different seq_length snake_case__ :List[str] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ :Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) snake_case__ :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase ) ,UpperCamelCase ) snake_case__ , snake_case__ , snake_case__ , snake_case__ :Dict = reshaped_hidden_states[0].shape snake_case__ :Any = ( reshaped_hidden_states[0].view(UpperCamelCase ,UpperCamelCase ,height * width ).permute(0 ,2 ,1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) ,[num_patches, self.model_tester.embed_dim] ,) def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: snake_case__ :List[Any] = True self.check_hidden_states_output(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ :Any = True self.check_hidden_states_output(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case__ , snake_case__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :List[Any] = 3 snake_case__ :List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size ,collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case__ :Optional[int] = ( config.patch_size if isinstance(config.patch_size ,collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case__ :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case__ :Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: snake_case__ :Tuple = True self.check_hidden_states_output(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,(padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case__ :int = True self.check_hidden_states_output(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,(padded_height, padded_width) ) @slow def lowerCAmelCase_ ( self ) -> str: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ :Tuple = FocalNetModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowerCAmelCase_ ( self ) -> str: snake_case__ , snake_case__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ :int = _config_zero_init(UpperCamelCase ) for model_class in self.all_model_classes: snake_case__ :Dict = model_class(config=UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=f'Parameter {name} of model {model_class} seems not properly initialized' ,) @require_vision @require_torch class _snake_case ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> Union[str, Any]: # TODO update organization return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :str = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCamelCase ) snake_case__ :Optional[int] = self.default_image_processor snake_case__ :Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) snake_case__ :int = image_processor(images=UpperCamelCase ,return_tensors="pt" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): snake_case__ :Union[str, Any] = model(**UpperCamelCase ) # verify the logits snake_case__ :Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,UpperCamelCase ) snake_case__ :Union[str, Any] = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,UpperCamelCase ,atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() ,281 ) @require_torch class _snake_case ( _A , unittest.TestCase ): _A = (FocalNetBackbone,) if is_torch_available() else () _A = FocalNetConfig _A = False def lowerCAmelCase_ ( self ) -> Optional[int]: snake_case__ :Any = FocalNetModelTester(self )
57
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def lowercase_ ( __snake_case : Any , __snake_case : Any ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = b.T snake_case__ :Optional[Any] = np.sum(np.square(__snake_case ) , axis=1 ) snake_case__ :Tuple = np.sum(np.square(__snake_case ) , axis=0 ) snake_case__ :Union[str, Any] = np.matmul(__snake_case , __snake_case ) snake_case__ :Union[str, Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase_ ( __snake_case : Optional[Any] , __snake_case : int ) -> Any: '''simple docstring''' snake_case__ :Optional[Any] = x.reshape(-1 , 3 ) snake_case__ :List[str] = squared_euclidean_distance(__snake_case , __snake_case ) return np.argmin(__snake_case , axis=1 ) class _snake_case ( _A ): _A = ['pixel_values'] def __init__( self ,UpperCamelCase = None ,UpperCamelCase = True ,UpperCamelCase = None ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = True ,UpperCamelCase = True ,**UpperCamelCase ,) -> None: super().__init__(**UpperCamelCase ) snake_case__ :List[Any] = size if size is not None else {"height": 256, "width": 256} snake_case__ :str = get_size_dict(UpperCamelCase ) snake_case__ :Dict = np.array(UpperCamelCase ) if clusters is not None else None snake_case__ :str = do_resize snake_case__ :List[str] = size snake_case__ :List[Any] = resample snake_case__ :Union[str, Any] = do_normalize snake_case__ :int = do_color_quantize def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = PILImageResampling.BILINEAR ,UpperCamelCase = None ,**UpperCamelCase ,) -> np.ndarray: snake_case__ :List[str] = get_size_dict(UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( UpperCamelCase ,size=(size["height"], size["width"]) ,resample=UpperCamelCase ,data_format=UpperCamelCase ,**UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,) -> np.ndarray: snake_case__ :Tuple = rescale(image=UpperCamelCase ,scale=1 / 127.5 ,data_format=UpperCamelCase ) snake_case__ :List[Any] = image - 1 return image def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = None ,UpperCamelCase = ChannelDimension.FIRST ,**UpperCamelCase ,) -> PIL.Image.Image: snake_case__ :Optional[int] = do_resize if do_resize is not None else self.do_resize snake_case__ :int = size if size is not None else self.size snake_case__ :Tuple = get_size_dict(UpperCamelCase ) snake_case__ :str = resample if resample is not None else self.resample snake_case__ :Dict = do_normalize if do_normalize is not None else self.do_normalize snake_case__ :Tuple = do_color_quantize if do_color_quantize is not None else self.do_color_quantize snake_case__ :List[Any] = clusters if clusters is not None else self.clusters snake_case__ :str = np.array(UpperCamelCase ) snake_case__ :int = make_list_of_images(UpperCamelCase ) if not valid_images(UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. snake_case__ :Union[str, Any] = [to_numpy_array(UpperCamelCase ) for image in images] if do_resize: snake_case__ :int = [self.resize(image=UpperCamelCase ,size=UpperCamelCase ,resample=UpperCamelCase ) for image in images] if do_normalize: snake_case__ :Any = [self.normalize(image=UpperCamelCase ) for image in images] if do_color_quantize: snake_case__ :Optional[Any] = [to_channel_dimension_format(UpperCamelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) snake_case__ :Union[str, Any] = np.array(UpperCamelCase ) snake_case__ :Optional[int] = color_quantize(UpperCamelCase ,UpperCamelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) snake_case__ :List[Any] = images.shape[0] snake_case__ :str = images.reshape(UpperCamelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. snake_case__ :Any = list(UpperCamelCase ) else: snake_case__ :List[str] = [to_channel_dimension_format(UpperCamelCase ,UpperCamelCase ) for image in images] snake_case__ :List[str] = {"input_ids": images} return BatchFeature(data=UpperCamelCase ,tensor_type=UpperCamelCase )
57
1
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowercase ( _UpperCamelCase ): def __init__( self , snake_case , snake_case , snake_case = None , snake_case = None , snake_case = False , **snake_case , ): super().__init__(features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , **_UpperCAmelCase ) snake_case_ = Sql( cache_dir=_UpperCAmelCase , features=_UpperCAmelCase , sql=_UpperCAmelCase , con=_UpperCAmelCase , **_UpperCAmelCase , ) def a ( self ): snake_case_ = None snake_case_ = None snake_case_ = None snake_case_ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , ) # Build dataset for splits snake_case_ = self.builder.as_dataset( split='train' , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class lowercase : def __init__( self , snake_case , snake_case , snake_case , snake_case = None , snake_case = None , **snake_case , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) snake_case_ = dataset snake_case_ = name snake_case_ = con snake_case_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE snake_case_ = num_proc snake_case_ = to_sql_kwargs def a ( self ): snake_case_ = self.to_sql_kwargs.pop('sql' , _UpperCAmelCase ) snake_case_ = self.to_sql_kwargs.pop('con' , _UpperCAmelCase ) snake_case_ = self.to_sql_kwargs.pop('index' , _UpperCAmelCase ) snake_case_ = self._write(index=_UpperCAmelCase , **self.to_sql_kwargs ) return written def a ( self , snake_case ): snake_case_ = args snake_case_ = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs snake_case_ = query_table( table=self.dataset.data , key=slice(_UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) snake_case_ = batch.to_pandas() snake_case_ = df.to_sql(self.name , self.con , index=_UpperCAmelCase , **_UpperCAmelCase ) return num_rows or len(_UpperCAmelCase ) def a ( self , snake_case , **snake_case ): snake_case_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: snake_case_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _UpperCAmelCase , _UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
362
"""simple docstring""" from __future__ import annotations from random import choice def __A ( a_ :Tuple) -> List[str]: return choice(a_) def __A ( a_ :list[int] , a_ :int) -> int: __a : Optional[int] = random_pivot(a_) # partition based on pivot # linear time __a : Union[str, Any] = [e for e in lst if e < pivot] __a : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a_) == k - 1: return pivot # pivot is in elements bigger than k elif len(a_) < k - 1: return kth_number(a_ , k - len(a_) - 1) # pivot is in elements smaller than k else: return kth_number(a_ , a_) if __name__ == "__main__": import doctest doctest.testmod()
52
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class __a ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = ["input_features", "is_longer"] def __init__( self : Union[str, Any] , snake_case_ : str=64 , snake_case_ : Union[str, Any]=4_80_00 , snake_case_ : Dict=4_80 , snake_case_ : List[str]=10 , snake_case_ : Any=10_24 , snake_case_ : Tuple=0.0 , snake_case_ : List[str]=False , snake_case_ : float = 0 , snake_case_ : float = 1_40_00 , snake_case_ : int = None , snake_case_ : str = "fusion" , snake_case_ : str = "repeatpad" , **snake_case_ : List[Any] , )-> List[Any]: super().__init__( feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) __lowerCAmelCase =top_db __lowerCAmelCase =truncation __lowerCAmelCase =padding __lowerCAmelCase =fft_window_size __lowerCAmelCase =(fft_window_size >> 1) + 1 __lowerCAmelCase =hop_length __lowerCAmelCase =max_length_s __lowerCAmelCase =max_length_s * sampling_rate __lowerCAmelCase =sampling_rate __lowerCAmelCase =frequency_min __lowerCAmelCase =frequency_max __lowerCAmelCase =mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm=snake_case_ , mel_scale="""htk""" , ) __lowerCAmelCase =mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm="""slaney""" , mel_scale="""slaney""" , ) def UpperCamelCase ( self : List[Any])-> Dict[str, Any]: __lowerCAmelCase =copy.deepcopy(self.__dict__) __lowerCAmelCase =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCamelCase ( self : str , snake_case_ : np.array , snake_case_ : Optional[np.array] = None)-> np.ndarray: __lowerCAmelCase =spectrogram( snake_case_ , window_function(self.fft_window_size , """hann""") , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case_ , log_mel="""dB""" , ) return log_mel_spectrogram.T def UpperCamelCase ( self : int , snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Any)-> Optional[int]: __lowerCAmelCase =np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk __lowerCAmelCase =[0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk __lowerCAmelCase =[0] # randomly choose index for each part __lowerCAmelCase =np.random.choice(ranges[0]) __lowerCAmelCase =np.random.choice(ranges[1]) __lowerCAmelCase =np.random.choice(ranges[2]) __lowerCAmelCase =mel[idx_front : idx_front + chunk_frames, :] __lowerCAmelCase =mel[idx_middle : idx_middle + chunk_frames, :] __lowerCAmelCase =mel[idx_back : idx_back + chunk_frames, :] __lowerCAmelCase =torch.tensor(mel[None, None, :]) __lowerCAmelCase =torch.nn.functional.interpolate( snake_case_ , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=snake_case_) __lowerCAmelCase =mel_shrink[0][0].numpy() __lowerCAmelCase =np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0) return mel_fusion def UpperCamelCase ( self : Union[str, Any] , snake_case_ : np.array , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : List[Any])-> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": __lowerCAmelCase =True # random crop to max_length (for compatibility) -> this should be handled by self.pad __lowerCAmelCase =len(snake_case_) - max_length __lowerCAmelCase =np.random.randint(0 , overflow + 1) __lowerCAmelCase =waveform[idx : idx + max_length] __lowerCAmelCase =self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney)[None, :] elif truncation == "fusion": __lowerCAmelCase =self._np_extract_fbank_features(snake_case_ , self.mel_filters) __lowerCAmelCase =max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __lowerCAmelCase =mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __lowerCAmelCase =np.stack([mel, mel, mel, mel] , axis=0) __lowerCAmelCase =False else: __lowerCAmelCase =self._random_mel_fusion(snake_case_ , snake_case_ , snake_case_) __lowerCAmelCase =True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""") else: __lowerCAmelCase =False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __lowerCAmelCase =int(max_length / len(snake_case_)) __lowerCAmelCase =np.stack(np.tile(snake_case_ , n_repeat + 1))[:max_length] if padding == "repeatpad": __lowerCAmelCase =int(max_length / len(snake_case_)) __lowerCAmelCase =np.stack(np.tile(snake_case_ , snake_case_)) __lowerCAmelCase =np.pad(snake_case_ , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0) if truncation == "fusion": __lowerCAmelCase =self._np_extract_fbank_features(snake_case_ , self.mel_filters) __lowerCAmelCase =np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0) else: __lowerCAmelCase =self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self : Union[str, Any] , snake_case_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case_ : str = None , snake_case_ : Optional[str] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , snake_case_ : Optional[Union[str, TensorType]] = None , **snake_case_ : Any , )-> BatchFeature: __lowerCAmelCase =truncation if truncation is not None else self.truncation __lowerCAmelCase =padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""") __lowerCAmelCase =isinstance(snake_case_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""") __lowerCAmelCase =is_batched_numpy or ( isinstance(snake_case_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __lowerCAmelCase =[np.asarray(snake_case_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(snake_case_ , np.ndarray): __lowerCAmelCase =np.asarray(snake_case_ , dtype=np.floataa) elif isinstance(snake_case_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __lowerCAmelCase =raw_speech.astype(np.floataa) # always return batch if not is_batched: __lowerCAmelCase =[np.asarray(snake_case_)] # convert to mel spectrogram, truncate and pad if needed. __lowerCAmelCase =[ self._get_input_mel(snake_case_ , max_length if max_length else self.nb_max_samples , snake_case_ , snake_case_) for waveform in raw_speech ] __lowerCAmelCase =[] __lowerCAmelCase =[] for mel, longer in padded_inputs: input_mel.append(snake_case_) is_longer.append(snake_case_) if truncation == "fusion" and sum(snake_case_) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __lowerCAmelCase =np.random.randint(0 , len(snake_case_)) __lowerCAmelCase =True if isinstance(input_mel[0] , snake_case_): __lowerCAmelCase =[np.asarray(snake_case_ , dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool __lowerCAmelCase =[[longer] for longer in is_longer] __lowerCAmelCase ={"""input_features""": input_mel, """is_longer""": is_longer} __lowerCAmelCase =BatchFeature(snake_case_) if return_tensors is not None: __lowerCAmelCase =input_features.convert_to_tensors(snake_case_) return input_features
456
def __lowerCAmelCase ( __lowerCamelCase : int = 3 , __lowerCamelCase : int = 7 , __lowerCamelCase : int = 1000000 ) -> int: __lowerCAmelCase =0 __lowerCAmelCase =1 for current_denominator in range(1 , limit + 1 ): __lowerCAmelCase =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowerCAmelCase =current_numerator __lowerCAmelCase =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_00_00_00))
456
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ = { '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
426
import unittest from knapsack import greedy_knapsack as kp class _A ( unittest.TestCase ): def __a ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase : Dict = [10, 20, 30, 40, 50, 60] lowercase : Union[str, Any] = [2, 4, 6, 8, 10, 12] lowercase : Optional[int] = 100 self.assertEqual(kp.calc_profit(_A , _A , _A ) , 210 ) def __a ( self : Dict ) -> int: """simple docstring""" self.assertRaisesRegex(_A , '''max_weight must greater than zero.''' ) def __a ( self : str ) -> Dict: """simple docstring""" self.assertRaisesRegex(_A , '''Weight can not be negative.''' ) def __a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.assertRaisesRegex(_A , '''Profit can not be negative.''' ) def __a ( self : Tuple ) -> Dict: """simple docstring""" self.assertRaisesRegex(_A , '''max_weight must greater than zero.''' ) def __a ( self : List[str] ) -> List[Any]: """simple docstring""" self.assertRaisesRegex( _A , '''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
217
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __snake_case : Any = logging.get_logger(__name__) set_seed(7_70) __snake_case : Union[str, Any] = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } __snake_case : int = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } __snake_case : Optional[int] = os.path.dirname(os.path.abspath(__file__)) __snake_case : Union[str, Any] = os.path.join(os.path.expanduser("""~"""), """.cache""") __snake_case : Any = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=False ) -> Dict: """simple docstring""" lowerCAmelCase__ = model_type if use_small: key += "_small" return os.path.join(UpperCamelCase_ , REMOTE_MODEL_PATHS[key]['file_name'] ) def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ) -> Union[str, Any]: """simple docstring""" os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) hf_hub_download(repo_id=UpperCamelCase_ , filename=UpperCamelCase_ , local_dir=UpperCamelCase_ ) def _UpperCamelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any=False , UpperCamelCase_ : Union[str, Any]="text" ) -> Optional[Any]: """simple docstring""" if model_type == "text": lowerCAmelCase__ = BarkSemanticModel lowerCAmelCase__ = BarkSemanticConfig lowerCAmelCase__ = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCAmelCase__ = BarkCoarseModel lowerCAmelCase__ = BarkCoarseConfig lowerCAmelCase__ = BarkCoarseGenerationConfig elif model_type == "fine": lowerCAmelCase__ = BarkFineModel lowerCAmelCase__ = BarkFineConfig lowerCAmelCase__ = BarkFineGenerationConfig else: raise NotImplementedError() lowerCAmelCase__ = F"{model_type}_small" if use_small else model_type lowerCAmelCase__ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(UpperCamelCase_ ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['repo_id'] , model_info['file_name'] ) lowerCAmelCase__ = torch.load(UpperCamelCase_ , map_location=UpperCamelCase_ ) # this is a hack lowerCAmelCase__ = checkpoint['model_args'] if "input_vocab_size" not in model_args: lowerCAmelCase__ = model_args['vocab_size'] lowerCAmelCase__ = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCAmelCase__ = model_args.pop('n_head' ) lowerCAmelCase__ = model_args.pop('n_embd' ) lowerCAmelCase__ = model_args.pop('n_layer' ) lowerCAmelCase__ = ConfigClass(**checkpoint['model_args'] ) lowerCAmelCase__ = ModelClass(config=UpperCamelCase_ ) lowerCAmelCase__ = GenerationConfigClass() lowerCAmelCase__ = model_generation_config lowerCAmelCase__ = checkpoint['model'] # fixup checkpoint lowerCAmelCase__ = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(UpperCamelCase_ ): # replace part of the key with corresponding layer name in HF implementation lowerCAmelCase__ = k[len(UpperCamelCase_ ) :] for old_layer_name in new_layer_name_dict: lowerCAmelCase__ = new_k.replace(UpperCamelCase_ , new_layer_name_dict[old_layer_name] ) lowerCAmelCase__ = state_dict.pop(UpperCamelCase_ ) lowerCAmelCase__ = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCAmelCase__ = {k for k in extra_keys if not k.endswith('.attn.bias' )} lowerCAmelCase__ = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCAmelCase__ = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(UpperCamelCase_ ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(UpperCamelCase_ ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) lowerCAmelCase__ = model.num_parameters(exclude_embeddings=UpperCamelCase_ ) lowerCAmelCase__ = checkpoint['best_val_loss'].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(UpperCamelCase_ , 3 )} loss" ) model.eval() model.to(UpperCamelCase_ ) del checkpoint, state_dict return model def _UpperCamelCase ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any=False , UpperCamelCase_ : Optional[int]="text" ) -> Dict: """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCAmelCase__ = 'cpu' # do conversion on cpu lowerCAmelCase__ = _get_ckpt_path(UpperCamelCase_ , use_small=UpperCamelCase_ ) lowerCAmelCase__ = _load_model(UpperCamelCase_ , UpperCamelCase_ , model_type=UpperCamelCase_ , use_small=UpperCamelCase_ ) # load bark initial model lowerCAmelCase__ = _bark_load_model(UpperCamelCase_ , 'cpu' , model_type=UpperCamelCase_ , use_small=UpperCamelCase_ ) if model_type == "text": lowerCAmelCase__ = bark_model['model'] if model.num_parameters(exclude_embeddings=UpperCamelCase_ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model lowerCAmelCase__ = 5 lowerCAmelCase__ = 10 if model_type in ["text", "coarse"]: lowerCAmelCase__ = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowerCAmelCase__ = bark_model(UpperCamelCase_ )[0] lowerCAmelCase__ = model(UpperCamelCase_ ) # take last logits lowerCAmelCase__ = output_new_model_total.logits[:, [-1], :] else: lowerCAmelCase__ = 3 lowerCAmelCase__ = 8 lowerCAmelCase__ = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCAmelCase__ = model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = bark_model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) def _UpperCamelCase ( UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = BarkSemanticConfig.from_pretrained(os.path.join(UpperCamelCase_ , 'config.json' ) ) lowerCAmelCase__ = BarkCoarseConfig.from_pretrained(os.path.join(UpperCamelCase_ , 'config.json' ) ) lowerCAmelCase__ = BarkFineConfig.from_pretrained(os.path.join(UpperCamelCase_ , 'config.json' ) ) lowerCAmelCase__ = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase__ = BarkSemanticModel.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = BarkCoarseModel.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = BarkFineModel.from_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = EncodecModel.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase__ = BarkConfig.from_sub_model_configs( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCAmelCase__ = BarkModel(UpperCamelCase_ ) lowerCAmelCase__ = semantic lowerCAmelCase__ = coarseAcoustic lowerCAmelCase__ = fineAcoustic lowerCAmelCase__ = codec lowerCAmelCase__ = bark_generation_config Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) bark.save_pretrained(UpperCamelCase_ , repo_id=UpperCamelCase_ , push_to_hub=UpperCamelCase_ ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") __snake_case : str = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
711
from typing import Dict, Optional import numpy as np import datasets __snake_case : str = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ __snake_case : Tuple = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ __snake_case : Any = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def _UpperCamelCase ( UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : bool , UpperCamelCase_ : Optional[Dict[int, int]] = None , UpperCamelCase_ : bool = False , ) -> List[Any]: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowerCAmelCase__ = new_id # turn into Numpy arrays lowerCAmelCase__ = np.array(UpperCamelCase_ ) lowerCAmelCase__ = np.array(UpperCamelCase_ ) if reduce_labels: lowerCAmelCase__ = 255 lowerCAmelCase__ = label - 1 lowerCAmelCase__ = 255 lowerCAmelCase__ = label != ignore_index lowerCAmelCase__ = np.not_equal(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = pred_label[mask] lowerCAmelCase__ = np.array(UpperCamelCase_ )[mask] lowerCAmelCase__ = pred_label[pred_label == label] lowerCAmelCase__ = np.histogram(UpperCamelCase_ , bins=UpperCamelCase_ , range=(0, num_labels - 1) )[0] lowerCAmelCase__ = np.histogram(UpperCamelCase_ , bins=UpperCamelCase_ , range=(0, num_labels - 1) )[0] lowerCAmelCase__ = np.histogram(UpperCamelCase_ , bins=UpperCamelCase_ , range=(0, num_labels - 1) )[0] lowerCAmelCase__ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _UpperCamelCase ( UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : bool , UpperCamelCase_ : Optional[Dict[int, int]] = None , UpperCamelCase_ : bool = False , ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase__ = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase__ = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase__ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = intersect_and_union( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _UpperCamelCase ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : bool , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Dict[int, int]] = None , UpperCamelCase_ : bool = False , ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = total_intersect_and_union( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # compute metrics lowerCAmelCase__ = {} lowerCAmelCase__ = total_area_intersect.sum() / total_area_label.sum() lowerCAmelCase__ = total_area_intersect / total_area_union lowerCAmelCase__ = total_area_intersect / total_area_label lowerCAmelCase__ = np.nanmean(UpperCamelCase_ ) lowerCAmelCase__ = np.nanmean(UpperCamelCase_ ) lowerCAmelCase__ = all_acc lowerCAmelCase__ = iou lowerCAmelCase__ = acc if nan_to_num is not None: lowerCAmelCase__ = {metric: np.nan_to_num(UpperCamelCase_ , nan=UpperCamelCase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , ): """simple docstring""" lowerCAmelCase__ = mean_iou( results=_UpperCamelCase , gt_seg_maps=_UpperCamelCase , num_labels=_UpperCamelCase , ignore_index=_UpperCamelCase , nan_to_num=_UpperCamelCase , label_map=_UpperCamelCase , reduce_labels=_UpperCamelCase , ) return iou_result
365
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
101
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case__ : str = logging.get_logger(__name__) def _snake_case (__lowercase): if isinstance(__lowercase , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(__lowercase , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(__lowercase): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""") class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = ["""pixel_values"""] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> None: super().__init__(**_UpperCAmelCase ) UpperCamelCase_ = size if size is not None else {'shortest_edge': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = resample UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_UpperCAmelCase , size['shortest_edge'] , default_to_square=_UpperCAmelCase ) elif "height" in size and "width" in size: UpperCamelCase_ = (size['height'], size['width']) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: UpperCamelCase_ = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> int: return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> np.ndarray: return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase_ = to_numpy_array(_UpperCAmelCase ) if do_resize: UpperCamelCase_ = self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) if do_center_crop: UpperCamelCase_ = self.center_crop(_UpperCAmelCase , size=_UpperCAmelCase ) if do_rescale: UpperCamelCase_ = self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) if do_normalize: UpperCamelCase_ = self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) UpperCamelCase_ = to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) return image def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ) -> PIL.Image.Image: UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_UpperCAmelCase , param_name='crop_size' ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) UpperCamelCase_ = make_batched(_UpperCAmelCase ) UpperCamelCase_ = [ [ self._preprocess_image( image=_UpperCAmelCase , do_resize=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , do_center_crop=_UpperCAmelCase , crop_size=_UpperCAmelCase , do_rescale=_UpperCAmelCase , rescale_factor=_UpperCAmelCase , do_normalize=_UpperCAmelCase , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase , data_format=_UpperCAmelCase , ) for img in video ] for video in videos ] UpperCamelCase_ = {'pixel_values': videos} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
23
0
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _SCREAMING_SNAKE_CASE ( A : str , A : str , **A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = AutoConfig.from_pretrained(A , **A ) __snake_case : Any = AutoModelForSeqaSeqLM.from_config(A ) model.save_pretrained(A ) AutoTokenizer.from_pretrained(A ).save_pretrained(A ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
61
'''simple docstring''' import math class a_ : def __init__(self , __a=0) -> Any: # a graph with Node 0,1,...,N-1 """simple docstring""" __snake_case : List[str] = n __snake_case : Tuple = [ [math.inf for j in range(0 , __a)] for i in range(0 , __a) ] # adjacency matrix for weight __snake_case : Union[str, Any] = [ [math.inf for j in range(0 , __a)] for i in range(0 , __a) ] # dp[i][j] stores minimum distance from i to j def SCREAMING_SNAKE_CASE__ (self , __a , __a , __a) -> Tuple: """simple docstring""" __snake_case : Union[str, Any] = w def SCREAMING_SNAKE_CASE__ (self) -> Tuple: """simple docstring""" for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): __snake_case : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def SCREAMING_SNAKE_CASE__ (self , __a , __a) -> Optional[int]: """simple docstring""" return self.dp[u][v] if __name__ == "__main__": __A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
61
1
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
78
'''simple docstring''' from typing import Any class _a : def __init__( self ,_SCREAMING_SNAKE_CASE ) -> List[str]: _snake_case = data _snake_case = None class _a : def __init__( self ) -> List[Any]: _snake_case = None def _lowercase ( self ) -> str: _snake_case = self.head while temp is not None: print(temp.data ,end=" " ) _snake_case = temp.next print() def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> Dict: _snake_case = Node(_SCREAMING_SNAKE_CASE ) _snake_case = self.head _snake_case = new_node def _lowercase ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: if node_data_a == node_data_a: return else: _snake_case = self.head while node_a is not None and node_a.data != node_data_a: _snake_case = node_a.next _snake_case = self.head while node_a is not None and node_a.data != node_data_a: _snake_case = node_a.next if node_a is None or node_a is None: return _snake_case , _snake_case = node_a.data, node_a.data if __name__ == "__main__": UpperCamelCase_ : str = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
185
0
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup a__ : List[Any] = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] = "dhaka" , SCREAMING_SNAKE_CASE_ : List[Any] = 5 ) -> int: """simple docstring""" UpperCAmelCase = min(_SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse! UpperCAmelCase = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } UpperCAmelCase = requests.get('''https://www.google.com/search''' , params=_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ) UpperCAmelCase = BeautifulSoup(html.text , '''html.parser''' ) UpperCAmelCase = ''''''.join( re.findall(R'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) ) UpperCAmelCase = json.dumps(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = json.loads(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = re.findall( R'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , _SCREAMING_SNAKE_CASE , ) if not matched_google_image_data: return 0 UpperCAmelCase = re.sub( R'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(_SCREAMING_SNAKE_CASE ) , ) UpperCAmelCase = re.findall( R'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , _SCREAMING_SNAKE_CASE , ) for index, fixed_full_res_image in enumerate(_SCREAMING_SNAKE_CASE ): if index >= max_images: return index UpperCAmelCase = bytes(_SCREAMING_SNAKE_CASE , '''ascii''' ).decode( '''unicode-escape''' ) UpperCAmelCase = bytes(_SCREAMING_SNAKE_CASE , '''ascii''' ).decode( '''unicode-escape''' ) UpperCAmelCase = urllib.request.build_opener() UpperCAmelCase = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(_SCREAMING_SNAKE_CASE ) UpperCAmelCase = f"query_{query.replace(' ' , '_' )}" if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 _SCREAMING_SNAKE_CASE , f"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: a__ : Optional[int] = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print('Please provide a search term.') raise
702
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.txt'} a__ : List[str] = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } a__ : Any = { 'facebook/esm2_t6_8M_UR50D': 1_024, 'facebook/esm2_t12_35M_UR50D': 1_024, } def __snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f: UpperCAmelCase = f.read().splitlines() return [l.strip() for l in lines] class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase =VOCAB_FILES_NAMES _lowerCamelCase =PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase =["input_ids", "attention_mask"] def __init__( self : Dict , a__ : Optional[int] , a__ : Optional[Any]="<unk>" , a__ : Any="<cls>" , a__ : Dict="<pad>" , a__ : int="<mask>" , a__ : List[Any]="<eos>" , **a__ : List[Any] , ): super().__init__(**a__ ) UpperCAmelCase = load_vocab_file(a__ ) UpperCAmelCase = dict(enumerate(self.all_tokens ) ) UpperCAmelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCAmelCase = unk_token UpperCAmelCase = cls_token UpperCAmelCase = pad_token UpperCAmelCase = mask_token UpperCAmelCase = eos_token UpperCAmelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __snake_case ( self : int , a__ : int ): return self._id_to_token.get(a__ , self.unk_token ) def __snake_case ( self : int , a__ : str ): return self._token_to_id.get(a__ , self._token_to_id.get(self.unk_token ) ) def __snake_case ( self : Any , a__ : str , **a__ : List[str] ): return text.split() def __snake_case ( self : str , a__ : Tuple=False ): return len(self._id_to_token ) def __snake_case ( self : str ): return {token: i for i, token in enumerate(self.all_tokens )} def __snake_case ( self : int , a__ : str ): return self._token_to_id.get(a__ , self._token_to_id.get(self.unk_token ) ) def __snake_case ( self : Dict , a__ : int ): return self._id_to_token.get(a__ , self.unk_token ) def __snake_case ( self : List[Any] , a__ : List[int] , a__ : Optional[List[int]] = None ): UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __snake_case ( self : Optional[int] , a__ : List , a__ : Optional[List] = None , a__ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCAmelCase = [1] + ([0] * len(a__ )) + [1] if token_ids_a is not None: mask += [0] * len(a__ ) + [1] return mask def __snake_case ( self : Tuple , a__ : List[str] , a__ : Dict ): UpperCAmelCase = os.path.join(a__ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(a__ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __snake_case ( self : Union[str, Any] ): return self.get_vocab_size(with_added_tokens=a__ ) def __snake_case ( self : int , a__ : Union[List[str], List[AddedToken]] , a__ : bool = False ): return super()._add_tokens(a__ , special_tokens=a__ )
570
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ :str = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Dict = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
def _a ( a :list ) -> list: if len(a ) < 2: return collection def circle_sort_util(a :list , a :int , a :int ) -> bool: a = False if low == high: return swapped a = low a = high while left < right: if collection[left] > collection[right]: a , a = ( collection[right], collection[left], ) a = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: a , a = ( collection[right + 1], collection[left], ) a = True a = low + int((high - low) / 2 ) a = circle_sort_util(a , a , a ) a = circle_sort_util(a , mid + 1 , a ) return swapped or left_swap or right_swap a = True while is_not_sorted is True: a = circle_sort_util(a , 0 , len(a ) - 1 ) return collection if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(circle_sort(unsorted))
117
0
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __lowercase ( a : List[str] , a : str , a : str , a : Path , a : str = None , a : str = None , a : str = None , ) -> List[str]: if config_name_or_path is None: __snake_case : List[str] ="facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: __snake_case : List[Any] =generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __snake_case : Optional[Any] =question_encoder_name_or_path __snake_case : Optional[Any] =RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. __snake_case : str =RagConfig.from_pretrained(_A ) __snake_case : Tuple =AutoConfig.from_pretrained(_A ) __snake_case : Tuple =AutoConfig.from_pretrained(_A ) __snake_case : Dict =gen_config __snake_case : Dict =question_encoder_config __snake_case : List[Any] =model_class.from_pretrained_question_encoder_generator( _A , _A , config=_A ) rag_model.save_pretrained(_A ) # Sanity check. model_class.from_pretrained(_A ) # Save tokenizers. __snake_case : Any =AutoTokenizer.from_pretrained(_A ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) __snake_case : List[str] =AutoTokenizer.from_pretrained(_A ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": UpperCamelCase_ : int = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) UpperCamelCase_ : Tuple = parser.parse_args() UpperCamelCase_ : str = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
705
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase_ : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCamelCase_ : Optional[Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, } UpperCamelCase_ : int = { """moussaKam/mbarthez""": 1024, """moussaKam/barthez""": 1024, """moussaKam/barthez-orangesum-title""": 1024, } UpperCamelCase_ : Optional[int] = """▁""" class _lowercase ( lowerCAmelCase ): _a : int = VOCAB_FILES_NAMES _a : int = PRETRAINED_VOCAB_FILES_MAP _a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : str , a : Optional[Any] , a : Optional[Any]="<s>" , a : Dict="</s>" , a : Any="</s>" , a : Optional[int]="<s>" , a : Optional[Any]="<unk>" , a : int="<pad>" , a : Tuple="<mask>" , a : Optional[Dict[str, Any]] = None , **a : List[Any] , ): """simple docstring""" __snake_case : Dict =AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token __snake_case : List[str] ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) __snake_case : Optional[int] =vocab_file __snake_case : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a ) ) __snake_case : Optional[Any] ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} __snake_case : Optional[int] =len(self.sp_model ) - 1 __snake_case : Union[str, Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def _UpperCamelCase ( self : Tuple , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict =[self.cls_token_id] __snake_case : List[str] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCamelCase ( self : str , a : List[int] , a : Optional[List[int]] = None , a : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def _UpperCamelCase ( self : Dict , a : List[int] , a : Optional[List[int]] = None ): """simple docstring""" __snake_case : Optional[int] =[self.sep_token_id] __snake_case : int =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCamelCase ( self : List[Any] ): """simple docstring""" return len(self.sp_model ) def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" __snake_case : List[Any] ={self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self : str , a : str ): """simple docstring""" return self.sp_model.encode(a , out_type=a ) def _UpperCamelCase ( self : int , a : Union[str, Any] ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case : List[Any] =self.sp_model.PieceToId(a ) return spm_id if spm_id else self.unk_token_id def _UpperCamelCase ( self : List[str] , a : Dict ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(a ) def _UpperCamelCase ( self : Optional[int] , a : int ): """simple docstring""" __snake_case : int =[] __snake_case : Optional[int] ='''''' __snake_case : Optional[int] =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a ) + token __snake_case : str =True __snake_case : int =[] else: current_sub_tokens.append(a ) __snake_case : Tuple =False out_string += self.sp_model.decode(a ) return out_string.strip() def __getstate__( self : Optional[int] ): """simple docstring""" __snake_case : List[Any] =self.__dict__.copy() __snake_case : Optional[Any] =None return state def __setstate__( self : Optional[int] , a : Optional[Any] ): """simple docstring""" __snake_case : Any =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __snake_case : Tuple ={} __snake_case : int =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCamelCase ( self : Optional[Any] , a : str , a : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : int =os.path.join( a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , '''wb''' ) as fi: __snake_case : List[Any] =self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
497
0
"""simple docstring""" from math import factorial def lowercase__ ( lowercase_ ,lowercase_ ) -> int: """simple docstring""" if n < k or k < 0: raise ValueError("Please enter positive integers for n and k where n >= k" ) return factorial(lowercase_ ) // (factorial(lowercase_ ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( "If a class of 40 students must be arranged into groups of", f"""4 for group projects, there are {combinations(40, 4)} ways""", "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f"""are {combinations(10, 3)} ways that first, second and""", "third place can be awarded.", )
624
"""simple docstring""" import numpy as np def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = 1e-12 ,lowercase_ = 100 ,) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(lowercase_ )[0] == np.shape(lowercase_ )[1] # Ensure proper dimensionality. assert np.shape(lowercase_ )[0] == np.shape(lowercase_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowercase_ ) == np.iscomplexobj(lowercase_ ) _UpperCamelCase : Dict = np.iscomplexobj(lowercase_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowercase_ ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _UpperCamelCase : List[Any] = False _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : int = 0 _UpperCamelCase : Optional[int] = 1e12 while not convergence: # Multiple matrix by the vector. _UpperCamelCase : Optional[int] = np.dot(lowercase_ ,lowercase_ ) # Normalize the resulting output vector. _UpperCamelCase : List[Any] = w / np.linalg.norm(lowercase_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _UpperCamelCase : Optional[Any] = vector.conj().T if is_complex else vector.T _UpperCamelCase : Dict = np.dot(lowercase_ ,np.dot(lowercase_ ,lowercase_ ) ) # Check convergence. _UpperCamelCase : Optional[int] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _UpperCamelCase : List[Any] = True _UpperCamelCase : Tuple = lambda_ if is_complex: _UpperCamelCase : Tuple = np.real(lambda_ ) return lambda_, vector def lowercase__ ( ) -> None: """simple docstring""" _UpperCamelCase : Dict = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _UpperCamelCase : Optional[int] = np.array([41, 4, 20] ) _UpperCamelCase : Union[str, Any] = real_input_matrix.astype(np.complexaaa ) _UpperCamelCase : int = np.triu(1J * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _UpperCamelCase : Union[str, Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _UpperCamelCase : Dict = real_input_matrix _UpperCamelCase : Any = real_vector elif problem_type == "complex": _UpperCamelCase : int = complex_input_matrix _UpperCamelCase : Union[str, Any] = complex_vector # Our implementation. _UpperCamelCase, _UpperCamelCase : int = power_iteration(lowercase_ ,lowercase_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _UpperCamelCase, _UpperCamelCase : str = np.linalg.eigh(lowercase_ ) # Last eigenvalue is the maximum one. _UpperCamelCase : Any = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _UpperCamelCase : Tuple = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowercase_ ) - np.abs(lowercase_ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
624
1
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : Optional[int] = {'''vocab_file''': '''spiece.model'''} A__ : Dict = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } A__ : Any = { '''google/bigbird-roberta-base''': 4_0_9_6, '''google/bigbird-roberta-large''': 4_0_9_6, '''google/bigbird-base-trivia-itc''': 4_0_9_6, } class snake_case__ ( __a ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ["input_ids", "attention_mask"] A__ = [] def __init__( self : Dict , __a : List[str] , __a : Union[str, Any]="<unk>" , __a : Optional[int]="<s>" , __a : Union[str, Any]="</s>" , __a : int="<pad>" , __a : List[Any]="[SEP]" , __a : Tuple="[MASK]" , __a : Optional[Any]="[CLS]" , __a : List[Any] = None , **__a : str , ) -> None: '''simple docstring''' __snake_case : List[str] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else bos_token __snake_case : Tuple = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else eos_token __snake_case : List[str] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else unk_token __snake_case : List[str] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else pad_token __snake_case : Union[str, Any] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else cls_token __snake_case : Optional[Any] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __snake_case : List[str] = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , ) __snake_case : List[Any] = vocab_file __snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @property def A_ ( self : Dict ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def A_ ( self : Any ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[Any] = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = self.__dict__.copy() __snake_case : Union[str, Any] = None return state def __setstate__( self : str , __a : Optional[int] ) -> List[Any]: '''simple docstring''' __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : List[Any] = {} __snake_case : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self : Dict , __a : Any ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) def A_ ( self : Optional[Any] , __a : Any ) -> Any: '''simple docstring''' return self.sp_model.piece_to_id(lowerCAmelCase_ ) def A_ ( self : List[Any] , __a : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : str = self.sp_model.IdToPiece(lowerCAmelCase_ ) return token def A_ ( self : str , __a : List[Any] ) -> Union[str, Any]: '''simple docstring''' __snake_case : int = [] __snake_case : Optional[Any] = '' __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token __snake_case : List[Any] = True __snake_case : str = [] else: current_sub_tokens.append(lowerCAmelCase_ ) __snake_case : Optional[Any] = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def A_ ( self : Optional[int] , __a : Optional[int] , __a : Dict = False , __a : Dict = None , __a : Union[str, Any] = True , **__a : Dict , ) -> str: '''simple docstring''' __snake_case : Optional[Any] = kwargs.pop('use_source_tokenizer' , lowerCAmelCase_ ) __snake_case : Optional[Any] = self.convert_ids_to_tokens(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __snake_case : Any = [] __snake_case : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase_ ) ) __snake_case : Union[str, Any] = [] sub_texts.append(lowerCAmelCase_ ) else: current_sub_text.append(lowerCAmelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __snake_case : Tuple = re.sub(r' (\[(MASK|SEP)\])' , r'\1' , ' '.join(lowerCAmelCase_ ) ) else: __snake_case : str = ''.join(lowerCAmelCase_ ) __snake_case : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __snake_case : Any = self.clean_up_tokenization(lowerCAmelCase_ ) return clean_text else: return text def A_ ( self : Union[str, Any] , __a : Any , __a : str = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case : str = os.path.join( lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , 'wb' ) as fi: __snake_case : int = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,) def A_ ( self : int , __a : int , __a : str = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Dict = [self.cls_token_id] __snake_case : Dict = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def A_ ( self : Tuple , __a : Union[str, Any] , __a : Union[str, Any] = None , __a : Optional[Any] = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase_ )) + [1] return [1] + ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def A_ ( self : Optional[Any] , __a : List[Any] , __a : int = None ) -> List[int]: '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
719
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def a_ ( _UpperCAmelCase : int ) -> Optional[Any]: __snake_case : Any = int(_UpperCAmelCase ) __snake_case , __snake_case , __snake_case : Union[str, Any] = t // 36_00, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def a_ ( _UpperCAmelCase : str ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Dict ,_UpperCAmelCase : int ,_UpperCAmelCase : Optional[int]=3_00 ) -> Dict: # docstyle-ignore return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def a_ ( _UpperCAmelCase : List[str] ) -> Optional[int]: __snake_case : Any = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __snake_case : List[Any] = f'''{elt:.6f}''' if isinstance(_UpperCAmelCase ,_UpperCAmelCase ) else str(_UpperCAmelCase ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class snake_case__ : A__ = 5 A__ = 0.2 def __init__( self : List[Any] , __a : int , __a : Optional[str] = None , __a : bool = True , __a : Optional["NotebookTrainingTracker"] = None , __a : int = 300 , ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[Any] = total __snake_case : Dict = '' if prefix is None else prefix __snake_case : Tuple = leave __snake_case : Dict = parent __snake_case : List[Any] = width __snake_case : str = None __snake_case : Tuple = None __snake_case : str = None def A_ ( self : Union[str, Any] , __a : int , __a : bool = False , __a : str = None ) -> Tuple: '''simple docstring''' __snake_case : List[Any] = value if comment is not None: __snake_case : Optional[int] = comment if self.last_value is None: __snake_case : Dict = time.time() __snake_case : Dict = value __snake_case : Tuple = None __snake_case : Union[str, Any] = self.warmup __snake_case : List[str] = 1 self.update_bar(__a ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __snake_case : Tuple = time.time() __snake_case : int = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __snake_case : List[str] = self.elapsed_time / (value - self.start_value) else: __snake_case : str = None if value >= self.total: __snake_case : str = self.total __snake_case : List[str] = None if not self.leave: self.close() elif self.average_time_per_item is not None: __snake_case : Dict = self.average_time_per_item * (self.total - value) self.update_bar(__a ) __snake_case : Optional[int] = value __snake_case : Union[str, Any] = current_time if self.average_time_per_item is None: __snake_case : Optional[Any] = 1 else: __snake_case : Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def A_ ( self : Any , __a : List[str] , __a : Tuple=None ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[int] = ' ' * (len(str(self.total ) ) - len(str(__a ) )) + str(__a ) if self.elapsed_time is None: __snake_case : Any = f'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __snake_case : Optional[int] = f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __snake_case : Union[str, Any] = ( f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' f''' {format_time(self.predicted_remaining )}''' ) self.label += f''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f''', {self.comment}]''' self.display() def A_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __snake_case : str = disp.display(disp.HTML(self.html_code ) , display_id=__a ) else: self.output.update(disp.HTML(self.html_code ) ) def A_ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[int] , __a : int , __a : str=None ) -> Union[str, Any]: '''simple docstring''' super().__init__(__a ) __snake_case : Tuple = None if column_names is None else [column_names] __snake_case : Any = None def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[int] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __snake_case : Any = disp.display(disp.HTML(self.html_code ) , display_id=__a ) else: self.output.update(disp.HTML(self.html_code ) ) def A_ ( self : Dict , __a : int ) -> int: '''simple docstring''' if self.inner_table is None: __snake_case : List[Any] = [list(values.keys() ), list(values.values() )] else: __snake_case : List[Any] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__a ) __snake_case : List[str] = columns self.inner_table.append([values[c] for c in columns] ) def A_ ( self : List[str] , __a : Tuple , __a : List[str]=None , __a : Dict=300 ) -> Tuple: '''simple docstring''' __snake_case : Tuple = NotebookProgressBar(__a , prefix=__a , parent=self , width=__a ) return self.child_bar def A_ ( self : List[str] ) -> int: '''simple docstring''' __snake_case : List[str] = None self.display() class snake_case__ ( SCREAMING_SNAKE_CASE_ ): def __init__( self : Optional[int] ) -> Any: '''simple docstring''' __snake_case : Optional[int] = None __snake_case : Dict = None __snake_case : List[str] = False def A_ ( self : Dict , __a : List[str] , __a : Optional[Any] , __a : int , **__a : Optional[Any] ) -> int: '''simple docstring''' __snake_case : Optional[Any] = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' __snake_case : List[str] = 0 __snake_case : str = 0 __snake_case : Any = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) __snake_case : Optional[Any] = NotebookTrainingTracker(state.max_steps , __a ) def A_ ( self : List[Any] , __a : Tuple , __a : str , __a : int , **__a : Optional[int] ) -> Optional[int]: '''simple docstring''' __snake_case : Optional[Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else f'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=f'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __snake_case : List[str] = False def A_ ( self : Optional[int] , __a : List[Any] , __a : Optional[int] , __a : List[Any] , __a : Dict=None , **__a : Tuple ) -> Tuple: '''simple docstring''' if not has_length(__a ): return if self.prediction_bar is None: if self.training_tracker is not None: __snake_case : Optional[Any] = self.training_tracker.add_child(len(__a ) ) else: __snake_case : str = NotebookProgressBar(len(__a ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def A_ ( self : List[Any] , __a : List[str] , __a : Union[str, Any] , __a : Union[str, Any] , **__a : Dict ) -> Tuple: '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() __snake_case : str = None def A_ ( self : Any , __a : List[str] , __a : List[Any] , __a : Optional[Any] , __a : Any=None , **__a : Optional[Any] ) -> Optional[Any]: '''simple docstring''' # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __snake_case : Tuple = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy __snake_case : str = state.global_step self.training_tracker.write_line(__a ) def A_ ( self : str , __a : Tuple , __a : Dict , __a : Optional[int] , __a : Optional[int]=None , **__a : List[str] ) -> Tuple: '''simple docstring''' if self.training_tracker is not None: __snake_case : int = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: __snake_case : Union[str, Any] = log['loss'] break if self.first_column == "Epoch": __snake_case : List[str] = int(state.epoch ) else: __snake_case : Union[str, Any] = state.global_step __snake_case : Union[str, Any] = 'eval' for k in metrics: if k.endswith('_loss' ): __snake_case : Any = re.sub(r'\_loss$' , '' , __a ) __snake_case : Union[str, Any] = metrics.pop('total_flos' , __a ) __snake_case : Optional[int] = metrics.pop('epoch' , __a ) __snake_case : List[str] = metrics.pop(f'''{metric_key_prefix}_runtime''' , __a ) __snake_case : Dict = metrics.pop(f'''{metric_key_prefix}_samples_per_second''' , __a ) __snake_case : Optional[Any] = metrics.pop(f'''{metric_key_prefix}_steps_per_second''' , __a ) __snake_case : str = metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''' , __a ) for k, v in metrics.items(): if k == f'''{metric_key_prefix}_loss''': __snake_case : Union[str, Any] = v else: __snake_case : Dict = k.split('_' ) __snake_case : Tuple = ' '.join([part.capitalize() for part in splits[1:]] ) __snake_case : List[Any] = v self.training_tracker.write_line(__a ) self.training_tracker.remove_child() __snake_case : str = None # Evaluation takes a long time so we should force the next update. __snake_case : str = True def A_ ( self : List[Any] , __a : int , __a : Optional[int] , __a : Optional[Any] , **__a : Optional[Any] ) -> int: '''simple docstring''' self.training_tracker.update( state.global_step , comment=f'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=__a ) __snake_case : Tuple = None
124
0
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING UpperCAmelCase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Dict , **lowerCAmelCase_ : Dict): """simple docstring""" super().__init__(**lowerCAmelCase_) requires_backends(self , """vision""") requires_backends(self , """torch""") if self.framework != "pt": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''') self.check_model_type(lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : List[Any]): """simple docstring""" lowercase_ = {} lowercase_ = {} lowercase_ = {} # preprocess args if "points_per_batch" in kwargs: lowercase_ = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: lowercase_ = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: lowercase_ = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: lowercase_ = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: lowercase_ = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: lowercase_ = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: lowercase_ = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: lowercase_ = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: lowercase_ = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: lowercase_ = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: lowercase_ = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: lowercase_ = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self : Optional[int] , lowerCAmelCase_ : int , *lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Any): """simple docstring""" return super().__call__(lowerCAmelCase_ , *lowerCAmelCase_ , num_workers=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , **lowerCAmelCase_) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple=6_4 , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : float = 5_1_2 / 1_5_0_0 , lowerCAmelCase_ : Optional[int] = 3_2 , lowerCAmelCase_ : Optional[int] = 1 , ): """simple docstring""" lowercase_ = load_image(lowerCAmelCase_) lowercase_ = self.image_processor.size["""longest_edge"""] lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.image_processor.generate_crop_boxes( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = self.image_processor(images=lowerCAmelCase_ , return_tensors="""pt""") with self.device_placement(): if self.framework == "pt": lowercase_ = self.get_inference_context() with inference_context(): lowercase_ = self._ensure_tensor_on_device(lowerCAmelCase_ , device=self.device) lowercase_ = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""")) lowercase_ = image_embeddings lowercase_ = grid_points.shape[1] lowercase_ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""") for i in range(0 , lowerCAmelCase_ , lowerCAmelCase_): lowercase_ = grid_points[:, i : i + points_per_batch, :, :] lowercase_ = input_labels[:, i : i + points_per_batch] lowercase_ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict=0.88 , lowerCAmelCase_ : Dict=0.95 , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : List[str]=1 , ): """simple docstring""" lowercase_ = model_inputs.pop("""input_boxes""") lowercase_ = model_inputs.pop("""is_last""") lowercase_ = model_inputs.pop("""original_sizes""").tolist() lowercase_ = model_inputs.pop("""reshaped_input_sizes""").tolist() lowercase_ = self.model(**lowerCAmelCase_) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase_ = model_outputs["""pred_masks"""] lowercase_ = self.image_processor.post_process_masks( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , binarize=lowerCAmelCase_) lowercase_ = model_outputs["""iou_scores"""] lowercase_ , lowercase_ , lowercase_ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict=False , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : str=0.7 , ): """simple docstring""" lowercase_ = [] lowercase_ = [] lowercase_ = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""")) all_masks.extend(model_output.pop("""masks""")) all_boxes.append(model_output.pop("""boxes""")) lowercase_ = torch.cat(lowerCAmelCase_) lowercase_ = torch.cat(lowerCAmelCase_) lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.image_processor.post_process_for_mask_generation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = defaultdict(lowerCAmelCase_) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase_) lowercase_ = {} if output_rle_mask: lowercase_ = rle_mask if output_bboxes_mask: lowercase_ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
567
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : Tuple = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: '''simple docstring''' for attribute in key.split(""".""" ): lowercase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: lowercase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) lowercase_ = True else: for key, mapped_key in MAPPING.items(): lowercase_ = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(__lowerCAmelCase )[0].split(""".""" )[-2] lowercase_ = mapped_key.replace("""*""" , __lowerCAmelCase ) if "weight_g" in name: lowercase_ = """weight_g""" elif "weight_v" in name: lowercase_ = """weight_v""" elif "weight" in name: lowercase_ = """weight""" elif "bias" in name: lowercase_ = """bias""" else: lowercase_ = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = full_name.split("""conv_layers.""" )[-1] lowercase_ = name.split(""".""" ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = SEWConfig() if is_finetuned: lowercase_ = model.wav_encoder.wav_model.cfg else: lowercase_ = model.cfg lowercase_ = fs_config.conv_bias lowercase_ = eval(fs_config.conv_feature_layers ) lowercase_ = [x[0] for x in conv_layers] lowercase_ = [x[1] for x in conv_layers] lowercase_ = [x[2] for x in conv_layers] lowercase_ = """gelu""" lowercase_ = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" lowercase_ = 0.0 lowercase_ = fs_config.activation_fn.name lowercase_ = fs_config.encoder_embed_dim lowercase_ = 0.02 lowercase_ = fs_config.encoder_ffn_embed_dim lowercase_ = 1E-5 lowercase_ = fs_config.encoder_layerdrop lowercase_ = fs_config.encoder_attention_heads lowercase_ = fs_config.conv_pos_groups lowercase_ = fs_config.conv_pos lowercase_ = len(__lowerCAmelCase ) lowercase_ = fs_config.encoder_layers lowercase_ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase_ = model.cfg lowercase_ = fs_config.final_dropout lowercase_ = fs_config.layerdrop lowercase_ = fs_config.activation_dropout lowercase_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase_ = fs_config.attention_dropout lowercase_ = fs_config.dropout_input lowercase_ = fs_config.dropout lowercase_ = fs_config.mask_channel_length lowercase_ = fs_config.mask_channel_prob lowercase_ = fs_config.mask_length lowercase_ = fs_config.mask_prob lowercase_ = """Wav2Vec2FeatureExtractor""" lowercase_ = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True ) -> Union[str, Any]: '''simple docstring''' if is_finetuned: lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase_ = SEWConfig.from_pretrained(__lowerCAmelCase ) else: lowercase_ = convert_config(model[0] , __lowerCAmelCase ) lowercase_ = model[0].eval() lowercase_ = True if config.feat_extract_norm == """layer""" else False lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: lowercase_ = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase_ = target_dict.pad_index lowercase_ = target_dict.bos_index lowercase_ = target_dict.pad_index lowercase_ = target_dict.bos_index lowercase_ = target_dict.eos_index lowercase_ = len(target_dict.symbols ) lowercase_ = os.path.join(__lowerCAmelCase , """vocab.json""" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase ) lowercase_ = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCAmelCase , ) lowercase_ = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) lowercase_ = SEWForCTC(__lowerCAmelCase ) else: lowercase_ = SEWModel(__lowerCAmelCase ) feature_extractor.save_pretrained(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCAmelCase : str = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
567
1
'''simple docstring''' from PIL import Image def _UpperCamelCase ( lowerCAmelCase__: Image ) -> Image: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = image.load() for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
708
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : str = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
238
0
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ : str ) -> int: '''simple docstring''' UpperCAmelCase_ = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224" , out_features=["stage1", "stage2", "stage3", "stage4"] ) UpperCAmelCase_ = MaskFormerConfig(backbone_config=snake_case_ ) UpperCAmelCase_ = "huggingface/label-files" if "ade20k-full" in model_name: # this should be ok UpperCAmelCase_ = 8_47 UpperCAmelCase_ = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: # this should be ok UpperCAmelCase_ = 1_50 UpperCAmelCase_ = "ade20k-id2label.json" elif "coco-stuff" in model_name: # this should be ok UpperCAmelCase_ = 1_71 UpperCAmelCase_ = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO UpperCAmelCase_ = 1_33 UpperCAmelCase_ = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: # this should be ok UpperCAmelCase_ = 19 UpperCAmelCase_ = "cityscapes-id2label.json" elif "vistas" in model_name: # this should be ok UpperCAmelCase_ = 65 UpperCAmelCase_ = "mapillary-vistas-id2label.json" UpperCAmelCase_ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="dataset" ) , "r" ) ) UpperCAmelCase_ = {int(snake_case_ ): v for k, v in idalabel.items()} return config def lowerCAmelCase_ ( snake_case_ : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.norm2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.layers.{i}.downsample.reduction.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.weight""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.layers.{i}.downsample.norm.bias""", f"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight") ) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f"""sem_seg_head.adapter_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((f"""sem_seg_head.adapter_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.weight""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((f"""sem_seg_head.layer_{source_index}.norm.bias""", f"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight") ) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", f"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", f"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", f"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", f"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", f"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight") ) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias") ) # heads on top rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight") ) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias") ) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight") ) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias") ) for i in range(3 ): rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", f"""mask_embedder.{i}.0.weight""") ) rename_keys.append((f"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", f"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = dct.pop(snake_case_ ) UpperCAmelCase_ = val def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : str ) -> str: '''simple docstring''' UpperCAmelCase_ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[: hidden_size, :] UpperCAmelCase_ = in_proj_bias[:config.hidden_size] UpperCAmelCase_ = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size :, :] UpperCAmelCase_ = in_proj_bias[-hidden_size :] # fmt: on def lowerCAmelCase_ ( ) -> torch.Tensor: '''simple docstring''' UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , snake_case_ : str , snake_case_ : bool = False ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = get_maskformer_config(snake_case_ ) # load original state_dict with open(snake_case_ , "rb" ) as f: UpperCAmelCase_ = pickle.load(snake_case_ ) UpperCAmelCase_ = data["model"] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCAmelCase_ = create_rename_keys(snake_case_ ) for src, dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) read_in_swin_q_k_v(snake_case_ , config.backbone_config ) read_in_decoder_q_k_v(snake_case_ , snake_case_ ) # update to torch tensors for key, value in state_dict.items(): UpperCAmelCase_ = torch.from_numpy(snake_case_ ) # load 🤗 model UpperCAmelCase_ = MaskFormerForInstanceSegmentation(snake_case_ ) model.eval() for name, param in model.named_parameters(): print(snake_case_ , param.shape ) UpperCAmelCase_ , UpperCAmelCase_ = model.load_state_dict(snake_case_ , strict=snake_case_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(snake_case_ ) == 0, f"""Unexpected keys: {unexpected_keys}""" # verify results UpperCAmelCase_ = prepare_img() if "vistas" in model_name: UpperCAmelCase_ = 65 elif "cityscapes" in model_name: UpperCAmelCase_ = 6_55_35 else: UpperCAmelCase_ = 2_55 UpperCAmelCase_ = True if "ade" in model_name else False UpperCAmelCase_ = MaskFormerImageProcessor(ignore_index=snake_case_ , reduce_labels=snake_case_ ) UpperCAmelCase_ = image_processor(snake_case_ , return_tensors="pt" ) UpperCAmelCase_ = model(**snake_case_ ) print("Logits:" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCAmelCase_ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print("Pushing model and image processor to the hub..." ) model.push_to_hub(f"""nielsr/{model_name}""" ) image_processor.push_to_hub(f"""nielsr/{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE_: Tuple =parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
78
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[torch.FloatTensor] = None snake_case : torch.FloatTensor = None snake_case : Optional[Tuple[torch.FloatTensor]] = None snake_case : Optional[Tuple[torch.FloatTensor]] = None class __SCREAMING_SNAKE_CASE ( _a ): def __init__( self , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase=512 , __lowerCAmelCase="cls" , __lowerCAmelCase=False , __lowerCAmelCase=True , **__lowerCAmelCase , ): super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) UpperCamelCase__ = project_dim UpperCamelCase__ = pooler_fn UpperCamelCase__ = learn_encoder UpperCamelCase__ = use_attention_mask class __SCREAMING_SNAKE_CASE ( _a ): snake_case : int = [r"""pooler""", r"""logit_scale"""] snake_case : Tuple = [r"""position_ids""", r"""predictions.decoder.bias"""] snake_case : str = """roberta""" snake_case : Dict = RobertaSeriesConfig def __init__( self , __lowerCAmelCase ): super().__init__(__lowerCAmelCase ) UpperCamelCase__ = XLMRobertaModel(__lowerCAmelCase ) UpperCamelCase__ = nn.Linear(config.hidden_size , config.project_dim ) UpperCamelCase__ = getattr(__lowerCAmelCase , """has_pre_transformation""" , __lowerCAmelCase ) if self.has_pre_transformation: UpperCamelCase__ = nn.Linear(config.hidden_size , config.project_dim ) UpperCamelCase__ = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def _lowerCamelCase ( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , ): UpperCamelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ = self.base_model( input_ids=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , position_ids=__lowerCAmelCase , head_mask=__lowerCAmelCase , inputs_embeds=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , output_attentions=__lowerCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__lowerCAmelCase , ) if self.has_pre_transformation: UpperCamelCase__ = outputs["""hidden_states"""][-2] UpperCamelCase__ = self.pre_LN(__lowerCAmelCase ) UpperCamelCase__ = self.transformation_pre(__lowerCAmelCase ) return TransformationModelOutput( projection_state=__lowerCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: UpperCamelCase__ = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=__lowerCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
619
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase_ ( _a , unittest.TestCase ): _lowerCamelCase : Dict = KandinskyVaaControlnetPipeline _lowerCamelCase : List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""] _lowerCamelCase : str = ["""image_embeds""", """negative_image_embeds""", """hint"""] _lowerCamelCase : Any = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCamelCase : Optional[Any] = False @property def __magic_name__ ( self ): return 32 @property def __magic_name__ ( self ): return 32 @property def __magic_name__ ( self ): return self.time_input_dim @property def __magic_name__ ( self ): return self.time_input_dim * 4 @property def __magic_name__ ( self ): return 100 @property def __magic_name__ ( self ): torch.manual_seed(0 ) a_ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } a_ = UNetaDConditionModel(**snake_case_ ) return model @property def __magic_name__ ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __magic_name__ ( self ): torch.manual_seed(0 ) a_ = VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__ ( self ): a_ = self.dummy_unet a_ = self.dummy_movq a_ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=snake_case_ , ) a_ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __magic_name__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): a_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) a_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case_ ) # create hint a_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) if str(snake_case_ ).startswith("""mps""" ): a_ = torch.manual_seed(snake_case_ ) else: a_ = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) a_ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def __magic_name__ ( self ): a_ = """cpu""" a_ = self.get_dummy_components() a_ = self.pipeline_class(**snake_case_ ) a_ = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) a_ = pipe(**self.get_dummy_inputs(snake_case_ ) ) a_ = output.images a_ = pipe( **self.get_dummy_inputs(snake_case_ ) , return_dict=snake_case_ , )[0] a_ = image[0, -3:, -3:, -1] a_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a_ = np.array( [0.6_9_5_9_8_2_6, 0.8_6_8_2_7_9, 0.7_5_5_8_0_9_2, 0.6_8_7_6_9_4_6_7, 0.8_5_8_0_5_8_0_4, 0.6_5_9_7_7_4_9_6, 0.4_4_8_8_5_3_0_2, 0.5_9_5_9_1_1_1, 0.4_2_5_1_5_9_5] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def __magic_name__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self ): a_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) a_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) a_ = torch.from_numpy(np.array(snake_case_ ) ).float() / 2_5_5.0 a_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) a_ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case_ ) a_ = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) a_ = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) a_ = """A robot, 4k photo""" a_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) a_ , a_ = pipe_prior( snake_case_ , generator=snake_case_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() a_ = torch.Generator(device="""cuda""" ).manual_seed(0 ) a_ = pipeline( image_embeds=snake_case_ , negative_image_embeds=snake_case_ , hint=snake_case_ , generator=snake_case_ , num_inference_steps=100 , output_type="""np""" , ) a_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ )
720
def __SCREAMING_SNAKE_CASE ( UpperCamelCase : list[int] , UpperCamelCase : list[int] ) -> tuple[float, float]: """simple docstring""" if not len(UpperCamelCase ) == len(UpperCamelCase ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients a_ , a_ , a_ = equationa a_ , a_ , a_ = equationa # Calculate the determinants of the matrices a_ = aa * ba - aa * ba a_ = ca * ba - ca * ba a_ = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: a_ = determinant_x / determinant a_ = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
403
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = logging.get_logger(__name__) UpperCAmelCase__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase__ : Union[str, Any] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } UpperCAmelCase__ : List[Any] = { '''camembert-base''': 5_12, } UpperCAmelCase__ : Any = '''▁''' class __lowercase ( snake_case__ ): __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ['''input_ids''', '''attention_mask'''] __UpperCAmelCase = CamembertTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_=["<s>NOTUSED", "</s>NOTUSED"] , **lowercase_ , ) -> str: # Mask token behave like a normal word, i.e. include the space before it __snake_case = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __snake_case = vocab_file __snake_case = False if not self.vocab_file else True def _a ( self , lowercase_ , lowercase_ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _a ( self , lowercase_ , lowercase_ = None) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _a ( self , lowercase_ , lowercase_ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __snake_case = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
313
'''simple docstring''' from __future__ import annotations def a ( UpperCamelCase_ : str , UpperCamelCase_ : list[str] | None = None , UpperCamelCase_ : dict[str, float] | None = None , UpperCamelCase_ : bool = False , ) -> tuple[int, float, str]: snake_case__ =cipher_alphabet or [chr(UpperCamelCase_ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) snake_case__ ={ 'a': 0.0_8_4_9_7, 'b': 0.0_1_4_9_2, 'c': 0.0_2_2_0_2, 'd': 0.0_4_2_5_3, 'e': 0.1_1_1_6_2, 'f': 0.0_2_2_2_8, 'g': 0.0_2_0_1_5, 'h': 0.0_6_0_9_4, 'i': 0.0_7_5_4_6, 'j': 0.0_0_1_5_3, 'k': 0.0_1_2_9_2, 'l': 0.0_4_0_2_5, 'm': 0.0_2_4_0_6, 'n': 0.0_6_7_4_9, 'o': 0.0_7_5_0_7, 'p': 0.0_1_9_2_9, 'q': 0.0_0_0_9_5, 'r': 0.0_7_5_8_7, 's': 0.0_6_3_2_7, 't': 0.0_9_3_5_6, 'u': 0.0_2_7_5_8, 'v': 0.0_0_9_7_8, 'w': 0.0_2_5_6_0, 'x': 0.0_0_1_5_0, 'y': 0.0_1_9_9_4, 'z': 0.0_0_0_7_7, } else: # Custom frequencies dictionary snake_case__ =frequencies_dict if not case_sensitive: snake_case__ =ciphertext.lower() # Chi squared statistic values snake_case__ ={} # cycle through all of the shifts for shift in range(len(UpperCamelCase_ ) ): snake_case__ ='' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet snake_case__ =(alphabet_letters.index(letter.lower() ) - shift) % len( UpperCamelCase_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter snake_case__ =0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: snake_case__ =letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message snake_case__ =decrypted_with_shift.lower().count(UpperCamelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies snake_case__ =frequencies[letter] * occurrences # Complete the chi squared statistic formula snake_case__ =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message snake_case__ =decrypted_with_shift.count(UpperCamelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies snake_case__ =frequencies[letter] * occurrences # Complete the chi squared statistic formula snake_case__ =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary snake_case__ =( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(UpperCamelCase_ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] snake_case__ =min( UpperCamelCase_ , key=UpperCamelCase_ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( snake_case__ ) , ( snake_case__ ) , ) =chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
538
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [[1, 2, 4], [1, 2, 3, 4]] SCREAMING_SNAKE_CASE__ : Union[str, Any] = DisjunctiveConstraint(SCREAMING_SNAKE_CASE__ ) self.assertTrue(isinstance(dc.token_ids , SCREAMING_SNAKE_CASE__ ) ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(SCREAMING_SNAKE_CASE__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(SCREAMING_SNAKE_CASE__ ): DisjunctiveConstraint(SCREAMING_SNAKE_CASE__ ) # fails here def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [[1, 2, 3], [1, 2, 4]] SCREAMING_SNAKE_CASE__ : Union[str, Any] = DisjunctiveConstraint(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = dc.update(1 ) SCREAMING_SNAKE_CASE__ : Any = stepped is True and completed is False and reset is False self.assertTrue(SCREAMING_SNAKE_CASE__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE__ : Optional[int] = dc.update(2 ) SCREAMING_SNAKE_CASE__ : List[str] = stepped is True and completed is False and reset is False self.assertTrue(SCREAMING_SNAKE_CASE__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE__ : Optional[int] = dc.update(3 ) SCREAMING_SNAKE_CASE__ : str = stepped is True and completed is True and reset is False self.assertTrue(SCREAMING_SNAKE_CASE__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] SCREAMING_SNAKE_CASE__ : Optional[int] = DisjunctiveConstraint(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE__ : Any = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) SCREAMING_SNAKE_CASE__ : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() SCREAMING_SNAKE_CASE__ : Optional[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) SCREAMING_SNAKE_CASE__ : List[str] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) SCREAMING_SNAKE_CASE__ : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
705
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase__ : Any = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = [file for file in os.listdir(SCREAMING_SNAKE_CASE__ ) if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )] if identifier is not None: SCREAMING_SNAKE_CASE__ : int = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for n_ in n_identifier: SCREAMING_SNAKE_CASE__ : Optional[Any] = [file for file in files if n_ not in file] else: SCREAMING_SNAKE_CASE__ : List[Any] = [file for file in files if n_identifier not in file] SCREAMING_SNAKE_CASE__ : int = ignore_files or [] ignore_files.append("""__init__.py""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , SCREAMING_SNAKE_CASE__ ) if only_modules: SCREAMING_SNAKE_CASE__ : Union[str, Any] = file.split(""".""" )[0] try: SCREAMING_SNAKE_CASE__ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = doctest.DocTestSuite(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = unittest.TextTestRunner().run(SCREAMING_SNAKE_CASE__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = Path("""src/transformers""" ) SCREAMING_SNAKE_CASE__ : Optional[int] = """modeling""" SCREAMING_SNAKE_CASE__ : int = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(SCREAMING_SNAKE_CASE__ , identifier=SCREAMING_SNAKE_CASE__ , ignore_files=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = Path("""src/transformers""" ) SCREAMING_SNAKE_CASE__ : List[str] = """tokenization""" self.analyze_directory(SCREAMING_SNAKE_CASE__ , identifier=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = Path("""src/transformers""" ) SCREAMING_SNAKE_CASE__ : List[str] = """configuration""" self.analyze_directory(SCREAMING_SNAKE_CASE__ , identifier=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path("""src/transformers""" ) SCREAMING_SNAKE_CASE__ : Dict = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(SCREAMING_SNAKE_CASE__ , n_identifier=SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = Path("""docs/source""" ) SCREAMING_SNAKE_CASE__ : Any = ["""favicon.ico"""] self.analyze_directory(SCREAMING_SNAKE_CASE__ , ignore_files=SCREAMING_SNAKE_CASE__ , only_modules=SCREAMING_SNAKE_CASE__ )
545
0
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters __A = False __A = False def lowercase_ ( _lowerCamelCase: Namespace ) -> Tuple: '''simple docstring''' return TrainCommand(UpperCamelCase__ ) class _snake_case ( a__ ): @staticmethod def lowerCamelCase__ ( UpperCAmelCase : ArgumentParser ): __lowerCamelCase : List[Any] = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=__lowercase , required=__lowercase , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=__lowercase , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=__lowercase , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=__lowercase , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=__lowercase , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=__lowercase , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=__lowercase , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=__lowercase , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=__lowercase , default="bert-base-uncased" , help="Model\'s name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=__lowercase , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=__lowercase , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=__lowercase , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=__lowercase , default=1E-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=__lowercase ) def __init__( self : str , UpperCAmelCase : Namespace ): __lowerCamelCase : Tuple = logging.get_logger("transformers-cli/training" ) __lowerCamelCase : List[str] = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=__lowercase ) __lowerCamelCase : List[str] = args.output __lowerCamelCase : Optional[Any] = args.column_label __lowerCamelCase : Optional[int] = args.column_text __lowerCamelCase : List[str] = args.column_id self.logger.info(F"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": __lowerCamelCase : List[str] = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"""Loading dataset from {args.train_data}""" ) __lowerCamelCase : List[str] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __lowerCamelCase : int = None if args.validation_data: self.logger.info(F"""Loading validation dataset from {args.validation_data}""" ) __lowerCamelCase : Tuple = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __lowerCamelCase : Dict = args.validation_split __lowerCamelCase : Tuple = args.train_batch_size __lowerCamelCase : Dict = args.valid_batch_size __lowerCamelCase : Union[str, Any] = args.learning_rate __lowerCamelCase : Any = args.adam_epsilon def lowerCamelCase__ ( self : Dict ): if self.framework == "tf": return self.run_tf() return self.run_torch() def lowerCamelCase__ ( self : List[str] ): raise NotImplementedError def lowerCamelCase__ ( self : int ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
646
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =[False] * len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : List[Any] =[-1] * len(UpperCamelCase__ ) def dfs(UpperCamelCase__ : Optional[int], UpperCamelCase__ : Tuple ): SCREAMING_SNAKE_CASE__ : List[str] =True SCREAMING_SNAKE_CASE__ : Optional[Any] =c for u in graph[v]: if not visited[u]: dfs(UpperCamelCase__, 1 - c ) for i in range(len(UpperCamelCase__ ) ): if not visited[i]: dfs(UpperCamelCase__, 0 ) for i in range(len(UpperCamelCase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph a_ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
296
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = ["""image_processor""", """tokenizer"""] a_ = """Pix2StructImageProcessor""" a_ = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : Union[str, Any] ,_a : List[str] ,_a : int ): '''simple docstring''' A_ : Tuple = False super().__init__(_a ,_a ) def __call__( self : Tuple ,_a : Tuple=None ,_a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,_a : bool = True ,_a : Union[bool, str, PaddingStrategy] = False ,_a : Union[bool, str, TruncationStrategy] = None ,_a : Optional[int] = None ,_a : Optional[int] = 2048 ,_a : int = 0 ,_a : Optional[int] = None ,_a : Optional[bool] = None ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = False ,_a : bool = True ,_a : Optional[Union[str, TensorType]] = None ,**_a : Dict ,): '''simple docstring''' if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None and not self.image_processor.is_vqa: A_ : str = self.tokenizer A_ : List[Any] = self.tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_token_type_ids=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values A_ : Optional[int] = self.image_processor( _a ,return_tensors=_a ,max_patches=_a ,**_a ) else: # add pixel_values and bbox A_ : List[str] = self.image_processor( _a ,return_tensors=_a ,max_patches=_a ,header_text=_a ,**_a ) if text is not None and not self.image_processor.is_vqa: A_ : Optional[Any] = self.tokenizer( text=_a ,add_special_tokens=_a ,padding=_a ,truncation=_a ,max_length=_a ,stride=_a ,pad_to_multiple_of=_a ,return_attention_mask=_a ,return_overflowing_tokens=_a ,return_special_tokens_mask=_a ,return_offsets_mapping=_a ,return_token_type_ids=_a ,return_length=_a ,verbose=_a ,return_tensors=_a ,**_a ,) if "attention_mask" in text_encoding: A_ : Union[str, Any] = text_encoding.pop("""attention_mask""" ) if "input_ids" in text_encoding: A_ : Tuple = text_encoding.pop("""input_ids""" ) else: A_ : Tuple = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def _a ( self : Optional[int] ,*_a : List[str] ,**_a : str ): '''simple docstring''' return self.tokenizer.batch_decode(*_a ,**_a ) def _a ( self : Tuple ,*_a : Optional[int] ,**_a : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*_a ,**_a ) @property def _a ( self : str ): '''simple docstring''' A_ : Optional[int] = self.tokenizer.model_input_names A_ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
703
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]="pt"): A_ : Optional[int] = {"""add_prefix_space""": True} if isinstance(lowerCamelCase , lowerCamelCase) and not line.startswith(""" """) else {} A_ : Optional[int] = padding_side return tokenizer( [line] , max_length=lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=None , ): A_ : Dict = input_ids.ne(lowerCamelCase).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : Tuple="train" ,_a : Optional[int]=None ,_a : Any=None ,_a : int=None ,_a : Union[str, Any]="" ,): '''simple docstring''' super().__init__() A_ : Union[str, Any] = Path(_a ).joinpath(type_path + """.source""" ) A_ : Any = Path(_a ).joinpath(type_path + """.target""" ) A_ : Dict = self.get_char_lens(self.src_file ) A_ : Optional[int] = max_source_length A_ : List[str] = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' A_ : List[Any] = tokenizer A_ : Optional[Any] = prefix if n_obs is not None: A_ : Any = self.src_lens[:n_obs] A_ : Optional[int] = src_lang A_ : Tuple = tgt_lang def __len__( self : Tuple ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : List[str] ,_a : Tuple ): '''simple docstring''' A_ : int = index + 1 # linecache starts at 1 A_ : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) ,_a ).rstrip("""\n""" ) A_ : Dict = linecache.getline(str(self.tgt_file ) ,_a ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_a ) else self.tokenizer ) A_ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,_a ) else self.tokenizer A_ : Optional[int] = encode_line(_a ,_a ,self.max_source_length ,"""right""" ) A_ : Optional[int] = encode_line(_a ,_a ,self.max_target_length ,"""right""" ) A_ : Optional[Any] = source_inputs["""input_ids"""].squeeze() A_ : Dict = target_inputs["""input_ids"""].squeeze() A_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a ( _a : int ): '''simple docstring''' return [len(_a ) for x in Path(_a ).open().readlines()] def _a ( self : Optional[int] ,_a : Dict ): '''simple docstring''' A_ : str = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : List[str] = trim_batch(_a ,_a ) A_ , A_ : Union[str, Any] = trim_batch(_a ,_a ,attention_mask=_a ) A_ : List[str] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __magic_name__ = getLogger(__name__) def lowerCamelCase ( lowerCamelCase : List[List]): return list(itertools.chain.from_iterable(lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : str): A_ : Union[str, Any] = get_git_info() save_json(lowerCamelCase , os.path.join(lowerCamelCase , """git_log.json""")) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : List[str]=4 , **lowerCamelCase : List[str]): with open(lowerCamelCase , """w""") as f: json.dump(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase , **lowerCamelCase) def lowerCamelCase ( lowerCamelCase : Any): with open(lowerCamelCase) as f: return json.load(lowerCamelCase) def lowerCamelCase ( ): A_ : List[str] = git.Repo(search_parent_directories=lowerCamelCase) A_ : Union[str, Any] = { """repo_id""": str(lowerCamelCase), """repo_sha""": str(repo.head.object.hexsha), """repo_branch""": str(repo.active_branch), """hostname""": str(socket.gethostname()), } return repo_infos def lowerCamelCase ( lowerCamelCase : Callable , lowerCamelCase : Iterable): return list(map(lowerCamelCase , lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Union[str, Any]): with open(lowerCamelCase , """wb""") as f: return pickle.dump(lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str]): def remove_articles(lowerCamelCase : Any): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase) def white_space_fix(lowerCamelCase : List[Any]): return " ".join(text.split()) def remove_punc(lowerCamelCase : Union[str, Any]): A_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase : List[str]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase)))) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : int): A_ : Tuple = normalize_answer(lowerCamelCase).split() A_ : Dict = normalize_answer(lowerCamelCase).split() A_ : int = Counter(lowerCamelCase) & Counter(lowerCamelCase) A_ : Any = sum(common.values()) if num_same == 0: return 0 A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Any): return normalize_answer(lowerCamelCase) == normalize_answer(lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str]): assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Any = 0 for hypo, pred in zip(lowerCamelCase , lowerCamelCase): em += exact_match_score(lowerCamelCase , lowerCamelCase) if len(lowerCamelCase) > 0: em /= len(lowerCamelCase) return {"em": em} def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return model_prefix.startswith("""rag""") def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any]): A_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : Tuple = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase): if not hasattr(lowerCamelCase , lowerCamelCase) and not hasattr(lowerCamelCase , equivalent_param[p]): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) continue A_ : Tuple = p if hasattr(lowerCamelCase , lowerCamelCase) else equivalent_param[p] setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) return hparams, config
27
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __lowercase : List[str] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCAmelCase : """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__=16 , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=14 , UpperCamelCase__=10 , UpperCamelCase__=19 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=True , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=[1, 2, 3, 4, 5] , UpperCamelCase__=25 , UpperCamelCase__=5 , ) -> List[str]: '''simple docstring''' lowerCamelCase_ = d_model lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = prediction_length lowerCamelCase_ = context_length lowerCamelCase_ = cardinality lowerCamelCase_ = num_time_features lowerCamelCase_ = lags_sequence lowerCamelCase_ = embedding_dimension lowerCamelCase_ = is_training lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = context_length lowerCamelCase_ = prediction_length + label_length lowerCamelCase_ = label_length lowerCamelCase_ = moving_average lowerCamelCase_ = autocorrelation_factor def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _lowerCAmelCase ( self , UpperCamelCase__ ) -> str: '''simple docstring''' lowerCamelCase_ = config.context_length + max(config.lags_sequence ) lowerCamelCase_ = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCamelCase_ = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCamelCase_ = floats_tensor([self.batch_size, _past_length] ) lowerCamelCase_ = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCamelCase_ = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCamelCase_ = floats_tensor([self.batch_size, config.prediction_length] ) lowerCamelCase_ = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.get_config() lowerCamelCase_ = self.prepare_autoformer_inputs_dict(UpperCamelCase__ ) return config, inputs_dict def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCAmelCase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = AutoformerModel(config=UpperCamelCase__ ).to(UpperCamelCase__ ).eval() lowerCamelCase_ = model(**UpperCamelCase__ ) lowerCamelCase_ = outputs.encoder_last_hidden_state lowerCamelCase_ = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = model.get_encoder() encoder.save_pretrained(UpperCamelCase__ ) lowerCamelCase_ = AutoformerEncoder.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = model.create_network_inputs(**UpperCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCamelCase_ = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCamelCase_ = encoder(inputs_embeds=UpperCamelCase__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) lowerCamelCase_ = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCamelCase_ = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCamelCase_ = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCamelCase_ = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase_ = model.get_decoder() decoder.save_pretrained(UpperCamelCase__ ) lowerCamelCase_ = AutoformerDecoder.from_pretrained(UpperCamelCase__ ).to(UpperCamelCase__ ) lowerCamelCase_ = decoder( trend=UpperCamelCase__ , inputs_embeds=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowerCAmelCase ( a , a , unittest.TestCase ): """simple docstring""" __lowercase :int = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowercase :Union[str, Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowercase :Any = {"feature-extraction": AutoformerModel} if is_torch_available() else {} __lowercase :Optional[int] = False __lowercase :Dict = False __lowercase :List[str] = False __lowercase :List[Any] = False __lowercase :Tuple = False __lowercase :Dict = False def _lowerCAmelCase ( self ) -> str: '''simple docstring''' lowerCamelCase_ = AutoformerModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = model_class.from_pretrained(UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) self.assertEqual(info['''missing_keys'''] , [] ) def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCamelCase__ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = inspect.signature(getattr(UpperCamelCase__ , '''forward''' ) ) # The main input is the name of the argument after `self` lowerCamelCase_ = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase__ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(UpperCamelCase__ )] , UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Dict: '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True lowerCamelCase_ = getattr(self.model_tester , '''seq_length''' , UpperCamelCase__ ) lowerCamelCase_ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCamelCase__ ) lowerCamelCase_ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCamelCase__ ) lowerCamelCase_ = getattr(self.model_tester , '''d_model''' , UpperCamelCase__ ) lowerCamelCase_ = getattr(self.model_tester , '''num_attention_heads''' , UpperCamelCase__ ) lowerCamelCase_ = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase_ = outputs.encoder_attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCamelCase_ = len(UpperCamelCase__ ) lowerCamelCase_ = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) # decoder attentions lowerCamelCase_ = outputs.decoder_attentions self.assertIsInstance(UpperCamelCase__ , (list, tuple) ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCamelCase_ = outputs.cross_attentions self.assertIsInstance(UpperCamelCase__ , (list, tuple) ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 2 , len(UpperCamelCase__ ) ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def lowerCamelCase_ ( _lowerCamelCase : Dict="train-batch.pt" ): lowerCamelCase_ = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=_lowerCamelCase , repo_type='''dataset''' ) lowerCamelCase_ = torch.load(_lowerCamelCase , map_location=_lowerCamelCase ) return batch @require_torch @slow class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCamelCase__ ) lowerCamelCase_ = prepare_batch() with torch.no_grad(): lowerCamelCase_ = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] lowerCamelCase_ = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowerCamelCase_ = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCamelCase__ ) lowerCamelCase_ = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowerCamelCase_ = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state lowerCamelCase_ = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCamelCase__ ) lowerCamelCase_ = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__ ) ) def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(UpperCamelCase__ ) lowerCamelCase_ = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): lowerCamelCase_ = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) lowerCamelCase_ = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCamelCase__ ) lowerCamelCase_ = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=UpperCamelCase__ ) lowerCamelCase_ = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCamelCase__ , rtol=1e-1 ) )
142
"""simple docstring""" import os def lowerCamelCase_ ( ): lowerCamelCase_ = os.path.dirname(os.path.realpath(_lowerCamelCase ) ) lowerCamelCase_ = os.path.join(_lowerCamelCase , '''triangle.txt''' ) with open(_lowerCamelCase ) as f: lowerCamelCase_ = f.readlines() lowerCamelCase_ = [] for line in triangle: lowerCamelCase_ = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(_lowerCamelCase ) ) a.append(_lowerCamelCase ) for i in range(1 , len(_lowerCamelCase ) ): for j in range(len(a[i] ) ): lowerCamelCase_ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCamelCase_ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_lowerCamelCase , _lowerCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
142
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Optional[int] = "microsoft/speecht5_tts" snake_case__ : Union[str, Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) snake_case__ : Tuple = "text_reader" snake_case__ : Optional[Any] = SpeechTaProcessor snake_case__ : Optional[int] = SpeechTaForTextToSpeech snake_case__ : Union[str, Any] = SpeechTaHifiGan snake_case__ : Tuple = ["text"] snake_case__ : Tuple = ["audio"] def _UpperCamelCase ( self ) -> Union[str, Any]: if self.post_processor is None: SCREAMING_SNAKE_CASE : str = 'microsoft/speecht5_hifigan' super().setup() def _UpperCamelCase ( self , lowercase__ , lowercase__=None ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : List[str] = self.pre_processor(text=lowercase__ , return_tensors='pt' , truncation=lowercase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) SCREAMING_SNAKE_CASE : str = torch.tensor(embeddings_dataset[7_305]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _UpperCamelCase ( self , lowercase__ ) -> Union[str, Any]: with torch.no_grad(): return self.model.generate_speech(**lowercase__ ) def _UpperCamelCase ( self , lowercase__ ) -> int: with torch.no_grad(): return self.post_processor(lowercase__ ).cpu().detach()
179
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _lowerCAmelCase :Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase :int = { """Helsinki-NLP/opus-mt-en-de""": """https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json""", # See all Marian models at https://huggingface.co/models?filter=marian } class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : List[str] = "marian" snake_case__ : Union[str, Any] = ["past_key_values"] snake_case__ : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , lowercase__=58_101 , lowercase__=None , lowercase__=1_024 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=12 , lowercase__=4_096 , lowercase__=16 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=True , lowercase__=True , lowercase__="gelu" , lowercase__=1_024 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.0 , lowercase__=0.0_2 , lowercase__=58_100 , lowercase__=False , lowercase__=58_100 , lowercase__=0 , lowercase__=0 , lowercase__=True , **lowercase__ , ) -> int: SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Dict = decoder_vocab_size or vocab_size SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = d_model SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads SCREAMING_SNAKE_CASE : int = decoder_ffn_dim SCREAMING_SNAKE_CASE : Optional[Any] = decoder_layers SCREAMING_SNAKE_CASE : str = decoder_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = dropout SCREAMING_SNAKE_CASE : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout SCREAMING_SNAKE_CASE : List[Any] = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : int = encoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : Optional[Any] = use_cache SCREAMING_SNAKE_CASE : List[Any] = encoder_layers SCREAMING_SNAKE_CASE : int = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : str = share_encoder_decoder_embeddings super().__init__( pad_token_id=lowercase__ , eos_token_id=lowercase__ , is_encoder_decoder=lowercase__ , decoder_start_token_id=lowercase__ , forced_eos_token_id=lowercase__ , **lowercase__ , ) class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Dict = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: SCREAMING_SNAKE_CASE : List[Any] = {0: 'batch'} SCREAMING_SNAKE_CASE : Any = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: SCREAMING_SNAKE_CASE : str = {0: 'batch', 1: 'decoder_sequence'} SCREAMING_SNAKE_CASE : int = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE : List[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.num_layers for i in range(lowercase__ ): SCREAMING_SNAKE_CASE : Dict = {0: 'batch', 2: 'past_sequence + sequence'} SCREAMING_SNAKE_CASE : Dict = {0: 'batch', 2: 'past_sequence + sequence'} else: SCREAMING_SNAKE_CASE : Optional[int] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : List[str] = super().outputs else: SCREAMING_SNAKE_CASE : Tuple = super(lowercase__ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers for i in range(lowercase__ ): SCREAMING_SNAKE_CASE : int = {0: 'batch', 2: 'past_sequence + sequence'} SCREAMING_SNAKE_CASE : List[Any] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def _UpperCamelCase ( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE : Optional[int] = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Generate decoder inputs SCREAMING_SNAKE_CASE : List[Any] = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE : str = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE : Optional[int] = dict(**lowercase__ , **lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = common_inputs['input_ids'].shape SCREAMING_SNAKE_CASE : Tuple = common_inputs['decoder_input_ids'].shape[1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.num_attention_heads SCREAMING_SNAKE_CASE : int = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : str = decoder_seq_length + 3 SCREAMING_SNAKE_CASE : Tuple = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE : List[str] = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowercase__ , lowercase__ )] , dim=1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.num_layers SCREAMING_SNAKE_CASE : Optional[Any] = min(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = max(lowercase__ , lowercase__ ) - min_num_layers SCREAMING_SNAKE_CASE : Union[str, Any] = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE : str = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowercase__ , lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def _UpperCamelCase ( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE : Optional[int] = self._generate_dummy_inputs_for_encoder_and_decoder( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = common_inputs['input_ids'].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE : Dict = seqlen + 2 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = self.num_layers SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Optional[Any] = common_inputs['attention_mask'].dtype SCREAMING_SNAKE_CASE : List[str] = torch.cat( [common_inputs['attention_mask'], torch.ones(lowercase__ , lowercase__ , dtype=lowercase__ )] , dim=1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def _UpperCamelCase ( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : List[str] = compute_effective_axis_dimension( lowercase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : List[str] = tokenizer.num_special_tokens_to_add(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = compute_effective_axis_dimension( lowercase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : Optional[int] = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE : Tuple = dict(tokenizer(lowercase__ , return_tensors=lowercase__ ) ) return common_inputs def _UpperCamelCase ( self , lowercase__ , lowercase__ = -1 , lowercase__ = -1 , lowercase__ = False , lowercase__ = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) else: SCREAMING_SNAKE_CASE : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( lowercase__ , batch_size=lowercase__ , seq_length=lowercase__ , is_pair=lowercase__ , framework=lowercase__ ) return common_inputs def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> int: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : List[Any] = super()._flatten_past_key_values_(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) else: SCREAMING_SNAKE_CASE : Any = super(lowercase__ , self )._flatten_past_key_values_( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) @property def _UpperCamelCase ( self ) -> float: return 1E-4
179
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCamelCase_ ( lowerCamelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" super().__init__( __lowerCAmelCase , split=__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase , streaming=__lowerCAmelCase , num_proc=__lowerCAmelCase , **__lowerCAmelCase , ) __magic_name__ :Optional[int] = field __magic_name__ :List[Any] = path_or_paths if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else {self.split: path_or_paths} __magic_name__ :Optional[int] = Json( cache_dir=__lowerCAmelCase , data_files=__lowerCAmelCase , features=__lowerCAmelCase , field=__lowerCAmelCase , **__lowerCAmelCase , ) def A ( self ): """simple docstring""" # Build iterable dataset if self.streaming: __magic_name__ :Dict = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __magic_name__ :int = None __magic_name__ :Optional[Any] = None __magic_name__ :int = None __magic_name__ :str = None self.builder.download_and_prepare( download_config=__lowerCAmelCase , download_mode=__lowerCAmelCase , verification_mode=__lowerCAmelCase , base_path=__lowerCAmelCase , num_proc=self.num_proc , ) __magic_name__ :Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=__lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) __magic_name__ :Tuple = dataset __magic_name__ :Tuple = path_or_buf __magic_name__ :Tuple = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __magic_name__ :Dict = num_proc __magic_name__ :Dict = '''utf-8''' __magic_name__ :List[Any] = to_json_kwargs def A ( self ): """simple docstring""" __magic_name__ :List[Any] = self.to_json_kwargs.pop('''path_or_buf''' , __lowerCAmelCase ) __magic_name__ :Any = self.to_json_kwargs.pop('''orient''' , '''records''' ) __magic_name__ :Dict = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) __magic_name__ :Union[str, Any] = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) __magic_name__ :Union[str, Any] = self.to_json_kwargs.pop('''compression''' , __lowerCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=__lowerCAmelCase ) as buffer: __magic_name__ :Optional[Any] = self._write(file_obj=__lowerCAmelCase , orient=__lowerCAmelCase , lines=__lowerCAmelCase , index=__lowerCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ''' was passed. Please provide a local path instead.''' ) __magic_name__ :int = self._write( file_obj=self.path_or_buf , orient=__lowerCAmelCase , lines=__lowerCAmelCase , index=__lowerCAmelCase , **self.to_json_kwargs ) return written def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :Tuple = args __magic_name__ :int = query_table( table=self.dataset.data , key=slice(__lowerCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) __magic_name__ :List[Any] = batch.to_pandas().to_json( path_or_buf=__lowerCAmelCase , orient=__lowerCAmelCase , lines=__lowerCAmelCase , index=__lowerCAmelCase , **__lowerCAmelCase ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase , ): """simple docstring""" __magic_name__ :Tuple = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): __magic_name__ :Union[str, Any] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__lowerCAmelCase ) else: __magic_name__ , __magic_name__ :List[Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __lowerCAmelCase , __lowerCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(__lowerCAmelCase ) return written
0
'''simple docstring''' from torch import nn def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
672
0
import math def A_ ( __a : Tuple , __a : List[Any] ): """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__a ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. UpperCAmelCase = """Enter the base and the power separated by a comma: """ UpperCAmelCase , UpperCAmelCase = map(int, input(prompt).split(""",""")) UpperCAmelCase , UpperCAmelCase = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. UpperCAmelCase = res(xa, ya) UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
351
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: UpperCAmelCase = None UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } UpperCAmelCase = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } UpperCAmelCase = """▁""" class __snake_case ( SCREAMING_SNAKE_CASE): '''simple docstring''' UpperCamelCase__ : Tuple = VOCAB_FILES_NAMES UpperCamelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : List[str] = AlbertTokenizer def __init__( self , a_=None , a_=None , a_=True , a_=True , a_=False , a_="[CLS]" , a_="[SEP]" , a_="<unk>" , a_="[SEP]" , a_="<pad>" , a_="[CLS]" , a_="[MASK]" , **a_ , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. a__ = ( AddedToken(a_ , lstrip=a_ , rstrip=a_ , normalized=a_ ) if isinstance(a_ , a_ ) else mask_token ) super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , **a_ , ) a__ = do_lower_case a__ = remove_space a__ = keep_accents a__ = vocab_file a__ = False if not self.vocab_file else True def _a ( self , a_ , a_ = None ): a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self , a_ , a_ = None ): a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , a_ , a_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(a_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ = os.path.join( a_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
351
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase_ = random.Random() if is_torch_available(): import torch def lowerCAmelCase (__A , __A=1.0 , __A=None , __A=None): """simple docstring""" if rng is None: _a = global_rng _a = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=400 , A=2_000 , A=1 , A=0.0 , A=16_000 , A=True , A=True , ) -> Optional[Any]: """simple docstring""" _a = parent _a = batch_size _a = min_seq_length _a = max_seq_length _a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a = feature_size _a = padding_value _a = sampling_rate _a = return_attention_mask _a = do_normalize def a__ (self ) -> List[str]: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ (self , A=False , A=False ) -> Optional[Any]: """simple docstring""" def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: _a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : int = ASTFeatureExtractor def a__ (self ) -> List[str]: """simple docstring""" _a = ASTFeatureExtractionTester(self ) def a__ (self ) -> Dict: """simple docstring""" _a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _a = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _a = [np.asarray(A ) for speech_input in speech_inputs] # Test not batched input _a = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values _a = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) # Test batched _a = feat_extract(A , padding=A , return_tensors='''np''' ).input_values _a = feat_extract(A , padding=A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _a = [floats_list((1, x) )[0] for x in (800, 800, 800)] _a = np.asarray(A ) _a = feat_extract(A , return_tensors='''np''' ).input_values _a = feat_extract(A , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) @require_torch def a__ (self ) -> Union[str, Any]: """simple docstring""" import torch _a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _a = np.random.rand(100 ).astype(np.floataa ) _a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _a = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _a = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a__ (self , A ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset _a = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a = ds.sort('''id''' ).select(range(A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on _a = self._load_datasamples(1 ) _a = ASTFeatureExtractor() _a = feature_extractor(A , return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , A , atol=1E-4 ) )
11
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , _lowercase : Any , _lowercase : Tuple=7 , _lowercase : Tuple=3 , _lowercase : str=18 , _lowercase : Union[str, Any]=30 , _lowercase : Dict=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : int=True , _lowercase : Optional[int]=False , _lowercase : str=True , _lowercase : Union[str, Any]=True , _lowercase : Any=[0.5, 0.5, 0.5] , _lowercase : str=[0.5, 0.5, 0.5] , ) -> Optional[Any]: A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size if size is not None else {'height': 18, 'width': 20} A_ = do_thumbnail A_ = do_align_axis A_ = do_pad A_ = do_normalize A_ = image_mean A_ = image_std def __snake_case ( self : int) -> int: return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __UpperCAmelCase ( lowerCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = DonutImageProcessor if is_vision_available() else None def __snake_case ( self : Optional[int]) -> Union[str, Any]: A_ = DonutImageProcessingTester(self) @property def __snake_case ( self : int) -> int: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Any) -> Tuple: A_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , 'do_resize')) self.assertTrue(hasattr(_lowercase , 'size')) self.assertTrue(hasattr(_lowercase , 'do_thumbnail')) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis')) self.assertTrue(hasattr(_lowercase , 'do_pad')) self.assertTrue(hasattr(_lowercase , 'do_normalize')) self.assertTrue(hasattr(_lowercase , 'image_mean')) self.assertTrue(hasattr(_lowercase , 'image_std')) def __snake_case ( self : int) -> Optional[int]: A_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 18, 'width': 20}) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'height': 42, 'width': 42}) # Previous config had dimensions in (width, height) order A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84)) self.assertEqual(image_processor.size , {'height': 84, 'width': 42}) def __snake_case ( self : Optional[Any]) -> Optional[Any]: pass @is_flaky() def __snake_case ( self : List[str]) -> int: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A_ = image_processing(_lowercase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __snake_case ( self : List[Any]) -> List[Any]: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A_ = image_processing(_lowercase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __snake_case ( self : Dict) -> int: # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A_ = image_processing(_lowercase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
366
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ : Dict = logging.get_logger(__name__) __magic_name__ : List[str] = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class A__ ( __snake_case ): '''simple docstring''' snake_case__ = """xlm""" snake_case__ = { """hidden_size""": """emb_dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", """n_words""": """vocab_size""", # For backward compatibility } def __init__( self : str , _SCREAMING_SNAKE_CASE : Tuple=3_0145 , _SCREAMING_SNAKE_CASE : Dict=2048 , _SCREAMING_SNAKE_CASE : Optional[int]=12 , _SCREAMING_SNAKE_CASE : List[str]=16 , _SCREAMING_SNAKE_CASE : List[str]=0.1 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , _SCREAMING_SNAKE_CASE : str=True , _SCREAMING_SNAKE_CASE : Tuple=False , _SCREAMING_SNAKE_CASE : Optional[int]=False , _SCREAMING_SNAKE_CASE : str=False , _SCREAMING_SNAKE_CASE : str=1 , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : str=512 , _SCREAMING_SNAKE_CASE : Tuple=2048**-0.5 , _SCREAMING_SNAKE_CASE : Union[str, Any]=1E-1_2 , _SCREAMING_SNAKE_CASE : int=0.0_2 , _SCREAMING_SNAKE_CASE : Optional[Any]=0 , _SCREAMING_SNAKE_CASE : int=1 , _SCREAMING_SNAKE_CASE : int=2 , _SCREAMING_SNAKE_CASE : Optional[Any]=3 , _SCREAMING_SNAKE_CASE : Any=5 , _SCREAMING_SNAKE_CASE : int=True , _SCREAMING_SNAKE_CASE : Tuple="first" , _SCREAMING_SNAKE_CASE : str=True , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Union[str, Any]=True , _SCREAMING_SNAKE_CASE : Dict=0.1 , _SCREAMING_SNAKE_CASE : int=5 , _SCREAMING_SNAKE_CASE : Optional[Any]=5 , _SCREAMING_SNAKE_CASE : str=0 , _SCREAMING_SNAKE_CASE : str=0 , _SCREAMING_SNAKE_CASE : Union[str, Any]=2 , _SCREAMING_SNAKE_CASE : int=0 , **_SCREAMING_SNAKE_CASE : List[Any] , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = emb_dim UpperCamelCase = n_layers UpperCamelCase = n_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = gelu_activation UpperCamelCase = sinusoidal_embeddings UpperCamelCase = causal UpperCamelCase = asm UpperCamelCase = n_langs UpperCamelCase = use_lang_emb UpperCamelCase = layer_norm_eps UpperCamelCase = bos_index UpperCamelCase = eos_index UpperCamelCase = pad_index UpperCamelCase = unk_index UpperCamelCase = mask_index UpperCamelCase = is_encoder UpperCamelCase = max_position_embeddings UpperCamelCase = embed_init_std UpperCamelCase = init_std UpperCamelCase = summary_type UpperCamelCase = summary_use_proj UpperCamelCase = summary_activation UpperCamelCase = summary_proj_to_labels UpperCamelCase = summary_first_dropout UpperCamelCase = start_n_top UpperCamelCase = end_n_top UpperCamelCase = mask_token_id UpperCamelCase = lang_id if "n_words" in kwargs: UpperCamelCase = kwargs['n_words'] super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class A__ ( __snake_case ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
410
__magic_name__ : List[str] = tuple[float, float, float] __magic_name__ : Optional[int] = tuple[float, float, float] def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Vectorad: """simple docstring""" UpperCamelCase = end_pointa[0] - end_pointa[0] UpperCamelCase = end_pointa[1] - end_pointa[1] UpperCamelCase = end_pointa[2] - end_pointa[2] return (x, y, z) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Vectorad: """simple docstring""" UpperCamelCase = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCamelCase = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCamelCase = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> bool: """simple docstring""" return tuple(round(_UpperCamelCase , _UpperCamelCase) for x in vector) == (0, 0, 0) def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 10) -> bool: """simple docstring""" UpperCamelCase = create_vector(_UpperCamelCase , _UpperCamelCase) UpperCamelCase = create_vector(_UpperCamelCase , _UpperCamelCase) return is_zero_vector(get_ad_vectors_cross(_UpperCamelCase , _UpperCamelCase) , _UpperCamelCase)
410
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration a_ : str = 5_0_0_0_0_0 a_ , a_ : Any = os.path.split(__file__) a_ : Dict = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def __lowercase( UpperCAmelCase__ , **UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = dataset.map(**UpperCAmelCase__ ) @get_duration def __lowercase( UpperCAmelCase__ , **UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = dataset.filter(**UpperCAmelCase__ ) def __lowercase( ): """simple docstring""" lowerCamelCase = {"num examples": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase = datasets.Features({"text": datasets.Value("string" ), "numbers": datasets.Value("float32" )} ) lowerCamelCase = generate_example_dataset( os.path.join(UpperCAmelCase__ , "dataset.arrow" ) , UpperCAmelCase__ , num_examples=UpperCAmelCase__ ) lowerCamelCase = transformers.AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=UpperCAmelCase__ ) def tokenize(UpperCAmelCase__ ): return tokenizer(examples["text"] ) lowerCamelCase = map(UpperCAmelCase__ ) lowerCamelCase = map(UpperCAmelCase__ , batched=UpperCAmelCase__ ) lowerCamelCase = map(UpperCAmelCase__ , function=lambda UpperCAmelCase__ : None , batched=UpperCAmelCase__ ) with dataset.formatted_as(type="numpy" ): lowerCamelCase = map(UpperCAmelCase__ , function=lambda UpperCAmelCase__ : None , batched=UpperCAmelCase__ ) with dataset.formatted_as(type="pandas" ): lowerCamelCase = map(UpperCAmelCase__ , function=lambda UpperCAmelCase__ : None , batched=UpperCAmelCase__ ) with dataset.formatted_as(type="torch" , columns="numbers" ): lowerCamelCase = map(UpperCAmelCase__ , function=lambda UpperCAmelCase__ : None , batched=UpperCAmelCase__ ) with dataset.formatted_as(type="tensorflow" , columns="numbers" ): lowerCamelCase = map(UpperCAmelCase__ , function=lambda UpperCAmelCase__ : None , batched=UpperCAmelCase__ ) lowerCamelCase = map(UpperCAmelCase__ , function=UpperCAmelCase__ , batched=UpperCAmelCase__ ) lowerCamelCase = filter(UpperCAmelCase__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCAmelCase__ , "wb" ) as f: f.write(json.dumps(UpperCAmelCase__ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
623
def __lowercase( UpperCAmelCase__ ): """simple docstring""" if n == 1 or not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return 0 elif n == 2: return 1 else: lowerCamelCase = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = 0 lowerCamelCase = 2 while digits < n: index += 1 lowerCamelCase = len(str(fibonacci(UpperCAmelCase__ ) ) ) return index def __lowercase( UpperCAmelCase__ = 1000 ): """simple docstring""" return fibonacci_digits_index(UpperCAmelCase__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
623
1
'''simple docstring''' import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __A : Optional[int] = True except ImportError: __A : Any = False try: from torch.hub import _get_torch_home __A : Any = _get_torch_home() except ImportError: __A : Union[str, Any] = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) __A : List[Any] = os.path.join(torch_cache_home, 'transformers') __A : Optional[int] = 'https://cdn.huggingface.co' __A : Optional[int] = 'https://s3.amazonaws.com/models.huggingface.co/bert' __A : int = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) __A : Tuple = os.path.join(PATH, 'config.yaml') __A : int = os.path.join(PATH, 'attributes.txt') __A : List[str] = os.path.join(PATH, 'objects.txt') __A : Optional[Any] = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) __A : Optional[int] = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) __A : Optional[Any] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) __A : List[str] = 'pytorch_model.bin' __A : Tuple = 'config.yaml' def UpperCAmelCase ( lowerCamelCase_ :Tuple=OBJECTS , lowerCamelCase_ :Dict=ATTRIBUTES ): '''simple docstring''' snake_case_ : Any = [] with open(lowerCamelCase_ ) as f: for object in f.readlines(): vg_classes.append(object.split(""",""" )[0].lower().strip() ) snake_case_ : Dict = [] with open(lowerCamelCase_ ) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""" )[0].lower().strip() ) return vg_classes, vg_attrs def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : Any = OrderedDict() with open(lowerCamelCase_ , """rb""" ) as f: snake_case_ : int = pkl.load(lowerCamelCase_ )["""model"""] for k in copy.deepcopy(list(ckp.keys() ) ): snake_case_ : List[Any] = ckp.pop(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , np.ndarray ): snake_case_ : List[Any] = torch.tensor(lowerCamelCase_ ) else: assert isinstance(lowerCamelCase_ , torch.tensor ), type(lowerCamelCase_ ) snake_case_ : Optional[Any] = v return r class __UpperCamelCase : lowercase : List[Any] = {} def __init__( self :Optional[Any] ,_UpperCamelCase :dict ,_UpperCamelCase :str = "root" ,_UpperCamelCase :List[Any]=0 ): snake_case_ : List[Any] = name snake_case_ : Tuple = level snake_case_ : int = {} for k, v in dictionary.items(): if v is None: raise ValueError() snake_case_ : Union[str, Any] = copy.deepcopy(_UpperCamelCase ) snake_case_ : Any = copy.deepcopy(_UpperCamelCase ) if isinstance(_UpperCamelCase ,_UpperCamelCase ): snake_case_ : List[Any] = Config(_UpperCamelCase ,name=_UpperCamelCase ,level=level + 1 ) snake_case_ : Union[str, Any] = v setattr(self ,_UpperCamelCase ,_UpperCamelCase ) snake_case_ : Dict = d def __repr__( self :List[str] ): return str(list((self._pointer.keys()) ) ) def __setattr__( self :str ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[Any] ): snake_case_ : List[str] = val snake_case_ : Optional[int] = val snake_case_ : Optional[Any] = key.split(""".""" ) snake_case_ : Optional[int] = len(_UpperCamelCase ) - 1 snake_case_ : Optional[int] = self._pointer if len(_UpperCamelCase ) > 1: for i, l in enumerate(_UpperCamelCase ): if hasattr(self ,_UpperCamelCase ) and isinstance(getattr(self ,_UpperCamelCase ) ,_UpperCamelCase ): setattr(getattr(self ,_UpperCamelCase ) ,""".""".join(levels[i:] ) ,_UpperCamelCase ) if l == last_level: snake_case_ : Union[str, Any] = val else: snake_case_ : Any = pointer[l] def a__ ( self :int ): return self._pointer def a__ ( self :Tuple ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Optional[Any] ): with open(F'''{file_name}''' ,"""w""" ) as stream: dump(_UpperCamelCase ,_UpperCamelCase ) def a__ ( self :int ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :Tuple ): with open(F'''{file_name}''' ,"""w""" ) as stream: json.dump(_UpperCamelCase ,_UpperCamelCase ) @staticmethod def a__ ( _UpperCamelCase :List[str] ): with open(_UpperCamelCase ) as stream: snake_case_ : List[Any] = load(_UpperCamelCase ,Loader=_UpperCamelCase ) return data def __str__( self :int ): snake_case_ : Union[str, Any] = """ """ if self._name != "root": snake_case_ : Union[str, Any] = F'''{t * (self._level-1)}{self._name}:\n''' else: snake_case_ : Any = """""" snake_case_ : Optional[int] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_UpperCamelCase ,_UpperCamelCase ): r += F'''{t * (self._level)}{v}\n''' self._level += 1 else: r += F'''{t * (self._level)}{k}: {v} ({type(_UpperCamelCase ).__name__})\n''' snake_case_ : List[Any] = level return r[:-1] @classmethod def a__ ( cls :Optional[int] ,_UpperCamelCase :str ,**_UpperCamelCase :Optional[int] ): snake_case_ : List[Any] = cls.get_config_dict(_UpperCamelCase ,**_UpperCamelCase ) return cls(_UpperCamelCase ) @classmethod def a__ ( cls :Dict ,_UpperCamelCase :str ,**_UpperCamelCase :Dict ): snake_case_ : int = kwargs.pop("""cache_dir""" ,_UpperCamelCase ) snake_case_ : Any = kwargs.pop("""force_download""" ,_UpperCamelCase ) snake_case_ : Optional[int] = kwargs.pop("""resume_download""" ,_UpperCamelCase ) snake_case_ : Tuple = kwargs.pop("""proxies""" ,_UpperCamelCase ) snake_case_ : Tuple = kwargs.pop("""local_files_only""" ,_UpperCamelCase ) if os.path.isdir(_UpperCamelCase ): snake_case_ : Optional[int] = os.path.join(_UpperCamelCase ,_UpperCamelCase ) elif os.path.isfile(_UpperCamelCase ) or is_remote_url(_UpperCamelCase ): snake_case_ : int = pretrained_model_name_or_path else: snake_case_ : Optional[Any] = hf_bucket_url(_UpperCamelCase ,filename=_UpperCamelCase ,use_cdn=_UpperCamelCase ) try: # Load from URL or cache if already cached snake_case_ : Optional[int] = cached_path( _UpperCamelCase ,cache_dir=_UpperCamelCase ,force_download=_UpperCamelCase ,proxies=_UpperCamelCase ,resume_download=_UpperCamelCase ,local_files_only=_UpperCamelCase ,) # Load config dict if resolved_config_file is None: raise EnvironmentError snake_case_ : int = Config.load_yaml(_UpperCamelCase ) except EnvironmentError: snake_case_ : Union[str, Any] = """Can't load config for""" raise EnvironmentError(_UpperCamelCase ) if resolved_config_file == config_file: print("""loading configuration file from path""" ) else: print("""loading configuration file cache""" ) return Config.load_yaml(_UpperCamelCase ), kwargs def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' snake_case_ : Optional[Any] = torch.load("""dump.pt""" , map_location=in_tensor.device ) snake_case_ : List[str] = in_tensor.numpy() snake_case_ : Union[str, Any] = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(lowerCamelCase_ , lowerCamelCase_ , rtol=0.01 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(lowerCamelCase_ , lowerCamelCase_ , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %''' " element-wise mismatch" ) raise Exception("""tensors are all good""" ) # Hugging face functions below def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' snake_case_ : int = urlparse(lowerCamelCase_ ) return parsed.scheme in ("http", "https") def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Dict=True ): '''simple docstring''' snake_case_ : Any = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX snake_case_ : Optional[Any] = """/""" not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Dict=0 , lowerCamelCase_ :Optional[Any]=None , ): '''simple docstring''' snake_case_ : Union[str, Any] = """python/{}""".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): ua += "; " + "; ".join("""{}/{}""".format(lowerCamelCase_ , lowerCamelCase_ ) for k, v in user_agent.items() ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): ua += "; " + user_agent snake_case_ : List[str] = {"""user-agent""": ua} if resume_size > 0: snake_case_ : List[str] = """bytes=%d-""" % (resume_size,) snake_case_ : Any = requests.get(lowerCamelCase_ , stream=lowerCamelCase_ , proxies=lowerCamelCase_ , headers=lowerCamelCase_ ) if response.status_code == 4_16: # Range not satisfiable return snake_case_ : Dict = response.headers.get("""Content-Length""" ) snake_case_ : Dict = resume_size + int(lowerCamelCase_ ) if content_length is not None else None snake_case_ : List[Any] = tqdm( unit="""B""" , unit_scale=lowerCamelCase_ , total=lowerCamelCase_ , initial=lowerCamelCase_ , desc="""Downloading""" , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(lowerCamelCase_ ) ) temp_file.write(lowerCamelCase_ ) progress.close() def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Optional[int]=10 , lowerCamelCase_ :List[Any]=False , lowerCamelCase_ :str=None , lowerCamelCase_ :List[Any]=False , ): '''simple docstring''' if cache_dir is None: snake_case_ : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(lowerCamelCase_ , lowerCamelCase_ ): snake_case_ : Dict = str(lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) snake_case_ : List[str] = None if not local_files_only: try: snake_case_ : Optional[Any] = requests.head(lowerCamelCase_ , allow_redirects=lowerCamelCase_ , proxies=lowerCamelCase_ , timeout=lowerCamelCase_ ) if response.status_code == 2_00: snake_case_ : Any = response.headers.get("""ETag""" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass snake_case_ : Tuple = url_to_filename(lowerCamelCase_ , lowerCamelCase_ ) # get cache path to put the file snake_case_ : List[Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(lowerCamelCase_ ): return cache_path else: snake_case_ : List[str] = [ file for file in fnmatch.filter(os.listdir(lowerCamelCase_ ) , filename + """.*""" ) if not file.endswith(""".json""" ) and not file.endswith(""".lock""" ) ] if len(lowerCamelCase_ ) > 0: return os.path.join(lowerCamelCase_ , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set 'local_files_only'""" """ to False.""" ) return None # From now on, etag is not None. if os.path.exists(lowerCamelCase_ ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. snake_case_ : Any = cache_path + """.lock""" with FileLock(lowerCamelCase_ ): # If the download just completed while the lock was activated. if os.path.exists(lowerCamelCase_ ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: snake_case_ : List[Any] = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(lowerCamelCase_ , """a+b""" ) as f: yield f snake_case_ : List[str] = _resumable_file_manager if os.path.exists(lowerCamelCase_ ): snake_case_ : List[Any] = os.stat(lowerCamelCase_ ).st_size else: snake_case_ : int = 0 else: snake_case_ : int = partial(tempfile.NamedTemporaryFile , dir=lowerCamelCase_ , delete=lowerCamelCase_ ) snake_case_ : Optional[Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""" , lowerCamelCase_ , temp_file.name , ) http_get( lowerCamelCase_ , lowerCamelCase_ , proxies=lowerCamelCase_ , resume_size=lowerCamelCase_ , user_agent=lowerCamelCase_ , ) os.replace(temp_file.name , lowerCamelCase_ ) snake_case_ : int = {"""url""": url, """etag""": etag} snake_case_ : Tuple = cache_path + """.json""" with open(lowerCamelCase_ , """w""" ) as meta_file: json.dump(lowerCamelCase_ , lowerCamelCase_ ) return cache_path def UpperCAmelCase ( lowerCamelCase_ :Tuple , lowerCamelCase_ :str=None ): '''simple docstring''' snake_case_ : List[Any] = url.encode("""utf-8""" ) snake_case_ : List[str] = shaaaa(lowerCamelCase_ ) snake_case_ : Optional[int] = url_hash.hexdigest() if etag: snake_case_ : List[Any] = etag.encode("""utf-8""" ) snake_case_ : str = shaaaa(lowerCamelCase_ ) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5""" ): filename += ".h5" return filename def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int=None , lowerCamelCase_ :Dict=False , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=None , lowerCamelCase_ :List[Any]=False , lowerCamelCase_ :List[str]=False , lowerCamelCase_ :int=False , ): '''simple docstring''' if cache_dir is None: snake_case_ : Dict = TRANSFORMERS_CACHE if isinstance(lowerCamelCase_ , lowerCamelCase_ ): snake_case_ : int = str(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): snake_case_ : Tuple = str(lowerCamelCase_ ) if is_remote_url(lowerCamelCase_ ): # URL, so get it from the cache (downloading if necessary) snake_case_ : Dict = get_from_cache( lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , user_agent=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) elif os.path.exists(lowerCamelCase_ ): # File, and it exists. snake_case_ : Optional[Any] = url_or_filename elif urlparse(lowerCamelCase_ ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(lowerCamelCase_ ) ) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(lowerCamelCase_ ) ) if extract_compressed_file: if not is_zipfile(lowerCamelCase_ ) and not tarfile.is_tarfile(lowerCamelCase_ ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" snake_case_ : Union[str, Any] = os.path.split(lowerCamelCase_ ) snake_case_ : Any = output_file.replace(""".""" , """-""" ) + """-extracted""" snake_case_ : Any = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isdir(lowerCamelCase_ ) and os.listdir(lowerCamelCase_ ) and not force_extract: return output_path_extracted # Prevent parallel extractions snake_case_ : Dict = output_path + """.lock""" with FileLock(lowerCamelCase_ ): shutil.rmtree(lowerCamelCase_ , ignore_errors=lowerCamelCase_ ) os.makedirs(lowerCamelCase_ ) if is_zipfile(lowerCamelCase_ ): with ZipFile(lowerCamelCase_ , """r""" ) as zip_file: zip_file.extractall(lowerCamelCase_ ) zip_file.close() elif tarfile.is_tarfile(lowerCamelCase_ ): snake_case_ : Union[str, Any] = tarfile.open(lowerCamelCase_ ) tar_file.extractall(lowerCamelCase_ ) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(lowerCamelCase_ ) ) return output_path_extracted return output_path def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str="," ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): with open(lowerCamelCase_ ) as f: snake_case_ : List[str] = eval(f.read() ) else: snake_case_ : Optional[int] = requests.get(lowerCamelCase_ ) try: snake_case_ : Any = requests.json() except Exception: snake_case_ : Tuple = req.content.decode() assert data is not None, "could not connect" try: snake_case_ : Dict = eval(lowerCamelCase_ ) except Exception: snake_case_ : Dict = data.split("""\n""" ) req.close() return data def UpperCAmelCase ( lowerCamelCase_ :Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = requests.get(lowerCamelCase_ ) snake_case_ : Any = np.array(Image.open(BytesIO(response.content ) ) ) return img def UpperCAmelCase ( lowerCamelCase_ :List[str] ): '''simple docstring''' snake_case_ : Any = url.split("""/""" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(lowerCamelCase_ ) with open(lowerCamelCase_ , """rb""" ) as stream: snake_case_ : Optional[int] = pkl.load(lowerCamelCase_ ) snake_case_ : int = weights.pop("""model""" ) snake_case_ : Any = {} for k, v in model.items(): snake_case_ : Dict = torch.from_numpy(lowerCamelCase_ ) if "running_var" in k: snake_case_ : Tuple = torch.tensor([0] ) snake_case_ : Tuple = k.replace("""running_var""" , """num_batches_tracked""" ) snake_case_ : Union[str, Any] = zero return new def UpperCAmelCase ( ): '''simple docstring''' print(F'''{os.path.abspath(os.path.join(lowerCamelCase_ , os.pardir ) )}/demo.ipynb''' ) def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :Any="RGB" ): '''simple docstring''' assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) if os.path.isfile(lowerCamelCase_ ): snake_case_ : str = cva.imread(lowerCamelCase_ ) else: snake_case_ : Any = get_image_from_url(lowerCamelCase_ ) assert img is not None, F'''could not connect to: {im}''' snake_case_ : int = cva.cvtColor(lowerCamelCase_ , cva.COLOR_BGR2RGB ) if input_format == "RGB": snake_case_ : Dict = img[:, :, ::-1] return img def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[Any]=1 ): '''simple docstring''' return (images[i : i + batch] for i in range(0 , len(lowerCamelCase_ ) , lowerCamelCase_ ))
708
'''simple docstring''' import math def UpperCAmelCase ( lowerCamelCase_ :list , lowerCamelCase_ :int ): '''simple docstring''' snake_case_ : Union[str, Any] = len(lowerCamelCase_ ) snake_case_ : List[Any] = int(math.floor(math.sqrt(lowerCamelCase_ ) ) ) snake_case_ : str = 0 while arr[min(lowerCamelCase_ , lowerCamelCase_ ) - 1] < x: snake_case_ : Any = step step += int(math.floor(math.sqrt(lowerCamelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: snake_case_ : Optional[Any] = prev + 1 if prev == min(lowerCamelCase_ , lowerCamelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": __A : Any = input('Enter numbers separated by a comma:\n').strip() __A : Union[str, Any] = [int(item) for item in user_input.split(',')] __A : Optional[int] = int(input('Enter the number to be searched:\n')) __A : int = jump_search(arr, x) if res == -1: print('Number not found!') else: print(F'Number {x} is at index {res}')
267
0
"""simple docstring""" import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
82
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = tmp_path / "cache" _snake_case = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = tmp_path / "cache" _snake_case = {"text": "string"} _snake_case = features.copy() if features else default_expected_features _snake_case = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case = TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = tmp_path / "cache" _snake_case = {"text": "string"} _snake_case = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case = text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case = [text_path] _snake_case = tmp_path / "cache" _snake_case = {"text": "string"} _snake_case = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=("train",) ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: _snake_case = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = tmp_path / "cache" _snake_case = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case = TextDatasetReader({"train": text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _snake_case = {"text": "string"} _snake_case = features.copy() if features else default_expected_features _snake_case = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case = TextDatasetReader({"train": text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if split: _snake_case = {split: text_path} else: _snake_case = "train" _snake_case = {"train": text_path, "test": text_path} _snake_case = tmp_path / "cache" _snake_case = {"text": "string"} _snake_case = TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
672
0
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __lowerCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ (__a : str , __a : Any , __a : int , __a : Union[str, Any]=None , __a : Any=None ): """simple docstring""" if "." in tensor_name: _a : Optional[int] = tensor_name.split('.' ) for split in splits[:-1]: _a : Any = getattr(__a , __a ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) _a : int = new_module _a : Union[str, Any] = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f"""{module} does not have a parameter or a buffer named {tensor_name}.""" ) _a : str = tensor_name in module._buffers _a : List[str] = getattr(__a , __a ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(f"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" ) _a : Optional[Any] = False _a : Optional[Any] = False if is_buffer or not is_bitsandbytes_available(): _a : Dict = False _a : List[Any] = False else: _a : Optional[Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) _a : Dict = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: _a : Union[str, Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _a : Any = old_value.to(__a ) elif isinstance(__a , torch.Tensor ): _a : List[Any] = value.to('cpu' ) if value.dtype == torch.inta: _a : str = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: _a : str = torch.tensor(__a , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __a ) and fpaa_statistics is None: _a : List[str] = new_value.T _a : int = old_value.__dict__ if is_abit: _a : Dict = bnb.nn.IntaParams(__a , requires_grad=__a , **__a ).to(__a ) elif is_abit: _a : Optional[Any] = bnb.nn.Paramsabit(__a , requires_grad=__a , **__a ).to(__a ) _a : Union[str, Any] = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(__a ) ) else: if value is None: _a : Tuple = old_value.to(__a ) elif isinstance(__a , torch.Tensor ): _a : Dict = value.to(__a ) else: _a : Optional[Any] = torch.tensor(__a , device=__a ) if is_buffer: _a : Any = new_value else: _a : List[Any] = nn.Parameter(__a , requires_grad=old_value.requires_grad ) _a : Tuple = new_value def UpperCAmelCase_ (__a : Optional[int] , __a : Union[str, Any]=None , __a : Tuple=None , __a : int=None , __a : Tuple=False ): """simple docstring""" for name, module in model.named_children(): if current_key_name is None: _a : List[Any] = [] current_key_name.append(__a ) if (isinstance(__a , nn.Linear ) or isinstance(__a , __a )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(__a ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__a , __a ): _a : List[str] = module.weight.shape else: _a : List[str] = module.in_features _a : Optional[int] = module.out_features if quantization_config.quantization_method() == "llm_int8": _a : int = bnb.nn.LinearabitLt( __a , __a , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) _a : int = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _a : int = bnb.nn.Linearabit( __a , __a , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) _a : Optional[Any] = True # Store the module class in case we need to transpose the weight later _a : List[Any] = type(__a ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__a ) if len(list(module.children() ) ) > 0: _a : List[Any] = _replace_with_bnb_linear( __a , __a , __a , __a , has_been_replaced=__a , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase_ (__a : Optional[int] , __a : Tuple=None , __a : List[Any]=None , __a : Optional[Any]=None ): """simple docstring""" _a : List[str] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert _a : List[str] = _replace_with_bnb_linear( __a , __a , __a , __a ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCAmelCase_ (*__a : int , **__a : Dict ): """simple docstring""" warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , __a , ) return replace_with_bnb_linear(*__a , **__a ) def UpperCAmelCase_ (*__a : int , **__a : List[str] ): """simple docstring""" warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , __a , ) return set_module_quantized_tensor_to_device(*__a , **__a ) def UpperCAmelCase_ (__a : List[Any] ): """simple docstring""" _a : int = deepcopy(__a ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _a : Union[str, Any] = find_tied_parameters(__a ) # For compatibility with Accelerate < 0.18 if isinstance(__a , __a ): _a : str = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _a : Optional[int] = sum(__a , [] ) _a : Union[str, Any] = len(__a ) > 0 # Check if it is a base model _a : str = not hasattr(__a , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _a : int = list(model.named_children() ) _a : List[str] = [list_modules[-1][0]] # add last module together with tied weights _a : Optional[int] = set(__a ) - set(__a ) _a : str = list(set(__a ) ) + list(__a ) # remove ".weight" from the keys _a : Any = ['.weight', '.bias'] _a : List[str] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _a : Optional[Any] = name.replace(__a , '' ) filtered_module_names.append(__a ) return filtered_module_names
704
'''simple docstring''' from __future__ import annotations import time import numpy as np __lowerCAmelCase = [8, 5, 9, 7] __lowerCAmelCase = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __lowerCAmelCase = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCAmelCase__ : """simple docstring""" def __init__( self : Union[str, Any] ,_a : list[int] ,_a : list[list[int]] ,_a : list[list[int]] ,): '''simple docstring''' _a : Dict = claim_vector _a : List[str] = allocated_resources_table _a : List[Any] = maximum_claim_table def __lowercase ( self : Tuple ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __lowercase ( self : Tuple ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(_a ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __lowercase ( self : int ): '''simple docstring''' return {self.__need().index(_a ): i for i in self.__need()} def __lowercase ( self : Optional[Any] ,**_a : Dict ): '''simple docstring''' _a : Optional[int] = self.__need() _a : str = self.__allocated_resources_table _a : int = self.__available_resources() _a : Dict = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: _a : List[str] = False for each_need in need_list: _a : List[str] = True for index, need in enumerate(_a ): if need > available_resources[index]: _a : Dict = False break if execution: _a : Union[str, Any] = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _a : int = original_need_index print(F"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(_a ) # update available/freed resources stack _a : Optional[int] = np.array(_a ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(_a ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __lowercase ( self : Tuple ): '''simple docstring''' print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(_a ) + 1}""" + ' '.join(F"""{it:>8}""" for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(_a ) + 1}""" + ' '.join(F"""{it:>8}""" for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(_a ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(_a ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __A : List[str] = logging.get_logger(__name__) __A : Optional[int] = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off __A : int = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] __A : List[str] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class __A ( lowerCAmelCase ): lowerCAmelCase_ : Dict = "whisper" lowerCAmelCase_ : List[str] = ["past_key_values"] lowerCAmelCase_ : Dict = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , UpperCAmelCase_ : List[str]=51865 , UpperCAmelCase_ : Tuple=80 , UpperCAmelCase_ : Tuple=6 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : str=6 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Union[str, Any]=1536 , UpperCAmelCase_ : Dict=1536 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=50257 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Any=256 , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : Dict=0.02 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Any=1500 , UpperCAmelCase_ : List[str]=448 , UpperCAmelCase_ : List[str]=50256 , UpperCAmelCase_ : int=50256 , UpperCAmelCase_ : List[Any]=50256 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[Any]=[220, 50256] , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Optional[int]=0.05 , UpperCAmelCase_ : List[str]=10 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : int=10 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Any=7 , **UpperCAmelCase_ : List[Any] , ): lowerCAmelCase : Dict = vocab_size lowerCAmelCase : List[Any] = num_mel_bins lowerCAmelCase : Optional[Any] = d_model lowerCAmelCase : Union[str, Any] = encoder_layers lowerCAmelCase : Dict = encoder_attention_heads lowerCAmelCase : List[str] = decoder_layers lowerCAmelCase : List[Any] = decoder_attention_heads lowerCAmelCase : Tuple = decoder_ffn_dim lowerCAmelCase : Union[str, Any] = encoder_ffn_dim lowerCAmelCase : List[Any] = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : Tuple = activation_dropout lowerCAmelCase : Any = activation_function lowerCAmelCase : Any = init_std lowerCAmelCase : str = encoder_layerdrop lowerCAmelCase : List[str] = decoder_layerdrop lowerCAmelCase : Optional[Any] = use_cache lowerCAmelCase : Union[str, Any] = encoder_layers lowerCAmelCase : str = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase : Dict = max_source_positions lowerCAmelCase : int = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCAmelCase : Optional[Any] = classifier_proj_size lowerCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase : Tuple = apply_spec_augment lowerCAmelCase : Any = mask_time_prob lowerCAmelCase : Any = mask_time_length lowerCAmelCase : Optional[Any] = mask_time_min_masks lowerCAmelCase : List[str] = mask_feature_prob lowerCAmelCase : Any = mask_feature_length lowerCAmelCase : Any = mask_feature_min_masks lowerCAmelCase : List[str] = median_filter_width super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , suppress_tokens=UpperCAmelCase_ , begin_suppress_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) class __A ( lowerCAmelCase ): @property def lowercase__ ( self : str ): lowerCAmelCase : int = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: lowerCAmelCase : Dict = {0: 'batch'} else: lowerCAmelCase : List[str] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase_ , direction='inputs' ) return common_inputs def lowercase__ ( self : List[str] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 22050 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : int = 220 , ): lowerCAmelCase : Any = OrderedDict() lowerCAmelCase : Dict = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=UpperCAmelCase_ , framework=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , time_duration=UpperCAmelCase_ , frequency=UpperCAmelCase_ , ) lowerCAmelCase : Dict = encoder_inputs['input_features'].shape[2] lowerCAmelCase : List[str] = encoder_sequence_length // 2 if self.use_past else seq_length lowerCAmelCase : str = super().generate_dummy_inputs( preprocessor.tokenizer , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase : int = encoder_inputs.pop('input_features' ) lowerCAmelCase : List[str] = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: lowerCAmelCase : Optional[Any] = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def lowercase__ ( self : Optional[Any] ): return 1E-3
343
class __A : def __init__( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): lowerCAmelCase : Optional[Any] = name lowerCAmelCase : int = val def __str__( self : str ): return f"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self : Union[str, Any] , UpperCAmelCase_ : Dict ): return self.val < other.val class __A : def __init__( self : Union[str, Any] , UpperCAmelCase_ : str ): lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : Tuple = {} lowerCAmelCase : Optional[Any] = self.build_heap(UpperCAmelCase_ ) def __getitem__( self : Union[str, Any] , UpperCAmelCase_ : str ): return self.get_value(UpperCAmelCase_ ) def lowercase__ ( self : int , UpperCAmelCase_ : Any ): return (idx - 1) // 2 def lowercase__ ( self : int , UpperCAmelCase_ : str ): return idx * 2 + 1 def lowercase__ ( self : Optional[int] , UpperCAmelCase_ : Any ): return idx * 2 + 2 def lowercase__ ( self : List[str] , UpperCAmelCase_ : List[Any] ): return self.heap_dict[key] def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = len(UpperCAmelCase_ ) - 1 lowerCAmelCase : Union[str, Any] = self.get_parent_idx(UpperCAmelCase_ ) for idx, i in enumerate(UpperCAmelCase_ ): lowerCAmelCase : Any = idx lowerCAmelCase : Union[str, Any] = i.val for i in range(UpperCAmelCase_ , -1 , -1 ): self.sift_down(UpperCAmelCase_ , UpperCAmelCase_ ) return array def lowercase__ ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): while True: lowerCAmelCase : Optional[int] = self.get_left_child_idx(UpperCAmelCase_ ) # noqa: E741 lowerCAmelCase : Union[str, Any] = self.get_right_child_idx(UpperCAmelCase_ ) lowerCAmelCase : Any = idx if l < len(UpperCAmelCase_ ) and array[l] < array[idx]: lowerCAmelCase : Tuple = l if r < len(UpperCAmelCase_ ) and array[r] < array[smallest]: lowerCAmelCase : Any = r if smallest != idx: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = array[smallest], array[idx] ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : List[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) lowerCAmelCase : List[str] = smallest else: break def lowercase__ ( self : Any , UpperCAmelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = self.get_parent_idx(UpperCAmelCase_ ) while p >= 0 and self.heap[p] > self.heap[idx]: lowerCAmelCase , lowerCAmelCase : Optional[int] = self.heap[idx], self.heap[p] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) lowerCAmelCase : Dict = p lowerCAmelCase : Optional[Any] = self.get_parent_idx(UpperCAmelCase_ ) def lowercase__ ( self : str ): return self.heap[0] def lowercase__ ( self : int ): lowerCAmelCase , lowerCAmelCase : str = self.heap[-1], self.heap[0] lowerCAmelCase , lowerCAmelCase : Dict = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) lowerCAmelCase : Any = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowercase__ ( self : Any , UpperCAmelCase_ : Any ): self.heap.append(UpperCAmelCase_ ) lowerCAmelCase : str = len(self.heap ) - 1 lowerCAmelCase : List[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def lowercase__ ( self : Optional[int] ): return len(self.heap ) == 0 def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" lowerCAmelCase : Optional[int] = new_value lowerCAmelCase : str = new_value self.sift_up(self.idx_of_element[node] ) __A : Tuple = Node('''R''', -1) __A : int = Node('''B''', 6) __A : int = Node('''A''', 3) __A : Optional[Any] = Node('''X''', 1) __A : List[str] = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __A : Optional[int] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
343
1
import os def a_ (_lowerCAmelCase : Any )-> Union[str, Any]: snake_case: Tuple = len(grid[0] ) snake_case: Optional[int] = len(_lowerCAmelCase ) snake_case: Optional[Any] = 0 snake_case: List[Any] = 0 snake_case: Optional[int] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_lowerCAmelCase ): for j in range(n_rows - 3 ): snake_case: Dict = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] snake_case: List[Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: snake_case: Dict = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: snake_case: Tuple = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) snake_case: Optional[Any] = max( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if max_product > largest: snake_case: List[str] = max_product return largest def a_ ()-> Any: snake_case: str = [] with open(os.path.dirname(_lowerCAmelCase ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) snake_case: Tuple = [[int(_lowerCAmelCase ) for i in grid[j]] for j in range(len(_lowerCAmelCase ) )] return largest_product(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
164
import collections import os import re from pathlib import Path __lowerCAmelCase : Tuple = 'src/transformers' # Matches is_xxx_available() __lowerCAmelCase : Union[str, Any] = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __lowerCAmelCase : Dict = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowerCAmelCase : Union[str, Any] = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __lowerCAmelCase : Optional[Any] = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __lowerCAmelCase : str = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowerCAmelCase : List[str] = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __lowerCAmelCase : Optional[int] = re.compile(R'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __lowerCAmelCase : Optional[int] = re.compile(R'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __lowerCAmelCase : Dict = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __lowerCAmelCase : Optional[int] = re.compile(R'^\s*try:') # Catches a line with else: __lowerCAmelCase : Optional[int] = re.compile(R'^\s*else:') def a_ (_lowerCAmelCase : str )-> Optional[int]: if _re_test_backend.search(_lowerCAmelCase ) is None: return None snake_case: Optional[Any] = [b[0] for b in _re_backend.findall(_lowerCAmelCase )] backends.sort() return "_and_".join(_lowerCAmelCase ) def a_ (_lowerCAmelCase : Union[str, Any] )-> Union[str, Any]: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case: Dict = f.readlines() snake_case: Optional[int] = 0 while line_index < len(_lowerCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure snake_case: Optional[Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: snake_case: Any = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_lowerCAmelCase ): snake_case: int = _re_one_line_import_struct.search(_lowerCAmelCase ).groups()[0] snake_case: Any = re.findall(R"""\[([^\]]+)\]""" , _lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue snake_case: Union[str, Any] = _re_import_struct_key_value.search(_lowerCAmelCase ) if single_line_import_search is not None: snake_case: Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 snake_case: int = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case: Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case: str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case: List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): snake_case: Union[str, Any] = lines[line_index] if _re_import_struct_add_one.search(_lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(_lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_lowerCAmelCase ) is not None: snake_case: Optional[int] = _re_import_struct_add_many.search(_lowerCAmelCase ).groups()[0].split(""", """ ) snake_case: str = [obj[1:-1] for obj in imports if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif _re_between_brackets.search(_lowerCAmelCase ) is not None: snake_case: Union[str, Any] = _re_between_brackets.search(_lowerCAmelCase ).groups()[0].split(""", """ ) snake_case: int = [obj[1:-1] for obj in imports if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif _re_quote_object.search(_lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(_lowerCAmelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 snake_case: List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case: Optional[Any] = [] while ( line_index < len(_lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): snake_case: int = lines[line_index] snake_case: str = _re_import.search(_lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case: Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(_lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. snake_case: Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case: List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case: Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): snake_case: List[str] = lines[line_index] snake_case: str = _re_import.search(_lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case: Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] )-> Optional[int]: def find_duplicates(_lowerCAmelCase : Union[str, Any] ): return [k for k, v in collections.Counter(_lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case: Optional[Any] = [] for key in import_dict_objects.keys(): snake_case: List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) snake_case: Optional[int] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case: Optional[Any] = """base imports""" if key == """none""" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def a_ ()-> int: snake_case: Optional[int] = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: snake_case: Optional[int] = os.path.join(_lowerCAmelCase , """__init__.py""" ) snake_case: Any = parse_init(_lowerCAmelCase ) if objects is not None: snake_case: List[str] = analyze_results(*_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: snake_case: Optional[int] = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) > 0: raise ValueError("""\n\n""".join(_lowerCAmelCase ) ) def a_ ()-> Dict: snake_case: Any = [] for path, directories, files in os.walk(_lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(_lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_lowerCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue snake_case: Optional[int] = str((Path(_lowerCAmelCase ) / folder).relative_to(_lowerCAmelCase ) ) snake_case: str = short_path.replace(os.path.sep , """.""" ) submodules.append(_lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue snake_case: Union[str, Any] = str((Path(_lowerCAmelCase ) / fname).relative_to(_lowerCAmelCase ) ) snake_case: List[Any] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(_lowerCAmelCase ) return submodules __lowerCAmelCase : Optional[int] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def a_ ()-> Dict: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case: Union[str, Any] = direct_transformers_import(_lowerCAmelCase ) snake_case: str = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_lowerCAmelCase , """__init__.py""" ) , """r""" ) as f: snake_case: Optional[int] = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , _lowerCAmelCase ) ) ) snake_case: Any = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_lowerCAmelCase ) > 0: snake_case: Any = """\n""".join(F"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
164
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger() def a__ ( snake_case , snake_case , snake_case , snake_case , snake_case = True ): """simple docstring""" print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": __SCREAMING_SNAKE_CASE : Tuple = timm.create_model('''levit_128s''' , pretrained=snake_case ) else: __SCREAMING_SNAKE_CASE : Any = timm.create_model('''levit_128''' , pretrained=snake_case ) if hidden_sizes == 192: __SCREAMING_SNAKE_CASE : Dict = timm.create_model('''levit_192''' , pretrained=snake_case ) if hidden_sizes == 256: __SCREAMING_SNAKE_CASE : Optional[int] = timm.create_model('''levit_256''' , pretrained=snake_case ) if hidden_sizes == 384: __SCREAMING_SNAKE_CASE : Any = timm.create_model('''levit_384''' , pretrained=snake_case ) from_model.eval() __SCREAMING_SNAKE_CASE : str = LevitForImageClassificationWithTeacher(snake_case ).eval() __SCREAMING_SNAKE_CASE : int = OrderedDict() __SCREAMING_SNAKE_CASE : List[Any] = from_model.state_dict() __SCREAMING_SNAKE_CASE : Tuple = list(from_model.state_dict().keys() ) __SCREAMING_SNAKE_CASE : str = list(our_model.state_dict().keys() ) print(len(snake_case ) , len(snake_case ) ) for i in range(len(snake_case ) ): __SCREAMING_SNAKE_CASE : int = weights[og_keys[i]] our_model.load_state_dict(snake_case ) __SCREAMING_SNAKE_CASE : str = torch.randn((2, 3, 224, 224) ) __SCREAMING_SNAKE_CASE : Tuple = from_model(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = our_model(snake_case ).logits assert torch.allclose(snake_case , snake_case ), "The model logits don't match the original one." __SCREAMING_SNAKE_CASE : Union[str, Any] = name print(snake_case ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __SCREAMING_SNAKE_CASE : Union[str, Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def a__ ( snake_case , snake_case = None , snake_case = True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = '''imagenet-1k-id2label.json''' __SCREAMING_SNAKE_CASE : int = 1_000 __SCREAMING_SNAKE_CASE : Optional[int] = (1, num_labels) __SCREAMING_SNAKE_CASE : Any = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE : Optional[Any] = num_labels __SCREAMING_SNAKE_CASE : List[Any] = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {int(snake_case ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : str = idalabel __SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : List[str] = partial(snake_case , num_labels=snake_case , idalabel=snake_case , labelaid=snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''levit-128S''': 128, '''levit-128''': 128, '''levit-192''': 192, '''levit-256''': 256, '''levit-384''': 384, } __SCREAMING_SNAKE_CASE : Optional[int] = { '''levit-128S''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-128''': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), '''levit-192''': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-256''': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), '''levit-384''': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , snake_case , names_to_config[model_name] , snake_case , snake_case ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , snake_case , snake_case , snake_case , snake_case ) return config, expected_shape if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) lowercase_ = parser.parse_args() lowercase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
74
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a_ : Optional[int] = logging.get_logger(__name__) # General docstring a_ : List[str] = 'RegNetConfig' # Base docstring a_ : Union[str, Any] = 'facebook/regnet-y-040' a_ : Optional[Any] = [1, 1_0_8_8, 7, 7] # Image classification docstring a_ : Dict = 'facebook/regnet-y-040' a_ : List[Any] = 'tabby, tabby cat' a_ : Union[str, Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__(self , __a , __a , __a = 3 , __a = 1 , __a = 1 , __a = "relu" , ): '''simple docstring''' super().__init__() lowerCamelCase = nn.Convad( __a , __a , kernel_size=__a , stride=__a , padding=kernel_size // 2 , groups=__a , bias=__a , ) lowerCamelCase = nn.BatchNormad(__a ) lowerCamelCase = ACTaFN[activation] if activation is not None else nn.Identity() def _a (self , __a ): '''simple docstring''' lowerCamelCase = self.convolution(__a ) lowerCamelCase = self.normalization(__a ) lowerCamelCase = self.activation(__a ) return hidden_state class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__(self , __a ): '''simple docstring''' super().__init__() lowerCamelCase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) lowerCamelCase = config.num_channels def _a (self , __a ): '''simple docstring''' lowerCamelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) lowerCamelCase = self.embedder(__a ) return hidden_state class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__(self , __a , __a , __a = 2 ): '''simple docstring''' super().__init__() lowerCamelCase = nn.Convad(__a , __a , kernel_size=1 , stride=__a , bias=__a ) lowerCamelCase = nn.BatchNormad(__a ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = self.convolution(__a ) lowerCamelCase = self.normalization(__a ) return hidden_state class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__(self , __a , __a ): '''simple docstring''' super().__init__() lowerCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) lowerCamelCase = nn.Sequential( nn.Convad(__a , __a , kernel_size=1 ) , nn.ReLU() , nn.Convad(__a , __a , kernel_size=1 ) , nn.Sigmoid() , ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = self.pooler(__a ) lowerCamelCase = self.attention(__a ) lowerCamelCase = hidden_state * attention return hidden_state class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__(self , __a , __a , __a , __a = 1 ): '''simple docstring''' super().__init__() lowerCamelCase = in_channels != out_channels or stride != 1 lowerCamelCase = max(1 , out_channels // config.groups_width ) lowerCamelCase = ( RegNetShortCut(__a , __a , stride=__a ) if should_apply_shortcut else nn.Identity() ) lowerCamelCase = nn.Sequential( RegNetConvLayer(__a , __a , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__a , __a , stride=__a , groups=__a , activation=config.hidden_act ) , RegNetConvLayer(__a , __a , kernel_size=1 , activation=__a ) , ) lowerCamelCase = ACTaFN[config.hidden_act] def _a (self , __a ): '''simple docstring''' lowerCamelCase = hidden_state lowerCamelCase = self.layer(__a ) lowerCamelCase = self.shortcut(__a ) hidden_state += residual lowerCamelCase = self.activation(__a ) return hidden_state class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__(self , __a , __a , __a , __a = 1 ): '''simple docstring''' super().__init__() lowerCamelCase = in_channels != out_channels or stride != 1 lowerCamelCase = max(1 , out_channels // config.groups_width ) lowerCamelCase = ( RegNetShortCut(__a , __a , stride=__a ) if should_apply_shortcut else nn.Identity() ) lowerCamelCase = nn.Sequential( RegNetConvLayer(__a , __a , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__a , __a , stride=__a , groups=__a , activation=config.hidden_act ) , RegNetSELayer(__a , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__a , __a , kernel_size=1 , activation=__a ) , ) lowerCamelCase = ACTaFN[config.hidden_act] def _a (self , __a ): '''simple docstring''' lowerCamelCase = hidden_state lowerCamelCase = self.layer(__a ) lowerCamelCase = self.shortcut(__a ) hidden_state += residual lowerCamelCase = self.activation(__a ) return hidden_state class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__(self , __a , __a , __a , __a = 2 , __a = 2 , ): '''simple docstring''' super().__init__() lowerCamelCase = RegNetXLayer if config.layer_type == "x" else RegNetYLayer lowerCamelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __a , __a , __a , stride=__a , ) , *[layer(__a , __a , __a ) for _ in range(depth - 1 )] , ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = self.layers(__a ) return hidden_state class lowerCamelCase__ ( nn.Module): """simple docstring""" def __init__(self , __a ): '''simple docstring''' super().__init__() lowerCamelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowerCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__a , config.depths[1:] ): self.stages.append(RegNetStage(__a , __a , __a , depth=__a ) ) def _a (self , __a , __a = False , __a = True ): '''simple docstring''' lowerCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCamelCase = hidden_states + (hidden_state,) lowerCamelCase = stage_module(__a ) if output_hidden_states: lowerCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__a , hidden_states=__a ) class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" _A = RegNetConfig _A = 'regnet' _A = 'pixel_values' _A = True def _a (self , __a ): '''simple docstring''' if isinstance(__a , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" ) elif isinstance(__a , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _a (self , __a , __a=False ): '''simple docstring''' if isinstance(__a , __a ): lowerCamelCase = value a_ : Dict = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' a_ : Optional[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , UpperCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def __init__(self , __a ): '''simple docstring''' super().__init__(__a ) lowerCamelCase = config lowerCamelCase = RegNetEmbeddings(__a ) lowerCamelCase = RegNetEncoder(__a ) lowerCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _a (self , __a , __a = None , __a = None ): '''simple docstring''' lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase = self.embedder(__a ) lowerCamelCase = self.encoder( __a , output_hidden_states=__a , return_dict=__a ) lowerCamelCase = encoder_outputs[0] lowerCamelCase = self.pooler(__a ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__a , pooler_output=__a , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , UpperCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def __init__(self , __a ): '''simple docstring''' super().__init__(__a ) lowerCamelCase = config.num_labels lowerCamelCase = RegNetModel(__a ) # classification head lowerCamelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _a (self , __a = None , __a = None , __a = None , __a = None , ): '''simple docstring''' lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase = self.regnet(__a , output_hidden_states=__a , return_dict=__a ) lowerCamelCase = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase = self.classifier(__a ) lowerCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase = "single_label_classification" else: lowerCamelCase = "multi_label_classification" if self.config.problem_type == "regression": lowerCamelCase = MSELoss() if self.num_labels == 1: lowerCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase = loss_fct(__a , __a ) elif self.config.problem_type == "single_label_classification": lowerCamelCase = CrossEntropyLoss() lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase = BCEWithLogitsLoss() lowerCamelCase = loss_fct(__a , __a ) if not return_dict: lowerCamelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__a , logits=__a , hidden_states=outputs.hidden_states )
623
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class _A ( _lowerCamelCase ): _UpperCamelCase : int = '''mobilenet_v2''' def __init__( self : int , _A : Union[str, Any]=3 , _A : int=224 , _A : str=1.0 , _A : Optional[Any]=8 , _A : Optional[Any]=8 , _A : str=6 , _A : Optional[int]=32 , _A : Tuple=True , _A : Any=True , _A : int="relu6" , _A : List[Any]=True , _A : int=0.8 , _A : List[Any]=0.02 , _A : Any=0.001 , _A : Optional[int]=255 , **_A : Optional[int] , ) -> Optional[Any]: """simple docstring""" super().__init__(**_A ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) lowercase : Union[str, Any] = num_channels lowercase : Optional[int] = image_size lowercase : Dict = depth_multiplier lowercase : Optional[int] = depth_divisible_by lowercase : str = min_depth lowercase : List[str] = expand_ratio lowercase : Optional[int] = output_stride lowercase : Tuple = first_layer_is_expansion lowercase : Dict = finegrained_output lowercase : List[str] = hidden_act lowercase : str = tf_padding lowercase : str = classifier_dropout_prob lowercase : int = initializer_range lowercase : Optional[Any] = layer_norm_eps lowercase : Tuple = semantic_loss_ignore_index class _A ( _lowerCamelCase ): _UpperCamelCase : str = version.parse('''1.11''' ) @property def __a ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def __a ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def __a ( self : List[str] ) -> float: """simple docstring""" return 1E-4
596
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowerCAmelCase_ = logging.get_logger(__name__) class _A : _UpperCamelCase : Dict = None @experimental def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: '''simple docstring''' if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) return _map_with_joblib(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : Tuple = num_proc if num_proc <= len(__magic_name__ ) else len(__magic_name__ ) lowercase : Tuple = [] # We organize the splits ourselve (contiguous splits) for index in range(__magic_name__ ): lowercase : Optional[int] = len(__magic_name__ ) // num_proc lowercase : List[str] = len(__magic_name__ ) % num_proc lowercase : Union[str, Any] = div * index + min(__magic_name__ , __magic_name__ ) lowercase : List[str] = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(__magic_name__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(__magic_name__ )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(__magic_name__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) lowercase , lowercase : Optional[int] = None, None if not disable_tqdm: lowercase , lowercase : Any = (RLock(),), tqdm.set_lock with Pool(__magic_name__ , initargs=__magic_name__ , initializer=__magic_name__ ) as pool: lowercase : Tuple = pool.map(__magic_name__ , __magic_name__ ) logger.info(F"""Finished {num_proc} processes""" ) lowercase : Union[str, Any] = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(__magic_name__ )} objects""" ) return mapped def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=__magic_name__ ): return joblib.Parallel()( joblib.delayed(__magic_name__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def snake_case( __magic_name__ ) -> List[Any]: '''simple docstring''' lowercase : int = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: lowercase : List[Any] = None
596
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): UpperCamelCase = StableDiffusionInstructPixaPixPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def A__ ( self :Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ : Any =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __magic_name__ : Optional[int] =PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) torch.manual_seed(0 ) __magic_name__ : Optional[Any] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __magic_name__ : List[str] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __magic_name__ : Union[str, Any] =CLIPTextModel(UpperCamelCase__ ) __magic_name__ : Optional[int] =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __magic_name__ : List[Any] ={ "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A__ ( self :List[str] , __snake_case :List[Any] , __snake_case :Any=0 ): '''simple docstring''' __magic_name__ : Optional[int] =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) __magic_name__ : int =image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : List[str] =Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ) if str(UpperCamelCase__ ).startswith("""mps""" ): __magic_name__ : Optional[int] =torch.manual_seed(UpperCamelCase__ ) else: __magic_name__ : Dict =torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) __magic_name__ : int ={ "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "image_guidance_scale": 1, "output_type": "numpy", } return inputs def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[int] ="cpu" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Optional[int] =self.get_dummy_components() __magic_name__ : Dict =StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) __magic_name__ : Optional[int] =sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __magic_name__ : Any =self.get_dummy_inputs(UpperCamelCase__ ) __magic_name__ : Any =sd_pipe(**UpperCamelCase__ ).images __magic_name__ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : Optional[Any] =np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A__ ( self :str ): '''simple docstring''' __magic_name__ : Optional[Any] ="cpu" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Union[str, Any] =self.get_dummy_components() __magic_name__ : List[Any] =StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) __magic_name__ : Dict =sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __magic_name__ : Optional[Any] =self.get_dummy_inputs(UpperCamelCase__ ) __magic_name__ : Optional[int] ="french fries" __magic_name__ : Any =sd_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ ) __magic_name__ : str =output.images __magic_name__ : List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ : List[str] =np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : List[str] ="cpu" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Dict =self.get_dummy_components() __magic_name__ : Union[str, Any] =StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) __magic_name__ : List[Any] =sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __magic_name__ : Optional[Any] =self.get_dummy_inputs(UpperCamelCase__ ) __magic_name__ : Optional[Any] =[inputs["prompt"]] * 2 __magic_name__ : Optional[int] =np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 __magic_name__ : List[Any] =torch.from_numpy(UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) __magic_name__ : Any =image / 2 + 0.5 __magic_name__ : str =image.permute(0 , 3 , 1 , 2 ) __magic_name__ : List[Any] =image.repeat(2 , 1 , 1 , 1 ) __magic_name__ : Optional[int] =sd_pipe(**UpperCamelCase__ ).images __magic_name__ : Any =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __magic_name__ : Tuple =np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A__ ( self :str ): '''simple docstring''' __magic_name__ : Optional[int] ="cpu" # ensure determinism for the device-dependent torch.Generator __magic_name__ : Dict =self.get_dummy_components() __magic_name__ : int =EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) __magic_name__ : Any =StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) __magic_name__ : Dict =sd_pipe.to(UpperCamelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __magic_name__ : List[str] =self.get_dummy_inputs(UpperCamelCase__ ) __magic_name__ : List[Any] =sd_pipe(**UpperCamelCase__ ).images __magic_name__ : List[Any] =image[0, -3:, -3:, -1] __magic_name__ : Optional[Any] =[round(UpperCamelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(UpperCamelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __magic_name__ : int =np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def A__ ( self :int ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : Dict =self.get_dummy_components() __magic_name__ : List[str] =StableDiffusionInstructPixaPixPipeline(**UpperCamelCase__ ) __magic_name__ : Dict =VaeImageProcessor(do_resize=UpperCamelCase__ , do_normalize=UpperCamelCase__ ) __magic_name__ : int =pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __magic_name__ : str =pipe(**self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type="""pt""" ) )[0] __magic_name__ : Dict =components["vae"] __magic_name__ : Union[str, Any] =self.get_dummy_inputs_by_type(UpperCamelCase__ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __magic_name__ : List[str] =vae.encode(inputs[image_param] ).latent_dist.mode() __magic_name__ : str =pipe(**UpperCamelCase__ )[0] __magic_name__ : Optional[int] =np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCamelCase__ , 1E-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class __A ( unittest.TestCase ): def A__ ( self :Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self :Any , __snake_case :int=0 ): '''simple docstring''' __magic_name__ : Tuple =torch.manual_seed(UpperCamelCase__ ) __magic_name__ : Union[str, Any] =load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) __magic_name__ : str ={ "prompt": "turn him into a cyborg", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "image_guidance_scale": 1.0, "output_type": "numpy", } return inputs def A__ ( self :Any ): '''simple docstring''' __magic_name__ : str =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() __magic_name__ : Union[str, Any] =self.get_inputs() __magic_name__ : Any =pipe(**UpperCamelCase__ ).images __magic_name__ : Tuple =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __magic_name__ : Dict =np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def A__ ( self :Any ): '''simple docstring''' __magic_name__ : List[str] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase__ ) __magic_name__ : Optional[int] =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() __magic_name__ : int =self.get_inputs() __magic_name__ : Optional[Any] =pipe(**UpperCamelCase__ ).images __magic_name__ : Dict =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __magic_name__ : Optional[Any] =np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : List[str] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase__ ) __magic_name__ : str =DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() __magic_name__ : Any =self.get_inputs() __magic_name__ : Optional[int] =pipe(**UpperCamelCase__ ).images __magic_name__ : List[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) __magic_name__ : Optional[int] =np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def A__ ( self :str ): '''simple docstring''' __magic_name__ : Union[str, Any] =0 def callback_fn(__snake_case :Optional[int] , __snake_case :Dict , __snake_case :Optional[int] ) -> None: __magic_name__ : Optional[Any] =True nonlocal number_of_steps number_of_steps += 1 if step == 1: __magic_name__ : List[str] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __magic_name__ : Tuple =latents[0, -3:, -3:, -1] __magic_name__ : Any =np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __magic_name__ : Union[str, Any] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __magic_name__ : Union[str, Any] =latents[0, -3:, -3:, -1] __magic_name__ : List[Any] =np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __magic_name__ : Dict =False __magic_name__ : Any =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) __magic_name__ : List[Any] =pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() __magic_name__ : int =self.get_inputs() pipe(**UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def A__ ( self :Dict ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __magic_name__ : Dict =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa ) __magic_name__ : List[str] =pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __magic_name__ : str =self.get_inputs() __magic_name__ : int =pipe(**UpperCamelCase__ ) __magic_name__ : List[Any] =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def A__ ( self :str ): '''simple docstring''' __magic_name__ : List[Any] =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __magic_name__ : Optional[Any] =inputs["image"].resize((5_04, 5_04) ) __magic_name__ : Union[str, Any] ="timbrooks/instruct-pix2pix" __magic_name__ : List[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCamelCase__ , safety_checker=UpperCamelCase__ , ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() __magic_name__ : Union[str, Any] =pipe(**UpperCamelCase__ ) __magic_name__ : Any =output.images[0] __magic_name__ : str =image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) __magic_name__ : Any =np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
21
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class UpperCamelCase__ : '''simple docstring''' lowerCamelCase_ : List[Any] = BlenderbotSmallConfig lowerCamelCase_ : int = {} lowerCamelCase_ : Optional[int] = """gelu""" def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=20 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=0 , ) -> List[Any]: lowerCamelCase : Any = parent lowerCamelCase : Any = batch_size lowerCamelCase : Any = seq_length lowerCamelCase : int = is_training lowerCamelCase : Tuple = use_labels lowerCamelCase : List[Any] = vocab_size lowerCamelCase : Optional[int] = hidden_size lowerCamelCase : Tuple = num_hidden_layers lowerCamelCase : Dict = num_attention_heads lowerCamelCase : Union[str, Any] = intermediate_size lowerCamelCase : Optional[Any] = hidden_dropout_prob lowerCamelCase : int = attention_probs_dropout_prob lowerCamelCase : Optional[Any] = max_position_embeddings lowerCamelCase : Optional[Any] = eos_token_id lowerCamelCase : List[Any] = pad_token_id lowerCamelCase : int = bos_token_id def _lowercase ( self ) -> int: lowerCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase : Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase : Optional[int] = prepare_blenderbot_small_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, inputs_dict def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: lowerCamelCase : Dict = TFBlenderbotSmallModel(config=UpperCamelCase__ ).get_decoder() lowerCamelCase : str = inputs_dict["input_ids"] lowerCamelCase : List[str] = input_ids[:1, :] lowerCamelCase : str = inputs_dict["attention_mask"][:1, :] lowerCamelCase : str = inputs_dict["head_mask"] lowerCamelCase : Tuple = 1 # first forward pass lowerCamelCase : List[str] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , head_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) lowerCamelCase , lowerCamelCase : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase : Dict = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] lowerCamelCase : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase : int = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1e-3 ) def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,) -> Optional[int]: if attention_mask is None: lowerCamelCase : Dict = tf.cast(tf.math.not_equal(_SCREAMING_SNAKE_CASE ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: lowerCamelCase : Tuple = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: lowerCamelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : str = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) lowerCamelCase_ : List[Any] = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () lowerCamelCase_ : int = ( { """conversational""": TFBlenderbotSmallForConditionalGeneration, """feature-extraction""": TFBlenderbotSmallModel, """summarization""": TFBlenderbotSmallForConditionalGeneration, """text2text-generation""": TFBlenderbotSmallForConditionalGeneration, """translation""": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : List[Any] = False lowerCamelCase_ : str = False def _lowercase ( self ) -> Dict: lowerCamelCase : str = TFBlenderbotSmallModelTester(self ) lowerCamelCase : Any = ConfigTester(self , config_class=UpperCamelCase__ ) def _lowercase ( self ) -> Dict: self.config_tester.run_common_tests() def _lowercase ( self ) -> Tuple: lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__ ) @require_tokenizers @require_tf class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : int = [ """Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """ """ i'm going to throw up.\nand why is that?""" ] lowerCamelCase_ : Dict = """facebook/blenderbot_small-90M""" @cached_property def _lowercase ( self ) -> Optional[int]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _lowercase ( self ) -> Tuple: lowerCamelCase : int = self.tokenizer(self.src_text , return_tensors="tf" ) lowerCamelCase : Tuple = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCamelCase__ , ) lowerCamelCase : str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
311
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase ={ "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
462
lowerCamelCase ={"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} lowerCamelCase =["a", "b", "c", "d", "e"] def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : str = start # add current to visited visited.append(UpperCamelCase__ ) UpperCamelCase__ : int = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCamelCase__ : int = topological_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # if all neighbors visited add current to sort sort.append(UpperCamelCase__ ) # if all vertices haven't been visited select a new one to visit if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): for vertice in vertices: if vertice not in visited: UpperCamelCase__ : Optional[int] = topological_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # return sort return sort if __name__ == "__main__": lowerCamelCase =topological_sort("a", [], []) print(sort)
462
1
'''simple docstring''' import socket def __lowercase () -> str: """simple docstring""" __lowerCamelCase : Optional[Any] = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) __lowerCamelCase : Optional[int] = socket.gethostname() __lowerCamelCase : Optional[Any] = 12_312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""", """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: __lowerCamelCase : Any = sock.recv(1_024 ) if not data: break out_file.write(_lowercase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
150
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def __lowercase (_lowercase, _lowercase, _lowercase, _lowercase, _lowercase = None, _lowercase = None, _lowercase = None, ) -> Optional[Any]: """simple docstring""" if config_name_or_path is None: __lowerCamelCase : str = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: __lowerCamelCase : str = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __lowerCamelCase : Tuple = question_encoder_name_or_path __lowerCamelCase : Tuple = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. __lowerCamelCase : List[str] = RagConfig.from_pretrained(_lowercase ) __lowerCamelCase : str = AutoConfig.from_pretrained(_lowercase ) __lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(_lowercase ) __lowerCamelCase : Optional[int] = gen_config __lowerCamelCase : str = question_encoder_config __lowerCamelCase : List[str] = model_class.from_pretrained_question_encoder_generator( _lowercase, _lowercase, config=_lowercase ) rag_model.save_pretrained(_lowercase ) # Sanity check. model_class.from_pretrained(_lowercase ) # Save tokenizers. __lowerCamelCase : Tuple = AutoTokenizer.from_pretrained(_lowercase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) __lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(_lowercase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": UpperCAmelCase__ :Optional[int] = argparse.ArgumentParser() parser.add_argument( """--model_type""", choices=["""rag_sequence""", """rag_token"""], required=True, type=str, help="""RAG model type: rag_sequence, rag_token""", ) parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""") parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""") parser.add_argument( """--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier""" ) parser.add_argument( """--generator_tokenizer_name_or_path""", type=str, help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""", ) parser.add_argument( """--question_encoder_tokenizer_name_or_path""", type=str, help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""", ) parser.add_argument( """--config_name_or_path""", type=str, help=( """Identifier of the model config to use, if not provided, resolves to a base config for a given""" """ ``model_type``""" ), ) UpperCAmelCase__ :str = parser.parse_args() UpperCAmelCase__ :Optional[int] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
150
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : torch.FloatTensor a : torch.FloatTensor class lowercase__ ( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' a : List[Any] = 1 @register_to_config def __init__( self, __magic_name__ = 2000, __magic_name__ = 0.15, __magic_name__ = 0.01, __magic_name__ = 1348.0, __magic_name__ = 1E-5, __magic_name__ = 1, ) -> int: """simple docstring""" # standard deviation of the initial noise distribution UpperCamelCase__ : int = sigma_max # setable values UpperCamelCase__ : Optional[int] = None self.set_sigmas(__magic_name__, __magic_name__, __magic_name__, __magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> torch.FloatTensor: """simple docstring""" return sample def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None, __magic_name__ = None ) -> int: """simple docstring""" UpperCamelCase__ : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase__ : List[Any] = torch.linspace(1, __magic_name__, __magic_name__, device=__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None ) -> Dict: """simple docstring""" UpperCamelCase__ : Tuple = sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase__ : str = sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase__ : Optional[int] = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__magic_name__, __magic_name__ ) UpperCamelCase__ : str = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase__ : Optional[Any] = torch.exp(torch.linspace(math.log(__magic_name__ ), math.log(__magic_name__ ), __magic_name__ ) ) UpperCamelCase__ : Any = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> str: """simple docstring""" return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device ) ), self.discrete_sigmas[timesteps - 1].to(timesteps.device ), ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ = None, __magic_name__ = True, ) -> Union[SdeVeOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) UpperCamelCase__ : Any = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase__ : Any = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase__ : List[Any] = timesteps.to(self.discrete_sigmas.device ) UpperCamelCase__ : str = self.discrete_sigmas[timesteps].to(sample.device ) UpperCamelCase__ : List[Any] = self.get_adjacent_sigma(__magic_name__, __magic_name__ ).to(sample.device ) UpperCamelCase__ : Optional[Any] = torch.zeros_like(__magic_name__ ) UpperCamelCase__ : str = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase__ : Union[str, Any] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): UpperCamelCase__ : Any = diffusion.unsqueeze(-1 ) UpperCamelCase__ : str = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase__ : Union[str, Any] = randn_tensor( sample.shape, layout=sample.layout, generator=__magic_name__, device=sample.device, dtype=sample.dtype ) UpperCamelCase__ : Optional[Any] = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase__ : str = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__magic_name__, prev_sample_mean=__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ = None, __magic_name__ = True, ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase__ : List[str] = randn_tensor(sample.shape, layout=sample.layout, generator=__magic_name__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr UpperCamelCase__ : str = torch.norm(model_output.reshape(model_output.shape[0], -1 ), dim=-1 ).mean() UpperCamelCase__ : Tuple = torch.norm(noise.reshape(noise.shape[0], -1 ), dim=-1 ).mean() UpperCamelCase__ : Union[str, Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase__ : Optional[Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase__ : Tuple = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): UpperCamelCase__ : int = step_size.unsqueeze(-1 ) UpperCamelCase__ : int = sample + step_size * model_output UpperCamelCase__ : List[Any] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, ) -> torch.FloatTensor: """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase__ : Any = timesteps.to(original_samples.device ) UpperCamelCase__ : List[str] = self.discrete_sigmas.to(original_samples.device )[timesteps] UpperCamelCase__ : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__magic_name__ ) * sigmas[:, None, None, None] ) UpperCamelCase__ : int = noise + original_samples return noisy_samples def __len__( self ) -> Union[str, Any]: """simple docstring""" return self.config.num_train_timesteps
369
import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ = { 'Salesforce/codegen-350M-mono': 2048, } class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Union[str, Any] = VOCAB_FILES_NAMES a : List[str] = PRETRAINED_VOCAB_FILES_MAP a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] = ["input_ids", "attention_mask"] a : Any = CodeGenTokenizer def __init__( self, __magic_name__=None, __magic_name__=None, __magic_name__=None, __magic_name__="<|endoftext|>", __magic_name__="<|endoftext|>", __magic_name__="<|endoftext|>", __magic_name__=False, **__magic_name__, ) -> Optional[int]: """simple docstring""" super().__init__( __magic_name__, __magic_name__, tokenizer_file=__magic_name__, unk_token=__magic_name__, bos_token=__magic_name__, eos_token=__magic_name__, add_prefix_space=__magic_name__, **__magic_name__, ) if kwargs.pop('''add_bos_token''', __magic_name__ ): UpperCamelCase__ : List[Any] = kwargs.pop('''name_or_path''', '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" f"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) UpperCamelCase__ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''', __magic_name__ ) != add_prefix_space: UpperCamelCase__ : List[str] = getattr(__magic_name__, pre_tok_state.pop('''type''' ) ) UpperCamelCase__ : int = add_prefix_space UpperCamelCase__ : List[str] = pre_tok_class(**__magic_name__ ) UpperCamelCase__ : List[Any] = add_prefix_space def UpperCamelCase__ ( self, *__magic_name__, **__magic_name__ ) -> BatchEncoding: """simple docstring""" UpperCamelCase__ : List[Any] = kwargs.get('''is_split_into_words''', __magic_name__ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__magic_name__, **__magic_name__ ) def UpperCamelCase__ ( self, *__magic_name__, **__magic_name__ ) -> BatchEncoding: """simple docstring""" UpperCamelCase__ : Dict = kwargs.get('''is_split_into_words''', __magic_name__ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__magic_name__, **__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase__ : List[Any] = self._tokenizer.model.save(__magic_name__, name=__magic_name__ ) return tuple(__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = False, __magic_name__ = None, __magic_name__ = None, **__magic_name__, ) -> str: """simple docstring""" UpperCamelCase__ : Dict = super().decode( token_ids=__magic_name__, skip_special_tokens=__magic_name__, clean_up_tokenization_spaces=__magic_name__, **__magic_name__, ) if truncate_before_pattern is not None and len(__magic_name__ ) > 0: UpperCamelCase__ : str = self.truncate(__magic_name__, __magic_name__ ) return decoded_text def UpperCamelCase__ ( self, __magic_name__, __magic_name__ ) -> List[str]: """simple docstring""" def find_re(__magic_name__, __magic_name__, __magic_name__ ): UpperCamelCase__ : Dict = pattern.search(__magic_name__, __magic_name__ ) return m.start() if m else -1 UpperCamelCase__ : Union[str, Any] = [re.compile(__magic_name__, re.MULTILINE ) for pattern in truncate_before_pattern] UpperCamelCase__ : List[Any] = list(re.finditer('''^print''', __magic_name__, re.MULTILINE ) ) if len(__magic_name__ ) > 1: UpperCamelCase__ : Tuple = completion[: prints[1].start()] UpperCamelCase__ : Optional[int] = list(re.finditer('''^def''', __magic_name__, re.MULTILINE ) ) if len(__magic_name__ ) > 1: UpperCamelCase__ : Optional[Any] = completion[: defs[1].start()] UpperCamelCase__ : str = 0 UpperCamelCase__ : Tuple = [ pos for pos in [find_re(__magic_name__, __magic_name__, __magic_name__ ) for terminal in terminals] if pos != -1 ] if len(__magic_name__ ) > 0: return completion[: min(__magic_name__ )] else: return completion
369
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a (_SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : int = DebertaTokenizer __UpperCAmelCase : str = True __UpperCAmelCase : Optional[int] = DebertaTokenizerFast def __snake_case ( self : Optional[Any] ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __snake_case : Dict = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] __snake_case : Tuple = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __snake_case : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __snake_case : Union[str, Any] = {'''unk_token''': '''[UNK]'''} __snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) def __snake_case ( self : str , **lowerCamelCase : List[Any] ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __snake_case ( self : List[Any] , lowerCamelCase : Optional[Any] ) -> int: __snake_case : Tuple = '''lower newer''' __snake_case : str = '''lower newer''' return input_text, output_text def __snake_case ( self : Union[str, Any] ) -> int: __snake_case : str = self.get_tokenizer() __snake_case : int = '''lower newer''' __snake_case : Tuple = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] __snake_case : List[Any] = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Union[str, Any] = tokens + [tokenizer.unk_token] __snake_case : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def __snake_case ( self : Optional[int] ) -> Dict: __snake_case : List[str] = self.get_tokenizer() __snake_case : int = tokenizer("Hello" , "World" ) __snake_case : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , __UpperCAmelCase ) @slow def __snake_case ( self : List[str] ) -> List[str]: __snake_case : Any = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) __snake_case : Tuple = tokenizer.encode("sequence builders" , add_special_tokens=__UpperCAmelCase ) __snake_case : List[str] = tokenizer.encode("multi-sequence build" , add_special_tokens=__UpperCAmelCase ) __snake_case : Dict = tokenizer.encode( "sequence builders" , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) __snake_case : List[str] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) __snake_case : List[str] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __snake_case : Optional[int] = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __snake_case ( self : Optional[Any] ) -> Optional[int]: __snake_case : Any = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: __snake_case : Dict = tokenizer_class.from_pretrained("microsoft/deberta-base" ) __snake_case : Dict = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] __snake_case : Tuple = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase ) __snake_case : int = [tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) for seq in encoding['''input_ids''']] # fmt: off __snake_case : Any = { '''input_ids''': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on __snake_case : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __UpperCAmelCase ) for expected, decoded in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
81
lowercase : Dict = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def snake_case__ ( lowerCamelCase_ ): A : List[str] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution lowercase : list[bool | None] = [None] * 10_00_00_00 lowercase : int = True lowercase : Tuple = False def snake_case__ ( lowerCamelCase_ ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore A : int = chain(next_number(lowerCamelCase_ ) ) A : Dict = number_chain while number < 10000000: A : Any = number_chain number *= 10 return number_chain def snake_case__ ( lowerCamelCase_ = 10000000 ): for i in range(1 , lowerCamelCase_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() print(F"{solution() = }")
542
0
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Dict: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope def _a ( self ) -> Any: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> int: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A_ , initializer_range=self.initializer_range , ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =NystromformerModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ ) __UpperCamelCase =model(A_ , token_type_ids=A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =NystromformerForMaskedLM(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =NystromformerForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =NystromformerForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =self.num_labels __UpperCamelCase =NystromformerForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_choices __UpperCamelCase =NystromformerForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : List[str] = ( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Tuple = False def _a ( self ) -> str: __UpperCamelCase =NystromformerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase =type self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> List[Any]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =NystromformerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[Any]: __UpperCamelCase =NystromformerModel.from_pretrained('uw-madison/nystromformer-512' ) __UpperCamelCase =torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): __UpperCamelCase =model(A_ )[0] __UpperCamelCase =torch.Size((1, 6, 768) ) self.assertEqual(output.shape , A_ ) __UpperCamelCase =torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1E-4 ) ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase ='the [MASK] of Belgium is Brussels' __UpperCamelCase =AutoTokenizer.from_pretrained('uw-madison/nystromformer-512' ) __UpperCamelCase =NystromformerForMaskedLM.from_pretrained('uw-madison/nystromformer-512' ) __UpperCamelCase =tokenizer(A_ , return_tensors='pt' ) with torch.no_grad(): __UpperCamelCase =model(encoding.input_ids ).logits __UpperCamelCase =token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(A_ ) , 'capital' )
682
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
1
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowerCAmelCase_ ( snake_case_ : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: '''simple docstring''' UpperCAmelCase_ = [] if isinstance(snake_case_ , snake_case_ ): for v in tree.values(): shapes.extend(_fetch_dims(snake_case_ ) ) elif isinstance(snake_case_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(snake_case_ ) ) elif isinstance(snake_case_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Tuple[int, ...] ) -> Tuple[int, ...]: '''simple docstring''' UpperCAmelCase_ = [] for d in reversed(snake_case_ ): idx.append(flat_idx % d ) UpperCAmelCase_ = flat_idx // d return tuple(reversed(snake_case_ ) ) @torch.jit.ignore def lowerCAmelCase_ ( snake_case_ : Sequence[int] , snake_case_ : Sequence[int] , snake_case_ : Sequence[int] , snake_case_ : Optional[Sequence[bool]] = None , snake_case_ : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: '''simple docstring''' def reduce_edge_list(snake_case_ : List[bool] ) -> None: UpperCAmelCase_ = True for i in range(len(snake_case_ ) ): UpperCAmelCase_ = -1 * (i + 1) l[reversed_idx] &= tally UpperCAmelCase_ = l[reversed_idx] if start_edges is None: UpperCAmelCase_ = [s == 0 for s in start] reduce_edge_list(snake_case_ ) if end_edges is None: UpperCAmelCase_ = [e == (d - 1) for e, d in zip(snake_case_ , snake_case_ )] reduce_edge_list(snake_case_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(snake_case_ ) == 0: return [()] elif len(snake_case_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCAmelCase_ = [] UpperCAmelCase_ = [] # Dimensions common to start and end can be selected directly for s, e in zip(snake_case_ , snake_case_ ): if s == e: path_list.append(slice(snake_case_ , s + 1 ) ) else: break UpperCAmelCase_ = tuple(snake_case_ ) UpperCAmelCase_ = len(snake_case_ ) # start == end, and we're done if divergence_idx == len(snake_case_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = start[divergence_idx] return tuple( path + (slice(snake_case_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = end[divergence_idx] return tuple( path + (slice(snake_case_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCAmelCase_ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowerCAmelCase_ ( snake_case_ : torch.Tensor , snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> torch.Tensor: '''simple docstring''' UpperCAmelCase_ = t.shape[:no_batch_dims] UpperCAmelCase_ = list(_flat_idx_to_idx(snake_case_ , snake_case_ ) ) # _get_minimal_slice_set is inclusive UpperCAmelCase_ = list(_flat_idx_to_idx(flat_end - 1 , snake_case_ ) ) # Get an ordered list of slices to perform UpperCAmelCase_ = _get_minimal_slice_set( snake_case_ , snake_case_ , snake_case_ , ) UpperCAmelCase_ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowerCAmelCase_ ( snake_case_ : Callable , snake_case_ : Dict[str, Any] , snake_case_ : int , snake_case_ : int , snake_case_ : bool = False , snake_case_ : Any = None , snake_case_ : bool = False , ) -> Any: '''simple docstring''' if not (len(snake_case_ ) > 0): raise ValueError("Must provide at least one input" ) UpperCAmelCase_ = [shape[:no_batch_dims] for shape in _fetch_dims(snake_case_ )] UpperCAmelCase_ = tuple([max(snake_case_ ) for s in zip(*snake_case_ )] ) def _prep_inputs(snake_case_ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCAmelCase_ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCAmelCase_ = tensor_tree_map(_prep_inputs , snake_case_ ) UpperCAmelCase_ = None if _out is not None: UpperCAmelCase_ = tensor_tree_map(lambda snake_case_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCAmelCase_ = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCAmelCase_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(snake_case_ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCAmelCase_ = 0 UpperCAmelCase_ = prepped_outputs for _ in range(snake_case_ ): # Chunk the input if not low_mem: UpperCAmelCase_ = _select_chunk else: UpperCAmelCase_ = partial( _chunk_slice , flat_start=snake_case_ , flat_end=min(snake_case_ , i + chunk_size ) , no_batch_dims=len(snake_case_ ) , ) UpperCAmelCase_ = tensor_tree_map(snake_case_ , snake_case_ ) # Run the layer on the chunk UpperCAmelCase_ = layer(**snake_case_ ) # Allocate space for the output if out is None: UpperCAmelCase_ = tensor_tree_map(lambda snake_case_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , snake_case_ ) # Put the chunk in its pre-allocated space if isinstance(snake_case_ , snake_case_ ): def assign(snake_case_ : dict , snake_case_ : dict ) -> None: for k, v in da.items(): if isinstance(snake_case_ , snake_case_ ): assign(snake_case_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCAmelCase_ = da[k] assign(snake_case_ , snake_case_ ) elif isinstance(snake_case_ , snake_case_ ): for xa, xa in zip(snake_case_ , snake_case_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCAmelCase_ = xa elif isinstance(snake_case_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCAmelCase_ = output_chunk else: raise ValueError("Not supported" ) i += chunk_size UpperCAmelCase_ = tensor_tree_map(lambda snake_case_ : t.view(orig_batch_dims + t.shape[1:] ) , snake_case_ ) return out class __A : def __init__(self : Dict , __a : int = 512 , ): UpperCAmelCase_ = max_chunk_size UpperCAmelCase_ = None UpperCAmelCase_ = None def _lowercase (self : List[Any] , __a : Callable , __a : tuple , __a : int ): logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCAmelCase_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCAmelCase_ = [c for c in candidates if c > min_chunk_size] UpperCAmelCase_ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__a : int ) -> bool: try: with torch.no_grad(): fn(*__a , chunk_size=__a ) return True except RuntimeError: return False UpperCAmelCase_ = 0 UpperCAmelCase_ = len(__a ) - 1 while i > min_viable_chunk_size_index: UpperCAmelCase_ = test_chunk_size(candidates[i] ) if not viable: UpperCAmelCase_ = (min_viable_chunk_size_index + i) // 2 else: UpperCAmelCase_ = i UpperCAmelCase_ = (i + len(__a ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _lowercase (self : int , __a : Iterable , __a : Iterable ): UpperCAmelCase_ = True for aa, aa in zip(__a , __a ): assert type(__a ) == type(__a ) if isinstance(__a , (list, tuple) ): consistent &= self._compare_arg_caches(__a , __a ) elif isinstance(__a , __a ): UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] consistent &= self._compare_arg_caches(__a , __a ) else: consistent &= aa == aa return consistent def _lowercase (self : List[str] , __a : Callable , __a : tuple , __a : int , ): UpperCAmelCase_ = True UpperCAmelCase_ = tree_map(lambda __a : a.shape if isinstance(__a , torch.Tensor ) else a , __a , __a ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__a ) UpperCAmelCase_ = self._compare_arg_caches(self.cached_arg_data , __a ) else: # Otherwise, we can reuse the precomputed value UpperCAmelCase_ = False if not consistent: UpperCAmelCase_ = self._determine_favorable_chunk_size( __a , __a , __a , ) UpperCAmelCase_ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
78
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if ( (cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f) or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) # or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) # or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) # or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) # or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f) or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) # ): # return True return False def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' for char in word: __UpperCamelCase :str = ord(SCREAMING_SNAKE_CASE ) if not _is_chinese_char(SCREAMING_SNAKE_CASE ): return 0 return 1 def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = set() for token in tokens: __UpperCamelCase :Tuple = len(SCREAMING_SNAKE_CASE ) > 1 and is_chinese(SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = list(SCREAMING_SNAKE_CASE ) return word_list def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if not chinese_word_set: return bert_tokens __UpperCamelCase :Dict = max([len(SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) __UpperCamelCase :str = bert_tokens __UpperCamelCase , __UpperCamelCase :int = 0, len(SCREAMING_SNAKE_CASE ) while start < end: __UpperCamelCase :Optional[int] = True if is_chinese(bert_word[start] ): __UpperCamelCase :Dict = min(end - start , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , 1 , -1 ): __UpperCamelCase :int = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __UpperCamelCase :Union[str, Any] = '''##''' + bert_word[j] __UpperCamelCase :Dict = start + i __UpperCamelCase :Dict = False break if single_word: start += 1 return bert_word def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): __UpperCamelCase :List[str] = ltp_tokenizer.seg(lines[i : i + 100] )[0] __UpperCamelCase :int = [get_chinese_word(SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): __UpperCamelCase :List[str] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :str = [] for id in input_ids: __UpperCamelCase :Dict = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE ) input_tokens.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = add_sub_symbol(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE ): if token[:2] == "##": __UpperCamelCase :Union[str, Any] = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE ) ): ref_id.append(SCREAMING_SNAKE_CASE ) ref_ids.append(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) return ref_ids def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: __UpperCamelCase :Any = f.readlines() __UpperCamelCase :str = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __UpperCamelCase :Optional[Any] = LTP(args.ltp ) # faster in GPU device __UpperCamelCase :Union[str, Any] = BertTokenizer.from_pretrained(args.bert ) __UpperCamelCase :Any = prepare_ref(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: __UpperCamelCase :Optional[Any] = [json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') __lowercase = parser.parse_args() main(args)
167
0
"""simple docstring""" import mpmath # for roots of unity import numpy as np class __snake_case : def __init__( self : Dict , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=None ): """simple docstring""" _lowerCamelCase : Optional[Any] = list(poly_a or [0] )[:] _lowerCamelCase : List[Any] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _lowerCamelCase : List[Any] = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _lowerCamelCase : Optional[int] = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _lowerCamelCase : List[str] = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _lowerCamelCase : Tuple = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _lowerCamelCase : Union[str, Any] = self.__multiply() def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : List[str] = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(__lowerCAmelCase ) <= 1: return dft[0] # _lowerCamelCase : Any = self.c_max_length // 2 while next_ncol > 0: _lowerCamelCase : Dict = [[] for i in range(__lowerCAmelCase )] _lowerCamelCase : Optional[int] = self.root**next_ncol # First half of next step _lowerCamelCase : Union[str, Any] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _lowerCamelCase : Tuple = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(__lowerCAmelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _lowerCamelCase : str = new_dft _lowerCamelCase : Optional[Any] = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : str = self.__dft('''A''' ) _lowerCamelCase : Any = self.__dft('''B''' ) _lowerCamelCase : int = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _lowerCamelCase : Optional[Any] = 2 while next_ncol <= self.c_max_length: _lowerCamelCase : Any = [[] for i in range(__lowerCAmelCase )] _lowerCamelCase : Tuple = self.root ** (next_ncol // 2) _lowerCamelCase : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _lowerCamelCase : Optional[int] = new_inverse_c next_ncol *= 2 # Unpack _lowerCamelCase : Any = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Dict ): """simple docstring""" _lowerCamelCase : int = '''A = ''' + ''' + '''.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _lowerCamelCase : List[str] = '''B = ''' + ''' + '''.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _lowerCamelCase : List[str] = '''A*B = ''' + ''' + '''.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
598
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class __snake_case ( _lowercase): snake_case__ : Optional[int] = "canine" def __init__( self : List[Any] , __lowerCAmelCase : str=7_6_8 , __lowerCAmelCase : List[Any]=1_2 , __lowerCAmelCase : Optional[int]=1_2 , __lowerCAmelCase : str=3_0_7_2 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Any=1_6_3_8_4 , __lowerCAmelCase : str=1_6 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : Dict=1E-12 , __lowerCAmelCase : Optional[Any]=0 , __lowerCAmelCase : Dict=0xe0_00 , __lowerCAmelCase : Optional[int]=0xe0_01 , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : str=4 , __lowerCAmelCase : Optional[int]=8 , __lowerCAmelCase : List[Any]=1_6_3_8_4 , __lowerCAmelCase : Optional[Any]=1_2_8 , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : int = hidden_size _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : List[str] = num_attention_heads _lowerCamelCase : str = intermediate_size _lowerCamelCase : Optional[int] = hidden_act _lowerCamelCase : Any = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Tuple = type_vocab_size _lowerCamelCase : int = layer_norm_eps # Character config: _lowerCamelCase : Dict = downsampling_rate _lowerCamelCase : str = upsampling_kernel_size _lowerCamelCase : List[Any] = num_hash_functions _lowerCamelCase : Dict = num_hash_buckets _lowerCamelCase : Optional[Any] = local_transformer_stride
598
1
def UpperCamelCase ( snake_case__ : float , snake_case__ : list[float] ) -> float: if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) UpperCamelCase : Union[str, Any] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(snake_case__ ) ) return round(snake_case__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
40
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__(a_, a_, unittest.TestCase ): """simple docstring""" _A : Optional[Any] = StableDiffusionSAGPipeline _A : Any = TEXT_TO_IMAGE_PARAMS _A : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS _A : int = TEXT_TO_IMAGE_IMAGE_PARAMS _A : Optional[int] = False def UpperCamelCase__ ( self ) -> List[Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) a_ : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) a_ : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) a_ : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a_ : Union[str, Any] = CLIPTextModel(_lowercase ) a_ : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a_ : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Dict: if str(_lowercase ).startswith("""mps""" ): a_ : Optional[int] = torch.manual_seed(_lowercase ) else: a_ : str = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Tuple = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Tuple = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) a_ : List[str] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Optional[int] = """.""" a_ : int = torch.manual_seed(0 ) a_ : Any = sag_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) a_ : Any = output.images a_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a_ : str = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCamelCase__ ( self ) -> List[Any]: a_ : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) a_ : List[str] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : int = """.""" a_ : Dict = torch.manual_seed(0 ) a_ : Union[str, Any] = sag_pipe( [prompt] , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) a_ : Optional[Any] = output.images a_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) a_ : Dict = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def UpperCamelCase__ ( self ) -> Any: a_ : int = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) a_ : Optional[Any] = sag_pipe.to(_lowercase ) sag_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[Any] = """.""" a_ : str = torch.manual_seed(0 ) a_ : int = sag_pipe( [prompt] , width=768 , height=512 , generator=_lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) a_ : Any = output.images assert image.shape == (1, 512, 768, 3)
540
0
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def UpperCAmelCase__ ( _A = True , *_A , **_A ): """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) a_ = False if main_process_only: a_ = PartialState().local_process_index == 0 return _tqdm(*_A , **_A , disable=_A )
143
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = '''▁''' UpperCamelCase__ = {'''vocab_file''': '''spiece.model'''} UpperCamelCase__ = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } UpperCamelCase__ = { '''google/pegasus-xsum''': 512, } UpperCamelCase__ = logging.get_logger(__name__) class __lowercase ( a__ ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self : Tuple , lowercase__ : Tuple , lowercase__ : List[str]="<pad>" , lowercase__ : Any="</s>" , lowercase__ : Union[str, Any]="<unk>" , lowercase__ : Any="<mask_2>" , lowercase__ : int="<mask_1>" , lowercase__ : List[Any]=None , lowercase__ : List[str]=1_0_3 , lowercase__ : Optional[Dict[str, Any]] = None , **lowercase__ : List[Any] , ): a_ = offset if additional_special_tokens is not None: if not isinstance(lowercase__ , lowercase__ ): raise TypeError( f"additional_special_tokens should be of type {type(lowercase__ )}, but is" f" {type(lowercase__ )}" ) a_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(lowercase__ ) , self.offset - 1 ) ] if len(set(lowercase__ ) ) != len(lowercase__ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) a_ = additional_special_tokens_extended else: a_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] a_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase__ , unk_token=lowercase__ , mask_token=lowercase__ , pad_token=lowercase__ , mask_token_sent=lowercase__ , offset=lowercase__ , additional_special_tokens=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) a_ = mask_token_sent a_ = vocab_file a_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) # add special tokens to encoder dict a_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) a_ = {v: k for k, v in self.encoder.items()} @property def __magic_name__ ( self : Optional[Any] ): return len(self.sp_model ) + self.offset def __magic_name__ ( self : Dict ): a_ = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): a_ = self.__dict__.copy() a_ = None return state def __setstate__( self : Tuple , lowercase__ : str ): a_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ = {} a_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self : Tuple , lowercase__ : str ): return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def __magic_name__ ( self : List[Any] , lowercase__ : str ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] a_ = self.sp_model.piece_to_id(lowercase__ ) return sp_id + self.offset def __magic_name__ ( self : str , lowercase__ : int ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: a_ = self.sp_model.IdToPiece(index - self.offset ) return token def __magic_name__ ( self : Optional[int] , lowercase__ : List[str] ): a_ = [] a_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase__ ) + token a_ = [] else: current_sub_tokens.append(lowercase__ ) out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def __magic_name__ ( self : Tuple , lowercase__ : Optional[int]=False ): return 1 def __magic_name__ ( self : Any , lowercase__ : Any ): a_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __magic_name__ ( self : Union[str, Any] , lowercase__ : List , lowercase__ : Optional[List] = None , lowercase__ : bool = False ): if already_has_special_tokens: return self._special_token_mask(lowercase__ ) elif token_ids_a is None: return self._special_token_mask(lowercase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __magic_name__ ( self : Union[str, Any] , lowercase__ : Any , lowercase__ : Optional[Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __magic_name__ ( self : Union[str, Any] , lowercase__ : str , lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return a_ = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , '''wb''' ) as fi: a_ = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
143
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _lowerCamelCase : List[Any] = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } _lowerCamelCase : Optional[Any] = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int=False ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = create_model( "HTSAT-tiny" , "roberta" , UpperCAmelCase__ , precision="fp32" , device="cuda:0" if torch.cuda.is_available() else "cpu" , enable_fusion=UpperCAmelCase__ , fusion_type="aff_2d" if enable_fusion else None , ) return model, model_cfg def __lowerCamelCase (UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = r".*sequential.(\d+).*" SCREAMING_SNAKE_CASE = r".*_projection.(\d+).*" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE = key.replace(UpperCAmelCase__ , UpperCAmelCase__ ) if re.match(UpperCAmelCase__ , UpperCAmelCase__ ): # replace sequential layers with list SCREAMING_SNAKE_CASE = re.match(UpperCAmelCase__ , UpperCAmelCase__ ).group(1 ) SCREAMING_SNAKE_CASE = key.replace(F"sequential.{sequential_layer}." , F"layers.{int(UpperCAmelCase__ )//3}.linear." ) elif re.match(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = int(re.match(UpperCAmelCase__ , UpperCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE = key.replace(F"_projection.{projecton_layer}." , F"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE = query_layer SCREAMING_SNAKE_CASE = key_layer SCREAMING_SNAKE_CASE = value_layer else: SCREAMING_SNAKE_CASE = value return model_state_dict def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict=False ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = init_clap(UpperCAmelCase__ , enable_fusion=UpperCAmelCase__ ) clap_model.eval() SCREAMING_SNAKE_CASE = clap_model.state_dict() SCREAMING_SNAKE_CASE = rename_state_dict(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = ClapConfig() SCREAMING_SNAKE_CASE = enable_fusion SCREAMING_SNAKE_CASE = ClapModel(UpperCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) transformers_config.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') _lowerCamelCase : Dict = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
403
class lowercase : # Public class to implement a graph def __init__( self : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[bool]] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = row SCREAMING_SNAKE_CASE = col SCREAMING_SNAKE_CASE = graph def __snake_case( self : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[bool]] ) -> bool: '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __snake_case( self : Dict , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : list[list[bool]] ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order SCREAMING_SNAKE_CASE = [-1, 0, 1, -1, 1, -1, 0, 1] SCREAMING_SNAKE_CASE = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _UpperCamelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _UpperCamelCase ) def __snake_case( self : Any ) -> int: # And finally, count all islands. '''simple docstring''' SCREAMING_SNAKE_CASE = [[False for j in range(self.COL )] for i in range(self.ROW )] SCREAMING_SNAKE_CASE = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) count += 1 return count
403
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _snake_case = datasets.utils.logging.get_logger(__name__) @dataclass class lowercase ( datasets.BuilderConfig ): _a = 1_0_0_0_0 _a = None _a = None class lowercase ( datasets.ArrowBasedBuilder ): _a = ParquetConfig def a__ ( self ) -> Optional[int]: return datasets.DatasetInfo(features=self.config.features ) def a__ ( self , _a ) -> Any: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _A : str = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _A : Optional[Any] = data_files if isinstance(_a , _a ): _A : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _A : Optional[Any] = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] _A : List[str] = [] for split_name, files in data_files.items(): if isinstance(_a , _a ): _A : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _A : Dict = [dl_manager.iter_files(_a ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_a ): with open(_a , """rb""" ) as f: _A : int = datasets.Features.from_arrow_schema(pq.read_schema(_a ) ) break splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={"""files""": files} ) ) return splits def a__ ( self , _a ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _A : List[Any] = table_cast(_a , self.info.features.arrow_schema ) return pa_table def a__ ( self , _a ) -> Tuple: _A : Tuple = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): with open(_a , """rb""" ) as f: _A : Union[str, Any] = pq.ParquetFile(_a ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): _A : Optional[int] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(_a ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_a )}: {e}''' ) raise
705
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _snake_case = random.Random() def lowerCAmelCase_ ( snake_case_,snake_case_=1.0,snake_case_=None,snake_case_=None ): if rng is None: _A : str = global_rng _A : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ) -> Optional[int]: _A : Any = parent _A : List[Any] = batch_size _A : List[Any] = min_seq_length _A : Dict = max_seq_length _A : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A : Tuple = padding_value _A : Tuple = sampling_rate _A : str = return_attention_mask _A : Any = do_normalize _A : Union[str, Any] = feature_size _A : List[Any] = chunk_length _A : List[Any] = hop_length def a__ ( self ) -> List[str]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , _a=False , _a=False ) -> List[str]: def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: _A : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A : int = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A : Any = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = WhisperFeatureExtractor if is_speech_available() else None def a__ ( self ) -> Tuple: _A : Optional[int] = WhisperFeatureExtractionTester(self ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _A : Optional[int] = self.feature_extraction_class.from_pretrained(_a ) _A : Tuple = feat_extract_first.to_dict() _A : List[Any] = feat_extract_second.to_dict() _A : List[Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Dict: _A : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A : Dict = os.path.join(_a , """feat_extract.json""" ) feat_extract_first.to_json_file(_a ) _A : Optional[int] = self.feature_extraction_class.from_json_file(_a ) _A : str = feat_extract_first.to_dict() _A : Any = feat_extract_second.to_dict() _A : Union[str, Any] = feat_extract_first.mel_filters _A : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def a__ ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus _A : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _A : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A : Any = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _A : Dict = feature_extractor(_a , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _A : List[Any] = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features _A : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : Tuple = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _A : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A : Any = np.asarray(_a ) _A : Union[str, Any] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : int = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required _A : List[Any] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs] _A : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _A : Union[str, Any] = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _A : Optional[int] = feature_extractor(_a , return_tensors="""np""" ).input_features _A : List[Any] = feature_extractor(_a , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def a__ ( self ) -> Dict: import torch _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) _A : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _A : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _A : Optional[int] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech _A : Optional[Any] = ds.sort("""id""" ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def a__ ( self ) -> Tuple: # fmt: off _A : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _A : Dict = self._load_datasamples(1 ) _A : Optional[Any] = WhisperFeatureExtractor() _A : Optional[Any] = feature_extractor(_a , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def a__ ( self ) -> str: _A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _A : str = self._load_datasamples(1 )[0] _A : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue _A : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
54
0
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int]=0 ): # Format the message. if name is None: _UpperCAmelCase : Dict = None else: _UpperCAmelCase : List[str] = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(50 - spaces ) + '''s}''' _UpperCAmelCase : Union[str, Any] = fmt.format(UpperCamelCase__ ) # Print and recurse (if needed). if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if msg is not None: print(UpperCamelCase__ ) for k in val.keys(): recursive_print(UpperCamelCase__ , val[k] , spaces + 2 ) elif isinstance(UpperCamelCase__ , torch.Tensor ): print(UpperCamelCase__ , ''':''' , val.size() ) else: print(UpperCamelCase__ , ''':''' , UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _UpperCAmelCase : List[Any] = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _UpperCAmelCase : str = (num_heads, hidden_size, num_splits) + input_shape[1:] _UpperCAmelCase : Tuple = param.view(*UpperCamelCase__ ) _UpperCAmelCase : Optional[int] = param.transpose(0 , 2 ) _UpperCAmelCase : int = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _UpperCAmelCase : int = (num_heads, num_splits, hidden_size) + input_shape[1:] _UpperCAmelCase : Optional[int] = param.view(*UpperCamelCase__ ) _UpperCAmelCase : Optional[int] = param.transpose(0 , 1 ).contiguous() _UpperCAmelCase : str = param.view(*UpperCamelCase__ ) return param def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] ): # The converted output model. _UpperCAmelCase : List[Any] = {} # old versions did not store training args _UpperCAmelCase : str = input_state_dict.get('''args''' , UpperCamelCase__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _UpperCAmelCase : Any = ds_args.padded_vocab_size _UpperCAmelCase : Dict = ds_args.max_position_embeddings _UpperCAmelCase : Optional[int] = ds_args.hidden_size _UpperCAmelCase : int = ds_args.num_layers _UpperCAmelCase : Optional[Any] = ds_args.num_attention_heads _UpperCAmelCase : List[Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _UpperCAmelCase : Optional[Any] = config.n_head # The hidden_size per head. _UpperCAmelCase : Optional[int] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _UpperCAmelCase : Tuple = input_state_dict['''checkpoint_version'''] else: _UpperCAmelCase : List[str] = 0.0 # The model. _UpperCAmelCase : Any = input_state_dict['''model'''] # The language model. _UpperCAmelCase : Tuple = model['''language_model'''] # The embeddings. _UpperCAmelCase : List[str] = lm['''embedding'''] # The word embeddings. _UpperCAmelCase : Union[str, Any] = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. _UpperCAmelCase : Optional[int] = word_embeddings[: config.vocab_size, :] _UpperCAmelCase : Optional[Any] = word_embeddings # The position embeddings. _UpperCAmelCase : Union[str, Any] = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _UpperCAmelCase : Optional[Any] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. _UpperCAmelCase : Union[str, Any] = pos_embeddings # The transformer. _UpperCAmelCase : Tuple = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. _UpperCAmelCase : Optional[int] = re.compile(r'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. _UpperCAmelCase : Any = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. _UpperCAmelCase : Union[str, Any] = layer_re.match(UpperCamelCase__ ) # Stop if that's not a layer if m is None: break # The index of the layer. _UpperCAmelCase : int = int(m.group(1 ) ) # The name of the operation. _UpperCAmelCase : Tuple = m.group(2 ) # Is it a weight or a bias? _UpperCAmelCase : Any = m.group(3 ) # The name of the layer. _UpperCAmelCase : Union[str, Any] = F'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): _UpperCAmelCase : List[str] = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' _UpperCAmelCase : Any = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _UpperCAmelCase : str = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , UpperCamelCase__ , UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = causal_mask # Insert a "dummy" tensor for masked_bias. _UpperCAmelCase : int = torch.tensor(-1E4 , dtype=torch.floataa ) _UpperCAmelCase : str = masked_bias _UpperCAmelCase : Dict = fix_query_key_value_ordering(UpperCamelCase__ , UpperCamelCase__ , 3 , UpperCamelCase__ , UpperCamelCase__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _UpperCAmelCase : Tuple = out_val.transpose(0 , 1 ).contiguous() # Store. _UpperCAmelCase : Dict = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _UpperCAmelCase : str = fix_query_key_value_ordering(UpperCamelCase__ , UpperCamelCase__ , 3 , UpperCamelCase__ , UpperCamelCase__ ) # Store. No change of shape. _UpperCAmelCase : str = out_val # Transpose the weights. elif weight_or_bias == "weight": _UpperCAmelCase : List[Any] = megatron_to_transformers[op_name] _UpperCAmelCase : str = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": _UpperCAmelCase : List[Any] = megatron_to_transformers[op_name] _UpperCAmelCase : Optional[int] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _UpperCAmelCase : Optional[Any] = transformer['''final_layernorm.weight'''] _UpperCAmelCase : Any = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. _UpperCAmelCase : str = word_embeddings # It should be done! return output_state_dict def lowerCamelCase_ (): # Create the argument parser. _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=UpperCamelCase__ , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=UpperCamelCase__ , help='''An optional config json file describing the pre-trained model.''' , ) _UpperCAmelCase : int = parser.parse_args() # Extract the basename. _UpperCAmelCase : List[str] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: _UpperCAmelCase : Dict = torch.load(UpperCamelCase__ , map_location='''cpu''' ) else: _UpperCAmelCase : Any = torch.load(args.path_to_checkpoint , map_location='''cpu''' ) _UpperCAmelCase : Any = input_state_dict.get('''args''' , UpperCamelCase__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _UpperCAmelCase : str = '''gelu_fast''' elif ds_args.openai_gelu: _UpperCAmelCase : Tuple = '''gelu_new''' else: _UpperCAmelCase : Optional[Any] = '''gelu''' else: # in the very early days this used to be "gelu_new" _UpperCAmelCase : Any = '''gelu_new''' # Spell out all parameters in case the defaults change. _UpperCAmelCase : Any = GPTaConfig( vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=UpperCamelCase__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='''cls_index''' , summary_use_proj=UpperCamelCase__ , summary_activation=UpperCamelCase__ , summary_proj_to_labels=UpperCamelCase__ , summary_first_dropout=0.1 , scale_attn_weights=UpperCamelCase__ , use_cache=UpperCamelCase__ , bos_token_id=5_0256 , eos_token_id=5_0256 , ) else: _UpperCAmelCase : Any = GPTaConfig.from_json_file(args.config_file ) _UpperCAmelCase : Optional[int] = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) _UpperCAmelCase : List[Any] = convert_megatron_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(UpperCamelCase__ , UpperCamelCase__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _UpperCAmelCase : Dict = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _UpperCAmelCase : Optional[int] = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": _UpperCAmelCase : Optional[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(F'Unrecognized tokenizer_type {tokenizer_type}' ) else: _UpperCAmelCase : Optional[int] = '''gpt2''' _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = type(UpperCamelCase__ ).__name__ _UpperCAmelCase : Union[str, Any] = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(UpperCamelCase__ ) # Save tokenizer based on args print(F'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(UpperCamelCase__ ) # Store the state_dict to file. _UpperCAmelCase : Dict = os.path.join(UpperCamelCase__ , '''pytorch_model.bin''' ) print(F'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
506
"""simple docstring""" import qiskit def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int ): _UpperCAmelCase : Any = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase : Tuple = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase : Dict = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": _lowerCAmelCase :Tuple = single_qubit_measure(2, 2) print(f"Total count for various states are: {counts}")
506
1
from __future__ import annotations def __lowercase ( _UpperCAmelCase ) -> bool: '''simple docstring''' __lowercase = len(_UpperCAmelCase ) # We need to create solution object to save path. __lowercase = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] __lowercase = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase ) if solved: print("\n".join(str(_UpperCAmelCase ) for row in solutions ) ) else: print("No solution exists!" ) return solved def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool: '''simple docstring''' __lowercase = len(_UpperCAmelCase ) # Final check point. if i == j == (size - 1): __lowercase = 1 return True __lowercase = (not i < 0) and (not j < 0) # Check lower bounds __lowercase = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __lowercase = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __lowercase = 1 # check for directions if ( run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase ) or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase ) ): return True __lowercase = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
576
from __future__ import annotations def __lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' print(f'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(_UpperCAmelCase ): print(f'''{i}\t\t{d}''' ) def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: '''simple docstring''' for j in range(_UpperCAmelCase ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> list[float]: '''simple docstring''' __lowercase = [float("inf" )] * vertex_count __lowercase = 0.0 for _ in range(vertex_count - 1 ): for j in range(_UpperCAmelCase ): __lowercase , __lowercase , __lowercase = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: __lowercase = distance[u] + w __lowercase = check_negative_cycle(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('Enter number of vertices: ').strip()) lowerCAmelCase__ = int(input('Enter number of edges: ').strip()) lowerCAmelCase__ = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) lowerCAmelCase__ = {'src': src, 'dst': dest, 'weight': weight} lowerCAmelCase__ = int(input('\nEnter shortest path source:').strip()) lowerCAmelCase__ = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
576
1
"""simple docstring""" from math import pi def lowerCAmelCase__ ( __magic_name__ , __magic_name__ ) ->float: return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
118
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup _lowercase = { '''User-Agent''': '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''' } def lowerCAmelCase__ ( __magic_name__ = "dhaka" , __magic_name__ = 5 ) ->int: __lowercase = min(__magic_name__ , 5_0 ) # Prevent abuse! __lowercase = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } __lowercase = requests.get("https://www.google.com/search" , params=__magic_name__ , headers=__magic_name__ ) __lowercase = BeautifulSoup(html.text , "html.parser" ) __lowercase = "".join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) __lowercase = json.dumps(__magic_name__ ) __lowercase = json.loads(__magic_name__ ) __lowercase = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , __magic_name__ , ) if not matched_google_image_data: return 0 __lowercase = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(__magic_name__ ) , ) __lowercase = re.findall( R"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , __magic_name__ , ) for index, fixed_full_res_image in enumerate(__magic_name__ ): if index >= max_images: return index __lowercase = bytes(__magic_name__ , "ascii" ).decode( "unicode-escape" ) __lowercase = bytes(__magic_name__ , "ascii" ).decode( "unicode-escape" ) __lowercase = urllib.request.build_opener() __lowercase = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(__magic_name__ ) __lowercase = F'''query_{query.replace(' ' , '_' )}''' if not os.path.exists(__magic_name__ ): os.makedirs(__magic_name__ ) urllib.request.urlretrieve( # noqa: S310 __magic_name__ , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: _lowercase = download_images_from_google_query(sys.argv[1]) print(F"{image_count} images were downloaded to disk.") except IndexError: print('''Please provide a search term.''') raise
118
1
from __future__ import annotations from typing import Any class UpperCamelCase__ : def __init__(self : Any , snake_case_ : int = 6 ): __a : Node | None = None __a : Node | None = None self.create_linked_list(snake_case_ ) def lowerCAmelCase (self : List[str] , snake_case_ : int ): __a : Optional[Any] = Node() __a : str = current_node __a : Union[str, Any] = current_node __a : Optional[Any] = current_node for _ in range(1 , snake_case_ ): __a : Any = Node() __a : List[str] = current_node __a : int = previous_node __a : str = current_node __a : Optional[Any] = self.front __a : List[Any] = previous_node def lowerCAmelCase (self : List[str] ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def lowerCAmelCase (self : int ): self.check_can_perform_operation() return self.front.data if self.front else None def lowerCAmelCase (self : Union[str, Any] , snake_case_ : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): __a : Dict = self.rear.next if self.rear: __a : List[str] = data def lowerCAmelCase (self : Tuple ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: __a : str = self.front.data __a : Any = None return data __a : Optional[int] = self.front __a : List[Any] = old_front.next __a : Optional[Any] = old_front.data __a : Any = None return data def lowerCAmelCase (self : Optional[Any] ): if self.is_empty(): raise Exception('''Empty Queue''' ) def lowerCAmelCase (self : Union[str, Any] ): if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class UpperCamelCase__ : def __init__(self : Dict ): __a : Any | None = None __a : Node | None = None __a : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
326
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCamelCase__ : def __init__(self : Optional[Any] , snake_case_ : List[str] , snake_case_ : Union[str, Any]=1_3 , snake_case_ : int=1_0 , snake_case_ : Any=3 , snake_case_ : int=2 , snake_case_ : List[str]=2 , snake_case_ : str=True , snake_case_ : Union[str, Any]=True , snake_case_ : List[str]=3_2 , snake_case_ : Optional[Any]=5 , snake_case_ : Dict=4 , snake_case_ : Any=3_7 , snake_case_ : Optional[Any]="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : Optional[Any]=1_0 , snake_case_ : str=0.02 , snake_case_ : List[str]="divided_space_time" , snake_case_ : int=None , ): __a : Dict = parent __a : List[str] = batch_size __a : Union[str, Any] = image_size __a : Tuple = num_channels __a : Union[str, Any] = patch_size __a : Optional[Any] = num_frames __a : str = is_training __a : List[str] = use_labels __a : str = hidden_size __a : List[str] = num_hidden_layers __a : List[str] = num_attention_heads __a : List[Any] = intermediate_size __a : int = hidden_act __a : Tuple = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : List[Any] = attention_type __a : Tuple = initializer_range __a : Tuple = scope __a : str = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __a : int = (image_size // patch_size) ** 2 __a : int = (num_frames) * self.num_patches_per_frame + 1 def lowerCAmelCase (self : Dict ): __a : Dict = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __a : List[Any] = None if self.use_labels: __a : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __a : Dict = self.get_config() return config, pixel_values, labels def lowerCAmelCase (self : Optional[Any] ): __a : int = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __a : Tuple = self.num_labels return config def lowerCAmelCase (self : Optional[Any] , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : str ): __a : List[str] = TimesformerModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Any = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase (self : Optional[int] , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : str ): __a : Optional[Any] = TimesformerForVideoClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __a : Tuple = model(snake_case_ ) # verify the logits shape __a : str = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , snake_case_ ) def lowerCAmelCase (self : str ): __a : Any = self.prepare_config_and_inputs() __a , __a , __a : Any = config_and_inputs __a : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __lowercase ,__lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Dict = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : List[Any] = False _SCREAMING_SNAKE_CASE : Tuple = False def lowerCAmelCase (self : List[Any] ): __a : Optional[Any] = TimesformerModelTester(self ) __a : List[Any] = ConfigTester( self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=3_7 ) def lowerCAmelCase (self : int , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Optional[int]=False ): __a : Optional[Any] = copy.deepcopy(snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): __a : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowerCAmelCase (self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def lowerCAmelCase (self : Dict ): pass def lowerCAmelCase (self : Tuple ): __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def lowerCAmelCase (self : str ): __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(snake_case_ ) __a : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Optional[int] = [*signature.parameters.keys()] __a : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) def lowerCAmelCase (self : List[Any] ): __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowerCAmelCase (self : List[Any] ): __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*snake_case_ ) @slow def lowerCAmelCase (self : List[Any] ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : List[Any] = TimesformerModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowerCAmelCase (self : Any ): if not self.has_attentions: pass else: __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() __a : int = True for model_class in self.all_model_classes: __a : int = self.model_tester.seq_length __a : str = self.model_tester.num_frames __a : str = True __a : str = False __a : Union[str, Any] = True __a : int = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __a : List[str] = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __a : Any = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __a : Tuple = True __a : Tuple = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __a : Tuple = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __a : str = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __a : List[Any] = len(snake_case_ ) # Check attention is always last and order is fine __a : Dict = True __a : Dict = True __a : Optional[int] = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __a : str = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 1 , len(snake_case_ ) ) __a : Optional[int] = outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def lowerCAmelCase (self : List[str] ): def check_hidden_states_output(snake_case_ : Any , snake_case_ : Optional[Any] , snake_case_ : int ): __a : Any = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __a : List[Any] = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __a : Union[str, Any] = outputs.hidden_states __a : Any = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(snake_case_ ) , snake_case_ ) __a : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Union[str, Any] = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : str = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def __UpperCamelCase ( ): __a : str = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) __a : List[str] = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def lowerCAmelCase (self : List[Any] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCAmelCase (self : Optional[Any] ): __a : List[str] = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( snake_case_ ) __a : str = self.default_image_processor __a : Optional[int] = prepare_video() __a : Union[str, Any] = image_processor(video[:8] , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): __a : int = model(**snake_case_ ) # verify the logits __a : Tuple = torch.Size((1, 4_0_0) ) self.assertEqual(outputs.logits.shape , snake_case_ ) __a : Optional[Any] = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) )
326
1
class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ ): _A = len(snake_case_ ) _A = [0] * len_array if len_array > 0: _A = array[0] for i in range(1 , snake_case_ ): _A = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase__ ( self , snake_case_ ): _A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(snake_case_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
27
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" _A = int(number**0.5 ) return number == sq * sq def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: """simple docstring""" _A = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _A = x_den * y_den * z_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 35 ) -> int: """simple docstring""" _A = set() _A = 42 _A = Fraction(0 ) _A = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _A = x_num * y_den + x_den * y_num _A = x_den * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _A = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _A = x_num * y_num _A = x_den * y_num + x_num * y_den _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _A = x_num * x_num * y_num * y_num _A = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _A = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _A = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"{solution() = }")
27
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class a_ : UpperCamelCase_ : Tuple = 42 UpperCamelCase_ : Union[str, Any] = None UpperCamelCase_ : Tuple = None def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Node(1 ) lowerCAmelCase__ = Node(2 ) lowerCAmelCase__ = Node(3 ) lowerCAmelCase__ = Node(4 ) lowerCAmelCase__ = Node(5 ) return tree def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] if root is None: return output lowerCAmelCase__ = deque([root] ) while process_queue: lowerCAmelCase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] def populate_output(lowerCamelCase__ , lowerCamelCase__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_UpperCamelCase , _UpperCamelCase ) return output def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] def populate_output(lowerCamelCase__ , lowerCamelCase__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_UpperCamelCase , _UpperCamelCase ) return output def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if root is None: return [] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = height(_UpperCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_UpperCamelCase , _UpperCamelCase ) ) lowerCAmelCase__ = 1 else: output.append(get_nodes_from_right_to_left(_UpperCamelCase , _UpperCamelCase ) ) lowerCAmelCase__ = 0 return output def _UpperCAmelCase ( ): # Main function for testing. """simple docstring""" lowerCAmelCase__ = make_tree() print(f"""In-order Traversal: {inorder(_UpperCamelCase )}""" ) print(f"""Pre-order Traversal: {preorder(_UpperCamelCase )}""" ) print(f"""Post-order Traversal: {postorder(_UpperCamelCase )}""" , """\n""" ) print(f"""Height of Tree: {height(_UpperCamelCase )}""" , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_UpperCamelCase ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(_UpperCamelCase ) + 1 ): print(f"""Level {level}:""" , get_nodes_from_left_to_right(_UpperCamelCase , level=_UpperCamelCase ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
721
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowerCAmelCase__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCamelCase__ ) else: lowerCAmelCase__ = sylvester(number - 1 ) lowerCAmelCase__ = num - 1 lowerCAmelCase__ = num return lower * upper + 1 if __name__ == "__main__": print(F"The 8th number in Sylvester's sequence: {sylvester(8)}")
674
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class a_ (lowercase__ ): __lowerCAmelCase : int = 'donut-swin' __lowerCAmelCase : Union[str, Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , snake_case_=2_2_4 , snake_case_=4 , snake_case_=3 , snake_case_=9_6 , snake_case_=[2, 2, 6, 2] , snake_case_=[3, 6, 1_2, 2_4] , snake_case_=7 , snake_case_=4.0 , snake_case_=True , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.1 , snake_case_="gelu" , snake_case_=False , snake_case_=0.02 , snake_case_=1E-5 , **snake_case_ , ): super().__init__(**_UpperCamelCase ) _lowerCAmelCase : Any = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : Any = embed_dim _lowerCAmelCase : Optional[int] = depths _lowerCAmelCase : Tuple = len(_UpperCamelCase ) _lowerCAmelCase : Any = num_heads _lowerCAmelCase : Optional[Any] = window_size _lowerCAmelCase : List[str] = mlp_ratio _lowerCAmelCase : int = qkv_bias _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = drop_path_rate _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Dict = use_absolute_embeddings _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Optional[Any] = int(embed_dim * 2 ** (len(_UpperCamelCase ) - 1) )
384
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __A : List[Any] = [num for num in range(3, 100_001, 2) if not is_prime(num)] def UpperCAmelCase ( lowerCamelCase_ :int ): '''simple docstring''' if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) snake_case_ : int = [] for num in range(len(lowerCamelCase_ ) ): snake_case_ : List[Any] = 0 while 2 * i * i <= odd_composites[num]: snake_case_ : List[str] = odd_composites[num] - 2 * i * i if is_prime(lowerCamelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(lowerCamelCase_ ) == n: return list_nums return [] def UpperCAmelCase ( ): '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
334
0
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) SCREAMING_SNAKE_CASE__ = number_of_bytes // partitions SCREAMING_SNAKE_CASE__ = [] for i in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = i * bytes_per_partition + 1 SCREAMING_SNAKE_CASE__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
538
"""simple docstring""" import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , _snake_case : Optional[int] , _snake_case : Dict=13 , _snake_case : Optional[Any]=7 , _snake_case : Union[str, Any]=False , _snake_case : Any=True , _snake_case : int=False , _snake_case : int=True , _snake_case : Tuple=33 , _snake_case : Optional[int]=32 , _snake_case : List[Any]=5 , _snake_case : Union[str, Any]=4 , _snake_case : int=37 , _snake_case : Tuple="gelu" , _snake_case : Dict=0.1 , _snake_case : Dict=0.1 , _snake_case : Tuple=512 , _snake_case : Any=16 , _snake_case : Union[str, Any]=2 , _snake_case : List[str]=0.02 , _snake_case : Optional[Any]=3 , _snake_case : int=4 , _snake_case : List[str]=None , ) -> Tuple: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_input_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = num_choices SCREAMING_SNAKE_CASE__ = scope def lowerCAmelCase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Tuple ) -> Any: return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : str , _snake_case : int , _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : List[str] , _snake_case : Any , _snake_case : List[str] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = EsmModel(config=_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case ) SCREAMING_SNAKE_CASE__ = model(_snake_case ) SCREAMING_SNAKE_CASE__ = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Tuple , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : int ) -> int: SCREAMING_SNAKE_CASE__ = EsmForMaskedLM(config=_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : List[str] , _snake_case : Dict , _snake_case : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = EsmForTokenClassification(config=_snake_case ) model.to(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a = False a = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) a = () a = ( { "feature-extraction": EsmModel, "fill-mask": EsmForMaskedLM, "text-classification": EsmForSequenceClassification, "token-classification": EsmForTokenClassification, "zero-shot": EsmForSequenceClassification, } if is_torch_available() else {} ) a = True def lowerCAmelCase_ ( self : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE__ = EsmModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def lowerCAmelCase_ ( self : str ) -> List[str]: self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def lowerCAmelCase_ ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ = type self.model_tester.create_and_check_model(*_snake_case ) def lowerCAmelCase_ ( self : str ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def lowerCAmelCase_ ( self : Tuple ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def lowerCAmelCase_ ( self : Tuple ) -> List[Any]: for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = EsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def lowerCAmelCase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE__ = EsmEmbeddings(config=_snake_case ) SCREAMING_SNAKE_CASE__ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) SCREAMING_SNAKE_CASE__ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) SCREAMING_SNAKE_CASE__ = create_position_ids_from_input_ids(_snake_case , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_snake_case , _snake_case ) ) ) def lowerCAmelCase_ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()[0] SCREAMING_SNAKE_CASE__ = EsmEmbeddings(config=_snake_case ) SCREAMING_SNAKE_CASE__ = torch.empty(2 , 4 , 30 ) SCREAMING_SNAKE_CASE__ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] SCREAMING_SNAKE_CASE__ = torch.as_tensor([expected_single_positions, expected_single_positions] ) SCREAMING_SNAKE_CASE__ = embeddings.create_position_ids_from_inputs_embeds(_snake_case ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(_snake_case , _snake_case ) ) ) @unittest.skip("Esm does not support embedding resizing" ) def lowerCAmelCase_ ( self : List[str] ) -> int: pass @unittest.skip("Esm does not support embedding resizing" ) def lowerCAmelCase_ ( self : Any ) -> Tuple: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: pass @require_torch class lowerCamelCase (_SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Dict ) -> str: with torch.no_grad(): SCREAMING_SNAKE_CASE__ = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE__ = model(_snake_case )[0] SCREAMING_SNAKE_CASE__ = 33 SCREAMING_SNAKE_CASE__ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , _snake_case ) SCREAMING_SNAKE_CASE__ = torch.tensor( [[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ) -> Any: with torch.no_grad(): SCREAMING_SNAKE_CASE__ = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE__ = model(_snake_case )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ = torch.tensor( [[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4 ) )
538
1
'''simple docstring''' def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" return " ".join( "".join(word[::-1] ) if len(SCREAMING_SNAKE_CASE_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
653
"""simple docstring""" from manim import * class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('CPU' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('GPU' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('Model' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(lowerCAmelCase__ ): rect.set_stroke(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowerCAmelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowerCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=lowerCAmelCase__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=lowerCAmelCase__ , buff=0.0 ) self.add(lowerCAmelCase__ ) model_cpu_arr.append(lowerCAmelCase__ ) self.add(*lowerCAmelCase__ , *lowerCAmelCase__ , *lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('Loaded Checkpoint' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = fill.copy().set_fill(lowerCAmelCase__ , opacity=0.7 ) target.move_to(lowerCAmelCase__ ) ckpt_arr.append(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(lowerCAmelCase__ ) self.add(*lowerCAmelCase__ , *lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowerCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = MarkupText( F'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) SCREAMING_SNAKE_CASE = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(*lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = VGroup(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0 ) SCREAMING_SNAKE_CASE = Text('Disk' , font_size=24 ) SCREAMING_SNAKE_CASE = Group(lowerCAmelCase__ , lowerCAmelCase__ ).arrange(lowerCAmelCase__ , buff=0.5 , aligned_edge=lowerCAmelCase__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(lowerCAmelCase__ , run_time=3 ) , Write(lowerCAmelCase__ , run_time=1 ) , Create(lowerCAmelCase__ , run_time=1 ) ) SCREAMING_SNAKE_CASE = [] for i, rect in enumerate(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(lowerCAmelCase__ , run_time=1.5 ) ) self.play(*lowerCAmelCase__ ) self.play(FadeOut(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = MarkupText(F'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCAmelCase__ , run_time=3 ) ) self.play( FadeOut(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , *lowerCAmelCase__ ) , ) self.wait()
247
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Tuple = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 1_8, 2] lowerCAmelCase__ : Any = True if "large" in model_name or "huge" in model_name else False lowerCAmelCase__ : Union[str, Any] = True if "large" in model_name or "huge" in model_name else False lowerCAmelCase__ : Optional[int] = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowerCAmelCase__ : List[Any] = [3, 3, 3, 3] lowerCAmelCase__ : Optional[int] = [5, 5, 5, 5] elif "fl4" in model_name: lowerCAmelCase__ : str = [4, 4, 4, 4] lowerCAmelCase__ : int = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowerCAmelCase__ : Dict = [3, 3, 3, 3] if "lrf" in model_name: lowerCAmelCase__ : Tuple = [3, 3, 3, 3] else: lowerCAmelCase__ : List[str] = [2, 2, 2, 2] if "tiny" in model_name: lowerCAmelCase__ : Optional[int] = 9_6 elif "small" in model_name: lowerCAmelCase__ : int = 9_6 elif "base" in model_name: lowerCAmelCase__ : Any = 1_2_8 elif "large" in model_name: lowerCAmelCase__ : Dict = 1_9_2 elif "xlarge" in model_name: lowerCAmelCase__ : str = 2_5_6 elif "huge" in model_name: lowerCAmelCase__ : str = 3_5_2 # set label information lowerCAmelCase__ : Any = "huggingface/label-files" if "large" in model_name or "huge" in model_name: lowerCAmelCase__ : Any = "imagenet-22k-id2label.json" else: lowerCAmelCase__ : Tuple = "imagenet-1k-id2label.json" lowerCAmelCase__ : Tuple = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ : int = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ : Optional[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Union[str, Any] = FocalNetConfig( embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , focal_levels=lowerCamelCase_ , focal_windows=lowerCamelCase_ , use_conv_embed=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , use_post_layernorm=lowerCamelCase_ , use_layerscale=lowerCamelCase_ , ) return config def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if "patch_embed.proj" in name: lowerCAmelCase__ : Any = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCAmelCase__ : List[Any] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: lowerCAmelCase__ : Tuple = "encoder." + name if "encoder.layers" in name: lowerCAmelCase__ : str = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: lowerCAmelCase__ : Any = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: lowerCAmelCase__ : Any = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowerCAmelCase__ : int = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowerCAmelCase__ : Dict = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowerCAmelCase__ : Optional[Any] = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": lowerCAmelCase__ : List[Any] = "layernorm.weight" if name == "norm.bias": lowerCAmelCase__ : str = "layernorm.bias" if "head" in name: lowerCAmelCase__ : Any = name.replace("head" , "classifier" ) else: lowerCAmelCase__ : Optional[int] = "focalnet." + name return name def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ): """simple docstring""" lowerCAmelCase__ : List[Any] = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on lowerCAmelCase__ : Optional[Any] = model_name_to_url[model_name] print("Checkpoint URL: " , lowerCamelCase_ ) lowerCAmelCase__ : List[str] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): lowerCAmelCase__ : Optional[Any] = state_dict.pop(lowerCamelCase_ ) lowerCAmelCase__ : List[str] = val lowerCAmelCase__ : Union[str, Any] = get_focalnet_config(lowerCamelCase_ ) lowerCAmelCase__ : Dict = FocalNetForImageClassification(lowerCamelCase_ ) model.eval() # load state dict model.load_state_dict(lowerCamelCase_ ) # verify conversion lowerCAmelCase__ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ : Tuple = BitImageProcessor( do_resize=lowerCamelCase_ , size={"shortest_edge": 2_5_6} , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase_ , crop_size=2_2_4 , do_normalize=lowerCamelCase_ , image_mean=lowerCamelCase_ , image_std=lowerCamelCase_ , ) lowerCAmelCase__ : Dict = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) lowerCAmelCase__ : List[Any] = processor(images=lowerCamelCase_ , return_tensors="pt" ) lowerCAmelCase__ : Union[str, Any] = transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase__ : Optional[Any] = image_transforms(lowerCamelCase_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowerCamelCase_ , atol=1e-4 ) lowerCAmelCase__ : str = model(**lowerCamelCase_ ) lowerCAmelCase__ : Union[str, Any] = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowerCAmelCase__ : Union[str, Any] = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": lowerCAmelCase__ : List[str] = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": lowerCAmelCase__ : Optional[Any] = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": lowerCAmelCase__ : str = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": lowerCAmelCase__ : str = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": lowerCAmelCase__ : int = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(f'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(f'''{model_name}''' ) processor.push_to_hub(f'''{model_name}''' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) snake_case = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
568
'''simple docstring''' import os import sys snake_case = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) snake_case = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCAmelCase_ ( *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return AutoConfig.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCAmelCase_ ( *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCAmelCase_ ( *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return AutoModel.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCAmelCase_ ( *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return AutoModelForCausalLM.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCAmelCase_ ( *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCAmelCase_ ( *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCAmelCase_ ( *lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*lowerCamelCase_ , **lowerCamelCase_ )
568
1
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase__ = logging.getLogger(__name__) UpperCAmelCase__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a__ : '''simple docstring''' A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(SCREAMING_SNAKE_CASE__ )} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) A : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) A : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) A : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def lowerCAmelCase ( self : str ) -> Optional[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class a__ : '''simple docstring''' A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The input training data file (a text file).'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) A : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) A : Optional[int] = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) A : Optional[int] = field( default=SCREAMING_SNAKE_CASE__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) A : float = field( default=0.1_5 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) A : bool = field( default=SCREAMING_SNAKE_CASE__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: if self.train_file is not None: __A= self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __A= self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Dict,_SCREAMING_SNAKE_CASE : str ): """simple docstring""" with open(UpperCamelCase_,'r',encoding='utf-8' ) as f: __A= [json.loads(UpperCamelCase_ ) for line in f.read().splitlines() if (len(UpperCamelCase_ ) > 0 and not line.isspace())] assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) __A= {c: dataset[c] for c in dataset.column_names} __A= refs return Dataset.from_dict(UpperCamelCase_ ) def UpperCAmelCase__( ): """simple docstring""" __A= HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __A, __A, __A= parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __A, __A, __A= parser.parse_args_into_dataclasses() # Detecting last checkpoint. __A= None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __A= get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',datefmt='%m/%d/%Y %H:%M:%S',handlers=[logging.StreamHandler(sys.stdout )],) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s',UpperCamelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A= load_dataset(data_args.dataset_name,data_args.dataset_config_name ) if "validation" not in datasets.keys(): __A= load_dataset( data_args.dataset_name,data_args.dataset_config_name,split=f"""train[:{data_args.validation_split_percentage}%]""",) __A= load_dataset( data_args.dataset_name,data_args.dataset_config_name,split=f"""train[{data_args.validation_split_percentage}%:]""",) else: __A= {} if data_args.train_file is not None: __A= data_args.train_file if data_args.validation_file is not None: __A= data_args.validation_file __A= data_args.train_file.split('.' )[-1] if extension == "txt": __A= 'text' __A= load_dataset(UpperCamelCase_,data_files=UpperCamelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __A= { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __A= AutoConfig.from_pretrained(model_args.config_name,**UpperCamelCase_ ) elif model_args.model_name_or_path: __A= AutoConfig.from_pretrained(model_args.model_name_or_path,**UpperCamelCase_ ) else: __A= CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) __A= { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __A= AutoTokenizer.from_pretrained(model_args.tokenizer_name,**UpperCamelCase_ ) elif model_args.model_name_or_path: __A= AutoTokenizer.from_pretrained(model_args.model_name_or_path,**UpperCamelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __A= AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path,from_tf=bool('.ckpt' in model_args.model_name_or_path ),config=UpperCamelCase_,cache_dir=model_args.cache_dir,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,) else: logger.info('Training new model from scratch' ) __A= AutoModelForMaskedLM.from_config(UpperCamelCase_ ) model.resize_token_embeddings(len(UpperCamelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __A= datasets['train'].column_names else: __A= datasets['validation'].column_names __A= 'text' if 'text' in column_names else column_names[0] __A= 'max_length' if data_args.pad_to_max_length else False def tokenize_function(_SCREAMING_SNAKE_CASE : int ): # Remove empty lines __A= [line for line in examples['text'] if len(UpperCamelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'],padding=UpperCamelCase_,truncation=UpperCamelCase_,max_length=data_args.max_seq_length ) __A= datasets.map( UpperCamelCase_,batched=UpperCamelCase_,num_proc=data_args.preprocessing_num_workers,remove_columns=[text_column_name],load_from_cache_file=not data_args.overwrite_cache,) # Add the chinese references if provided if data_args.train_ref_file is not None: __A= add_chinese_references(tokenized_datasets['train'],data_args.train_ref_file ) if data_args.validation_ref_file is not None: __A= add_chinese_references( tokenized_datasets['validation'],data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __A= data_args.train_ref_file or data_args.validation_ref_file if has_ref: __A= False # Data collator # This one will take care of randomly masking the tokens. __A= DataCollatorForWholeWordMask(tokenizer=UpperCamelCase_,mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __A= Trainer( model=UpperCamelCase_,args=UpperCamelCase_,train_dataset=tokenized_datasets['train'] if training_args.do_train else None,eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None,tokenizer=UpperCamelCase_,data_collator=UpperCamelCase_,) # Training if training_args.do_train: if last_checkpoint is not None: __A= last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __A= model_args.model_name_or_path else: __A= None __A= trainer.train(resume_from_checkpoint=UpperCamelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __A= os.path.join(training_args.output_dir,'train_results.txt' ) if trainer.is_world_process_zero(): with open(UpperCamelCase_,'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir,'trainer_state.json' ) ) # Evaluation __A= {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __A= trainer.evaluate() __A= math.exp(eval_output['eval_loss'] ) __A= perplexity __A= os.path.join(training_args.output_dir,'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(UpperCamelCase_,'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) return results def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" main() if __name__ == "__main__": main()
186
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ : Optional[Any] = 1_00 UpperCAmelCase__ : Any = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def A ( UpperCamelCase_ : int ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowerCAmelCase__ = set() lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def A ( UpperCamelCase_ : int = 50_00 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , UpperCamelCase_ ): if len(partition(UpperCamelCase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"{solution() = }")
48
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A_ ( snake_case_ ): UpperCAmelCase__ = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ = '''LayoutLMv3ImageProcessor''' UpperCAmelCase__ = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self : Union[str, Any] , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : Dict ) -> Tuple: __magic_name__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) __magic_name__ = kwargs.pop("feature_extractor" ) __magic_name__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __lowerCamelCase : Union[List[List[int]], List[List[List[int]]]] = None , __lowerCamelCase : Optional[Union[List[int], List[List[int]]]] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Union[bool, str, TruncationStrategy] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 0 , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : List[str] , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor __magic_name__ = self.image_processor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__lowerCamelCase , __lowerCamelCase ): __magic_name__ = [text] # add batch dimension (as the image processor always adds a batch dimension) __magic_name__ = features["words"] __magic_name__ = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) # add pixel values __magic_name__ = features.pop("pixel_values" ) if return_overflowing_tokens is True: __magic_name__ = self.get_overflowing_images(__lowerCamelCase , encoded_inputs["overflow_to_sample_mapping"] ) __magic_name__ = images return encoded_inputs def _snake_case ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ) -> Union[str, Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __magic_name__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f''' {len(__lowerCamelCase )} and {len(__lowerCamelCase )}''' ) return images_with_overflow def _snake_case ( self : Optional[Any] , *__lowerCamelCase : Any , **__lowerCamelCase : Optional[Any] ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _snake_case ( self : str , *__lowerCamelCase : Any , **__lowerCamelCase : List[str] ) -> Dict: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def _snake_case ( self : Any ) -> str: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _snake_case ( self : Union[str, Any] ) -> int: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _snake_case ( self : Any ) -> Tuple: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
468
"""simple docstring""" def _lowerCAmelCase ( __lowerCamelCase:int ): '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
468
1
'''simple docstring''' def UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ) -> str: snake_case__ : Any = [0] * len(A_ ) snake_case__ : Union[str, Any] = [] snake_case__ : List[str] = [1] * len(A_ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(A_ ) ): if indegree[i] == 0: queue.append(A_ ) while queue: snake_case__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: snake_case__ : Dict = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(A_ ) print(max(A_ ) ) # Adjacency list of Graph A_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
270
from typing import TYPE_CHECKING from ...utils import _LazyModule a_ = {"""tokenization_bertweet""": ["""BertweetTokenizer"""]} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
221
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _A = 16 _A = 32 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int = 16 ): __UpperCamelCase =AutoTokenizer.from_pretrained('bert-base-cased' ) __UpperCamelCase =load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase =datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase =16 elif accelerator.mixed_precision != "no": __UpperCamelCase =8 else: __UpperCamelCase =None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding='longest' , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors='pt' , ) # Instantiate dataloaders. __UpperCamelCase =DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _A = mocked_dataloaders # noqa: F811 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , SCREAMING_SNAKE_CASE__ ) == "1": __UpperCamelCase =2 # New Code # __UpperCamelCase =int(args.gradient_accumulation_steps ) # Initialize accelerator __UpperCamelCase =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase =config['lr'] __UpperCamelCase =int(config['num_epochs'] ) __UpperCamelCase =int(config['seed'] ) __UpperCamelCase =int(config['batch_size'] ) __UpperCamelCase =evaluate.load('glue' , 'mrpc' ) set_seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase =model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase =AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler __UpperCamelCase =get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =model(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =output.loss accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase =model(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) __UpperCamelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __UpperCamelCase =parser.parse_args() __UpperCamelCase ={'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
711
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
0